10,000 Matching Annotations
  1. Jul 2024
    1. Reviewer #3 (Public Review):

      Yonk and colleagues investigate the role of the thalamostriatal pathway. Specifically, they studied the interaction of the posterior thalamic nucleus (PO) and the dorsolateral striatum in the mouse. First, they characterize connectivity by recording DLS neurons in in-vitro slices and optogenetically activating PO terminals. PO is observed to establish depressing synapses onto D1 and D2 spiny neurons as well as PV neurons. Second, the image PO axons are imaged by fiber photometry in mice trained to discriminate textures. Initially, no trial-locked activity is observed, but as the mice learn PO develops responses timed to the audio cue that marks the start of the trial and precedes touch. PO does appear to encode the tactile stimulus type or outcome. Optogenetic suppression of PO terminals in striatum slow task acquisition. The authors conclude that PO provides a "behaviorally relevant arousal-related signal" and that this signal "primes" striatal circuitry for sensory processing.

      A great strength of this paper is its timeliness. Thalamostriatal processing has received almost no attention in the past, and the field has become very interested in the possible functions of PO. Additionally, the experiments exploit multiple cutting-edge techniques.

      There seem to be some technical/analytical weaknesses. The in vitro experiments appear to have some contamination of nearby thalamic nuclei by the virus delivering the opsin, which could change the interpretation. Some of the statistical analyses of these data also appear inappropriate. The correlative analysis of Pom activity in vivo, licking, and pupil could be more convincingly done.

      The bigger weakness is conceptual - why should striatal circuitry need "priming" by the thalamus in order to process sensory stimuli? Why would such circuitry even be necessary? Why is a sensory signal from the cortex insufficient? Why should the animal more slowly learn the task? How does this fit with existing ideas of striatal plasticity? It is unclear from the experiments that the thalamostriatal pathway exists for priming sensory processing. In fact, the optogenetic suppression of the thalamostriatal pathway seems to speak against that idea.

    1. eLife assessment

      The valuable findings in this study reveal an intricate pattern of memory expression following retrieval extinction at different intervals from retrieval-extinction to test. The novel advance is in the demonstration that, relative to a standard extinction procedure, the retrieval-extinction procedure more effectively suppresses responses to a conditioned threat stimulus when testing occurs just minutes after extinction. The manuscript provides incomplete evidence in support of the attenuation of fear recovery and solid evidence for the engagement of the dorsolateral prefrontal cortex in this "short-term" suppression of responding.

    2. Reviewer #1 (Public Review):

      Summary:

      The novel advance by Wang et al is in the demonstration that, relative to a standard extinction procedure, the retrieval-extinction procedure more effectively suppresses responses to a conditioned threat stimulus when testing occurs just minutes after extinction. The authors provide some solid evidence to show that this "short-term" suppression of responding involves engagement of the dorsolateral prefrontal cortex.

      Strengths:

      Overall, the study is well-designed and the results are potentially interesting. There are, however, a few issues in the way that it is introduced and discussed. Some of the issues concern clarity of expression/communication. However, others relate to a theory that could be used to help the reader understand why the results should have come out the way that they did. More specific comments and questions are presented below.

      Weaknesses:

      INTRODUCTION & THEORY

      (1) Can the authors please clarify why the first trial of extinction in a standard protocol does NOT produce the retrieval-extinction effect? Particularly as the results section states: "Importantly, such a short-term effect is also retrieval dependent, suggesting the labile state of memory is necessary for the short-term memory update to take effect (Fig. 1e)." The importance of this point comes through at several places in the paper:

      1A. "In the current study, fear recovery was tested 30 minutes after extinction training, whereas the effect of memory reconsolidation was generally evident only several hours later and possibly with the help of sleep, leaving open the possibility of a different cognitive mechanism for the short-term fear dementia related to the retrieval-extinction procedure." ***What does this mean? The two groups in study 1 experienced a different interval between the first and second CS extinction trials; and the results varied with this interval: a longer interval (10 min) ultimately resulted in less reinstatement of fear than a shorter interval. Even if the different pattern of results in these two groups was shown/known to imply two different processes, there is absolutely no reason to reference any sort of cognitive mechanism or dementia - that is quite far removed from the details of the present study.

      1B. "Importantly, such a short-term effect is also retrieval dependent, suggesting the labile state of memory is necessary for the short-term memory update to take effect (Fig. 1e)." ***As above, what is "the short-term memory update"? At this point in the text, it would be appropriate for the authors to discuss why the retrieval-extinction procedure produces less recovery than a standard extinction procedure as the two protocols only differ in the interval between the first and second extinction trials. References to a "short-term memory update" process do not help the reader to understand what is happening in the protocol.

      (2) "Indeed, through a series of experiments, we identified a short-term fear amnesia effect following memory retrieval, in addition to the fear reconsolidation effect that appeared much later."<br /> ***The only reason for supposing two effects is because of the differences in responding to the CS2, which was subjected to STANDARD extinction, in the short- and long-term tests. More needs to be said about how and why the performance of CS2 is affected in the short-term test and recovers in the long-term test. That is, if the loss of performance to CS1 and CS2 is going to be attributed to some type of memory updating process across the retrieval-extinction procedure, one needs to explain the selective recovery of performance to CS2 when the extinction-to-testing interval extends to 24 hours. Instead of explaining this recovery, the authors note that performance to CS1 remains low when the extinction-to-testing interval is 24 hours and invoke something to do with memory reconsolidation as an explanation for their results: that is, they imply (I think) that reconsolidation of the CS1-US memory is disrupted across the 24-hour interval between extinction and testing even though CS1 evokes negligible responding just minutes after extinction.

      (3) The discussion of memory suppression is potentially interesting but, in its present form, raises more questions than it answers. That is, memory suppression is invoked to explain a particular pattern of results but I, as the reader, have no sense of why a fear memory would be better suppressed shortly after the retrieval-extinction protocol compared to the standard extinction protocol; and why this suppression is NOT specific to the cue that had been subjected to the retrieval-extinction protocol.

      3A. Relatedly, how does the retrieval-induced forgetting (which is referred to at various points throughout the paper) relate to the retrieval-extinction effect? The appeal to retrieval-induced forgetting as an apparent justification for aspects of the present study reinforces points 2 and 3 above. It is not uninteresting but needs some clarification/elaboration.

      (4) Given the reports by Chalkia, van Oudenhove & Beckers (2020) and Chalkia et al (2020), some qualification needs to be inserted in relation to reference 6. That is, reference 6 is used to support the statement that "during the reconsolidation window, old fear memory can be updated via extinction training following fear memory retrieval". This needs a qualifying statement like "[but see Chalkia et al (2020a and 2020b) for failures to reproduce the results of 6]."

      https://pubmed.ncbi.nlm.nih.gov/32580869/<br /> https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115860/

      CLARIFICATIONS, ELABORATIONS, EDITS

      (5) The Abstract was not easy to follow:

      5A. What does it mean to ask: "whether memory retrieval facilitates update mechanisms other than memory reconsolidation"? That is, in what sense could or would memory retrieval be thought to facilitate a memory update mechanism?

      5B. "First, we demonstrate that memory reactivation prevents the return of fear shortly after extinction training in contrast to the memory reconsolidation effect which takes several hours to emerge and such a short-term amnesia effect is cue independent (Study 1, N = 57 adults)."<br /> ***The phrasing here could be improved for clarity: "First, we demonstrate that the retrieval-extinction protocol prevents the return of fear shortly after extinction training (i.e., when testing occurs just min after the end of extinction)." Also, cue-dependence of the retrieval-extinction effect was assessed in study 2.

      5C. "Furthermore, memory reactivation also triggers fear memory reconsolidation and produces cue-specific amnesia at a longer and separable timescale (Study 2, N = 79 adults)." ***In study 2, the retrieval-extinction protocol produced a cue-specific disruption in responding when testing occurred 24 hours after the end of extinction. This result is interesting but cannot be easily inferred from the statement that begins "Furthermore..." That is, the results should be described in terms of the combined effects of retrieval and extinction, not in terms of memory reactivation alone; and the statement about memory reconsolidation is unnecessary. One can simply state that the retrieval-extinction protocol produced a cue-specific disruption in responding when testing occurred 24 hours after the end of extinction.

      5D. "...we directly manipulated brain activities in the dorsolateral prefrontal cortex and found that both memory retrieval and intact prefrontal cortex functions were necessary for the short-term fear amnesia."<br /> ***This could be edited to better describe what was shown: E.g., "...we directly manipulated brain activities in the dorsolateral prefrontal cortex and found that intact prefrontal cortex functions were necessary for the short-term fear amnesia after the retrieval-extinction protocol."

      5E. "The temporal scale and cue-specificity results of the short-term fear amnesia are clearly dissociable from the amnesia related to memory reconsolidation, and suggest that memory retrieval and extinction training trigger distinct underlying memory update mechanisms."<br /> ***The pattern of results when testing occurred just minutes after the retrieval-extinction protocol was different from that obtained when testing occurred 24 hours after the protocol. Describing this in terms of temporal scale is unnecessary, and suggesting that memory retrieval and extinction trigger different memory update mechanisms is not obviously warranted. The results of interest are due to the combined effects of retrieval+extinction and there is no sense in which different memory update mechanisms should be identified with retrieval (mechanism 1) and extinction (mechanism 2).

      5F. "These findings raise the possibility of concerted memory modulation processes related to memory retrieval..."<br /> ***What does this mean?

      (6) "...suggesting that the fear memory might be amenable to a more immediate effect, in addition to what the memory reconsolidation theory prescribes..."<br /> ***What does it mean to say that the fear memory might be amenable to a more immediate effect?

      (7) "Parallel to the behavioral manifestation of long- and short-term memory deficits, concurrent neural evidence supporting memory reconsolidation theory emphasizes the long-term effect of memory retrieval by hypothesizing that synapse degradation and de novo protein synthesis are required for reconsolidation."<br /> ***This sentence needs to be edited for clarity.

      (8) "previous behavioral manipulations engendering the short-term declarative memory effect..."<br /> ***What is the declarative memory effect? It should be defined.

      (9) "The declarative amnesia effect emerges much earlier due to the online functional activity modulation..."<br /> ***Even if the declarative memory amnesia effect had been defined, the reference to online functional activity modulation is not clear.

      (10) "However, it remains unclear whether memory retrieval might also precipitate a short-term amnesia effect for the fear memory, in addition to the long-term prevention orchestrated by memory consolidation."<br /> ***I found this sentence difficult to understand on my first pass through the paper. I think it is because of the phrasing of memory retrieval. That is, memory retrieval does NOT precipitate any type of short-term amnesia for the fear memory: it is the retrieval-extinction protocol that produces something like short-term amnesia. Perhaps this sentence should also be edited for clarity.

      I will also note that the usage of "short-term" at this point in the paper is quite confusing: Does the retrieval-extinction protocol produce a short-term amnesia effect, which would be evidenced by some recovery of responding to the CS when tested after a sufficiently long delay? I don't believe that this is the intended meaning of "short-term" as used throughout the majority of the paper, right?

      (11) "To fully comprehend the temporal dynamics of the memory retrieval effect..."<br /> ***What memory retrieval effect? This needs some elaboration.

      (12) "We hypothesize that the labile state triggered by the memory retrieval may facilitate different memory update mechanisms following extinction training, and these mechanisms can be further disentangled through the lens of temporal dynamics and cue-specificities."<br /> ***What does this mean? The first part of the sentence is confusing around the usage of the term "facilitate"; and the second part of the sentence that references a "lens of temporal dynamics and cue-specificities" is mysterious. Indeed, as all rats received the same retrieval-extinction exposures in Study 2, it is not clear how or why any differences between the groups are attributed to "different memory update mechanisms following extinction".

      (13) "In the first study, we aimed to test whether there is a short-term amnesia effect of fear memory retrieval following the fear retrieval-extinction paradigm."<br /> ***Again, the language is confusing. The phrase, "a short-term amnesia effect" implies that the amnesia itself is temporary; but I don't think that this implication is intended. The problem is specifically in the use of the phrase "a short-term amnesia effect of fear memory retrieval." To the extent that short-term amnesia is evident in the data, it is not due to retrieval per se but, rather, the retrieval-extinction protocol.

      (14) The authors repeatedly describe the case where there was a 24-hour interval between extinction and testing as consistent with previous research on fear memory reconsolidation. Which research exactly? That is, in studies where a CS re-exposure was combined with a drug injection, responding to the CS was disrupted in a final test of retrieval from long-term memory which typically occurred 24 hours after the treatment. Is that what the authors are referring to as consistent? If so, which aspect of the results are consistent with those previous findings? Perhaps the authors mean to say that, in the case where there was a 24-hour interval between extinction and testing, the results obtained here are consistent with previous research that has used the retrieval-extinction protocol. This would clarify the intended meaning greatly.

      DATA

      (15) Points about data:

      15A. The eight participants who were discontinued after Day 1 in study 1 were all from the no-reminder group. Can the authors please comment on how participants were allocated to the two groups in this experiment so that the reader can better understand why the distribution of non-responders was non-random (as it appears to be)?

      15B. Similarly, in study 2, of the 37 participants that were discontinued after Day 2, 19 were from Group 30 min, and 5 were from Group 6 hours. Can the authors comment on how likely these numbers are to have been by chance alone? I presume that they reflect something about the way that participants were allocated to groups, but I could be wrong.

      15C. "Post hoc t-tests showed that fear memories were resilient after regular extinction training, as demonstrated by the significant difference between fear recovery indexes of the CS+ and CS- for the no-reminder group (t26 = 7.441, P < 0.001; Fig. 1e), while subjects in the reminder group showed no difference of fear recovery between CS+ and CS- (t29 = 0.797, P = 0.432, Fig. 1e)."<br /> ***Is the fear recovery index shown in Figure 1E based on the results of the 1st test trial only? How can there have been a "significant difference between fear recovery indexes of the CS+ and CS- for the no-reminder group" when the difference in responding to the CS+ and CS- is used to calculate the fear recovery index shown in 1E? What are the t-tests comparing exactly, and what correction is used to account for the fact that they are applied post-hoc?

      15D. "Finally, there is no statistical difference between the differential fear recovery indexes between CS+ in the reminder and no reminder groups (t55 = -2.022, P = 0.048; Fig. 1c, also see Supplemental Material for direct test for the test phase)."<br /> ***Is this statement correct - i.e., that there is no statistically significant difference in fear recovery to the CS+ in the reminder and no reminder groups? I'm sure that the authors would like to claim that there IS such a difference; but if such a difference is claimed, one would be concerned by the fact that it is coming through in an uncorrected t-test, which is the third one of its kind in this paragraph. What correction (for the Type 1 error rate) is used to account for the fact that the t-tests are applied post-hoc? And if no correction, why not?

      15E. In study 2, why is responding to the CS- so high on the first test trial in Group 30 min? Is the change in responding to the CS- from the last extinction trial to the first test trial different across the three groups in this study? Inspection of the figure suggests that it is higher in Group 30 min relative to Groups 6 hours and 24 hours. If this is confirmed by the analysis, it has implications for the fear recovery index which is partly based on responses to the CS-. If not for differences in the CS- responses, Groups 30 minutes and 6 hours are otherwise identical.

      15F. Was the 6-hour group tested at a different time of day compared to the 30-minute and 24-hour groups; and could this have influenced the SCRs in this group?

      15G. Why is the range of scores in "thought control ability" different in the 30-minute group compared to the 6-hour and 24-hour groups? I am not just asking about the scale on the x-axis: I am asking why the actual distribution of the scores in thought control ability is wider for the 30-minute group?

      (16) During testing in each experiment, how were the various stimuli presented? That is, was the presentation order for the CS+ and CS- pseudorandom according to some constraint, as it had been in extinction? This information should be added to the method section.

      (17) "These results are consistent with previous research which suggested that people with better capability to resist intrusive thoughts also performed better in motivated dementia in both declarative and associative memories."<br /> ***Which parts of the present results are consistent with such prior results? It is not clear from the descriptions provided here why thought control ability should be related to the present findings or, indeed, past ones in other domains. This should be elaborated to make the connections clear.

    3. Reviewer #2 (Public Review):

      Summary

      The study investigated whether memory retrieval followed soon by extinction training results in a short-term memory deficit when tested - with a reinstatement test that results in recovery from extinction - soon after extinction training. Experiment 1 documents this phenomenon using a between-subjects design. Experiment 2 used a within-subject control and saw that the effect was also observed in a control condition. In addition, it also revealed that if testing is conducted 6 hours after extinction, there is no effect of retrieval prior to extinction as there is recovery from extinction independently of retrieval prior to extinction. A third group also revealed that retrieval followed by extinction attenuates reinstatement when the test is conducted 24 hours later, consistent with previous literature. Finally, Experiment 3 used continuous theta-burst stimulation of the dorsolateral prefrontal cortex and assessed whether inhibition of that region (vs a control region) reversed the short-term effect revealed in Experiments 1 and 2. The results of the control groups in Experiment 3 replicated the previous findings (short-term effect), and the experimental group revealed that these can be reversed by inhibition of the dorsolateral prefrontal cortex.

      Strengths

      The work is performed using standard procedures (fear conditioning and continuous theta-burst stimulation) and there is some justification for the sample sizes. The results replicate previous findings - some of which have been difficult to replicate and this needs to be acknowledged - and suggest that the effect can also be observed in a short-term reinstatement test.

      The study establishes links between memory reconsolidation and retrieval-induced forgetting (or memory suppression) literature. The explanations that have been developed for these are distinct and the current results integrate these, by revealing that the DLPFC activity involved in retrieval-extinction short-term effect. There is thus some novelty in the present results, but numerous questions remain unaddressed.

      Weakness

      The fear acquisition data is converted to a differential fear SCR and this is what is analysed (early vs late). However, the figure shows the raw SCR values for CS+ and CS- and therefore it is unclear whether the acquisition was successful (despite there being an "early" vs "late" effect - no descriptives are provided).

      In Experiment 1 (Test results) it is unclear whether the main conclusion stems from a comparison of the test data relative to the last extinction trial ("we defined the fear recovery index as the SCR difference between the first test trial and the last extinction trial for a specific CS") or the difference relative to the CS- ("differential fear recovery index between CS+ and CS-"). It would help the reader assess the data if Figure 1e presents all the indexes (both CS+ and CS-). In addition, there is one sentence that I could not understand "there is no statistical difference between the differential fear recovery indexes between CS+ in the reminder and no reminder groups (P=0.048)". The p-value suggests that there is a difference, yet it is not clear what is being compared here. Critically, any index taken as a difference relative to the CS- can indicate recovery of fear to the CS+ or absence of discrimination relative to the CS-, so ideally the authors would want to directly compare responses to the CS+ in the reminder and no-reminder groups. The latter issue is particularly relevant in Experiment 2, in which the CS- seems to vary between groups during the test and this can obscure the interpretation of the result.

      In Experiment 1, the findings suggest that there is a benefit of retrieval followed by extinction in a short-term reinstatement test. In Experiment 2, the same effect is observed on a cue that did not undergo retrieval before extinction (CS2+), a result that is interpreted as resulting from cue-independence, rather than a failure to replicate in a within-subjects design the observations of Experiment 1 (between-subjects). Although retrieval-induced forgetting is cue-independent (the effect on items that are suppressed [Rp-] can be observed with an independent probe), it is not clear that the current findings are similar. Here, both cues have been extinguished and therefore been equally exposed during the critical stage.

      The findings in Experiment 2 suggest that the amnesia reported in Experiment 1 is transient, in that no effect is observed when the test is delayed by 6 hours. The phenomena whereby reactivated memories transition to extinguished memories as a function of the amount of exposure (or number of trials) is completely different from the phenomena observed here. In the former, the manipulation has to do with the number of trials (or the total amount of time) that the cues are exposed to. In the current study, the authors did not manipulate the number of trials but instead the retention interval between extinction and test. The finding reported here is closer to a "Kamin effect", that is the forgetting of learned information which is observed with intervals of intermediate length (Baum, 1968). Because the Kamin effect has been inferred to result from retrieval failure, it is unclear how this can be explained here. There needs to be much more clarity on the explanations to substantiate the conclusions.

      There are many results (Ryan et al., 2015) that challenge the framework that the authors base their predictions on (consolidation and reconsolidation theory), therefore these need to be acknowledged. Similarly, there are reports that failed to observe the retrieval-extinction phenomenon (Chalkia et al., 2020), and the work presented here is written as if the phenomenon under consideration is robust and replicable. This needs to be acknowledged.

      The parallels between the current findings and the memory suppression literature are speculated in the general discussion, and there is the conclusion that "the retrieval-extinction procedure might facilitate a spontaneous memory suppression process". Because one of the basic tenets of the memory suppression literature is that it reflects an "active suppression" process, there is no reason to believe that in the current paradigm, the same phenomenon is in place, but instead, it is "automatic". In other words, the conclusions make strong parallels with the memory suppression (and cognitive control) literature, yet the phenomena that they observed are thought to be passive (or spontaneous/automatic).<br /> Ultimately, it is unclear why 10 mins between the reminder and extinction learning will "automatically" suppress fear memories. Further down in the discussion, it is argued that "For example, in the well-known retrieval-induced forgetting (RIF) phenomenon, the recall of a stored memory can impair the retention of related long-term memory and this forgetting effect emerges as early as 20 minutes after the retrieval procedure, suggesting memory suppression or inhibition can occur in a more spontaneous and automatic manner". I did not follow with the time delay between manipulation and test (20 mins) would speak about whether the process is controlled or automatic.

      Among the many conclusions, one is that the current study uncovers the "mechanism" underlying the short-term effects of retrieval extinction. There is little in the current report that uncovers the mechanism, even in the most psychological sense of the mechanism, so this needs to be clarified. The same applies to the use of "adaptive".

      Whilst I could access the data on the OFS site, I could not make sense of the Matlab files as there is no signposting indicating what data is being shown in the files. Thus, as it stands, there is no way of independently replicating the analyses reported.

      The supplemental material shows figures with all participants, but only some statistical analyses are provided, and sometimes these are different from those reported in the main manuscript. For example, the test data in Experiment 1 is analysed with a two-way ANOVA with the main effects of group (reminder vs no-reminder) and time (last trial of extinction vs first trial of the test) in the main report. The analyses with all participants in the sup mat used a mixed two-way ANOVA with a group (reminder vs no reminder) and CS (CS+ vs CS-). This makes it difficult to assess the robustness of the results when including all participants. In addition, in the supplementary materials, there are no figures and analyses for Experiment 3.

      One of the overarching conclusions is that the "mechanisms" underlying reconsolidation (long term) and memory suppression (short term) phenomena are distinct, but memory suppression phenomena can also be observed after a 7-day retention interval (Storm et al., 2012), which then questions the conclusions achieved by the current study.

      References:

      Baum, M. (1968). Reversal learning of an avoidance response and the Kamin effect. Journal of Comparative and Physiological Psychology, 66(2), 495.<br /> Chalkia, A., Schroyens, N., Leng, L., Vanhasbroeck, N., Zenses, A. K., Van Oudenhove, L., & Beckers, T. (2020). No persistent attenuation of fear memories in humans: A registered replication of the reactivation-extinction effect. Cortex, 129, 496-509.<br /> Ryan, T. J., Roy, D. S., Pignatelli, M., Arons, A., & Tonegawa, S. (2015). Engram cells retain memory under retrograde amnesia. Science, 348(6238), 1007-1013.<br /> Storm, B. C., Bjork, E. L., & Bjork, R. A. (2012). On the durability of retrieval-induced forgetting. Journal of Cognitive Psychology, 24(5), 617-629.

    4. Reviewer #3 (Public Review):

      SUMMARY

      Wang et al. have addressed how acquired fear and extinction memories evolve over time. Using a retrieval-extinction procedure in healthy humans, they have investigated the recovery of fear memories 30-60 minutes., 6 hours, and 24 hours after the retrieval-extinction phase. They have addressed this research question through 3 different experiments which included manipulations of the reminder cue, the time interval, and brain activity. Together, the studies suggest that early on after retrieval-extinction (30-60 min. later), retrieval-extinction may lead to an attenuation of fear recovery (after reinstatement) for all fear cues, as well as the non-reminded ones. Study 3 moreover suggests that this effect may depend on normal dlPFC function. In addition, the paper also contains data in line with prior findings suggesting that a 6-hour interval does not benefit from the reminder cue, and that a 24-hour interval does, and specifically for the reminded fear cue. The latter findings are seen as evidence of fear memory reconsolidation.

      STRENGTHS

      (1) The paper combines three related human fear conditioning studies, each with decent sample sizes. The authors are transparent about the fact that they excluded many participants and about which conditions they belonged to.

      (2) The effect that this paper investigates (short-term fear memory after a retrieval-extinction procedure) has not been studied extensively, thus making it a relevant topic.

      (3) The application of brain stimulation as a means to study causal relationships is interesting and goes beyond the purely behavioral or pharmacological interventions that are often used in human fear conditioning research. Also, the use of an active control stimulation is a strength of the study.

      WEAKNESSES

      (1) The entire study hinges on the idea that there is memory 'suppression' if (1) the CS+ was reminded before extinction and (2) the reinstatement and memory test takes place 30 minutes later (in Studies 1 & 2). However, the evidence supporting this suppression idea is not very strong. In brief, in Study 1, the effect seems to only just reach significance, with a medium effect size at best, and, moreover, it is unclear if this is the correct analysis (which is a bit doubtful, when looking at Figure 1D and E). In Study 2, there was no optimal control condition without reminder and with the same 30-min interval (which is problematic, because we can assume generalization between CS1+ and CS2+, as pointed out by the authors, and because generalization effects are known to be time-dependent). Study 3 is more convincing, but entails additional changes in comparison with Studies 1 and 2, i.e., applications of cTBS and an interval of 1 hour instead of 30 minutes (the reason for this change was not explained). So, although the findings of the 3 studies do not contradict each other and are coherent, they do not all provide strong evidence for the effect of interest on their own.

      Related to the comment above, I encourage the authors to double-check if this statement is correct: "Also, our results remain robust even with the "non-learners" included in the analysis (Fig. S1 in the Supplemental Material)". The critical analysis for Study 1 is a between-group comparison of the CS+ and CS- during the last extinction trial versus the first test trial. This result only just reached significance with the selected sample (p = .048), and Figures 1D and E even seem to suggest otherwise. I doubt that the analysis would reach significance when including the "non-learners" - assuming that this is what is shown in Supplemental Figure 1 (which shows the data from "all responded participants").

      Also related to the comment above, I think that the statement "suggesting a cue-independent short-term amnesia effect" in Study 2 is not correct and should read: "suggesting extinction of fear to the CS1+ and CS2+", given that the response to the CS+'s is similar to the response to the CS-, as was the case at the end of extinction. Also the next statement "This result indicates that the short-term amnesia effect observed in Study 2 is not reminder-cue specific and can generalize to the non-reminded cues" is not fully supported by the data, given the lack of an appropriate control group in this study (a group without reinstatement). The comparison with the effect found in Study 1 is difficult because the effect found there was relatively small (and may have to be double-checked, see remarks above), and it was obtained with a different procedure using a single CS+. The comparison with the 6-h and 24-h groups of Study 2 is not helpful as a control condition for this specific question (i.e., is there reinstatement of fear for any of the CS+'s) because of the large procedural difference with regard to the intervals between extinction and reinstatement (test).

      (2) It is unclear which analysis is presented in Figure 3. According to the main text, it either shows the "differential fear recovery index between CS+ and CS-" or "the fear recovery index of both CS1+ and CS2+". The authors should clarify what they are analyzing and showing, and clarify to which analyses the ** and NS refer in the graphs. I would also prefer the X-axes and particularly the Y-axes of Fig. 3a-b-c to be the same. The image is a bit misleading now. The same remarks apply to Figure 5.

      (3) In general, I think the paper would benefit from being more careful and nuanced in how the literature and findings are represented. First of all, the authors may be more careful when using the term 'reconsolidation'. In the current version, it is put forward as an established and clearly delineated concept, but that is not the case. It would be useful if the authors could change the text in order to make it clear that the reconsolidation framework is a theory, rather than something that is set in stone (see e.g., Elsey et al., 2018 (https://doi.org/10.1037/bul0000152), Schroyens et al., 2022 (https://doi.org/10.3758/s13423-022-02173-2)).

      In addition, the authors may want to reconsider if they want to cite Schiller et al., 2010 (https://doi.org/10.1038/nature08637), given that the main findings of this paper, nor the analyses could be replicated (see, Chalkia et al., 2020 (https://doi.org/10.1016/j.cortex.2020.04.017; https://doi.org/10.1016/j.cortex.2020.03.031).

      Relatedly, it should be clarified that Figure 6 is largely speculative, rather than a proven model as it is currently presented. This is true for all panels, but particularly for panel c, given that the current study does not provide any evidence regarding the proposed reconsolidation mechanism.

      Lastly, throughout the paper, the authors equate skin conductance responses (SCR) with fear memory. It should at least be acknowledged that SCR is just one aspect of a fear response, and that it is unclear whether any of this would translate to verbal or behavioral effects. Such effects would be particularly important for any clinical application, which the authors put forward as the ultimate goal of the research.

      (4) The Discussion quite narrowly focuses on a specific 'mechanism' that the authors have in mind. Although it is good that the Discussion is to the point, it may be worthwhile to entertain other options or (partial) explanations for the findings. For example, have the authors considered that there may be an important role for attention? When testing very soon after the extinction procedure (and thus after the reminder), attentional processes may play an important role (more so than with longer intervals). The retrieval procedure could perhaps induce heightened attention to the reminded CS+ (which could be further enhanced by dlPFC stimulation)?

      (5) There is room for improvement in terms of language, clarity of the writing, and (presentation of the) statistical analyses, for all of which I have provided detailed feedback in the 'Recommendations for the authors' section. Idem for the data availability; they are currently not publicly available, in contrast with what is stated in the paper. In addition, it would be helpful if the authors would provide additional explanation or justification for some of the methodological choices (e.g., the 18-s interval and why stimulate 8 minutes after the reminder cue, the choice of stimulation parameters), and comment on reasons for (and implications of) the large amount of excluded participants (>25%).

      Finally, I think several statements made in the paper are overly strong in light of the existing literature (or the evidence obtained here) or imply causal relationships that were not directly tested.

    1. Reviewer #1 (Public Review):

      Summary:

      This is a large cohort of ischemic stroke patients from a single centre. The author successfully set up predictive models for PTS.

      Strengths:

      The design and implementation of the trial are acceptable, and the results are credible. It may provide evidence of seizure prevention in the field of stroke treatment.

      Weaknesses:

      The methodology needs further consideration. The Discussion needs extensive rewriting.

    2. Reviewer #2 (Public Review):

      Summary

      The authors present multiple machine-learning methodologies to predict post-stroke epilepsy (PSE) from admission clinical data.

      Strengths

      The Statistical Approach section is very well written. The approaches used in this section are very sensible for the data in question.

      Weaknesses

      There are many typos and unclear statements throughout the paper.

      There are some issues with SHAP interpretation. SHAP in its default form, does not provide robust statistical guarantees of effect size. There is a claim that "SHAP analysis showed that white blood cell count had the greatest impact among the routine blood test parameters". This is a difficult claim to make.

      The Data Collection section is very poorly written, and the methodology is not clear.

      There is no information about hyperparameter selection for models or whether a hyperparameter search was performed. Given this, it is difficult to conclude whether one machine learning model performs better than others on this task.

      The inclusion and exclusion criteria are unclear - how many patients were excluded and for what reasons?

      There is no sensitivity analysis of the SMOTE methodology: How many synthetic data points were created, and how does the number of synthetic data points affect classification accuracy?

      Did the authors achieve their aims? Do the results support their conclusions?

      The paper does not clarify the features' temporal origins. If some features were not recorded on admission to the hospital but were recorded after PSE occurred, there would be temporal leakage.

      The authors claim that their models can predict PSE. To believe this claim, seeing more information on out-of-distribution generalisation performance would be helpful. There is limited reporting on the external validation cohort relative to the reporting on train and test data.

      For greater certainty on all reported results, it would be most appropriate to perform n-fold cross-validation, and report mean scores and confidence intervals across the cross-validation splits

      The likely impact of the work on the field

      If this model works as claimed, it will be useful for predicting PSE. This has some direct clinical utility.

      Analysis of features contributing to PSE may provide clinical researchers with ideas for further research on the underlying aetiology of PSE.

      Additional context that might help readers

      The authors show force plots and decision plots from SHAP values. These plots are non-trivial to interpret, and the authors should include an explanation of how to interpret them.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors report the performance of a series of machine learning models inferred from a large-scale dataset and externally validated with an independent cohort of patients, to predict the risk of post-stroke epilepsy. Some of the reported models have very good explicative and predictive performances.

      Strengths:

      The models have been derived from real-world large-scale data.

      Performances of the best-performing models are very good according to the external validation results.

      Early prediction of the risk of post-stroke epilepsy would be of high interest to implement early therapeutic interventions that could improve prognosis.

      Weaknesses:

      There are issues with the readability of the paper. Many abbreviations are not introduced properly and sometimes are written inconsistently. A lot of relevant references are omitted. The methodological descriptions are extremely brief and, sometimes, incomplete.

      The dataset is not disclosed, and neither is the code (although the code is made available upon request). For the sake of reproducibility, unless any bioethical concerns impede it, it would be good to have these data disclosed.

      Although the external validation is appreciated, cross-validation to check the robustness of the models would also be welcome.

    1. eLife assessment

      This important study reveals a neural signature of a common behavioural phenomenon: serial dependence, whereby estimates of a visual feature (here motion direction) are attracted towards the recent history of encoded and reported stimuli. The study provides solid evidence that this phenomenon arises primarily during working memory maintenance. The pervasiveness of serial dependencies across modalities and species makes these findings important for researchers interested in perceptual decision-making across subfields.

    2. Reviewer #1 (Public Review):

      This study uses MEG to test for a neural signature of the trial history effect known as 'serial dependence.' This is a behavioral phenomenon whereby stimuli are judged to be more similar than they really are, in feature space, to stimuli that were relevant in the recent past (i.e., the preceding trials). This attractive bias is prevalent across stimulus classes and modalities, but a neural source has been elusive. This topic has generated great interest in recent years, and I believe this study makes a unique contribution to the field. The paper is overall clear and compelling, and makes effective use of data visualizations to illustrate the findings. Below, I list several points where I believe further detail would be important to interpreting the results. I also make suggestions for additional analyses that I believe would enrich understanding but are inessential to the main conclusions.

      (1) In the introduction, I think the study motivation could be strengthened, to clarify the importance of identifying a neural signature here. It is clear that previous studies have focused mainly on behavior, and that the handful of neuroscience investigations have found only indirect signatures. But what would the type of signature being sought here tell us? How would it advance understanding of the underlying processes, the function of serial dependence, or the theoretical debates around the phenomenon?

      (1a) As one specific point of clarification, on p. 5, lines 91-92, a previous study (St. John-Saaltink et al.) is described as part of the current study motivation, stating that "as the current and previous orientations were either identical or orthogonal to each other, it remained unclear whether this neural bias reflected an attraction or repulsion in relation to the past." I think this statement could be more explicit as to why/how these previous findings are ambiguous. The St. John-Saaltink study stands as one of very few that may be considered to show evidence of an early attractive effect in neural activity, so it would help to clarify what sort of advance the current study represents beyond that.

      (1b) The study motivation might also consider the findings of Ranieri et al (2022, J. Neurosci) Fornaciai, Togoli, & Bueti (2023, J. Neurosci), and Luo & Collins (2023, J. Neurosci) who all test various neural signatures of serial dependence.

      (2) Regarding the methods and results, it would help if the initial description of the reconstruction approach, in the main text, gave more context about what data is going into reconstruction (e.g., which sensors), a more conceptual overview of what the 'reconstruction' entails, and what the fidelity metric indexes. To me, all of that is important to interpreting the figures and results. For instance, when I first read, it was unclear to me what it meant to "reconstruct the direction of S1 during the S2 epoch" (p. 10, line 199)? As in, I couldn't tell how the data/model knows which item it is reconstructing, as opposed to just reporting whatever directional information is present in the signal.

      (2a) Relatedly, what does "reconstruction strength" reflect in Figure 2a? Is this different than the fidelity metric? Does fidelity reflect the strength of the particular relevant direction, or does it just mean that there is a high level of any direction information in the signal?

      (3) Then in the Methods, it would help to provide further detail still about the IEM training/testing procedure. For instance, it's not entirely clear to me whether all the analyses use the same model (i.e., all trained on stimulus encoding) or whether each epoch and timepoint is trained on the corresponding epoch and timepoint from the other session. This speaks to whether the reconstructions reflect a shared stimulus code across different conditions vs. that stimulus information about various previous and current trial items can be extracted if the model is tailored accordingly. Specifically, when you say "aim of the reconstruction" (p. 31, line 699), does that simply mean the reconstruction was centered in that direction (that the same data would go into reconstructing S1 or S2 in a given epoch, and what would differentiate between them is whether the reconstruction was centered to the S1 or S2 direction value)? Or were S1 and S2 trained and tested separately for the same epoch? And was training and testing all within the same time point (i.e., train on delay, test on delay), or train on the encoding of a given item, then test the fidelity of that stimulus code under various conditions?

      (3a) I think training and testing were done separately for each epoch and timepoint, but this could have important implications for interpreting the results. Namely if the models are trained and tested on different time points, and reference directions, then some will be inherently noisier than others (e.g., delay period more so than encoding), and potentially more (or differently) susceptible to bias. For instance, the S1 and S2 epochs show no attractive bias, but they may also be based on more high-fidelity training sets (i.e., encoding), and therefore less susceptible to the bias that is evident in the retrocue epoch.

      (4) I believe the work would benefit from a further effort to reconcile these results with previous findings (i.e., those that showed repulsion, like Sheehan & Serences), potentially through additional analyses. The discussion attributes the difference in findings to the "combination of a retro-cue paradigm with the high temporal resolution of MEG," but it's unclear how that explains why various others observed repulsion (thought to happen quite early) that is not seen at any stage here. In my view, the temporal (as well as spatial) resolution of MEG could be further exploited here to better capture the early vs. late stages of processing. For instance, by separately examining earlier vs. later time points (instead of averaging across all of them), or by identifying and analyzing data in the sensors that might capture early vs. late stages of processing. Indeed, the S1 and S2 reconstructions show subtle repulsion, which might be magnified at earlier time points but then shift (toward attraction) at later time points, thereby counteracting any effect. Likewise, the S1 reconstruction becomes biased during the S2 epoch, consistent with previous observations that the SD effects grow across a WM delay. Maybe both S1 and S2 would show an attractive bias emerging during the later (delay) portion of their corresponding epoch? As is, the data nicely show that an attractive bias can be detected in the retrocue period activity, but they could still yield further specificity about when and where that bias emerges.

      (5) A few other potentially interesting (but inessential considerations): A benchmark property of serial dependence is its feature-specificity, in that the attractive bias occurs only between current and previous stimuli that are within a certain range of similarity to each other in feature space. I would be very curious to see if the neural reconstructions manifest this principle - for instance, if one were to plot the trialwise reconstruction deviation from 0, across the full space of current-previous trial distances, as in the behavioral data. Likewise, something that is not captured by the DoG fitting approach, but which this dataset may be in a position to inform, is the commonly observed (but little understood) repulsive effect that appears when current and previous stimuli are quite distinct from each other. As in, Figure 1b shows an attractive bias for direction differences around 30 degrees, but a repulsive one for differences around 170 degrees - is there a corresponding neural signature for this component of the behavior?

    3. Reviewer #2 (Public Review):

      Summary:

      The study aims to probe the neural correlates of visual serial dependence - the phenomenon that estimates of a visual feature (here motion direction) are attracted towards the recent history of encoded and reported stimuli. The authors utilize an established retro-cue working memory task together with magnetoencephalography, which allows to probe neural representations of motion direction during encoding and retrieval (retro-cue) periods of each trial. The main finding is that neural representations of motion direction are not systematically biased during the encoding of motion stimuli, but are attracted towards the motion direction of the previous trial's target during the retrieval (retro-cue period), just prior to the behavioral response. By demonstrating a neural signature of attractive biases in working memory representations, which align with attractive behavioral biases, this study highlights the importance of post-encoding memory processes in visual serial dependence.

      Strengths:

      The main strength of the study is its elegant use of a retro-cue working memory task together with high temporal resolution MEG, enabling to probe neural representations related to stimulus encoding and working memory. The behavioral task elicits robust behavioral serial dependence and replicates previous behavioral findings by the same research group. The careful neural decoding analysis benefits from a large number of trials per participant, considering the slow-paced nature of the working memory paradigm. This is crucial in a paradigm with considerable trial-by-trial behavioral variability (serial dependence biases are typically small, relative to the overall variability in response errors). While the current study is broadly consistent with previous studies showing that attractive biases in neural responses are absent during stimulus encoding (previous studies reported repulsive biases), to my knowledge it is the first study showing attractive biases in current stimulus representations during working memory. The study also connects to previous literature showing reactivations of previous stimulus representations, although the link between reactivations and biases remains somewhat vague in the current manuscript. Together, the study reveals an interesting avenue for future studies investigating the neural basis of visual serial dependence.

      Weaknesses:

      The main weakness of the current manuscript is that the authors could have done more analyses to address the concern that their neural decoding results are driven by signals related to eye movements. The authors show that participants' gaze position systematically depended on the current stimuli's motion directions, which together with previous studies on eye movement-related confounds in neural decoding justifies such a concern. The authors seek to rule out this confound by showing that the consistency of stimulus-dependent gaze position does not correlate with (a) the neural reconstruction fidelity and (b) the repulsive shift in reconstructed motion direction. However, both of these controls do not directly address the concern. If I understand correctly the metric quantifying the consistency of stimulus-dependent gaze position (Figure S3a) only considers gaze angle and not gaze amplitude. Furthermore, it does not consider gaze position as a function of continuous motion direction, but instead treats motion directions as categorical variables. Therefore, assuming an eye movement confound, it is unclear whether the gaze consistency metric should strongly correlate with neural reconstruction fidelity, or whether there are other features of eye movements (e.g., amplitude differences across participants, and tuning of gaze in the continuous space of motion directions) which would impact the relationship with neural decoding. Moreover, it is unclear whether the consistency metric, which does not consider history dependencies in eye movements, should correlate with attractive history biases in neural decoding. It would be more straightforward if the authors would attempt to (a) directly decode stimulus motion direction from x-y gaze coordinates and relate this decoding performance to neural reconstruction fidelity, and (b) investigate whether gaze coordinates themselves are history-dependent and are attracted to the average gaze position associated with the previous trials' target stimulus. If the authors could show that (b) is not the case, I would be much more convinced that their main finding is not driven by eye movement confounds.

      I am not convinced by the across-participant correlation between attractive biases in neural representations and attractive behavioral biases in estimation reports. One would expect a correlation with the behavioral bias amplitude, which is not borne out. Instead, there is a correlation with behavioral bias width, but no explanation of how bias width should relate to the bias in neural representations. The authors could be more explicit in their arguments about how these metrics would be functionally related, and why there is no correlation with behavioral bias amplitude.

      The sample size (n = 10) is definitely at the lower end of sample sizes in this field. The authors collected two sessions per participant, which partly alleviates the concern. However, given that serial dependencies can be very variable across participants, I believe that future studies should aim for larger sample sizes.

      It would have been great to see an analysis in source space. As the authors mention in their introduction, different brain areas, such as PPC, mPFC, and dlPFC have been implicated in serial biases. This begs the question of which brain areas contribute to the serial dependencies observed in the current study. For instance, it would be interesting to see whether attractive shifts in current representations and pre-stimulus reactivations of previous stimuli are evident in the same or different brain areas.

    4. Reviewer #3 (Public Review):

      Summary:

      This study identifies the neural source of serial dependence in visual working memory, i.e., the phenomenon that recall from visual working memory is biased towards recently remembered but currently irrelevant stimuli. Whether this bias has a perceptual or post-perceptual origin has been debated for years - the distinction is important because of its implications for the neural mechanism and ecological purpose of serial dependence. However, this is the first study to provide solid evidence based on human neuroimaging that identifies a post-perceptual memory maintenance stage as the source of the bias. The authors used multivariate pattern analysis of magnetoencephalography (MEG) data while observers remembered the direction of two moving dot stimuli. After one of the two stimuli was cued for recall, decoding of the cued motion direction re-emerged, but with a bias towards the motion direction cued on the previous trial. By contrast, decoding of the stimuli during the perceptual stage was not biased.

      Strengths:

      The strengths of the paper are its design, which uses a retrospective cue to clearly distinguish the perceptual/encoding stage from the post-perceptual/maintenance stage, and the rigour of the careful and well-powered analysis. The study benefits from high within-participant power through the use of sensitive MEG recordings (compared to the more common EEG), and the decoding and neural bias analysis are done with care and sophistication, with appropriate controls to rule out confounds.

      Weaknesses:

      A minor weakness of the study is the remaining (but slight) possibility of an eye movement confound. A control analysis shows that participants make systematic eye movements that are aligned with the remembered motion direction during both the encoding and maintenance phases of the task. The authors go some way to show that this eye gaze bias seems unrelated to the decoding of MEG data, but in my opinion do not rule it out conclusively. They merely show that the strengths of the gaze bias and the strength of MEG-based decoding/neural bias are uncorrelated across the 10 participants. Therefore, this argument seems to rest on a null result from an underpowered analysis.

      Impact:

      This important study contributes to the debate on serial dependence with solid evidence that biased neural representations emerge only at a relatively late post-perceptual stage, in contrast to previous behavioural studies. This finding is of broad relevance to the study of working memory, perception, and decision-making by providing key experimental evidence favouring one class of computational models of how stimulus history affects the processing of the current environment.

    1. eLife assessment

      In this important study, the authors provide evidence that Treacle, a disease-relevant intrinsically disordered protein, undergoes biomolecular condensation to support the structure and function of the fibrillar center of the nucleolus. The findings, arising from complementary approaches, provide solid evidence for the role of Treacle condensation in supporting rDNA transcription, rRNA processing, and genome integrity. These findings may be of interest to the communities studying biomolecular condensates, nucleolar organization, and ribosome biogenesis.

    2. Reviewer #1 (Public Review):

      Summary:

      The manuscript by Velichko et al. argues that the ability of nucleolar protein Treacles to form phase-separated condensates is necessary for its function in nucleolar organization, rRNA transcription, and rDNA repair. These findings may be of interest to the communities studying biomolecular condensates, nucleolar organization, and ribosome biogenesis. The authors propose that Treacle's ability to undergo liquid-liquid phase separation is the key to its role as a scaffold for the FC of the nucleolus. The experiments in this study were designed and performed well, particularly the overexpression studies, done in the absence of endogenous protein and accounted for the protein expression levels. However, in my view, the interpretation of these data should consider the possibility that specific protein-protein interactions of Treacle may also play a role in the organization of the FC compartment in vivo. The in vivo results do not exclude, and sometimes imply the presence of specific protein-protein interactions that may drive the organization of FC instead of, or in addition to LLPS.

      Main points:

      In the first part of the manuscript, the depletion of Treacle disrupted the FC and its (somewhat arbitrary) boundary with the dense fibrillar component, as well as rRNA biogenesis. The phenotypic effects of Treacle depletion by gene knockout or siRNA knockdown were evaluated thoroughly, and I see no issues here except that all experiments were conducted in HeLa cells, and it may not hurt to validate some key findings in a more normal cell line.

      Next, the authors tested the hypothesis that the function of Treacle is due to its ability to form biomolecular condensates. In vitro, recombinant Treacle displayed classical phase separation behavior, forming liquid droplets at low salt concentrations and in the presence of dextran. Similarly, overexpression of fluorescently tagged Treacle at high concentrations showed classical liquid droplet behavior, characterized by round shapes and rapid fusion, which is illustrated by beautiful live cell video microscopy. The issue I see here is with the interpretation: the formation of classical phase-separated droplets at high concentrations suggests that Treacle may require reaching a certain saturating concentration to undergo phase separation. In other words, high levels of overexpressed protein might lead to abnormal phase separation that may not happen under normal expression levels. Based on these results, it is not necessarily correct to assume that its normal conformation is solely due to phase separation, as the formation of condensates at saturating concentrations does not automatically imply that the same components undergo phase separation under physiological conditions.

      Treacle had been previously reported to interact with other proteins, specifically RPA194 and UBF, and these interactions were mapped to specific domains: the central repeated domain reportedly binds to RNA Pol I, while the C-terminus is involved in rDNA promoter recognition and UBF recruitment. Both of these proteins are necessary for rRNA transcription and nucleolar formation. Authors showed that overexpressing mutants impaired in phase separation resulted in defects in ribosomal RNA transcription and processing, as well as reduced DNA damage response efficiency. Specific protein-protein interactions as potential drivers of compartmentalization should be factored into the interpretation of these results. For instance, the deletion of the C-terminal (Δ1121-1488) results may indicate that the interaction with UBF is important. A charge-scrambled central domain mutant may have lost its interaction with Pol I. These specific interactions may establish the architecture of the compartment and increase the local concentration of Treacle, which in turn could facilitate phase separation locally. LLPS and specific protein-protein interactions are not mutually exclusive.

      Overall, the data supports the idea that the overexpressed Treacle behaves like a classic phase-separated protein, but it is still possible that at physiological levels its specific interactions with other proteins are also important for the organization of FC. I am not suggesting that authors performed a conceptually different work, but this aspect should be discussed in the manuscript.

      Other points:

      FACS - sorting used throughout the study to separate treatment from the control essentially distinguishes transfected vs untransfected cells. Since the transfection itself can have odd effects, it might be beneficial to include an additional control involving Cas9 transfection with a non-targeting guide RNA.

      The authors convincingly demonstrated in Figure 1 that the depletion of Treacle reduces RPA194 occupancy on the rDNA. This raises a question: which Treacle mutants can restore RPA194 occupancy, and which cannot?

      Figure 2 - measuring FRAP recovery rates as indicative of LLPS, at least for the full-length Treacle, would be more informative if authors assessed the protein turnover within the compartment (half or partial FRAP) versus exchange in and out of the compartment (full compartment FRAP).

      Statement related to Figure 2: "Fluorescence recovery in FCs, nucleolar caps, and extranucleolar condensates never reached the initial values over the analyzed time periods. This suggests that the high molecular exchange rate occurs through the mixing of Treacle molecules within the condensate boundaries and does not involve external diffusion". Assuming the post-bleach data were normalized to the cell's total fluorescent intensity, the presence of a substantial immobile fraction could also suggest high-affinity binding of that fraction to something within the compartment.

      Data related to DDR activation in ribosomal genes under genotoxic stress (Figure 5) is convincing, but it would not hurt to confirm the key findings in a more normal cell line, since HeLa cells may not accurately represent all aspects of healthy DDR.

    3. Reviewer #2 (Public Review):

      Summary:

      Velichko, Artem, et al. investigate the role played by the long intrinsically disordered protein Trecle in nucleolar morphology and function, with an interest in its potential ability to undergo liquid-liquid phase separation. The authors explore Treacle's role in core functions of the nucleolus (rRNA biogenesis and DNA repair), which has been a subject of continual investigation since it was identified that truncation of Treacle is the major genetic cause of Treacher-Collins syndrome. They show that knock out of Treacle leads to de-mixing of canonical markers of the FC (UBF, RPA194) and DFC (FBL) phases of the nucleolus. They also show that replacing Treacle with mutants that disrupt its bulk dynamics leads to the de-mixing of FBL. These mutants either remove the central region of Treacle (∆83-1121) or, more subtly, reduce the segregation of charged residues by scrambling them (CS- Charge Scrambled). The observed morphological disruptions mirrored disruptions to the production of rRNA and the ability to recruit the DNA-damage response factor TOPBP1. These data give new insight into the role played by the central region of Treacle in affecting its bulk dynamics and the potential effects of disruptions therein to nucleolar morphology and function.

      Strengths:

      The characterizations of changes to nuclear morphology upon Treacle knockout is the major strength of this study (Figure 1). Methodologically the CRISPR knockout appears sound. The characterized effects on the canonical markers of the FC and DFC phases support the idea that Treacle has a scaffolding function. While the effect of Treacle perturbations has been studied before, this has often been phenotyped in the context of development or rRNA biogenesis, and less often on the sub-cellular level.

      The other major strength of this study is its characterization of the effects of the charge scramble mutant. The authors find that replacing endogenous Treacle with this mutant reduces the bulk dynamics of Treacle (Figure 3K-M), de-mixes FBL from the DFC (Figure 4C-D), lowers pre-rRNA synthesis (Figure 4E-G), and abolishes the recruitment of the DNA-damage response factor TOPBP1 (Figure 5).

      Weaknesses:

      Clarity around the reagents used and deeper analyses would bolster the author's claims about the condensation behavior of Treacle.

      Limited characterization and sparse methodological details regarding recombinant Treacle lead to a concern about the observation that Treacle condenses in vitro. The concerns are offset by the fact that most of the paper uses cellular data to draw conclusions.

      The authors ascribe liquid-like behavior to Treacle based on spherical morphology and fusion events of Treacle-Katushka2S condensates as well as fluorescence recovery after a photobleaching (FRAP); these are accepted characterizations in the biomedical field. Nonetheless, the authors only use FRAP to characterize mutants, which limits conclusions about their apparent material state. Overall, FRAP data are better interpreted as a readout of bulk dynamics. For example, the FRAP traces of Treacle plateau at a recovery percentage between 40 and 60%, indicating complex bulk dynamics and the possibility of an immobile pool that is not liquid-like.

      Lastly, the Treacle-Katushka2S construct is the predominant construct used throughout the paper. The known tetrameric nature of Katushka2S contrasts with the presumptively monomeric Treacle-FusionRed-Cry2 construct. This is relevant because multi-valance is known to increase the driving forces for condensation and affect condensate material properties. The authors report that the Treacle-FusionRed-Cry2 construct (monomeric) exhibits less condensation than the Treacle-Katushka2S construct (tetrameric). Thus, one is left concerned that the latter construct is not wholly representative of intrinsic Treacle condensation behavior.

    4. Reviewer #3 (Public Review):

      Summary:

      This study provides evidence that the protein Treacle plays an essential role in the structure and function of the fibrillar center (FC) of the nucleolus, which is surrounded by the dense fibrillar component (DFC) and the granular component (GC). The authors provide new evidence that, like the DFC and GC, the functional FC compartment involves a biomolecular condensate that contains Treacle as a key component. Treacle is essential to the transcription of the rDNA as well as proper rRNA processing that the authors tie to a role in maintaining the separation of FC components from the DFC. In vitro and in vivo experiments highlight that Treacle is itself capable of undergoing condensation in a manner that depends on concentration and charge-charge interactions but is not affected by 1,6 hexanediol, which disrupts weak hydrophobic interactions. Attempting to generate separation-of-function mutants, the authors provide further evidence of complex interactions that drive proper condensation in the FC mediated by both the central repeat (low-complexity, likely driving the condensation) and C-terminal domain (which appears to target the specificity of the condensation to the proper location). Using mutant forms of Treacle defective in condensation, the authors provide evidence that these same protein forms are also disrupted in supporting Treacle's functions in rDNA transcription and rRNA processing. Last, the authors suggest that cells lacking Treacle are defective in the DNA damage response at the rDNA in response to VP16.

      Strengths:

      In general, the data are of high quality, the experiments are well-designed and the findings are mostly carefully interpreted. The findings of the work complement prior high-impact studies of the DFC and GC that have identified constituent proteins as the lynchpins of the biomolecular condensates that organize the nucleolus into its canonical three concentric compartment structure and are therefore likely to be of broad interest. The attempts to generate separation-of-function mutants to dissect the contribution of condensation to Treacle function are ambitious and critical to demonstrating the relevance of this property to the biology of the FC. The complementarity of the methods applied to investigate the Treacle function is appropriate and the findings integrate well towards a compelling narrative.

      Weaknesses:

      Although the attempt to generate separation of function mutants of Treacle is laudable (and essential), there still remain possible alternative explanations for the observed defects in such mutants as most of the experimental approaches give rise to negative results. The DDR angle of the manuscript seems somewhat more preliminary as it is largely restricted to looking at the recruitment of DDR factors to the rDNA in response to a specific insult (VP16). It would be more compelling if the authors could investigate a more biologically relevant outcome (e.g. rDNA repeat number stability).

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors developed an organoid system that contains smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs; pacemaker) but few enteric neurons, and generates rhythmic contractions as seen in the developing gut. The stereotypical arrangements of SMCs and ICCs in the organoid allowed the authors to identify these cell types in the organoid without antibody staining. The authors took advantage of this and used calcium imaging and pharmacology to study how calcium transients develop in this system through the interaction between the two types of cells. The authors first show that calcium transients are synchronized between ICC-ICC, SMC-SMC, and SMC-ICC. They then used gap junction inhibitors to suggest that gap junctions are specifically involved in ICC-to-SMC signaling. Finally, the authors used an inhibitor of myosin II to suggest that feedback from SMC contraction is crucial for the generation of rhythmic activities in ICCs. The authors also show that two organoids become synchronized as they fuse and SMCs mediate this synchronization.

      Strengths:

      The organoid system offers a useful model in which one can study the specific roles of SMCs and ICCs in live samples.

      Weaknesses:

      Since only one blocker each for gap junction and myosin II was used, the specificities of the effects were unclear.

    2. eLife assessment

      This valuable study reports the development of a novel organoid system for studying the emergence of autorhythmic gut peristaltic contractions through the interaction between interstitial cells of Cajal and smooth muscle cells. While the utility of the organoids for studying hindgut development is well illustrated by showing, for example, a previously unappreciated potential role for smooth muscle cells in regulating the firing rate of interstitial cells of Cajal, some of the functional analyses are incomplete. There are some concerns about the specificity and penetrance of perturbations and the reproducibility of the phenotypes. With these concerns properly addressed, this paper will be of interest to those studying the development and physiology of the gut.

    3. Reviewer #2 (Public Review):

      Summary:

      In this study, Yagasaki et al. describe an organoid system to study the interactions between smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs). While these interactions are essential for the control of rhythmic intestinal contractility (i.e., peristalsis), they are poorly understood, largely due to the complexity of and access to the in vivo environment and the inability to co-culture these cell types in vitro for long term under physiological conditions. The "gut contractile organoids" organoids described herein are reconstituted from stromal cells of the fetal chicken hindgut that rapidly reorganize into multilayered spheroids containing an outer layer of smooth muscle cells and an inner core of interstitial cells. The authors demonstrate that they contract cyclically and additionally use calcium imagining to show that these contractions occur concomitantly with calcium transients that initiate in the interstitial cell core and are synchronized within the organoid and between ICCs and SMCs. Furthermore, they use several pharmacological inhibitors to show that these contractions are dependent upon non-muscle myosin activity and, surprisingly, independent of gap junction activity. Finally, they develop a 3D hydrogel for the culturing of multiple organoids and found that they synchronize their contractile activities through interconnecting smooth muscle cells, suggesting that this model can be used to study the emergence of pacemaking activities. Overall, this study provides a relatively easy-to-establish organoid system that will be of use in studies examining the emergence of rhythmic peristaltic smooth muscle contractions and how these are regulated by interstitial cell interactions. However, further validation and quantification will be necessary to conclusively determine show the cellular composition of the organoids and how reproducible their behaviors are.

      Strengths:

      This work establishes a new self-organizing organoid system that can easily be generated from the muscle layers of the chick fetal hindgut to study the emergence of spontaneous smooth muscle cell contractility. A key strength of this approach is that the organoids seem to contain few cell types (though more validation is needed), namely smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs). These organoids are amenable to live imaging of calcium dynamics as well as pharmacological perturbations for functional assays, and since they are derived from developing tissues, the emergence of the interactions between cell types can be functionally studied. Thus, the gut contractile organoids represent a reductionist system to study the interactions between SMCs and ICCs in comparison to the more complex in vivo environment, which has made studying these interactions challenging.

      Weaknesses:

      The study falls short in the sense that it does not provide a rigorous amount of evidence to validate that the gut organoids are made of bona fide smooth muscle cells and ICCs. For example, only two "marker" proteins are used to support the claims of cell identity of SMCs and ICCs. At the same time, certain aspects of the data are not quantified sufficiently to appreciate the variance of organoid rhythmic contractility. For example, most contractility plots show the trace for a single organoid. This leads to a concern for how reproducible certain aspects of the organoid system (e.g. wavelength between contractions/rhythm) might be, or how these evolve uniquely over time in culture. Furthermore, while this study might be able to capture the emergence of ICC-SMC interactions as they related to muscle contraction and pacemaking, it is unclear how these interactions relate to adult gastrointestinal physiology given that the organoids are derived from fetal cells that might not be fully differentiated or might have distinct functions from the adult. Finally, despite the strength of this system, discoveries made in it will need to be validated in vivo.

    4. Reviewer #3 (Public Review):

      Summary:

      The paper presents a novel contractile gut organoid system that allows for in vitro studying of rudimentary peristaltic motions in embryonic tissues by facilitating GCaMP-live imaging of Ca2+<br /> dynamics, while highlighting the importance and sufficiency of ICC and SMC interactions in generating consistent contractions reminiscent of peristalsis. It also argues that ENS at later embryonic stages might not be necessary for coordination of peristalsis.

      Strengths:

      The manuscript by Yagasaki, Takahashi, and colleagues represents an exciting new addition to the toolkit available for studying fundamental questions in the development and physiology of the hindgut. The authors carefully lay out the protocol for generating contractile gut organoids from chick embryonic hindgut, and perform a series of experiments that illustrate the broader utility of these organoids for studying the gut. This reviewer is highly supportive of the manuscript, with only minor requests to improve confidence in the findings and broader impact of the work. These are detailed below.

      Weaknesses:

      (1) Given that the literature is conflicting on the role GAP junctions in potentiating communication between intestinal cells of Cajal (ICCs) and smooth muscle cells (SMCs), the experiments involving CBX and 18Beta-GA are well-justified. However, because neither treatment altered contractile frequency or synchronization of Ca++ transients, it would be important to demonstrate that the treatments did indeed inhibit GAP junction function as administered. This would strengthen the conclusion that GAP junctions are not required, and eliminate the alternative explanation that the treatments themselves failed to block GAP junction activity.

      (2) Given that 5uM blebbistatin increases the frequency of contractions but 10uM completely abolishes contractions, confirming that cell viability is not compromised at the higher concentration would build confidence that the phenotype results from inhibition of myosin activity. One could either assay for cell death, or perform washout experiments to test for recovery of cyclic contractions upon removal of blebbistatin. The latter may provide access to other interesting questions as well. For example, do organoids retain memory of their prior setpoint or arrive at a new firing frequency after washout?

      (3) Regulation of contractile activity was attributed to ICCs, with authors reasoning that Tuj1+ enteric neurons were only present in organoids in very small numbers (~1%). However, neuronal function is not strictly dependent on abundance, and some experimental support for the relative importance of ICCs over Tuj1+ cells would strengthen a central assumption of the work that ICCs the predominant cell type regulating organoid contraction. For example, one could envision forming organoids from embryos in which neural crest cells have been ablated via microdissection or targeted electroporation. Another approach would be ablation of Tuj1+ cells from the formed organoids via tetrodotoxin treatment. The ability of organoids to maintain rhythmic contractile activity in the total absence of Tuj1+ cells would add confidence that the ICCs are indeed the driver of contractility in these organoids.

      (4) Given the implications of a time lag between Ca++ peaks in ICCs and SMCs, it would be important to quantify this, including standard deviations, rather than showing representative plots from a single sample.

      (5) To validate the organoid as a faithful recreation of in vivo conditions, it would be helpful for authors to test some of the more exciting findings on explanted hindgut tissue. One could explant hindguts and test whether blebbistatin treatment silences peristaltic contractions as it does in organoids, or following RCAS-GCAMP infection at earlier stages, one could test the effects of GAP junction inhibitors on Ca++ transients in explanted hindguts. These would potentially serve as useful validation for the gut contractile organoid, and further emphasize the utility of studying these simplified systems for understanding more complex phenomena in vivo.

      (6) Organoid fusion experiments are very interesting. It appears that immediately after fusion, the contraction frequency is markedly reduced. Authors should comment on this, and how it changes over time following fusion. Further, is there a relationship between aggregate size and contractile frequency? There are many interesting points that could be discussed here, even if experimental investigation of these points is left to future work.

      (7) Minor: As seen in Movie 6 and Figure 6A, 5uM blebbistatin causes a remarkable increase in the frequency of contractions. Given the regular periodicity of these contractions, it is a surprising and potentially interesting finding, but authors do not comment on it. It would be helpful to note this disparity between 5 and 10 uM treatments, if not to speculate on what it means, even if it is beyond the scope of the present study to understand this further.

      (8) Minor: While ENS cells are limited in the organoid, it would be helpful to quantify the number of SMCs for comparison in Supplemental Figure S2. In several images, the number of SMCs appears quite limited as well, and the comparison would lend context and a point of reference for the data presented in Figure S2B.

      (9) Minor: additional details in the Figure 8 legend would improve interpretation of these results. For example, what is indicated in orange signal present in panels C, G and H? Is this GCAMP?

    5. Author response:

      Generals:

      We deeply appreciate the efforts by the Senior and Reviewing Editors, and also thank the three reviewers for their careful reading of the MS and their constructive comments, which are very helpful to improve our MS. We agree that we extend our efforts to elaborate the pharmacological analyses including clarification of the penetrance of GAP junction inhibitor(s), and effectiveness and specificity of the drugs. We plan to test at least L-type calcium channel blocker nifedipine. Concerning the reproducibility of the phenotypes, we indeed repeated experiments at multiple times for each of the analyses. While we demonstrated in the current version a series of representative data for simplicity along with explanation in the text that we conducted multiple times of experiments,  in a revised version we will improve the demonstration so that readers/reviewers can be convinced with the reproducibility of the data. We will also try to test other markers to look into cell types constituting the gut contractile organoid

      Specifics:

      Our provisional responses to “The weakness” raised by the reviewers are as follows:

      Reviewer #1:

      Please see the responses shown above (“Generals”).

      Reviewer #2:

      In addition to the responses in “Generals”, our response also includes the followings: We will look into wavelength between contractions/rhythm of the orgnaoid. We agree that our organoids derived from embryonic hind gut (E15) might not necessarily recapitulate the cell function in adult. However, it has well been accepted in the field of developmental biology that studies with embryonic tissue/cells make a huge contribution to unveil how complicated physiological cell function is underpinned. Nevertheless, we will carefully consider in the revised version so that the MS would not send misleading messages. Recent advances have also shown that 3D organoids can somehow “replace/substitute for” a complicated in vivo specimen when a particular cellular function is a focus of study.

      Reviewer #3:

      We appreciate a strong support of our findings.

      (1) We plan to perform positive control experiments, for example, to test if the drugs we use would interfere cardiac muscle functions.

      (2) We plan to do wach-out experiment to  confirm 10uM blebbistatin does not kill the cells. Thank you for this suggestion.

      (3) We plan to conduct tetrodotoxin treatment. Since experiments with such toxic reagents are not enouraged by our institute, we will perform experiments with a necessary-minimum amount.

      (4) We plant to address this point properly

      5) It is well predictable that blebbistatin would stop the gut movement in an explanted hindgut, and it is also well established that gut contractions (movements) are concomitant with Ca2+ transients. It would indeed be interesting to see how GJ inhibitors affect such in vivo gut movement. However, since all the reviewers and the Reviewing Editor pointed out, sensitivity (concentration) and penetrance of the drug is an important point of concern, we think that the in vivo analyses will be a next step to go in near future.

      (6) We have indeed noticed that contraction frequency is reduced after organoidal fusion. It seems as if cells communicate with each other to decide which rhythm they need to be adjusted to. Furthermore, contraction frequency tends to be slow down when the organoid becomes larger in size. It might be attributed to a delay in conductance between cells over growing distance. We plan to either quantify these potentially interesting phenomena or make a concise speculation in the revised version.

      (7)-(10) Thank you for these comments. We will fix them.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      The goal of Knudsen-Palmer et al. was to define a biological set of rules that dictate the differential RNAi-mediated silencing of distinct target genes, motivated by facilitating the long-term development of effective RNAi-based drugs/therapeutics. To achieve this, the authors use a combination of computational modeling and RNAi function assays to reveal several criteria for effective RNAi-mediated silencing. This work provides insights into how (1) cis-regulatory elements influence the RNAi-mediated regulation of genes; (2) it is determined that genes can "recover" from RNAi-silencing signals in an animal; and 3) pUGylation occurs exclusively downstream of the dsRNA trigger sequence, suggesting 3º siRNAs are not produced. In addition, the authors show that the speed at which RNAi-silencing is triggered does not correlate with the longevity of the silencing. These insights are significant because they suggest that if we understand the rules by which RNAi pathways effectively silence genes with different transcription/processing levels then we can design more effective synthetic RNAi-based

      therapeutics targeting endogenous genes. The conclusions of this study are mostly supported by the data, but there are some aspects that need to be clarified.

      We thank the reviewer for their kind words and for appreciating the practical utility of our approach and discoveries. 

      (1) The methods do not describe the "aged RNAi plates feeding assay" in Figure 2E. The figure legend states that "aged RNAi plates" were used to trigger weaker RNAi, but the detail explaining the experiment is insufficient. How aged is aged? If the goal was to effectively reduce the dsRNA load available to the animals, why not quantitatively titrate the dsRNA provided? Were worms previously fed on the plates, or was simply a lawn of bacteria grown until presumably the IPTG on the plate was exhausted?

      We have elaborated our methods section to describe that the plates were left at 4ºC for about 4 months before adding bacteria and performing the assay, with one possible reason for the weaker knockdown being that perhaps the IPTG in the RNAi plates is less effective. However, it is worth noting that the robustness of a feeding RNAi assay can vary from culture to culture and/or batch of plates. We therefore always perform RNAi assays with wild-type animals alongside test strains to gauge the strength of the RNAi assay for a given culture and batch of plates. We called the data in Figure 2E “weak” because of the response of wild-type animals was weak as evidenced by weak twitching in levamisole. Despite this reduced effect, we observed 100% penetrance in wild-type animals, enabling us to sensitively detect the reduced responses of the mutants. 

      (2) Is the data presented in Figure 2F completed using the "aged RNAi plates" to achieve the partial silencing of dpy-7 observed? Clarification of this point would be helpful.

      No. The only occasion when plates were older was as in response to comment 1 above.

      (3) Throughout the manuscript the authors refer to "non-dividing cells" when discussing animals' ability to recover from RNA silencing. It is not clear what the authors specifically mean with the phrase "non-dividing cells", but as this is referred to in one of their major findings, it should be clarified. Do they mean the cells are somatic cells in aged animals, thus if they are "non-dividing" the siRNA pools within the cells cannot be diluted by cell division? Based on the methods, the animals of RNAi assays were L4/Young adults that were scored over 8 days after the initial pulse of dsRNA feeding. If this is the case, wouldn't these animals be growing into gravid adults after the feeding, and thus have dividing cells as they grew?

      We thank the reviewer for highlighting the need to explain this point further. Our experiment test the silencing of the unc-22 gene, which is expressed and functions in body-wall muscle cells. Most of the body wall muscles in C. elegans are developed by the L1 stage (reviewed in Krause and Liu, 2012), and they do not divide between the L4 and adult stages. Therefore, during the duration of the experiment where we delivered a pulse of dsRNA and examined responses over days, none of these cells divide. We have added a statement in the main text to explicitly say that the recovery from silencing by dsRNA that we observed cannot be explained by dilution during cell divisions.

      (4) What are the typical expression levels/turnover of unc-22 and bli-1? Based on the results from the altered cis-regulatory regions of bli-1 and unc-22 in Figure 5, it seems like the transcription/turnover rates of each of these genes could also be used as a proof of principle for testing the model proposed in Figure 4. The strength of the model would be further increased if the RNAi sensitivity of unc-22 reflects differences in its transcription/turnover rates compared to bli-1.

      We can get a sense of the relative abundances of unc-22 and bli-1 across development from the RNA-seq experiments that have been performed by others in the field (see below). However, these data cannot be used to infer either the production or the turnover rates. Future experiments that measure production (the combined rate of transcriptional run-on, splicing, export from the nucleus, etc.) will be required to define the production rates. Similarly, assays that detect the rate of degradation of transcripts without confounding presence from continued production will be needed to establish turnover rates. Future efforts to obtain values for these in vivo rates for multiple genes will help further test the model.

      Author response image 1.

      Expression data for unc-22:

      Author response image 2.

      Expression data for bli-1:

      Reviewer #2 (Public Review):

      Summary:

      This manuscript by Knudsen-Palmer et al. describes and models the contribution of MUT-16 and RDE-10 in the silencing through RNAi by the Argonaute protein NRDE-3 or others. The authors show that MUT-16 and RDE-10 constitute an intersecting network that can be redundant or not depending on the gene being targeted by RNAi. In addition, the authors provide evidence that increasing dsRNA processing can compensate for NRDE-3 mutants. Overall, the authors provide convincing evidence to understand the factors involved in RNAi in C. elegans by using a genetic approach.

      Major Strengths:

      The author's work presents a compelling case for understanding the intricacies of RNA interference (RNAi) within the model organism Caenorhabditis elegans through a meticulous genetic approach. By harnessing genetic manipulation, they delve into the role of MUT-16 and RDE-10 in RNAi, offering a nuanced understanding of the molecular mechanisms at play in two independent case study targets (unc-22 and bli-1).

      We thank the reviewer for their kind words and for appreciating our genetic analysis.

      Major Weaknesses:

      (1) It is unclear how the molecular mechanisms of amplification are different under the MUT-16 and RDE-10 branches of the regulatory pathway, since they are clearly distinct proteins structurally. It would be interesting to do some small-RNA-seq of products generated from unc-22 and bli-1, on wild-type conditions and some of the mutants studied (eg. mut-16, rde-10 and mut16 + rde-10). That would provide some insights into whether the products of the 2 amplifications are the same in all conditions, just changing in abundance, or whether they are distinct in sequence patterns.

      As we highlight in the paper, MUT-16 and RDE-10 are indeed very different proteins. One possible hypothesis suggested by this difference is that different kinds of small RNAs are made when the underlying mechanism relies on MUT-16 versus on RDE-10. However, postulating such a difference is not necessary for explaining the data. Furthermore, since the amounts of 2º siRNAs do not have to be correlated with the strength of silencing (Figure 4E), this work raises caution against the over-reliance on small RNA sequencing for inferring gene silencing. Nevertheless, it is indeed an attractive possibility that the amounts of small RNA, their distributions along mRNA sequence, and/or the sequence biases of the accumulating small RNAs could be different when relying on MUT-16- or RDE-10-dependent mechanisms. Future work that directly examine the small RNAs that accumulate in different mutant strains after initiating RNAi can shed light on these possibilities.

      (2) In the same line, Figure 5 aims to provide insights into the sequence determinants that influence the RNAi of bli-1. It is unclear whether the changes in transcript stability dictated by the 3'UTR are the sole factor governing the preference for the MUT-16 and RDE-10 branches of the regulatory pathway. In line with the mutant jam297, it might be interesting to test whether factors like codon optimality, splicing, ... of the ORF region upstream from bli-1-dsRNA can affect its sensitivity to the MUT-16 and RDE-10 branches of the regulatory pathway.

      In Figure 5, we eliminated the possibility that any gene that is transcribed using the bli-1 promoter would require NRDE-3, and showed using jam297 that modifications to the 3’ cis regulatory regions of a target can alter the dependence on NRDE-3 for knockdown. We agree that future experiments that control individual aspects of bli-1, potentially one feature at a time, can reveal the separate contributions of each characteristic of the gene to the observed dependence on NRDE-3 of the wild-type bli-1 gene. However, given the many ways that the same level of transcript knockdown can be achieved in our modeling (Figure 4 and its supplemental figures) we expect that multiple characteristics could contribute to NRDE-3 dependence. 

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) On page 5, the authors state that "MUT-16 and RDE-10 are redundantly or additively required for silencing unc-22"; however, based on their data in Figure 1D, it seems nearly 100% silencing of unc-22 is achieved in single mut-16 or rde-10 mutants. If this is the case, wouldn't it suggest that redundancy of MUT-16 and RDE-10, and not an "additive effect" of MUT-16 and RDE-10 function? Although, as the mutator complex nucleates around MUT-16, the data in Figure 1D suggests it is possible that the presence of MUT-16 or RDE-10 is sufficient for the recruitment of one or more factors that triggers the silencing of unc-22, and thus only one of these factors is necessary.

      Because we are seeing 100% silencing in wild-type, mut-16(-), or rde-10(-) animals in Figure 1D, this assay (where the silencing response is strong) does not allow us to discriminate between differing levels of silencing. The “weak” RNAi assay in Figure 2E provides the opportunity to observe differences in the contributions made by MUT-16 or RDE-10, supporting the idea that the 2º siRNAs and relative contributions to silencing can indeed be additive, explaining the complete loss of silencing only in the double mutant. While MUT-16 has been shown to be required for the recruitment of other Mutators in the germline, Mutator foci are not detectable in the soma. Given that unc-22 and bli-1 are somatic targets, we are hesitant to assume a mechanism for the production of small RNAs that requires a similar MUT-16-dependent nucleation in somatic cells. MUT-16 is clearly required for full silencing. But, if it functions similarly in the soma and the germline remains an open question. Indeed the mechanism(s) for producing small RNAs in somatic cells could be different from that used for production of small RNAs in the germline because of known differences in the use of RNA-dependent RNA polymerases (e.g. Ravikumar et al., Nucleic Acids Res. 2019). Future studies that determine the subcellular localization(s) and potential biochemical function(s) of RDE-10 and MUT-16 in somatic cells are needed to further delineate mechanisms.

      (2) On page 10, "rather than one that looks a frequency" - the "a" should be "at".

      We thank the reviewer and have fixed this typo. 

      (3) Figure 4 is very crowded, further dividing 4A (right) and 4B into subpanels would help the readability of the figure.

      We thank the reviewer for identifying these figures as being particularly crowded. These panels are presented as single units because the left and right portions of each panel are intimately connected. In Fig. 4A, the outline of mechanism deduced on the left is based on experiments at various scales shown on the right. We have now clarified this in the figure legend. In Fig. 4B, the equations on the right define and use the constants depicted on the left and the definitions below apply to both parts. We have now adjusted both figure parts to make these connections clearer. 

      (4) References to the subpanels of Figure 4 in the text on page 12 are off from the figure and figure legend.

      For example:

      "Overall, τkd and tkd were uncorrelated..." refers to 4C when it should refer to 4D. "However, the maximal amount of 2ºsiRNAs..." refers to 4D when it should refer to 4E. "Additionally, an increase in transcription..." refers to 4E when it should refer to 4F.

      "When a fixed amount of dsRNA was exposed..." refers to 4F when it should refer to 4G.

      We thank the reviewer for catching these errors and we have corrected these figure references.

      Reviewer #2 (Recommendations For The Authors):

      I would encourage the authors to follow up on some of the more mechanistic comments made above, that would strengthen and complement the genetic part of the work presented.

      We agree that additional work is needed to elucidate differences in molecular mechanisms for amplifying small RNAs in an MUT-16-dependent vs. RDE-10-dependent manner. We hope to address these extensions of our work in future manuscripts that focus on the biochemistry of these proteins and the populations of small RNAs generated using them.

      I appreciate the efforts to computationally model the dynamics of the system, but I am not sure that it helps that the mathematical modelling treats both branches of the pathway as functionally equals, since they could have some mechanistic specialisation that is not yet elucidated by the current work.

      Our assumption that both branches are equivalent is the most parsimonious. If we allowed for differences, even more values for the parameters of the model will agree with experimental data. The strength of the model is that despite such conservative assumptions, it agrees with experimental data. Biochemical elaborations that make the MUT-16 and RDE-10 branches qualitatively different could exist in vivo as suggested by the reviewer. Even with such qualitative differences in detail, the overall impact on gene silencing is a quantitative and additive one as demonstrated by our experiments. Future experimental work focused on biochemistry could elucidate how a Maelstrom domain-containing protein (RDE-10) and an intrinsically disordered protein (MUT-16) act differently to ultimately promote small RNA production.

    2. Reviewer #1 (Public Review):

      SUMMARY:

      The goal of Knudsen-Palmer et al. was to define a biological set of rules that dictate the differential RNAi-mediated silencing of distinct target genes, motivated by facilitating the long-term development of effective RNAi-based drugs/therapeutics. This work provides insights into how 1) cis-regulatory elements influence the RNAi-mediated regulation of genes; 2) determines that genes can "recover" from RNAi-silencing signals in an animal; and 3) pUGylation occurs exclusively downstream of the dsRNA trigger sequence, suggesting 3º siRNAs are not produced. In addition, the authors show that the speed at which RNAi-silencing is triggered does not correlate with the longevity of the silencing. Overall, the work presented supports the conclusions of the authors. The insights are significant because they suggest that if we understand the rules by which RNAi pathways effectively silence genes with different transcription/processing levels then we can design more effective synthetic RNAi-based therapeutics targeting endogenous genes.

      MAJOR STRENGTH:

      The authors use a combination of computational modeling, genetics, and RNAi function assays to reveal several criteria for effective RNAi-mediated silencing of two distinct targets.

      WEAKNESS:

      It may be beyond the scope of this study, but it would be interesting to know the typical expression levels and turnover rates of unc-22 and bli-1. Based on the results from the altered cis-regulatory regions of bli-1 and unc-22 in Fig 5, it seems like the transcription/turnover rates of each of these genes could also be used as a proof of principle for testing the model proposed in Figure 4. The strength of the model would be further increased if the RNAi sensitivity of unc-22 reflects differences in its transcription/turnover rates compared to bli-1.

    3. Reviewer #2 (Public Review):

      SUMMARY

      This manuscript by Knudsen-Palmer et al. describes and models the contribution of MUT-16 and RDE-10 in the silencing through RNAi by the Argonaute protein NRDE-3 or others. The authors show that MUT-16 and RDE-10 constitute an intersecting network that can be redundant or not depending on the gene being targeted by RNAi. In addition, the authors provide evidence that increasing dsRNA processing can compensate for NRDE-3 mutants. Overall, the authors provide convincing evidence to understand the factors involved in RNAi in C. elegans by using a genetic approach.

      MAJOR STRENGTHS

      The author's work presents a compelling case for understanding the intricacies of RNA interference (RNAi) within the model organism Caenorhabditis elegans through a meticulous genetic approach. By harnessing genetic manipulation, they delve into the role of MUT-16 and RDE-10 in RNAi, offering a nuanced understanding of the molecular mechanisms at play in two independent case study targets (unc-22 and bli-1).

      MAJOR WEAKNESSES

      (1) It is unclear how the molecular mechanisms of amplification are different under the MUT-16 and RDE-10 branches of the regulatory pathway, since they are clearly distinct proteins structurally. It would be interesting to do some small-RNA-seq of products generated from unc-22 and bli-1, on wild-type conditions and some of the mutants studied (eg. mut-16, rde-10 and mut-16 + rde-10). That would provide some insights on whether the products of the 2 amplifications are the same in all conditions, just changing in abundance, or whether they are distinct in sequence patterns.

      (2) In the same line, Figure 5 aims to provide insights to the sequence determinants that influence on the RNAi of bli-1. It is unclear whether the changes in transcript stability dictated by the 3'UTR are the sole factor governing the preference for the MUT-16 and RDE-10 branches of the regulatory pathway. In line with the mutant jam297, it might be interesting to test whether factors like codon optimality, splicing, ... of the ORF region upstream from bli-1-dsRNA can affect its sensitivity to the MUT-16 and RDE-10 branches of the regulatory pathway.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      TMC7 knockout mice were generated by the authors and the phenotype was analyzed. They found that Tmc7 is localized to Golgi and is needed for acrosome biogenesis.

      Strengths:

      The phenotype of infertility is clear, and the results of TMC7 localization and the failed acrosome formation are highly reliable. In this respect, they made a significant discovery regarding spermatogenesis.

      In the original version, I pointed out the gap between their pH/calcium imaging data and the hypothesis of ion channel function of TMC7 in the Golgi. Now the author agrees and has changed the description to be reasonable. Additional experiments were also performed, and I can say that they have answered my concern adequately.

      I would say it is good to add any presumed mechanism for the observed changes in pH and calcium concentration in the cytoplasm this time.

      We appreciate your positive comments on our revised manuscript.

      Reviewer #2 (Public Review):

      Summary:

      This study presents a significant finding that enhances our understanding of spermatogenesis. TMC7 belongs to a family of transmembrane channel-like proteins (TMC1-8), primarily known for their role in the ear. Mutations to TMC1/2 are linked to deafness in humans and mice and were originally characterized as auditory mechanosensitive ion channels. However, the function of the other TMC family members remains poorly characterized. In this study, the authors begin to elucidate the function of TMC7 in acrosome biogenesis during spermatogenesis. Through analysis of transcriptomics datasets, they identify TMC7 as a transmembrane channel-like protein with elevated transcript levels in round spermatids in both mouse and human testis. They then generate Tmc7-/- mice and find that male mice exhibit smaller testes and complete infertility. Examination of different developmental stages reveals spermatogenesis defects, including reduced sperm count, elongated spermatids, and large vacuoles. Additionally, abnormal acrosome morphology is observed beginning at the early-stage Golgi phase, indicating TMC7's involvement in proacrosomal vesicle trafficking and fusion. They observed localization of TMC7 in the cis-Golgi and suggest that its presence is required for maintaining Golgi integrity, with Tmc7-/- leading to reduced intracellular Ca2+, elevated pH, and increased ROS levels, likely resulting in spermatid apoptosis. Overall, the work delineates a new function of TMC7 in spermatogenesis and the authors suggest that its ion channel activity is likely important for Golgi homeostasis. This work is of significant interest to the community and is of high quality.

      Strengths:

      The biggest strength of the paper is the phenotypic characterization of the TMC7-/- mouse model, which has clear acrosome biogenesis/spermatogenesis defects. This is the main claim of the paper and it is supported by the data that are presented.

      Weaknesses:

      The claim is that TMC7 functions as an ion channel. It is reasonable to assume this given what has been previously published on the more well-characterized TMCs (TMC1/2), but the data supporting this is preliminary here, and more needs to be done to solidify this hypothesis. The authors are careful in their interpretation and present this merely as a hypothesis supporting this idea.

      We appreciate this constructive suggestion.

      Reviewer #3 (Public Review):

      Summary:

      In this study, Wang et al. have demonstrated that TMC7, a testis-enriched multipass transmembrane protein, is essential for male reproduction in mice. Tmc7 KO male mice are sterile due to reduced sperm count and abnormal sperm morphology. TMC7 co-localizes with GM130, a cis-Golgi marker, in round spermatids. The absence of TMC7 results in reduced levels of Golgi proteins, elevated abundance of ER stress markers, as well as changes of Ca2+ and pH levels in the KO testis. However, further confirmation is required because the analyses were performed with whole testis samples in spite of the differences in the germ cell composition in WT and KO testis. In addition, the causal relationships between the reported anomalies await thorough interrogation

      Strengths:

      By using PD21 testes, the revised assays have consolidated that depletion of TMC7 leads to a reduced level of Ca2+ and an elevated level of ROS in the male germ cells. The immunohistochemistry analyses have clearly indicated the reduced abundance of GM130, P115, and GRASP65 in the knockout testis.

      Weaknesses:

      The Discussion section contains sentences reiterating the Introduction and Results of this manuscript (e.g., Lines 79-85 and 231-236; Lines 175-179 and 259-263). Those read repetitive and can be removed.

      We thank the reviewer for this import comment. We have modified the text according to your suggestion.

      Future studies are required to decipher how TMC7 stabilizes Golgi structure, coordinates vesicle transport, and maintains the germ cell homeostasis.

      Thanks. We appreciate this constructive suggestion. We totally agree the reviewer that future studies are required to decipher how TMC7 stabilizes Golgi structure, coordinates vesicle transport, and maintains the germ cell homeostasis.

      Recommendations for the authors

      Reviewer #1 (Recommendations For The Authors):

      1. In Fig S6d, the bar of Tmc7-/- is broken in the middle for P-EIF2.

      Thanks. We have remade Fig S6d according to your suggestion in the revised manuscript.

      Reviewer #2 (Recommendations For The Authors):

      None. The reviewers have adequately answered my points. Many thanks!

      We thank the reviewer for accepting our revisions as sufficient.

      Reviewer #3 (Recommendations For The Authors):

      In the revised manuscript, the authors have addressed most of my concerns.

      We are pleased that we were able to adequately address the reviewer’s concerns. We appreciate your suggestions to further improve our study.

    2. eLife assessment

      This study reports an important discovery highlighting the essential role of the putative ion channel, TMC7, in acrosome formation during sperm development and thus male fertility. The evidence for the requirement of TMC7 in acrosome biogenesis and sperm function is convincing, although its function as an ion channel remains to be further determined. Overall, this work will be of great interest to developmental biologists and ion channel physiologists alike.

    3. Reviewer #1 (Public Review):

      Summary:

      TMC7 knockout mice were generated by the authors and the phenotype was analyzed. They found that Tmc7 is localized to Golgi and is needed for acrosome biogenesis.

      Strengths:

      The phenotype of infertility is clear, and the results of TMC7 localization and the failed acrosome formation are highly reliable. In this respect, they made a significant discovery regarding spermatogenesis.

      In the original version, I pointed out the gap between their pH/calcium imaging data and the hypothesis of ion channel function of TMC7 in the Golgi. Now the author agrees and has changed the description to be reasonable. Additional experiments were also performed, and I can say that they have answered my concern adequately.

      I would say it is good to add any presumed mechanism for the observed changes in pH and calcium concentration in the cytoplasm this time.

    4. Reviewer #2 (Public Review):

      Summary:

      This study presents a significant finding that enhances our understanding of spermatogenesis. TMC7 belongs to a family of transmembrane channel-like proteins (TMC1-8), primarily known for their role in the ear. Mutations to TMC1/2 are linked to deafness in humans and mice and were originally characterized as auditory mechanosensitive ion channels. However, the function of the other TMC family members remains poorly characterized. In this study, the authors begin to elucidate the function of TMC7 in acrosome biogenesis during spermatogenesis. Through analysis of transcriptomics datasets, they elevated levels of TMC7 in round spermatids in both mouse and human testis. They then generate Tmc7-/- mice and find that male mice exhibit smaller testes and complete infertility. Examination of different developmental stages reveals spermatogenesis defects, including with reduced sperm count, elongated spermatids and large vacuoles. Additionally, abnormal acrosome morphology are observed beginning at the early-stage Golgi phase, indicating TMC7's involvement in proacrosomal vesicle trafficking and fusion. They observed localization of TMC7 in the cis-Golgi and suggest that its presence is required for maintaining Golgi integrity, with Tmc7-/- leading to reduced intracellular Ca2+, elevated pH and increased ROS levels, likely resulting in spermatid apoptosis. Overall, the work delineates a new function of TMC7 in spermatogenesis and the authors propose that its ion channel and/or scramblase activity is likely important for Golgi homeostasis. This work is of significant interest to the community and is of high quality.

      Strengths:

      The biggest strength of the paper is the phenotypic characterization of the TMC7-/- mouse model, which has clear acrosome biogenesis/spermatogenesis defects. This is the main claim of the paper and it is supported with the data that are presented.

      Weaknesses:

      It isn't clear whether TMC7 functions as an ion channel from the current data presented in this paper, but the authors are careful in their interpretation and present this merely as a hypothesis supporting this idea.

    5. Reviewer #3 (Public Review):

      Summary:

      In this study, Wang et al. have demonstrated that TMC7, a testis-enriched multipass transmembrane protein, is essential for male reproduction in mice. Tmc7 KO male mice are sterile due to reduced sperm count and abnormal sperm morphology. TMC7 co-localizes with GM130, a cis-Golgi marker, in round spermatids. The absence of TMC7 results in reduced levels of Golgi proteins, elevated abundance of ER stress markers, as well as changes of Ca2+ and pH levels in the KO testis. However, further confirmation is required because the analyses were performed with whole testis samples in spite of the differences in the germ cell composition in WT and KO testis. In addition, the causal relationships between the reported anomalies await thorough interrogation

      Strengths:

      By using PD21 testes, the revised assays have consolidated that depletion of TMC7 leads to a reduced level of Ca2+ and an elevated level of ROS in the male germ cells. The immunohistochemistry analyses have clearly indicated the reduced abundance of GM130, P115, and GRASP65 in the knockout testis.

      Weaknesses:

      Future studies are required to decipher how TMC7 stabilizes Golgi structure, coordinates vesicle transport, and maintains the germ cell homeostasis.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1

      Summary:

      In this paper, the authors performed molecular dynamics (MD) simulations to investigate the molecular basis of the association of alpha-synuclein chains under molecular crowding and salt conditions. Aggregation of alpha-synuclein is linked to the pathogenesis of Parkinson's disease, and the liquid-liquid phase separation (LLPS) is considered to play an important role in the nucleation step of the alpha-synuclein aggregation. This paper re-tuned the Martini3 coarse-grained force field parameters, which allows long-timescale MD simulations of intrinsically disordered proteins with explicit solvent under diverse environmental perturbation. Their MD simulations showed that alpha-synuclein does not have a high LLPS-forming propensity, but the molecular crowding and salt addition tend to enhance the tendency of droplet formation and therefore modulate the alpha-synuclein aggregation. The MD simulation results also revealed important intra- and inter-molecule conformational features of the alpha-synuclein chains in the formed droplets and the key interactions responsible for the stability of the droplets. These MD simulation data add biophysical insights into the molecular mechanism underlying the association of alpha-synuclein chains, which is important for understanding the pathogenesis of Parkinson's disease.

      Strengths:

      (1) The re-parameterized Martini 3 coarse-grained force field enables the large-scale MD simulations of the intrinsically disordered proteins with explicit solvent, which will be useful for a more realistic description of the molecular basis of LLPS.

      (2) This paper showed that molecular crowding and salt contribute to the modulation of the LLPS through different means. The molecular crowding minimally affects surface tension, but adding salt increases surface tension. It is also interesting to show that the aggregation pathway involves the disruption of the intra-chain interactions arising from C-terminal regions, which potentially facilitates the formation of inter-chain interactions.

      We thank the reviewer for pointing out the strengths of our study.

      Weaknesses:

      (1) Although the authors emphasized the advantage of the Martini3 force field for its explicit description of solvent, the whole paper did not discuss the water's role in the aggregation and LLPS.

      We thank the reviewer for pointing this out. We agree that we have not explored or discussed the role of water in aS aggregation or LLPS. We would like to convey that we would like to explore that in detail in a separate study altogether. However we have updated the “Discussion” section with the following lines to convey to the readers the importance water plays in aggregation and LLPS of aS.

      Page 24: “The significance of the solvent in alpha-synuclein (αS) aggregation remains underexplored. Recent studies [26, 55] underscore the pivotal role of water as a solvent in LLPS. It suggests that comprehending the solvent’s role, particularly water, is essential for attaining a deeper grasp of the thermodynamic and physical aspects of αS LLPS and aggregation. By delving into the solvent’s contribution, researchers can uncover additional factors influencing αS aggregation. Such insights hold the potential to advance our comprehension of protein aggregation phenomena, crucial for devising strategies to address diseases linked to protein misfolding and aggregation, notably Parkinson’s disease. Future investigations focusing on elucidating the interplay between αS, solvent (especially water), and other environmental elements could yield valuable insights into the mechanisms underlying LLPS and aggregation. Ultimately, this could aid in the development of therapeutic interventions or preventive measures for Parkinson’s and related diseases.”

      (2) This paper discussed the effects of crowders and salt on the surface tension of the droplets.

      The calculation of the surface tension relies on the droplet shape. However, for the formed clusters in the MD simulations, the typical size is <10, which may be too small to rigorously define the droplet shape. As shown in previous work cited by this paper [Benayad et al., J. Chem. Theory Comput. 2021, 17, 525−537], the calculated surface tension becomes stable when the chain number is larger than 100.

      We appreciate the insightful feedback from the reviewer. However, we would like to emphasize that the αS droplets exhibit a highly liquid-like behavior, characterized by frequent exchanges of chains between the dense and dilute phases, alongside a slow aggregation process. In the study by Benayad et al. (2020, JCTC) [ref. 30], FUS-LCD was the protein of choice at concentrations in the (mM) range. FUS-LCD is known to undergo very rapid LLPS at concentrations lower than 100 (μM) where for αS the critical concentration for LLPS is 500 (μM) and undergoes slower aggregation than FUS. Moreover, the diffusion constant of αS inside newly formed droplets (no liquid to solid phase transition has occurred) has been estimated to be 0.23-0.58 μm2/s (Ray et al, 2020, Nat. Comm.). The value of diffusion constant for FUS-LCD inside LLPS droplets has been estimated to be 0.17 μm2/s (Murthy et al. 2023, Nat. Struct. and Mol. Biol.). These prove that αS forms droplets that are less viscous than that formed by FUS-LCD. This dynamic nature impedes the formation of large droplets in the simulations, making it challenging to rigorously calculate surface tension from interfacial width, which, in turn, necessitates the computation of g(r) between water and the droplet.

      Furthermore, it's essential to note that our primary aim in calculating surface tension was not to determine its absolute value. Rather, we aimed to compare surface tensions obtained for the three distinct environments explored in this study. Hence, our primary objective is to compare the distributions of surface tensions rather than focusing solely on the mean values obtained. The distributions shown in Figure 4a clearly show a trend which we have stated in the article.

      (3) In this work, the Martini 3 force field was modified by rescaling the LJ parameters \epsilon and \sigma with a common factor \lambda. It has not been very clearly described in the manuscript why these two different parameters can be rescaled by a common factor and why it is necessary to separately tune these two parameters, instead of just tuning the coefficient \epsilon as did in a previous work [Larsen et al., PLoS Comput Biol 16: e1007870].

      We thank the reviewer for the comment. We think that the distance of the first hydration layer also should have an impact on aggregation/LLPS. Here we are scaling both the epsilon and sigma. A higher epsilon of water-protein interactions mean higher the energy required for removal of water molecules (dehydration) when a chain goes from the dilute to the dense phase. A higher sigma on the other hand means that the hydration shell will also be at a larger distance making dehydration easier. Moreover, tuning both (either by same or different parameter) required a change of the overall protein-water interaction by only 1%, thereby requiring only considerably minimal change in forcefield parameters (compared to the case where only epsilon is being tuned which required 6-10% change in epsilon from its original values.) . Thus we think one of the ways of tuning water-protein interactions which requires minimal retuning of Martini 3 is by optimizing both epsilon and sigma. However whether a single scaling parameter is good enough requires further exploration and is outside the scope of the current study. More importantly it would introduce another free parameter into the system and the lesser the number of free parameters, the better. For this study, a single parameter sufficed as depicted in Figure 9. To inform the readers of why we chose to scale both sigma and epsilon, we have added the following in the main text:

      Page 25-26: “Increasing the ϵ value of water-protein interactions results in a higher energy demand for removing water molecules (dehydration) as a chain transitions from the dilute to the dense phase. Conversely, a higher σ value implies that the hydration shell will be at a greater distance, facilitating dehydration if a chain moves into the dilute phase. Therefore, adjusting water-protein interactions based on the protein’s single-chain behavior may not significantly influence the protein’s phase behavior. Furthermore, fine-tuning both ϵ and σ parameters only requires a minimal change in the overall protein-water interaction (1%). As a result, this adjustment minimally alters the force field parameters.”

      (4) Both the sizes and volume fractions of the crowders can affect the protein association. It will be interesting to perform MD simulations by adding crowders with various sizes and volume fractions. In addition, in this work, the crowders were modelled by fullerenes, which contribute to protein aggregation mainly by entropic means as discussed in the manuscript. It is not very clear how the crowder effect is sensitive to the chemical nature of the crowders (e.g., inert crowders with excluded volume effect or crowders with non-specific attractive interactions with proteins, etc) and therefore the force field parameters.

      We thank the reviewer for a potential future direction. In this investigation our main focus was to simulate the inertness features of crowders only, to ensure that only entropic effect of the crowders are explored. Although this study focuses on the factors that enable aS to form an aggregates/LLPS under different environmental conditions, it would be interesting to explore in a systematic way the mechanism of action of crowders of varying shapes, sizes and interactions. Therefore we added the following lines in the “Discussion” section to let the readers know that this is also a future prospect of investigation.

      Page 22: “Under physiological conditions, crowding effects emerge prominently. While crowders are commonly perceived to be inert, as has been considered in this investigation, the morphology, dimensions, and chemical interactions of crowding agents with αS in both dilute and dense phases may potentially exert considerable influence on its LLPS. Hence, a comprehensive understanding through systematic exploration is another avenue that warrants extensive investigation.”

      Reviewer #1 (Recommendations For The Authors):

      (1) Figure S1. The title of the figure and the description in the figure caption are inconsistent?

      We thank the reviewer for the comment and we have updated the article with the correct caption.

      (2) Page 14, line 3, the authors may want to provide more descriptions of the "ms1", "ms2", and "ms3" for better understanding.

      We are grateful to the reviewer for pointing this out. We have added a line describing in brief what “ms1”, “ms2” and “ms3” represent. It reads “Subsequent to the investigation, we utilize three representative conformations, each corresponding to one of the macrostates. We designate these macrostates as 1 (ms1), 2 (ms2), and 3 (ms3) (Figure S7)” (Page 28)

      (3) Page 20, the authors may want to briefly explain how the normalized Shannon entropy was calculated.

      We thank the reviewer for pointing this out. This is plain Shannon Entropy and the word “normalized” should not have been there. To avoid confusion we have provided the equation we have used to calculate the Shannon entropy (Eq 8) (Page 21).

      Reviewer #2 (Public Review):

      In the manuscript "Modulation of α-Synuclein Aggregation Amid Diverse Environmental Perturbation", Wasim et al describe coarse-grained molecular dynamics (cgMD) simulations of α-Synuclein (αS) at several concentrations and in the presence of molecular crowding agents or high salt. They begin by bench-marking their cgMD against all-atom simulations by Shaw. They then carry 2.4-4.3 µs cgMD simulations under the above-noted conditions and analyze the data in terms of protein structure, interaction network analysis, and extrapolated fluid mechanics properties. This is an interesting study because a molecular scale understanding of protein droplets is currently lacking, but I have a number of concerns about how it is currently executed and presented.

      We thank the reviewer for finding our study interesting.

      (1) It is not clear whether the simulations have reached a steady state. If they have not, it invalidates many of their analysis methods and conclusions.

      We have used the last 1 μs (1.5-2.5 1 μs) from each simulation for further analysis in this study. To understand whether the simulations have reached steady state or not, we plot the time profile of the concentration of the protein in the dilute phase for all three cases.

      Author response image 1.

      Except for the scenario of only αS (Figures a and b), the rest show very steady concentrations across various sections of the trajectory (Figures c-f). The larger sudden fluctuations observed inFigures a and b are due to the fact that only αS undergo very slow spontaneous aggregation and owing to the fact that the dense phase itself is very fluxional, addition/removal of a few chains to/from the dense to dilute phase register themselves as large fluctuations in the protein concentration in the dilute phase. For the other two scenarios (Figures c-f) aggregation has been accelerated due to the presence of crowders/salt. This causes larger aggregates to be formed. Therefore addition/removal of one or two chains does not significantly affect the concentration and we do not see such sudden large jumps. In summary, the large jumps seen in Figures a and b are due to slow, fluxional aggregation of pure αS and finite size effects. However as these still are only fluctuations, we posit that the systems have reached steady states. This claim is further supported by the following figure where the time profile of a few useful system wide macroscopic properties show no change between 1.5-2.5 µs.

      We also have added a brief discussion in the Methods section (Page 29-30) with these figures in the Supplementary Information.

      Author response image 2.

      “In this study, we utilized the final 1 µs from each simulation for further analysis. To ascertain whether the simulations have achieved a steady state, we plotted the time profile of protein concentration in the dilute phase for all three cases. Except for minor intermittent fluctuation involving only αS in neat water (Figures S8a and S8b), the remaining cases exhibit notably stable concentrations throughout various segments of the trajectory (Figures S8 c-f). The relatively higher fluctuations observed in Figures S8a and b stem from the slow, spontaneous aggregation of αS alone, compounded by the inherently ambiguous nature of the dense phase.

      Consequently, the addition or removal of a few chains from the dense to the dilute phase results in significant fluctuations in protein concentration within the dilute phase. Conversely, in the other two scenarios (Figures S8c-f), aggregation is expedited by the presence of crowders/salt, leading to the formation of larger aggregates. Consequently, the addition or removal of one or two chains has negligible impact on concentration, thereby mitigating sudden large jumps. In summary, the conspicuous jumps depicted in Figures S8a and b arise from the gradual, fluctuating aggregation of pure αS and finite size effects. However, since these remain within the realm of fluctuations, we assert that the systems have indeed reached steady states. This assertion is bolstered by the subsequent figure, where the time profile of several pertinent system-wide macroscopic properties reveals no discernible change between 1.5-2.5 µs (Figures S9).”

      (2) The benchmarking used to validate their cgMD methods is very minimal and fails to utilize a large amount of available all-atom simulation and experimental data.

      We disagree with the reviewer on this point. We have cited multiple previous studies [26, 27] that have chosen Rg as a metric of choice for benchmarking coarse-grained model and have used a reference (experimental or otherwise) to tune Martini force fields. Majority of the notable literature where Rg was used as a benchmark during generation of new coarse-grained force fields are works by Dignon et al. (PLoS Comp. Biol.) [ref. 25], Regy et al (Protein Science. 2021) [ref. 26], Joseph et al.(Nature Computational Science. 2021) [ref. 27] and Tesei et al (Open Research Europe, 2022) [ref. 28]. From a polymer physics perspective, tuning water-protein interactions is simply changing the solvent characteristics for the biopolymer and Rg has been generally considered a suitable metric in the case of coarse-grained model. Moreover we try to match the distribution of the Rg rather than only the mean value. This suggests that at a single molecule level, the cgMD simulations at the optimum water of water-protein interactions would allow the protein to sample the conformations present in the reference ensemble. We use the extensively sampled 70 μs all-atom data from DE Shaw Research to obtain the reference Rg distribution. Also we perform a cross validation by comparing the fraction of bound states in all-atom and cgMD dimer simulations which also seem to corroborate well with each other at optimum water-protein interactions. To let the readers understand the rationale behind choosing Rg we have added a section in the Methods section (Page 25) that explains why Rg is plausibly a good metric for tuning water-protein interactions in Martini 3, at least when dealing with IDPs.

      Our optimized model is further supported by the FRET experiments by Ray et al. [6]. They found that interchain NAC-NAC interactions drive LLPS. Residue level contact maps obtained from our simulations also show decreased intrachain NAC-NAC interactions with an increased interchain NAC-NAC interactions inside the droplet. This corroborates well with the experimental observations and furthermore validates the metrics we have used for optimization of the water-protein interactions. However the comparison with the FRET data by Ray et al. was not present earlier and we have added the following lines in the updated draft.

      Page17: “Thus we observed that increased inter-chain NAC-NAC regions facilitate the formation of αS droplets which also have previously been seen from FRET experiments on αS LLPS

      droplets[6].”

      (3) They also miss opportunities to compare their simulations to experimental data on aSyn protein droplets.

      We thank the reviewer for pointing this out. We have tried to compare the results from our simulations to existing experimental FRET data on αS. Please see the previous response where we have described our comparison with FRET observations.

      (4) Aspects such as network analysis are not contextualized by comparison to other protein condensed phases.

      For a proper comparison between other protein condensed phases, we would require the position phase space of such condensates which is not readily available. Therefore we tried to explain it in a simpler manner to paint a picture of how αS forms an interconnecting network inside the droplet phase.

      (5) Data are not made available, which is an emerging standard in the field.

      We thank the reviewer for mentioning this. We have provided the trajectories between 1.5-2.5 μs, which we used for the analysis presented in the article, via a zenodo repository along with other relevant files related to the simulations (https://zenodo.org/records/10926368).

      Firstly, it is not clear that these systems are equilibrated or at a steady state (since protein droplets are not really equilibrium systems). The authors do not present any data showing time courses that indicate the system to be reaching a steady state. This is problematic for several of their data analysis procedures, but particularly in determining free energy of transfer between the condensed and dilute phases based on partitioning.

      We have addressed this concern as stated previously in the response. We have updated the article accordingly.

      Secondly, the benchmarking that they perform against the 73 µs all-atom simulation of aSyn monomer by Shaw and coworkers provides only very crude validation of their cgMD models based on reproducing Rg for the monomer. The authors should make more extensive comparisons to the specific conformations observed in the DE Shaw work. Shaw makes the entire trajectory publicly available. There are also a wealth of experimental data that could be used for validation with more molecular detail. See for example, NMR and FRET data used to benchmark Monte Carlo simulations of aSyn monomer (as well as extensive comparisons to the Shaw MD trajectory) in Ferrie at al: A Unified De Novo Approach for Predicting the Structures of Ordered and Disordered Proteins, J. Phys. Chem. B 124 5538-5548 (2020)

      DOI:10.1021/acs.jpcb.0c02924

      I note that NMR measurements of aSyn in liquid droplets are available from Vendruscolo: Observation of an α-synuclein liquid droplet state and its maturation into Lewy body-like assemblies, Journal of Molecular Cell Biology, Volume 13, Issue 4, April 2021, Pages 282-294, https://doi.org/10.1093/jmcb/mjaa075.

      In addition, there are FRET studies by Maji: Spectrally Resolved FRET Microscopy of α-Synuclein Phase-Separated Liquid Droplets, Methods Mol Biol 2023:2551:425-447. doi: 10.1007/978-1-0716-2597-2_27.

      So the authors are missing opportunities to better validate the simulations and place their structural understanding in greater context. This is just based on my own quick search, so I am sure that additional and possibly better experimental comparisons can be found.

      We have performed a comparison with existing FRET measurements by Ray et al. (2020) as discussed in a previous response and also updated the same in the article. The doi (10.1007/978-1-0716-2597-2_27) provided by the reviewer is however for a book on Methods to characterize protein aggregates and does not contain any information regarding the observations from FRET experiments. The other doi (https://doi.org/10.1093/jmcb/mjaa075) for the article from Vendrusculo group does not contain information directly relevant to this study. Moreover NMR measurements cannot be predicted from cgMD since full atomic resolution is lost upon coarse-graining of the protein . A past literature survey by the authors found very little scientific literature on molecular level characterization of αS LLPS droplets.

      Thirdly, the small word network analysis is interesting, but hard to contextualize. For instance, the 8 Å cutoff used seems arbitrary. How does changing the cutoff affect the value of S determined? Also, how does the value of S compare to other condensed phases like crystal packing or amyloid forms of aSyn?

      The 8 Å cutoff is actually arbitrary since a distance based clustering always requires a cutoff which is empirically decided. However 8 Å is quite large compared to other cutoffs used for distance based clustering. For example in ref 26, 5 Å was used as a cutoff for calculation of protein clusters. Larger cutoffs will lead to sparser network structures. However we used the same cutoff for all distance based clustering which makes the networks obtained comparable. We wanted to perform a comparison among the networks formed by αS under different environmental conditions.

      Fourthly, I see no statement on data availability. The emerging standard in the computational field is to make all data publicly available through Github or some similar mechanism.

      We thank the reviewer for pointing this out and we have provided the raw data between 1.5-2.5 μs for each scenario along with other relevant files via a zenodo repository (https://zenodo.org/records/10926368).

      Finally, on page 16, they discuss the interactions of aSyn(95-110), but the sequence that they give is too long (seeming to contain repeated characters, but also not accurate). aSyn(95-110) = VKKDQLGKNEEGAPQE. Presumably this is just a typo, but potentially raises concerns about the simulations (since without available data, one cannot check that the sequence is accurate) and data analysis elsewhere.

      This indeed is a typographical error. We have updated the article with the correct sequence. The validity of the simulations can be verified from the data we have shared via the zenodo repository (https://zenodo.org/records/10926368).

    2. eLife assessment

      This study provides important biophysical insights into the molecular mechanism underlying the association of alpha-synuclein chains, which is essential for understanding the pathogenesis of Parkinson's disease. The data analysis is solid, and the methodology can help investigate other molecular processes involving intrinsically disordered proteins.

    3. Reviewer #1 (Public Review):

      Summary:

      In this paper, the authors performed molecular dynamics (MD) simulations to investigate the molecular basis of association of alpha-synuclein chains under molecular crowding and salt conditions. Aggregation of alpha-synuclein is linked to the pathogenesis of Parkinson's disease, and the liquid-liquid phase separation (LLPS) is considered to play an important role in the nucleation step of the alpha-synuclein aggregation. This paper re-tuned the Martini3 coarse-grained force field parameters, which allows long-timescale MD simulations of intrinsically disordered proteins with explicit solvent under diverse environmental perturbation. Their MD simulations showed that alpha-synuclein does not have a high LLPS-forming propensity, but the molecular crowding and salt addition tend to enhance the tendency of droplet formation and therefore modulate the alpha-synuclein aggregation. The MD simulation results also revealed important intra and inter-molecule conformational features of the alpha-synuclein chains in the formed droplets and the key interactions responsible for the stability of the droplets. These MD simulation data add biophysical insights into the molecular mechanism underlying the association of alpha-synuclein chains, which may be useful for understanding the pathogenesis of Parkinson's disease.

      Strengths:

      (1) The re-parameterized Martini 3 coarse-grained force field enables the large-scale MD simulations of the intrinsically disordered proteins with explicit solvent, which will be useful for a more realistic description of the molecular basis of LLPS.

      (2) This paper showed that the molecular crowding and salt contribute to the modulation of the LLPS through different means. The molecular crowding minimally affects surface tension, but adding salt increases surface tension. It is also interesting to show that the aggregation pathway involves the disruption of the intra-chain interactions arising from C-terminal regions, which potentially facilitates the formation of inter-chain interactions.

      Weaknesses:

      (1) Although the authors emphasized the advantage of the Martini3 force field for its explicit description of solvent, this paper did not analyze the water behavior contained in the simulation trajectories and discuss the water's role in the aggregation and LLPS.

      (2) This paper discussed the effects of crowders and salt on the surface tension of the droplets. The calculation of the surface tension relies on the droplet shape. However, for the formed clusters in the MD simulations, the typical size is <10, which may be too small to rigorously define the droplet shape. As shown in previous work cited by this paper [Benayad et al., J. Chem. Theory Comput. 2021, 17, 525−537], the calculated surface tension becomes stable when the chain number is larger than 100.

      (3) Both the sizes and volume fractions of the crowders can affect the protein association. It will be interesting to perform MD simulations by adding crowders with various sizes and volume fractions. In addition, in this work the crowders were modelled by fullerenes, which contribute to protein aggregation mainly by entropic means as discussed in the manuscript. It is not very clear how the crowder effect is sensitive to the chemical nature of the crowders (e.g., inert crowers with excluded volume effect or crowders with non-specific attractive interactions with proteins, etc).

    4. Reviewer #2 (Public Review):

      In the manuscript "Modulation of α-Synuclein Aggregation Amid Diverse Environmental Perturbation", Wasim et al describe coarse-grained molecular dynamics (cgMD) simulations of α-Synuclein (aSyn) at several concentrations and in the presence of molecular crowding agents or high salt. They begin by bench-marking their cgMD against all-atom simulations by Shaw. They then carry 2.4-4.3 µs cgMD simulations under the above-noted conditions and analyze the data in terms of protein structure, interaction network analysis, and extrapolated fluid mechanics properties. This is an interesting study because a molecular scale understanding of protein droplets is currently lacking.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Summary:

      In this manuscript, Fister et. al. investigate how amputational and burn wounds affect sensory axonal damage and regeneration in a zebrafish model system. The authors discovered that burn injury results in increased peripheral axon damage and impaired regeneration. Convincing experiments show altered axonal morphology and increased Ca2+ fluxes as a result of burn damage. Further experimental proof supports that early removal of the burnt tissue by amputation rescues axonal damage. Burn damage was also shown to markedly increase keratinocyte migration and increase localized ROS production as measured by the dye Pfbsf. These responses could be inhibited by Arp 2/3 inhibition and isotonic treatment. 

      Strengths: 

      The authors use state-of-the-art methods to study and compare transection and burn-induced tissue damage. Multiple experimental approaches (morphology, Ca2+ fluxing, cell membrane labeling) confirm axonal damage and impaired regeneration time. Furthermore, the results are also accompanied by functional response tests of touch sensitivity. This is the first study to extend the role of tissue-damage-related osmotic exposure beyond wound closure and leukocyte migration to a novel layer of pathology: axonal damage and regeneration. 

      Weaknesses: 

      The conclusions of the paper claiming a link between burn-induced epithelial cell migration, spatial redox signaling, and sensory axon regeneration are mainly based on correlative observations. Arp 2/3 inhibition impairs cell migration but has no significant effect on axon regeneration and restoration of touch sensitivity. 

      We agree with the reviewer. We have tried many experiments to address this question. The data show that Arp 2/3 inhibition with CK666 is an effective way to inhibit initial keratinocyte migration. However, later migration still proceeds. What is interesting is that just inhibition of the early migration is sufficient to restore localized ROS production in the wound area in the first  hour post-burn, even if this is not sufficient to prevent ROS accumulation over time. There is also a trend toward improved sensory neuron function late after this early treatment. However, this is not statistically significant. We think it is likely that both migration and tissue scale ROS influence the regeneration defect of sensory neurons after burn. The data using isotonic solution supports this conclusion. We have tried many other ways to limit keratinocyte migration including depletion of talin and expression of a dominant negative Rac in basal epithelial cells, but these treatments were not compatible with survival of the fish after burn.

      Pharmacological or genetic approaches should be used to prove the role of ROS production by directly targeting the known H2O2 source in the system: DUOX. 

      We agree that pharmacologic or genetic approaches to directly manipulate ROS production would provide substantial support to the hypothesis that ROS, along with keratinocyte migration, is a main factor contributing to poor burn outcomes. To address this, we first tried using a morpholino to deplete DUOX. However, the combination of DUOX morpholino and burn injury was lethal to larvae. We also used pharmacologic inhibition of ROS production using DPI (Diphenyleneiodonium). With this treatment, ROS is inhibited for only the first hour post-burn as treatment is lethal for longer periods of time. Burned larvae have marginally improved axon density and touch sensitivity, suggesting the importance of ROS in burn outcomes, however it was not statistically significant. It is likely that an increased effect would be observed with longer treatment, but treatment for more than 1 hour was toxic. We have added a supplemental figure with this new DPI data.

      While the authors provide clear and compelling proof that osmotic responses lie at the heart of the burn-induced axonal damage responses, they did not consider the option of further exploring any biology related to osmotic cell swelling. Could osmotic ATP release maybe play a role through excitotoxicity? Could cPLA2 activation-dependent eicosanoid production relate to the process? Pharmacological tests using purinergic receptor inhibition or blockage of eicosanoid production could answer these questions. 

      We agree that the role of osmotic cell swelling in the burn response is an interesting avenue for future study. However, we make use of isotonic treatment in this study specifically for its effect on keratinocyte migration and broad-scale wound healing. As a result, we feel that pursuing the biology of this swelling phenomenon is outside the scope of this paper.

      The authors provide elegant experiments showing that early removal of the burnt tissue can rescue damage-induced axonal damage, which could also be interpreted in an osmotic manner: tail fin transections could close faster than burn wounds, allowing for lower hypotonic exposure time. Axonal damage and slow regeneration in tail fin burn wounds could be a direct consequence of extended exposure time to hypotonic water. 

      We have done experiments using FM dye to test how long it takes burn and transection wounds to close (shown below). In these experiments, dye entry into wounded tissue is used as a readout of wound closure. Dye is only able to enter wounded tissue when the epithelial barrier is disrupted. Our data reveal that transections take approximately 10 minutes to fully close, while burns take approximately 20 minutes to close.

      Author response image 1.

      To test if this difference in wound closure time would have an effect on axon outcomes, we repeated, but slightly modified, the dual-wound experiment. We increased the amount of time the burn condition was exposed to hypotonic conditions by 10 additional minutes (by transecting burned tissue at 15 minutes post burn, shortly before closure) and compared axon outcomes to the 5 mpw control transection. These results show there was no difference in axon regeneration or function when secondary transection was performed at 5 or 15 minutes post burn, suggesting that increased exposure to hypotonic solution is not the reason for defects in axon outcomes after burn injury.

      Author response image 2.

      Reviewer #2 (Public Review): 

      This is an interesting study in which the authors show that a thermal injury leads to extensive sensory axon damage and impaired regrowth compared to a mechanical transection injury. This correlates with increased keratinocyte migration. That migration is inhibited by CK666 drug treatment and isotonic medium. Both restrict ROS signalling to the wound edge. In addition, the isotonic medium also rescues the regrowth of sensory axons and recovery of sensory function. The findings may have implications for understanding non-optimal re-innervation of burn wounds in mammals. 

      The interpretation of results is generally cautious and controls are robust. 

      Here are some suggestions for additional discussion: 

      The study compares burn injury which produces a diffuse injury to a mechanical cut injury which produces focal damage. It would help the reader to give a definition of wound edge in the burn situation. Is the thermally injured tissue completely dead and is resorbed or do axons have to grow into damaged tissue? The two-cut model suggests the latter. Also giving timescales would help, e.g. when do axons grow in relation to keratinocyte movement? An introductory cartoon might help. 

      We thank the reviewer for these insightful comments and questions. The burn wound is defined as the area that is directly damaged as a result of increased heat (labeled by FM dye entry), and the burn wound edge as the first line of healthy cells adjacent to the burned cells. These definitions have been added to the text to clarify the areas referenced. Recent experiments lead us to believe the wound area is composed almost completely of dead cells, but we are currently working to discover the fate of these dead cells as well as the wound adjacent cells that migrate to the wound edge after burn. As a result, we do not know whether axons grow into damaged tissue or if the damaged tissue is extruded, but we do see growth cone formation within a few hours after wounding suggesting the axons are actively trying to regenerate after a burn.

      Could treatment with CK666 or isotonic solution influence sensory axons directly, or through other non-keratinocyte cell types, such as immune cells? 

      We have done experiments looking at the density of caudal fin innervation in CK666, isotonic, or DPI treated fins. The axon density is unchanged in all these treatments compared to control treated larvae, so we do not believe these treatments affect axon health homeostatically. These data have been added to supplemental figure 3. Additionally, one of the benefits of the larval zebrafish burn model is the simplicity of the system – the epidermis is primarily composed of sensory axons, mesenchymal cells and keratinocytes. The burn environment is proinflammatory so it does promote immune cell recruitment, but we do not believe the immune cells are interacting directly with sensory axons besides clearing axonal debris. Previous papers by our lab have shown that peak immune cell recruitment occurs at 6 hpw, but they localize to the damaged tissue in the burn area and not the wound edge.

      Reviewer #3 (Public Review): 

      Fister and colleagues use regeneration of the larval zebrafish caudal fin to compare the effects of two modes of tissue damage-transection and burn-on cutaneous sensory axon regeneration. The authors found that restoration of sensory axon density and function is delayed following burn injury compared to transection. 

      The authors hypothesized that thermal injury triggers signals within the wound microenvironment that impair sensory neuron regeneration. The authors identify differences in the responses of epithelial keratinocytes to the two modes of injury: keratinocytes migrate in response to burn but not transection. Inhibiting keratinocyte migration with the small-molecule inhibitor of Arp2/3 (CK666) resulted in decreased production of reactive oxygen species (ROS) at early, but not late, time points. Preventing keratinocyte migration by wounding in isotonic media resulted in increased sensory function 24 hours after burn. 

      Strengths of the study include the beautiful imaging and rigorous statistical approaches used by the authors. The ability to assess both axon density and axon function during regeneration is quite powerful. The touch assay adds a unique component to the paper and strengthens the argument that burns are more damaging to sensory structures and that different treatments help to ameliorate this. 

      A weakness of the study is the lack of genetic and cell-autonomous manipulations. Additional comparisons between transection and burns, in particular with manipulations that specifically modulate ROS generation or cell migration without potentially confounding effects on other cell types or processes would help to strengthen the manuscript.

      The use of genetic and cell-autonomous approaches would strengthen our study, however, we were unable to do this due to the lethality of these genetic approaches (or cell autonomous approaches). Basal epithelial migration is necessary for embryonic development. We attempted to circumvent this by generation of larvae transiently expressing a dominant-negative form of Rac, a protein crucial to the migratory process. The chimeric expression of the dominant negative Rac was either damaging to the larvae or the mosaicism was too low to observe any effects on migration phenotype.

      We also attempted a genetic approach to manipulate ROS production, as discussed above. We found that the DUOX morpholino was lethal to burned larvae. Finally, we attempted pharmacological inhibition of ROS production using the inhibitor DPI (Diphenyleneiodonium). With this treatment, burned larvae have marginally improved axon density and touch sensitivity, suggesting that dampening ROS may improve outcome. The DPI data have been added to the manuscript.

      In terms of framing their results, the authors refer to "sensory neurons" and "sensory axons" throughout the text - it should be made clear what type of neuron(s)/axon(s) are being visualized/assayed. Along these lines, a broader discussion of how burn injuries affect sensory function in other systems - and how the authors' results might inform our understanding of these injury responses - would be beneficial to the reader. 

      In summary, the authors have established a tractable vertebrate system to investigate different sensory axon wound healing outcomes in vivo that may ultimately allow for the identification of improved treatment strategies for human burn patients. Although the study implicates differences in keratinocyte migration and associated ROS production in sensory axon wound healing outcomes, the links between these processes could be more rigorously established. 

      The inconsistency between “neuron” and “axon” has been noted and the text has been corrected accordingly. “Neuron” is used when referring to the cell as a whole, while “axon” is used when referring to the sensory processes in the caudal fin. We added information about burn in the introduction as suggested: “While epithelial tissue is well adapted to repair from mechanical damage, burn wounds heal poorly. Thermal injury results in chronic pain and lack of sensation in the affected tissue, suggesting that an abnormal sensory neuron response contributes to burn wound pathophysiology.”

      We thank the reviewer’s for their comments.

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors): 

      Suggested experiments: 

      (1) ROS measurements with the dye Pfbsf should be validated with more established ROS probes such as HyPer. 

      Pfbsf has been used previously as a readout of ROS production, and its use is documented in zebrafish (Maeda et al., Angew Chem Int Ed Engl, 2004, and Niethammer et al, Nature, 2009). These sources have been added as references when introducing Pfbsf to provide context for its use. The probe was validated and compared to HyPer in Niethammer’s 2009 paper. In our hands, we have used both probes and have similar results with tail transection.

      (2) To better support claims on ROS and H2O2 playing a central role in mediating axonal damage, the authors should consider pharmacological approaches such as rescue experiments with H2O2 and experiments using inhibitors such as DPI ar apocynin. 

      While the above reagents and drugs have limitations and non-specific side effects, more convincing proof could result from genetic approaches including experiments on DOUX knockdown or knockout lines. 

      To further dissect the role of ROS in the burn response, we conducted experiments using DPI, a potent ROS inhibitor that is well-documented in the literature. We found that 20 uM treatment of DPI (1 hour pretreatment, 1 hour post-burn) marginally improved axon density when quantified 24 hpw. Any higher dose, when in combination with a burn, proved to be lethal. Longer treatment with DPI was also not tolerated.

      In addition to experiments with DPI, we attempted to burn larvae that were injected with DUOX morpholino. The combined use of burn and DUOX MO was lethal. We have dampened the conclusions and include the new data with the DPI in the revised manuscript.

      Minor corrections: 

      (1)A phrase/expression in the abstract is confusing: isotonic treatment does not "induce osmotic regulation". Cells exposed to hypo- or hypertonicity will respond by regulatory volume decrease or increase, respectively. Isotonic treatment maintains homeostasis. 

      We appreciate this point and agree with the distinction. Revisions have been made in the text accordingly.

      (2) Figures 4E and 5E would be better to show as an average of multiple experiments with statistical significance. 

      The purpose of figures 4E and 5E are to demonstrate changes in fluorescence intensity and localization of ROS using the representative time series shown in 4D and 5D. The figure legend has been updated accordingly.

      Reviewer #2 (Recommendations For The Authors): 

      Figure 3D How can one distinguish between the two cellular elements that randomly meet or that there is actual coordination? Can the interactions be quantified? It is also unclear what the authors mean by "sensory neuron movement". The authors show that the neuronal cell bodies stay in their position, so only the axons change position. Do they do this by growth, i.e. the neuronal growth cones follow the keratinocytes or do keratinocytes displace the axon shafts? 

      We have included supplemental movies that address this question in the new uploaded document. Figure 3D is comprised of still images taken from supplemental movie 2, which is a timelapse of keratinocytes/axons moving together after a burn injury.  This movie clearly shows keratinocytes and their ensheathed axons moving simultaneously, so keratinocytes are mechanically pulling sensory axon shafts with them. We have revised the text to say axon movement, not sensory neuron movement.

      Over the time course of axonal movement (1 hour post-burn), it is not possible that neuronal growth cones contribute to movement, as this is too slow – previous work by other labs has shown that it takes several hours for axons to fully regenerate into amputated tissue, with movement not even noticeable until about 3 hours post-wound (Rieger and Sagasti, PLOS Biology, 2011).

      Regarding the second point, “neuron” vs. “axon” is an inconsistency in the text that has been corrected. “Neuron” is used when referring to the cell as a whole, “axon” is used when referring to the processes that innervate the caudal fin. The axons are physically pulled along with keratinocytes as they migrate after burn application. From our observations, growth cones appear closer to the wound site after the movement has stopped.

      Figure 4G It is surprising that the visual differences in the distribution of values are not statistically significant. 

      The distribution of values in 4G was large and that is why there is no statistically-significant difference – we were also surprised at this result. We did all statistics with a statistician and this included rigorous criteria for significance.

      Figure 4H The images seem to show a difference, whereas the quantification does not. I suggest choosing more representative images. 

      Figure 4H has been updated to include a more representative image of axon patterning with CK666 treatment.

      Figure 6A The text states that axon damage in the control and isotonic condition is comparable, yet in the image, it appears that the damage in the isotonic treatment at 0 hpw is more distal. 

      This is a good observation that we consistently see in isotonic-treated fish after burn. Axon damage localizes more proximally in isotonic-treated samples because the keratinocytes distal to the notochord are likely dead, and the axons innervating those cells are likely immediately destroyed upon burn application. As a result, the distal axons are not present to express GCaMP. We believe isotonic treatment allows keratinocytes to live slightly longer, so axon damage is therefore prevented for longer. This is also the focus of continuing work to further understand the burn microenvironment.

      Finally, the materials section could mention bias mitigation measures, e.g. withholding the treatment condition from the experimenter in the touch test. 

      We minimized bias in experiments whenever possible, and the conservative statistical measures that were applied to our data further reduce the likelihood of false significance.

      Reviewer #3 (Recommendations For The Authors): 

      - Line numbers would have facilitated reviewer feedback. 

      - Supplementary movies were missing in the submission. 

      The lack of supplementary movies upon submission was a mistake and the movies have been uploaded along with the revised manuscript.

      Introduction: 

      - Pg. 3: "In response to tissue damage, sensory neurons undergo rapid and localized axonal degeneration 4,5." Not sure reference 4 (Reyes et al) is appropriate here as this study was not in the context of tissue damage. 

      We have revised this section as suggested by the reviewer.

      Results: 

      - The expected expression pattern/localization of several transgenes was unclear. Please clearly state what cell type(s) each should label. For example, pg. 5 - "We next sought to further investigate sensory neuron function in burned tissue. For this, we assessed wound-induced axonal damage using zebrafish larvae that express the calcium probe GCaMP." Where is GCaMP expressed? 

      The manuscript has been updated to include expression patterns for the included transgenes – in this mentioned case, GCaMP is expressed in neurons under the pan-neuronal Elavl3 promoter.

      - Introducing the GCaMP labeling could use some clarification. Pg. 5 - "As shown previously by other groups, GCaMP labels degenerating neurons in real time35." This is confusing. Do the authors mean that GCaMP increases immediately prior to Wallerian degeneration as shown by Vargas et al. (PMID: 26558774)? 

      Sustained elevated calcium levels are associated with axon damage. Previous work from other labs has shown that calcium influx follows axon injury (Ziv and Spira, EJN 1993, Adalbert et al., Neuroscience 2012). In these experiments, whenever there are CGaMP-positive punctae, this indicates axon damage. We have revised the manuscript to address this critique.

      The Elavl3-GCaMP5 transgenic line will label when calcium levels increase in neurons. However, given the parameters used for imaging in our study (20x magnification, 100 ms exposure, and collection speed every 30 seconds for timelapses), we believe that only sufficiently large increases in calcium that are indicative of cell damage, and not physiological function, are being visualized.

      - Figure 1E - Are these panels images of the same fish? Please specify in the legend. 

      Figure 1E is comprised of one transected and one burned larva each, live-imaged over the course of six hours. The legend has been updated to include this information.

      - Figure 1F - How was the damage area measured? Consider doing this measurement over time to match Figure 1E. 

      Axon damage area measurements were performed similar to axon density measurements – maximum intensity z-projected confocal images of the caudal fin were generated using FIJI. For all experiments, the caudal fin area posterior to the notochord was outlined using the Polygon tool and measured to obtain a total surface area ROI. Axon fragments inside the outlined area were manually thresholded so all fragments posterior to the notochord were labeled and no saturated pixels were present, and an area measurement of these thresholded pixels was taken. We have added a section describing these measurements in the Methods section under “Axon damage quantification.”

      - Pg. 5 - When introducing the ngn1 MO - please state the expected phenotype and cite the appropriate background literature_._ 

      The ngn1 morpholino was cited in the Methods section with the appropriate literature (Cornell and Eisen, Development, 2002), from which we got the morpholino sequence. We thank the reviewer for pointing out the need for more introduction and clarification in the main text, so the ngn1 morpholino has been discussed in greater depth and cited in the main text as well using the same citation.

      - The two-wound model is an elegant approach but could be more clearly described in the main text. 

      An improved explanation of the two-wound experiment has been added to the text.

      - For Figure 3, it would be helpful to have a schematic of the anatomy illustrating the relative positions of axons and epidermal cell types. 

      - Figure 3C - should an additional control here be transected? Given that the krt4:lifeact transgene labels both layers of the epidermis, how were the superficial and basal keratinocytes separated? Interpretation of this section should be carefully worded. The authors state that "...suggesting that the superficial keratinocytes are being pulled by the motile basal keratinocytes" (pg.7 ) but isn't another possibility that the superficial cells are stationary? 

      It is correct that the krt4:lifeact transgene labels both layers of keratinocytes, which together span 20-30 microns. These layers were separated from the same z-stack collected by confocal imaging. The first z-slice and last z-slice of the same stack were separated using FIJI and pseudocolored to appear as different colors. This clarification has been added to the Methods.

      Prior observations with the krt4:lifeact and krt4:utrch (figure 3A) transgenic lines reveal that both keratinocyte layers will move distally after burn application.

      - Pg. 7 - "The axons of sensory neurons are ensheathed within actin-rich channels running through basal keratinocytes 50,51." ref 51 is a C. elegans paper which does not have basal keratinocytes.

      This was in error. The correct reference has replaced reference 51 (O’brien, J Comp. Neurol., 2012), in which electron microscopy is used to document the development of two layers of epithelial cells that also ensheath sensory neurons in a protective manner similar to glial cells in the central nervous system.

      - Figures S1E and F - the authors state that RB and DRG soma don't move. However, it was unclear from the figure panels and legend whether the authors imaged neurons that actually innervate the caudal fin (rather than some other region of the animal). Please clarify. For comparison, Fig S1F needs a pre-injury image to be meaningful. 

      The imaged cell bodies were those in the posterior trunk region, which are responsible for innervating the posterior sections of the fish including the caudal fin. From our observations, there was no movement of neuronal cell bodies after the burn.

      - Figure 5 title - can the authors clarify what aspect of this figure relates to "sustained epidermal damage" 

      The figure 5 title has been updated in response to the reviewer comments.

      - Figure 6 - is touch sensitivity really "restored" as the authors suggest? Alternatively, sensitivity may never be lost in isotonic treatment. Or the loss may be delayed? 

      We have modified the text accordingly by updating our phrasing – “restored” has been replaced with “improved” to indicate benefit over time.

      - Can the authors further disentangle the effects of keratinocyte migration, ROS, and isotonic treatment on axon regeneration? For example, would the addition of CK666 to the Isotonic +1 hpw treatment improve axon regeneration? Can the authors directly manipulate ROS signaling (e.g., through exogenous addition of H2O2 or duox1 MO) to alter regeneration outcomes in their wounding assays? 

      See the comments above.

      - Figure 6 title - consider removing or clarifying the word "excessive" here 

      The title has been revised according to the reviewer suggestion.

      - hpw vs hpb were used inconsistently throughout the text 

      The manuscript has been revised to use “hpw” when referring to the timeframe after injury application.

      Methods: 

      - Zebrafish transgenics are missing allele names 

      References: 

      - Many mistakes were noted in this section e.g., journal names missing, wrong authors, typos, DOIs misformatted 

      The references section has been corrected to use formatting consistent with APA citation and eLife preferred guidelines.

    2. eLife assessment

      This important study identifies a novel link between the early keratinocyte response to wounds and the subsequent regenerative capacity of local sensory neurons. The evidence supporting the claims of the authors is convincing, although inclusion of conditional genetics or cell-autonomy tests would have strengthened the mechanistic aspects. The work will be of interest to cell and developmental biologists interested in tissue regeneration and cell interactions in a broader context.

    3. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Fister et. al. investigate how amputational and burn wounds affect sensory axonal damage and regeneration in a zebrafish model system. The authors discovered that burn injury results in increased peripheral axon damage and impaired regeneration. Convincing experiments show altered axonal morphology and increased Ca2+ fluxes as a result of burn damage. Further experimental proof supports that early removal of the burnt tissue by amputation rescues axonal damage. Burn damage was also shown to markedly increase keratinocyte migration and increase localized ROS production as measured by the dye Pfbsf. These responses could be inhibited by Arp 2/3 inhibition and isotonic treatment.

      Strengths:

      The authors use state-of-the-art methods to study and compare transection and burn-induced tissue damage. Multiple experimental approaches (morphology, Ca2+ fluxing, cell membrane labeling) confirm axonal damage and the impaired regeneration time. Furthermore, the results are also accompanied by functional response tests of touch sensitivity. This is the first study to extend the role of tissue-damage related osmotic exposure beyond wound closure and leukocyte migration to a novel layer of pathology: axonal damage and regeneration.

      The authors provide elegant experiments showing that early removal of the burnt tissue can rescue damage-induced axonal damage, which could also be interpreted in an osmotic manner. In the revised version of the paper the authors indeed show that tail fin transections close faster than burn wounds, allowing for lower hypotonic exposure time. However, their new experiments suggest that axonal damage and slow regeneration in tail fin burn wounds are not a direct consequence of the extended exposure time to hypotonic water.

      Weaknesses:

      The conclusions of the paper claiming a link between burn-induced epithelial cell migration, spatial redox signaling, and sensory axon regeneration are mainly based on correlative observations. Arp 2/3 inhibition impairs cell migration but has no significant effect on axon regeneration and restoration of touch sensitivity.

      Genetic approaches have been tested during the revision process to directly prove the role of ROS production by targeting DUOX, however, the combination of DUOX morpholino and burn injury was lethal to the larvae and long-term pharmacological inhibition over 1 hour was also detrimental.

    4. Reviewer #3 (Public Review):

      Fister and colleagues use regeneration of the larval zebrafish caudal fin to compare the effects of two modes of tissue damage-transection and burn-on cutaneous sensory axon regeneration. The authors found that restoration of sensory axon density and function is delayed following burn injury compared to transection.

      The authors hypothesized that thermal injury triggers signals within the wound microenvironment that impair sensory neuron regeneration. The authors identify differences in the responses of epithelial keratinocytes to the two modes of injury: keratinocytes migrate in response to burn but not transection. Inhibiting keratinocyte migration with a small-molecule inhibitor of Arp2/3 (CK666) resulted in decreased production of reactive oxygen species (ROS) at early, but not late, timepoints. Preventing keratinocyte migration by wounding in isotonic media resulted in increased sensory function 24 hours after burn.

      Strengths of the study include the beautiful imaging and rigorous statistical approaches used by the authors. The ability to assess both axon density and axon function during regeneration is quite powerful. The touch assay adds a unique component to the paper and strengthens the argument that burns are more damaging to sensory structures and that different treatments help to ameliorate this.

      A weakness of the study is the lack of genetic and cell autonomous manipulations. Additional comparisons between transection and burns, in particular with manipulations that specifically modulate ROS generation or cell migration without potentially confounding effects on other cell types or processes would help to strengthen the manuscript. In terms of framing their results, the authors refer to "sensory neurons" and "sensory axons" throughout the text - it should be made clear what type of neuron(s)/axon(s) are being visualized/assayed. Along these lines, a broader discussion of how burn injuries affect sensory function in other systems-and how the authors' results might inform our understanding of these injury responses-would be beneficial to the reader.

      In summary, the authors have established a tractable vertebrate system to investigate different sensory axon wound healing outcomes in vivo that may ultimately allow for the identification of improved treatment strategies for human burn patients. Although the study implicates differences in keratinocyte migration and associated ROS production in sensory axon wound healing outcomes, the links between these processes could be more rigorously established.

    1. eLife assessment

      This important study reports the discovery of a novel nucleotide ubiquitylation activity by the DTX3L E3 ligase. Solid evidence is presented for ubiquitin attachment to single-stranded oligonucleotides. This very interesting biochemical finding can be used as a starting point for studies to establish relevance in a physiological setting.

    2. Reviewer #1 (Public Review):

      In the article by Dearlove et al., the authors present evidence in strong support of nucleotide ubiquitylation by DTX3L, suggesting it is a promiscuous E3 ligase with capacity to ubiquitylate ADP ribose and nucleotides. The authors include data to identify the likely site of attachment and the requirements for nucleotide modification.

      While this discovery potentially reveals a whole new mechanism by which nucleotide function can be regulated in cells, there are some weaknesses that should be considered. Is there any evidence of nucleotide ubiquitylation occurring cells? It seems possible, but evidence in support of this would strengthen the manuscript. The NMR data could also be strengthened as the binding interface is not reported or mapped onto the structure/model, this seems of considerable interest given that highly related proteins do have the same activity.

      The paper is for the most part well well-written and is potentially highly significant, but it could be strengthened as follows:

      (1) The authors start out by showing DTX3L binding to nucleotides and ubiquitylation of ssRNA/DNA. While ubiquitylation is subsequently dissected and ascribed to the RD domains, the binding data is not followed up. Does the RD protein alone bind to the nucleotides? Further analysis of nucleotide binding is also relevant to the Discussion where the role of the KH domains is considered, but the binding properties of these alone have not been analysed.<br /> (2) With regard to the E3 ligase activity, can the authors account for the apparent decreased ubiquitylation activity of the 232-C protein in Figure 1/S1 compared to FL and RD?<br /> (3) Was it possible to positively identify the link between Ub and ssDNA/RNA using mass spectrometry? This would overcome issues associated with labels blocking binding rather than modification.<br /> (4) Furthermore, can a targeted MS approach be used to show that nucleotides are ubiquitylated in cells?<br /> (5) Do the authors have the assignments (even partial?) for DTX3L RD? In Figure 4 it would be helpful to identify the peaks that correspond to the residues at the proposed binding site. Also do the shifts map to a defined surface or do they suggest an extended site, particularly for the ssDNA.<br /> (6) Does sequence analysis help explain the specificity of activity for the family of proteins?<br /> (7) While including a summary mechanism (Figure 5I) is helpful, the schematic included does not necessarily make it easier for the reader to appreciate the key findings of the manuscript or to account for the specificity of activity observed. While this figure could be modified, it might also be helpful to highlight the range of substrates that DTX3L can modify - nucleotide, ADPr, ADPr on nucleotides etc.

    3. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Dearlove et al. entitled "DTX3L ubiquitin ligase ubiquitinates single-stranded nucleic acids" reports a novel activity of a DELTEX E3 ligase family member, DTX3L, which can conjugate ubiquitin to the 3' hydroxyl of single-stranded oligonucleotides via an ester linkage. The findings that unmodified oligonucleotides can act as substrates for direct ubiquitylation and the identification of DTX3 as the enzyme capable of performing such oligonucleotide modification are novel, intriguing, and impactful because they represent a significant expansion of our view of the ubiquitin biology. The authors perform a detailed and diligent biochemical characterization of this novel activity, and key claims made in the article are well supported by experimental data. However, the studies leave room for some healthy skepticism about the physiological significance of the unique activity of DTX3 and DTX3L described by the authors because DTX3/DTX3L can also robustly attach ubiquitin to the ADP ribose moiety of NAD or ADP-ribosylated substrates. The study could be strengthened by a more direct and quantitative comparison between ubiquitylation of unmodified oligonucleotides by DTX3/DTX3L with the ubiquitylation of ADP-ribose, the activity that DTX3 and DTX3L share with the other members of the DELTEX family.

      Strengths:

      The manuscript reports a novel and exciting observation that ubiquitin can be directly attached to the 3' hydroxyl of unmodified, single-stranded oligonucleotides by DTX3L. The study builds on the extensive expertise and the impactful previous studies by the Huang laboratory of the DELTEX family of E3 ubiquitin ligases. The authors perform a detailed and diligent biochemical characterization of this novel activity, and all claims made in the article are well supported by experimental data. The manuscript is clearly written and easy to read, which further elevates the overall quality of submitted work. The findings are impactful and will help illuminate multiple avenues for future follow-up investigations that may help establish how this novel biochemical activity observed in vitro may contribute to the biological function of DTX3L. The authors demonstrate that the activity is unique to the DTX3/DTX3L members of the DELTEX family and show that the enzyme requires at least two single-stranded nucleotides at the 3' end of the oligonucleotide substrate and that the adenine nucleotide is preferred in the 3' position. Most notably, the authors describe a chimeric construct containing RING domain of DTX3L fused to the DTC domain DTX2, which displays robust NAD ubiquitylation, but lacks the ability to ubiquitylate unmodified oligonucleotides. This construct will be invaluable in the future cell-based studies of DTX3L biology that may help establish the physiological relevance of 3' ubiquitylation of nucleic acids.

      Weaknesses:

      The main weakness of the study is in the lack of direct evidence that the ubiquitylation of unmodified oligonucleotides reported by the authors plays any role in the biological function of DTX3L. The study leaves plenty of room for natural skepticism regarding the physiological relevance of the reported activity, because, akin to other DELTEX family members, DTX3 and DTX3L can also catalyze attachment of ubiquitin to NAD, ADP ribose and ADP-ribosylated substrates. Unfortunately, the study does not offer any quantitative comparison of the two distinct activities of the enzyme, which leaves plenty of room for doubt. One is left wondering, whether ubiquitylation of unmodified oligonucleotides is just a minor and artifactual side activity owing to the high concentration of the oligonucleotide substrates and E2~Ub conjugates present in the in-vitro conditions and the somewhat lower specificity of the DTX3 and DTX3L DTC domains (compared to DTX2 and other DELTEX family members) for ADP ribose over other adenine-containing substrates such as unmodified oligonucleotides, ADP/ATP/dADP/dATP, etc. The intriguing coincidence that DTX3L, which is the only DTX protein capable of ubiquitylating unmodified oligonucleotides, is also the only family member that contains nucleic acid interacting domains in the N-terminus, is suggestive but not compelling. A recently published DTX3L study by a competing laboratory (PMID: 38000390), which is not cited in the manuscript, suggests that ADP-ribose-modified nucleic acids could be the physiologically relevant substrates of DTX3L. That competing hypothesis appears more convincing than ubiquitylation of unmodified oligonucleotides because experiments in that study demonstrate that ubiquitylation of ADP-ribosylated oligos is quite robust in comparison to ubiquitylation of unmodified oligos, which is undetectable. It is possible that the unmodified oligonucleotides in the competing study did not have adenine in the 3' position, which may explain the apparent discrepancy between the two studies. In summary, a quantitative comparison of ubiquitylation of ADP ribose vs. unmodified oligonucleotides could strengthen the study.

    4. Author response:

      Public Reviews: 

      Reviewer #1 (Public Review): 

      In the article by Dearlove et al., the authors present evidence in strong support of nucleotide ubiquitylation by DTX3L, suggesting it is a promiscuous E3 ligase with capacity to ubiquitylate ADP ribose and nucleotides. The authors include data to identify the likely site of attachment and the requirements for nucleotide modification. 

      While this discovery potentially reveals a whole new mechanism by which nucleotide function can be regulated in cells, there are some weaknesses that should be considered. Is there any evidence of nucleotide ubiquitylation occurring cells? It seems possible, but evidence in support of this would strengthen the manuscript. The NMR data could also be strengthened as the binding interface is not reported or mapped onto the structure/model, this seems of considerable interest given that highly related proteins do have the same activity. 

      The paper is for the most part well well-written and is potentially highly significant, but it could be strengthened as follows: 

      (1) The authors start out by showing DTX3L binding to nucleotides and ubiquitylation of ssRNA/DNA. While ubiquitylation is subsequently dissected and ascribed to the RD domains, the binding data is not followed up. Does the RD protein alone bind to the nucleotides? Further analysis of nucleotide binding is also relevant to the Discussion where the role of the KH domains is considered, but the binding properties of these alone have not been analysed. 

      We thank the reviewer for the suggestion. We have tested DTX3L RD for ssDNA binding using NMR (see Figure 4A and Figure S2), which showed that DTX3L RD binds ssDNA. We also tested the DTX3L KH domains for RNA/ssDNA binding using an FP experiment. However, the FP experiment did not show significant changes upon titrating RNA/ssDNA. It seems that the KH domains alone are not sufficient to bind RNA/ssDNA and both KH and RD domains are required for binding. Understanding how DTX3L binds RNA/ssDNA is an ongoing research in the lab. We will revise the Discussion on the KH domains.

      (2) With regard to the E3 ligase activity, can the authors account for the apparent decreased ubiquitylation activity of the 232-C protein in Figure 1/S1 compared to FL and RD? 

      We will address this question in the revision.

      (3) Was it possible to positively identify the link between Ub and ssDNA/RNA using mass spectrometry? This would overcome issues associated with labels blocking binding rather than modification. 

      We have tried to use mass spectrometry to detect the linkage between Ub and ssDNA/RNA, but was unable to do so. We suspect that the oxyester linkage might be labile, posing a challenge for mass spectrometry techniques. Similarly, a recent preprint from Ahel lab, which utilises LC-MS, detects the Ub-NMP product rather than the linkage (https://www.biorxiv.org/content/10.1101/2024.04.19.590267v1.full.pdf).

      (4) Furthermore, can a targeted MS approach be used to show that nucleotides are ubiquitylated in cells? 

      This will require future development and improvement of the MS approach, specifically the isolation of labile oxyester-linked products from cells and the optimisation of the MS detection method.

      (5) Do the authors have the assignments (even partial?) for DTX3L RD? In Figure 4 it would be helpful to identify the peaks that correspond to the residues at the proposed binding site. Also do the shifts map to a defined surface or do they suggest an extended site, particularly for the ssDNA.

      We only collected HSQC spectra which was insufficient for assignments. We have performed a competition experiment using ADPr and labelled ssDNA, showing that ADPr competes against the ubiquitination of ssDNA (Figure 4D). We will provide an additional experiment showing that ssDNA with a blocked 3’-OH can compete against ubiquitination of ADPr. These data, together with our NMR analysis, will further strengthen the evidence that ssDNA and ADPr compete the same binding pocket in DTX3L RD. Understanding how DTX3L RD binds ssDNA/RNA is an ongoing research in the lab.

      (6) Does sequence analysis help explain the specificity of activity for the family of proteins? 

      We will performed sequence alignment of DTX proteins RD domains and discuss this point in the revision.

      (7) While including a summary mechanism (Figure 5I) is helpful, the schematic included does not necessarily make it easier for the reader to appreciate the key findings of the manuscript or to account for the specificity of activity observed. While this figure could be modified, it might also be helpful to highlight the range of substrates that DTX3L can modify - nucleotide, ADPr, ADPr on nucleotides etc. 

      We will modify this Figure as suggested.

      Reviewer #2 (Public Review): 

      Summary: 

      The manuscript by Dearlove et al. entitled "DTX3L ubiquitin ligase ubiquitinates single-stranded nucleic acids" reports a novel activity of a DELTEX E3 ligase family member, DTX3L, which can conjugate ubiquitin to the 3' hydroxyl of single-stranded oligonucleotides via an ester linkage. The findings that unmodified oligonucleotides can act as substrates for direct ubiquitylation and the identification of DTX3 as the enzyme capable of performing such oligonucleotide modification are novel, intriguing, and impactful because they represent a significant expansion of our view of the ubiquitin biology. The authors perform a detailed and diligent biochemical characterization of this novel activity, and key claims made in the article are well supported by experimental data. However, the studies leave room for some healthy skepticism about the physiological significance of the unique activity of DTX3 and DTX3L described by the authors because DTX3/DTX3L can also robustly attach ubiquitin to the ADP ribose moiety of NAD or ADP-ribosylated substrates. The study could be strengthened by a more direct and quantitative comparison between ubiquitylation of unmodified oligonucleotides by DTX3/DTX3L with the ubiquitylation of ADP-ribose, the activity that DTX3 and DTX3L share with the other members of the DELTEX family. 

      Strengths: 

      The manuscript reports a novel and exciting observation that ubiquitin can be directly attached to the 3' hydroxyl of unmodified, single-stranded oligonucleotides by DTX3L. The study builds on the extensive expertise and the impactful previous studies by the Huang laboratory of the DELTEX family of E3 ubiquitin ligases. The authors perform a detailed and diligent biochemical characterization of this novel activity, and all claims made in the article are well supported by experimental data. The manuscript is clearly written and easy to read, which further elevates the overall quality of submitted work. The findings are impactful and will help illuminate multiple avenues for future follow-up investigations that may help establish how this novel biochemical activity observed in vitro may contribute to the biological function of DTX3L. The authors demonstrate that the activity is unique to the DTX3/DTX3L members of the DELTEX family and show that the enzyme requires at least two single-stranded nucleotides at the 3' end of the oligonucleotide substrate and that the adenine nucleotide is preferred in the 3' position. Most notably, the authors describe a chimeric construct containing RING domain of DTX3L fused to the DTC domain DTX2, which displays robust NAD ubiquitylation, but lacks the ability to ubiquitylate unmodified oligonucleotides. This construct will be invaluable in the future cell-based studies of DTX3L biology that may help establish the physiological relevance of 3' ubiquitylation of nucleic acids. 

      Weaknesses: 

      The main weakness of the study is in the lack of direct evidence that the ubiquitylation of unmodified oligonucleotides reported by the authors plays any role in the biological function of DTX3L. The study leaves plenty of room for natural skepticism regarding the physiological relevance of the reported activity, because, akin to other DELTEX family members, DTX3 and DTX3L can also catalyze attachment of ubiquitin to NAD, ADP ribose and ADP-ribosylated substrates. Unfortunately, the study does not offer any quantitative comparison of the two distinct activities of the enzyme, which leaves plenty of room for doubt. One is left wondering, whether ubiquitylation of unmodified oligonucleotides is just a minor and artifactual side activity owing to the high concentration of the oligonucleotide substrates and E2~Ub conjugates present in the in-vitro conditions and the somewhat lower specificity of the DTX3 and DTX3L DTC domains (compared to DTX2 and other DELTEX family members) for ADP ribose over other adenine-containing substrates such as unmodified oligonucleotides, ADP/ATP/dADP/dATP, etc. The intriguing coincidence that DTX3L, which is the only DTX protein capable of ubiquitylating unmodified oligonucleotides, is also the only family member that contains nucleic acid interacting domains in the N-terminus, is suggestive but not compelling. A recently published DTX3L study by a competing laboratory (PMID: 38000390), which is not cited in the manuscript, suggests that ADP-ribose-modified nucleic acids could be the physiologically relevant substrates of DTX3L. That competing hypothesis appears more convincing than ubiquitylation of unmodified oligonucleotides because experiments in that study demonstrate that ubiquitylation of ADP-ribosylated oligos is quite robust in comparison to ubiquitylation of unmodified oligos, which is undetectable. It is possible that the unmodified oligonucleotides in the competing study did not have adenine in the 3' position, which may explain the apparent discrepancy between the two studies. In summary, a quantitative comparison of ubiquitylation of ADP ribose vs. unmodified oligonucleotides could strengthen the study. 

      We thank the reviewer for the constructive feedback. We agree that evidence for the biological function is lacking. While we have tried to detect Ub-ssDNA/RNA from cells, we found that Isolating and detecting labile oxyester-linked Ub-ssDNA/RNA products remain challenging due to (1) low levels of Ub-ssDNA/RNA products, (2) the presence of DUBs and nucleases that rapidly remove the products during the experiments, and (3) our lack of a suitable MS approach to detect the product. For these reasons, we feel that discovering the biological function will require future effort and expertise and is beyond the scope of our current manuscript.

      In the manuscript (PMID: 38000390), the authors used PARP10 to catalyse ADP-ribosylation onto 5’-phosphorylated ssDNA/RNA. They used the following sequences which lacks 3’-adenosine, which could explain the lack of ubiquitination.

      E15_5′P_RNA [Phos]GUGGCGCGGAGACUU

      E15_5′P_DNA [Phos]GTGGCGCGGAGACTT

      We will perform the experiment using this sequence to verify this. We have cited this manuscript but for some reasons, Pubmed has updated its published date from mid 2023 to Jan 2024. We will update the Endnote in the revised manuscript.

      We agree that it is crucial to compare ubiquitination of oligonucleotides and ADPr by DTX3L to find its preferred substrate. We have challenged oligonucleotide ubiquitination by adding excess ADPr and found that ADPr efficiently competes with oligonucleotide (Figure 4D). We will perform more thorough competition experiments by titrating with increasing molar excess of either ADPr or ssDNA to examine the effect on the ubiquitination of ssDNA and ADPr, respectively.

    1. Reviewer #1 (Public Review):

      The authors characterized a new non-coding RNA, which they named as PITAR. They first showed that the PITAR expression levels are higher in glioblastoma, and then demonstrated that knockdown of PITAR in glioblastoma cells decreased cell growth, induced G0/G1 arrest and apoptosis. They further identified the E3 ubiquitin ligase TRIM28 is the target of PITAR, and showed that PITAR bound to the TRIM28 mRNA and regulated the stability and expression of the latter. Since TRIM28 has been reported to be an E3 ubiquitin ligase for the tumor suppressor p53, the authors tried to link the PITAR function to p53 regulation. They showed that one PITAR siRNA increased the levels of p53 and p21, and the stability of p53, and these effects could be diminished by overexpression of TRIM28. They also showed that PITAR overexpression decreased the levels of adriamycin-induced p53/p21 expression and reversed DNA damage-induced G2/M arrest. Lastly, the authors showed that PITAR siRNA decreased the growth of glioblastoma, while PITAR overexpression increased glioblastoma growth and counteracted temozolomide for its anti-glioblastoma activity.

      Overall, the manuscript has provided evidence supporting the important role of PITAR in the regulation of the growth of glioblastoma. The results supporting the regulation of PITAR on TRIM28 appear to be convincing. However, some weaknesses are also noted.

      (1) More than one siRNA/shRNA should be used in critical experiments. For example, Fig 7A-E are important experiments demonstrating PITAR suppresses tumor growth. It is compelling that the siPITAR tumors disappeared at the end of the experiment. While this might be due to apoptosis, using another siRNA to confirm the results would be necessary. The authors may also need to use this model to test their hypothesis that PITAR regulates tumor growth through p53. They can check p53, p21, apoptosis levels in tumor sections.

      (2) The data supporting that PITAR downregulates p53 stability and activity can be strengthened. The half-life of endogenous p53 protein is generally 20-30 min, and thus the cycloheximide chase experiments (Fig 5E) need to use shorter treatment time. The ubiquitinated p53 bands are not clear (Fig 5F), and the data suggesting that PITAR regulates p53 ubiquitination are not convincing. While the p53 protein level was largely altered by PITAR/TRIM28, the mRNA levels of its target genes, including p21 and MDM2 only marginally changed (Fig S6D). Other p53 targets, particularly proapoptotic genes, may need to be examined.

      (3) The model depicting the role of PITAR in the cellular response to DNA-damaging agents is confusing. If DNA damaging agents like TMZ induce PITAR to inactivate p53, PITAR overexpression would confer TMZ resistance. However, Fig 7G did not support this. While the experimental design is quite problematic given that U87 cells already express a high level of PITAR, PITAR-overexpressing cells were still sensitive to TMZ treatment (this is apparent when checking the images in Fig 7F, although the large error bars shown in Fig 7G may lead to a "not significant" conclusion). The authors may need to test whether PITAR downregulation, which would increase p53 activity, has any effects on TMZ-insensitive tumors. Such results are more therapeutically relevant. It would also be helpful if the authors test whether PITAR is overexpressed in TMZ-resistant clinical samples.

    2. eLife assessment

      This important study reports, with convincing evidence, that a long non-coding RNA disrupts the activity of the tumor suppressor p53 to contribute to the growth and therapeutic response of glioblastoma. The work will be relevant to scientists working on non-coding RNAs and brain tumors.

    3. Reviewer #2 (Public Review):

      This study established an alternate way of p53 inactivation and proposed PITAR as a potential therapeutic target, so the impact is high. In addition, this manuscript has apparent strengths, including a logically designed research strategy, in vitro and in vivo study, and well-designed control.

      This manuscript identified a long noncoding RNA, PITAR (p53 Inactivating TRIM28 associated RNA), as an inhibitor of p53. PITAR is highly expressed in glioblastoma (GBM) and glioma stem-like cells (GSC). The authors found that TRIM28 mRNA, which encodes a p53-specific E3 ubiquitin ligase, is a direct target of PITAR. PITAR interaction with TRIM28 RNA stabilized TRIM28 mRNA, which resulted in increased TRIM28 protein levels, enhanced p53 ubiquitination, and attenuated DNA damage response. While PITAR silencing inhibited the growth of WT p53 containing GSCs in vitro and reduced glioma tumor growth in vivo, its overexpression enhanced the tumor growth and promoted resistance to Temozolomide. DNA damage also activated PITAR, in addition to p53, thus creating an incoherent feedforward loop. Together, this study established an alternate way of p53 inactivation and proposed PITAR as a potential therapeutic target.

      P53 is a well-established tumor suppressor gene contributing to cancer progression in many human cancers. It plays a vital role in preserving genome integrity and inhibiting malignant transformation. p53 is mutated in more than 50% of human cancers. In cancers that do not carry mutations in p53, the inactivation occurs through other genetic or epigenetic alterations. Therefore, further study of the mechanism of regulation of wt-p53 remains vital in cancer research. This study identified a novel LncRNA PITAR, which is highly expressed in glioblastoma (GBM) and glioma stem-like cells (GSCs) and interacts with and stabilizes TRIM28 mRNA, which encodes a p53-specific E3 ubiquitin ligase. TRIM28 can inhibit p53 through HDAC1-mediated deacetylation and direct ubiquitination in an MDM2-dependent manner. Thus, the overall impact of this study is high because of the identification of a novel mechanism in regulating wt-p53.

      The other significant strengths of this manuscript included an apparent research strategy design and a clearly outlined and logically organized research approach. They provided both the in vitro and in vivo studies to evaluate the effect of PITAR. They offered reasonable control of the study by validating the results in cells with mutant p53. They also performed a rescue experiment to confirm the PITAR and TRIM28 relationship regulating p53. The conclusions were all supported by solid results. The overall data presentation is clear and convincing.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) Only one PITAR siRNA was tested in majority of the experiments, which compromises the validity of the results.

      We thank the reviewer for this comment. We have now used two siRNAs to demonstrate PITAR functions in various assays. In the revised manuscript, we carried out additional experiments with two siRNAs, and the results are presented in Figures 2C, D, F, G, H, I, and J; Figures 5A, B, Supplementary Figure 2B, C, D, E, and F.

      (2) Some results are inconsistent. For example, Fig 2G indicates that PITAR siRNA caused G1 arrest. However, PITAR overexpression in the same cell line did not show any effect on cell cycle progression in Fig 5I.

      The reason for the fact that PITAR silencing showed a robust G1 arrest, unlike PITAR overexpression, is as follows. Since glioma cells overexpress PITAR (which keeps the p53 suppressed), silencing PITAR (which will elevate p53 levels) in glioma cells shows a robust phenotype in cell cycle profile (in the form of increased G1 arrest). In contrast, the overexpression of PITAR in glioma cells fails to show robust changes in the cell cycle profile because glioma cells already have high levels of PITAR.

      (3) The conclusion that PITAR inactivates p53 through regulating TRIM28, which is highlighted in the title of the manuscript, is not supported by convincing results. Although the authors showed that a PITAR siRNA increased while PITAR overexpression decreased p53 level, the siRNA only marginally increased the stability of p53 (Fig 5E). The p53 ubiquitination level was barely affected by PITAR overexpression in Fig 5F.

      We disagree with the fact that PITAR silencing only marginally increased the stability of p53. In the cycloheximide experiment in Figure 5E, the half-life of p53 is increased by 60 % (50 mins to 120 mins), which is quite significant in altering the DNA damage response by p53. Further, we also want to point out that the other arm of p53 degradation by Mdm2 remains intact under these conditions. We also provide an improved p53 ubiquitination western blot in the revised version (Figure 5F). 

      (4) To convincingly demonstrate that PITAR regulates p53 through TRIM28, the authors need to show that this regulation is impaired/compromised in TRIM28-knockout conditions. The authors only showed that TRIM28 overexpression suppressed PITAR siRNA-induced increase of p53, which is not sufficient.

      We thank the reviewer. In the revised manuscript, we demonstrate that PITAR overexpression fails to inhibit p53 in TRIM28 silenced cells (Supplementary Figure 5G; Figure 5K, L, M, N).

      (5) Note that only one cell line was investigated in Fig 5.

      In revised manuscript, the impact of PITAR silencing and PITAR overexpression on p53 functions are demontsrared for one more glioma cell line (Supplemenatry Figure 5B, C, D, and E).

      (6) Another major weakness of this manuscript is that the authors did not provide any evidence indicating that the glioblastoma-promoting activities of PITAR were mediated by its regulation of p53 or TRIM28 (Fig 6 and Fig 7). Thus, the regulation of glioblastoma growth and the regulation of TRIM28/p53 appear to be disconnected.

      We would like to respectfully disagree with the reviewer on this particular point.  We have indeed provided the following evidence in the first version of the manuscript: glioblastoma-promoting activities of PITAR were mediated by its regulation of p53 or TRIM28.

      (1) To show the importance of p53:

      We show that PITAR silencing failed to inhibit the colony growth of p53-silenced U87 glioma cells (U87/shp53#1). We also show that while PITAR silencing decreased TRIM28 RNA levels in U87/shNT and U87/shp53#1 glioma cells, it failed to increase CDKN1A and MDM2 (p53 targets) at the RNA level in U87/shp53#1 cells unlike in U87/siNT cells (Supplementary Figure 6 Panels A, B, C, and D). 

      (2) To show the importance of TRIM28 and p53:

      The importance of p53 is also demonstrated in the context of patient-derived GSC lines. We demonstrate that PITAR silencing-induced reduction in the neurosphere growth (WT p53 containing patient-derived GSC line) is accompanied by a reduction in TRIM28 RNA and an increase in the CDKN1A RNA without a change in p53 RNA levels (Supplementary Figure 7 Panels A, B, C, D, and E). We also demonstrate that PITAR overexpression-induced neurosphere growth is accompanied by an increase in the TRIM28 RNA, and a decrease in CDKN1A RNA without a change in p53 RNA levels (Supplementary Figure 7 Panels F, G, H, and I). However, PITAR silencing failed to decrease neurosphere growth in mutant p53 containing GSC line (MGG8) (Supplementary Figure 7 Panels J, K, L, M, N, and F).

      (3) We show that the TRIM28 protein level is drastically reduced in small tumors formed by U87/siPITAR cells (Supplementary Figure 7 Panel E).

      (4) We show that glioma tumors formed by U87/PITAR OE cells express high levels of TRIM28 protein but reduced levels of p21 protein (Supplementary Figure 7 Panel B).

      Further, we did additional experiments to prove the importance of TRIM28.

      In the revised manuscript, we have carried out an additional experiment to prove the requirement of TRIM28 for tumor-promoting functions of PITAR overexpression. Earlier, we have shown that exogenous overexpression of PITAR promotes glioma tumor growth and imparts resistance to Temozolomide chemotherapy (Figure 7F and G; Supplementary Figure 9A and B). In the revised manuscript, we show that the tumor growth-promoting function of PITAR overexpression requires TRIM28. U87-Luc/PITAR OE cells formed a larger tumor compared to U87-Luc/VC cells (Figure 7H, and I; compare red line with blue line). U87-Luc/shTRIM28 cells formed very small-sized tumors (Figure 7H, and I; compare green line with blue line). Further, PITAR overexpression (U87-Luc/PITAR OE) was less efficient in promoting glioma tumor growth in TRIM28 silenced cells (Figure 7H, and I; compare pink line with red line). Thus, we prove that, as a whole, TRIM28 mediates the tumor growth-promoting functions of PITAR.

      (7) It is not clear what kind of message the authors tried to deliver in Fig 7F/G. Based on the authors' hypothesis, DNA-damaging agents like TMZ would induce PITAR to inactivate p53, which would compromise TMZ's anti-cancer activity. However, the data show that TMZ was very effective in the inhibition of U87 growth. The authors may need to test whether PITAR downregulation, which would increase p53 activity, have any effects on TMZ-insensitive tumors. Such results are more therapeutically relevant.

      Reviewer #1 rightly pointed out that TMZ induces PITAR expression, which should compromise TMZ's anti-cancer activity.

      We demonstrate the same as below:

      Figure 7F&G demonstrates the following two facts:1. PITAR overexpression increases the glioma-tumor growth (Figure 7G, compare red line with the blue line), 2. PITAR overexpressing glioma tumors are resistant to TMZ chemotherapy (Figure 7G, compare the pink line with the green line).

      In addition, Figure 7 F and G also demonstrate that TMZ treatment of tumors formed by U87/VC glioma cells inhibited the growth but not eliminated the tumor growth completely (compare pink line with blue line). We believe that the inability of TMZ to eliminate the tumor growth completely is because of the chemoresistance imparted by the DNA damage induced PITAR.

      Further, in Figure 2I, we indeed show that PITAR-silenced cells are more sensitive to TMZ and Adriamycin chemotherapy.

      (8) Lastly, the model presented in Fig 7H is confusing. It is not clear what the exact role of PITAR in the DNA damage response based on this model. If DNA damage would induce PITAR expression, this would lead to inactivation of p53 as revealed by this manuscript. However, DNA damage is known to activate p53. Do the authors want to imply that PITAR induction by DNA damage would help to bring down the p53 level at the end of DNA damage response? The presented data do not support this role unfortunately.

      We respect the views and questions raised by the reviewer.

      We would like explain as below the importance of our model.

      Yes, it is true that DNA damage induces p53. We show here that DNA damage also induces PITAR in a p53-independent manner, which, in turn, inhibits p53. Here is our explanation. Even though DNA damage activates p53, there exists an autoregulatory negative feedback loop that controls the extent and duration of p53 response to DNA damage (Wu et al., 1993; Haupt et al., 1997; Kubbutat, Jones and Vousden, 1997; Zhang et al., 2009).  It is proposed that the p53-Mdm2 feedback loop generates a “digital clock” that releases well-timed quanta of p53 until the damage is repaired or the cell dies (Lahave et al., 2004). In addition, it has also been shown that TRIM28, through its association with Mdm2, also contributes to p53 inactivation (Wang et al., 2005b; Czerwińska, Mazurek, and Wiznerowicz, 2017).

      Based on the above reports and our current work, we propose that DNA damage-induced PITAR, through its ability to increase the TRIM28 levels, contributes to the control of the DNA damage response of p53 along with Mdm-2. The difference is as follows: Since Mdm-2 is also a transcriptional target of p53, the p53-Mdm-2 axis is an autoregulatory negative feedback loop to control the DNA damage response by p53. In contrast, PITAR is not a transcriptional target of p53, and DNA damage-induced activation of PITAR is p53-independent. Hence, the PITAR-TRIM28 axis in controlling the DNA damage response of p53 creates an Incoherent feedforward regulatory network.  The experimental evidence provided in the revised manuscript is as follows: 1) We have already (the first version of the manuscript) shown that exogenous overexpression of PITAR significantly inhibits DNA damage-induced p53 (Figures 6A, B, C, and D). 2) In the revised manuscript, we show that the DNA damage response of p53 (duration and extent of p53 activation after a pulse of ionizing radiation) in PITAR-silenced cells follows similar kinetics in terms of duration, but the extent of p53 activation was much stronger (Supplementary figures 8H, I, J, and K).  This is because the TRIM28 component in TRIM28/Mdm-2 axis is compromised as PITAR silencing reduces the TRIM28 levels. 3) We also demonstrate that DNA damage-induced TRIM28 is dependent on PITAR (Figure 6K; Supplementary Figure 5G)

      Reviewer #1(Recommendations For The Authors):

      (1) Fig 7A, what is the explanation for the observation that tumors disappeared in most of the mice in the siPITAR group? Did the authors check if apoptosis was induced here?

      We agree to the point that the lack of tumor growth in the siPITAR group is likely due to the induction of apoptosis. We would like to point out that in vitro experiments indeed demonstrate that PITAR silencing induces apoptosis in Figure 2H and Supplementary Figure 2F.

      (2) The authors need to explain why Fig 6 used a cell line different from other experiments. It would be better to check other cell lines.

      The purpose of RG5 and MGG8 is as follows. 1) We wanted to establish the growth-promoting functions of PITAR in patient-derived GSC lines. 2) We also wanted to show the importance of WT p53 for the growth-promoting functions of PITAR.

      However, in the revised manuscript we moved this portion under the subsection “PITAR inhibits p53 protein levels by its association with TRIM28 mRNA“.

      Further,the experiments related to DNA damage induced activation of PITAR in p53-independent manner and its impact on DNA damage response by p53 is moved to a new section entitled “PITAR is induced by DNA damage in a p53-independent manner, which in turn diminishes the DNA damage response by p53”

      (3) It would be more convincing if the authors could test more p53 target genes in addition to p21.

      We thank the reviewer for this comment and the specific suggestions for checking additional p53 targets. In the revised manuscript, we have checked the MDM2 transcript levels in Supplementary Figure 6D. 

      Reviewer #2 (Recommendations For The Authors):

      (1) In the text, they mentioned " Figure 4J". There is no Figure 4J in Figure 4. It may be Figure 4K.

      We thank reviewer #2. We corrected this information in the revised manuscript.

      (2) The molecular weight markers in Western blots were missed in several Figure panels, including Figure 4J, Figure 5K, and Supple. Figure 3B, Supple. Figure 5G, H, Supple. Figures 6A and 7A.

      We thank reviewer #2, and we have included the molecular weight markers in all the mentioned figures.

    1. Reviewer #1 (Public Review):

      The authors characterized a new non-coding RNA, which they named as PITAR. They first showed that the PITAR expression levels are higher in glioblastoma, and then demonstrated that knockdown of PITAR in glioblastoma cells decreased cell growth, induced G0/G1 arrest and apoptosis. They further identified the E3 ubiquitin ligase TRIM28 is the target of PITAR, and showed that PITAR bound to the TRIM28 mRNA and regulated the stability and expression of the latter. Since TRIM28 has been reported to be an E3 ubiquitin ligase for the tumor suppressor p53, the authors tried to link the PITAR function to p53 regulation. They showed that one PITAR siRNA increased the levels of p53 and p21, and the stability of p53, and these effects could be diminished by overexpression of TRIM28. They also showed that PITAR overexpression decreased the levels of adriamycin-induced p53/p21 expression and reversed DNA damage-induced G2/M arrest. Lastly, the authors showed that PITAR siRNA decreased the growth of glioblastoma, while PITAR overexpression increased glioblastoma growth and counteracted temozolomide for its anti-glioblastoma activity.

      Overall, the manuscript has provided preliminary evidence supporting the important role of PITAR in the regulation of the growth and drug resistance of glioblastoma. The results supporting the regulation of PITAR on TRIM28 appear to be convincing. However, the study suffers significant weaknesses summarized as below.

      (1) Only one PITAR siRNA was tested in majority of the experiments, which compromises the validity of the results. Some results are inconsistent. For example, Fig 2G indicates that PITAR siRNA caused G1 arrest. However, PITAR overexpression in the same cell line did not show any effect on cell cycle progression in Fig 5I.

      (2) The conclusion that PITAR inactivates p53 through regulating TRIM28, which is highlighted in the title of the manuscript, is not supported by convincing results. Although the authors showed that a PITAR siRNA increased while PITAR overexpression decreased p53 level, the siRNA only marginally increased the stability of p53 (Fig 5E). The p53 ubiquitination level was barely affected by PITAR overexpression in Fig 5F. To convincingly demonstrate that PITAR regulates p53 through TRIM28, the authors need to show that this regulation is impaired/compromised in TRIM28-knockout conditions. The authors only showed that TRIM28 overexpression suppressed PITAR siRNA-induced increase of p53, which is not sufficient. Note that only one cell line was investigated in Fig 5.

      (3) Another major weakness of this manuscript is that the authors did not provide any evidence indicating that the glioblastoma-promoting activities of PITAR were mediated by its regulation of p53 or TRIM28 (Fig 6 and Fig 7). Thus, the regulation of glioblastoma growth and the regulation of TRIM28/p53 appear to be disconnected.

      (4) It is not clear what kind of message the authors tried to deliver in Fig 7F/G. Based on the authors' hypothesis, DNA damaging agents like TMZ would induce PITAR to inactivate p53, which would compromise TMZ's anti-cancer activity. However, the data show that TMZ was very effective in the inhibition of U87 growth. The authors may need to test whether PITAR downregulation, which would increase p53 activity, have any effects on TMZ-insensitive tumors. Such results are more therapeutically relevant.

      (5) Lastly, the model presented in Fig 7H is confusing. It is not clear what the exact role of PITAR in the DNA damage response based on this model. If DNA damage would induce PITAR expression, this would lead to inactivation of p53 as revealed by this manuscript. However, DNA damage is known to activate p53. Do the authors want to imply that PITAR induction by DNA damage would help to bring down the p53 level at the end of DNA damage response? The presented data do not support this role unfortunately.

    1. eLife assessment

      This study presents a useful comparison of the dynamic properties of two RNA-binding domains. The data collection and analysis are solid, making excellent use of a suite of NMR experiments and ITC data. Nonetheless, reported evidence was found to only partially support the proposed connection between the backbone dynamics of the tandem domains and their RNA binding activity. This work will be of interest to biophysicists working on RNA-binding proteins.

    2. Reviewer #1 (Public Review):

      In the manuscript Chugh and co-workers utilize a suite of NMR relaxation methods to probe the dynamic landscape of the TAR RNA binding protein (TRBP) double-stranded RNA-binding domain 2 (dsRBD2) and compare these to their previously published results on TRBP dsRBD1. The authors show that, unlike dsRBD1, dsRBD2 is a rigid protein with minimal ps-ns or us-ms time scale dynamics in the absence of RNA. They then show that dsRBD2 binds to canonical A-form dsRNA with a higher affinity and with less changes in dynamics compared to dsRBD1.

      Strengths:

      The authors expertly use a variety of NMR techniques to probe protein motions over six-orders of magnitude in time. Other NMR titration experiments and ITC data support the RNA-binding model.

      Weaknesses:

      Generally, the data collection and analysis are sound. However, microsecond timescale dynamics for the RNA-bound form of dsRBD2 are inferred from a sample that is only 5% bound. Additionally, the manuscript lacks context with the much broader field of RNA-binding proteins. For example, many studies have shown that RNA recognition motif (RRM) domains have similar dynamic characteristics when binding diverse RNA substrates.

    3. Reviewer #2 (Public Review):

      Summary:

      Proteins that bind to double-stranded RNA regulate various cellular processes, including gene expression and viral recognition. Such proteins often contain multiple double-stranded RNA-binding domains (dsRBDs) that play an important role in target search and recognition. In this work, Chug and colleagues have characterized the backbone dynamics of one of the dsRBDs of a protein called TRBP2, which carries two tandem dsRBDs. Using solution NMR spectroscopy, the authors characterize the backbone motions of dsRBD2 in the absence and presence of dsRNA and compare these with their previously published results on dsRBD1. The authors show that dsRBD2 is comparatively more rigid than dsRBD1 and claim that these differences in backbone motions are important for target recognition.

      Strengths:

      The strengths of this study are multiple solution NMR measurements to characterize the backbone motions of dsRBD2. These include 15N-R1, R2, and HetNOE experiments in the absence and presence of RNA and the analysis of these data using an extended-model-free approach; HARD-15N-experiments and their analysis to characterize the kex. The authors also report differences in binding affinities of dsRBD1 and dsRBD2 using ITC and have performed MD simulations to probe the differential flexibility of these two domains.

      Weaknesses:

      While it may be true that dsRBD2 is more rigid than dsRBD1, the manuscript lacks conclusive and decisive proof that such changes in backbone dynamics are responsible for target search and recognition and for the diffusion of TRBP2 along the RNA molecule.

    1. eLife assessment

      In this useful study, the authors investigate the regulatory mechanisms related to toxin production and pathogenicity in Aspergillus flavus. Their observations indicate that the SntB protein regulates morphogenesis, aflatoxin biosynthesis, and the oxidative stress response. The data supporting the conclusions are compelling and contribute significantly the advancing the understanding of SntB function.

    2. Reviewer #1 (Public Review):

      The study identifies the epigenetic reader SntB as a crucial transcriptional regulator of growth, development, and secondary metabolite synthesis in Aspergillus flavus, although the precise molecular mechanisms remain elusive. Using homologous recombination, researchers constructed sntB gene deletion (ΔsntB), complementary (Com-sntB), and HA tag-fused sntB (sntB-HA) strains. Results indicated that deletion of the sntB gene impaired mycelial growth, conidial production, sclerotia formation, aflatoxin synthesis, and host colonization compared to the wild type (WT). The defects in the ΔsntB strain were reversible in the Com-sntB strain.

      Further experiments involving ChIP-seq and RNA-seq analyses of sntB-HA and WT, as well as ΔsntB and WT strains, highlighted SntB's significant role in the oxidative stress response. Analysis of the catalase-encoding catC gene, which was upregulated in the ΔsntB strain, and a secretory lipase gene, which was downregulated, underpinned the functional disruptions observed. Under oxidative stress induced by menadione sodium bisulfite (MSB), the deletion of sntB reduced catC expression significantly. Additionally, deleting the catC gene curtailed mycelial growth, conidial production, and sclerotia formation, but elevated reactive oxygen species (ROS) levels and aflatoxin production. The ΔcatC strain also showed reduced susceptibility to MSB and decreased aflatoxin production compared to the WT.

      This study outlines a pathway by which SntB regulates fungal morphogenesis, mycotoxin synthesis, and virulence through a sequence of H3K36me3 modification to peroxisomes and lipid hydrolysis, impacting fungal virulence and mycotoxin biosynthesis.

      The authors have achieved the majority of their aims at the beginning of the study, finding target genes, which led to catC mediated regulation of development, growth and aflatoxin metabolism. Overall most parts of the study are solid and clear.

    3. Reviewer #2 (Public Review):

      Summary:

      Wu et al. explores the role of the histone reader protein SntB in Aspergillus flavus. They not only studied its function related to the growth, development, and secondary metabolite through gene knockout and complement, but also explored the underlying potential mechanisms by RNA-seq and ChIP-seq. The response of oxidative stress in ΔsntB strain and ΔcatC strain were further analyzed. Their study revealed a potential machinery that SntB regulated fungal morphogenesis, mycotoxin anabolism, and fungal virulence through the axle of from epigenetic modification to fungal virulence and mycotoxin bio-synthesis via SntB, i.e. H3K36me3 modification-SntB-Peroxisomes-Lipid hydrolysis-fungal virulence and mycotoxin bio-synthesis. This work is of great significance in revealing the regulatory mechanisms of pathogenic fungi in toxin production, pathogenicity, and in its prevention and pollution control.

      Strengths:

      One of the main advantages of this study is that the author constructed HA fused strains for ChIP seq analysis, rather than using antibodies related to epigenetic modifications. Nancy et al. reported the functions of sntB as a histone methylation regulator, but in addition to being an epigenetic regulator, there are also reports that it has transcriptional regulatory activity. Through integration analysis with RNA-seq data, it was found that SntB played key roles in oxidative stress response of A. flavus. This study can increase our understanding of more functions of the SntB in A. flavus.

      Weaknesses:

      The authors only studied the function of catC among the 7 genes related to oxidative response listed in Table S14.

    4. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Recommendations For The Authors):

      Inclusion of other catalase, peroxidase or superoxide dismutase gene promoters (with ChiP-seq screen shots) and whether they contain sntB binding sites is important to provide other potential downstream pathways controlling oxidative stress mediated regulation of development and aflatoxin metabolism. This can be presented as supplementary material.

      or

      Some more examples of ChiP-seq peaks in the promoters of nsdC, nsdD, sclR, steA, wetA, veA, fluG, sod2, catA, catC would strengthen the paper for the reliability of the ChiP-seq data. Currently, visualisation of the ChIP-seq data is only limited to catC gene promoter, where background ChIP-seq signals are very high (Figure 5F).

      The binding region and motif of SntB on the catA, catB, sod1, and sod2 genes were shown in Figure S7 and described in lane 531-536 and 881-884. The background of ChIP-seq signals is high, but the enrich level in the ip-sntB-HA samples is significant compared to IP-WT.

      Figure 5F, letters are too small, and difficult to read. The same is true for Figure 4. Letters should be enlarged for the readers to read it without problem.

      Thanks. We have revised the Figure 5F and Figure 4. Please see these Figures.

      Reviewer #2 (Recommendations For The Authors):

      The authors fully addressed my concerns and made appropriate changes in the manuscript. The quality of the manuscript is now improved.

      Thanks. We would like to express our sincere gratitude for your affirmation and thoughtful feedback. Your positive comments have been extremely encouraging and have strengthened my confidence in my work. Your time and effort in reviewing my submission are greatly appreciated.

    1. eLife assessment

      This study explores simple machine learning frameworks to distinguish between interacting and non-interacting protein pairs, offering solid computational results despite some concerns about dataset generation. The authors demonstrate a modest improvement in AlphaFold-multimers' ability to differentiate these pairs. Using a simple yet sound approach, this work is a valuable contribution to the challenging problem of reconstructing protein-protein interaction networks.

    2. Reviewer #1 (Public Review):

      V.Mischley et al have applied several simple machine learning (ML)frameworks (which were widely used before the advent of deep learning methods) to distinguish (as the authors claimed) between interacting and non-interacting pairs. For this purpose, the authors have generated two sets of protein pairs, equal in their size (which is preferable for classification problems in ML). The first set comprises a non-redundant set of interacting proteins from the DOCKGROUND database, and the second set consists of presumably non-interacting protein pairs. Then, the authors trained and evaluated compared performance of the utilized ML frameworks using a set of well-described parameters. The authors also demonstrated the superior performance of their method in comparison to other metrics, such as ipTM and pdockQ. Finally, the authors applied their method to identify interacting pairs within the tumor necrosis factor superfamily. In general, the paper is well written, and the methodology applied is sound, however, I have a fundamental concern regarding the non-interacting set. As follows from the author's description, this set does not ensure that generated protein pairs do not interact as follows from the main paradigm of template-based docking (structurally similar proteins have similar binding modes). In my opinion, this set rather presents a set of non-cognate or weekly interacting protein pairs. That also explains the drop in performance for the pDockQ metric on the authors' set (AUC 0.71 in this paper opposite t0 0.87 in the original paper), as pDockQ was trained on the set of truly non-interacting proteins. In that respect, it would be interesting to see the performance of the authors' approach, but trained on the set described in the pDockQ paper (more or less the same set of interacting pairs but a different set of non-interacting proteins).

    3. Reviewer #2 (Public Review):

      Summary:

      In this paper, the authors train a simple machine learning to improve the ability of AlphaFold-multimers ability to separate interacting from non-interacting pairs. The improvement is small compared with the default AlphaFold score (AUROC from 0.84 to 0.88).

      Strengths:

      The dataset seems to be carefully constructed.

      Weaknesses:

      The comparison with the state of the art is limited.<br /> - pDockQ comparison is (likely) incorrect (v2.1 should be used, not v1.0).<br /> - Comparison with ipTM should be complemented with RankingConfidence (the default AF2-score).<br /> - Several other scores than pDockQ have been developed for this task.<br /> - Other methods (by Jianlin Chen) to "improve" quality assessment of AF2-models have been presented - these should at least be cited.

      Lack of ablation studies:

      - Quite likely the most significant contributor is the ipTM (and other scores from AF2). This should be analyzed and discussed.

      Lack of data:

      - The GitHub repository does not contain the models - so the data can not be examined carefully. Nor can the model be retrained.

      - No license is provided for the code in the Git repository.

    4. Reviewer #3 (Public Review):

      Due to AlphaFold's popularity, I see people taking the fact that AlphaFold predicted a decent protein complex structure between two proteins as strong support for protein-protein interaction (PPI) and even using such a hypothesis to guide their experimental studies. The scientific community needs to realize that just like the experimental methods to characterize PPIs, using AlphaFold to study PPIs has a considerate false positive and false negative rate.

      Overall, I think it is solid work, but I have several concerns.

      (1) In the benchmark set, the authors used about 1:1 ratio of positive (active) and negative controls. However, in real-life applications, the signal-to-noise ratio of PPI screening is very low. As they stated in their very nice introduction, there are expected to be "74,000 - 200,000" true PPIs in humans, whereas there are > 200,000,000 protein pairs. I am not suggesting that the authors need to make their tool able to handle such a high noise level, but at least some discussion along this line is helpful.

      (2) The benchmark set from Dockground mostly consists of stable interactions that are actually relatively easily distinguished from non-interacting pairs. I suggest the authors test how well their tools will perform on weaker and transient interactions or discuss this limitation. For the more stable complexes, structural features at the interface are useful in predicting whether two proteins should interact, but I doubt this will be true for weaker and transient interactions.

      (3) Given that the 1:1 benchmark set is a simplified task (see the first point) compared to real-life applications, the other task shown in this paper, i.e., the ligand/receptor pairings, seems to be more important. I think it is necessary to compare their tool against other simpler metrics for this more realistic task.

    1. Reviewer #3 (Public Review):

      Summary:

      The authors have devised an elegant stopped-flow fluorescence approach to probe the mechanism of action of the Hsp100 protein unfoldase ClpB on an unfolded substrate (RepA) coupled to 1-3 repeats of a folded titin domain. They provide useful new insight into the kinetics of ClpB action. The results support their conclusions for the model setup used.

      Strengths:

      The stopped-flow fluorescence method with a variable delay after mixing the reactants is informative, as is the use of variable numbers of folded domains to probe the unfolding steps.

      Weaknesses:

      The setup does not reflect the physiological setting for ClpB action. A mixture of ATP and ATPgammaS is used to activate ClpB without the need for its co-chaperones, Hsp70. Hsp40 and an Hsp70 nucleotide exchange factor. This nucleotide strategy was discovered by Doyle et al (2007) but the mechanism of action is not fully understood. Other authors have used different approaches. As mentioned by the authors, Weibezahn et al used a construct coupled to the ClpA protease to demonstrate translocation. Avellaneda et al used a mutant (Y503D) in the coiled-coil regulatory domain to bypass the Hsp70 system. These differences complicate comparisons of rates and step sizes with previous work. It is unclear which results, if any, reflect the in vivo action of ClpB on the disassembly of aggregates.

    2. eLife assessment

      This valuable study presents the development of a single turnover stopped-flow fluorescence experiment to study the kinetics of substrate unfolding and translocation by the bacterial ClpB disaggregase. Using non-physiological nucleotides to bypass the physiological regulation mechanism of ClpB, the authors convincingly show that the ClpB disaggregase is a processive motor with a slow unfolding step preceding rapid translocation. The results of this analysis are of value for future mechanistic studies on energy-dependent unfolding, degradation, and disaggregation molecular machines.

    3. Reviewer #1 (Public Review):

      In this study, the authors used a stopped-flow method to investigate the kinetics of substrate translocation through the channel in hexameric ClpB, an ATP-dependent bacterial protein disaggregase. They engineered a series of polypeptides with the N-terminal RepA ClpB-targeting sequence followed by a variable number of folded titin domains. The authors detected translocation of the substrate polypeptides by observing the enhancement of fluorescence from a probe located at the substrate's C-terminus. The total time of the substrates' translocation correlated with their lengths, which allowed the authors to determine the number of residues translocated by ClpB per unit time.

      Strengths:

      This study confirms a previously proposed model of processive translocation of polypeptides through the channel in ClpB. The novelty of this work is in the clever design of a series of kinetic experiments with an engineered substrate that includes stably folded domains. This approach produced a quantitative description of the reaction rates and kinetic step sizes. Another valuable aspect is that the method can be used for other translocases from the AAA+ family to characterize their mechanism of substrate processing.

      Weaknesses:

      The main limitation of the study is in using a single non-physiological substrate of ClpB, which does not replicate the physical properties of the aggregated cellular proteins and includes a non-physiological ClpB-targeting sequence. Another limitation is in the use of ATPgammaS to stimulate the substrate processing. It is not clear how relevant the results are to the ClpB function in living cells with ATP as the source of energy, a multitude of various aggregated substrates without targeting sequences that need ClpB's assistance, and in the presence of the co-chaperones.

      The authors do not attempt to correlate the kinetic step sizes detected during substrate translocation and unfolding with the substrate's structure, which should be possible, given how extensively the stability and unfolding of the titin I27 domain were studied before. Also, since the substrate contains up to three I27 domains separated with unstructured linkers, it is not clear why all the translocation steps are assumed to occur with the same rate constant.

      Some conclusions presented in the manuscript are speculative:

      The notion that the emission from Alexa Fluor 555 is enhanced when ClpB approaches the substrate's C-terminus needs to be supported experimentally. Also, evidence that ATPgammaS without ATP can provide sufficient energy for substrate translocation and unfolding is missing in the paper.

    4. Reviewer #2 (Public Review):

      Summary:

      The current work by Banwait et al. reports a fluorescence-based single turnover method based on protein-induced fluorescence enhancement (PIFE) to show that ClpB is a processive motor. The paper is a crucial finding as there has been ambiguity on whether ClpB is a processive or non-processive motor. Optical tweezers-based single-molecule studies have shown that ClpB is a processive motor, whereas previous studies from the same group hypothesized it to be a non-processive motor. As co-chaperones are needed for the motor activity of the ClpB, to isolate the activity of ClpB, they have used a 1:1 ratio ATP and ATPgS, where the enzyme is active even in the absence of its co-chaperones, as previously observed. A sequential mixing stop-flow protocol was developed, and the unfolding and translocation of RepA-TitinX, X = 1,2,3 repeats was monitored by measuring the fluorescence intensity with the time of Alexa F555 which was labelled at the C-terminal Cysteine. The observations were a lag time, followed by a gradual increase in fluorescence due to PIFE, and then a decrease in fluorescence plausibly due to the dissociation from the substrate allowing it to refold. The authors observed that the peak time depends on the substrate length, indicating the processive nature of ClpB. In addition, the lag and peak times depend on the pre-incubation time with ATPgS, indicating that the enzyme translocates on the substrates even with just ATPgS without the addition of ATP, which is plausible due to the slow hydrolysis of ATPgS. From the plot of substrate length vs peak time, the authors calculated the rate of unfolding and translocation to be ~0.1 aas-1 in the presence of ~1 mM ATPgS and increases to 1 aas-1 in the presence of 1:1 ATP and ATPgS. The authors have further performed experiments at 3:1 ATP and ATPgS concentrations and observed ~5 times increase in the translocation rates as expected due to faster hydrolysis of ATP by ClpB and reconfirming that processivity is majorly ATP driven. Further, the authors model their results to multiple sequential unfolding steps, determining the rate of unfolding and the number of amino acids unfolded during each step. Overall, the study uses a novel method to reconfirm the processive nature of ClpB.

      Strengths:

      (1) Previous studies on understanding the processivity of ClpB have primarily focused on unfolded or disordered proteins; this study paves new insights into our understanding of the processing of folded proteins by ClpB. They have cleverly used RepA as a recognition sequence to understand the unfolding of titin-I27 folded domains.

      (2) The method developed can be applied to many disaggregating enzymes and has broader significance.

      (3) The data from various experiments are consistent with each other, indicating the reproducibility of the data. For example, the rate of translocation in the presence of ATPgS, ~0.1 aas-1 from the single mixing experiment and double mixing experiment are very similar.

      (4) The study convincingly shows that ClpB is a processive motor, which has long been debated, describing its activity in the presence of only ATPgS and a mixture of ATP and ATPgS.

      (5) The discussion part has been written in a way that describes many previous experiments from various groups supporting the processive nature of the enzyme and supports their current study.

      Weaknesses:

      (1) The authors model that the enzyme unfolds the protein sequentially around 60 aa each time through multiple steps and translocates rapidly. This contradicts our knowledge of protein unfolding, which is generally cooperative, particularly for titinI27, which is reported to unfold cooperatively or utmost through one intermediate during enzymatic unfolding by ClpX and ClpA.

      (2) It is also important to note that the unfolding of titinI27 from the N-terminus (as done in this study) has been reported to be very fast and cannot be the rate-limiting step as reported earlier(Olivares et al, PNAS, 2017). This contradicts the current model where unfolding is the rate-limiting step, and the translocation is assumed to be many orders faster than unfolding.

      (3) The model assumes the same time constant for all the unfolding steps irrespective of the secondary structural interactions.

      (4) Unlike other single-molecule optical tweezer-based assays, the study cannot distinguish the unfolding and translocation events and assumes that unfolding is the rate-limiting step.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors' claims that CD9 and CD81 are key regulators of TNT formation and function are well-supported by the data. The use of KO and OE models provides strong evidence. The differential proteomic analysis between TNTs and EVPs and the functional assays justify the conclusion that these tetraspanins are critical for TNT biogenesis and functionality. Overall, the manuscript presents a nice study that advances our understanding of TNTs and their regulation by CD9 and CD81. Despite some limitations, the strengths of the experimental design and the robustness of the data justify the authors' conclusions. Future studies addressing the identified weaknesses would further solidify these findings and their implications in pathological contexts.

      Strengths:

      Novelty and Significance - this study addresses the composition and regulation of tunneling nanotubes (TNTs). By identifying the roles of CD9 and CD81 tetraspanins, the researchers offer insights into the molecular mechanisms underlying TNT formation. This could have implications for understanding cellular communication in pathological conditions such as cancer.

      Methodological Accuracy - the authors employed a well-designed biochemical approach to isolate TNTs from U2OS cells, distinguishing them from extracellular vesicles and particles (EVPs). The use of multiple independent preparations and the application of LC-MS/MS for proteomic analysis ensure robustness and reproducibility of the data.

      Complete Analysis - the study provides a detailed proteomic profile of TNTs, identifying 1177 proteins and highlighting key components. The comparative analysis between TNTs and EVPs further strengthens the findings by demonstrating distinct proteomic landscapes.

      Functional Insights - using knockout (KO) and overexpression (OE) models, the authors convincingly demonstrate the distinct roles of CD9 and CD81 in TNT formation and function. CD9 is shown to stabilize TNTs, while CD81 facilitates vesicle transfer, likely by aiding membrane docking or fusion.

      Experimental Design - the use of actin chromobody-GFP and various fluorescent markers enabled the authors to visualize TNTs and validate their isolation protocol. Additionally, the combination of electron microscopy, flow cytometry, and live-cell imaging provided convincing evidence for their claims.

      Weaknesses:

      Potential Contaminations - while the authors took steps to minimize contamination with other cellular structures, the presence of some nuclear proteins and the possible inclusion of small portions of cell bodies or ER in the TNT preparations cannot be entirely ruled out. This may affect the interpretation of some proteomic data.

      Limited Cell Models - the experiments were conducted in U2OS and SH-SY5Y cells. While these are relevant models, in vivo validation of the findings would significantly enhance the impact and translational potential of the research.

      Functional Mechanisms - although the study provides strong evidence for the roles of CD9 and CD81, the exact molecular mechanisms by which these tetraspanins regulate TNT formation and vesicle transfer remain partially speculative. Further biochemical and biophysical analyses would be necessary to elucidate these mechanisms in detail.

    2. Reviewer #2 (Public Review):

      Tunneling nanotubes (TNT) are common cellular protrusions that allow the transfer of multiple types of cargo between mammalian cells. TNTs are fragile, and lack any known unique marker, making it challenging to isolate and study them. Therefore, the content of TNTs is mostly unknown, and there are only a handful of proteins known to play a role in TNT formation or function.

      In this paper, the authors developed a new protocol to isolate TNT fragments from a culture of adherent mammalian cells in a way that is distinctive of extracellular vesicle and identify the proteins within the TNT (referred to as TNTome) by mass spectrometry. The authors provide an analysis of the results in comparison to the extracellular vesicle (EV) proteome, and validate a few examples, thus providing valuable data for the TNT field. However, there is a big overlap between TNTome and EV proteome.

      The authors further focus on two proteins, CD9 and CD81, that are enriched in TNTs. Using cells that are knocked out (KO) or over-expressing (OE) these proteins, the authors study their role in TNT formation and function. The authors focus on two major parameters, which are the percent of cells connected by TNT, and the percent of acceptor cells containing fluorescently labeled transferred vesicles. The authors use various assays, which are properly controlled, to measure these parameters. Their analysis provides convincing evidence that CD9 plays a partial role in TNT formation or stabilization and CD81 plays a partial role in forming fully elongated/connected TNT.

      However, the authors overstate the importance of these proteins, since their absence only partially affects TNT formation and function, similar to what is seen when knocking out most any other protein implicated in TNT formation. Even their best results show just a 50% reduction for TNT formation and 70% vesicle transfer (in the double KO). Thus, these are not "key" regulators as the title suggests - no more than many other factors, some of them identified by the authors in previous publications. The model presented in Figure 7D is thus misleading, as it states that CD9 KO has "No TNT" which is incorrect (only a slight decrease according to Figure 3C), and states that CD81 KO has "Non-functional TNT" whereas there is still 50% vesicle transfer in this mutant.

      In addition, the authors use vesicle transfer as a measure of function, but this is just one type of cargo amongst many others: ions, proteins, RNA, various organelles, and pathogens like viruses and bacteria. Since the authors clearly cannot test every type of cargo, the authors should at least be more accurate in their statements regarding functionality and mention the possibility that other types of cargo transfer could be less or more affected by the KO or OE of these proteins.

      It is not completely clear from the text why the authors decided to focus on CD9 and CD81, which are also found in EV, instead of focusing on TNT-unique proteins, and in particular the cytoskeleton-related ones.

      In summary, it is a good paper, that provides valuable data on the composition of TNT, and the role of additional players, bringing us closer to understanding the mechanism of TNT formation.

    3. Reviewer #3 (Public Review):

      Initially, the authors isolated TNTs from EVPs and cell bodies of cultured U2OS cells. Using transmission electronic microscopy and nanoflow cytometry, they demonstrated that these two structures are morphologically different. In engineered cells, they observed the presence of actin and CD9 in TNTs by immunofluorescence. Then they employed mass spectrometry techniques to analyze the EVPs and TNT fractions, discovering that their compositions significantly differ and that CD9 and CD81 are abundant in both structures.

      Subsequently, they studied the role of CD9 and CD81 in the formation of TNTs by using SH-SY5Y cells, first confirming their presence in TNTs via immunofluorescence. CD9 knockout (KO) cells, but not CD81 KO, exhibited a reduced percentage of cells connected via TNTs. The percentage of TNT-connected double KO cells was even lower compared to CD9 KO cells. Additionally, CD9 overexpression (OE), but not CD81 OE increased the percentage of TNT-connected cells.

      The authors then investigated the influence of CD9 and CD81 on the capacity of cells to transport material through TNTs by quantifying vesicle delivery between cells. The percentage of acceptor cells containing vesicles (I call it here the efficiency of vesicle transfer) was reduced in CD9 KO cells and CD81 KO cells, and even lower in double KO cells. CD9 OE or CD81 OE increased vesicle transfer efficiency.

      Then, they studied possible redundant or complementary roles in the formation of TNTs through a combination of KO and OE of CD9 and CD81 and observed that CD81 does not play any role in TNT formation when CD9 is present, and vesicle transfer of CD81 KO cells can be efficient in CD9 OE conditions.

      Incubation of WT cells and CD81 KO cells with an anti-CD9 monoclonal antibody caused CD9 and CD81 clustering, significantly increasing the percentage of TNT-connected cells and duration of TNTs. While the antibody enhanced vesicle transfer efficiency in WT cells, it did not affect vesicle transfer in CD81 KO cells.

      The article is well-written and addresses an important biological question, providing some insightful results. However, I have concerns regarding the connection between the experimental data and some of the conclusions drawn by the authors. Below I summarize my points:

      - The protocol used to separate TNTs from EVPs and the cell body to determine their protein composition appears problematic. The authors apply mechanical stress by vigorously shaking the samples to achieve this separation. I am skeptical that this method robustly isolates TNTs from other cellular structures/components. I am concerned that their proteomic analysis might not be analyzing the composition of TNTs exclusively, but rather a mixture that includes other structures. For example, the second and eighth most abundant proteins identified are histones (Table S1), and about 20% of the total TNT proteins identified are either mitochondrial or nuclear proteins. The authors should attempt to improve the proteomics section of their study. To differentiate structural TNT proteins from debris, the authors could use statistical analysis to compare multiple independent preparations. Structural TNT proteins will likely be consistently present across all preparations, while non-structural TNT proteins may not. If this approach proves ineffective, the authors might need to refine their TNT isolation procedure.

      - Throughout the whole manuscript, the authors quantify the percentage of cells connected by TNTs but do not provide data on the total number of TNTs, which would offer additional valuable information not captured by the percentage of TNT-connected cells alone.

      - To study TNT functionality, the authors quantified the efficiency of vesicle transfer by calculating the percentage of acceptor cells containing donor vesicles. How was this percentage computed? The actual number of vesicles delivered to acceptor cells would provide a more accurate metric of vesicle transfer efficiency.

      - In Figure 7D, the authors provide a working model. They claim that CD9 KO cells are incapable of forming TNTs. However, this is not supported by their data. The percentage of TNT-connected cells in CD9 KO cells is only slightly lower than in WT cells (Figure 3C).

      - In the abstract and discussion of Figure 7D, the authors also claim that CD81 is necessary for the functional transfer of vesicles through TNTs by regulating membrane docking/fusion with the opposing cell. Furthermore, they propose in the discussion section that CD81 is involved in the opening of the TNT. However, all these claims are purely speculative and not supported by their data. If CD81 played such a role, vesicles would accumulate at the tip of the TNTs, which does not appear to be the case. Vesicle transfer occurs in CD81 KO cells. Additionally, TNT formation and efficient vesicle transfer are observed in CD81 KO cells and CD9 OE conditions, suggesting that docking/fusion is not dependent on CD81. Can the authors justify their claims? It is possible that CD81 KO cells might form TNTs with smaller diameters, potentially hindering vesicle transfer. Quantifying the dependence of TNT diameter on CD81 and CD9 expression would address this hypothesis.

      - The authors should explain the implications of their study. They need to elaborate on how their findings could impact our understanding of cellular communication and potential applications in therapeutic strategies.

      - Tetraspanins are involved in cell migration. In the CRISPR knockout experiments, could the observed changes in the percentage of TNT-connected cells be attributed to variations in cell migration potential?

      - The reason behind the clustering of CD9 and CD81 after CD9 antibody treatment should be discussed.

    1. eLife assessment

      This work aimed at deconstructing how sebaceous gland differentiation is controlled in adult skin. Using monoclonal antibodies designed to inhibit specific Notch ligands or receptors, the authors present solid evidence that the Jag2/Notch1 signaling axis is a crucial regulator of sebocyte progenitor proliferation and sebocyte differentiation. The valuable findings presented here contribute to the growing evidence that Notch signaling not only plays a role during the development of the skin and its appendages but also regulates cell fate in adult homeostatic tissues. From a translational perspective, it is intriguing that the effect of Jag2 or Notch1 inhibition, which leads to the accumulation of proliferative stem/progenitor cells in the sebaceous gland and prevents sebocyte differentiation, is reversible.

    2. Reviewer #1 (Public Review):

      Summary:

      In this study, Abidi and colleagues used Notch pathway-neutralizing antibodies to inhibit sebaceous glands in the skin. The authors find that blocking either the Notch1 receptor or the Jag2 ligand caused loss of the glands and increased retention of sebaceous progenitor cells. Moreover, these glands began to reappear 14 days after treatment.

      Strengths:

      Overall, this study definitively identifies the Notch receptor/ligand combination that maintains these glands in the adult. The manuscript is clearly written and the figures are beautifully made.

      Weaknesses:

      Minor text edits should be made.

    3. Reviewer #2 (Public Review):

      Summary:

      In this report Abidi et al. use an antibody against Jag2, a Notch1 ligand, to inhibit its activity in skin. A single dose of this treatment leads to an impairment of sebocyte differentiation and an accumulation of basal sebocytes. Consistently Notch1 activity, measured as cleaved form of the Notch1 intracellular domain, is detected in basal sebocytes together with the expression of Jag2. Interestingly the phenotype caused by the antibody treatment is reversible.

      Strengths:

      The quality of the histological data with a clear phenotype, together with the quantification represents a solid base for the authors' claims.

      This work identifies that the ligand Jag2 is the Notch1 ligand required for sebocyte differentiation.

      From a therapeutic point of view, it is interesting that the treatment with anti-Jag2 is reversible.

      Weaknesses:

      The authors use a single approach to support their claims.

      In this report, the analysis of the potential anti-Jag2 effect on the sebaceous ducts, the second cellular component of the sebaceous gland, is neglected.

    4. Reviewer #3 (Public Review):

      Abidi et al. investigated the role of Notch signalling for sebaceous gland differentiation and sebocyte progenitor proliferation in adult mouse skin. By injecting antagonising antibodies against different Notch receptors and ligands into mice, the authors identified that the Notch1 receptor and, to a lesser extent, Notch2 receptor, as well as the Notch ligand Jagged2, contribute to the regulation of sebaceous gland differentiation. In-situ hybridisation confirmed that treatment with anti-Jagged2 dramatically reduced the number of basal sebocytes staining for the transcriptionally active intracellular domain of Notch1. Loss of Notch activity in sebocyte progenitors robustly inhibited sebaceous gland differentiation. Under these conditions, the number of sebocyte progenitors marked by Lrig1 was not affected, while the number of proliferating basal sebocytes was increased. Upon recovery of Notch activity, sebaceous gland differentiation could likewise be recovered. By suggesting that Notch activity in sebocyte progenitors is required to balance proliferation and differentiation, these data bring valuable new and relevant findings for the skin field on the sebaceous gland homeostasis.

      The data generally support the conclusions drawn by the authors; however, several additional experiments are required, and some aspects of the data analysis need to be clarified and improved to strengthen the manuscript.

    1. eLife assessment

      This valuable work presents an interesting strategy to interfere with the HBV infectious cycle as it identifies two previously unexplored HBc-Ag binding pockets. The experimental data is solid; however, the cryo-EM data is not properly explained, the structural and mechanistic details could be explained in greater detail, and the conclusions need to be supported by evaluating the effect of these molecules on viral infectivity.

    2. Reviewer #1 (Public Review):

      Summary:

      In this paper, the authors present an interesting strategy to interfere with the HBV life cycle: the preparation of geranyl and peptides' dimers that could impede the correct assembly of hepatitis B core protein HBc into viable capsids. These dimers are of different nature, depending on the HBc site the authors plan to target. A preliminary study with geranyl dimers (targeting a hydrophobic site of HBc) was first investigated. The second series deals with peptide-PEG linker-peptide dimers, targeting the tips of HBc dimer spikes.

      Strengths:

      This work is very well conducted, combining ITC experiments (for determination of dimers' KD), cellular effects (thanks to the grafting of previously developed dimers with polyarginine-based cell penetrating peptide) HBV infected HEK293 cells and Cryo-EM studies.

      The findings of these research teams unambiguously demonstrated the interest of such dimeric structures in impeding the correct HBV life cycle and thus, could bring solutions in the control of its development. Ultimately, a new class of HBV Capside Assembly Modulators could arise from this study.

      There is no doubt that this work could bring very interesting information for people working on VHB.

      Weaknesses:

      Some minor corrections must be made, especially for a more precise description of the strategy and the chemical structure of the designed new VHB capsid assembly modulators.

    3. Reviewer #2 (Public Review):

      Summary:

      Vladimir Khayenko et al. discovered two novel binding pockets on HBc with in vitro binding and electron microscopy experiments. While the geranyl dimer targeting a central hydrophobic pocket displayed a micromolar affinity, the P1-dimer binding to the spike tip of HBc has a nanomolar affinity. In the turbidity assay and at the cellular level, an HBc aggregation from peptide crosslinking was demonstrated.

      Strengths:

      The study identifies two previously unexplored binding pockets on HBc capsids and develops novel binders targeting these sites with promising affinities.

      Weaknesses:

      While the in vitro and cellular HBc aggregation effects are demonstrated, the antiviral potential against HBV infection is not directly evaluated in this study.

    4. Reviewer #3 (Public Review):

      Summary:

      HBV is a continuing public health problem and new therapeutics would be of great value. Khayenko et al examine two sites in the HBc dimer as possible targets for new therapeutics. Older drugs that target HBc bind at a pocket between two HBc dimers. In this study Khayenko et al examine sites located in the four helix bundle at the dimer interface.

      The first site is a pocket first identified as a triton100 binding site. The authors suggest it might bind terpenes and use geraniol as an example. They also test a decyl maltose detergent and a geraniol dimer intended for bivalent binding. The KDs were all in the 100µM range. Cryo-EM shows that geraniol binds the targeted site.

      The second site is at the tip of the spike. Peptides based on a 1995 study (reference 43) were investigated. The authors test a core peptide, two longer peptides, and a dimer of the longest peptide. A deep scan of the longest monomer sequence shows the importance of a core amino acid sequence. The dimeric peptide (P1-dimer) binds almost 100 fold better than the monomer parent (P1). Cryo-EM structures confirm the binding site. The dimeric peptide caused HBc capsid aggregation When HBc expressing cells were treated with active peptide attached to a cell penetrating peptide, the peptide caused aggregation of HBc antigen mirroring experiments with purified proteins.

      Strengths:

      The two sites have not been well investigated. This paper marks a start. The small collection of substrates investigated led to discovery of a dimeric peptide that leads to capsid aggregation, presumably by non-covalent crosslinking. The structures determined could be very useful for future investigations.

      Weaknesses:

      In this draft, the rational for targets for the triton x100 site is not well laid out. The target molecules bind with KDs weaker that 50µM. The way the structural results are displayed, one cannot be sure of the important features of binding site with respect to the the substrate. The peptide site and substrates are better developed, but structural and mechanistic details need to be described in greater detail.

    1. eLife assessment

      This study provides valuable insights into how the EBH domain of EB1 interacts with SxIP peptides derived from MACF. A convincing description of the thermodynamic and kinetic modes of peptide binding is provided via a combination of solution NMR techniques and ITC. Although consistent with the data, the proposed "dock-and lock" model was not found to be directly supported by evidence. This work will be of interest to structural biologists and biophysicists interested in microtubule cytoskeleton.

    2. Reviewer #1 (Public Review):

      Summary:

      In this article, Almeida and colleagues use a combination of NMR and ITC to study the interaction of the EBH domain of microtubule end-binding protein 1 (EB1) with SxIP peptides derived from the MACF plus-end tracking protein. EBH forms a dimer and in isolation has previously been shown to have a disordered C-terminal tail. Here, the authors use NMR to determine a solution structure of the EBH dimer bound to 11-mer SxIP peptides derived from MACF, and observe that the disordered C-terminal of EBH is recruited by residues C-terminal to the SxIP motif to fold into the final complex. By comparison of binding in different length peptides, and of EBH lacking the C-terminal tail, they show that these additional contacts increase binding affinity by an order of magnitude, greatly stabilising the interaction, in a binding mode they term 'dock-and-lock'.

      The authors also use their new structural knowledge to design peptides with higher affinities and show in a cell model that these can be weakly recruited to microtubule ends - although a dimeric construct is necessary for efficient recruitment. Ultimately, by demonstrating the feasibility of targeting these proteins, this work points towards the possibility of designing small-molecules to block the interactions.

      Strengths:

      The authors determine an NMR structure of the dimeric complex, and additional report nuclear spin relaxation measurements to explore conformational dynamics within the complex via S2 order parameters and exchange contributions to relaxation (Rex terms).

      A variety of appropriate experimental techniques are applied to probe the thermodynamics and kinetics of peptide binding: ITC, 2D NMR lineshape analysis, and chemical exchange saturation transfer (CEST) NMR. These yield consistent results, and a thoughtful analysis is described, based on the non-observation of exchange broadening in 2D titration and CEST measurements, in order to conclude that the proposed locking step, in which the C-terminal tail of EBH folds against the bound peptide, must occur on a rapid (sub-ms) timescale.

      The use of 2D NMR lineshape analysis enables authors to extract the fullest information from their titration data, permitting an analysis of binding kinetics in addition to affinities. They also mention briefly that this enables them to account for the fact that binding occurs to two symmetric sites on the EBH dimer.

      The authors use a range of peptide lengths, and mutations of EBH, to explore the contribution of different parts of the sequence to the overall binding affinity. They also use their structural observations to design a new peptide that binds with sub-micromolar affinity. They develop a simple but effective fluorescence assay to test the interaction of these peptides with microtubule ends within cells and show that their designed peptide can compete with native ligands for EBH.

      Weaknesses:

      There is no direct experimental evidence for independent dock and lock steps. The model is certainly plausible given their structural data, but all titration and CEST measurements are fully consistent with a simple one-step binding mechanism. Indeed, it is acknowledged that the results for the VLL peptide are not consistent with the predictions of this model, as affinity and dissociation rates do not co-vary. The model may still be a helpful way to interpret and discuss their results, and may indeed be the correct mechanism, but this has not yet been proven.

      There is little discussion of the fact that binding occurs to EBH dimers - either in terms of the functional significance of this or in the acquisition and analysis of their data. There is no discussion of cooperation in binding (or its absence), either in the analysis of NMR titrations or in ITC measurements. Complete ITC fit results have not been reported so it is not possible to evaluate this for oneself.

      Three peptides are used to examine the role of C-terminal residues in SxIP motifs: 4-MACF (SKIP), 6-MACF (SKIPTP), and 11-MACF (KPSKIPTPQRK). The 11-mer demonstrates the strongest binding, but this has added residues to the N-terminal as well. It has also introduced charges at both termini, further complicating the interpretation of changes in binding affinities. Given this, I do not believe the authors can reasonably attribute increased affinities solely to post-SxIP residues.

      Experimental uncertainties are, with exceptions, not reported.

    3. Reviewer #2 (Public Review):

      Barsukov and his colleagues investigate the interaction mechanism between the EB1 C-terminal domain (EBH) and its binding motif, "SxIP," from MACF. From the crystal structure of the C-terminus of EB1 and SxIP, it has been postulated that complex formation is a simple protein-peptide interaction, achieved by only four residues. The authors demonstrate that the post-SxIP region is involved in EBH interactions using NMR and ITC, and propose that a more complex system exists - a two-step "dock-and-lock" model. The CEST data clearly show that EBH possesses two structural conformations and that the C-terminal EBH conformation undergoes a change upon binding to 11MACF. The authors then mutate the 11MACF peptide sequence and identify peptides with much higher affinities for EBH. These findings may contribute to the development of peptide drugs targeting EB1/microtubules.

      This work provides a novel structural insight into EB1 and its binding proteins, and the authors present solid experimental evidence to support the idea. One thing the authors should do is, I think, to use the longer EB1 construct. As the authors describe in the Introduction, each domain of EB1 has a distinct function. The C-terminal tail of EB1, which is adjacent to EBH and is not analyzed in this study, is highly acidic and plays an important role in protein interactions. If the authors discuss the C-terminus of EB1, they should analyze the whole C-terminus of EB1, which would strengthen the conclusion they have made.

    1. Author response:

      The following is the authors’ response to the current reviews. 

      eLife assessment:

      This useful modeling study explores how the biophysical properties of interneuron subtypes in the basolateral amygdala enable them to produce nested oscillations whose interactions facilitate functions such as spike-timing-dependent plasticity. The strength of evidence is currently viewed as incomplete because of insufficient grounding in prior experimental results and insufficient consideration of alternative explanations. This work will be of interest to investigators studying circuit mechanisms of fear conditioning as well as rhythms in the basolateral amygdala.

      We disagree with the overall assessment of our paper. The current reviews published below focus on two kinds of perceived inadequacies. Reviewer 1 (R1) was concerned that the fear conditioning paradigm used in the model is not compatible with some of the experiments we are modeling. The reviewer helpfully suggested in the Recommendations for the Authors some papers, which R1 believed exposed this incompatibility. In our reading, those data are indeed compatible with our hypotheses, as we will explain in our reply. Furthermore, the point raised by R1 is an issue for the entire field. We will suggest a solution to that issue based on published data.

      Reviewer 2 (R2) said that there is no evidence that the BLA is capable of producing, by itself, the rhythms that have been observed during fear conditioning in BLA and, furthermore, that the paper we cited to support such evidence, in fact, refutes our argument. We believe that the reasoning used by reviewer 2 is wrong and that the framework of R2 for what counts as evidence is inadequate. We spell out our arguments below in the reply to the reviewers.

      Finally, we believe this work is of interest far beyond investigators studying fear conditioning. The work shows how rhythms can create the timing necessary for spike-timing-dependent plasticity using multiple time scales that come from multiple different kinds of interneurons found both in BLA and, more broadly, in cortex. Thus, the work is relevant for all kinds of associative learning, not just fear conditioning. Furthermore, it is one of the first papers to show how rhythms can be central in mechanisms of higher-order cognition.

      Reviewer #1

      We thank Reviewer 1 for his kind remarks about our first set of responses and their understanding of the importance of the work. There was only one remaining point to be addressed:

      Deficient in this study is the construction of the afferent drive to the network, which does elicit activities that are consistent with those observed to similar stimuli. It still remains to be demonstrated that their mechanism promotes plasticity for training protocols that emulate the kinds of activities observed in the BLA during fear conditioning.

      It is true that some fear conditioning protocols involve non-overlapping US and CS, raising the question of how plasticity happens or whether behavioral effects may happen without plasticity. This is an issue for the entire field (Sun et al., F1000Research, 2020). Several papers (Quirk, Repa and LeDoux, 1995; Herry et al, 2007; Bordi and Ledoux 1992) show that the pips in auditory fear conditioning increase the activity of some BLA neurons: after an initial transient, the overall spike rate is still higher than baseline activity. The question remains as to whether the spiking is sustained long enough and at a high enough rate for STDP to take place when US is presented sometime after the stop of the CS.

      Experimental recordings cannot speak to the rate of spiking of BLA neurons during US due to recording interference from the shock. However, evidence seems to suggest that ECS activity should increase during the US due to the release of acetylcholine (ACh) from neurons in the basal forebrain (BF) (Rajebhosale et al., 2024). Pyramidal cells of the BLA robustly express M1 muscarinic ACh receptors (Muller et al., 2013; McDonald and Mott, 2021) and M1 receptors target spines receiving glutamatergic input (McDonald et al., 2019). Thus, ACh from BF should elicit a long-lasting depolarization in pyramidal cells. Indeed, the pairing of ACh with even low levels of spiking of BLA neurons results in a membrane depolarization that can last 7 – 10 s (Unal et al., 2015). This implies that the release of ACh can affect the consequences of the CS in successive trials. This should include higher spiking rates and more sustained activity in the ECS neurons after the first presentation of US, thus ensuring a concomitant activation of ECS and fear (F) neurons necessary for STDP to take place. Hence, we suggest that a solution to the problem raised by R1 may be solved by considering the role of ACh release by BF. To the best of our knowledge, there is nothing in the literature that contradicts this potential solution. The model we have may be considered a “minimal” model that puts in by hand the higher frequency due to the cholinergic drive without explicitly modeling it. As R1 says, it is important for us to give the motivation of that higher frequency; in the next revision, we will be explicit about how the needed adequate firing rate can come about without an overlap of CS and US in any given trial.

      Reviewer #2

      The authors of this study have investigated how oscillations may promote fear learning using a network model. They distinguished three types of rhythmic activities and implemented an STDP rule to the network aiming to understand the mechanisms underlying fear learning in the BLA.

      After the revision, the fundamental question, namely, whether the BLA networks can or cannot intrinsically generate any theta rhythms, is still unanswered. The author added this sentence to the revised version: "A recent experimental paper, (Antonoudiou et al., 2022), suggests that the BLA can intrinsically generate theta oscillations (3-12 Hz) detectable by LFP recordings under certain conditions, such as reduced inhibitory tone." In the cited paper, the authors studied gamma oscillations, and when they applied 10 uM Gabazine to the BLA slices observed rhythmic oscillations at theta frequencies. 10 uM Gabazine does not reduce the GABA-A receptor-mediated inhibition but eliminates it, resulting in rhythmic populations burst driven solely by excitatory cells. Thus, the results by Antonoudiou et al., 2022 contrast with, and do not support, the present study, which claims that rhythmic oscillations in the BLA depend on the function of interneurons. Thus, there is still no convincing evidence that BLA circuits can intrinsically generate theta oscillations in intact brain or acute slices. If one extrapolates from the hippocampal studies, then this is not surprising, as the hippocampal theta depends on extra-hippocampal inputs, including, but not limited to the entorhinal afferents and medial septal projections (see Buzsaki, 2002). Similarly, respiratory related 4 Hz oscillations are also driven by extrinsic inputs. Therefore, at present, it is unclear which kind of physiologically relevant theta rhythm in the BLA networks has been modelled.

      Reviewer 2 (R2) says “the fundamental question, namely, whether the BLA networks can or cannot intrinsically generate any theta rhythms, is still unanswered.” In our revision, we cited (Antonoudiou et al., 2022), who showed that BLA can intrinsically generate theta oscillations (3-12 Hz) detectable by LFP recordings. R2 pointed out that this paper produces such theta under conditions in which the inhibition is totally removed. R2 then states that the resulting rhythmic populations burst at theta “are driven solely by excitatory cells. Thus, the results by (Antonoudiou et al., 2022) contrast with, and do not support, the present study, which claims that rhythmic oscillations in the BLA depend on the function of interneurons. Thus, there is still no convincing evidence that BLA circuits can intrinsically generate theta oscillations in intact brain or acute slices.”

      This reasoning of R2 is faulty. With all GABAergic currents omitted, the LFP is composed of excitatory currents and intrinsic currents. Our model of the LFP includes all synaptic and membrane currents. In our model, the high theta comes from the spiking activity of the SOM cells, which increase their activity if the inhibition from VIP cells is removed. We are including a new simulation, which models the activity of the slice in the presence of kainate (as done in Antonoudiou et al., 2022), providing additional excitation to the network. If the BLA starts at high excitation, our model produces an ongoing gamma in the VIP cells that suppress SOM cells and allows a PING gamma to form between PV and F cells; with Gabazine (modeled as the removal of all the GABAergic synapses), this PING is no longer possible and so the gamma rhythm disappears. As expected, the simulation shows that the model produces theta with Gabazine; the model also shows that a PING rhythm is produced without Gabazine, and that this rhythm goes away with Gabazine because PING requires feedback inhibition (see Author response image 1). Thus, the theta increase with Gabazine in the (Antonoudiou et al., 2022) paper can be reproduced in our model, so that paper does support the model.

      Author response image 1.

      Spectral properties of the BLA network without (black) versus with Gabazine (magenta). Power spectra of the LFP proxy, which is the linear sum of AMPA, GABA (only present in the absence of Gabazine, D-, NaP-, and H-currents. Both power spectra are represented as mean and standard deviation across 10 network realizations. Bottom: inset between 35 and 50 Hz.

      Nevertheless, we agree that this paper alone is not sufficient evidence that the BLA can produce a low theta. We have recently learned of a new paper (Bratsch-Prince et al., 2024) that is directly related to the issue of whether the BLA by itself can produce low theta, and in what circumstances. In this study, intrinsic BLA theta is produced in slices with ACh stimulation (without needing external glutamate input) which, in vivo, would be produced by the basal forebrain (Rajebhosale et al., eLife, 2024) in response to salient stimuli. The low-theta depends on muscarinic activation of CCK interneurons, a group of interneurons that overlaps with the VIP neurons in our model (Krabbe 2017; Mascagni and McDonald, 2003).

      We suspect that the low theta produced in (Bratsch-Prince et al., 2024) is the same as the low theta in our model. We do not explicitly include ACh modulation of BLA in our paper, but in current work with experimentalists, we aim to show that ACh is essential to the theta by activating the BLA VIP cells. In our re-revised version, we will discuss Bratsch-Prince et al., 2024 and its connection to our hypothesis that the theta oscillations can be produced within the BLA.

      Note that we have already included a paragraph stating explicitly that our hypothesis in no way contradicts the idea that inputs to the BLA may include theta oscillations. Indeed, the following paragraphs in the revised paper describe the complexity of trying to understand the origin of brain rhythms in vivo. R2 did not appear to take this complexity, and the possible involvement of neuromodulation, into account in their current position that the theta rhythms cannot be produced intrinsically in the BLA.

      From revised paper: “Where the rhythms originate, and by what mechanisms. A recent experimental paper, (Antonoudiou et al. 2022), suggests that the BLA can intrinsically generate theta oscillations (3-12 Hz) detectable by LFP recordings under certain conditions, such as reduced inhibitory tone. They draw this conclusion in mice by removing the hippocampus, which can volume conduct to BLA, and noticing that other nearby brain structures did not display any oscillatory activity. Our model also supports the idea that intrinsic mechanisms in the BLA can support the generation of the low theta, high theta, and gamma rhythms.

      Although the BLA can produce these rhythms, this does not rule out that other brain structures also produce the same rhythms through different mechanisms, and these can be transmitted to the BLA. Specifically, it is known that the olfactory bulb produces and transmits the respiratory-related low theta (4 Hz) oscillations to the dorsomedial prefrontal cortex, where it organizes neural activity (Bagur et al., 2021). Thus, the respiratory-related low theta may be captured by BLA LFP because of volume conduction or through BLA extensive communications with the prefrontal cortex. Furthermore, high theta oscillations are known to be produced by the hippocampus during various brain functions and behavioral states, including during spatial exploration (Vanderwolf, 1969) and memory formation/retrieval (Raghavachari et al., 2001), which are both involved in fear conditioning. Similarly to the low theta rhythm, the hippocampal high theta can manifest in the BLA. It remains to understand how these other rhythms may interact with the ones described in our paper.”

      We believe our current paper is important to show how detailed biophysical modeling can unearth the functional implications of physiological details (such as the biophysical bases of rhythms), which are often (indeed, usually) ignored in models, and why rhythms may be essential to some cognitive processes (including STDP). Indeed, for evaluating our paper it is necessary to go back to the purpose of a model, especially one such as ours, which is “hypothesis/data driven”. The hypotheses of the model serve to illuminate the functional roles of the physiological details, giving meaning to the data. Of course, the hypotheses must be plausible, and we think that the discussion above easily clears that bar. Hypotheses should also be checked experimentally, and a model that explains the implications of a hypothesis, such as ours, provides motivation for doing the hard work of experimental testing. We think that R1 understands this and has been very helpful.

      —————

      The following is the authors’ response to the original reviews.

      eLife assessment

      This useful modeling study explores how the biophysical properties of interneuron subtypes in the basolateral amygdala enable them to produce nested oscillations whose interactions facilitate functions such as spike-timing-dependent plasticity. The strength of evidence is currently viewed as incomplete because the relevance to plasticity induced by fear conditioning is viewed as insufficiently grounded in existing training protocols and prior experimental results, and alternative explanations are not sufficiently considered. This work will be of interest to investigators studying circuit mechanisms of fear conditioning as well as rhythms in the basolateral amygdala. 

      Most of our comments below are intended to rebut the sentence: “The strength of evidence is currently viewed as incomplete because the relevance to plasticity induced by fear conditioning is viewed as insufficiently grounded in existing training protocols and prior experimental results, and alternative explanations are not sufficiently considered”. 

      We believe this work will be interesting to investigators interested in dynamics associated with plasticity, which goes beyond fear learning. It will also be of interest because of its emphasis on the interactions of multiple kinds of interneurons that produce dynamics used in plasticity, in the cortex (which has similar interneurons) as well as BLA. We note that the model has sufficiently detailed physiology to make many predictions that can be tested experimentally. Details are below in the answer to reviewers.

      Reviewer #1 (Public Comments):  

      (1) … the weakness is that their attempt to align with the experimental literature (specifically Krabbe et al. 2019) is performed inconsistently. Some connections between cell types were excluded without adequate justification (e.g. SOM+ to PV+). 

      In order to constrain our model, we focused on what is reported in (Krabbe et al., 2019) in terms of functional connectivity instead of structural connectivity. Thus, we included only those connections for which there was strong functional connectivity. For example, the SOM to PV connection is shown to be small (Krabbe et al., 2019, Supp. Fig. 4, panel t). We also omitted PV to SOM, PV to VIP, SOM to VIP, VIP to excitatory projection neurons; all of these are shown in (Krabbe et al. 2019, Fig. 3 (panel l), and Supp. Fig. 4 (panels m,t)) to have weak functional connectivity, at least in the context of fear conditioning. 

      We reply with more details below to the Recommendations for the Authors, including new text.

      (2) The construction of the afferent drive to the network does not reflect the stimulus presentations that are given in fear conditioning tasks. For instance, the authors only used a single training trial, the conditioning stimulus was tonic instead of pulsed, the unconditioned stimulus duration was artificially extended in time, and its delivery overlapped with the neutral stimulus, instead of following its offset. These deviations undercut the applicability of their findings.  

      Regarding the use of a single long presentation of US rather than multiple presentations (i.e., multiple trials): in early versions of this paper, we did indeed use multiple presentations. We were told by experimental colleagues that the learning could be achieved in a single trial. We note that, if there are multiple presentations in our modeling, nothing changes; once the association between CS and US is learned, the conductance of the synapse is stable. Also, our model does not need a long period of US if there are multiple presentations.  

      We agree that, in order to implement the fear conditioning paradigm in our in-silico network, we made several assumptions about the nature of the CS and US inputs affecting the neurons in the BLA and the duration of these inputs. A Poisson spike train to the BLA is a signal that contains no structure that could influence the timing of the BLA output; hence, we used this as our CS input signal. We also note that the CS input can be of many forms in general fear conditioning (e.g., tone, light, odor), and we wished to de-emphasize the specific nature of the CS. The reference mentioned in the Recommendations for authors, (Quirk, Armony, and LeDoux 1997), uses pulses 2 seconds long. At the end of fear conditioning, the response to those pulses is brief. However, in the early stages of conditioning, the response goes on for as long as the figure shows. The authors do show the number of cells responding decreases from early to late training, which perhaps reflects increasing specificity over training. This feature is not currently in our model, but we look forward to thinking about how it might be incorporated. Regarding the CS pulsed protocol used in (Krabbe et al., 2019), it has been shown that intense inputs (6kHz and 12 kHz inputs) can lead to metabotropic effects that last much longer than the actual input (200 ms duration) (Whittington et al., Nature, 1995). Thus, the effective input to the BLA may indeed be more like Poisson.

      Our model requires the effect of the CS and US inputs on the BLA neuron activity to overlap in time in order to instantiate fear learning. Despite paradigms involving both overlapping (delay conditioning, where US coterminates with CS (Lindquist et al., 2004), or immediately follows CS (e.g., Krabbe et al., 2019)) and non-overlapping (trace conditioning) CS/US inputs existing in the literature, we hypothesized that concomitant activity in CS- and US-encoding neuron activity should be crucial in both cases. This may be mediated by the memory effect, as suggested in the Discussion of our paper, or by metabotropic effects as suggested above, or by the contribution from other brain regions. We will emphasize in our revision that the overlap in time, however instantiated, is a hypothesis of our model. It is hard to see how plasticity can occur without some memory trace of US. This is a consequence of our larger hypothesis that fear learning uses spiketiming-dependent plasticity; such a hypothesis about plasticity is common in the modeling literature. 

      We reply with more details below to the Recommendations for the Authors, including new text.

      Reviewer #1 (Recommendations For The Authors): 

      Major points: 

      (1) This paper draws extensively from Krabbe et al. 2019, but it does not do so consistently. The paper would be strengthened if it tried to better match the circuit properties and activations.

      Specifically: 

      a. Krabbe found that PV interneurons were comparably activated by the US (see Supp Fig 1). Your model does not include that. The basis for the Krabbe 2019 claim that PV US responses are weaker is that they have a slightly larger proportion of cells inhibited by the US, but this is not especially compelling. In addition, their Fig 2 showed that VIP and SOM cells receive afferents from the same set of upstream regions. 

      b. The model excluded PV-SOM connections, but this does not agree with Krabbe et al. 2019, Table 2. PV cells % connectivity and IPSC amplitudes were comparable to those from VIP interneurons. 

      c. ECS to PV synapses are not included. This seems unlikely given the dense connectivity between PV interneurons and principal neurons in cortical circuits and the BLA (Woodruff and Sah 2007 give 38% connection probability in BLA). 

      We thank the Reviewer for raising these points, which allow us to clarify how we constrained our model and to do more simulations. Specifically: 

      a. (Wolff et al., Nature, 2014), cited by (Krabbe et al. 2018), reported that PV and SOM interneurons are on average inhibited by the US during the fear conditioning. However, we agree that (Krabbe et al., 2019) added to this by specifying that PV interneurons respond to both CS+ and US, although the fraction of US-inhibited PV interneurons is larger. As noted by the Reviewer, in the model we initially considered the PV interneurons responding only to CS+ (identified as “CS” in our manuscript). For the current revision, we ran new simulations in which the PV interneuron receives the US input, instead of CS+. It turned out that this did not affect the results, as shown in the figure below: all the network realizations learn the association between CS and fear. In the model, the PING rhythm between PV and F is the crucial component for establishing fine timing between ECS and F, which is necessary for learning. Having PV responding to the same input as F, i.e., US, facilitates their entrainment in PING and, thus, successful learning. 

      As for afferents of VIP and SOM from upstream regions, in (Krabbe et al., 2019) is reported that “[…] BLA SOM interneurons receive a different array of afferent innervation compared to that of VIP and PV interneurons, which might contribute to the differential activity patterns observed during fear learning.” Thus, in the model, we are agnostic about inputs to SOM interneurons; we modeled them to fire spontaneously at high theta.

      To address these points in the manuscript, we added some new text in what follows:

      (1) New Section “An alternative network configuration characterized by US input to PV, instead of CS, also learns the association between CS and fear” in the Supplementary information:

      “We constrained the BLA network in Fig. 2 with CS input to the PV interneuron, as reported in (Krabbe et al., 2018). However, (Krabbe et al., 2019) notes that a class of PV interneurons may be responding to US rather than CS. Fig. S3 presents the results obtained with this variation in the model (see Fig. 3 A,B for comparison) and shows that all the network realizations learn the association between CS and fear. In the model, the PING rhythm between PV and F is the crucial component for establishing fine timing between ECS and F, which is necessary for learning. Having PV responding to the same input as F, i.e., US, facilitates their entrainment in PING and, thus, successful fear learning.

      We model the VIP interneuron as affected by US; in addition, (Krabbe et al. 2019) reports that a substantial proportion of them is mildly activated by CS. Replacing the US by CS does not change the input to VIP cells, which is modeled by the same constant applied current. Thus, the VIP CS-induced activity is a bursting activity at low theta, similar to the one elicited by US in Fig. 2.”

      (2) Section “With the depression-dominated plasticity rule, all interneuron types are needed to provide potentiation during fear learning” in Results: “Finally, since (Krabbe et al., 2019) reported that a fraction of PV interneurons are affected by US, we have also run the simulations for single neuron network with the PV interneuron affected by US instead of CS. In this case as well, all the network realizations are learners (see Fig. S3). ”

      (3) Section “Conditioned and unconditioned stimuli” in Materials and Methods: “To make Fig. S3, we also considered a variation of the model with PV interneurons affected by US, instead of CS, as reported in (Krabbe et al. 2019).”

      b. Re the SOM to PV connection: As reported in the reply to the public reviews, we considered the prominent functional connections reported in (Krabbe et al., 2019), instead of structural connections. That is, we included only those connections for which there was strong functional connectivity. For example, the SOM to PV connection is shown to be small (Supp. Fig. 4, panel t, in (Krabbe et al., 2019)). We also omitted PV to SOM, PV to VIP, SOM to VIP, and VIP to excitatory projection neurons; all of these are shown in (Krabbe et al. 2019, Fig. 3 (panel l), and Supp. Fig. 4 (panels m,t)) to have weak functional connectivity, at least in the context of fear conditioning.

      In order to clarify this point, in Section “Network connectivity and synaptic currents” in Materials and Methods, we now say:

      “We modeled the network connectivity as presented in Fig. 2B, derived from the prominent functional, instead of structural, connections reported in (Krabbe et al., 2019).”

      c. Re the ECS to PV synapses: We thank the Reviewer for the reference provided; as the Reviewer says, the ECS to PV synapses are not included. Upon adding this connection in our network, we found that, unlike the connection suggested in part a above, introducing these synapses would, in fact, change the outcome. Thus, the omission of this connection must be considered an implied hypothesis. Including those synapses with a significant strength would alter the PING rhythm created by the interactions between F and PV, which is crucial for ECS and F fine timing. Thanks very much for showing us that this needs to be said. Our hypothesis does not contradict the dense connections mentioned by the Reviewer; such dense connectivity does not mean that all pyramidal cells connect to all interneurons. This hypothesis may be taken as a prediction of the model.

      The absence of this connection is now discussed at the end of a new Section of the Discussion entitled “Assumptions and predictions of the model”, which reads as follows:

      “Finally, the model assumes the absence of significantly strong connections from the excitatory projection cells ECS to PV interneurons, unlike the ones from F to PV. Including those synapses would alter the PING rhythm created by the interactions between F and PV, which is crucial for ECS and F fine timing. We note that in (Woodruff and Sah, 2007) only 38% of the pyramidal cells are connected to PV cells. The functional identity of the connected pyramidal cells is unknown. Our model suggests that successful fear conditioning requires F to PV connections and that ECS to PV must be weak or absent.”

      (2) Krabbe et al. 2019 and Davis et al. 2017 were referenced for the construction of the conditioned and unconditioned stimulus pairing protocol. The Davis citation is not applicable here because that study was a contextual, not cued, fear conditioning paradigm. Regarding Krabbe, the pairing protocol was radically different from what the authors used. Their conditioned stimulus was a train of tone pips presented at 0.9 Hz, which lasted 30 s, after which the unconditioned stimulus was presented after tone offset. The authors should determine how their network behaves when this protocol is used. Also, note that basolateral amygdala responses to tone stimuli are primarily brief onset responses (e.g. Quirk, Armony, and LeDoux 1997), and not the tonic activation used in the model.  

      We replied to this point in our responses to the Reviewer’s Public Comments as follows:

      “We agree that, in order to implement the fear conditioning paradigm in our in-silico network, we made several assumptions about the nature of the CS and US inputs affecting the neurons in the BLA and the duration of these inputs. A Poisson spike train to the BLA is a signal that contains no structure that could influence the timing of the BLA output; hence, we used this as our CS input signal. We also note that the CS input can be of many forms in general fear conditioning (e.g., tone, light, odor), and we wished to de-emphasize the specific nature of the CS. The reference mentioned in the Recommendations for authors, (Quirk, Armony, and LeDoux 1997), uses pulses 2 seconds long. At the end of fear conditioning, the response to those pulses is brief. However, in the early stages of conditioning, the response goes on for as long as the figure shows. The authors do show the number of cells responding decreases from early to late training, which perhaps reflects increasing specificity over training. This feature is not currently in our model, but we look forward to thinking about how it might be incorporated. Regarding the CS pulsed protocol used in (Krabbe et al., 2019), it has been shown that intense inputs (6kHz and 12 kHz inputs) can lead to metabotropic effects that last much longer than the actual input (200 ms duration) (Whittington et al., Nature, 1995). Thus, the effective input to the BLA may indeed be more like

      Poisson.”

      Current answer to the Reviewer:

      There are several distinct issues raised by the Reviewer in the more detailed critique. We respectfully disagree that the model is not applicable to context-dependent fear learning where the context acts as a CS, though we should have been more explicit. Specifically, our CS input can describe both the cue and the context. We included the following text in the Results section “Interneuron rhythms provide the fine timing needed for depression-dominated STDP to make the association between CS and fear”:

      “In our simulations, the CS input describes either the context or the cue in contextual and cued fear conditioning, respectively. For the context, the input may come from the hippocampus or other non-sensory regions, but this does not affect its role as input in the model.”

      The second major issue is whether the specific training protocols used in the cited papers need to be exactly reproduced in the signals received by the elements of our model; we note that there are many transformations that can occur between the sensory input and the signals received by the BLA. In the case of auditory fear conditioning, a series of pips, rather than individual pips, are considered the CS (e.g., (Stujenske et al., 2014; Krabbe et al. 2019)). Our understanding is that a single pip does not elicit a fear response; a series of pips is required for fear learning. This indicates that it is not the neural code of a single pip that matters, but rather the signal entering the amygdala that incorporates any history-dependent signaling that could lead to spiking throughout the sequence of pips.  Also, as mentioned above, intense inputs at frequencies about 6kHz and 12kHz can lead to metabotropic effects that last much longer than each brief pip (~200 ms), thus possibly producing continuous activity in neurons encoding the input. Thus, we believe that our use of the Poisson spike train is reasonable. 

      However, we are aware that the activity of neurons encoding CS can be modulated by the pips: neurons encoding auditory CS display a higher firing rate when each pip is presented and a Poisson-like spike train between pips (Herry et al., Journal of Neuroscience, 2007). Here we confirm that potentiation is present even in the presence of the fast transient response elicited by the pips. We said in the original manuscript that there is learning for a Poisson spike train CS input at ~50 Hz; this describes the neuronal activity in between pips. For the revision, we asked whether learning is preserved when CS is characterized by higher frequencies, which would describe the CS during and right after each pip. We show in the new Fig. S4 that potentiation is ensured for a range of CS frequencies. The figure shows the learning speed as a function of CS and US frequencies. For all the CS frequencies considered, i) there is learning, ii) learning speed increases with CS frequency. Thus, potentiation is present even when pips elicit a faster transient response.

      To better specify this in the manuscript, 

      We added the following sentences in the Results section “With the depressiondominated plasticity rule, all interneuron types are needed to provide potentiation during fear learning”: 

      “We note that the CS and US inputs modeled as independent Poisson spike trains represent stimuli with no structure. Although we have not explicitly modeled pulsating pips, as common in auditory fear conditioning (e.g., (Stujenske 2014; Krabbe 2019)), we show in Fig. S4 that potentiation can be achieved over a relatively wide range of gamma frequencies. This indicates that overall potentiation is ensured if the gamma frequency transiently increases after the pip.”

      We added the section “The full network potentiates for a range of CS frequencies“ and figure S4 in the Supplementary Information:

      We included in Materials and Methods “Conditioned and unconditioned stimuli” the following sentences:

      “Finally, for Fig.S4, we considered a range of frequencies for the CS stimulus. To generate the three Poisson spike trains with average frequencies from 48 to 64 Hz in Fig. S4, we set 𝜆 = 800, 1000, 1200.”

      Finally, to address the comment about the need for CS and US overlapping in time to instantiate fear association, we added the following text in the Results section “Assumptions and predictions of the model”:

      “Finally, our model requires the effect of the CS and US inputs on the BLA neuron activity to overlap in time in order to instantiate fear learning. Despite paradigms involving both overlapping (delay conditioning, where US co-terminates with CS (e.g., (Lindquist et al., 2004)), or immediately follows CS (e.g., Krabbe et al., 2019)) and non-overlapping (trace conditioning) CS/US inputs exist, we hypothesized that concomitant activity in CS- and US-encoding neuron activity should be crucial in both cases. This may be mediated by the memory effect due to metabotropic effects (Whittington et al., Nature, 1995) as suggested above, or by the contribution from other brain regions (see section “Involvement of other brain structures” in the Discussion). The fact that plasticity occurs with US memory trace is a consequence of our larger hypothesis that fear learning uses spike-timing-dependent plasticity; such a hypothesis about plasticity is common in the modeling literature.”

      (3) As best as I could tell, only a single training trial was used in this study. Fair enough, especially given that fear learning can occur with a single trial. However, most studies of amygdala fear conditioning have multiple trials (~5 or more). How does the model perform when multiple trials are given?  

      The association between CS and fear acquired after one trial, i.e., through a potentiated ECS to F connection, is preserved in the presence of multiple trials.  Indeed, the association would be weakened or erased (through depression of the ECS to F connection) only if ECS and F did not display good fine timing, i.e., F does not fire right after ECS most of the time. However, the implemented circuit supports the role of interneurons in providing the correct fine timing, thus preventing the association acquired from being erased.  

      In the second paragraph of the Results section “With the depression-dominated plasticity rule, all interneuron types are needed to provide potentiation during fear learning”, we made the above point by adding the following text:

      “We note that once the association between CS and fear is acquired, subsequent presentations of CS and US do not weaken or erase it: the interneurons ensure the correct timing and pauses in ECS and F activity, which are conducive for potentiation.”

      (4) The LFP calculations are problematic. First, it is unclear how they were done. Did the authors just take the transmembrane currents they included and sum them, or were they scaled by distance from the 'electrode' and extracellular conductivity (as one would derive from the Laplace equation)? Presumably, the spatial arrangement of model neurons was neglected so distance was not a factor. 

      Second, if this is the case, then the argument for excluding GABAergic conductances seems flawed. If the spatial arrangement of neurons is relevant to whether to include or exclude GABAergic conductances, then wouldn't a simulation without any spatial structure not be subject to the concern of laminar vs. nuclear arrangement? 

      Moreover, to the best I can tell, the literature the authors use to justify the exclusion of

      GABAergic currents does not make the case for a lack of GABAergic contribution in non-laminar structures. Instead, those studies only argue that in a non-laminar structure, AMPA currents are detectable, not that GABA cannot be detected. Thus, the authors should either include the GABAergic currents when calculating their simulated LFP, or provide a substantially better argument or citation for their exclusion. 

      We thank the Reviewer for pointing this out; this comment helped us rethink how to model the LFP. The origin of the LFP signal in BLA has not been fully determined, but factors thought to be important include differences in the spatial extension of the arborization in excitatory and inhibitory neurons, in the number of synaptic boutons, and spatial distributions of somata and synapses (Lindén et al 2011; Łęski 2013; Mazzoni et al. 2015). In the first version of the manuscript, we excluded the GABAergic currents because it is typically assumed that they add very little to the extracellular field as the inhibitory reversal potential is close to the resting membrane potential. For the revision, we re-ran the simulations during pre and post fear conditioning and we modeled the LFP as the sum of the AMPA, GABA and NaP-/H-/D- currents. With this new version of the LFP, we added a new Fig. 6 showing that there is a significant increase in the low theta power, but not in the high theta power, with fear learning (Fig. 6 C, D, E). This increase in the low theta power was mainly due to the AMPA currents created by the newly established connection from ECS to F, which allowed F to be active after fear conditioning in response to CS. 

      However, as the Reviewer mentioned, our network has no spatial extent: neurons are modeled as point cells. Thus, our current model does not include the features necessary to model some central aspects of the LFP. Despite that, our model does clearly demonstrate how rhythmic activity in the spike timing of neurons within the network changes due to fear learning (Fig. 6B). The spiking outputs of the network are key components of the inputs to the LFP, and thus we expect the rhythms in the spiking to be reflected in more complex descriptions of the LFP. But we also discovered that different LFP proxies provide different changes in rhythmic activity comparing pre- and post-fear learning; although we have no principled way to choose a LFP proxy, we believe that the rhythmic firing is the essential finding of the model.

      We have added the following to the manuscript:

      (1) In the new version of Fig. 6, we present the power spectra of the network spiking activity (panel B), along with the power spectra of the LFP proxy that includes the GABA, AMPA, and NaP-/H-/D- currents (panels C, D, E). 

      (2) We modified the conclusion of the Results section entitled “Increased low-theta frequency is a biomarker of fear learning” by saying:

      “In this section, we explore how plasticity in the fear circuit affects the network dynamics, comparing after fear conditioning to before. We first show that fear conditioning leads to an increase in low theta frequency power of the network spiking activity compared to the pre-conditioned level (Fig. 6 A,B); there is no change in the high theta power. We also show that the LFP, modeled as the linear sum of all the AMPA, GABA, NaP-, D-, and H- currents in the network, similarly reveals a low theta power increase and no significant variation in the high theta power (Fig. 6 C,D,E). These results reproduce the experimental findings in (Davis et al., 2017), and (Davis et al., 2017), and Fig 6 F,G show that the low theta increase is due to added excitation provided by the new learned pathway. The additional unresponsive ECS and F cells in the network were included to ensure we had not biased the LFP towards excitation. Nevertheless, although both the AMPA and GABA currents contribute to the power increase in the low theta frequency range (Fig. 6F), the AMPA currents show a dramatic power increase relative to the baseline (the average power ratio of AMPA and GABA post- vs pre-conditioning across 20 network realizations is 3*103 and 4.6, respectively). This points to the AMPA currents as the major contributor to the low theta power increase. Specifically, the newly potentiated AMPA synapse from ECS to F ensures F is active after fear conditioning, thus generating strong currents in the PV cells to which it has strong connections (Fig. 6G). Finally, the increase in power is in the low theta range because ECS and F are allowed to spike only during the active phase of the low theta spiking VIP neurons. We have also explored another proxy for the LFP (see Supplementary Information and Fig. S6).”

      In the Supplementary Information, we included a figure and some text in the new section entitled “A higher low theta power increase emerges in LFP approximated with the sum of the absolute values of the currents compared to their linear sum”:

      “Given that our BLA network comprises a few neurons described as single-compartment cells with no spatial extension and location, the LFP cannot be computed directly from our model’s read-outs. In the main text, we choose as an LFP proxy the linear sum of the AMPA, GABA, and P-/H-/D-currents. We note that if the LFP is modeled as the sum of the absolute value of the currents, as suggested by (Mazzoni et al. 2008; Mazzoni et al. 2015), an even higher low theta power increase arises after fear conditioning compared to the linear sum. Differences in the power spectra also arise if other LFP proxies (e.g., only AMPA currents, only GABA currents) are considered. A principled description of an LFP proxy would require modeling the three-dimensional BLA anatomy, including that of the interneurons VIP and SOM; this is outside the scope of the current paper. (See (Feng et al. 2019) for a related project in the BLA.)”

      (3) We updated the Materials and Methods section “Local field potentials and spectral analysis” to explain how we compute the LFP in the revised manuscript: 

      “We considered as an LFP proxy as the linear sum of all the AMPA, GABA, NaP, D, and H currents in the network. The D-current is in the VIP interneurons, and NaP-current and H-current are in SOM interneurons.”

      Although it is beyond the scope of the current work, an exploration of the most accurate proxy of the LFP in the amygdala is warranted. Such a study could be accomplished by adopting a similar approach as in (Mazzoni et al., 2015), where several LFP proxies based on point-neuron leaky-integrate and fire neuronal network were compared with a “groundtruth” LFP obtained in an analogous realistic three-dimensional network model. 

      To explicitly mention this issue in the paper, we add a paragraph in the “Limitations and caveats” section in the Discussion, which reads as follows:

      “LFPs recorded in the experiments are thought to be mainly created by transmembrane currents in neurons located around the electrode and depend on several factors, including the morphology of the arborization of contributing neurons and the location of AMPA and GABA boutons (Katzner et al. 2009; Lindén et al 2011; Łęski 2013; Mazzoni et al. 2015). Since our model has no spatial extension, we used an LFP proxy; this proxy was shown to reflect the rhythmic output of the network, which we believe to be the essential result (for more details see Results “Increased low-theta frequency is a biomarker of fear learning”, and Supplementary Information “A higher low theta power increase emerges in LFP approximated with the sum of the absolute values of the currents compared to their linear sum”).”

      (4)     We have removed the section “Plasticity between fear neuron and VIP slows down overall potentiation” in Results and sections “Plasticity between the fear neuron (F) and VIP slows down overall potentiation” and “Plastic F to VIP connections further increase lowtheta frequency power after fear conditioning” in the Supplementary Information. This material is extraneous since we are using a new proxy for LFP.

      Minor points: 

      (1) In Figure 3C, the y-axis tick label for 0.037 is written as "0.37."

      We thank the reviewer for finding this typo; we fixed it.

      (2) Figure 5B is unclear. It seems to suggest that the added ECS and F neurons did not respond to either the CS or UCS. Is this true? If so, why include them in the model? How would their inclusion change the model behavior? 

      It is correct that the added ECS and F neurons did not respond to the CS or US (UCS); they are constructed to be firing at 11 Hz in the absence of any connections from other cells.  These cells were included to be part of our computation of the LFP.  Specifically, adding in those cells would make the LFP take inhibition into account more, and we wanted to make sure that were not biasing our computation away from the effects of inhibition.  As shown in the paper (Fig. 6B), even with inhibition onto these non-responsive cells, the LFP has the properties claimed in the paper concerning the changes in the low theta and high-theta power, because the LFP is dominated by new excitation rather than the inhibition. 

      First, in the Results section “Network with multiple heterogeneous neurons can establish the association between CS and fear”, we commented on the added ECS and F neurons that do not respond to either CS or US by saying the following:

      “The ECS cells not receiving CS are inhibited by ongoing PV activity during the disinhibition window (Fig. 5B); they are constructed to be firing at 11 Hz in the absence of any connections from other cells. The lack of activity in those cells during fear conditioning implies that there is no plasticity from those ECS cells to the active F. Those cells are included for the calculation of the LFP (see below in “Increased low-theta frequency is a biomarker of fear learning”.)”

      Furthermore, we add the following sentence in the Results section “Increased low-theta frequency is a biomarker of fear learning”: 

      “The additional unresponsive ECS and F cells in the network were included to ensure we had not biased the LFP towards excitation.”

      (3) Applied currents are given as current densities, but these are difficult to compare with current levels observed from whole-cell patch clamp recordings. Can the currents be given as absolute levels, in pA/nA. 

      In principle, it is possible to connect current densities with absolute levels, as requested. However, we note that the number of cells in models is orders of magnitude smaller than the number being modeled. It is common in modeling to adjust physiological parameters to achieve the qualitative properties that are important to the model, rather than trying to exactly match particular recordings.

      We added to the Methods description why we choose units per unit area, rather than absolute units. 

      “All the currents are expressed in units per area, rather than absolute units, to avoid making assumptions about the size of the neuron surface.”

      (4) Regarding: "We note that the presence of SOM cells is crucial for plasticity in our model since they help to produce the necessary pauses in the excitatory projection cell activity. However, the high theta rhythm they produce is not crucial to the plasticity: in our model, high theta or higher frequency rhythms in SOM cells are all conducive to associative fear learning. This opens the possibility that the high theta rhythm in the BLA mostly originates in the prefrontal cortex and/or the hippocampus (Stujenske et al., 2014, 2022)." The chain of reasoning in the above statement is unclear. The second sentence seems to be saying contradictory things. 

      We agree that the sentence was confusing; thank you for pointing it out. We have revised the paragraph to make our point clearer. The central points are: 1) having the SOM cells in the BLA is critical to the plasticity in the model, and 2) these cells may or may not be the source of the high theta observed in the BLA during fear learning.

      We deleted from the discussion the text reported by the Reviewer, and we added the following one to make this point clearer:

      “We note that the presence of SOM cells is crucial for plasticity in our model since they help to produce the necessary pauses in the excitatory projection cell activity. The BLA SOM cells do not necessarily have to be the only source of the high theta observed in the BLA during fear learning; the high theta detected in the LFP of the BLA also originates from the prefrontal cortex and/or the hippocampus (Stujenske et al., 2014, 2022).”

      (5) Regarding: "This suggests low theta power change is not just an epiphenomenon but rather a biomarker of successful fear conditioning." Not sure this is the right framing for the above statement. The power of the theta signal in the LFP reflects the strengthening of connections, but it itself does not have an impact on network activity. Moreover, whether something is epiphenomenal is not relevant to the question of whether it can serve as a successful biomarker. A biomarker just needs to be indicative, not causal. 

      We intended to say why the low theta power change is a biomarker in the sense of the Reviewer. That is: experiments have shown that, with learning, the low theta power increases. The modeling shows in addition that, when learning does not take place, the low power does not increase. That means that the low theta power increases if and only if there is learning, i.e., the change in low theta power is a biomarker. To make our meaning clearer, we have changed the quoted sentences to read: 

      “This suggests that the low theta power change is a biomarker of successful fear conditioning: it occurs when there is learning and does not occur when there is no learning.”

      Reviewer #2 (Public Comments): 

      We thank the Reviewer for raising these interesting points. Below are our public replies and the changes we made to the manuscript to address the Reviewer’s objections.

      (1) Gamma oscillations are generated locally; thus, it is appropriate to model in any cortical structure. However, the generation of theta rhythms is based on the interplay of many brain areas therefore local circuits may not be sufficient to model these oscillations.

      Moreover, to generate the classical theta, a laminal structure arrangement is needed (where neurons form layers like in the hippocampus and cortex)(Buzsaki, 2002), which is clearly not present in the BLA. To date, I am not aware of any study which has demonstrated that theta is generated in the BLA. All studies that recorded theta in the BLA performed the recordings referenced to a ground electrode far away from the BLA, an approach that can easily pick up volume conducted theta rhythm generated e.g., in the hippocampus or other layered cortical structure. To clarify whether theta rhythm can be generated locally, one should have conducted recordings referenced to a local channel (see Lalla et al., 2017 eNeuro). In summary, at present, there is no evidence that theta can be generated locally within the BLA. Though, there can be BLA neurons, firing of which shows theta rhythmicity, e.g., driven by hippocampal afferents at theta rhythm, this does not mean that theta rhythm per se can be generated within the BLA as the structure of the BLA does not support generation of rhythmic current dipoles. This questions the rationale of using theta as a proxy for BLA network function which does not necessarily reflect the population activity of local principal neurons in contrast to that seen in the hippocampus.

      In both modeling and experiments, a laminar structure does not seem to be needed to produce a theta rhythm. A recent experimental paper, (Antonoudiou et al. 2022), suggests that the BLA can intrinsically generate theta oscillations (3-12 Hz) detectable by LFP recordings under certain conditions, such as reduced inhibitory tone. The authors draw this conclusion by looking at mice ex vivo slices. The currents that generate these rhythms are in the BLA, since the hippocampus was removed to eliminate hippocampal volume conduction and other nearby brain structures did not display any oscillatory activity. Also, in the modeling literature, there are multiple examples of the production of theta rhythms in small networks not involving layers; these papers explain the mechanisms producing theta from non-laminated structures (Dudman et al., 2009, Kispersky et al., 2010, Chartove et al. 2020).  We are not aware of any model description of the mechanisms of theta that do require layers.

      We added the following text in the introduction of the manuscript to make this point clearer:  “A recent rodent experimental study (Antonoudiou et al. 2022) suggests that BLA can intrinsically generate theta oscillations (3-12 Hz).”

      (2) The authors distinguished low and high theta. This may be misleading, as the low theta they refer to is basically a respiratory-driven rhythm typically present during an attentive state (Karalis and Sirota, 2022; Bagur et al., 2021, etc.). Thus, it would be more appropriate to use breathing-driven oscillations instead of low theta. Again, this rhythm is not generated by the BLA circuits, but by volume conducted into this region. Yet, the firing of BLA neurons can still be entrained by this oscillation. I think it is important to emphasize the difference.

      Many rhythms of the nervous system can be generated in multiple parts of the brain by multiple mechanisms. We do not dispute that low theta appears in the context of respiration; however, this does not mean that other rhythms with the same frequencies are driven by respiration. Indeed, in the response to question 1 above, we showed that theta can appear in the BLA without inputs from other regions. In our paper, the low theta is generated in the BLA by VIP neurons. Using intrinsic currents known to exist in VIP neurons (Porter et al., 1998), modeling has shown that such neurons can intrinsically produce a low theta rhythm. This is also shown in the current paper. This example is part of a substantial literature showing that there are multiple mechanisms for any given frequency band. 

      To elaborate more on this in the manuscript, we added the following new section in the discussion:

      “Where the rhythms originate, and by what mechanisms. A recent experimental paper, (Antonoudiou et al. 2022), suggests that the BLA can intrinsically generate theta oscillations (3-12 Hz) detectable by LFP recordings under certain conditions, such as reduced inhibitory tone. They draw this conclusion in mice by removing the hippocampus, which can volume conduct to BLA, and noticing that other nearby brain structures did not display any oscillatory activity. Our model also supports the idea that intrinsic mechanisms in the BLA can support the generation of the low theta, high theta, and gamma rhythms. 

      Although the BLA can produce these rhythms, this does not rule out that other brain structures also produce the same rhythms through different mechanisms, and these can be transmitted to the BLA. Specifically, it is known that the olfactory bulb produces and transmits the respiratory-related low theta (4 Hz) oscillations to the dorsomedial prefrontal cortex, where it organizes neural activity (Bagur et al., 2021). Thus, the respiratory-related low theta may be captured by BLA LFP because of volume conduction or through BLA extensive communications with the prefrontal cortex. Furthermore, high theta oscillations are known to be produced by the hippocampus during various brain functions and behavioral states, including during spatial exploration (Vanderwolf, 1969) and memory formation/retrieval (Raghavachari et al., 2001), which are both involved in fear conditioning. Similarly to the low theta rhythm, the hippocampal high theta can manifest in the BLA. It remains to understand how these other rhythms may interact with the ones described in our paper.”

      We also note that the presence of D-currents in the BLA VIP interneurons should be confirmed experimentally, and that the ability of VIP interneurons to generate the BLA low theta rhythm constitutes a prediction of our computational model. These points are specified in the first paragraph in the Discussion entitled “Assumptions and predictions of the model”:

      “The interneuron descriptions in the model were constrained by the electrophysiological properties reported in response to hyperpolarizing currents (Sosulina et al., 2010). Specifically, we modeled the three subtypes of VIP, SOM, and PV interneurons displaying bursting behavior, regular spiking with early spike-frequency adaptation, and regular spiking without spike-frequency adaptation, respectively. Focusing on VIP interneurons, we were able to model the bursting behavior by including the D-type potassium current. This current is thought to exist in the VIP interneurons in the cortex (Porter et al., 1998), but whether this current is also found in the VIP interneurons the BLA is still unknown. Similarly, we endowed the SOM interneurons with NaP- and H-currents, as the OLM cells in the hippocampus. Due to these currents, the VIP and SOM cells are able to show  low- and high-theta oscillations, respectively. The presence of these currents and the neurons’ ability to exhibit oscillations in the theta range during fear conditioning and at baseline in BLA, which are assumptions of our model, should be tested experimentally.”

      (3) The authors implemented three interneuron types in their model, ignoring a large fraction of GABAergic cells present in the BLA (Vereczki et al., 2021). Recently, the microcircuit organization of the BLA has been more thoroughly uncovered, including connectivity details for PV+ interneurons, firing features of neurochemically identified interneurons (instead of mRNA expression-based identification, Sosulina et al., 2010), synaptic properties between distinct interneuron types as well as principal cells and interneurons using paired recordings. These recent findings would be vital to incorporate into the model instead of using results obtained in the hippocampus and neocortex. I am not sure that a realistic model can be achieved by excluding many interneuron types.

      The interneurons and connectivity that we used were inspired by the functional connectivity reported in (Krabbe et al., 2019) (see above answer to Reviewer #1). As reported in (Vereczki et al., 2021), there are multiple categories and subcategories of interneurons; that paper does not report on which ones are essential for fear conditioning. We did use all the highly represented categories of the interneurons, except NPYcontaining neurogliaform cells.

      The Reviewer says “I am not sure that a realistic model can be achieved by excluding many interneuron types”. We agree with the Reviewer that discarding the introduction of other interneurons subtypes and the description of more specific connectivity (soma-, dendrite-, and axon-targeting connections) may limit the ability of our model to describe all the details in the BLA. However, this work represents a first effort towards a biophysically detailed description of the BLA rhythms and their function. As in any modeling approach, assumptions about what to describe and test are determined by the scientific question; details postulated to be less relevant are omitted to obtain clarity. The interneuron subtypes we modeled, especially VIP+ and PV+, have been reported to have a crucial role in fear conditioning (Krabbe et al., 2019). Other interneurons, e.g. cholecystokinin and SOM+, have been suggested as essential in fear extinction. Thus, in the follow-up of this work to explain fear extinction, we will introduce other cell types and connectivity. In the current work, we have achieved our goals of explaining the origin of the experimentally found rhythms and their roles in the production of plasticity underlying fear learning. Of course, a more detailed model may reveal flaws in this explanation, but this is science that has not yet been done.

      We elaborate more on this in a new section in the Discussion entitled “Assumptions and predictions of the model”. The paragraph related to this point reads as follows:

      “Our model, which is a first effort towards a biophysically detailed description of the BLA rhythms and their functions, does not include the neuron morphology, many other cell types, conductances, and connections that are known to exist in the BLA; models such as ours are often called “minimal models” and constitute the majority of biologically detailed models. Such minimal models are used to maximize the insight that can be gained by omitting details whose influence on the answers to the questions addressed in the model are believed not to be qualitatively important. We note that the absence of these omitted features constitutes hypotheses of the model: we hypothesize that the absence of these features does not materially affect the conclusions of the model about the questions we are investigating. Of course, such hypotheses can be refuted by further work showing the importance of some omitted features for these questions and may be critical for other questions. Our results hold when there is some degree of heterogeneity of cells of the same type, showing that homogeneity is not a necessary condition.”

      (4) The authors set the reversal potential of GABA-A receptor-mediated currents to -80 mV. What was the rationale for choosing this value? The reversal potential of IPSCs has been found to be -54 mV in fast-spiking (i.e., parvalbumin) interneurons and around -72 mV in principal cells (Martina et al., 2001, Veres et al., 2017).

      A GABA-A reversal potential around -80 mV is common in the modeling literature (Jensen et al., 2005; Traub et al., 2005; Kumar et al., 2011; Chartove et al., 2020). Other computational works of the amygdala, e.g. (Kim et al., 2016), consider GABA-A reversal potential at -75 mV based on the cortex (Durstewitz et al., 2000). The papers cited by the reviewer have a GABA-A reversal potential of -72 mV for synapses onto pyramidal cells; this is sufficiently close to our model that it is not likely to make a difference. For synapses onto PV+ cells, the papers cited by the reviewer suggest that the GABA-A reversal potential is -54 mV; such a reversal potential would lead these synapses to be excitatory instead of inhibitory. However, it is known (Krabbe et al., 2019; Supp. Fig. 4b) that such synapses are in fact inhibitory. Thus, we wonder if the measurements of Martina and Veres were made in a condition very different from that of Krabbe. For all these reasons, we consider a GABA-A reversal potential around -80 mV in amygdala to be a reasonable assumption.

      In section “Network connectivity and synaptic currents” in “Materials and Methods” we provided references to motivate our choice of considering a GABA-A reversal potential around -80 mV:

      “The GABAa current reversal potential (𝐸!) is set to −80        𝑚𝑉, as common in the modeling literature (Jensen et al., 2005; Traub et al., 2005; Kumar et al., 2011; Chartove et al., 2020).”

      (5) Proposing neuropeptide VIP as a key factor for learning is interesting. Though, it is not clear why this peptide is more important in fear learning in comparison to SST and CCK, which are also abundant in the BLA and can effectively regulate the circuit operation in cortical areas.

      Other peptides seem to be important in overall modulation of fear, but VIP is especially important in the first part of fear learning, the subject of our paper. Re SST: we hypothesize that SST interneurons are critical in fear extinction and preventing fear generalization, but not to initial fear learning. The peptide of the CCK neurons, which overlap with VIP cells, has been proposed to promote the switch between fear and safety states after fear extinction (Krabbe al. 2018). Thus, these other peptides are likely more important for other aspects of fear learning.  

      In the Discussion, we have added:

      “We hypothesize that SST peptide is critical in fear extinction and preventing fear generalization, but not to initial fear learning. Also, the CCK peptide has been proposed to promote the switch between fear and safety states after fear extinction (Krabbe al. 2018).”

      Reviewer #2 (Recommendations For The Authors): 

      We note that Reviewer #2’s Recommendations For The Authors have the same content as the Public Comments. Thus, the changes to the manuscript we implemented above address also the private critiques listed below.

      (1) As the breathing-driven rhythm is a global phenomenon accompanying fear state, one might restrict the analysis to this oscillation. The rationale beyond this restriction is that the 'high' theta in the BLA has an unknown origin (since it can originate from the ventral hippocampus, piriform cortex etc.). 

      In response to point 4 made by Reviewer 1 (Recommendations for the Authors) (p. 13), referring to high theta in the BLA, we previously wrote: 1) having the SOM cells in the BLA is critical to the plasticity in the model, and 2) these cells may or may not be the source of the high theta observed in the BLA during fear learning.

      In the Public Critiques, Reviewer 2 relates the respiratory rhythm to the low theta. We answered this point in point 2 of the Reviewer’s Public Comments (at p. 15).

      (2) I would include more interneurons in the network model incorporating recent findings. 

      This point was answered in our response to point 3 of the Reviewer’s Public Comments.

      (3) The reversal potential for GABA-A receptor-mediated currents would be good to set to measured values. In addition, I would use AMPA conductance values that have been measured in the BLA. 

      We addressed this objection in our response to point 4 of the Reviewer’s Public Comments.

      Reviewer #3 (Public comments):

      Weaknesses: 

      (1) The main weakness of the approach is the lack of experimental data from the BLA to constrain the biophysical models. This forces the authors to use models based on other brain regions and leaves open the question of whether the model really faithfully represents the basolateral amygdala circuitry. 

      (2) Furthermore, the authors chose to use model neurons without a representation of the morphology. However, given that PV+ and SOM+ cells are known to preferentially target different parts of pyramidal cells and given that the model relies on a strong inhibition form SOM to silence pyramidal cells, the question arises whether SOM inhibition at the apical dendrite in a model representing pyramidal cell morphology would still be sufficient to provide enough inhibition to silence pyramidal firing.

      3) Lastly, the fear learning relies on the presentation of the unconditioned stimulus over a long period of time (40 seconds). The authors justify this long-lasting input as reflecting not only the stimulus itself but as a memory of the US that is present over this extended time period. However, the experimental evidence for this presented in the paper is only very weak.

      We are repeating here the answers we gave in response to the public comments, adding further relevant points.

      (1) Our neurons were constrained by electrophysiology properties in response to hyperpolarizing currents in the BLA (Sosulina et al., 2010). We can reproduce these electrophysiological properties by using specific membrane currents known to be present in similar neurons in other brain regions (D-current in VIP interneurons in the cortex, and NaP- and H-currents in OLM/SOM cells in the hippocampus). Also, though a much more detailed description of BLA interneurons was given in (Vereczki et al., 2021), it is not clear that this level of detail is relevant to the questions that we were asking, especially since the experiments described were not done in the context of fear learning.

      (2) It is true that we did not include the morphology, which undoubtedly makes a difference to some aspects of the circuit dynamics. Furthermore, it is correct that the model relies on a strong inhibition from SOM and PV to silence the excitatory projection neurons. We agree that the placement of the SOM inhibition on the pyramidal neurons can make a difference on some aspects of the circuit behavior. We are assuming that the inhibition from the SOM cells can inhibit the pyramidal cells firing, which can be seen as a hypothesis of our model. It is well known that VIP cells disinhibit pyramidal cells through inhibition of SOM and PV cells (Krabbe et al. 2019); hence, this hypothesis is generally believed. This choice of parameters comes from using simplified models: it is standard in modeling to adjust parameters to compensate for simplifications.

      Re points 1) and 2), in a new paragraph (“Assumptions and predictions of the model”) in the Discussion reported in response to Reviewer #2 (public comments)’s point 3, we stated that modeling requires the omission of many details to bring out the significance of other details.

      (3) 40 seconds is the temporal interval we decided to use to present the results. In the Results, we also showed that there is learning over a shorter interval of time (15 seconds) where CS and US/memory of US should both be present. Thus, our model requires 15 seconds over a single or multiple trials for associative learning to be established. We included references to additional experimental papers to support our reasoning in the last paragraph of section “Assumptions and predictions of the model” in the Discussion, also reported in response to Reviewer #1 point 2 (Recommendations for the Authors). We said there that some form of memory or overlap in the activity of the excitatory projection neurons is necessary for spike-timing-dependent plasticity.

      The authors achieved the aim of constructing a biophysically detailed model of the BLA not only capable of fear learning but also showing spectral signatures seen in vivo. The presented results support the conclusions with the exception of a potential alternative circuit mechanism demonstrating fear learning based on a classical Hebbian (i.e. non-depression-dominated) plasticity rule, which would not require the intricate interplay between the inhibitory interneurons. This alternative circuit is mentioned but a more detailed comparison between it and the proposed circuitry is warranted.

      Our model accounts for the multiple rhythms observed in the context of fear learning, as well as the known involvement of multiple kinds of interneurons. We did not say explicitly enough why our complicated model may be functionally important in ways that cannot be fulfilled with a simpler model with the non depression-dominated Hebbian rule. To explain this, we have added the following in the manuscript discussion: 

      “Although fear learning can occur without the depression-dominated rule, we hypothesize that it is necessary for other aspects of fear learning and regulation. That is, in pathological cases, there can be overgeneralization of learning. We hypothesize that the modulation created by the involvement of these interneurons is normally used to prevent such overgeneralization. However, this is beyond the scope of the present paper.”

      We have also written an extra paragraph about generalization in the Discussion “Synaptic plasticity in our model”:

      “With the classical Hebbian plasticity rule, we show that learning can occur without the involvement of the VIP and SOM cells. Although fear learning can occur without the depressiondominated rule, we hypothesize that the latter is necessary for other aspects of fear learning and regulation. Generalization of learning can be pathological, and we hypothesize that the modulation created by the involvement of VIP and SOM interneurons is normally used to prevent such overgeneralization. However, in some circumstances, it may be desirable to account for many possible threats, and then a classical Hebbian plasticity rule could be useful. We note that the involvement or not of the VIP-SOM circuit has been implicated when there are multiple strategies for solving a task (Piet et al., 2024). In our situation, the nature of the task (including reward structure) may determine whether the learning rule is depression-dominated and therefore whether the VIP-SOM circuit plays an important role.”

      Reviewer #3 (Recommendations For The Authors): 

      We thank the Reviewer for all the recommendations. We replied to each of them below.

      In general, there are some inconsistencies in the naming (e.g. sometimes you write PV sometimes PV+,...), please use consistent abbreviations throughout the manuscript. You also introduce some of the abbreviations multiple times. 

      We modified the manuscript to remove all the inconsistencies in the naming. 

      Introduction: 

      - In the last section you speak about one recent study but actually cite two articles. 

      We removed the reference to (Perrenoud and Cardin, 2023), which is a commentary on the Veit et al. article.

      Results: 

      - 'Brain rhythms are thought to be encoded and propagated largely by interneurons' What do you mean by encoded here? 

      We agree with the Reviewer that the verb “to encode” is not accurate. We modified the sentence as follows:

      “Brain rhythms are thought to be generated and propagated largely by interneurons”.

      - The section 'Interneurons interact to modulate fear neuron output' could be clearer. Start with describing the elements of the circuit, then the rhythms in the baseline. 

      We reorganized the section as follows:

      “Interneurons interact to modulate fear neuron output. Our BLA network consists of interneurons, detailed in the previous section, and excitatory projection neurons (Fig. 2A). Both the fear-encoding neuron (F), an excitatory projection neuron, and the VIP interneuron are activated by the noxious stimulus US (Krabbe et al., 2019). As shown in Fig. 2A (top, right), VIP disinhibits F by inhibiting both SOM and PV, as suggested in (Krabbe et al., 2019). We do not include connections from PV to SOM and VIP, nor connections from SOM to PV and VIP, since those connections have been shown to be significantly weaker than the ones included (Krabbe et al., 2019). The simplest network we consider is made of one neuron for each cell type. We introduce a larger network with some heterogeneity in the last two sections of the Results.

      Fig. 2A (bottom) shows a typical dynamic of the network before and after the US input onset, with US modeled as a Poisson spike train at ~50 Hz; the network produces all the rhythms originating from the interneurons alone or through their interactions with the excitatory projection neurons (shown in Fig. 1). Specifically, since VIP is active at low theta during both rest and upon the injection of US, it then modulates F at low theta cycles via SOM and PV. In the baseline condition, the VIP interneuron has short gamma bursts nested in low theta rhythm. With US onset, VIP increases its burst duration and the frequency of low theta rhythm. These longer bursts make the SOM cell silent for long periods of each low theta cycle, providing F with windows of disinhibition and contributing to the abrupt increase in activity right after the US onset. Finally, in Fig. 2A, PV lacks any external input and fires only when excited by F. Thanks to their reciprocal interactions, PV forms a PING rhythm with F, as depicted in Fig.1C.”

      - Figure 3C: The lower dashed line has the tick label '0.37' which should read '0.037'. 

      We fixed it.

      - The section describing the network with multiple neurons could be clearer, especially, it is not really clear how these different ECS and F neurons receive their input. 

      We answered the same objection in the reply to Reviewer #1 in point 2 under “minor issues.”

      Discussion: 

      - The paragraph 'It has also been suggested that ventral tegmental area has a role in fear expression (Lesas et al.,2023). Furthermore, it has been reported that the prelimbic cortex (PL) modulates the BLA SOM cells during fear retrieval, and the latter cells are crucial to discriminate non-threatening cues when desynchronized by the PL inputs (Stujenske et al., 2022).' is merely stating facts but I don't see how they relate to the presented work. 

      We thank the Reviewer for pointing out that this was confusing. What we meant to emphasize was that later stages of fear conditioning and extinction appear to require more than the BLA. We specifically mention the discrimination of non-threatening cues at the end of the paragraph, which now reads as follows:

      “Other brain structures may be involved in later stages of fear responsiveness, such as fear extinction and prevention of generalization. It has been reported that the prelimbic cortex (PL) modulates the BLA SOM cells during fear retrieval, and the latter cells are crucial to discriminate non-threatening cues when desynchronized by the PL inputs (Stujenske et al., 2022). Brain structures such as the prefrontal cortex and hippocampus have been documented to play a crucial role also in fear extinction, the paradigm following fear conditioning aimed at decrementing the conditioned fearful response through repeated presentations of the CS alone. As reported by several studies, fear extinction suppresses the fear memory through the acquisition of a distinct memory, instead of through the erasure of the fear memory itself (Harris et al., 2000; Bouton, 2002; Trouche et al., 2013; Thompson et al., 2018). Davis et al., 2017 found a high theta rhythm following fear extinction that was associated with the suppression of threat in rodents. Our model can be extended to include structures in the prefrontal cortex and the hippocampus to further investigate the role of rhythms in the context of discrimination of non-threatening cues and extinction. We hypothesize that a different population of PV interneurons plays a crucial role in mediating competition between fearful memories, associated with a low theta rhythm, and safety memories, associated with a high theta rhythm; supporting experimental evidence is in (Lucas et al., 2016; Davis et al., 2017; Chen et al., 2022).”

      - The comparison to other models BLA is quite short and seems a bit superficial. A more indepth comparison seems warranted. 

      We thank the reviewer for suggesting that a more in-depth comparison between our and other models in the literature would improve the manuscript. We rewrote entirely the first paragraph of that section. The new content reads as follows:

      “Comparison with other models. Many computational models that study fear conditioning have been proposed in the last years; the list includes biophysically detailed models (e.g., (Li 2009; Kim et al., 2013a)), firing rate models (e.g., Krasne 2011; Ball 2012; Vlachos 2011), and connectionist models (e.g., Moustafa 2013; Armony 1997; Edeline 1992) (for a review see (Nair et al., 2016)). Both firing rate models and connectionist models use an abstract description of the interacting neurons or regions. The omission of biophysical details prevents such models from addressing questions concerning the roles of dynamics and biophysical details in fear conditioning, which is the aim of our model.  There are also biophysically detailed models (Li 2009; Kim 2013; Kim 2016; Feng 2019), which differ from ours in both the physiology included in the model and the description of how plastic changes take place.  One main difference in the physiology is that we differentiated among types of interneurons, since the fine timing produced for the latter was key to our use of rhythms to produce spike-time dependent plasticity. The origin of the gamma rhythm (but not the other rhythms) was investigated in Feng et al 2019, but none of these papers connected the rhythms to plasticity.

      The most interesting difference between our work and that in (Li 2009; Kim 2013; Kim 2016) is the modeling of plasticity.  We use spike-time dependent plasticity rules.  The models in (Li 2009; Kim 2013; Kim 2016) were more mechanistic about how the plasticity takes place, starting with the known involvement of calcium with plasticity.  Using a hypothesis about back propagation of spikes, the set of papers together come up with a theory that is consistent with STDP and other instantiations of plasticity (Shouval 2002a; Shouval 2002b).  For the purposes of our paper, this level of detail, though very interesting, was not necessary for our conclusions.  By contrast, in order for the rhythms and the interneurons to have the dynamic roles they play in the model, we needed to restrict our STDP rule to ones that are depression-dominated.  Our reading of (Shouval 2002) suggests to us that such subrules are possible outcomes of the general theory.  Thus, there is no contradiction between the models, just a difference in focus; our focus was on the importance of the much-documented rhythms (Seidenbecher et al., 2003; Courtin et al., 2014b; Stujenske et al., 2014; Davis et al., 2017) in providing the correct spike timing.  We showed in the Supplementary Information (“Classical Hebbian plasticity rule, unlike the depression-dominated one, shows potentiation even with no strict pre and postsynaptic spike timing”) that if the STDP rule was not depression dominated, the rhythms need not be necessary.  We hypothesize that the necessity of strict timing enforced by the depression-dominated rule may foster the most appropriate association with fear at the expense of less relevant associations.”

      - The paragraph 'This could happen among some cells responding to weaker sensory inputs that do not lead to pre-post timing with fear neurons. This timing could be modified by the "triconditional rule", as suggested in (Grewe et al., 2017).' is not very clear. What exactly is 'this' in the first sentence referring to? If you mention the 'tri-conditional rule' here, please briefly explain it and how it would solve the issue at hand here.  

      We apologize that the sentence reported was not sufficiently clear. “This” refers to “depression”. We meant that, in our model, depression during fear conditioning happens every time there is no pre-post timing between neurons encoding the neutral stimuli and fear cells; poor pre-post timing can characterize the activity of neurons responding to weaker sensory inputs and does not lead to associative learning. We modified that paragraph as follows:

      “The study in (Grewe et al., 2017) suggests that associative learning resulting from fear conditioning induces both potentiation and depression among coactive excitatory neurons; coactivity was determined by calcium signaling and thus did not allow measurements of fine timing between spikes. In our model, we show how potentiation between coactive cells occurs when strict pre-post spike timing and appropriate pauses in the spiking activity arise. Depression happens when one or both of these components are not present. Thus, in our model, depression represents the absence of successful fear association and does not take part in the reshaping of the ensemble encoding the association, as instead suggested in (Grewe et al., 2017). A possible follow-up of our work involves investigating how fear ensembles form and modify through fear conditioning and later stages. This follow-up work may involve using a tri-conditional rule, as suggested in (Grewe et al. 2017), in which the potential role of neuromodulators is taken into account in addition to the pre- and postsynaptic neuron activity; this may lead to both potentiation and depression in establishing an associative memory.”

      - In the limitations and caveats section you mention that the small size of the network implies that they represent a synchronous population. What are the potential implications for the proposed rhythm-dependent mechanism? What are your expectations for larger networks? 

      We apologize if we were not adequately clear. We are guessing that the Reviewer thought we meant the entire population was synchronous, which it is not. We meant that, when we use a single cell to represent a subpopulation of cells of that type, that subpopulation is effectively synchronous. For larger networks in which each subtype is represented by many cells, there can be heterogeneity within each subtype. We have shown in the paper that the basic results still hold under some heterogeneity; however, they may fail if the heterogeneity is too large.

      We mentioned in a new section named “Assumptions and predictions of the model” in response to point 3 made by Reviewer #2.

      - The discussion is also missing a section on predictions/new experiments that can be derived from the model. How can the model be confirmed, what experiments/results would break the model? 

      To answer this question, we put in a new section in the Discussion entitled “Assumptions and predictions of the model”. The first paragraph of this section is in the reply to Reviewer #2 point 2; the second paragraph is in the reply to Reviewer #2 point 3; the last paragraph is in the Reply to Reviewer #1 point c; the rest of the section reads as follows:

      “Our study suggests that all the interneurons are necessary for associative learning provided that the STDP rule is depression-dominated. This prediction could be tested experimentally by selectively silencing each interneuron subtype in the BLA: if the associative learning is hampered by silencing any of the interneuron subtypes, this validates our study. Finally, the model prediction could be tested indirectly by acquiring more information about the plasticity rule involved in the BLA during associative learning. We found that all the interneurons are necessary to establish fear learning only in the case of a depression-dominated rule. This rule ensures that fine timing and pauses are always required for potentiation: interneurons provide both fine timing and pauses to pyramidal cells, making them crucial components of the fear circuit. 

      The modeling of the interneurons assumes the involvement of various intrinsic currents; the inclusion of those currents can be considered hypotheses of the model. Our model predicts that blockade of D-current in VIP interneurons (or silencing VIP interneurons) will both diminish low theta and prevent fear learning. Finally, the model assumes the absence of significantly strong connections from the excitatory projection cells ECS to PV interneurons, unlike the ones from F to PV. Including those synapses would alter the PING rhythm created by the interactions between F and PV, which is crucial for fine timing between ECS and F needed for LTP.”

    2. Reviewer #1 (Public Review):

      Plasticity in the basolateral amygdala (BLA) is thought to underlie the formation of associative memories between neutral and aversive stimuli, i.e. fear memory. Concomitantly, fear learning modifies the expression of BLA theta rhythms, which may be supported by local interneurons. Several of these interneuron subtypes, PV+, SOM+, and VIP+, have been implicated in the acquisition of fear memory. However, it was unclear how they might act synergistically to produce BLA rhythms that structure the spiking of principal neurons so as to promote plasticity. Cattani et al. explored this question using small network models of biophysically detailed interneurons and principal neurons.

      Using this approach, the authors had four principal findings:

      (1) Intrinsic conductances in VIP+ interneurons generate a slow theta rhythm that periodically inhibits PV+ and SOM+ interneurons, while disinhibiting principal neurons.<br /> (2) A gamma rhythm arising from the interaction between PV+ and principal neurons establishes the precise timing needed for spike-timing-dependent plasticity.<br /> (3) Removal of any of the interneuron subtypes abolishes conditioning-related plasticity.<br /> (4) Learning-related changes in principal cell connectivity enhance expression of slow theta in the local field potential.

      The strength of this work is that it explores the role of multiple interneuron subtypes in the formation of associative plasticity in the basolateral amygdala. The authors use biophysically detailed cell models that capture many of their core electrophysiological features, which helps translate their results into concrete hypotheses that can be tested in vivo. Moreover, they try to align the connectivity and afferent drive of their model with those found experimentally.

      Deficient in this study is the construction of the afferent drive to the network, which does elicit activities that are consistent with those observed to similar stimuli. It still remains to be demonstrated that their mechanism promotes plasticity for training protocols that emulate the kinds of activities observed in the BLA during fear conditioning.

      Setting aside the issues with the conditioning protocol, the study offers a model for the generation of multiple rhythms in the BLA that is ripe for experimental testing. The most promising avenue would be in vivo experiments testing the role of local VIP+ neurons in the generation of slow theta. That would go a long way to resolving whether BLA theta is locally generated or inherited from medial prefrontal cortex or ventral hippocampus afferents.

      The broader importance of this work is that it illustrates that we must examine the function of neurons not just in terms of their behavioral correlates, but by their effects on the microcircuit they are embedded within. No one cell type is instrumental in producing fear learning in the BLA. Each contributes to the orchestration of network activity to produce plasticity. Moreover, this study reinforces a growing literature highlighting the crucial role of theta and gamma rhythms in BLA function.

    3. Reviewer #2 (Public Review):

      The authors of this study have investigated how oscillations may promote fear learning using a network model. They distinguished three types of rhythmic activities and implemented an STDP rule to the network aiming to understand the mechanisms underlying fear learning in the BLA.

      After the revision, the fundamental question, namely, whether the BLA networks can or cannot intrinsically generate any theta rhythms, is still unanswered. The author added this sentence to the revised version: "A recent experimental paper, (Antonoudiou et al., 2022), suggests that the BLA can intrinsically generate theta oscillations (3-12 Hz) detectable by LFP recordings under certain conditions, such as reduced inhibitory tone." In the cited paper, the authors studied gamma oscillations, and when they applied 10 uM Gabazine to the BLA slices observed rhythmic oscillations at theta frequencies. 10 uM Gabazine does not reduce the GABA-A receptor-mediated inhibition but eliminates it, resulting in rhythmic populations burst driven solely by excitatory cells. Thus, the results by Antonoudiou et al., 2022 contrast with, and do not support, the present study, which claims that rhythmic oscillations in the BLA depend on the function of interneurons. Thus, there is still no convincing evidence that BLA circuits can intrinsically generate theta oscillations in intact brain or acute slices. If one extrapolates from the hippocampal studies, then this is not surprising, as the hippocampal theta depends on extra-hippocampal inputs, including, but not limited to the entorhinal afferents and medial septal projections (see Buzsaki, 2002). Similarly, respiratory related 4 Hz oscillations are also driven by extrinsic inputs. Therefore, at present, it is unclear which kind of physiologically relevant theta rhythm in the BLA networks has been modelled.

    1. eLife assessment

      This study provides insights into the mechanism of axonal directional changes, utilizing the pacemaker neurons of the circadian clock, the sLNVs, as a model system. The data were collected and analysed using solid methodology, resulting in valuable data on the interplay of signalling pathways and the growth of the axon. The study holds potential interest for neurobiologists focusing on axonal growth and development.

    2. Reviewer #1 (Public Review):

      The mechanisms of how axonal projections find their correct target requires the interplay of signalling pathways, and cell adhesion that act over short and long distances. The current study aims to use the small ventral lateral clock neurons (s-LNvs) of the Drosophila clock circuit as a model to study axon projections. These neurons are born during embryonic stages and are part of the core of the clock circuit in the larval brain. Moreover, these neurons are maintained through metamorphosis and become part of the adult clock circuit. The authors use the axon length by means of anti-Pdf antibody or Pdf>GFP as a read-out for the axonal length. Using ablation of the MB- the overall target region of the s-LNvs, the authors find defects in the projections. Next, by using Dscam mutants or knock-down they observe defects in the projections. Manipulations by the DNs - another group of clock neurons - can induce defects in the s-LNvs axonal form, suggesting an active role of these neurons in the morphology of the s-LNvs.

    3. Reviewer #2 (Public Review):

      The paper from Liu et al shows a mechanism by which axons can change direction during development. They use the sLNv neurons as a model. They find that the appearance of a new group of neurons (DNs) during post-embryonic proliferation secretes netrins and repels horizontally towards the midline, the axonal tip of the LNvs. The experiments are well done and the results are conclusive.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The mechanisms of how axonal projections find their correct target requires the interplay of signalling pathways, and cell adhesion that act over short and long distances. The current study aims to use the small ventral lateral clock neurons (s-LNvs) of the Drosophila clock circuit as a model to study axon projections. These neurons are born during embryonic stages and are part of the core of the clock circuit in the larval brain. Moreover, these neurons are maintained through metamorphosis and become part of the adult clock circuit. The authors use the axon length by means of anti-Pdf antibody or Pdf>GFP as a read-out for the axonal length. Using ablation of the MB- the overall target region of the s-LNvs, the authors find defects in the projections. Next, by using Dscam mutants or knock-down they observe defects in the projections. Manipulations by the DNs - another group of clock neurons- can induce defects in the s-LNvs axonal form, suggesting an active role of these neurons in the morphology of the s-LNvs.

      Strengths:

      The use of Drosophila genetics and a specific neural type allows targeted manipulations with high precision.

      Proposing a new model for a small group of neurons for axonal projections allows us to explore the mechanism with high precision.

      Weaknesses:

      It is unclear how far the proposed model can be seen as developmental.

      The study of changes in fully differentiated and functioning neurons may affect the interpretation of the findings.

      We appreciate the reviewer's feedback on the strengths and weaknesses of our study.

      We acknowledge the strengths of our research, particularly the precision afforded by using Drosophila genetics and a specific neural type for targeted manipulations, as well as the proposal of a new model for studying axonal projections in a small group of neurons.

      We understand the concerns about the developmental aspects of our proposed model and the use of Pdf-GAL4 >GFP as a read-out for the axonal length (revised manuscript Figure 1--figure supplement 1). However, even with the use of Clk856-GAL4 that began to be expressed at the embryonic stage (revised manuscript Figure 3--figure supplement 1) to suppress Dscam expression, the initial segment of the dorsal projection of s-LNvs (the vertical part) remained unaffected. Instead, the projection distance is severely shortened towards the midline, and this defect persists until the adult stage. It is for this reason that we delineate the dorsal projections of s-LNvs into two distinct phases: the vertical and horizontal parts, rather than a mere expansion in correspondence with the development of the larval brain.

      Thank you for your valuable feedback, and we have incorporated these considerations into our revised manuscript to enhance the clarity and depth of our research.

      Reviewer #2 (Public Review):

      Summary:

      The paper from Li et al shows a mechanism by which axons can change direction during development. They use the sLNv neurons as a model. They find that the appearance of a new group of neurons (DNs) during post-embryonic proliferation secretes netrins and repels horizontally towards the midline, the axonal tip of the LNvs.

      Strengths:

      The experiments are well done and the results are conclusive.

      Weaknesses:

      The novelty of the study is overstated, and the background is understated. Both things need to be revised.

      We appreciate your acknowledgment that the experiments were well-executed and the results conclusive. This validation reinforces the robustness of our findings.

      We take note of your feedback regarding the novelty of the study being overstated and the background being understated. While axonal projections navigate without distinct landmarks, like the midline or the layers, columns, and segments, they pose more challenges and uncertainties. As highlighted, our key contribution lies in elucidating how axonal projections without clear landmarks are guided, with our research demonstrating how a newly formed cluster of cells at a specific time and location provides the necessary guidance cues for axons.

      We value your insights, and we have carefully addressed these points in our manuscript revision to improve the overall quality and presentation of our research.

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors):

      The overall idea of using the s-LNvs as a model is indeed intriguing. There are genetic tools available to tackle these cells with great precision.

      However, based on the stage at which these cells are investigated raises some issues, that I feel are critical to be addressed.

      These neurons develop their axonal projections during embryogenesis and are fully functioning when the larvae hatch, thus to investigate axonal pathfinding one would have to address embryonic development.

      The larval brain indeed continues to grow during larval life, however extensive work from the Hartenstein lab, Truman lab, and others have shown that the secondary (larval born) neurons do not yet wire into the brain, but stall their axonal projections.

      It is thus quite unclear, what the authors are actually studying.

      One interpretation could be that the authors observe changes in axon length due to morphological changes in the brain. Indeed, the fact that the MB expands the anatomy of the surrounding neuropil changes too.

      Moreover, it is unclear when exactly the Pdf-Gal4 (and other drivers) are active, thus how far (embryonic) development of s-LNvs is affected, or if it's all happening in the differentiated, functioning neuron. (Gal4 temporal delay and dynamics during embryonic development may further complicate the issue). As far as I am aware the MB drivers might already be active during embryonic stages.

      Since the raised issue is quite fundamental, I am not sure what might be the best and most productive fashion to address this.

      Eg. either to completely re-focus the topic on "neural morphology maintenance" or to study the actual development of these cells.

      We thank the reviewer for the detailed and insightful feedback on our study. We have tested whether Pdf-Gal4 could effectively label s-LNv, and tracked the s-LNv projection in the early stage after larvae hatching. We did not observe the PDF antibody staining signal and the GFP signal driven by Pdf-GAL4 when the larvae were newly hatched. At 2-4 hours ALH, PDF signals were primarily concentrated at the end of axons, while GFP signals were mainly concentrated at the cell body. Helfrich-Förster initially detected immunoreactivity for PDF in the brains approximately 4-5 hours ALH. The GFP signal expressed by Pdf-GAL4 driver does have signal delay. However, at 8 hours ALH, the GFP signal strongly co-localized with the PDF signal within the axons (see revised manuscript lines 98-101) (Figure 1—figure supplement 1).

      Based on previous research findings and our staining of Clk856-GAL4 >GFP, it is indeed confirmed that the dorsal projection of s-LNvs in Drosophila is formed during the embryonic stage (Figure 3—figure supplement 1). The s-LNvs in first-instar larval Drosophila are capable of detecting signal output and may play a role in regulating certain behaviors. Our selection of tools for characterizing the projection pattern of s-LNv was not optimal, leading us to overlook the crucial detail that the projection had already formed during its embryonic stage.

      However, even when employing Clk856-GAL4 to suppress Dscam expression from the embryonic stage, the initial segment of the dorsal projection of s-LNvs (the vertical part) remains unaffected. Instead, the projection distance is severely shortened towards the midline, and this defect persists until the adult stage. It is for this reason that we delineate the dorsal projections of s-LNvs into two distinct phases: the vertical and horizontal parts, rather than a mere expansion in correspondence with the development of the larval brain.

      From the results searched in the Virtual Fly Brain (VFB) database (https://www.virtualflybrain.org/), it is clear that the neurons that form synaptic connections with s-LNvs at the adult stage are essentially completely different from the neurons that are associated with them at the L1 larval stage. Thus, most neurons that form synapses with s-LNvs in the early larvae either cease to exist after metamorphosis or assume other roles in the adult stage. Similar to the scenario where Cajal-Retzius cells and GABAergic interneurons establish transient synaptic connections with entorhinal axons and commissural axons, respectively, these cells form a transient circuit with presynaptic targets and subsequently undergo cell death during development. In our model, the neurons that synapse with s-LNvs in early development serve as "placeholders," offering positive or negative cues to guide the axonal targeting of s-LNvs towards their ultimate destination.

      Thank you again for your valuable feedback, and we have incorporated these considerations into our revised manuscript to enhance the clarity and depth of our research.

      Reviewer #2 (Recommendations For The Authors):

      Major:

      In the introduction too many revisions are cited and very few actual research papers. This should be corrected and the most significant papers in the field should be cited. For example, there is no reference to the pioneering work from the Christine Holt lab or the first paper looking at axon guidance and guideposts by Klose and Bentley, Isbister et al 1999.

      The introduction should encapsulate the actual knowledge based on actual research papers.

      We acknowledge your concern regarding the citation of review papers rather than primary research papers in the introduction. Following your suggestion, we have revised the introduction section to incorporate references to relevant research papers.

      In the introduction and discussion: The authors cite revisions where the signals that guide axons across different regions including turning are shown and they end up saying: "However, how the axons change their projection direction without well-defined landmarks is still unclear." I think the sentence should be changed. Many things are still not clear but this is not a good phrasing. Maybe they could focus on their temporal finding?

      We appreciate the reviewer's feedback and insightful suggestions. We agree that emphasizing the temporal aspect is crucial in our study. However, we also recognize the significance of understanding the origin of signals that guide axonal reorientation at specific locations. While axonal projections navigating without distinct landmarks pose more challenges and uncertainties compared to those guided by prominent landmarks like the midline, our research demonstrates the crucial role of a specific cell population near turning points in providing accurate guidance cues to ensure precise axonal reorientation. We have revised our phrasing in the introduction and discussion to better reflect these key points (see revised manuscript lines 69-71 and 350-354). Thank you for highlighting the significance of focusing on our temporal findings and the complexities involved in studying axonal projection.

      Many rather old papers have looked into the effect of repulsive guideposts to guide axon projections. In particular, I can think of the paper from Isbister et al. 1999 (DOI: 10.1242/dev.126.9.2007) that not only shows how semaphoring guides Ti axon projection but also shows how the pattern of expression of sema 2a changes during development to guide the correct projection. I really think that the novelty of the paper should be revised in light of the actual knowledge in the field.

      We appreciate the reviewer's reference to the seminal work by Isbister et al. (1999) and the importance of guidepost cells in axon projection guidance, which we have already cited in our revised manuscript. It is crucial to recognize that segmented patterns such as the limb segment traversed by Ti1 neuron projections or neural circuits formed in a layer- or column-specific manner also serve as intrinsic "guideposts," offering valuable insights into axonal pathfinding processes. In our model, explicit guidance cues are lacking. As highlighted, our key contribution lies in elucidating how axonal projections without clear landmarks are guided, with our research demonstrating how a newly formed cluster of cells at a specific time and location provides the necessary guidance cues for axons (see revised manuscript lines 350-354). We have ensured that our revised manuscript reflects these insights and emphasizes the significance of studying axonal guidance in the absence of distinct guideposts. Thank you for underscoring these essential points, which enhance our understanding of axonal projection dynamics.

      Minors:

      Line 54, the authors start talking about floorplate at the end of a section on Drosophila. Please use “In vertebrates”, or “in invertebrates” or “in Drosophila” etc.. when needed to put things in context.

      We thank the reviewer for this suggestion and have modified this sentence. Please refer to lines 62-63 of the revised manuscript.

      Line 69: many factors change the axonal outgrowth. The authors are missing the paper from Fernandez et al. 2020, who have shown that unc5 the receptor of netrin induces the stalling for sLNvs projections before the turn. https://doi.org/10.1016/j.cub.2020.04.025

      We thank the reviewer for this suggestion and have added this research article. Please refer to line 79 of the revised manuscript.

      Line 99: "precisely at the pivotal juncture". It I hard to see how it was done in the figures shown. Can the authors add a small panel with neuronal staining showing this (please no HRP)?

      For all figures, tee magenta is too strong and it is really hard to see the sLNvs projections. Can this be sorted, please?

      We have depicted the pivotal juncture in the schematic diagram on the left side of Figure 1C. Additionally, we have included a separate column of images without HRP in Figure 1A. Moreover, we have modified the pseudo-color of HRP from magenta to blue to enhance the visualization of the s-LNv projection. The figure legends have also been correspondingly modified.

      Line 407: Spatial position relationship between calyx and s-LNvs. OK107-GAL4 labels ... calyx and s-LNvs labeled by, which which.

      We have modified it according to your suggestion. Please refer to lines 430-432 of the revised manuscript.

      Line 137 typo RPRC

      We thank the reviewer for noticing this mistake, which has now been corrected. Please refer to line 148-149 of the revised manuscript.

      Section 158-164. the paper from Zhang et al 2019 needs to be cited since they have found the same effect of decreasing Dscam even if they didn't think about horizontal projection.

      Thanks to the suggestion, we have included in the manuscript the phenotype observed by Zhang et al. (2019) upon knocking down Dscam1-L in adults. Please refer to lines 170-172 of the revised manuscript.

      Line 176: typo senses (instead of sensor).

      Thank you for pointing out our mistake. We have modified it according to your suggestion. Please refer to line 189 of the revised manuscript.

      Line 193: more than Interesting it is Notable. Add "ubiquitus" knockdown.

      Thank you for the suggestion. We have included the word "ubiquitus" to enhance the precision of the narrative. Please refer to line 206 of the revised manuscript.

      Line 224: the pattern of expression of the crz cells is not visible where the projections of sLNvs are located. Are they in that region? Or further away?

      We've changed the pseudo-color of HRP, and in the updated Figure 5- figure supplement 1, you can see the projection pattern of crz+ cells, positioned close to the end of the s-LNv axon terminal.

      Line 243: applied? Do you mean "used"

      Thank you for the suggestion. We have revised it at line 256.

      Figure 5 Sup1: the schematic shows DNs proliferation that is not visible on the GFP image. Please comment.

      We have modified the Figure 5 figure supplementary 1 for 120 h per-GAL4, Pdf-GAL80 >GFP expression pattern. Due to the strong GFP intensity in some DN neurons, there was a loss of GFP signal. Additionally, in Figure 6 figure supplementary 1, we have added co-localization images of DN and s-LNv at 72 h and 96 h. To better illustrate the co-localization information, we have shown only a portion of the layers in the right panel. We hope these additions clarify your concerns.

      Line 251: cite Fernandez et al. 2020 with Purohit et al 2012.

      We have modified it according to your suggestion. Please refer to line 264 of the revised manuscript.

      Line 272: you have not shown synergistic effects because you have not modulated both pathways at the same time. You should talk about complementary.

      We have modified it according to your suggestion at lines 25, 285, 439.

    1. We would like to thank you and the reviewers for your thoughtful comments that assisted us to improve the manuscript. We carefully followed the reviewers’ recommendations and provide a detailed point-by-point account of our responses to the comments. 

      Please find below the important changes in the updated manuscript.

      (1) We changed the title according to the comments provided by reviewer #1.

      (2) We edited the introduction, results, and discussion to improve the link between the objectives of the study, the findings, and their discussion, as reviewer #2 recommended.

      (3) We clarified the link between camouflage and fitness, which is now presented as a hypothesis, as reviewer #1 suggested.

      (4) We added new analyses and figures in the main text and in the supplementary materials to better emphasize sex differences in landing force, foraging strategies and hunting success, following reviewer #1 suggestion.

      (5) According to reviewer #2 comments, we edited the results adding key information about methods to help the reader understand the findings without reading the Methods section.

      (6) We added important details about the model selection approach along with a discussion of the low R-square values reported in our analyses on hunting success, as reviewer #2 suggested.

      eLife assessment 

      This fundamental work substantially advances our understanding of animals' foraging behaviour, by monitoring the movement and body posture of barn owls in high resolution, in addition to assessing their foraging success. With a large dataset, the evidence supporting the main conclusions is convincing. This work provides new evidence for motion-induced sound camouflage and has broad implications for understanding predator-prey interactions. 

      Public Reviews: 

      Reviewer #1 (Public Review): 

      In this paper, Schalcher et al. examined how barn owls' landing force affects their hunting success during two hunting strategies: strike hunting and sit-and-wait hunting. They tracked tens of barn owls that raised their nestlings in nest boxes and utilized high-resolution GPS and acceleration loggers to monitor their movements. In addition, camcorders were placed near their nest boxes and used to record the prey they brought to the nest, thus measuring their foraging success. 

      This study generated a unique dataset and provided new insights into the foraging behavior of barn owls. The researchers discovered that the landing force during hunting strikes was significantly higher compared to the sit-and-wait strategy. Additionally, they found a positive relationship between landing force and foraging success during hunting strikes, whereas, during the sit-and-wait strategy, there was a negative relationship between the two. This suggests that barn owls avoid detection by generating a lower landing force and producing less noise. Furthermore, the researchers observed that environmental characteristics affect barn owls' landing force during sit-and-wait hunting. They found a greater landing force when landing on buildings, a lower landing force when landing on trees, and the lowest landing force when landing on poles. The landing force also decreased as the time to the next hunting attempt decreased. These findings collectively suggest that barn owls reduce their landing force as an acoustic camouflage to avoid detection by their prey. 

      The main strength of this work is the researchers' comprehensive approach, examining different aspects of foraging behavior, including high-resolution movement, foraging success, and the influence of the environment on this behavior, supported by impressive data collection. The weakness of this study is that the results only present a partial biological story contained within the data. The focus is on acoustic camouflage without addressing other aspects of barn owls' foraging strategy, leaving the reader with many unanswered questions. These include individual differences, direct measurements of owls' fitness, a detailed analysis of the foraging strategy of males and females, and the collective effort per nest box. However, it is possible that these data will be published in a separate paper. 

      We greatly appreciate your recognition of the comprehensive approach and extensive data collection. Our primary objective was to study the role of acoustic camouflage. Nonetheless, the manuscript now includes a detailed analysis of the foraging strategy and hunting success of males and females (lines 164-225).

      The results presented support the authors' conclusion that lower landing force during sit-andwait hunting increases hunting success, likely due to a decreased probability of detection by their prey, resulting in acoustic camouflage. The authors also argue that hunting success is crucial for survival, and thus, acoustic camouflage has a direct link to fitness. While this statement is reasonable, it should be presented as a hypothesis, as no direct evidence has been provided here.

      Thank you for the comment. We agree and thus have edited the language accordingly.  

      However, since information about nestling survival is typically monitored when studying behavior during the breeding period, the authors' knowledge of the effect of acoustic camouflage on owls' fitness can probably be provided. Furthermore, it will be interesting to further examine the foraging strategies used by different individuals during foraging, the joint foraging success of both males and females within each nest box, and the link between landing force and foraging success if the data are available.

      We are currently writing a manuscript on these topics. We are aware that several scientific questions regarding the foraging ecology of the barn owl still need our attention. Regarding the link between landing force and foraging success, we believe that our revised manuscript addresses this specific topic, please see specific responses below.

      However, even without this additional analysis on survival, this paper provides an unprecedented dataset and the first measurement of landing force during hunting in the wild. It is likely to inspire many other researchers currently studying animal foraging behavior to explore how animals' movements affect foraging success.

      Reviewer #2 (Public Review): 

      Summary: 

      The authors provide new evidence for motion-induced sound camouflage and can link the hunting approach to hunting success (detailing the adaptation and inferring a fitness consequence). 

      Strengths: 

      Strong evidence by combining high-resolution accelerometer data with a ground-truthed data set on prey provisioning at nest boxes. A good set of co-variates to control for some of the noise in the data provides some additional insights into owl hunting attempts. 

      Weaknesses: 

      There is a disconnect between the hypotheses tested and the results presented, and insufficient detail is provided on the statistical approach. R2 values of the presented models are very small compared to the significance of the effect presented. Without more detail, it is impossible to assess the strength of the evidence.

      In the revised manuscript, we changed the way results are presented and we improved the link between the hypotheses and the results. The R2 values are indeed small. It is however important to keep in mind that we are assessing the outcome of one specific behavior (i.e. landing force during sit-and-wait hunts) on hunting success in a wild environment, where many complex ecological interactions likely influence hunting success. Nonetheless, the coefficients (as reported in the results) show that for every 1 N increase in landing force, there is a 15% reduction in hunting success, which is substantial. In the discussion we also note that 50 Hz is a relatively low sampling frequency for estimating the peak ground reaction force. We have gone back over the presentation of our results and made our discussion more nuanced to acknowledge this aspect. 

      We have also added a detailed description about our model selection process in the methods section and provide a model selection table for each analysis in the supplementary materials.

      The authors seem to overcome persisting challenges associated with the validation and calibration of accelerometer data by ground-truthing on-board measures with direct observations in captivity, but here the methods are not described any further and sample sizes (2 owls - how many different loggers were deployed?) might be too small to achieve robust behavioural classifications.

      Thank you for the comment. Details of our methods of behavioural identification are provided in lines 385 – 429. There are two reasons why our results should not be limited by the sample size. First, we used the temporal sequence of changes in acceleration, and rates of change in acceleration data, which make the methods robust to individual differences in acceleration values. Furthermore, our methods for behavioural identification were not based on machine learning. Instead, we use a Boolean based approach (as described in Wilson et al. 2018. MEE), which is more robust to small differences in absolute values that might occur e.g. in relation to slight changes in device position. 

      Recommendation for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Comment 1. This study provides new insights into animals' foraging behavior and will probably inspire other researchers to examine foraging behavior in such high resolution.

      We hope so, thank you.

      Comment 2. However, it is necessary to describe better the measured landing force and the hunting strike and perching behavior so the readers can understand these methods when reading the results (and without reading the Methods).

      We have now changed the text in the “Results” to help the reader understand the key methods while reading the results.

      Comment 3. In addition, make sure you use the same terminology for hunting strategies during the entire paper and especially in all figures and corresponding result descriptions.

      We now use consistent terminology throughout the text and figures. We hope that this is now clear in the revised manuscript.

      Comment 4. In addition, although I find your statement about the link between acoustic camouflage and fitness reasonable, it should be described as a hypothesis or examined if you want to keep the direct link statement. I believe showing a direct link can add an additional outstanding aspect to this paper, but I also understand that it can be addressed in a separate paper.

      We agree that the relationship between hunting success and barn owl fitness is an important topic, but it necessitates a consideration of both hunting strategies, including hunting on the wing, which extends beyond the limits of our current study. Indeed, our primary objective was to conduct a detailed examination of the interplay between acoustic camouflage and the success of the sit-and-wait technique.

      However, we have edited the manuscript to explicitly describe the link between acoustic camouflage and fitness as a hypothesis. We believe this adjustment provides a more accurate representation of our approach. We hope this clarifies the specific emphasis of our work and its contribution to the understanding of barn owl hunting behavior.

      Here are my detailed comments about the paper: 

      Comment 5. Title: Consider changing the title to "Acoustic camouflage predicts hunting success in a wild predator." 

      We would like to thank you for your nice proposition. However, we opted for a different title, which is now “Landing force reveals new form of motion-induced sound camouflage in a wild predator”.

      Comment 6. Line 91-93: Please provide additional information about the collected dataset, including: 

      Description of the total period of observations, an average and standard deviation of perching and hunting attempt events per individual per night, number of foraging trips per individual per night, details about the geographic location and characteristics of the habitat, season, and reproductive state. 

      The revised manuscript now includes detailed information about the collected dataset (i.e. study area, reproductive state, etc…). “We used GPS loggers and accelerometers to record high resolution movement data during two consecutive breeding seasons (May to August in 2019 and 2020) from 163 wild barn owls (79 males and 84 females) breeding in nest boxes across a 1,000 km² intensive agricultural landscape in the western Swiss plateau.” Results section, lines 79 – 82

      Details about the number of foraging trips per individuals and per night are now presented in the results: “Sexual dimorphism in body mass was marked among our sampled individuals. Males were lighter than females (84 females, average body mass: 322 ± 22.6 g; 79 males, average body mass 281 ± 16.5 g, Fig S6) and provided almost three times more prey per night than females (males: 8 ± 5 prey per night; females: 3 ± 3 prey per night; Fig.S7). Males also displayed higher nightly hunting effort than females (Males: 46 ± 16 hunting attempts per night, n= 79; Females: 25 ± 11 hunting attempts per nights, n=84; Fig. 3A, Fig S8). However, females were more likely to use a sit and wait strategy than males (females: 24% ± 15%, males: 13% ± 10%, Fig.S9). As a result, the number of perching events per night was similar between males and females (Females: 76 ± 23 perching events per nights; Males: 69 ± 20 perching events per night; Fig S8).” (lines 165 – 174) 

      Comment 7. In addition, state if the information describes breeding pairs of males and females and provides statistics on the number of tracked pairs and the number of nest boxes.

      The revised manuscript now includes a description of the number of tracked breeding pairs and the number of nest boxes. “Of these individuals, 142 belonged to pairs for which data were recovered from both partners (71 pairs in total, 40 in 2019, 31 in 2020). The remaining 21 individuals belonged to pairs with data from one partner (11 females and 1 male in 2019; 4 females and 5 males in 2020).” (lines 82 – 85.)

      Comment 8. Line 93: Briefly define the term "landing force" and explain how it was measured (and let the reader know that there is a detailed description in the Methods).

      We now include a brief definition of the “landing force” along with a brief explanation of how it was measured in the results section. “We extracted the peak vectoral sum of the raw acceleration during each landing and converted this to ground reaction force (hereafter “landing force”, in Newtons) using measurements of individual body mass (see methods for detailed description).” (lines 92 – 95).

      Comment 9. Line 94: All definitions, including "pre-hunting force," need to be better described in the Results section.

      Thank you for this suggestion. We now provided a better description of those key definitions directly in the results section: 

      Measurement of landing force: “Barn owls employing a sit-and-wait strategy land on multiple perches before initiating an attack, with successive landings reducing the distance to the target prey (Fig. 2C). 

      We used the acceleration data to identify 84,855 landings. These were further categorized into perching events (n = 56,874) and hunting strikes (n = 27,981), depending whether barn owls were landing on a perch or attempting to strike prey on the ground (Fig. 1A and B, see methods for specific details on behavioral classification).” (lines 88 – 95)

      Pre-hunt perching force predicts hunting success: “Finally, we analyzed whether the landing force in the last perching event before each hunting attempt (i.e. pre-hunt perching force) predicted variation in hunting success” (lines 229 – 230)

      Comment 10. Line 102: Remove "Our analysis of 27,981 hunting strikes showed that" and add "n = 27,981" after the statistics. You have already stated your sample size earlier. There is no need to emphasize it again, although your sample size is impressive.

      We modified the text in the results section as suggested.

      Comment 11. Line 104: The results so far suggest that the difference in landing force between males and females is an outcome of their different body masses. However, it is not clear what is the reason for the difference in the number of hunting strike attempts between males and females (Lines 104-106). Can you compare the difference in landing force between males and females with similar body mass (females from the lower part of the distribution and males from the upper part)? Is there still a difference?

      Thank you, following your comment we made some new analyses that clarified the situation around landing force involved in perching and hunting strike events between sexes. But firstly, we wanted to clarify why there is a difference in number of hunting attempts between males and females. During the breeding season, females typically perform most of the incubation, brooding, and feeding of nestlings in the nest, while the male primarily hunts food for the female and chicks. The female supports the male providing food in a very irregular way, and this changes from pair to pair (paper in prep.). The differences in number of hunting attempts between males and females reflects this asymmetry in food provisioning between sexes during this specific period. We specified this in the revised version of the manuscript (lines 164 – 174). 

      We also provide a new analysis to investigate sex differences in mass-specific landing force (force/body mass). We found that males and females produce similar force per unit of body mass during perching events. This demonstrates that the overall higher perching force in females (see Fig. 4C in the manuscript) is therefore driven by their higher body mass. (lines 194 – 199)

      Comment 12. Line 154: I believe Boonman et al. (2018) is relevant to this part of the discussion. Boonman, Arjan, et al. found that barn owl noise during landing and taking off is worth considering. ["The sounds of silence: barn owl noise in landing and taking off."

      Behavioral Processes 157 (2018): 484-488.]

      We now cited this paper in the discussion.

      Comment 13. Line 164: Your results do not directly demonstrate a link to fitness, although they potentially serve as a proxy for fitness (add a reference). However, you might have information regarding nestlings' survival - that will provide a direct link for fitness. Change your statement or add the relevant data.

      We appreciated your feedback, and we adjusted the language accordingly.

      Comment 14. Line 213: If the poles are closer to the ground - is it possible that the higher trees and buildings serve for resting and gathering environmental information over greater distances? For example, identifying prey at farther distances or navigating to the next pole?

      Yes, this is indeed the most likely explanation for the fact that owls land more on buildings and trees than on poles until the last period (about 6 minutes) before hunting. In these last minutes, barn owls preferentially use poles, as we showed in figure 2B. The revised manuscript now includes this explanation in the discussion (lines 269 – 284).

      Comment 15. Line 250: The product "AXY-Trek loggers" does not appear on the Technosmart website (there are similar names, but not an exact match). Are you sure this is the correct name of the tracking device you used? 

      Thank you for pointing out this detail that we missed. The device we used is now called "AXY-Trek Mini" (https://www.technosmart.eu/axy-trek-mini/). We have corrected this error directly in the revised manuscript.

      Comment 16. Line 256: Please explain how the devices were recovered. Did you recapture the animals? If so, how? Additionally, replace "after approximately 15 days" with the exact average and standard deviation. Furthermore, since you have these data, please state the difference in body mass between the two measurements before and after tagging.

      The birds were recaptured to recover the devices. Adults barn owls were recaptured at their nest sites, again using automatic sliding traps that are activated when birds enter the nest box. The statement "after approximately 15 days" was replaced by the exact mean and standard deviation, which were 10.47 ± 2.27 days. Those numbers exclude five individuals from the total of 163 individuals included in this study. They could not be recaptured in the appropriate time window but were re-encountered when they initiated a second clutch later in the season (4 individuals) or a new clutch the year after (1 individual).

      We integrated this previously missing information in the revised manuscript (lines 370 – 372).

      Comment 17. Line 259: What was the resolution of the camera? What were the recording methods and schedule? How did you analyze these data? 

      The resolution was set to 3.1 megapixel. Motion sensitive camera traps were installed at the entrance to each nest box throughout the period when the barn owls were wearing data loggers, and each movement detected triggered the capture of three photos in bursts. The photos recorded were not analyzed as such for this study, but were used to confirm each supply of prey, which had previously been detected from the accelerometer data. We added these details in the revised manuscript (lines 377 – 380)

      Comment 18_1. Figure 1: 

      Panel A) Include the sex of the described individual. 

      The sex of the described individual is now included in the figure caption.

      Comment 18_2. It would be interesting to show these data for both males and females from the same nest box (choose another example if you don't have the data for this specific nest box). 

      Although we agree that showing tracks of males and females from the same nest is very interesting, the purpose of this figure was to illustrate our data annotation process and we believe that adding too many details on this figure will make it appear messy. However, the revised manuscript now includes a new figure (Fig. 3A) which shows simultaneous GPS tracks of a male and a female during a complete night, with detailed information about perching and hunting behaviors.

      Comment 18_3. Add the symbol of the nest box to the legend. 

      Done

      Comment 18_4. Provide information about the total time of the foraging trip in the text below. 

      The duration of the illustrated foraging trip has been included in the figure caption.

      Comment 18_5. To enhance the figure’s information on foraging behavior, consider color coding the trajectory based on time and adding a background representing the landscape. Since this paper may be of interest to researchers unfamiliar with barn owl foraging behavior, it could answer some common questions. 

      For similar reasons explained in our answer above (Comment 18_2), we would rather keep this figure as clean as possible. However, we followed your recommendations and included these details in the new Figure 3 described above. In this new figure, GPS tracks are color coded according to the foraging trip number and includes a background representing the landscape. To provide even more detail about the landscape, we added another figure in the supplementary materials (Fig. S2) which provides illustration of barn owls foraging ground and nest site that we think might be of interest for people unfamiliar with barn owls.

      Comment 18_6. Inset panels) provide a detailed description of the acceleration insert panels. 

      Done

      Comment 18_7. Color code the acceleration data with different colors for each axis, add x and y axes with labels, and ensure the time frame on the x-axis is clear. How was the self-feeding behavior verified (should be described in the methods section)? 

      We kept both inset panels as simple as possible since they serve here as examples, but a complete representation of these behaviors (with time frame, different colors and labels) is provided in the supplementary materials (figure S3). We included this statement in the figure caption and added a reference to the full representations from the supplementary materials: 

      In the Figure caption: “Inset panels show an example of the pattern of the tri-axial acceleration corresponding to both nest-box return and self-feeding behaviors (but see Fig S3for a detailed representation of the acceleration pattern corresponding to each behavior).” 

      In the Method section: “Self-feeding was evident from multiple and regular acceleration peaks in the surge and heave axes (resulting in peaks in VeDBA values > 0.2 g and < 0.9 g, Fig.S3D), with each peak corresponding to the movement of the head as the prey was swallowed whole.”.

      Comment 18_8. Panel B) Note in the caption that you refer to the acceleration z-axis.

      We believe that keeping the statement “the heave acceleration…” in the figure caption is more informative than referring to the “z-axis” as it describes the real dimension to which we are referring. The use of the x, y and z axes can be misleading as they can be interchanged depending on the type and setting of recorders used.

      Comment 18_9. Present the same time scale for both hunting strategies to facilitate comparison. You can achieve this by showing only part of the flight phase before perching. 

      Done

      Comment 18_10. Panel C) Presenting the data for both hunting strategy and sex would provide more comprehensive information about the results and would be relatively easy to implement. 

      We agree with your comment. We present the differences in landing force for both landing contexts and sexes in the new Figure 3 as well as in the supplementary materials (Figure S10) of this revised manuscript.

      Comment 19. Figure 2: Please provide an explanation of the meaning of the circles in the figure caption.  

      Done

      Comment 20. Figure 3: 

      Panel A) It is unclear how the owl illustration is relevant to this specific figure, unlike the previous figures where it is clear. Also, suggest removing the upper black line from the edge of the figure or add a line on the right side. 

      Done (now in Figure 2).

      Panel B) "Density" should be capitalized. 

      Done

      Panel C) Add a scale in meters, and it would be helpful to include an indication of time before hunting for each data point. 

      Done

      Comment 21. Figure S1: Mark the locations of the nest boxes and ensure that trajectories of different individuals and sexes can be identified. 

      The purpose of this figure was to show the spatial distribution of the data. We think that adding nest locations and coloring the paths according to individuals and/or sex will make the figure less clear. However, the new Figure 3 highlights those details.

      Comment 22. Figure S2: Show the pitch angle similarly to how you showed the acceleration axes, and explain what "VeDBA" stands for. Provide a description of the perching behavior, clearly indicating it on the figure. Add axes (x, y, z) to the illustration of the acceleration explanation. 

      We edited this figure (now figure S3) to show the pitch angle and provide an explanation of what “VeDBA” stands for in the figure caption. The figure caption now also provides a better description of the perching behavior. For the axes (i.e. X, Y, Z), we prefer to refer to the heave, surge, and sway as this is more informative and refers to what is usually reported in studies working with tri-axial accelerometers.

      Comment 23. Table S1: Improve the explanation in the caption and titles of the table. 

      Done

      Reviewer #2 (Recommendations For The Authors): 

      Comment 1. From the public review and my assessment there, the authors can be assured that I thoroughly enjoyed the read and am looking forward to seeing a revised and improved version of this paper. 

      We thank the reviewer for this comment. We revised the manuscript according to their comments.

      Comment 2. In addition to my major points stated above, I would like to add the following recommendations: 

      The manuscript is overall well written, but it uses a very pictorial language (a little as if we were in a David Attenborough documentary) that I find inappropriate for a research paper (especially in the abstract and introduction, "remarkable" (2x), "sophisticated" (are there any unsophisticated adaptations? We are referring to something under selection after all) etc.

      We appreciated that you found the paper overall well written, and we understand the comment about pictorial language. We therefore slightly changed the text to make sure that the adjective used to describe adaptive strategies are not over-emphasized.

      Comment 3. Abstract 

      "While the theoretical benefits of predator camouflage are well established, no study has yet been able to quantify its consequences for hunting success." - This claim is actually not fully true: 

      Nebel Carina, Sumasgutner Petra, Pajot Adrien and Amar Arjun 2019: Response time of an avian prey to a simulated hawk attack is slower in darker conditions, but is independent of hawk colour morph. Soc. open sci.6:190677 

      We edited our claim to specify that the consequences of predator camouflage on hunting success has never been quantified in natural conditions and cited the reference in the introduction.

      Comment 4. Line 23. Rephrase to: "We used high-resolution movement data to quantify how barn owls (Tyto alba) conceal their approach when using a sit-and-wait strategy, as well as the power exerted during strikes." 

      We edited this sentence in the abstract, as suggested.

      Comment 5. Results 

      There is a disconnect between the objectives outlined at the end of the introduction and the following results that should be improved. 

      The authors state: "Using high-frequency GPS and accelerometer data from wild barn owls (Tyto alba), we quantify the landing dynamics of this sit-and-wait strategy to (i) examine how birds adjust their landing force with the behavioral and environmental context and (ii) test the extent to which the magnitude of the predator cue affects hunting success." But one of the first results presented are sex differences. 

      This is a fair point. We have now changed our statement in the end of the introduction as well as the order of the results to improve the link between the objectives outlined in the introduction and the way result are presented. 

      Comment 6. At this stage, the reader does not even know yet that we are presented with a size-dimorphic species that also has very different parental roles during the breeding season. This should be better streamlined, with an extra paragraph in the introduction. And these sex differences are then not even discussed, so why bring them up in the first place (and not just state "sex has been fitted as additional co-variate to account for the size-dimorphism in the species" without further details). 

      We edited the way the objectives are outlined in the introduction to cover the size dimorphism (lines 70 – 76). We also completely changed the way the sex differences are presented in the results, including a new analysis that we believe provides a better comprehensive understanding of barn owl foraging behavior (lines 164 – 206). Finally, we added a new paragraph in the discussion to consider those results (lines 319 – 339).

      Comment 7. It is not clear to me where and how high-resolution GPS data were used? The results seem to concentrate on ACC – why GPS was used and how it features should be foreshadowed in a few lines in the introduction. I definitively prefer having the methods at the end of a manuscript, but with this structure, it is crucial to give the reader some help to understand the storyline. 

      GPS data were used to validate some behavioral classifications (prey provisioning for example), but most importantly they were used to link each landing event with perch types. We edited the text in the result section to clarify where GPS and/or ACC data were used.

      Comment 8. Discussion 

      Move the orca example further down, where more detail can be provided to understand the evidence. 

      After our extensive edits in the discussion, we felt this example was interrupting the flow. We now cite this study in the introduction. 

      Comment 9. Size dimorphism and evident sex differences are not discussed. 

      The revised manuscript now includes a new paragraph in the discussion in which sex differences are discussed (lines 319 – 339).

      Comment 10. Be more precise in the terminology used (for example, land use seems to be interchangeable with habitat characteristics?). 

      We modified “land use” with “habitat data” in the revised manuscript.

      Comment 11. Methods 

      Please provide a justification for the very high weight limit (5%; line 256). This limit is outdated and does not fulfill the international standard of 3% body weight. I assume the ethics clearance went through because of the short nature of the study (i.e., the birds were not burdened for life with the excess weight? But a line is needed here or under the ethics considerations to clarify this). 

      The 5% weight limit was considered acceptable due to the short deployment period, and we now edited the ethics statement to emphasize this point. However, it is important to note that there is no real international standard, with both 3% and 5% weight limits being commonly used. Both limits are arbitrary and the impact of a fixed mass on a bird varies with species and flight style. All owls survived and bred similarly to the non-tagged individuals in the population (lines 373 – 376 & lines 558 – 561)

      EDITORIAL COMMENT: We strongly encourage you to provide further context and clarification on this issue, as suggested by the Reviewer. On a related point, the ethics statement refers to GPS loggers, rather than GPS and ACC devices; we encourage you to clarify wording here.

      Thank you for highlighting this point that indeed needed some clarifications.

      Although we have used the terminology "GPS recorders", the authorization granted by the Swiss authorities for this study effectively covers the entire tracking system, which combines both GPS and ACC recorders in the same device. We have therefore changed the wording used in the ethics statement to avoid any misunderstanding (lines 373 – 376 & lines 558 – 561)

      Comment 12. Please provide more information on the model selection approach, what does "Non-significant terms were dropped via model simplification by comparing model AIC with and without terms." mean? Did the authors use a stepwise backward elimination procedure (drop1 function)? Or did they apply a complete comparison of several candidate models? I think a model comparison approach rather than stepwise selection would be more informative, as several rather than only one model could be equally probable. This might also improve model weights or might require a model averaging procedure - current reported R2values are very small and do not seem to support the results well. 

      We apologize for the lack of details about this important aspect of the statistical analysis. We applied an automated stepwise selection using the dredge function from the R package “MuMin”, therefore applying a complete comparison of several candidate models. The final models were chosen as the best models since the number of candidate models within ∆AIC<2 was relatively low in each analysis and thus a model averaging was not appropriate here. We edited the methods section to ensure clarity, and added model selection tables for each analysis, ranked according to AICc scores, in the supplementary materials (lines 532 – 552)

      In addition, we agree that the reported R-squared values in our analyses are quite low, specifically regarding the influence of pre-hunt perching force on hunting success (cond R2 = 0.04). Nonetheless, landing impact still has a notable effect size (an increase of 1N reduces hunting success by 15%). The reported values are indicative of the inherent complexity in studying hunting behavior in a wild setting where numerous variables come into play. We specifically investigated the hypothesis that the force involved during pre-hunt landings, and consequently the emitted noise, influences the success of the next hunting attempt in wild barn owls. Factors such as prey behavior and micro-habitat characteristics surrounding prey (such as substrate type and vegetation height) are most likely to be influential but hard, or nearly impossible, to model. We now cover this in a more nuanced way in the discussion (lines 266 – 268)

      Comment 13. Please explain why BirdID was nested in NightID - this is not clear to me.

      Probably here there is a misunderstanding because we wrote that we nested NightID in BirdID (and not BirdID in NightID). 

      Comment 14. I hope the final graphs and legends will be larger, they are almost impossible to read. 

      We enlarged the graphs and legends as much as possible to improve readability. However, looking at the graphs in the published version they seem clear and readable.

      Comment 15. Figure S1: Does "representation" mean the tracks don't show all of the 163 owls? If so, be precise and tell us how many are illustrated in the figure. 

      Figure S1 represent the tracks for each of the 163 barn owls used in the study. We changed the terminology used in the figure caption to avoid any misunderstanding.

      Comment 16. Figure S4: Please adjust the y-axis to a readable format. 

      Done

    2. Reviewer #1 (Public Review):

      In this paper, Schalcher et al. examined how barn owls' landing force affects their hunting success during two hunting strategies: strike hunting and sit-and-wait hunting. They tracked tens of barn owls that raised their nestlings in nest boxes and utilized high-resolution GPS and acceleration loggers to monitor their movement. In addition, camcorders were placed near their nest boxes and used to record the prey they brought to the nest, thus measuring their foraging success.

      This study generated a unique dataset and provided new insights into the foraging behavior of barn owls. The researchers discovered that the landing force during hunting strikes was significantly higher compared to the sit-and-wait strategy. Additionally, they found a positive relationship between landing force and foraging success during hunting strikes, whereas, during the sit-and-wait strategy, there was a negative relationship between the two. This suggests that barn owls avoid detection by generating a lower landing force and producing less noise. Furthermore, the researchers observed that environmental characteristics affect barn owls' landing force during sit-and-wait hunting. They found a greater landing force when landing on buildings, a lower landing force when landing on trees, and the lowest landing force when landing on poles. The landing force also decreased as the time to the next hunting attempt decreased. These findings collectively suggest that barn owls reduce their landing force as an acoustic camouflage to avoid detection by their prey.

      The main strength of this work is the researchers' comprehensive approach, examining different aspects of foraging behavior, including high-resolution movement, foraging success, and the influence of the environment on this behavior, supported by impressive data collection.

      The results presented support the authors' conclusion that lower landing force during sit-and-wait hunting increases hunting success, likely due to a decreased probability of detection by their prey, resulting in acoustic camouflage. The authors also hypothesized that hunting success is crucial for survival, and thus, acoustic camouflage has a direct link to fitness. This paper provides an unprecedented dataset and the first measurement of landing force during hunting in the wild. It is likely to inspire many other researchers currently studying animal foraging behavior to explore how animals' movement affects foraging success.

    3. eLife assessment

      This fundamental work substantially advances our understanding of animals' foraging behaviour by monitoring the movement and body posture of barn owls in high resolution and assessing their foraging success. With a large dataset, the evidence supporting the main conclusions is compelling. This work provides new corroboration for motion-induced sound camouflage and has broad implications for understanding predator-prey interactions.

    1. eLife assessment

      The current study sheds important light on the role of sphingolipid metabolism on the maturation of Parkinson's disease-associated Synphilin-1 inclusion bodies (SY1 IBs) on the mitochondrial surface in a yeast model using Synthetic Genetic Array (SGA) and state-of-the-art imaging techniques. The authors provide compelling evidence that downregulating the sphingolipid biosynthesis pathway leads to mitochondrial dysfunction, defective maturation, and enhanced toxicity of SY1 IBs, and this effect is conserved from yeast to mammals. Altogether, this study implicates the role of sphingolipid metabolism in the detoxification process of misfolded proteins by facilitating large IB formation on the mitochondrial outer membrane.

    2. Reviewer #1 (Public Review):

      The authors have shown the following:

      (1) SY1 aggregation enhances (in terms of number of aggregates) when Sphingolipid biosynthesis is blocked.<br /> (2) In a normal cell (where sphingolipid biosynthesis is not hampered), the aggregate of SY1 (primarily the Class I aggregate) is localized only on the mitochondrial endomembrane system.<br /> (3) The localization is due to the association of SY1 (aggregates) with mitochondrial proteins like Tom70, Tim44, etc. (Is the localization completely lost? What happens to the toxicity when the aggregates are not localized on mitochondria?)<br /> (4) This fuels the loss of mitochondrial function.<br /> (5) Mitochondrial function is further abrogated when there is a block in sphingolipid biosynthesis.<br /> (6) A similar phenomenon is conserved in mammalian cell lines.

      Comments on the revised version

      The authors have addressed all the issues raised and I am satisfied with the answers but with the following reservations.

      (1) I still think that the authors need to set the importance of the differences in aggregation in the context of toxicity arising from protein misfolding/aggregation. While the authors state the limitation in the response, and I agree that a single manuscript cannot complete a field of investigation I still think that this is an important point missing from this manuscript.

      (2) I retain my reservations about the fluorescence intensity data shown for Rho123, DCF, Jc1, and MitoSox. The errors are much lower than what we typically achieve in biological experiments in our as well as our collaborator's lab. A glimpse at published literature would also support our statement. Specifically, RHO123 shows a large difference in errors between Figure 5 and Figure 5 Supplement 2. The point to note is that the absolute intensities do not vary between these figures, but the errors are the order of magnitude lower in the main figures. I, therefore, accept these figures in good faith without further interrogation.<br /> I think the message from the manuscript is important and worth following up on.

    3. Reviewer #2 (Public Review):

      Summary:

      The authors used a yeast model for analyzing Parkinson's disease-associated synphilin-1 inclusion bodies (SY1 IBs). In this model system, large SY1 IBs are efficiently formed from smaller potentially more toxic SY1 aggregates. Using a genome-wide approach (synthetic genetic array, SGA, combined with a high content imaging approach), the authors identified the sphingolipid metabolic pathway as pivotal for SY1 IBs formation. Disturbances of this pathway increased SY1-triggered growth deficits, loss of mitochondrial membrane potential, increased production of reactive oxygen species (ROS), and decreased cellular ATP levels pointing to an increased energy crisis within affected cells. Notably, SY1 IBs were found to be surrounded by mitochondrial membranes using state-of-the-art super-resolution microscopy. Finally, the effects observed in the yeast for SY1 IBs turned out to be evolutionary conserved in mammalian cells. Thus, sphingolipid metabolism might play an important role in the detoxification of misfolded proteins by large IBs formation at the mitochondrial outer membrane.

      Strengths:

      • The SY1 IB yeast model is very suitable for the analysis of genes involved in IB formation.<br /> • The genome-wide approach combining a synthetic genetic array (SGA) with a high content imaging approach is a compelling approach and enabled the reliable identification of novel genes. The authors tightly checked the output of the screen.<br /> • The authors clearly showed, including a couple of control experiments, that the sphingolipid metabolic pathway is crucial for SY1 IB formation and cytotoxicity.<br /> • The localization of SY1 IBs at mitochondrial membranes has been clearly demonstrated with state-of-the-art super-resolution microscopy and biochemical methods.<br /> • Pharmacological manipulation of the sphingolipid pathway influenced mitochondrial function and cell survival.

      Weaknesses:

      • It remains unclear how sphingolipids are involved in SY1 IB formation.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Response to Reviewer #1 comments:

      (1) SY1 aggregation enhances (in terms of number of aggregates) when Sphingolipid biosynthesis is blocked.

      a. Line no 132-133: I agree that there is circumstantial evidence that the maturation pathway of SY1 IB is perturbed by knocking down sphingolipid biosynthesis. However, to prove this formally, a time course of IB maturation needs to be reported in the knock-down strains.

      Please see Figure 2-figure supplement 1 for the time course of SY1 IB maturation in the knock-down strains. We have added the result to the manuscript, please see lines 129-131on page 5 in the revised version.

      b. It will be good to have formal evidence that sphingolipids are indeed downregulated when these genes are downregulated (knocked down).

      This issue has been clearly evidenced in previous reports, and we have added the appropriate references in the main text. For example, down-regulation of LCB1 or SPT in yeast decreased sphingolipid levels by Huang et al (https://doi.org/10.1371/journal.pgen.1002493). According to the report from Tafesse FG, et al (https://doi.org/10.1371/journal.ppat.1005188), in mammalian cells in which Sptlc2 was knocked down by CRISPR/Cas9, sphingolipid and glucosylceramide production is almost completely blocked. In addition, the levels of sphingosine, sphingomyelin, and ceramide were significantly lower compared to control cells. Please see lines 143-144 on pages 6 and lines 232-233 on pages 9 in the revised version.

      (2) In a normal cell (where sphingolipid biosynthesis is not hampered), the aggregate of SY1 (primarily the Class I aggregate) is localized only on the mitochondrial endomembrane system. These results have been published for other aggregation-prone proteins and are partly explained in the literature. However, their role in the context of maturation is relatively unclear. The authors however provide no strong evidence to show if mitochondria are preferentially involved in any of the stages of IB maturation. Specifically:

      a. Line 166-167: It is not clear from Figure 4B that this is indeed the case. Only the large IB seems to colocalize in all three panels (Class I, 2, 3) with Mitotracker. The smaller IBs in 2 and 3 do not show any obvious co-localization. It is also possible that they do co-localize, but it is not clear from the images. I would appreciate it if the authors either provide stronger evidence (better image) or revise this statement. This point is crucial in some claims made later in the manuscript. (pls see comment #5A).

      Based on the reviewer's suggestion, we replaced the images in Figure 4B. In addition, we added the 3D reconstruction results of the interrelationship between Class 3 and Mitotracker in Figure 4-figure supplement 1B, to further show their relationship.

      (3) The localization is due to the association of SY1 (aggregates) with mitochondrial proteins like Tom70, Tim44 etc. There are some critical points (that can strengthen the manuscript) that are not addressed here. Primarily, the important role of mitochondria in the context of toxicity is neglected. Although the authors have mentioned in the discussion that it was not their main focus, I believe that this is the novel part of the manuscript and this part is potentially a beautiful addition to literature. The questions I found unanswered are:

      a. Is the localization completely lost upon deleting these genes? I see only a partial loss in shape/localization. This is not properly explained in the manuscript. The shape of the IB seems to remain intact while the localization is slightly altered. This indicates that even when sphingolipid is present, SY1 localization is dictated by the (lipid-raft embedded) proteins. Interestingly, it shows that even in the absence of mitochondrial localization the shape of the aggregates is not altered in these deletion strains! How do the authors explain this if mitochondrial surface sphingolipids are important for IB maturation? (the primary screen found that sphingolipid biosynthesis promotes the formation of Class I IBs).

      We agree that mutation in one mitochondrial binding protein only a partial loss in shape/localization, and we have replaced “association” with “surrounding” in the manuscript. Please see lines 163-166 on page 6 in the revised version. In mutants that interact with SY1, we counted the proportion of Class 3 aggregates formed by SY1 and found an increase in the proportion of SY1 Class 3 aggregates in the deletion mutants compared to controls, partially lost interaction of SY1 with mitochondria has effect on shape of aggregates, as detailed in line 184 on page 7 and Figure 4-figure supplement 1D. We think that SY1 interactions with mitochondrial proteins are important for the localization of SY1 IB in mitochondria, whereas sphingolipids play an important role in facilitating the formation of Class 1 IBs from Class 3 aggregates.

      b. What happens to the toxicity when the aggregates are not localized on mitochondria?

      We thank the reviewer for the comments, however to investigate this issue, since a single mutant can only partially affect the phenotype, it may be necessary to construct groups of mutants of different genes to observe the effect, which we will further elucidate in our future studies. What we want to show in this work is that SY1 achieves binding to mitochondria by interacting with these mitochondrial proteins.

      c. It is important to note that sphingolipids may affect the whole process indirectly by altering pathways involved in protein quality control or UPR. UPR may regulate the maturation of IBs. It is therefore important to test if any of the effects seen could be of direct consequence.

      We agree with the reviewer's comments, but there was no significant enrichment for protein quality control or UPR-related pathways in our genome-wide screen, so it is unlikely that sphingolipids indirectly cause maturation of IBs by affecting these two pathways. We addressed this issue in our discussion. Please see lines 325-328 on page 12 in the revised version.

      d. In Figure 4D, the authors find SY1 when they pull down Tom70, Tom37 or Tim44. Tim44 is a protein found in the mitochondrial matrix, how do the authors explain that this protein is interacting with a protein outside the mitochondrial outer membrane?

      This interaction could be potentially due to that some of the soluble SY1 enter the mitochondrial matrix and interact with Tim44.

      e. Is it possible that the authors are immunoprecipitating SY1 since IBs have some amount of unimported mitochondrial proteins in aggregates formed during proteotoxic stress (https://doi.org/10.1073/pnas.2300475120) (Liu et al. 2023).

      Our Co-IP experiments were performed in the soluble state supernatant, so mitochondrial proteins in aggregates were not detected.

      f. Line 261 (Discussion): Does deletion of Tom70 or one of the anchors increase Class III aggregation and increase toxicity? Without this, it is hard to say if mitochondria are involved in detoxification.

      We thank the reviewer for the comments, please see our response to comment 3b.

      (4) This fuels the loss of mitochondrial function.

      a. Line 218-219: Although the change is significant, the percentage change is very slight. Is this difference enough to be of physiological relevance in mitochondrial function? In our hands, the DCF fluorescence is much more variable.

      We agree with the reviewer that there is a small difference (but significant). To which extend such a difference be of physiological relevance in mitochondrial function need to be further investigated.

      b. Is SY1-induced loss of mitochondrial function less in knockouts of Tom70 or the other ones found to be important for localizing the SY1 aggregate to mitochondria?

      We examined mitochondrial membrane potential (indicated by Rho 123 fluor intensity) in tom70Δ, tom37Δ and control his3Δ strains and found that the knocking out of Tom70 or Tom37 reduced the mitochondrial toxicity caused by SY1 expression. Please see lines 212-214 on page 8 in the revised version, and Figure 5-figure supplement 2.

      (5) Mitochondrial function is further abrogated when there is a block in sphingolipid biosynthesis.

      a. Myriosin acted like the deletion strains that showed less structured aggregates. There were more aggregates (Class 3) but visually they seemed to be spread apart. The first comment (#2A) on aggregate classes and their interaction with mitochondria may become relevant here.

      According to a recent review article (https://doi.org/10.3389/fcell.2023.1302472), sphingolipids are present in the mitochondrial membrane, bind to many mitochondrial proteins and have emerged as key regulators of mitochondrial morphology, distribution and function. Dysregulation of sphingolipid metabolism in mitochondria disrupts many mitochondrial processes, leading to mitochondrial fragmentation, impaired bioenergetics and impaired cellular function. Myriocin treatment, which affects sphingolipid metabolism, causes mitochondria to become more fragmented, which may explain why the aggregates appear visually spread apart. Regarding the interaction with mitochondria, we counted the proportion of SY1 aggregates surrounded by mitochondria after treatment with myriocin, and the results were not significantly different compared to the control. Please see lines 168-169 on page 6 in the revised version, and Figure 4-figure supplement 1C.

      (6) A similar phenomenon is conserved in mammalian cell lines.

      a. Line 225-226: Did the authors confirm that this was the only alteration in the genome? Or did they complement the phenotype, genetically?

      We performed SPTLC2 gene complementation experiments in knockout cell lines and found that SPTLC2 gene complementation was able to reduce the number of cells forming IBs and the percentage of dispersed irregular IBs compared to controls. Please see lines 240-242 on page 9 in the revised version, and Figure 6-figure supplement 2B.

      b. Line 241-245: One of the significant phenotypes observed by downregulating sphingolipid biosynthesis in yeast and mammalian cells, was the increase in the number of aggregates. This is not shown in myriocin treatment in mammalian cells. This needs to be shown to the main concordance with the original screen and the data presented with the KO mammalian cell line.

      Please see Figure 7-figure supplement 1A for the data on the proportion of cells forming SY1 IBs after myriocin treatment in mammalian cells, and myriocin treatment in mammalian cells was the same as in the KO mammalian cell line.

      Minor Comments:

      Line 273-275: How is this statement connected to the previous statement? Was it observed that aggregate fusion was advantageous to the cells?

      Yes, aggregate/oligomer fusion is advantageous to the cells, and we have modified the previous statement. Please see line 280 on page 10 in the revised version.

      Line 293-294: I am not sure I understand this statement.

      We have modified this statement. Please see lines 302-303 on page 11 in the revised version.

      Line 295-296: But the authors have commented at multiple places that mitochondria detoxify the cell from SY1 aggregates. I find this link fascinating and worth investigating. Most of the current work has some known links in literature (not everything). The mitochondrial connection being the most fascinating one.

      We have removed this sentence. We have added a validation experiment for the role of mitochondrial activity in SY1 IB maturation in the revised version.

      Line 318: Do the authors mean: The open question is...

      Thanks to the reviewer, we have corrected it.

      Response to Reviewer #2 comments:

      I recommend considering live cell microscopy to analyze whether sphingolipid-dependent formation of SY1 IB takes place at the mitochondrial outer membrane. The IBs could also be produced at other membranes and then transported to the mitochondrial outer membrane for storage.

      As shown in Figure 4A, SY1 IB primarily interacts with mitochondria.

      I recommend analyzing whether mitochondrial activity is needed for sphingolipid-dependent SY1 IB formation. Are these IBs localized to mitochondrial membrane solely as scaffold or are these organelles needed to provide the energy for driving IB formation in concert with sphingolipids? This point could be addressed with rho0 strains lacking mitochondrial DNA.

      We thank the reviewer for this recommendation. We expressed SY1 protein in BY4741 rho0 strain as suggested and found that the maturation and mitochondrial surrounding state of SY1 IB was not affected by mitochondrial activity. Please see lines 185-187 on page 7 in the revised version, and Figure 4-figure supplement 1E and 1F.

      The authors should be more precise in the statistical methods used in their study (method, pre-/post-tests, number of replicates...).

      We thank the reviewer for the comment and we have provided a more precise description of the statistical methods. Please see lines 531-534 on page 19 and figure legends in the revised version.

    1. eLife assessment

      This work contributes to the study of H3-K27M mutated pediatric gliomas. It convincingly demonstrates that the concomitant targeting of histone deacetylases (HDACs) and the transcription factor MYC results in a notable reduction in cell viability and tumor growth. This reduction is linked to the suppression of critical oncogenic pathways, particularly mTOR signaling, emphasizing the role of these pathways in the disease's pathogenesis. The current version of the manuscript is important because it unveils a vulnerability from dual targeting HDACs and MYC in the context of pediatric gliomas. This work will be of interest to cancer epigenetics and therapeutics research, with a focus on the neuro-oncology field.

    2. Reviewer #2 (Public Review):

      This study by Algranati et al. is a important contribution to our understanding of H3-K27M pediatric gliomas. It convincingly demonstrates that the concomitant targeting of histone deacetylases (HDACs) and MYC, through a combination therapy of Sulfopin and Vorinostat, results in a notable reduction in cell viability and tumor growth. This reduction is linked to the suppression of critical oncogenic pathways, particularly mTOR signaling, emphasizing the role of these pathways in the disease's pathogenesis. The manuscript is a step forward in the field, as it unveils a vulnerability from dual targeting HDACs and MYC in the context of pediatric gliomas.

      Comments on revised version

      The authors have nicely explained their rationale for dose selection, treatment timing, and the relationship between MYC expression and sensitivity to the combined treatment. They have also clarified the experimental conditions for the in vitro and in vivo studies, ensuring consistency across the various analyses.

      Overall, the authors have been responsive to the reviewers' comments and have made appropriate revisions to improve the clarity and robustness of their study.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This is an interesting study that utilizes a novel epigenome profiling technology (single molecule imaging) in order to demonstrate its utility as a readout of therapeutic response in multiple DIPG cell lines. Two different drugs were evaluated, singly and in combination. Sulfopin, an inhibitor of a component upstream of the MYC pathway, and Vorinostat, an HDAC inhibitor. Both drugs sensitized DIPG cells, but high (>10 micromolar) concentrations were needed to achieve half-maximal effects. The combination seemed to have some efficacy in vivo, but also produced debilitating side-effects that precluded the measurement of any survival benefit.

      We thank the reviewer for deeply evaluating our work and acknowledging the use of multiple experimental strategies to explore the effect of combination therapy on DMG cells. Of note, all mice in our experiment experienced deterioration (including the control mice and those treated with single agents). Thus, it is not the combination of drugs that led to the debilitating side-effects; the mice deteriorated due to the extremely aggressive tumor cells, forming relatively large tumors prior to the treatment onset, calling for further optimization of the therapeutic regime.

      We modified the text in the results section to clarify this point (lines 238-241): “This rapid deterioration is likely a result of the aggressiveness of the transplanted tumors and does not represent side effects of the treatment, as mice from all groups, including the non-treated mice, showed similar signs of deterioration”.  

      We also elaborate on this in the discussion (lines 272-276): “Notably, despite a significant reduction in tumor size in-vivo, the combined treatment did not increase mice survival. This is perhaps due to the relatively large tumors already formed at the onset of treatment, leading to rapid deterioration of mice in all experimental groups. Thus, further optimization of the modeling system and therapeutic regime is needed.” We truly hope that further studies will allow better assessment of this drug combination in various models.

      Strengths:

      Interesting use of a novel epigenome profiling technology (single molecule imaging).

      Weaknesses:

      The use of this novel imaging technology ultimately makes up only a minor part of the study. The rest of the results, i.e. DIPG sensitivity to HDAC and MYC pathway inhibition, have already been demonstrated by others (Grasso Monje 2015; Pajovic Hawkins 2020, among others). The drugs have some interesting opposing effects at the level of the epigenome, demonstrated through CUT&RUN, but this is not unexpected in any way. The drugs evaluated here also didn't have higher efficacy, or efficacy at especially low concentrations, than inhibitors used in previous reports. The combination therapy attempted here also caused severe side effects in mice (dehydration/deterioration), such that an effect on survival could not be determined. I'm not sure this study advances knowledge of targeted therapy approaches in DIPGs, or if it iterates on previous findings to deliver new, or more efficient, mechanistic or therapeutic/pharmaclogic insights. It is a translational report evaluating two drugs singly and in combination, finding that although they sensitise cells in vitro, efficacy in vivo is limited at best, as this particular combination cannot progress to human translation.

      We thank the reviewer for pointing out the strengths and weaknesses of our work. As far as we know, while many studies demonstrated upregulation of the MYC pathway in DIPG, this is the first study that shows inhibition of this pathway (via PIN1) as a therapeutic strategy. While it is clear from the literature that MYC inhibition may pose therapeutic benefit, the development of potent MYC inhibitors is highly challenging due to its structure and cellular localization. Of note, in the 2020 paper, Pajovic and colleagues inhibited MYC by transfecting the cells with a plasmid expressing a specific inhibitory MYC peptide (Omomyc); while this strategy works well for cell cultures, the clinical translation requires different delivery strategies. Sulfopin is a small molecule inhibitor that can be used in-vivo and potentially in clinical studies. Thus, we believe that our study offers a novel strategy, as well as mechanistic insights, regarding the potential use of Sulfopin and Vorinostat to treat DIPG.

      As noted above, the combination therapy did not cause side effects, but rather the aggressiveness of the tumors. We did not notice specific toxicity in the mice treated with Sulfopin alone, or the combined treatment. Furthermore, Dubiella et al. extensively examined toxicity issues and did not observe adverse effects or weight loss when administrating Sulfopin in a dose of 40 mg kg–1.

      Optimization of the model and treatment regime (# of cells injected, treatment starting point, etc.) may have allowed us to reveal survival benefits. Yet, these are highly complicated and expensive experiments; unfortunately, we did not have the resources to perform them within the scope of this revision. Importantly, within the current manuscript, we show the effect of this drug combination in reducing the growth of DMG cells in-vitro and in-vivo, laying the framework for follow-up exploration in future studies. Furthermore, the epigenetic and transcriptomic profiling shed light on the molecular mechanisms that drive these aggressive tumors.

      Reviewer #2 (Public Review):

      Summary:

      The study by Algranati et al. introduces an exciting and promising therapeutic approach for the treatment of H3-K27M pediatric gliomas, a particularly aggressive brain cancer predominantly affecting children. By exploring the dual targeting of histone deacetylases (HDACs) and MYC activation, the research presents a novel strategy that significantly reduces cell viability and tumor growth in patient-derived glioma cells and xenograft mouse models. This approach, supported by transcriptomic and epigenomic profiling, unveils the potential of combining Sulfopin and Vorinostat to downregulate oncogenic pathways, including the mTOR signaling pathway. While the study offers valuable insights, it would benefit from additional clarification on several points, such as the rationale behind the dosing decisions for the compounds tested, the specific contributions of MYC amplification and H3K27me3 alterations to the observed therapeutic effects, and the details of the treatment protocols employed in both in-vitro and in-vivo experiments.

      We thank the reviewer for evaluating our work and recognizing its potential for the DMG research field. We address in detail below the important comments regarding the treatment protocols and dosing decisions.

      Clarification is needed on how doses were selected for the compounds in Figure S2A and throughout the study. Understanding the basis for these choices is crucial for interpreting the results and their potential clinical relevance. IC50s are calculated for specific patient derived lines, but it is not clear how these are used for selecting the dose.

      We thank the reviewer for these important comments. For the epigenetic drugs shown in Figure S2A, we followed published experimental setups; for EPZ6438, GSKJ4, Vorinostat and MM-102 we chose the treating concentrations according to Mohammad et al. 2017, Grasso et al. 2015 and Furth et al. 2022, accordingly. For Sulfopin, we conducted a dedicated dose curve analysis (shown in Figure 1E), indicating only a mild effect on viability and relatively high IC-50 values as a single agent. Since we aimed to test the ability of a combined treatment to additively reduce viability, we used a sub-IC50 concentration for Sulfopin in these experiments. We added this information in lines 123 and 131-132.

      Finally, following the results obtained in the experiment shown in Figure S2A, we conducted a full dose-curve analysis of the combined treatment in multiple DMG patient-derived cells (figure 2B and S2C), to identify a combination of concentrations that provides an additive effect (as indicated by BLISS index in figure 2C and S2E). Of note, for downstream analysis of the molecular mechanisms underlying the treatment response (RNAseq and Cut&Run), we intentionally used concentrations that provide an additive BLISS index, but do not completely abolish the culture, to allow for cellular analysis (i.e. 10uM Sulfopin and 1uM Vorinostat).

      The introduction mentions MYC amplification in high-grade gliomas. It would be beneficial if the authors could delineate whether the models used exhibit varying degrees of MYC amplification and how this factor, alongside differences in H3K27me3, contributes to the observed effects of the treatment.

      The reviewer highlights an important part of our study relating to the MYC-dependent sensitivity of the proposed treatment combination. Since high expression of MYC can be mediated by different molecular mechanisms and not only genomic amplification, we directly quantified mRNA levels of MYC by qPCR (shown in figure S2G) in order to explore its relationship with cellular response to Sulfopin and Vorinostat. Indeed, cultures that express high levels of MYC mRNA were more sensitive to Sulfopin treatment alone (figure S1P) and to the combined treatment (figure 2D-E). We also relate to these findings in lines 103-106 and 142-147 of the results section. Importantly, in cultures that express high levels of MYC (SU-DIPG13 as an example), we see downregulation of MYC targets upon the combined treatment, supporting the notion that this treatment affects viability by attenuation of MYC signaling.

      In Figure 2A, the authors outline an optimal treatment timing for their in vitro models, which appears to be used throughout the figure. It would be helpful to know how this treatment timing was selected and also why Sulfopin is dosed first (and twice) before the vorinostat. Was this optimized?

      As PIN1 regulates the G2/M transition, its inhibition by Sulfopin delays cell cycle progression (Yeh et al. 2007). Thus, in order to observe a strong viability difference in culture, a prolonged treatment period of 8-9 days is required (Dubiella et al., 2021). To maintain an active concentration of the drug during this long time period, we added a Sulfopin pulse (2nd dose) to achieve a stronger effect on cell viability. We and others noticed that, unlike Sulfopin, the effect of Vorinostat on viability is rapid and can be clearly seen after 2-3 days of treatment. Thus, we added this drug only after the 2nd dose of Sulfopin. We now relate to the mode of action of Sulfopin in lines 79-81.

      It should be clarified whether the dosing timeline for the combination drug experiments in Figure 3 aligns with that of Figure 2. This information is also important for interpreting the epigenetic and transcriptional profiling and the timing should be discussed if they are administered sequentially (also shown in Figure 2A).I have the same question for the mouse experiments in Figure 4.

      The reviewer is correct that this information is critical for evaluating the results. In order to link the expression changes to the epigenetic changes, we kept the same experimental conditions in both the Cut&Run and RNA-seq experiments (shown in figures 2-3). We added this information to the text in line 184.

      For the in-vivo studies of HDAC inhibition (Figure 4), we followed published protocols (Ehteda et al. 2021). In these experiments both drugs were administrated simultaneously every day. We added this information to the text in line 231-232.  It may be that changing the admission regime may improve the efficacy of the drug combination, which remains to be tested in future studies.

      The authors mention that the mice all had severe dehydration and deterioration after 18 days. It would be helpful to know if there were differences in the side effects for different treatment groups? I would expect the combination to be the most severe. This is important in considering the combination treatment.

      As noted in our response to Reviewer #1, all mice in our experiment experienced deterioration (including the control mice and those treated with single agents- we could not observe any differences between the groups). This is due to the extremely aggressive tumor cells, forming relatively large tumors prior to the treatment onset, calling for further optimization of the system and therapeutic regime (# of cell injected, treatment starting point, etc.). Unfortunately, this model is very challenging (especially the injection of cells to the pons of the mice brains, which requires unique expertise and is associated with mortality of some of the mice). Thus, these are highly complicated and expensive experiments; unfortunately, we did not have the resources to repeat and optimize the treatment protocol within the scope of this revision. Of note, Dubiella et al. extensively examined toxicity issues and did not observe adverse effects or weight loss when administrating Sulfopin in a dose of 40 mg kg–1. In our model, the side effects were caused by the tumors rather than the drugs.

      Minor Points:

      (1) For Figure 1F, reorganizing the bars to directly compare the K27M and KO cell lines at each dose would improve readability of this figure.

      We have changed figure 1F as the reviewer suggested.

      (2) In Figure 4D, it would be helpful to know how many cells were included (or a minimum included) to calculate the percentages.

      We added the number of H3-K27M positive cells detected per FOV to the figure legend and method section (n=13-198 cells per FOV). Of note, while we analyzed similar-sized FOVs, the number of tumor cells varied between the groups, with the treated group presenting a lower number of H3-K27M cells (due to the effect of the treatment on tumor growth). To account for this difference, we calculated the portion of mTOR-positive cells out of the tumor cells.   

      Reviewer #3 (Public Review):

      Summary:

      The authors use in vitro grown cells and mouse xenografts to show that a combination of drugs, Sulfopin and Vorinostat, can impact the growth of cells derived from Diffuse midline gliomas, in particular the ones carrying the H3 K27M-mutations (clinically classified as DMG, H3 K27M-mutant). The authors use gene expression studies, and chromatin profiling to attempt to better understand how these drugs exert an effect on genome regulation. Their main findings are that the drugs reduce cell growth in vitro and in mouse xenografts of patient tumours, that DMG, H3 K27M-mutant tumours are particularly sensitive, identify potential markers of gene expression underlying this sensitivity, and broadly characterize the correlations between chromatin modification changes and gene expression upon treatment, identifying putative pathways that may be affected and underlie the sensitive (and thus how the drugs may affect the tumour cell biology).

      Strengths:<br /> It is a neat, mostly to-the-point work without exploring too many options and possibilities. The authors do a good job not overinterpreting data and speculating too much about the mechanisms, which is a very good thing since the causes and consequences of perturbing such broad epigenetic landscapes of chromatin may be very hard to disentangle. Instead, the authors go straight after testing the performance of the drugs, identifying potential markers and characterizing consequences.

      Weaknesses:

      If anything, the experiments done on Figure 3 could benefit from an additional replicate.<br />

      We thank the reviewer for evaluating our work, and for the positive and insightful comments.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Perhaps a more substantial drug screen, or CRISPR screen, that utilises single molecule imaging as a readout would identify pharmacologic candidates that are either more effective, or novel.

      While out of scope for the current study, this is a highly interesting suggestion, which will be considered in future studies. Here, we focused on the potential use of the novel MYC inhibitor, Sulfopin. While the dependency of DMG cells on MYC signaling has been documented, to the best of our knowledge, pharmacological inhibition of MYC has not been tested for this disease due to the severe lack of potent MYC inhibitors. We show preliminary evidence for the use of this inhibitor, in combination with HDAC inhibition, to attenuate DMG growth in-vitro and in-vivo.  

      Reviewer #2 (Recommendations For The Authors):

      In Figure 1B, it is hard to tell if there are error bars for HSP90 and E2F2. Is there a potential error here? Seems unlikely to not have an error with a RT-qPCR?

      We thank the reviewer for the careful evaluation of the figures. We included error bars for all genes shown in Figure 1B. We have now increased the line width with the hope of making this information more accessible. As stated in the figure legend, these error bars represent the standard deviation of two technical repeats.

      I noticed that many experiments only had technical replicates. Incorporating biological (independent) replicates, where feasible, would strengthen the study's findings.

      We agree with the reviewer regarding the importance of biological replicates. While some of the panels present error estimates based on technical repeats, the main results were repeated independently with complementary approaches or various biological systems for validation.

      The RNAseq analysis presented in figure 1 was conducted in triplicates and then independently validated by qPCR (Figure 1A-B). Similarly, the transcriptomic analysis presented in figures 2G-I was verified by both western blot (figure 2J) and qPCR (figure S2O). Of note, this later validation was conducted for two different DMG-patient derived cultures.

      To verify the robust effects on cellular viability, we analyzed the response to each drug and the combination on eight different DMG-patient-derived cultures, each representing a completely independent experiment. We show very similar trends in response to treatment between cultures that share the same H3-K27M variant. Thus, while for each culture technical repeats are shown, we provide multiple, independent repeats by examining the different cultures. Similarly, in figure 1F we examined the dependency of Sulfopin treatment on the expression of the H3-K27M oncohistone in two independent isogenic systems.

      Reviewer #3 (Recommendations For The Authors):

      A few questions and suggestions:

      (1) To avoid confusion is important to state if the cells used in each experiment are or not K27M mutants (e.g. SU-DIPG13 on line 63).

      We thank the reviewer for pointing this out and have now added this information when appropriate across the manuscript.

      2) Line 72 - confirming epigenetic silencing of these genes upon PIN1 inhibition (Fig. 1C, S1D)

      Considering that the mechanism of down regulation of MYC targets is likely H3K27me3-independent if it is also happening in DMG H3 K27M-mutants (high H3K27me3 here may rather be a consequence of less MYC binding?), I would strike this sentence out and just point out the correlation between lower expression and higher H3K27me3.

      We agree with the reviewer that the exact molecular mechanism mediating the silencing is yet to be characterized. We have modified the text in line 72 accordingly.

      3) (line 78) Are MYC targets also down regulated in Sulfopin treated DMG, H3 K27M-mutant lines? Any qPCR or previously done RNA-seq data to use?

      In addition to the extensive analysis done on SU-DIPG13 cells (Figure 1 and S1), in light of the reviewer`s comment we examined specific MYC targets in an additional H3-K27M mutant DMG culture (SU-DIPG6) treated with Sulfopin, followed by qPCR. We observed a mild reduction in two prominent targets, E2F2 and mTOR (new figure S1D). Unfortunately, within this study, we only conducted full RNA-sequencing analysis on SU-DIPG13 cells treated with Sulfopin, and thus, we could not examine the global effect of Sulfopin on the transcriptome of other DMG cultures. This will, of course, be of high interest for future studies.

    1. eLife assessment

      The authors report solid evidence for a valuable set of findings in rats performing a new virtual place-preference task. Temporary pharmacological inhibition targeting the dorsal or intermediate hippocampus disrupted navigation to a goal location in the task, and functional inhibition of the intermediate hippocampus was more detrimental than functional inhibition of the dorsal hippocampus. The work provides novel insights into functional differentiation along the dorsal-ventral axis of the hippocampus.

    2. Reviewer #1 (Public Review):

      Summary:

      The manuscript examines the contribution of dorsal and intermediate hippocampus to goal-directed navigation in a wide virtual environment where visual cues are provided by the scenery on the periphery of a wide arena. Among a choice of 2 reward zones located near the arena periphery, rats learn to navigate from the center of the arena to the reward zone associated with the highest reward. Navigation performance is largely assessed from the rats' body orientation when they leave the arena center and when they reach the periphery, as well as the angular mismatch between reward zone and the site rats reach the periphery. Muscimol inactivation of dorsal and intermediate hippocampus alters rat navigation to the reward zone, but the effect was more pronounced for the inactivation of intermediate hippocampus, with some rat trajectories ending in the zone associated with the lowest reward. Based on these results, the authors suggest that the intermediate hippocampus is critical especially for navigating to the highest reward zone.

      Strengths:

      - The authors developed an effective approach to study goal-directed navigation in a virtual environment where visual cues are provided by the peripheral scenery.

      - In general, text is clearly written and the figures are well designed and relatively straightforward to interpret, even without reading the legends.

      - An intriguing result, which would deserve to be better investigated and/or discussed, was that rats tended to rotate always in the counterclockwise direction. Could this be because of a hardware bias making it easier to turn left, some aspect of the peripheral landscape, or a natural preference of rats to turn left that is observable (or reported) in real environment?

      - Another interesting observation, which would also deserved to be addressed in the discussion, is the fact that dHP/iHP inactivations produced to some extent consistent shifts in departing and peripheral crossing directions. This is visible from the distributions in Figures 6 and 7, which still show a peak under muscimol inactivation, but this peak is shifted to earlier angles than the correct ones. Such change is not straightforward to interpret, unlike the shortening of the mean vector length.<br /> Maybe rats under muscimol could navigate simply using association of reward zone with some visual cues in the peripheral scene, in brain areas other than the hippocampus, and therefore stopped their rotation as soon as they saw the cues, a bit before the correct angle. While with their hippocampus intact, rats could estimate precisely the spatial relationship between the reward zone and visual cues.

      Weaknesses:

      - I am not sure that the differential role of dHP and iHP for navigation to high/low reward locations is supported by the data. The current results could be compatible with iHP inactivation producing a stronger impairment on spatial orientation than dHP inactivation, generating more erratic trajectories that crossed by chance the second reward zone.

      To make the point that iHP inactivation affects disambiguation of high and low reward locations, the authors should show that the fraction of trajectories aiming at the low reward zone is higher than expected by chance. Somehow we would expect to see a significant peak pointing toward the low reward zone in the distribution of Figures 6-7.

      Review of revised manuscript

      The experimental paradigm and analyses are interesting/novel and generate some intriguing phenomena such as the animals' preference for counterclockwise rotation and the stereotypical trajectory shifts induced by muscimol inactivation. Understanding better the underlying mechanisms of these phenomena and the navigational strategies involved in this apparatus will be important in the future for correctly interpreting inactivation experiments.

      The idea of a differential effect of dMUS and iMUS was toned down in the abstract and other parts of the manuscript, such that the claims now better match the data.

    3. Reviewer #2 (Public Review):

      Summary:

      The aim of this paper was to elucidate the role of the dorsal HP and intermediate HP (dHP and iHP) in value-based spatial navigation through behavioral and pharmacological experiments using a newly developed VR apparatus. The authors inactivated dHP and iHP by muscimol injection and analyzed the differences in behavior. The results showed that dHP was important for spatial navigation, while iHP was critical for both value judgments and spatial navigation. The present study developed a new sophisticated behavioral experimental apparatus and proposed a behavioral paradigm that is useful for studying value-dependent spatial navigation. In addition, the present study provides important results that support previous findings of differential function along the dorsoventral axis of the hippocampus.

    4. Reviewer #3 (Public Review):

      Summary:

      The authors established a new virtual reality place preference task. On the task, rats, which were body-restrained on top of a moveable Styrofoam ball and could move through a circular virtual environment by moving the Styrofoam ball, learnt to navigate reliably to a high-reward location over a low-reward location, using allocentric visual cues arranged around the virtual environment.<br /> The authors also showed that functional inhibition by bilateral microinfusion of the GABA-A receptor agonist muscimol, which targeted the dorsal or intermediate hippocampus, disrupted task performance. The impact of functional inhibition targeting the intermediate hippocampus was more pronounced than that of functional inhibition targeting the dorsal hippocampus.<br /> Moreover, the authors demonstrated that the same manipulations did not significantly disrupt rats' performance on a virtual reality task that required them to navigate to a spherical landmark to obtain reward, although there were numerical impairments in the main performance measure and the absence of statistically significant impairments may partly reflect a small sample size (see under Weaknesses, point 3.).

      Overall, the study established a new virtual-reality place preference task for rats and established that performance on this task requires the dorsal to intermediate hippocampus. It also established that task performance is more sensitive to the same muscimol infusion when the infusion was applied to the intermediate hippocampus, compared to the dorsal hippocampus. The authors suggest that these differential effects of muscimol infusions reflect that dorsal hippocampus is responsible for 'precise' spatial navigation and intermediate hippocampus for place-value associations, but this idea remains to be tested by further studies. In their first revision to the paper, the authors toned down this claim, but I still think it would be good to consider more explicitly potential alternative explanations for the differential effects of dorsal and intermediate muscimol infusions (see under Weaknesses, point 2.).

      Strengths:

      (1) The authors established a new place preference task for body-restrained rats in a virtual environment and, using temporary pharmacological inhibition by intra-cerebral microinfusion of the GABA-A receptor agonist muscimol, showed that task performance requires dorsal to intermediate hippocampus.

      (2) These findings extend our knowledge about place learning tasks that require dorsal to intermediate hippocampus and add to previous evidence that the intermediate hippocampus may be more important than other parts of the hippocampus, including the dorsal hippocampus, for goal-directed navigation based on allocentric place memory.

      (3) The hippocampus-dependent task may be useful for future recording studies examining how hippocampal neurons may support behavioral performance based on place information.

      Weaknesses:

      (1) The new findings do not strongly support the authors' suggestion that dorsal hippocampus is responsible for precise spatial navigation and intermediate hippocampus for place-value associations (e.g., final sentence of the first paragraph of the Discussion). The authors base this claim on differential effects of the dorsal and intermediate hippocampal muscimol infusions on different performance measures on the virtual reality place preference task. More specifically, dorsal hippocampal muscimol infusion significantly increased perimeter crossings and perimeter crossing deviations, whereas other measures of task performance are not significantly changed, including departure direction and visits to the high-value location. However, these statistical outcomes offer only limited evidence that dorsal hippocampal infusion specifically affected the perimeter crossing, without affecting the other measures. Numerically the pattern of infusion effects is quite similar across these various measures: intermediate hippocampal infusions markedly impaired these performance measures compared to vehicle infusions, and the values of these measures after dorsal hippocampal muscimol infusion were between the values in the intermediate hippocampal muscimol and the vehicle condition (Figs 5-7). In my opinion, these findings could reflect that dorsal and intermediate hippocampus play distinct roles, as suggested by the authors, but the findings are also consistent with the suggestion that intermediate hippocampal muscimol had a quantitatively stronger, but qualitatively similar effect to dorsal hippocampal muscimol. However, I am largely content with the authors acknowledging within the paper that their suggestion would need to be confirmed by additional studies.

      Moreover, I do not find it clearly described in the paper which distinct aspects of navigation the departure direction and perimeter crossing deviation measures capture. The authors suggest that departure direction and perimeter crossing deviation are indices of the navigational efficiency and precision of navigation, respectively (e.g., from p. 7, line 195). However, both departure direction and perimeter crossing deviation measure how accurate/precise, in other words 'close to the target', the rat's navigation is. Efficiency of navigation may rather be reflected by the path length taken (a measure that was not reported). It appears to me that a key difference between the two measures is that departure direction measures the rat's direction towards the goal at the beginning of the rat's navigational path, whereas perimeter crossing deviation measures this further toward the end of the navigational path. This would suggest that departure direction may depend more on directional orienting mechanisms early on in the rat's journey, whereas perimeter crossing deviation may also depend on fine-grained place recognition as the rat approaches the goal. Given the fine-grained place representations in the dorsal hippocampus, the latter may, therefore, depend more on the dorsal hippocampus than the former. I think this would fit with the authors' suggestion 'that the dHP represents a fine-scaled spatial map of an environment' (p. 18, first line). If the authors agree with my interpretation of the different measures, they may consider clarifying this in the Results and Discussion sections.

      (2) The claim that the different effects of intermediate and dorsal hippocampal muscimol infusions reflect different functions of intermediate and dorsal hippocampus rests on the assumption that both manipulations inhibit similar volumes of hippocampal tissue to a similar extent, but at different levels along the dorso-ventral axis of the hippocampus. However, this is not a foregone conclusion (e.g., drug spread may differ depending on the infusion site or drug effects may differ due to differential distribution or efficiency of GABA-A receptors), and the authors do not provide direct evidence for this assumption. Therefore, an alternative account of the weaker effects of dorsal compared to intermediate hippocampal muscimol infusions on place-preference performance is that the dorsal infusions affect less hippocampal volume or less markedly inhibit neurons within the affected volume than the intermediate infusions (e.g., due to different drug spread following dorsal and intermediate infusions or due to different distribution or effectiveness of GABA-A receptors in dorsal and intermediate hippocampus). I would recommend that the authors explicitly state this limitation in the limitations section of the Discussion. In their response to my original comments, the authors argue that it is unlikely that muscimol exerts stronger effects in intermediate compared to dorsal hippocampus, based on the finding that in vitro paired pulse inhibition is reduced in ventral compared to dorsal hippocampal slices (Papatheodoropoulos et al., 2002). However, this claim is not strongly supported by the in vitro paired-pulse inhibition findings. First, these findings relate to differences between dorsal and ventral hippocampus, whereas differences between dorsal and intermediate hippocampus were not investigated. Second, reduced paired pulse inhibition may not necessarily reflect reduced GABA-A receptor expression/efficiency (which would be likely to reduce muscimol effects), but may also reflect reduced GABAergic input, which would not be expected to reduce muscimol effects.

      (3) It is good that the authors included a comparison/control experiment using a spherical beacon-guided navigation task, to examine the specific psychological mechanisms disrupted by the hippocampal manipulations. However, the sample size for the comparison experiment (n=5 rats) was lower than for the main study (n=8 rats, and the data shown in Fig. 8 suggest that the comparison task may be affected by the hippocampal manipulations similarly to the place-preference task, albeit less markedly. This effect may well have been significant if the same sample size had been used as in the main experiment. Therefore, I would recommend that the authors acknowledge this limitation in the Discussion (perhaps, in the Limitation section).

    5. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript examines the contribution of the dorsal and intermediate hippocampus to goal-directed navigation in a wide virtual environment where visual cues are provided by the scenery on the periphery of a wide arena. Among a choice of 2 reward zones located near the arena periphery, rats learn to navigate from the center of the arena to the reward zone associated with the highest reward. Navigation performance is largely assessed from the rats' body orientation when they leave the arena center and when they reach the periphery, as well as the angular mismatch between the reward zone and the site rats reach the periphery. Muscimol inactivation of the dorsal and intermediate hippocampus alters rat navigation to the reward zone, but the effect was more pronounced for the inactivation of the intermediate hippocampus, with some rat trajectories ending in the zone associated with the lowest reward. Based on these results, the authors suggest that the intermediate hippocampus is critical, especially for navigating to the highest reward zone.

      Strengths:

      -The authors developed an effective approach to study goal-directed navigation in a virtual environment where visual cues are provided by the peripheral scenery.

      - In general, the text is clearly written and the figures are well-designed and relatively straightforward to interpret, even without reading the legends.

      - An intriguing result, which would deserve to be better investigated and/or discussed, was that rats tended to rotate always in the counterclockwise direction. Could this be because of a hardware bias making it easier to turn left, some aspect of the peripheral landscape, or a natural preference of rats to turn left that is observable (or reported) in a real environment?

      Thank you for the insightful question. As the reviewer mentioned, the counterclockwise rotation behavior was intriguing and unexpected. To answer the reviewer’s question properly, we examined whether such stereotypical turning behavior appeared before the rats acquired the task rule and reward zones in the pre-surgical training phase of the task. Data from the last day of shaping and the first day of the pre-surgical main task day showed no significant difference in the number of trials in which the first body-turn was either clockwise or counterclockwise, suggesting that the rats did not have a bias toward a specific side (p=0.46 for Shaping; p=0.76 for the Main task, Wilcoxon signed-rank test). These results excluded the possibility that there was something in the apparatus's hardware that made the rats turn only to the left. Also, since we used the same peripheral landscape for the shaping and main task, we could assume that the peripheral landscape did not cause movement bias.

      Author response image 1.

      Although it remains inconclusive, we have noticed that some prior studies alluded to a phenomenon similar to this issue, framed as the topic of lateralization or spatial preference by comparing left and right biases. For example, Wishaw et al. (1992) suggested that there was natural lateralization in rats (“Most of the rats displayed either a strong right limb bias or a strong left limb bias.”) but no dominance to a specific side. Andrade et al. (2001) also claimed that “83% of Wistar rats spontaneously showed a clear preference for left or right arms in the T-maze.” However, to the best of our knowledge, there has been no direct evidence that rats have a dominant natural preference only to one side.

      Therefore, while the left-turning behavior remains an intriguing topic for further investigation, we find it difficult to pinpoint the reason behind the behavior in the current study. However, we would like to emphasize that this behavior did not interrupt testing our hypothesis. Nonetheless, we agree with the reviewer’s point that the counterclockwise rotation needs to be discussed more, so we revised the manuscript as follows:

      “To rule out the potential effect of hardware bias or any particular aspect of peripheral landscape to make rats turn only to one side, we measured the direction of the first body-turn in each trial on the last day of shaping and the first day of the main task (i.e., before rats learned the reward zones). There was no significant difference between the clockwise and counterclockwise turns (p=0.46 for shaping, p=0.76 for main task; Wilcoxon signed-rank test), indicating that the stereotypical pattern of counterclockwise body-turn appeared only after the rats learned the reward locations.” (p.6)

      - Another interesting observation, which would also deserve to be addressed in the discussion, is the fact that dHP/iHP inactivations produced to some extent consistent shifts in departing and peripheral crossing directions. This is visible from the distributions in Figures 6 and 7, which still show a peak under muscimol inactivation, but this peak is shifted to earlier angles than the correct ones. Such change is not straightforward to interpret, unlike the shortening of the mean vector length.

      Maybe rats under muscimol could navigate simply by using the association of reward zone with some visual cues in the peripheral scene, in brain areas other than the hippocampus, and therefore stopped their rotation as soon as they saw the cues, a bit before the correct angle. While with their hippocampus is intact, rats could estimate precisely the spatial relationship between the reward zone and visual cues.

      We agree with the possibility suggested by the reviewer. However, although not described in the original manuscript, we performed several different control experiments in a few rats using various visual stimulus manipulations to test how their behaviors change as a result. One of the experiments was the landmark omission test, where one of the landmarks was omitted. The landmark to be made disappear was pseudorandomly manipulated on a trial-by-trial basis. We observed that the omission of one landmark, regardless of its identity, did not cause a specific behavioral change in finding the reward zones, suggesting that the rats were not relying on a single visual landmark when finding the reward zone.

      Author response image 2.

      Therefore, it is unlikely that rats used the spatial relationship between the reward zone and a specific visual cue to solve the task in our study. However, the result was based on an insufficient sample size (n=3), not permitting any meaningful statistical testing. Thus, we have now updated this information in the manuscript as an anecdotal result as follows:

      “Additionally, to investigate whether the rats used a certain landmark as a beacon to find the reward zones, we conducted the landmark omission test as a part of control experiments. Here, one of the landmarks was omitted, and the landmark to be made disappear was pseudorandomly manipulated on a trial-by-trial basis. The omission of one landmark, regardless of its identity, did not cause a specific behavioral change in finding the reward zones, suggesting that the rats were not relying on a single visual landmark when finding the reward zones. The result can be reported anecdotally only because of an insufficient sample size (n=3), not permitting any meaningful statistical testing.” (p.9)

      Weaknesses:

      -I am not sure that the differential role of dHP and iHP for navigation to high/low reward locations is supported by the data. The current results could be compatible with iHP inactivation producing a stronger impairment on spatial orientation than dHP inactivation, generating more erratic trajectories that crossed by chance the second reward zone.

      To make the point that iHP inactivation affects the disambiguation of high and low reward locations, the authors should show that the fraction of trajectories aiming at the low reward zone is higher than expected by chance. Somehow we would expect to see a significant peak pointing toward the low reward zone in the distribution of Figures 6-7.

      We thank the reviewer for the valuable comments. We agree that it is difficult to rigorously distinguish the loss of value representation from spatial disorientation in our experiment. Since the trial ended once the rat touched either reward zone, it was difficult to specify whether they intended to arrive at the location or just moved randomly and arrived there by chance. Moreover, it is possible that the drug infusion did not completely inactivate the iHP but only partially did so.

      To investigate this issue further, we checked whether the distribution of the departure direction (DD) differed between the trials in which rats initially headed north (NW, N, NE) and south (SE, S, SW) at the start. In the manuscript, we demonstrated that DD aligned with the high-value zone, indicating that the rat remembered the scenes associated with the high-value zone (p.8). Based on the rats’ characteristic counterclockwise rotation, the reward zone rats would face first upon starting while heading north would be the high-value zone. On the other hand, the rat would face the low-value reward zone when starting while heading south. In this case, normal rats would inhibit leaving the start zone and rotate further until they face the high-value zone before finally departing the start location. If the iHP inactivation caused a more severe impairment in spatial orientation but not in value representation, it is likely that the iHP-inactivated rats in both north- and south-starting trials would behave similarly with the dHP-inactivated rats, but producing a larger deviation from the high-value zone. However, if the iHP inactivation affected the disambiguation of high and low reward locations, north and south-starting trials would show different DD distributions.

      The circular plots shown below are the DD distributions of dMUS and iMUS. We could see that when they started facing north, iHP-inactivated rats still aligned themselves towards the high-value zone and thus remained spatially oriented, similar to the dHP inactivation session. However, in the south-starting trials, the DD distribution was completely different from the north-starting trials; the rats failed in body alignment towards the high-value zone. Instead, they departed the start point while heading south in most trials. This pattern was not seen in dMUS sessions, even in their south-starting trials, illustrating the distinct deficit caused by iHP inactivation. Additionally, most of the rats with iHP inactivation visited the low-value zone more in south-headed starting trials than in the north-headed trials, except for one rat.

      Author response image 3.

      Furthermore, we would like to clarify that we do not limit the effect of iHP inactivation to the impairment in distinguishing the high and low reward zones. It is possible that iHP inactivation resulted in the loss of a global value-representing map, leading to the impairment in distinguishing both reward zones from other non-rewarded areas in the environment. Figures 6 and 7 implicated this possibility by showing that the peaks are not restricted only to the reward zones. Unfortunately, we cannot rigorously address this in the current study because of the limitations of our experimental design mentioned above.

      Nonetheless, we agree with the reviewer that this limitation needs to be addressed, so we now added how the current study needs further investigation to clarify what causes the behavioral change after the iHP inactivation in the Limitations section (p.21).

      Reviewer #2 (Public Review):

      Summary:

      The aim of this paper was to elucidate the role of the dorsal HP and intermediate HP (dHP and iHP) in value-based spatial navigation through behavioral and pharmacological experiments using a newly developed VR apparatus. The authors inactivated dHP and iHP by muscimol injection and analyzed the differences in behavior. The results showed that dHP was important for spatial navigation, while iHP was critical for both value judgments and spatial navigation. The present study developed a new sophisticated behavioral experimental apparatus and proposed a behavioral paradigm that is useful for studying value-dependent spatial navigation. In addition, the present study provides important results that support previous findings of differential function along the dorsoventral axis of the hippocampus.

      Strengths:

      The authors developed a VR-based value-based spatial navigation task that allowed separate evaluation of "high-value target selection" and "spatial navigation to the target." They were also able to quantify behavioral parameters, allowing detailed analysis of the rats' behavioral patterns before and after learning or pharmacological inactivation.

      Weaknesses:

      Although differences in function along the dorsoventral axis of the hippocampus is an important topic that has received considerable attention, differences in value coding have been shown in previous studies, including the work of the authors; the present paper is an important study that supports previous studies, but the novelty of the findings is not that high, as the results are from pharmacological and behavioral experiments only.

      We appreciate the reviewer's insightful comments. In response, we would like to emphasize that a very limited number of studies investigated the function of the intermediate hippocampus, especially in spatial memory tasks. We tested the differential functions of the dorsal and intermediate hippocampus using a within-animal design and used reversible inactivation manipulation (i.e., muscimol injection) to prevent potential compensation by other brain regions when using irreversible manipulation techniques (i.e., lesion). Also, very few studies have analyzed the navigation trajectories of animals as closely as in the current study. We emphasize the novelty of our study by comparing it with prior studies, as shown below in Table 1.

      Author response table 1.

      Comparison of our study with those from prior studies

      Moreover, to the best of our knowledge, the current manuscript is the first to investigate the hippocampal subregions along the long axis in a VR environment using a hippocampal-dependent spatial memory task. Nonetheless, we agree that the current study has a limitation as a behavior-only experiment. We now have added a comment on how other techniques, such as electrophysiology, would develop our findings in the Limitation section (p.21).

      Reviewer #3 (Public Review):

      Summary:

      The authors established a new virtual reality place preference task. On the task, rats, which were body-restrained on top of a moveable Styrofoam ball and could move through a circular virtual environment by moving the Styrofoam ball, learned to navigate reliably to a high-reward location over a low-reward location, using allocentric visual cues arranged around the virtual environment.

      The authors also showed that functional inhibition by bilateral microinfusion of the GABA-A receptor agonist muscimol, which targeted the dorsal or intermediate hippocampus, disrupted task performance. The impact of functional inhibition targeting the intermediate hippocampus was more pronounced than that of functional inhibition targeting the dorsal hippocampus.

      Moreover, the authors demonstrated that the same manipulations did not significantly disrupt rats' performance on a virtual reality task that required them to navigate to a spherical landmark to obtain reward, although there were numerical impairments in the main performance measure and the absence of statistically significant impairments may partly reflect a small sample size (see comments below).

      Overall, the study established a new virtual-reality place preference task for rats and established that performance on this task requires the dorsal to intermediate hippocampus. They also established that task performance is more sensitive to the same muscimol infusion (presumably - doses and volumes used were not clearly defined in the manuscript, see comments below) when the infusion was applied to the intermediate hippocampus, compared to the dorsal hippocampus, although this does not offer strong support for the authors claim that dorsal hippocampus is responsible for accurate spatial navigation and intermediate hippocampus for place-value associations (see comments below).

      Strengths:

      (1) The authors established a new place preference task for body-restrained rats in a virtual environment and, using temporary pharmacological inhibition by intra-cerebral microinfusion of the GABA-A receptor agonist muscimol, showed that task performance requires dorsal to intermediate hippocampus.

      (2) These findings extend our knowledge about place learning tasks that require dorsal to intermediate hippocampus and add to previous evidence that, for some place memory tasks, the intermediate hippocampus may be more important than other parts of the hippocampus, including the dorsal hippocampus, for goal-directed navigation based on allocentric place memory.

      (3) The hippocampus-dependent task may be useful for future recording studies examining how hippocampal neurons support behavioral performance based on place information.

      Weaknesses:

      (1) The new findings do not strongly support the authors' suggestion that the dorsal hippocampus is responsible for accurate spatial navigation and the intermediate hippocampus for place-value associations.

      The authors base this claim on the differential effects of the dorsal and intermediate hippocampal muscimol infusions on different performance measures. More specifically, dorsal hippocampal muscimol infusion significantly increased perimeter crossings and perimeter crossing deviations, whereas dorsal infusion did not significantly change other measures of task performance, including departure direction and visits to the high-value location. However, these statistical outcomes offer only limited evidence that dorsal hippocampal infusion specifically affected the perimeter crossing, without affecting the other measures. Numerically the pattern of infusion effects is quite similar across these various measures: intermediate hippocampal infusions markedly impaired these performance measures compared to vehicle infusions, and the values of these measures after dorsal hippocampal muscimol infusion were between the values in the intermediate hippocampal muscimol and the vehicle condition (Figures 5-7). Moreover, I am not so sure that the perimeter crossing measures really reflect distinct aspects of navigational performance compared to departure direction and hit rate, and, even if they did, which aspects this would be. For example, in line 316, the authors suggest that 'departure direction and PCD [perimeter crossing deviation] [are] indices of the effectiveness and accuracy of navigation, respectively'. However, what do the authors mean by 'effectiveness' and 'accuracy'? Accuracy typically refers to whether or not the navigation is 'correct', i.e. how much it deviates from the goal location, which would be indexed by all performance measures.

      So, overall, I would recommend toning down the claim that the findings suggest that the dorsal hippocampus is responsible for accurate spatial navigation and the intermediate hippocampus for place-value associations.

      The reviewer mentioned that the statistical outcomes offer limited evidence as the dHP inactivation results were always positioned between the results of the iHP inactivation and controls. However, we would like to emphasize that, projecting to each other, the two subregions are not completely segregated anatomically. It is highly likely this is also true functionally and there should be some overlap in their roles. Considering such relationships between the dHP and iHP, it could be natural to see an intermediate effect after inactivating the dHP, and that is why we focused on the “magnitude” of behavioral changes after inactivation instead of complete dissociation between the two subregions in our manuscript. Unfortunately, because of the nature of the drug infusion study, further dissociation would be difficult, requiring further investigation with different experimental techniques, such as physiological examinations of the neural firing patterns between the two regions. We mentioned this caveat of the current study in the Limitations as follows:

      “However, our study includes only behavioral results and further mechanistic explanations as to the processes underlying the behavioral deficits require physiological investigations at the cellular level. Neurophysiological recordings during VR task performance could answer, for example, the questions such as whether the value-associated map in the iHP is built upon the map inherited from the dHP or it is independently developed in the iHP.” (p.21)

      Regarding the reviewer’s comment on the meaning of measuring the perimeter crossing directions, we would like to draw the reviewer’s attention to the individual trajectories during the iMUS sessions described in Figure 5. Particularly when they were not confident with the location of the higher reward, rats changed their heading directions during the navigation, which resulted in a less efficient route to the goal location. Rats showing this type of behavior tended to hit the perimeter of the arena first before correcting their routes toward the goal zone. In contrast, rats showing effective navigation hardly bumped into the wall or perimeter before hitting the goal zone. Thus, their PCDs matched DDs almost always. When considered together with DD, our PCD measure could tell whether rats not hitting the goal zone directly after departure were impaired in either maintaining the correct heading direction to the goal zone at the start location or orienting themselves to the target zone accurately from the start. Our results suggest that the latter is the case. We included the relevant explanation in the Discussion section as follows:

      “Particularly, rats changed their heading directions during the navigation when they were not confident with the location of the higher reward, resulting in a less efficient route to the goal location. Rats showing this type of behavior tended to hit the perimeter of the arena first before correcting their routes. Therefore, when considered together with DD, our PCD measure could tell that the rats not hitting the goal zone directly after departure were impaired in orienting themselves to the target zone accurately from the start, not in maintaining the correct heading direction to the goal zone at the start location.” (p.19)

      Nonetheless, we agree with the reviewer that the term ‘accuracy’ might be confusing with performance accuracy, so we replaced the term with ‘precision’ throughout the manuscript, referring to the precise targeting of the reward zones.

      (2) The claim that the different effects of intermediate and dorsal hippocampal muscimol infusions reflect different functions of intermediate and dorsal hippocampus rests on the assumption that both manipulations inhibit similar volumes of hippocampal tissue to a similar extent, but at different levels along the dorso-ventral axis of the hippocampus. However, this is not a foregone conclusion (e.g., drug spread may differ depending on the infusion site or drug effects may differ due to differential expression of GABA-A receptors in the dorsal and intermediate hippocampus), and the authors do not provide direct evidence for this assumption. Therefore, a possible alternative account of the weaker effects of dorsal compared to intermediate hippocampal muscimol infusions on place-preference performance is that the dorsal infusions affect less hippocampal volume or less markedly inhibit neurons within the affected volume than the intermediate infusions. I would recommend that the authors briefly consider this issue in the discussion. Moreover, from the Methods, it is not clear which infusion volume and muscimol concentration were used for the different infusions (see below, 4.a.), and this must be clarified.

      We appreciate these insightful comments from the reviewer and agree that we do not provide direct evidence for the point raised by the reviewer. To the best of our knowledge, most of the behavioral studies on the long axis of the hippocampus did not particularly address the differential expression of GABA-A receptors along the axis. We could not find any literature that specifically introduced and compared the levels of expression of GABA-A receptors or the diffusion range of muscimol in the intermediate hippocampus to the other subregions. However, we found that Sotiriou et al. (2005) made such comparisons with respect to the expression of different GABA-A receptors. They concluded that the dorsal and ventral hippocampi have different levels of the GABA-A receptor subtypes. The a1/b2/g2 subtype was dominant in the dorsal hippocampus, while the a2/b1/g2 subtype was prevalent in the ventral hippocampus. Sotiriou and colleagues also mentioned the lower affinity of GABA-A receptor binding in the ventral hippocampus, and this result is consistent with the Papatheodoropoulos et al. (2002) study that showed a weaker synaptic inhibition in the ventral hippocampus compared to the dorsal hippocampus. Papatheodoropoulos et al. speculated differences in GABA receptors as one of the potential causes underlying the differential synaptic inhibition between the dorsal and ventral hippocampal regions. Based on these findings, the same volume of muscimol is more likely to cause a more severe effect on the ventral hippocampus than the dorsal hippocampus. Therefore, we do not believe that the less significant changes after the dorsal hippocampal inactivation were induced by the expression level of GABA-A receptors. Additionally, we have demonstrated in our previous study that muscimol injections in the dorsal hippocampus impair performance to the chance level in scene-based behavioral tasks (Lee et al., 2014; Kim et al., 2012).

      Nonetheless, we mentioned the possibility of differential muscimol expressions between the two target regions. Following the suggestion of the reviewer, we now included this information in the Discussion as follows:

      “Although there is still a possibility that the levels of expression of GABA-A receptors might be different along the longitudinal axis of the hippocampus, …” (p.20)

      Regarding the drug infusion volume and concentration, we included these details in the Methods. Please see our detailed response to 4.a. below.

      (3) It is good that the authors included a comparison/control study using a spherical beacon-guided navigation task, to examine the specific psychological mechanisms disrupted by the hippocampal manipulations. However, as outlined below (4.b.), the sample size for the comparison study was lower than for the main study, and the data in Figure 8 suggest that the comparison task may be affected by the hippocampal manipulations similarly to the place-preference task, albeit less markedly. This would raise the question as to which mechanisms that are common to the two tasks may be affected by hippocampal functional inhibition, which should be considered in the discussion.

      The sample size for the object-guided navigation task was smaller because we initially did not plan the experiment, but later in the study decided to conduct the control test. Therefore, the object-guided navigation task was added to the study design after finishing the first three rats, resulting in a smaller sample size than the place preference task. We included this detail in the manuscript, as follows:

      “Note the smaller sample size in the object-guided navigation task. This was because the task was later added to the study design.” (p.24)

      Regarding the mechanism behind the two different tasks, we did not perform the same heading direction analysis here as in the place preference task because the two tasks have different characteristics such as task complexity. The object-guided navigation task is somewhat similar to the visually guided (or cued) version of the water maze task, which is widely known as hippocampal-independent (Morris et al., 1986; Packard et al., 1989; also see our descriptions on p.15). Therefore, we would argue that the two tasks (i.e., place preference task and object-guided navigation task) used in the current manuscript do not share neural mechanisms in common. Additionally, we confirmed that several behavioral measurements related to motor capacity, such as travel distance and latency, along with the direct hit proportion provided in Figure 8, did not show any statistically significant changes across drug conditions.

      4. Several important methodological details require clarification:

      a. Drug infusions (from line 673):

      - '0.3 to 0.5 μl of either phosphate-buffered saline (PBS) or muscimol (MUS) was infused into each hemisphere'; the authors need to clarify when which infusion volume was used and why different infusion volumes were used.

      We thank the reviewer for carefully reading our manuscript. We were cautious about side effects, such as suppressed locomotion or overly aggressive behavior, since the iHP injection site was close to the ventricle. We were keenly aware that the intermediate to ventral hippocampal regions are sensitive to the drug dosage from our previous experiments. Thus, we observed the rat’s behavior for 20 minutes after drug injection in a clean cage. We started from 0.5 μl, based on our previous study, but if the injected rat showed any sign of side effects in the cage, we stopped the experiment for the day and tried with a lower dosage (i.e., 0.4 μl first, then 0.3 μl, etc.) until we found the right dosage under which the rat did not show any side effect. This procedure is necessary because cannula tip positions are slightly different from rat to rat. When undergoing this procedure, five out of eight rats received 0.4 μl, two received 0.3 μl, and one received 0.5 μl. Still, there was no significant difference in performance, including the high-value visit percentage, departing and perimeter crossing directions, across all dosages. This information is now added in the Methods section as follows:

      “If the rat showed any side effect, particularly sluggishness or aggression, we reduced the drug injection amount in the rat by 0.1 ml until we found the dosage with which there was no visible side effect. As a result, five of the rats received 0.4 ml, two received 0.3 ml, and one received 0.5 ml.” (p.25)

      - I could not find the concentration of the muscimol solution that was used. The authors must clarify this and also should include a justification of the doses used, e.g. based on previous studies.

      Thank you for the suggestion. We used the drug concentration of 1mg/ml, which was adapted from our previous muscimol study (Lee et al., 2014; Kim et al., 2012). The manuscript is now updated, as follows:

      “…or muscimol (MUS; 1mg/ml, dissolved in saline) was infused into each hemisphere via a 33-gauge injection cannula at an injection speed of 0.167 ml/min, based on our previous study (Lee et al., 2014; Kim et al., 2012).” (p.25)

      -  Please also clarify if the injectors and dummies were flush with the guides or by which distance they protruded from the guides.

      The injection and dummy cannula both protruded from the guide cannula by 1 mm, and this information is now added to the Methods section, as follows:

      “The injection cannula and dummy cannula extended 1 mm below the tip of the guide cannula.” (p.25)

      b. Sample sizes: The authors should include sample size justifications, e.g. based on considerations of statistical power, previous studies, practical considerations, or a combination of these factors. Importantly, the smaller sample size in the control study using the spherical beacon-guided navigation task (n=5 rats) limits comparability with the main study using the place-preference task (n=8). Numerically, the findings on the control task (Figure 8) look quite similar to the findings on the place-preference task, with intermediate hippocampal muscimol infusions causing the most pronounced impairment and dorsal hippocampal muscimol infusions causing a weaker impairment. These effects may have reached statistical significance if the same sample size had been used in the place-preference study.

      We set the current sample size for several reasons. First, based on our previous studies, we assumed that eight, or more than six, would be enough to achieve statistical power in a “within-animal design” study. Also, considering the ethical commitments, we tried to keep the number of animals used in the study to the least. Last, our paradigm required very long training periods (3 months on average per animal), so we could not increase the sample size for practical reasons. Regarding the reasons for the smaller sample size for the object-guided navigation task, please see the previous response to 3 above. The manuscript is now revised as follows:

      “Based on our prior studies (Park et al., 2017; Yoo and Lee, 2017; Lee et al., 2014), the sample size of our study was set to the least number to achieve the necessary statistical power in the current within-subject study design for ethical commitments and practical considerations (i.e., relatively long training periods).” (p.22)

      c. Statistical analyses: Why were the data of the intermediate and dorsal hippocampal PBS infusion conditions averaged for some of the analyses (Figure 5; Figure 6B and C; Figure 7B and C; Figure 8B) but not for others (Figure 6A and Figure 7A)?

      The reviewer is correct that we only illustrated the separate dPBS and iPBS data for Figures 6A and 7A. Since the directional analysis is the main focus of the current manuscript, we tried to provide better visualization and more detailed examples of how the drug infusion changed the behavioral patterns between the PBS and MUS conditions in each region. Except for the visualization of DD and PCD, we averaged the PBS sessions to increase statistical power, as described in p.9. We added a detailed description of the reasons for illustrating dPBS and iPBS data separately in the manuscript, as follows:

      “Note that dPBS and iPBS sessions were separately illustrated here for better visualization of changes in the behavioral pattern for each subregion.” (p.12)

      Reviewing Editor (Recommendations For The Authors):

      The strength of evidence rating in the assessment is currently noted as "incomplete." This can be improved following revisions if you amend your conclusions in the paper, including in the title and abstract, such that the paper's major conclusions more closely match what is shown in the Results.

      Following the suggestions of the reviewing editor, we have mentioned the caveats of our study in the Limitations section of our revised manuscript (p.21). In addition, the manuscript has been revised so that the conclusions in the paper match more closely to the experimental results as can been seen in some of the relevant sentences in the abstract and main text as follows:

      “Inactivation of both dHP and iHP with muscimol altered efficiency and precision of wayfinding behavior, but iHP inactivation induced more severe damage, including impaired place preference. Our findings suggest that the iHP is more critical for value-dependent navigation toward higher-value goal locations.” (Abstract; p.2)

      “Whereas inactivation of the dHP mainly affected the precision of wayfinding, iHP inactivation impaired value-dependent navigation more severely by affecting place preference.” (p.5)

      “The iHP causes more damage to value-dependent spatial navigation than the dHP, which is important for navigational precision” (p.12)

      However, we haven’t changed the title of the manuscript as it carries what we’d like to deliver in this study accurately.

      Reviewer #1 (Recommendations For The Authors):

      - What were the dimensions of the environment? What distance did rats typically run to reach the reward zone? A scale bar would be helpful in Figure 1.

      We used the same circular arena from the shaping session, which was 1.6 meters in diameter (p.23), and the shortest path between the start location and either reward zone was 0.62 meters. We revised the manuscript for clarification as follows:

      “For the pre-training session, rats were required to find hidden reward zones…, on the same circular arena from the shaping session.” (p.23)

      “Therefore, the shortest path length between the start position and the reward zone was 0.62 meters.” (p.23)

      We also added a scale bar in Figure 1C for a better understanding.

      - Line 169: "The scene rotation plot covers the period from the start of the trial to when the rat leaves the starting point at the center and the departure circle (Figure 2B)."

      The sentence is unclear. Maybe it should be "... from the start of the trial to when the rat leaves the departure circle”.

      The sentence has been revised following the reviewer's suggestion. (p.7)

      - Line 147: "First, they learned to rotate the spherical treadmill counterclockwise to move around in the virtual environment (presumably to perform energy-efficient navigation)."

      It is not clear from this sentence if rats naturally preferred the counterclockwise direction or if the counterclockwise direction was a task requirement.

      We now clarified in our revised manuscript that it was not a task requirement to turn counterclockwise, as follows:

      “First, although it was not required in the task, they learned to rotate the spherical treadmill counterclockwise…” (p.6)

      - Line 149: "Second, once a trial started, but before leaving the starting point at the center, the animal rotated the treadmill to turn the virtual environment immediately to align its starting direction with the visual scene associated with the high-value reward zone."

      The sentence is unclear. Maybe "Second, once a trial started, the animal rotated the treadmill immediately to align its starting direction with the visual scene associated with the high-value reward zone.”

      We have updated the description following the suggestion. (p.6)

      Reviewer #2 (Recommendations For The Authors):

      - There are some misleading descriptions of the conclusion of the results in this paper. In this study, the functions of (a) selection of high-value target and (b) spatial navigation to the target were assessed in the behavioral experiments. The results of the pharmacological experiments showed that dHP inactivation impaired (b) and iHP inactivation impaired both (a) and (b) (Figures 5 B & D). However, the last sentence of the abstract states that dHP is important for the functions of (a) and iHP for (b). There are several other similar statements in the main text. Since the separation of (a) and (b) is an important and original aspect of this study, the description should clearly show the conclusion that dHP is important for (a) and iHP is important for both (a) and (b).

      Related to the above, the paragraph title in the Discussion "The iHP may contain a value-associated cognitive map with reasonable spatial resolution for goal-directed navigation (536-537)" is also somewhat misleading: "with reasonable resolution for goal-directed behavior" seems to reflect the results of an object-guided navigation task (Figure 8). However, the term "goal-directed behavior" is also used for value-dependent spatial navigation (i.e., the main task), which causes confusion. I would like to suggest clarifying the wording on this point.

      First, we need to correct the reviewer’s statement regarding our descriptions of the results. As the reviewer mentioned, our results indicated that the dHP inactivation impaired (b) but not (a), while the iHP inactivation impaired both (a) and (b). Regarding the iHP inactivation result, we focused on the impairment of (a) since our aim was to investigate spatial-value association in the hippocampus. Also, it was more likely that (a) affected (b), but not the other way, because (a) remained intact when (b) was impaired after dHP inactivation. We emphasized this difference between dHP and iHP inactivation, which was (a). Therefore, we mentioned in the last sentence of the abstract that the dHP is important for (b), which is the precision of spatial navigation to the target location, and the iHP is critical for (a).

      Moreover, we would like to clarify that we were not referring to the object-guided navigation task in Figure 8 in the phrase ‘with a reasonable spatial resolution for goal-directed navigation.’ Please note that the object-guided navigation task did not require fine spatial resolution to find the reward. The phrase instead referred to the dHP inactivation result (Figure 5 and 6), where the rats could find the high-value zone even with dHP inactivation, although the navigational precision decreased. Nonetheless, we agree with the reviewer for the confusion that the title might cause, so now have updated the title as follows:

      “The iHP may contain a value-associated cognitive map with reasonable spatial resolution for value-based navigation” (p.19)

      - As an earlier study focusing on the physiology of iHP, Maurer et al, Hippocampus 15:841 (2005) is also a pioneering and important study, and I suggest citing it.

      Thank you for the suggestion. We included the Maurer et al. (2005) study in the Introduction section as follows:

      “…Specifically, there is physiological evidence that the size of a place field becomes larger as recordings of place cells move from the dHP to the vHP (Jung et al., 1994; Maurer et al., 2005; Kjelstrup et al., 2008; Royer et al., 2010).” (p.4)

      - One of the strengths of this paper is that we have developed a new control system for the VR navigation task device, but I cannot get a very detailed description of this system in the Methods section. Also, no information about the system control has been uploaded to GitHub. I would suggest adding a description of the manufacturer, model number, and size of components, such as a rotary encoder and ball, and information about the software of the control system, with enough detail to allow the reader to reconstruct the system.

      We have now added detailed descriptions of the VR system in the Methods section (see “2D VR system). (p.22)

      Reviewer #3 (Recommendations For The Authors):

      (1) Some comments on specific passages of text:

      Lines 87 to 89: 'Surprisingly, beyond the recognition of anatomical divisions, little is known about the functional differentiation of subregions along the dorsoventral axis of the hippocampus. Moreover, the available literature on the subject is somewhat inconsistent.'

      I would recommend to rephrase these statements. Regarding the first statement, there is substantial evidence for functional differentiation along the dorso-ventral axis of the hippocampus (e.g., see reviews by Moser and Moser, 1998, Hippocampus; Bannerman et al., 2004, Neurosci Biobehav Rev; Bast, 2007, Rev Neurosci; Bast, 2011, Curr Opin Neurobiol; Fanselow and Dong, 2010, Neuron; Strange et al., 2014, Nature Rev Neurosci). Regarding the second statement, the authors may consider being more specific, as the inconsistencies demonstrated seem to relate mainly to the hippocampal representation of value information, instead of functional differentiation along the dorso-ventral hippocampal axis in general.

      We agree with the reviewer that the abovementioned statements need further clarification. The manuscript is now revised as follows:

      “Surprisingly, beyond the recognition of anatomical divisions, the available literature on the functional differentiation of subregions along the dorsoventral axis of the hippocampus, particularly in the context of value representation, is somewhat inconsistent.” (p.4)

      Lines 92 to 93: 'Thus, it has been thought that the dHP is more specialized for precise spatial representation than the iHP and vHP.'

      I think 'fine-grained' may be the more appropriate term here. Also, check throughout the manuscript when referring to the differences of spatial representations along the hippocampal dorso-ventral axis.

      Thank you for the insightful suggestion. We changed the term to ‘fine-grained’ throughout the manuscript, as follows:

      “Thus, it has been thought that the dHP is more specialized for fine-grained spatial representation than the iHP and vHP.” (p.4)

      “Consequently, the fine-grained spatial map present in the dHP…” (p.20)

      Line 217: well-'trained' rats?

      We initially used the term ‘well-learned’ to focus on the effect of learning, not training. Please note that the rats were already adapted to moving freely in the VR environment during the Shaping sessions, but the immediate counterclockwise body alignment only appeared after they acquired the reward locations for the main task. Nonetheless, we agree that the term might cause confusion, so we revised the manuscript as the reviewer suggested, as follows:

      “This implies that well-trained rats aligned their bodies more efficiently…” (p.8)

      Lines 309 to 311: 'Taken together, these results indicate that iHP inactivation severely damages normal goal-directed navigational patterns in our place preference task.'

      Consider to mention that dHP inactivation also causes impairments, albeit weaker ones.

      We thank the reviewer for the suggestion. We revised the manuscript by mentioning dHP inactivation as follows:

      “Taken together, these results indicate that iHP inactivation more severely damages normal goal-directed navigational patterns than dHP inactivation in our place-preference task.” (p.11-12)

      Lines 550 to 552: 'The involvement of the iHP in spatial value association has been reported in several studies. For example, Bast and colleagues reported that rapid place learning is disrupted by removing the iHP and vHP, even when the dHP remains undamaged (Bast et al., 2009).'

      Bast et al. (2009) did not directly show the role of iHP in 'spatial value associations'. They suggested that the importance of iHP for behavioral performance based on rapid, one-trial, place learning may reflect neuroanatomical features of the intermediate region, especially the combination of afferents that could convey the required fine-grained visuo-spatial information with relevant afferent and efferent connections that may be important to translate hippocampal place memory into appropriate behavioral performance (this may include afferents conveying value information). More recent theoretical and empirical research suggests that projections to the (ventral) striatum may be relevant (see Tessereau et al., 2021, BNA and Bauer et al., 2021, BNA).

      We appreciate the reviewer for this insightful comment. We agree with the reviewer that Bast et al. (2009) did not directly mention spatial value association; however, learning a new platform location needs an update of value information in the spatial environment. Therefore, we thought the study, though indirectly, suggested how the iHP contributes to spatial value associations. Nonetheless, to avoid confusion, we revised the manuscript, as follows:

      “The involvement of the iHP in spatial value association has been reported or implicated in several studies” (p.20)

      (2) Figures and legends:

      Figure 2B: What do the numbers after novice and expert indicate?

      The numbers indicate the rat ID, followed by the session number. We added the details to the Figure legend, as follows:

      “The numbers after ‘Novice’ and ‘Expert’ indicate the rat and session number of the example.” (p.34)

      Figure 2C: Please indicate units of the travel distance and latency measurements.

      The units are now described in the Figure legends, as follows:

      “Mean travel distance in meters and latency in seconds are shown below the VR arena trajectory.” (p.34)

      Figure 3Aii: Here and in other figures - do the vector lengths have a unit (degree?)?

      No, the mean vector length is an averaged value of the resultant vectors, thus having no specific unit.

      Figure 5A: Please explain what the numbers on top of the individual sample trajectories indicate.

      The numbers are IDs for rats, sessions, and trials of specific examples. We added the explanation to the Figure legends, as follows:

      “Numbers above each trajectory indicate the identification numbers for rat, session, and trial.” (p.35)

      (3) Additional comments on some methodological details:

      a. Why was the non-parametric Wilcoxon signed-rank test used for the planned comparison between intermediate and dorsal hippocampal PBS infusions, whereas parametric ANOVA and post-hoc comparisons were used for other analyses? This probably doesn't make a big difference for the interpretation of the present data (as a parametric pairwise comparison would also not have revealed any significant difference between intermediate and dorsal hippocampal PBS infusions), but it would nevertheless be good to clarify the rationale for this.

      We used the non-parametric statistics since our sample size was rather small (n=8) to use the parametric statistics, although we used the parametric ANOVA for some of the results because it is the most commonly known and widely used statistical test in such comparisons. However, we also checked the statistics with the alternatives (i.e., non-parametric Wilcoxon signed-rank test to parametric paired t-test and parametric One-way RM ANOVA with Bonferroni post hoc test to non-parametric Friedman’s test with Dunn’s post hoc test), and the statistical significance did not change with any of the tests. We now added the explanation in the manuscript, as follows:

      “Although most of our statistics were based on the non-parametric tests for the relatively small sample size (n=8), we used the parametric RM ANOVA for comparing three groups (i.e., PBS, dMUS, and iMUS) because it is the most commonly known and widely used statistical test in such comparison. However, we also performed statistical tests with the alternatives for reference, and the statistical significances were not changed with any of the results.” (p.26)

      b. Single housing of rats:

      Why was this chosen? Based on my experience, this is not necessary for studies involving cannula implants and food restriction. Group housing is generally considered to improve the welfare of rats.

      We chose single housing of rats because our training paradigm required precise restrictions on the food consumption of individual rats, which could be difficult in group housing.

      c. Anesthesia:

      Why was pentobarbital used, alongside isoflurane, to anesthetize rats for surgery (line 663)? The use of gaseous anesthesia alone offers very good control of anesthesia and reduces the risk of death from anesthesia compared to the use of pentobarbital.

      Why was anesthesia used for the drug infusions (line 674)? If rats are well-habituated to handling by the experimenter, manual restraint is sufficient for intra-cerebral infusions. Therefore, anesthesia could be omitted, reducing the risk of adverse effects on the experimental rats.

      I do not think that points b. and c. are relevant for the interpretation of the present findings, but the authors may consider these points for future studies to improve further the welfare of the experimental rats.

      We appreciate the reviewer’s careful suggestions. For both the use of pentobarbital during surgery and anesthesia for the drug infusion, we chose to do so to avoid any risk of rats being awake and becoming anxious and to ensure safety during the procedures. They might not be necessary, but they were helpful for the experimenters to proceed with sufficient time to maintain precision. Nonetheless, we agree with the reviewer’s concern, which was the reason why we monitored the rats’ behavior for 20 minutes in the cage after drug infusion to minimize any potential influence on the task performance. We updated the relevant details in the Methods section, as follows:

      “The rat was kept in a clean cage to recover from anesthesia completely and monitored for side effects for 20 minutes, then was moved to the VR apparatus for behavioral testing.” (p.25)

    1. eLife assessment

      This paper provides an important method that uses a computational model to predict photoreceptor currents in mammalian photoreceptors. By inverting the model, visual stimuli can be constructed to produce desired photoreceptor current responses. The authors provide compelling evidence that this approach can disentangle the effects of photoreceptor nonlinearities including light adaptation from downstream nonlinear processing, thus facilitating future studies of the higher visual system.

    2. Reviewer #1 (Public Review):

      Summary:

      This manuscript aims at a quantitative model of how visual stimuli, given as time-dependent light intensity signals, are transduced into electrical currents in photoreceptors of macaque and mouse retina. Based on prior knowledge on the fundamental biophysical steps of the transduction cascade and a relatively small number of free parameters, the resulting model is found to fairly accurately capture measured photoreceptor currents under a range of diverse visual stimuli and with parameters that are (mostly) identical for photoreceptors of the same type.

      Furthermore, as the model is invertible, the authors show that it can be used to derive visual stimuli that result in a desired, predetermined photoreceptor response. As demonstrated with several examples, this can be used to probe how the dynamics of phototransduction affect downstream signals in retinal ganglion cells, for example, by manipulating the visual stimuli in such a way that photoreceptor signals are linear or have reduced or altered adaptation. This innovative approach had already previously been used by the same lab to probe the contribution of photoreceptor adaptation to differences between On and Off parasol cells (Yu et al, eLife 2022), but the present paper extends this by describing and testing the photoreceptor model more generally and in both macaque and mouse as well as for both rods and cones.

      Strengths:

      The presentation of the model is thorough and convincing, and the ability to capture responses to stimuli as different as white noise with varying mean intensity and flashes with a common set of model parameters across cells is impressive. Also, the suggested approach of applying the model to modify visual stimuli that effectively alter photoreceptor signal processing is thought-provoking and should be a powerful tool for future investigations of retinal circuit function. The examples of how this approach can be applied are convincing and corroborate, for example, previous findings that adaptation to ambient light in the primate retina, as measured by responses to light flashes, mostly originates in photoreceptors. Application of the approach by other labs is facilitated by the clear exposition and the listing of obtained optimal parameter values.

      Weaknesses:

      The model is impressive, but not perfect, including some small systematic differences between model predictions and measurements from held-out cells. The deviations likely (partly) reflect differences between cells used for parameter optimization and test cells, as stated in the text (though this is not fully proven), which has to be kept in mind when applying the model, in particular with the listed parameters.

    3. Reviewer #2 (Public Review):

      Summary:

      This manuscript proposes a modeling approach to capture nonlinear processes of photocurrents in mammalian (mouse, primate) rod and cone photoreceptors. The ultimate goal is to separate these nonlinearities at the level of photocurrent from subsequent nonlinear processing that occurs in retinal circuitry. The authors devised a strategy to generate stimuli that cancel the major nonlinearities in photocurrents. For example, modified stimuli would generate genuine sinusoidal modulation of the photocurrent, whereas a sinusoidal stimulus would not (i.e., because of asymmetries in the photocurrent to light vs. dark phases of a sinusoidal stimulus); and modified stimuli that could cancel the effects of light adaptation at the photocurrent level. Using these modified stimuli, one could record downstream neurons, knowing that any nonlinearities that emerge must happen beyond the stage of the photocurrent. This could be a useful method for separating nonlinear mechanisms across different stages of retinal processing and may be useful in vivo.

      Strengths:

      (1) This is a very quantitative and thoughtful approach and addresses a long-standing problem in the field: determining the location of nonlinearities within a complex circuit, including asymmetric responses to different polarities of contrast, adaptation, etc.<br /> (2) The study presents data for two primary models of mammalian retina, mouse and primate, and shows that the basic strategy works in each case.<br /> (3) Ideally, the present results would generalize to the work in other labs and possibly other sensory systems. The authors do provide evidence that a photocurrent model constructed from data in one set of cells can be used in a second set of cells.

      Weaknesses:

      (1) The model is limited to describing photoreceptor responses at the level of photocurrents, as opposed to the output of the cell, which takes into account voltage-dependent mechanisms, horizontal cell feedback, etc., as the authors acknowledge. It could be interesting to expand the model in the future to include factors that affect photoreceptor output beyond the stage of the photocurrent.<br /> (2). It will be interesting to eventually test the impact of this work for in vivo experiments.

    4. Reviewer #3 (Public Review):

      Summary:

      The authors propose to invert a mechanistic model of phototransduction in mouse and rod photoreceptors to derive stimuli that compensate for nonlinearities in these cells. They fit the model to a large set of photoreceptor recordings, and show in additional data that the compensation works. This can allow to exclude photoreceptors as a source of nonlinear computation in the retina, as desired to pinpoint nonlinearties in retinal computation. The recordings made by the authors are impressive and I appreciate the simplicity and elegance of the idea. The data support the authors conclusions.

      Strengths:

      - The authors collected an impressive set of recordings from mouse and primate photoreceptors, which is very challenging to obtain.<br /> - The other proposes to exploit mechanistic mathematical models of a well understood phototransduction to design light stimuli which compensate for nonlinearities.<br /> - The authors demonstrate through additional experiments that their proposed approach works and is useful for offering insights into retinal computation.<br /> - The biophysical modeling approach is well described.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This manuscript aims at a quantitative model of how visual stimuli, given as time-dependent light intensity signals, are transduced into electrical currents in photoreceptors of macaque and mouse retina. Based on prior knowledge of the fundamental biophysical steps of the transduction cascade and a relatively small number of free parameters, the resulting model is found to fairly accurately capture measured photoreceptor currents under a range of diverse visual stimuli and with parameters that are (mostly) identical for photoreceptors of the same type.

      Furthermore, as the model is invertible, the authors show that it can be used to derive visual stimuli that result in a desired, predetermined photoreceptor response. As demonstrated with several examples, this can be used to probe how the dynamics of phototransduction affect downstream signals in retinal ganglion cells, for example, by manipulating the visual stimuli in such a way that photoreceptor signals are linear or have reduced or altered adaptation. This innovative approach had already previously been used by the same lab to probe the contribution of photoreceptor adaptation to differences between On and Off parasol cells (Yu et al, eLife 2022), but the present paper extends this by describing and testing the photoreceptor model more generally and in both macaque and mouse as well as for both rods and cones.

      Strengths:

      The presentation of the model is thorough and convincing, and the ability to capture responses to stimuli as different as white noise with varying mean intensity and flashes with a common set of model parameters across cells is impressive. Also, the suggested approach of applying the model to modify visual stimuli that effectively alter photoreceptor signal processing is thought-provoking and should be a powerful tool for future investigations of retinal circuit function. The examples of how this approach can be applied are convincing and corroborate, for example, previous findings that adaptation to ambient light in the primate retina, as measured by responses to light flashes, mostly originates in photoreceptors.

      Weaknesses:

      In the current form of the presentation, it doesn't become fully clear how easily the approach is applicable at different mean light levels and where exactly the limits for the model inversion are at high frequency. Also, accessibility and applicability by others could be strengthened by including more details about how parameters are fixed and what consensus values are selected.

      Thank you - indeed a central goal of writing this paper was to provide a tool that could be easily used by other laboratories. We have clarified and expanded four points in this regard: (1) we have stated more clearly that mean light levels are naturally part of inversion process, and hence the approach can be applied across a broad range of light levels (lines 292-297); (2) we have expanded our analysis of the high frequency limits to the inversion and added that expanded figure to the main text (new Fig 5); (3) we have included additional detail about our calibration procedures, including our calibration code, to facilitate transfer to other labs; and, (4) we have detailed the procedure for identification of consensus parameters (line 172-182, 191-199 and Methods section starting on line 831).

      Reviewer #2 (Public Review):

      Summary:

      This manuscript proposes a modeling approach to capture nonlinear processes of photocurrents in mammalian (mouse, primate) rod and cone photoreceptors. The ultimate goal is to separate these nonlinearities at the level of photocurrent from subsequent nonlinear processing that occurs in retinal circuitry. The authors devised a strategy to generate stimuli that cancel the major nonlinearities in photocurrents. For example, modified stimuli would generate genuine sinusoidal modulation of the photocurrent, whereas a sinusoidal stimulus would not (i.e., because of asymmetries in the photocurrent to light vs. dark changes); and modified stimuli that could cancel the effects of light adaptation at the photocurrent level. Using these modified stimuli, one could record downstream neurons, knowing that any nonlinearities that emerge must happen post-photocurrent. This could be a useful method for separating nonlinear mechanisms across different stages of retinal processing, although there are some apparent limitations to the overall strategy.

      Strengths:

      (1) This is a very quantitative and thoughtful approach and addresses a long-standing problem in the field: determining the location of nonlinearities within a complex circuit, including asymmetric responses to different polarities of contrast, adaptation, etc.

      (2) The study presents data for two primary models of mammalian retina, mouse, and primate, and shows that the basic strategy works in each case.

      (3) Ideally, the present results would generalize to the work in other labs and possibly other sensory systems. How easy would this be? Would one lab have to be able to record both receptor and post-receptor neurons? Would in vitro recordings be useful for interpreting in vivo studies? It would be useful to comment on how well the current strategy could be generalized.

      We agree that generalization to work in other laboratories is important, and indeed that was a motivation for writing this as a methods paper. The key issue in such generalization is calibration. We have expanded our discussion of our calibration procedures and included that code as part of the github repository associated with the paper. Figure 10 (previously Figure 9) was added to illustrate generalization. We believe that the approach we introduce here should generalize to in vivo conditions. We have expanded the text on these issues in the Discussion (sections starting on line 689 and 757).

      Weaknesses:

      (1) The model is limited to describing photoreceptor responses at the level of photocurrents, as opposed to the output of the cell, which takes into account voltage-dependent mechanisms, horizontal cell feedback, etc., as the authors acknowledge. How would one distinguish nonlinearities that emerge at the level of post-photocurrent processing within the photoreceptor as opposed to downstream mechanisms? It would seem as if one is back to the earlier approach, recording at multiple levels of the circuit (e.g., Dunn et al., 2006, 2007).

      Indeed the current model is limited to a description of rod and cone photocurrents. Nonetheless, the transformation of light inputs to photocurrents can be strongly nonlinear, and such nonlinearities can be difficult to untangle from those occurring late in visual processing. Hence, we feel that the ability to capture and manipulate nonlinearities in the photocurrents is an important step. We have expanded Figure 10 to show an additional example of how manipulation of nonlinearities in phototransduction can give insight into downstream responses. We have also noted in text that an important next step would be to include inner segment mechanisms (section starting on line 661); doing so will require not only characterization of the current-to-voltage transformation, but also horizontal cell feedback and properties of the cone output synapse.

      (2) It would have been nice to see additional confirmations of the approach beyond what is presented in Figure 9. This is limited by the sample (n = 1 horizontal cell) and the number of conditions (1). It would have been interesting to at least see the same test at a dimmer light level, where the major adaptation mechanisms are supposed to occur beyond the photoreceptors (Dunn et al., 2007).

      We have added an additional experiment to this figure (now Figure 10) which we feel nicely exemplifies the approach. The approach that we introduce here really only makes sense at light levels where the photoreceptors are adapting; at lower light levels the photoreceptors respond near-linearly, so our “modified” and “original” stimuli as in Figure 10 (previously Figure 9) would be very similar (and post-phototransduction nonlinearities are naturally isolated at these light levels).

      Reviewer #3 (Public Review):

      Summary:

      The authors propose to invert a mechanistic model of phototransduction in mouse and rod photoreceptors to derive stimuli that compensate for nonlinearities in these cells. They fit the model to a large set of photoreceptor recordings and show in additional data that the compensation works. This can allow the exclusion of photoreceptors as a source of nonlinear computation in the retina, as desired to pinpoint nonlinearities in retinal computation. Overall, the recordings made by the authors are impressive and I appreciate the simplicity and elegance of the idea. The data support the authors' conclusions but the presentation can be improved.

      Strengths:

      -  The authors collected an impressive set of recordings from mouse and primate photoreceptors, which is very challenging to obtain.

      -  The authors propose to exploit mechanistic mathematical models of well-understood phototransduction to design light stimuli that compensate for nonlinearities.

      -  The authors demonstrate through additional experiments that their proposed approach works.

      Weaknesses:

      -  The authors use numerical optimization for fitting the parameters of the photoreceptor model to the data. Recently, the field of simulation-based inference has developed methods to do so, including quantification of the uncertainty of the resulting estimates. Since the authors state that two different procedures were used due to the different amounts of data collected from different cells, it may be worthwhile to rather test these methods, as implemented e.g. in the SBI toolbox (https://joss.theoj.org/papers/10.21105/joss.02505). This would also allow them to directly identify dependencies between parameters, and obtain associated uncertainty estimates. This would also make the discussion of how well constrained the parameters are by the data or how much they vary more principled because the SBI uncertainty estimates could be used.

      Thank you - we have improved how we describe and report parameter values in several ways. First, the previous text erroneously stated that we used different fitting procedures for different cell types - but the real difference was in the amount of data and range of stimuli we had available between rods and cones. The fitting procedure itself was the same for all cell types. We have clarified this along with other details of the model fitting both in the main text (lines 121-130) and in the Methods (section starting on line 832). We also collected parameter values and estimates of allowed ranges in two tables. Finally, we used sloppy modeling to identify parameters that could covary with relatively small impact on model performance; we added a description of this analysis to the Methods (section starting on line 903).

      -  In several places, the authors refer the reader to look up specific values e.g. of parameters in the associated MATLAB code. I don't think this is appropriate, important values/findings/facts should be in the paper (lines 142, 114, 168). I would even find the precise values that the authors measure interesting, so I think the authors should show them in a figure/table. In general, I would like to see also the average variance explained by different models summarized in a table and precise mean/median values for all important quantities (like the response amplitude ratios in Figures 6/9).

      We have added two tables with these parameters values and estimates of allowable ranges. We also added points to show the mean (and SD) across cells to the population figures and added those numerical values to the figure legends throughout.

      -  If the proposed model is supposed to model photoreceptor adaptation on a longer time scale, I fail to see why this can be an invertible model. Could the authors explain this better? I suspect that the model is mainly about nonlinearities as the authors also discuss in lines 360ff.

      For the stimuli that we use we see little or no contribution of slow adaptation in phototransduction. We have expanded the description of this point in the text and referred to Angueyra et al (2022) which looks at this issue in more detail for primate cones (paragraph starting on line 280).

      -  The important Figures 6-8 are very hard to read, as it is not easy to see what the stimulus is, the modified stimulus, the response with and without modification, what the desired output looks like, and what is measured for part B. Reworking these figures would be highly recommended.

      We have reworked all of the figures to make the traces clearer.

      -  If I understand Figure 6 correctly, part B is about quantifying the relative size of the response to the little first flash to the little second flash. While clearly, the response amplitude of the second flash is only 50% for the second flash compared to the first flash in primate rod and cones in the original condition, the modified stimulus seems to overcompensate and result in 130% response for the second flash. How do the authors explain this? A similar effect occurs in Figure 9, which the authors should also discuss.

      Indeed, in those instances the modified stimulus does appear to overcompensate. We suspect this is due to differences in sensitivity of the specific cells probed for these experiments and those used in the model construction. We now describe this limitation in more detail (lines 524-526). A similar point comes up for those experiments in which we speed the photoreceptor responses (new FIgure 9B), and we similarly note that the cells used to test those manipulations differed systematically from those used to fit the model (lines 558-560).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I only have a few minor questions and suggestions for clarification.

      It hasn't become fully clear to me how general the model is when different mean light levels (on long-time scales) are considered. Are there slow adaptation processes not captured in the model that affect model performance? And how should one go about setting the mean light level when, for example, probing ganglion cells with a stimulus obtained through model inversion? Should it work to add an appropriate DC component to the current that is provided as input to the inverted model? (Presumably, deriving a stimulus and then just adding background illumination should not work, or could this be a good approximation, given a steady state that is adapted to the background?)

      We have clarified in the main text that slow adaptation does not contribute substantially to responses to the range of stimuli we explored (lines 281-289). We have also clarified that the stimulus in the model inversion is specified in isomerizations per second - so the mean value of the stimulus is automatically included in the model inversion (lines 293-298).

      Furthermore, a caveat for the model inversion seems to be the potential amplification of high-frequency noise. The suggested application of a cutoff temporal frequency seems appropriate, but data are shown only for a few example cells. Is this consistent across cells? (Given that performance between, e.g., mouse cones can vary considerably according to Fig. 4B?) I would also like to suggest moving the corresponding Supplemental Figure (4.1) into the main part of the manuscript, as it seems quite important.

      We have added population analysis to the new Figure 5 (which was Figure 4 - Figure Supplement 1). We have also clarified that the amplification of high frequency noise is an issue only when we try to apply model inversion to measured stimuli. When we use model inversion to identify stimuli that elicit desired responses, the target responses are computed from a linear model that has no noise, so this is not a concern in applications like those in Figures 6-10.

      Also, could the authors explain more clearly what the effect of the normalization of the estimated stimulus by the power of the true stimulus is? Does this simply reduce power at high frequency or also affect frequencies below the suggested cutoff (where the stimulus reconstruction should presumably be accurate even without normalization)?

      Indeed this normalization reduces high frequency power and has little impact on low frequencies where the inversion is accurate; this is now noted in the text (line 363). As for amplification of high frequency noise (previous comment), the normalization by the stimulus power is only needed when inverting measured responses (i.e. responses with noise) and is omitted when we are identifying stimuli that elicit desired responses (e.g. in Figures 6-10).

      While the overall performance of the model to predict photoreceptor currents is impressive, it seems that particular misses occur for flashes right after a step in background illumination and for the white-noise responses at low background illumination (e.g. Figure 1B). Is that systematic, and if so what might be missing in the model?

      Indeed the model (at least with fixed parameters across stimuli) appears to systematically miss a few aspects of the photoreceptor responses. These include the latency of the response to a bright flash and the early flashes in the step + flash protocol in Figure 1B. Model errors for the variable mean noise stimulus (Figure 2) showed little dependence on time even when responses were sorted by mean light level and by previous mean level. Model errors did not show a clear systematic dependence on light level; this likely reflects, at least in part, the use of mean-square-error to identify model parameters. We have expanded our discussion of these systematic errors in the text (lines 164-166).

      I was also wondering whether this is related to the fact that in Figure 9B, the gain in the modified condition is actually systematically higher when there is more background light. Do the authors think that this could be a real effect or rather an overcompensation from the model? (By the way, is it specified what "Delta-gain" really is, i.e., ratio or normalized difference?)

      We suspect this is an issue with the sensitivity of the specific cells for which we did these experiments (i.e. variability in the gamma parameter between cells). This sensitivity varies between cells, and such variations are likely to place the strongest limitation on our ability to use this approach to manipulate responses in different retinas. We now note those issues in the Results (lines 523-526, 557-559 and 591-593) with reference to Figures 9 (previously Figure 8) and 10 (previously Figure 9), and describe this limitation more generally in the Discussion (section starting on line 649). We have also changed delta-gain to response ratio, which seemed more intuitive.

      Maybe I missed this, but it seems that the parameter gamma is fitted in a cell-type-specific fashion (e.g. line 163), but then needs to be fixed for held-out cells. How was this done? Is there much variability of gamma between cells?

      There is variability in gamma between cells, and this likely explains some of systematic differences between data and model (see above and Methods, lines 902-903). For the consensus models in Figure 2B, gamma was allowed to vary for each cell while the remaining consensus model parameters were fixed. Gamma was set equal to the mean value across cells for model inversion (i.e. for all of the analyses in Figures 4-10). We have described the fitting procedure in considerably more detail in the revised Methods (starting on line 832).

      For completeness, it would be nice to have the applied consensus model parameters in the manuscript rather than just in the Matlab code (especially since the code has not been part of the submission). Also, some notes on how the numerical integration of the differential equations was done would be nice (time step size?).

      We have added tables with consensus parameters and estimates of the sensitivity of model predictions to each parameter. We have also added additional details about the numerical approaches (including the time step) to Methods.

      Similarly, it would be nice to explicitly see the relationships that are used to fix certain model parameters (lines 705ff). And can the constants k and n (lines 709-710) be assumed identical for different species and receptor types?

      We have added more details to the model fitting to the methods, including the use of steady-state conditions to hold certain parameters fixed (lines 862 and 866). We are not aware of any direct comparisons of k and n across species and receptor types. We have noted that model performance was not improved by modest changes in these parameters (due to compensation by other model parameters). More generally, we have explained how some parameters trade for others and hence the logic of fixing some even when exact values were not available.

      For the previous measurements of m and beta (lines 712-713), is there a reference or source?

      We have added references for these values.

      Did the authors check for differences in the model parameters between cone types (e.g., S vs. M)?

      We did not include S cones here. They are harder to record from and collecting a fairly large data set across a range of stimuli would be challenging. Our previous work shows that S cones have slower responses than L and M cones, and this would certainly be reflected in differences in model parameters. We have noted this in the text (Methods, line 808-810).

      For the stated flash responses time-to-peak (lines 183-184), is this for a particular light intensity with no background illumination?

      Those are flashes from darkness - now noted in the text.

      Figure 2 - Supplement 1 doesn't have panel labels A and B, unlike the legend.

      Fixed - thank you.

      Reviewer #2 (Recommendations For The Authors):

      (1) Fig. 2B - for some cells, the consensus model seems to fit better than the individual model. How is this possible?

      This was mostly an error on our part (we inadvertently included responses to more stimuli in fitting the individual models, which slightly hampered their performance). Even with this correction, however, a few cells remain for which the consensus model outperforms and individual model. We believe this is because there is more data to constrain model parameters for the consensus models (since they are fit to all cells at the same time), and that can compensate for improvements associated with customizing parameters to specific cells.

      (2) Fig. 2 Supplement 1, it would be useful to see a blow-up of the data in an inset, as in Fig. 2B.

      Thanks - added.

      (3) Line 400 - this paragraph could include additional quantification and statistics to back up claims re 'substantially reduced', 'considerably lower'.

      We quantify that in the next sentence by computing the mean-square-error between responses and sinusoidal fits (also in Figure 7B, which now includes statistics as well). We have made that connection more direct in the text.

      (4) Maybe a supplement to Fig. 8 could show the changes to the stimulus required to alter the kinetics in both directions - to give more insight into part B., especially.

      Good suggestion - we have added the stimuli to all of the panels of the figure (now Figure 9).

      (5) Fig. 8B - in 'Speed response up' condition - there seems to be error in the model for the decay time of the response - especially for the 'original' condition, which is not quantified in 8C. Was it generally difficult to predict responses to flashes?

      That seems largely to reflect that the cells used for those experiments had faster initial kinetics than the average cells (responses to the control traces are also faster than model predictions in these cells - black traces in Figure 9B). We have added this to the text.

      (6) Line 678, possibly notes that 405 nm equally activates S and M photopigments in mice, since most of the cones co-express the two photopigments (Rohlich et al., 1994; Applebury et al., 2000; Wang et al., 2011).

      Thanks - we have added this (lines 827-829).

      (7) The discussion could include a broader description of the various approaches to identifying nonlinearities within retinal circuitry, which include (incomplete list): recording at multiple levels of the circuit (e.g., Kim and Rieke 2001; Rieke, 2001; Baccus and Meister, 2002; Dunn et al., 2006; 2007; Beaudoin et al., 2007; Baccus et al., 2008); recording currents vs. spiking responses in a ganglion cell (e.g., Kim and Rieke, 2001; Zaghloul et al., 2005; Cui et al., 2016); neural network modeling approaches (e.g., Maheswaranathan et al., 2023); optogenetic approaches to studying filtering/nonlinear behavior at synapses (e.g., Pottackal et al., 2020; 2021).

      Good suggestion - we have added this to the final paragraph of the Discussion.

      Reviewer #3 (Recommendations For The Authors):

      -  I am personally not a fan of the style: "... as Figure 4A shows..." or comparable and much prefer a direct "We observe that X is the case (Figure 4A)". If the authors agree, they may want to revise their paper in this way.

      We have revised the text to avoid the “... as Figure xx shows” construction. We have retained multiple instances which follow a “Figure xx shows that …” construction (which is both active rather than passive and does not use a personal pronoun).

      -  I am not a fan of the title. Light-adaption clamp caters only to a very specialized audience.

      We have changed the title to “Predictably manipulating photoreceptor light responses to reveal their role in downstream visual responses.”

      -  The parameter fitting procedure should not only be described in Matlab code, but in the paper.

      Thanks - we have expanded this in the Methods considerably (section starting on line 832).

      -  The authors should elaborate on why different fitting procedures were used.

      We did not describe that issue clearly. The fitting procedures used across cells were identical, but we had different data available for different cell types due to experimental limitations. We have substantially revised that part of the main text to clarify this issue (paragraph starting on line 121).

      -  The authors state in line 126 that the input stimulus is supposed to mimic eye movements mouse, monkey, or human? Please clarify.

      Thanks - we have changed this sentence to “abrupt and frequent changes in intensity that characterize natural vision.”

      -  Please improve the figure style. For example, labels should be in consistent capitalization and ideally use complete words (e.g. Figure 2B, 4B, and others).

      We have made numerous small changes in the figures to make them more consistent.

      -  Is the fraction of variance calculated on held-out-data? Linear models should be added to Figure 2B.

      The fraction of variance explained was not calculated on held out data because of limitations in the duration of our recordings. Given the small number of free parameters, and the ability of the model to capture held out cells, we believe that the model generalizes well. We have added a supplemental figure with linear model performance (Figure 2 - Figure Supplement 2).

      -  Fig. 9A is lacking bipolar cell and amacrine cell labels. Currently, it looks like HC is next to the BC in the schematic.

      Thanks - we have updated that figure (now Figure 10A)

      -  Maybe I am misunderstanding something, but it seems like the linear model prediction shown in Figure 2A for the rod could be easily improved by scaling it appropriately. Is this impression correct or why not?

      We have clarified how the linear model is constructed (by fitting the linear model to low contrast responses of the full model at the mean stimulus intensity). We also added a supplemental figure, following the suggestion above, showing the linear model performance when a free scaling factor is included for each cell.

      -  The verification experiment in Fig. 5 is only anecdotal and is elaborated only in Figure 6. If I am not mistaken, this does not necessitate its own figure/section but could rather be merged.

      We have kept this figure separate (now Figure 6) as we felt that it was important to highlight the approach in general in a figure before getting into quantification of how well it works.

      -  Figure 5 right is lacking labels. What is red and grey?

      Thanks for catching that - labels are added now.

      -  The end of the Discussion is slightly unusual. Did some text go missing?

      Thanks - we have rearranged the Discussion so as not to end on Limitations.

      -  There is a bonus figure at the end which seems also not to belong in the manuscript.

      Thanks - the bonus figure is removed now.

      -  The methods should also describe briefly what kind of routines were used in the Matlab code, e.g. gradient descent with what optimizer?

      We’ve added that information as well.

    1. Reviewer #2 (Public Review):

      Here I submit my previous review and a great deal of additional information following on from the initial review and the response by the authors.

      * Initial Review *

      Assessment:

      This manuscript is based upon the unprecedented identification of an apparently highly unusual trigeminal nuclear organization within the elephant brainstem, related to a large trigeminal nerve in these animals. The apparently highly specialized elephant trigeminal nuclear complex identified in the current study has been classified as the inferior olivary nuclear complex in four previous studies of the elephant brainstem. The entire study is predicated upon the correct identification of the trigeminal sensory nuclear complex and the inferior olivary nuclear complex in the elephant, and if this is incorrect, then the remainder of the manuscript is merely unsupported speculation. There are many reasons indicating that the trigeminal nuclear complex is misidentified in the current study, rendering the entire study, and associated speculation, inadequate at best, and damaging in terms of understanding elephant brains and behaviour at worst.

      Original Public Review:

      The authors describe what they assert to be a very unusual trigeminal nuclear complex in the brainstem of elephants, and based on this, follow with many speculations about how the trigeminal nuclear complex, as identified by them, might be organized in terms of the sensory capacity of the elephant trunk.<br /> The identification of the trigeminal nuclear complex/inferior olivary nuclear complex in the elephant brainstem is the central pillar of this manuscript from which everything else follows, and if this is incorrect, then the entire manuscript fails, and all the associated speculations become completely unsupported.

      The authors note that what they identify as the trigeminal nuclear complex has been identified as the inferior olivary nuclear complex by other authors, citing Shoshani et al. (2006; 10.1016/j.brainresbull.2006.03.016) and Maseko et al (2013; 10.1159/000352004), but fail to cite either Verhaart and Kramer (1958; PMID 13841799) or Verhaart (1962; 10.1515/9783112519882-001). These four studies are in agreement, the current study differs.

      Let's assume for the moment that the four previous studies are all incorrect and the current study is correct. This would mean that the entire architecture and organization of the elephant brainstem is significantly rearranged in comparison to ALL other mammals, including humans, previously studied (e.g. Kappers et al. 1965, The Comparative Anatomy of the Nervous System of Vertebrates, Including Man, Volume 1 pp. 668-695) and the closely related manatee (10.1002/ar.20573). This rearrangement necessitates that the trigeminal nuclei would have had to "migrate" and shorten rostrocaudally, specifically and only, from the lateral aspect of the brainstem where these nuclei extend from the pons through to the cervical spinal cord (e.g. the Paxinos and Watson rat brain atlases), the to the spatially restricted ventromedial region of specifically and only the rostral medulla oblongata. According to the current paper the inferior olivary complex of the elephant is very small and located lateral to their trigeminal nuclear complex, and the region from where the trigeminal nuclei are located by others, appears to be just "lateral nuclei" with no suggestion of what might be there instead.

      Such an extraordinary rearrangement of brainstem nuclei would require a major transformation in the manner in which the mutations, patterning, and expression of genes and associated molecules during development occurs. Such a major change is likely to lead to lethal phenotypes, making such a transformation extremely unlikely. Variations in mammalian brainstem anatomy are most commonly associated with quantitative changes rather than qualitative changes (10.1016/B978-0-12-804042-3.00045-2).

      The impetus for the identification of the unusual brainstem trigeminal nuclei in the current study rests upon a previous study from the same laboratory (10.1016/j.cub.2021.12.051) that estimated that the number of axons contained in the infraorbital branch of the trigeminal nerve that innervate the sensory surfaces of the trunk is approximately 400 000. Is this number unusual? In a much smaller mammal with a highly specialized trigeminal system, the platypus, the number of axons innervating the sensory surface of the platypus bill skin comes to 1 344 000 (10.1159/000113185). Yet, there is no complex rearrangement of the brainstem trigeminal nuclei in the brain of the developing or adult platypus (Ashwell, 2013, Neurobiology of Monotremes), despite the brainstem trigeminal nuclei being very large in the platypus (10.1159/000067195). Even in other large-brained mammals, such as large whales that do not have a trunk, the number of axons in the trigeminal nerve ranges between 400 000 and 500 000 (10.1007/978-3-319-47829-6_988-1). The lack of comparative support for the argument forwarded in the previous and current study from this laboratory, and that the comparative data indicates that the brainstem nuclei do not change in the manner suggested in the elephant, argues against the identification of the trigeminal nuclei as outlined in the current study. Moreover, the comparative studies undermine the prior claim of the authors, informing the current study, that "the elephant trigeminal ganglion ... point to a high degree of tactile specialization in elephants" (10.1016/j.cub.2021.12.051). While clearly the elephant has tactile sensitivity in the trunk, it is questionable as to whether what has been observed in elephants is indeed "truly extraordinary".

      But let's look more specifically at the justification outlined in the current study to support their identification of the unusual located trigeminal sensory nuclei of the brainstem.

      (1) Intense cytochrome oxidase reactivity<br /> (2) Large size of the putative trunk module<br /> (3) Elongation of the putative trunk module<br /> (4) Arrangement of these putative modules correspond to elephant head anatomy<br /> (5) Myelin stripes within the putative trunk module that apparently match trunk folds<br /> (6) Location apparently matches other mammals<br /> (7) Repetitive modular organization apparently similar to other mammals.<br /> (8) The inferior olive described by other authors lacks the lamellated appearance of this structure in other mammals

      Let's examine these justifications more closely.

      (1) Cytochrome oxidase histochemistry is typically used as an indicative marker of neuronal energy metabolism. The authors indicate, based on the "truly extraordinary" somatosensory capacities of the elephant trunk, that any nuclei processing this tactile information should be highly metabolically active, and thus should react intensely when stained for cytochrome oxidase. We are told in the methods section that the protocols used are described by Purkart et al (2022) and Kaufmann et al (2022). In neither of these cited papers is there any description, nor mention, of the cytochrome oxidase histochemistry methodology, thus we have no idea of how this histochemical staining was done. In order to obtain the best results for cytochrome oxidase histochemistry, the tissue is either processed very rapidly after buffer perfusion to remove blood or in recently perfusion-fixed tissue (e.g., 10.1016/0165-0270(93)90122-8). Given: (1) the presumably long post-mortem interval between death and fixation - "it often takes days to dissect elephants"; (2) subsequent fixation of the brains in 4% paraformaldehyde for "several weeks"; (3) The intense cytochrome oxidase reactivity in the inferior olivary complex of the laboratory rat (Gonzalez-Lima, 1998, Cytochrome oxidase in neuronal metabolism and Alzheimer's diseases); and (4) The lack of any comparative images from other stained portions of the elephant brainstem; it is difficult to support the justification as forwarded by the authors. It is likely that the histochemical staining observed is background reactivity from the use of diaminobenzidine in the staining protocol. Thus, this first justification is unsupported.<br /> Justifications (2), (3), and (4) are sequelae from justification (1). In this sense, they do not count as justifications, but rather unsupported extensions.

      (4) and (5) These are interesting justifications, as the paper has clear internal contradictions, and (5) is a sequelae of (4). The reader is led to the concept that the myelin tracts divide the nuclei into sub-modules that match the folding of the skin on the elephant trunk. One would then readily presume that these myelin tracts are in the incoming sensory axons from the trigeminal nerve. However, the authors note that this is not the case: "Our observations on trunk module myelin stripes are at odds with this view of myelin. Specifically, myelin stripes show no tapering (which we would expect if axons divert off into the tissue). More than that, there is no correlation between myelin stripe thickness (which presumably correlates with axon numbers) and trigeminal module neuron numbers. Thus, there are numerous myelinated axons, where we observe few or no trigeminal neurons. These observations are incompatible with the idea that myelin stripes form an axonal 'supply' system or that their prime function is to connect neurons. What do myelin stripe axons do, if they do not connect neurons? We suggest that myelin stripes serve to separate rather than connect neurons." So, we are left with the observation that the myelin stripes do not pass afferent trigeminal sensory information from the "truly extraordinary" trunk skin somatic sensory system, and rather function as units that separate neurons - but to what end? It appears that the myelin stripes are more likely to be efferent axonal bundles leaving the nuclei (to form the olivocerebellar tract). This justification is unsupported.

      (6) The authors indicate that the location of these nuclei matches that of the trigeminal nuclei in other mammals. This is not supported in any way. In ALL other mammals in which the trigeminal nuclei of the brainstem have been reported they are found in the lateral aspect of the brainstem, bordered laterally by the spinal trigeminal tract. This is most readily seen and accessible in the Paxinos and Watson rat brain atlases. The authors indicate that the trigeminal nuclei are medial to the facial nerve nucleus, but in every other species the trigeminal sensory nuclei are found lateral to the facial nerve nucleus. This is most salient when examining a close relative, the manatee (10.1002/ar.20573), where the location of the inferior olive and the trigeminal nuclei matches that described by Maseko et al (2013) for the African elephant. This justification is not supported.

      (7) The dual to quadruple repetition of rostro-caudal modules within the putative trigeminal nucleus as identified by the authors relies on the fact that in the neurotypical mammal, there are several trigeminal sensory nuclei arranged in a column running from the pons to the cervical spinal cord, these include (nomenclature from Paxinos and Watson in roughly rostral to caudal order) the Pr5VL, Pr5DM, Sp5O, Sp5I, and Sp5C. But, these nuclei are all located far from the midline and lateral to the facial nerve nucleus, unlike what the authors describe in the elephants. These rostrocaudal modules are expanded upon in Figure 2, and it is apparent from what is shown is that the authors are attributing other brainstem nuclei to the putative trigeminal nuclei to confirm their conclusion. For example, what they identify as the inferior olive in figure 2D is likely the lateral reticular nucleus as identified by Maseko et al (2013). This justification is not supported.

      (8) In primates and related species, there is a distinct banded appearance of the inferior olive, but what has been termed the inferior olive in the elephant by other authors does not have this appearance, rather, and specifically, the largest nuclear mass in the region (termed the principal nucleus of the inferior olive by Maseko et al, 2013, but Pr5, the principal trigeminal nucleus in the current paper) overshadows the partial banded appearance of the remaining nuclei in the region (but also drawn by the authors of the current paper). Thus, what is at debate here is whether the principal nucleus of the inferior olive can take on a nuclear shape rather than evince a banded appearance. The authors of this paper use this variance as justification that this cluster of nuclei could not possibly be the inferior olive. Such a "semi-nuclear/banded" arrangement of the inferior olive is seen in, for example, giraffe (10.1016/j.jchemneu.2007.05.003), domestic dog, polar bear, and most specifically the manatee (a close relative of the elephant) (brainmuseum.org; 10.1002/ar.20573). This justification is not supported.

      Thus, all the justifications forwarded by the authors are unsupported. Based on methodological concerns, prior comparative mammalian neuroanatomy, and prior studies in the elephant and closely related species, the authors fail to support their notion that what was previously termed the inferior olive in the elephant is actually the trigeminal sensory nuclei. Given this failure, the justifications provided above that are sequelae also fail. In this sense, the entire manuscript and all the sequelae are not supported.

      What the authors have not done is to trace the pathway of the large trigeminal nerve in the elephant brainstem, as was done by Maseko et al (2013), which clearly shows the internal pathways of this nerve, from the branch that leads to the fifth mesencephalic nucleus adjacent to the periventricular grey matter, through to the spinal trigeminal tract that extends from the pons to the spinal cord in a manner very similar to all other mammals. Nor have they shown how the supposed trigeminal information reaches the putative trigeminal nuclei in the ventromedial rostral medulla oblongata. These are but two examples of many specific lines of evidence that would be required to support their conclusions. Clearly tract tracing methods, such as cholera toxin tracing of peripheral nerves cannot be done in elephants, thus the neuroanatomy must be done properly and with attention to details to support the major changes indicated by the authors.

      So what are these "bumps" in the elephant brainstem?

      Four previous authors indicate that these bumps are the inferior olivary nuclear complex. Can this be supported?

      The inferior olivary nuclear complex acts "as a relay station between the spinal cord (n.b. trigeminal input does reach the spinal cord via the spinal trigeminal tract) and the cerebellum, integrating motor and sensory information to provide feedback and training to cerebellar neurons" (https://www.ncbi.nlm.nih.gov/books/NBK542242/). The inferior olivary nuclear complex is located dorsal and medial to the pyramidal tracts (which were not labelled in the current study by the authors but are clearly present in Fig. 1C and 2A) in the ventromedial aspect of the rostral medulla oblongata. This is precisely where previous authors have identified the inferior olivary nuclear complex and what the current authors assign to their putative trigeminal nuclei. The neurons of the inferior olivary nuclei project, via the olivocerebellar tract to the cerebellum to terminate in the climbing fibres of the cerebellar cortex.

      Elephants have the largest (relative and absolute) cerebellum of all mammals (10.1002/ar.22425), this cerebellum contains 257 x109 neurons (10.3389/fnana.2014.00046; three times more than the entire human brain, 10.3389/neuro.09.031.2009). Each of these neurons appears to be more structurally complex than the homologous neurons in other mammals (10.1159/000345565; 10.1007/s00429-010-0288-3). In the African elephant, the neurons of the inferior olivary nuclear complex are described by Maseko et al (2013) as being both calbindin and calretinin immunoreactive. Climbing fibres in the cerebellar cortex of the African elephant are clearly calretinin immunopositive and also are likely to contain calbindin (10.1159/000345565). Given this, would it be surprising that the inferior olivary nuclear complex of the elephant is enlarged enough to create a very distinct bump in exactly the same place where these nuclei are identified in other mammals?

      What about the myelin stripes? These are most likely to be the origin of the olivocerebellar tract and probably only have a coincidental relationship to the trunk. Thus, given what we know, the inferior olivary nuclear complex as described in other studies, and the putative trigeminal nuclear complex as described in the current study, is the elephant inferior olivary nuclear complex. It is not what the authors believe it to be, and they do not provide any evidence that discounts the previous studies. The authors are quite simply put, wrong. All the speculations that flow from this major neuroanatomical error are therefore science fiction rather than useful additions to the scientific literature.

      What do the authors actually have?<br /> The authors have interesting data, based on their Golgi staining and analysis, of the inferior olivary nuclear complex in the elephant.

      * Review of Revised Manuscript *

      Assessment:

      There is a clear dichotomy between the authors and this reviewer regarding the identification of specific structures, namely the inferior olivary nuclear complex and the trigeminal nuclear complex, in the brainstem of the elephant. The authors maintain the position that in the elephant alone, irrespective of all the published data on other mammals and previously published data on the elephant brainstem, these two nuclear complexes are switched in location. The authors maintain that their interpretation is correct, this reviewer maintains that this interpretation is erroneous. The authors expressed concern that the remainder of the paper was not addressed by the reviewer, but the reviewer maintains that these sequelae to the misidentification of nuclear complexes in the elephant brainstem renders any of these speculations irrelevant as the critical structures are incorrectly identified. It is this reviewer's opinion that this paper is incorrect. I provide a lot of detail below in order to provide support to the opinion I express.

      Public Review of Current Submission:

      As indicated in my previous review of this manuscript (see above), it is my opinion that the authors have misidentified, and indeed switched, the inferior olivary nuclear complex (IO) and the trigeminal nuclear complex (Vsens). It is this specific point only that I will address in this second review, as this is the crucial aspect of this paper - if the identification of these nuclear complexes in the elephant brainstem by the authors is incorrect, the remainder of the paper does not have any scientific validity.

      The authors, in their response to my initial review, claim that I "bend" the comparative evidence against them. They further claim that as all other mammalian species exhibit a "serrated" appearance of the inferior olive, and as the elephant does not exhibit this appearance, that what was previously identified as the inferior olive is actually the trigeminal nucleus and vice versa.

      For convenience, I will refer to IOM and VsensM as the identification of these structures according to Maseko et al (2013) and other authors and will use IOR and VsensR to refer to the identification forwarded in the study under review.<br /> The IOM/VsensR certainly does not have a serrated appearance in elephants. Indeed, from the plates supplied by the authors in response (Referee Fig. 2), the cytochrome oxidase image supplied and the image from Maseko et al (2013) shows a very similar appearance. There is no doubt that the authors are identifying structures that closely correspond to those provided by Maseko et al (2013). It is solely a contrast in what these nuclear complexes are called and the functional sequelae of the identification of these complexes (are they related to the trunk sensation or movement controlled by the cerebellum?) that is under debate.

      Elephants are part of the Afrotheria, thus the most relevant comparative data to resolve this issue will be the identification of these nuclei in other Afrotherian species. Below I provide images of these nuclear complexes, labelled in the standard nomenclature, across several Afrotherian species.

      (A) Lesser hedgehog tenrec (Echinops telfairi)

      Tenrecs brains are the most intensively studied of the Afrotherian brains, these extensive neuroanatomical studies undertaken primarily by Heinz Künzle. Below I append images (coronal sections stained with cresol violet) of the IO and Vsens (labelled in the standard mammalian manner) in the lesser hedgehog tenrec. It should be clear that the inferior olive is located in the ventral midline of the rostral medulla oblongata (just like the rat) and that this nucleus is not distinctly serrated. The Vsens is located in the lateral aspect of the medulla skirted laterally by the spinal trigeminal tract (Sp5). These images and the labels indicating structures correlate precisely with that provide by Künzle (1997, 10.1016/S0168- 0102(97)00034-5), see his Figure 1K,L. Thus, in the first case of a related species, there is no serrated appearance of the inferior olive, the location of the inferior olive is confirmed through connectivity with the superior colliculus (a standard connection in mammals) by Künzle (1997), and the location of Vsens is what is considered to be typical for mammals. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report.

      Review image 1.

      (B) Giant otter shrew (Potomogale velox)

      The otter shrews are close relatives of the Tenrecs. Below I append images of cresyl violet (left column) and myelin (right column) stained coronal sections through the brainstem with the IO, Vsens and Sp5 labelled as per standard mammalian anatomy. Here we see hints of the serration of the IO as defined by the authors, but we also see many myelin stripes across the IO. Vsens is located laterally and skirted by the Sp5. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report.

      Review image 2.

      (C) Four-toed sengi (Petrodromus tetradactylus)

      The sengis are close relatives of the Tenrecs and otter shrews, these three groups being part of the Afroinsectiphilia, a distinct branch of the Afrotheria. Below I append images of cresyl violet (left column) and myelin (right column) stained coronal sections through the brainstem with the IO, Vsens and Sp5 labelled as per standard mammalian anatomy. Here we see vague hints of the serration of the IO (as defined by the authors), and we also see many myelin stripes across the IO. Vsens is located laterally and skirted by the Sp5. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report.

      Review image 3.

      (D) Rock hyrax (Procavia capensis)

      The hyraxes, along with the sirens and elephants form the Paenungulata branch of the Afrotheria. Below I append images of cresyl violet (left column) and myelin (right column) stained coronal sections through the brainstem with the IO, Vsens and Sp5 labelled as per the standard mammalian anatomy. Here we see hints of the serration of the IO (as defined by the authors), but we also see evidence of a more "bulbous" appearance of subnuclei of the IO (particularly the principal nucleus), and we also see many myelin stripes across the IO. Vsens is located laterally and skirted by the Sp5. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report.

      Review image 4.

      (E) West Indian manatee (Trichechus manatus)

      The sirens are the closest extant relatives of the elephants in the Afrotheria. Below I append images of cresyl violet (top) and myelin (bottom) stained coronal sections (taken from the University of Wisconsin-Madison Brain Collection, https://brainmuseum.org, and while quite low in magnification they do reveal the structures under debate) through the brainstem with the IO, Vsens and Sp5 labelled as per standard mammalian anatomy. Here we see the serration of the IO (as defined by the authors). Vsens is located laterally and skirted by the Sp5. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report.

      Review image 5.

      These comparisons and the structural identification, with which the authors agree as they only distinguish the elephants from the other Afrotheria, demonstrate that the appearance of the IO can be quite variable across mammalian species, including those with a close phylogenetic affinity to the elephants. Not all mammal species possess a "serrated" appearance of the IO. Thus, it is more than just theoretically possible that the IO of the elephant appears as described prior to this study.

      So what about elephants? Below I append a series of images from coronal sections through the African elephant brainstem stained for Nissl, myelin, and immunostained for calretinin. These sections are labelled according to standard mammalian nomenclature. In these complete sections of the elephant brainstem, we do not see a serrated appearance of the IOM (as described previously and in the current study by the authors). Rather the principal nucleus of the IOM appears to be bulbous in nature. In the current study, no image of myelin staining in the IOM/VsensR is provided by the authors. However, in the images I provide, we do see the reported myelin stripes in all stains - agreement between the authors and reviewer on this point. The higher magnification image to the bottom left of the plate shows one of the IOM/VsensR myelin stripes immunostained for calretinin, and within the myelin stripes axons immunopositive for calretinin are seen (labelled with an arrow). The climbing fibres of the elephant cerebellar cortex are similarly calretinin immunopositive (10.1159/000345565). In contrast, although not shown at high magnification, the fibres forming the Sp5 in the elephant (in the Maseko description, unnamed in the description of the authors) show no immunoreactivity to calretinin.

      Review image 6.

      Peripherin Immunostaining

      In their revised manuscript the authors present immunostaining of peripherin in the elephant brainstem. This is an important addition (although it does replace the only staining of myelin provided by the authors which is unusual as the word myelin is in the title of the paper) as peripherin is known to specifically label peripheral nerves. In addition, as pointed out by the authors, peripherin also immunostains climbing fibres (Errante et al., 1998). The understanding of this staining is important in determining the identification of the IO and Vsens in the elephant, although it is not ideal for this task as there is some ambiguity. Errante and colleagues (1998; Fig. 1) show that climbing fibres are peripherin-immunopositive in the rat. But what the authors do not evaluate is the extensive peripherin staining in the rat Sp5 in the same paper (Errante et al, 1998, Fig. 2). The image provided by the authors of their peripherin immunostaining (their new Figure 2) shows what I would call the Sp5 of the elephant to be strongly peripherin immunoreactive, just like the rat shown in Errant et al (1998), and more over in the precise position of the rat Sp5! This makes sense as this is where the axons subserving the "extraordinary" tactile sensitivity of the elephant trunk would be found (in the standard model of mammalian brainstem anatomy). Interestingly, the peripherin immunostaining in the elephant is clearly lamellated...this coincides precisely with the description of the trigeminal sensory nuclei in the elephant by Maskeo et al (2013) as pointed out by the authors in their rebuttal. Errante et al (1998) also point out peripherin immunostaining in the inferior olive, but according to the authors this is only "weakly present" in the elephant IOM/VsensR. This latter point is crucial. Surely if the elephant has an extraordinary sensory innervation from the trunk, with 400 000 axons entering the brain, the VsensR/IOM should be highly peripherin-immunopositive, including the myelinated axon bundles?! In this sense, the authors argue against their own interpretation - either the elephant trunk is not a highly sensitive tactile organ, or the VsensR is not the trigeminal nuclei it is supposed to be.

      Summary:

      (1) Comparative data of species closely related to elephants (Afrotherians) demonstrates that not all mammals exhibit the "serrated" appearance of the principal nucleus of the inferior olive.

      (2) The location of the IO and Vsens as reported in the current study (IOR and VsensR) would require a significant, and unprecedented, rearrangement of the brainstem in the elephants independently. I argue that the underlying molecular and genetic changes required to achieve this would be so extreme that it would lead to lethal phenotypes. Arguing that the "switcheroo" of the IO and Vsens does occur in the elephant (and no other mammals) and thus doesn't lead to lethal phenotypes is a circular argument that cannot be substantiated.

      (3) Myelin stripes in the subnuclei of the inferior olivary nuclear complex are seen across all related mammals as shown above. Thus, the observation made in the elephant by the authors in what they call the VsensR, is similar to that seen in the IO of related mammals, especially when the IO takes on a more bulbous appearance. These myelin stripes are the origin of the olivocerebellar pathway, and are indeed calretinin immunopositive in the elephant as I show.

      (4) What the authors see aligns perfectly with what has been described previously, the only difference being the names that nuclear complexes are being called. But identifying these nuclei is important, as any functional sequelae, as extensively discussed by the authors, is entirely dependent upon accurately identifying these nuclei.

      (4) The peripherin immunostaining scores an own goal - if peripherin is marking peripheral nerves (as the authors and I believe it is), then why is the VsensR/IOM only "weakly positive" for this stain? This either means that the "extraordinary" tactile sensitivity of the elephant trunk is non-existent, or that the authors have misinterpreted this staining. That there is extensive staining in the fibre pathway dorsal and lateral to the IOR (which I call the spinal trigeminal tract), supports the idea that the authors have misinterpreted their peripherin immunostaining.

      (5) Evolutionary expediency. The authors argue that what they report is an expedient way in which to modify the organisation of the brainstem in the elephant to accommodate the "extraordinary" tactile sensitivity. I disagree. As pointed out in my first review, the elephant cerebellum is very large and comprised of huge numbers of morphologically complex neurons. The inferior olivary nuclei in all mammals studied in detail to date, give rise to the climbing fibres that terminate on the Purkinje cells of the cerebellar cortex. It is more parsimonious to argue that, in alignment with the expansion of the elephant cerebellum (for motor control of the trunk), the inferior olivary nuclei (specifically the principal nucleus) have had additional neurons added to accommodate this cerebellar expansion. Such an addition of neurons to the principal nucleus of the inferior olive could readily lead to the loss of the serrated appearance of the principal nucleus of the inferior olive, and would require far less modifications in the developmental genetic program that forms these nuclei. This type of quantitative change appears to be the primary way in which structures are altered in the mammalian brainstem.

    1. Reviewer #1 (Public Review):

      Summary:

      Microfossils from the Paleoarchean Eon represent the oldest evidence of life, but their nature has been strongly debated among scientists. To resolve this, the authors reconstructed the lifecycles of Archaean organisms by transforming a Gram-positive bacterium into a primitive lipid vesicle-like state and simulating early Earth conditions. They successfully replicated all morphologies and life cycles of Archaean microfossils and studied cell degradation processes over several years, finding that encrustation with minerals like salt preserved these cells as fossilized organic carbon. Their findings suggest that microfossils from 3.8 to 2.5 billion years ago were likely liposome-like protocells with energy conservation pathways but without regulated morphology.

      Strengths:

      The authors have crafted a compelling narrative about the morphological similarities between microfossils from various sites and proliferating wall-deficient bacterial cells, providing detailed comparisons that have never been demonstrated in this detail before. The extensive number of supporting figures is impressive, highlighting numerous similarities. While conclusively proving that these microfossils are proliferating protocells morphologically akin to those studied here is challenging, we applaud this effort as the first detailed comparison between microfossils and morphologically primitive cells.

      Weaknesses:

      Although the species used in this study closely resembles the fossils morphologically, it would be beneficial to provide a clearer explanation for its selection. The literature indicates that many bacteria, if not all, can be rendered cell wall-deficient, making the rationale for choosing this specific species somewhat unclear.

      While this manuscript includes clear morphological comparisons, we believe the authors do not adequately address the limitations of using modern bacterial species in their study. All contemporary bacteria have undergone extensive evolutionary changes, developing complex and intertwined genetic pathways unlike those of early life forms. Consequently, comparing existing bacteria with fossilized life forms is largely hypothetical, a point that should be more thoroughly emphasized in the discussion.

      Another weak aspect of the study is the absence of any quantitative data. While we understand that obtaining such data for microfossils may be challenging, it would be helpful to present the frequencies of different proliferative events observed in the bacterium used. Additionally, reflecting on the chemical factors in early life that might cause these distinct proliferation modes would provide valuable context.

    2. Reviewer #2 (Public Review):

      Summary:

      In summary, the manuscript describes life-cycle-related morphologies of primitive vesicle-like states (Em-P) produced in the laboratory from the Gram-positive bacterium Exiguobacterium Strain-Molly) under assumed Archean environmental conditions. Em-P morphologies (life cycles) are controlled by the "native environment". In order to mimic Archean environmental conditions, soy broth supplemented with Dead Sea salt was used to cultivate Em-Ps. The manuscript compares Archean microfossils and biofilms from selected photos with those laboratory morphologies. The photos derive from publications on various stratigraphic sections of Paleo- to Neoarchean ages. Based on the similarity of morphologies of microfossils and Em-Ps, the manuscript concludes that all Archean microfossils are in fact not prokaryotes, but merely "sacks of cytoplasm".

      Strengths:

      The approach of the authors to recognize the possibility that "real" cells were not around in the Archean time is appealing. The manuscript reflects the very hard work by the authors composing the Em-Ps used for comparison and selecting the appropriate photo material of fossils.

      Weaknesses:

      While the basic idea is very interesting, the manuscript includes flaws and falls short in presenting supportive data. The manuscript makes too simplistic assumptions on the "Archean paleoenvironment". First, like in our modern world, the environmental conditions during the Archean time were not globally the same. Second, we do not know much about the Archean paleoenvironment due to the immense lack of rock records. More so, the Archean stratigraphic sections from where the fossil material derived record different paleoenvironments: shelf to tidal flat and lacustrine settings, so differences must have been significant. Finally, the Archean spanned 2.500 billion years and it is unlikely that environmental conditions remained the same. Diurnal or seasonal variations are not considered. Sediment types are not considered. Due to these reasons, the laboratory model of an Archean paleoenvironment and the life therein is too simplistic. Another aspect is that eucaryote cells are described from Archean rocks, so it seems unlikely that prokaryotes were not around at the same time. Considering other fossil evidence preserved in Archean rocks except for microfossils, the many early Archean microbialites that show baffling and trapping cannot be explained without the presence of "real cells". With respect to lithology: chert is a rock predominantly composed of silica, not salt. The formation of Em-Ps in the "salty" laboratory set-up seems therefore not a good fit to evaluate chert fossils. Formation of structures in sediment is one step. The second step is their preservation. However, the second aspect of taphonomy is largely excluded in the manuscript, and the role of fossilization (lithification) of Em-Ps is not discussed. This is important because Archean rock successions are known for their tectonic and hydrothermal overprint, as well as recrystallization over time. Some of the comparisons of laboratory morphologies with fossil microfossils and biofilms are incorrect because scales differ by magnitudes. In general, one has to recognize that prokaryote cell morphologies do not offer many variations. It is possible to arrive at the morphologies described in various ways including abiotic ones.

    1. eLife assessment

      This important work examines the role of blood flow and Ghrelin in influencing the migration speed of adult-born olfactory neurons. The authors present solid evidence that newborn rostral migratory stream (RMS) neurons are closely situated alongside blood vessels, preferentially along arterioles, and that migratory speed is correlated with blood flow. They also provide evidence (in vitro and some in vivo) that Ghrelin from blood is involved in augmenting RMS neuron migration speed. While the data from the imaging experiments are convincing, the evidence for the causal roles of Ghrelin is limited and requires additional experimental clarifications to reach a strong conclusion.

    2. Reviewer #1 (Public Review):

      Summary:

      This study provides compelling evidence suggesting that ghrelin, a molecule released in the surroundings of the major adult brain neurogenic niche (V-SVZ) by blood vessels with high blood flow, controls the migration of newborn interneurons towards the olfactory bulbs.

      Strengths:

      This study is a tour de force as it provides a solid set of data obtained by time-lapse recordings in vivo. The data demonstrate that the migration and guidance of newborn neurons rely on factors released by selective types of blood vessels.

      Weaknesses:

      Some intermediate conclusions are weak and may be reinforced by additional experiments.

    3. Reviewer #2 (Public Review):

      Summary:

      The authors establish a close spatial relationship between RMS neurons and blood vessels. They demonstrated that high blood flow was correlated with migratory speed. In vitro, they demonstrate that Ghrelin functions as a motogen that increases migratory speed through augmentation of actin cup formation. The authors proceed to demonstrate through the knockdown of the Ghrelin receptor that fewer RMS neurons reach the OB. They show the opposite is true when the animal is fasted.

      Strengths:

      Compelling evidence of close association of RMS neurons with blood vessels (tissue clearing 3D), preferentially arterioles. Good use of 2-photon imaging to demonstrate migratory speed and its correlation with blood flow. In vitro analysis of Ghrelin administration to cultured RMS neurons, actin visualization, Ghsr1KD, is solid and compelling.

      Weaknesses:

      (1) Novelty of findings attenuated due to prior work, especially Li et al., Experimental Neurology 2014. Here, the authors demonstrated that Ghrelin enhances migration in adult-born neurons in the SVZ and RMS.

      (2) The evidence for blood delivery of Ghrelin is not very convincing. Fluorescently-labeled Ghrelin appears to be found throughout the brain parenchyma, irrespective of the distance from vessels. It is also not clear from the data whether there is a link between increased blood flow and Ghrelin delivery.

      (3) The in vivo link between Ghsr1KD and migratory speed is not established. Given the strong work to open the study on blood flow and migratory speed and the in vitro evidence that migratory speed is augmented by Ghrelin, the paper would be much stronger with direct measurement of migration speed upon Ghsr1KD. Indeed, blood flow should also be measured in this experiment since it would address concerns in 2. If blood flow and ghrelin delivery are linked, one would expect that Ghsr1KD neurons would not exhibit increased migratory speed when associated with slow or fast blood flow vessels.

    1. eLife assessment

      This important study identifies the anti-inflammatory function of PEGylated PDZ peptides that are derived from the ZO-1 protein. Results from cellular and in vivo experiments tracking key inflammatory markers are compelling. Although the mechanism of action needs further investigation, this study provides a proof of concept for developing novel strategies against acute inflammatory conditions such as sepsis.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors investigated systemic inflammation induced by LPS in various tissues and also examined immune cells of the mice using tight junction protein-based PDZ peptide. They explored the mechanism of anti-systemic inflammatory action of PDZ peptides, which enhanced M1/M2 polarization and induced the proliferation of M2 macrophages. Additionally, they insisted the physiological mechanism that inhibited the production of ROS in mitochondria, thereby preventing systemic inflammation.

      Strength

      In the absence of specific treatments for septic shock or sepsis, the study demonstrating that tight junction-based PDZ peptides inhibit systemic inflammation caused by LPS is highly commendable. Whereas previous research focused on antibiotics, this study proves that modifying parts of intracellular proteins can significantly suppress symptoms caused by septic shock. The authors expanded the study of localized inflammation caused by LPS or PM2.5 in the respiratory track to systemic inflammation, presenting promising results. They not only elucidated the physiological mechanism by identifying the transcriptome through RNA sequencing but also demonstrated that PDZ peptides inhibit the production of ROS in mitochondria and prevent mitochondrial fission. This research is highly regarded as an excellent study with potential as a treatment for septic shock or sepsis.

      Weakness

      (1) They Focused intensively on acute inflammation for a short duration instead of chronic inflammation.<br /> (2) LPS was used to induce septic shock, but administrating actual microbes such as E.coli would yield more accurate results.<br /> (3) The authors used pegylated peptides, but future research should utilize the optimized peptides to derive the optimal peptide, and further, PK/PD studies are also necessary.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1:

      (1) Peptides were synthesized with fluorescein isothiocyanate (FITC) and Tat tag, and then PEGylated with methoxy PEG Succinimidyl Succinate.

      I have two concerns about the peptide design. First, FTIC was intended "for monitoring" (line 129), but was never used in the manuscript. Second, PEGylation targets the two lysine sidechains on the Tat, which would alter its penetration property.

      We conducted an analysis of the cellular trafficking of FITC-tagged peptides following their permeabilization into cells.

      Author response image 1.

      However, we did not include it in the main text because it is a basic result.

      (2) As can be seen in the figure above, after pegylation and permeabilization, the cells were stained with FITC. It appears that this does not affect the ability to penetrate into the cells.

      (2) "Superdex 200 increase 10/300 GL column" (line 437) was used to isolate mono/di PEGylated PDZ and separate them from the residual PEG and PDZ peptide. "m-PEG-succinimidyl succinate with an average molecular weight of 5000 Da" (lines 133 and 134).

      To my knowledge, the Superdex 200 increase 10/300 GL column is not suitable and is unlikely to produce traces shown in Figure 1B.

      As Superdex 200 increase 10/300 GL featrues a fractionation range of 10,000 to 600,000 Da, we used it to fractionate PEGylated products including DiPEGylated PDZ (approx. 15 kDa) and MonoPEGylated PDZ (approx. 10 kDa) from residuals (PDZ and PEG), demonstrating successful isolation of PEGylated products (Figure 1C). Considering the molecular weights of PDZ and PEG are approximately 4.1 kDa and and 5.0 kDa, respectively, the late eluting peaks from SEC were likely to represent a mixed absorbance of PDZ and PEG at 215 nm.

      However, as the reviewer pointed out, it could be unreasonable to annotate peaks representing PDZ and PEG, respectively, from mixed absorbance detected in a region (11-12 min) beyond the fractionation range.

      In our revised manuscript, therefore, multiple peaks in the late eluting volume (11-12 min) were labeled as 'Residuals' all together. As a reference, the revised figure 1B includes a chromatogram of pure PDZ-WT under the same analytic condition.

      Therefore, we changed Fig.1B to new results as followed:

      (3) "the in vivo survival effect of LPS and PDZ co-administration was examined in mice. The pretreatment with WT PDZ peptide significantly increased survival and rescued compared to LPS only; these effects were not observed with the mut PDZ peptide (Figure 2a)." (lines 159-160).

      Fig 2a is the weight curve only. The data is missing in the manuscript.

      We added the survived curve into Fig. 2A as followed:

      (4) Table 1, peptide treatment on ALT and AST appears minor.

      In mice treated with LPS, levels of ALT and AGT in the blood are elevated, but these levels decrease upon treatment with WT PDZ. However, the use of mut PDZ does not result in significant changes. Figure 3A shows inflammatory cells within the central vein, yet no substantial hepatotoxicity is observed during the 5-day treatment with LPS. Normally, the ranges of ALT and AGT in C57BL6 mice are 16 ~ 200 U/L and 46 ~ 221 U/L, respectively, according to UCLA Diagnostic Labs. Therefore, the values in all experiments fall within these normal ranges. In summary, a 5-day treatment with LPS induces inflammation in the liver but is too short a duration to induce hepatotoxicity, resulting in lower values.

      (5) MitoTraker Green FM shouldn't produce red images in Figure 6.

      We changed new results (GREEN one) into Figs 6A and B as followed:

      (6) Figure 5. Comparison of mRNA expression in PDZ-treated BEAS-2B cells. Needs a clearer and more detailed description both in the main text and figure legend. The current version is very hard to read.

      We changed Fig. 5A to new one to understand much easier and added more detailed results and figure legend as followed:

      Results Section in Figure 5:

      “…we performed RNA sequencing analysis. The results of RNA-seq analysis showed the expression pattern of 24,424 genes according to each comparison combination, of which the results showed the similarity of 51 genes overlapping in 4 gene categories and the similarity between each comparison combination (Figure 5a). As a result, compared to the control group, it was confirmed that LPS alone, WT PDZ+LPS, and mut PDZ+LPS were all upregulated above the average value in each gene, and when LPS treatment alone was compared with WT PDZ+LPS, it was confirmed that they were averaged or downregulated. When comparing LPS treatment alone and mut PDZ+LPS, it was confirmed that about half of the genes were upregulated. Regarding the similarity between comparison combinations, the comparison combination with LPS…”

      Figure 5 Legend Section:

      “Figure 5. Comparison of mRNA expression in PDZ-treated BEAS-2B cells.

      BEAS-2B cells were treated with wild-type PDZ or mutant PDZ peptide for 24 h and then incubated with LPS for 2 h, after which RNA sequencing analysis was performed. (a) The heat map shows the general regulation pattern of about 51 inflammation-related genes that are differentially expressed when WT PDZ and mut PDZ are treated with LPS, an inflammatory substance. All samples are RED = upregulated and BLUE = downregulated relative to the gene average. Each row represents a gene, and the columns represent the values of the control group treated only with LPS and the WT PDZ and mut PDZ groups with LPS. This was used by converting each log value into a fold change value. All genes were adjusted to have the same mean and standard deviation, the unit of change is the standard deviation from the mean, and the color value range of each row is the same. (b) Significant genes were selected using Gene category chat (Fold change value of 2.00 and normalized data (log2) value of 4.00). The above pie chart shows the distribution of four gene categories when comparing LPS versus control, WT PDZ+LPS/LPS, and mut PDZ+LPS/LPS. The bar graph below shows RED=upregulated, GREEN=downregulated for each gene category, and shows the number of upregulated and downregulated genes in each gene category. (c) The protein-protein interaction network constructed by the STRING database differentially displays commonly occurring genes by comparing WT PDZ+LPS/LPS, mut PDZ+LPS/LPS, and LPS. These nodes represent proteins associated with inflammation, and these connecting lines denote interactions between two proteins. Different line thicknesses indicate types of evidence used in predicting the associations.”

      Reviewer 2:

      (1) In this paper, the authors demonstrated the anti-inflammatory effect of PDZ peptide by inhibition of NF-kB signaling. Are there any results on the PDZ peptide-binding proteins (directly or indirectly) that can regulate LPS-induced inflammatory signaling pathway? Elucidation of the PDZ peptide-its binding partner protein and regulatory mechanisms will strengthen the author's hypothesis about the anti-inflammatory effects of PDZ peptide

      As mentioned in the Discussion section, we believe it is crucial to identify proteins that directly interact with PDZ and regulate it. This direct interaction can modulate intracellular signaling pathways, so we plan to express GST-PDZ and induce binding with cellular lysates, then characterize it using the LC-Mass/Mass method. We intend to further research these findings and submit them for publication.

      (2) The authors presented interesting insights into the therapeutic role of the PDZ motif peptide of ZO-1. PDZ domains are protein-protein interaction modules found in a variety of species. It has been thought that many cellular and biological functions, especially those involving signal transduction complexes, are affected by PDZ-mediated interactions. What is the rationale for selecting the core sequence that regulates inflammation among the PDZ motifs of ZO-1 shown in Figure 1A?

      The rationale for selecting the core sequence that regulates inflammation among the PDZ motifs of ZO-1, as shown in Figure 1A, is grounded in the specific roles these motifs play in signal transduction pathways that are crucial for inflammatory processes. PDZ domains are recognized for their ability to function as scaffolding proteins that organize signal transduction complexes, crucial for modulating cellular and biological functions. The chosen core sequence is particularly important because it is conserved across ZO-1, ZO-2, and ZO-3, indicating a fundamental role in maintaining cellular integrity and signaling pathways. This conservation suggests that the sequence’s involvement in inflammatory regulation is not only significant in ZO-1 but also reflects a broader biological function across the ZO family.

      (3) In Figure 3, the authors showed the representative images of IHC, please add the quantification analysis of Iba1 expression and PAS-positive cells using Image J or other software. To help understand the figure, an indication is needed to distinguish specifically stained cells (for example, a dotted line or an arrow).

      We added the semi-quantitative results into Figs. 4d,e,f as followed:

      Result section: “The specific physiological mechanism by which WT PDZ peptide decreases LPS-induced systemic inflammation in mice and the signal molecules involved remain unclear. These were confirmed by a semi-quantitative analysis of Iba-1 immunoreactivity and PAS staining in liver, kidney, and lung,respectively (Figures 4d, e, and f). To examine whether WT PDZ peptide can alter LPS-induced tissue damage in the kidney, cell toxicity assay was performed (Figure 3g). LPS induced cell damage in the kidney, however, WT PDZ peptide could significantly alleviate the toxicity, but mut PDZ peptide could not. Because cytotoxicity caused by LPS is frequently due to ROS production in the kidney (Su et al., 2023; Qiongyue et al., 2022), ROS production in the mitochondria was investigated in renal mitochondria cells harvested from kidney tissue (Figure 3h)....”

      Figure legend section: “Indicated scale bars were 20 μm. (d,e,f) Semi-quantitative analysis of each are positive for Iba-1 in liver and kidney, and positive cells of PAS in lung, respectively. (g) After the kidneys were harvested, tissue lysates were used for MTT assay. (h) After...”

      (4) In Figure 6G, H, the authors confirmed the change in expression of the M2 markers by PDZ peptide using the mouse monocyte cell line Raw264.7. It would be good to add an experiment on changes in M1 and M2 markers caused by PDZ peptides in human monocyte cells (for example, THP-1).

      We thank you for your comments. To determine whether PDZ peptide regulates M1/M2 polarization in human monocytes, we examined changes in M1 and M2 gene expression in THP-1 cells. As a result, wild-type PDZ significantly suppressed the expression of M1 marker genes (hlL-1β, hIL-6, hIL-8, hTNF-ɑ), while increasing the expression of M2 marker genes (hlL-4, hIL-10, hMRC-1). However, mutant PDZ did not affect M1/M2 polarization. These results suggest that PDZ peptide can suppress inflammation by regulating M1/M2 polarization of human monocyte cells. These results are for the reviewer's reference only and will not be included in the main content.

      Author response image 2.

      Author response image 3.

      Minor point:

      The use of language is appropriate, with good writing skills. Nevertheless, a thorough proofread would eliminate small mistakes such as:

      - line 254, " mut PDZ+LPS/LPS (45.75%) " → " mut PDZ+LPS/LPS (47.75%) "

      - line 296, " Figure 6f " → " Figure 6h "

      We changed these points into the manuscript.

    1. eLife assessment

      This paper presents useful findings on the dysmyelination phenotype of nervous system-specific Spns1 (a lysosomal lipid transporter) knockout mice. While the analysis of the phenotype is solid, the evidence for the underlying mechanisms, especially the molecular function for SPNS1, is incomplete. With more careful interpretation and/or additional experimental data, this work could have implications for understanding lipid transport and lysosomal storage diseases.

    2. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors studied the roles of SPNS1 which is a lysolipid transporter from the lysosomes in the nervous system using cell and mouse models. The authors tried to show that reduced sphingosine release from the lysosomes via SPNS1 affects myelination.

      Strengths:

      The authors used knockout models for cells and animals so the results are solid. They also used electron microscopic analysis of the phenotypes of the cells and mouse tissues.

      Weaknesses:

      The biochemical methods are not fully described at the moment. There is a lack of solid evidence to support the major claim.

      If the authors could provide solid evidence that lipids that are released from the lysosomes via SPNS1 are used for myelination, this would be a major finding for the sources of lipids for the formation of axons.

    3. Reviewer #2 (Public Review):

      Summary:

      Spns1 is a recently identified lysosomal transporter of lysophospholipids and sphingosine and its mutations in humans lead to neurodegeneration with white matter dysplasia. Since global Spns1 deficiency is embryonic lethal, the role of this particular lipid transporter in the nervous system remained unclear. In this study, Ichimura et al generated and analyzed nervous system-specific Spns1 knockout mice. The mutant mice showed epilepsy, growth retardation, demyelination, and early death, with accumulation of various LPC, LPE, and LPI species as well as sphingosine in specific areas of the brain. Probably due to impaired lysosomal efflux of sphingosine, brain levels of sphingolipids (ceramides, sulfatides, and glycolipids), which are main myelin components, were markedly reduced in the KO brain.

      Strengths:

      This study has provided convincing evidence for the first time that nervous system-specific deletion of Spns1 in mice leads to neurodegeneration, with disturbed lysophospholipid and sphingolipid metabolism in the brain. The results support the idea that the defective transport of lysosomal sphingosine by loss of Spns1 leads to a marked reduction of sphingolipid species required for myelin formation. This study significantly contributes to the research fields of neurodegeneration, lysosomal biology, and lipid biology.

      Weaknesses:

      It remains unclear why oligodendrocytes but not neurons are specifically damaged and how astroglia are affected by Spns1 deficiency. Lysosomal efflux of lysophospholipids and sphingosine by Spns1 relied solely on the knowledge from published studies and was not addressed in this study. The expression of key lipid-metabolizing genes and molecular markers should be examined more deeply. Several images lack quantification.

    4. Reviewer #3 (Public Review):

      Summary:

      The authors attempted to understand the effect of Spns1 deficiency in the brain using a brain-specific knockout mouse model. Basic phenotyping of the brain KO line was performed that included mass spectroscopy for lipids, metabolomics, mass spec imaging of brain tissue, and some histology. Similar methods were used for characterising the liver KO model. The main findings supported by the data are that brain KO results in hypomyelinated brains, brain KO mice presented with symptoms akin to epilepsy, and postnatal lethality at 5 weeks of age. In addition, biochemical studies showed that brain KO mice had significant accumulation in whole brain lysates of the lysolipids LPC and LPE and sphingosine with reduced levels of ceramide, sphingomyelin, and sulfatide. Some of the substantial claims made by the authors in an attempt to provide a mechanistic understanding of the data are not strongly supported by experimental data. Some of the major concerns are that the authors claim hypomyelination is not caused by changes in oligodendrocyte differentiation, but experimental evidence to support this was not provided. The authors also claim that hypomyelination and other neurological phenotypes are caused by reduced sphingosine transport by Spns1 leading to reduced sphingolipid synthesis. However, this conclusion is not supported by experimental data and the authors do not address other equally plausible hypotheses.

    1. eLife assessment

      This short manuscript uses mutation counts in phylogenies of millions of SARS-CoV-2 genomes to show that mutation rates systematically differ between regions that are paired or unpaired in the predicted RNA secondary structure of the viral genome. Such an effect of pairing state is not unexpected, but its systematic demonstration using millions of viral genomes is valuable and convincing.

    2. Reviewer #1 (Public Review):

      Summary:

      This very short paper shows a greater likelihood of C->U substitutions at sites predicted to be unpaired in the SARS-CoV-2 RNA genome, using previously published observational data on mutation frequencies in SARS-CoV-2 (Bloom and Neher, 2023).

      General comments:

      A preference for unpaired bases as a target for APOBEC-induced mutations has been demonstrated previously in functional studies so the finding is not entirely surprising. This of course assumes that A3A or other APOBEC is actually the cause of the majority of C->U changes observed in SARS-CoV-2 sequences.

      I'm not sure why the authors did not use the published mutation frequency data to investigate other potential influences on editing frequencies, such as 5' and 3' base contexts. The analysis did not contribute any insights into the potential mechanisms underlying the greater frequency of C->U (or G->U) substitutions in the SARS-CoV-2 genome.

    3. Reviewer #2 (Public Review):

      Hensel investigated the implications of SARS-CoV-2 RNA secondary structure in synonymous and nonsynonymous mutation frequency. The analysis integrated estimates of mutational fitness generated by Bloom and Neher (from publicly available patient sequences) and a population-averaged model of RNA basepairing from Lan et al (from DMS mutational profiling with sequencing, DMS-MaPseq).

      The results show that base-pairing limits the frequency of some synonymous substitutions (including the most common CT), but not all: GA and AG substitutions seem unaffected by base-pairing.

      The author then addressed nonsynonymous CT substitutions at base-paired positions. While there is still a generally higher estimated mutational fitness at unpaired positions, they propose a coarse adjustment to disentangle base-pairing from inherent mutational fitness at a given position. This adjustment reveals that nonsynonymous substitutions at base-paired positions, which define major variants, have higher mutational fitness.

      Overall, this manuscript highlights the importance of considering RNA secondary structure in viral evolution studies.

      The conclusions of this work are generally well supported by the data presented. Particularly, the author acknowledges most limitations of the analyses, and addresses them. Even though no new sequencing results were generated, the author used available data generated from the analysis of roughly seven million sequenced patient samples. Finally, the author discusses ways to improve the current available models.

      There are a number of limitations of this work that should be highlighted, specifically in regard to the secondary structure data used in this paper. The Lan et al. dataset was generated using a multiplicity of infection (MOI) of 0.05, 24 hours post-infection (h.p.i.). At such a low MOI and late timepoint, viral replication is not synchronous and sequencing artifacts might be generated by cell debris and viral RNA degradation, therefore impacting the population-averaged results. In addition, the nonsynonymous base-paired positions in Figure 2 have relatively high population-averaged DMS reactivity, which suggests those positions are dynamic. Therefore, the proposed adjustment could result in an incorrect estimation of their inherent mutational fitness.

      Additionally, like all such RNA probing experiments within cells, it remains difficult to deconvolve DMS/SHAPE low reactivity with RNA accessibility (e.g. from protein binding).

      This work presents clear methods and an easy-to-access bioinformatic pipeline, which can be applied to other RNA viruses. Of note, it can be readily implemented in existing datasets. Finally, this study raises novel mechanistic questions on how mutational fitness is not correlated to secondary structure in the same way for every substitution.

      Overall, this work highlights the importance of studying mutational fitness beyond an immune evasion perspective. On the other hand, it also adds to the viral intrinsic constraints to immune evasion.

    1. eLife assessment

      Floeder and colleagues report that dopamine ramps are determined by the duration of the intertrial interval of the task and the presence of dynamic cues that indicate reward proximity. The manuscript provides valuable new information on a topic of active discussion in the dopamine and reinforcement learning field and the strength of the evidence supporting the claims is solid.

    2. Reviewer #1 (Public Review):

      Summary:

      In this study, Floedder et al report that dopamine ramps in both Pavlovian and Instrumental conditions are shaped by reward interval statistics. Dopamine ramps are an interesting phenomenon because at first glance they do not represent the classical reward prediction errors associated with dopamine signaling. Instead, they seem somewhat to bridge the gap between tonic and phasic dopamine, with an intense discussion still being held in the field about what is their actual behavioral role. Here, in tests with head-fixed mice, and dopamine being recorded with a genetically encoded fluorescent sensor in the nucleus accumbens, the authors find that dopamine ramps were only present when intertrial intervals were relatively short and the structure of the task (Pavlovian cue or progression in a VR corridor) contained elements that indicated progression towards the reward (e.g., a dynamic cue). The authors show that these findings are well explained by their previously published model of Adjusted Net Contingency of Causal Relation (ANCCR).

      Strengths:

      This descriptive study delineates some fundamental parameters that define dopamine ramps in the studied conditions. The short, objective, and to-the-point format of the manuscript is great and really does a service to potential readers. The authors are very careful with the scope of their conclusions, which is appreciated by this reviewer.

      Weaknesses:

      The discussion of the results is very limited to the conceptual framework of the authors' preferred model (which the authors do recognize, but it still is a limitation). The correlation analysis presented in panel I of Figure 3 seems unnecessary at best and could be misleading, as it is really driven by the categorical differences between the two conditions that were grouped for this analysis. There are some key aspects of the data and their relationship with each other, the previous literature, and the methods used to collect them, that could have been better discussed and explored.

    3. Reviewer #2 (Public Review):

      In this manuscript by Floeder et al., the authors report a correlation between ITI duration and the strength of a dopamine ramp occurring in the time between a predictive conditioned stimulus and a subsequent reward. They found this relationship occurring within two different tasks with mice, during both a Pavlovian task as well as an instrumental virtual visual navigation task. Additionally, they observed this relationship only in conditions when using a dynamic predictive stimulus. The authors relate this finding to their previously published model ANCCR in which the time constant of the eligibility trace is proportionate to the reward rate within the task.

      The relationship between ITI duration and the extent of a dopamine ramp which the authors have reported is very intriguing and certainly provides an important constraint for models for dopamine function. As such, these findings are potentially highly impactful to the field. I do have a few questions for the authors which are written below.

      (1) I was surprised to see a lack of counterbalance within the Pavlovian design for the order of the long vs short ITI. Ramping of the lick rate does increase from the long-duration ITIs to the short-duration ITI sessions. Although of course, this increase in ramping of the licking across the two conditions is not necessarily a function of learning, it doesn't lend support to the opposite possibility that the timing of the dynamic CS hasn't reached asymptotic learning by the end of the long-duration ITI. The authors do reference papers in which overtraining tends to result in a reduction of ramping, which would argue against this possibility, yet differential learning of the dynamic CS would presumably be required to observe this effect. Do the authors have any evidence that the effect is not due to heightened learning of the timing of the dynamic CS across the experiment?

      (2) The dopamine response, as measured by dLight, seems to drop after the reward is delivered. This reduction in responding also tends to be observed with electrophysiological recordings of dopamine neurons. It seems possible that during the short ITI sessions, particularly on the shorter ITI duration trials, that dopamine levels may still be reduced from the previous trial at the onset of the CS on the subsequent trial. Perhaps the authors can observe the dynamics of the recovery of the dopamine response following a reward delivery on longer-duration ITIs in order to determine how quickly dopamine is recovering following a reward delivery. Are the trials with very short ITIs occurring within this period that dopamine is recovering from the previous trial? If so, how much of the effect may be due to this effect? It should be noted that the lack of observance of a ramp on the condition of short-duration ITIs with fixed CSs provides a potential control for this effect, yet the extent to which a natural ramp might occur following sucrose deliveries should be investigated.

      (3) The authors primarily relate the finding of the correlation between the ITI and the slope of the ramp to their ANCCR model by suggesting that shorter time constants of the eligibility trace will result in more precisely timed predictors of reward across discrete periods of the dynamic cue. Based on this prediction, would the change in slope be more gradual, and perhaps be more correlated with a broader cumulative estimate of reward rate than just a single trial?

    4. Reviewer #3 (Public Review):

      Summary:

      Floeder and colleagues measure dopamine signaling in the nucleus accumbens core using fiber photometry of the dLight sensor, in Pavlovian and instrumental tasks in mice. They test some predictions from a recently proposed model (ANCCR) regarding the existence of "ramps" in dopamine that have been seen in some previous research, the characteristics of which remain poorly understood.

      They find that cues signaling a progression toward rewards (akin to a countdown) specifically promote ramping dopamine signaling in the nucleus accumbens core, but only when the intertrial interval just experienced was short. This work is discussed in the context of ongoing theoretical conceptions of dopamine's role in learning.

      Strengths:

      This work is the clearest demonstration to date of concrete training factors that seem to directly impact whether or not dopamine ramps occur. The existence of ramping signals has long been a feature of debates in the dopamine literature and this work adds important context to that. Further, as a practical assessment of the impact of a relatively simple trial structure manipulation on dopamine patterns, this work will be important for guiding future studies. These studies are well done and thoughtfully presented.

      Weaknesses:

      It remains somewhat unclear what limits are in place on the extent to which an eligibility trace is reflected in dopamine signals. In the current study, a specific set of ITIs was used, and one wonders if the relative comparison of ITI/history variables ("shorter" or "longer") is a factor in how the dopamine signal emerges, in addition to the explicit length ("short" or "long") of the ITI. Another experimental condition, where variable ITIs were intermingled, could perhaps help clarify some remaining questions.

      In both tasks, cue onset responses are larger, and longer on long ITI trials. One concern is that this larger signal makes seeing a ramp during the cue-reward interval harder, especially with a fluorescence method like photometry. Examining the traces in Figure 1i - in the long, dynamic cue condition the dopamine trace has not returned to baseline at the time of the "ramp" window onset, but the short dynamic trace has. So one wonders if it's possible the overall return to baseline trend in the long dynamic conditions might wash out a ramp.

      Not a weakness of this study, but the current results certainly make one ponder the potential function of cue-reward interval ramps in dopamine (assuming there is a determinable function). In the current data, licking behavior was similar on different trial types, and that is described as specifically not explaining ramp activity.

    1. eLife assessment

      This report details the creation and wide-scale utilization of "Repix", a new technique for chronic neurophysiological recordings using and re-using Neuropixels probes in freely behaving mice and rats. The authors include data and feedback from a variety of labs and researchers who have used this technique, setting an example for open science and reproducibility, and providing convincing evidence that this approach can be employed for chronic Neuropixels recordings. However, evidence is currently incomplete for claims about the advantages of this design over previous approaches and for cell yield and stability claims. This important work will have an impact on a broad range of neuroscientists seeking a straightforward methodology for chronic Neuropixels recordings and will facilitate ethologically relevant experimental designs.

    2. Reviewer #1 (Public Review):

      Summary:

      Horan et al. present a system for the chronic implantation of Neuropixels probes in mice and rats that allows the repeated cycles of implantation, explant, and reuse. A detailed protocol of the procedure, along with technical drawings for the parts of the system are provided, for potential users to undertake the technique in their own laboratory. The authors documented the adoption of this system in ten laboratories, demonstrating that the technique can be widely deployed. Yields in the number of neurons recorded over time are reported to indicate that the technique can achieve stable yields over time.

      Strengths:

      The authors provide compelling evidence that their technique can be widely deployed and acquired by different laboratories by documenting in detail the success rates at each step of the procedure and the common failure modes across ten laboratories. This is important because an impediment for a laboratory to try out a new technique is a lack of assurance about whether that technique would be successful outside the environment where the technique was originally developed. It is helpful that the authors show that even users who were not directly trained by the original developer of the technique can acquire the technique by receiving only the protocol and the technical drawings.

      Weaknesses:

      I would have liked to see more evidence demonstrating the purported advantages of the Repix design ("We found that the key advantage of Repix is robustness and simplicity.") relative to other techniques already available for chronic implantation allowing for reuse (Juavinett 2019, Luo 2020, van Daal 2021, Bimbard 2023, Melin 2023). While it is commendable that the authors demonstrate the durability of their design during social interactions, I would have liked to see evidence demonstrating that aluminum construction (compared to plastic) is necessary for "rough-and-tumble fights of male mice."

      Aluminum parts are typically more expensive than plastic parts, and because machining aluminum parts is typically slower than 3D printing in plastic, the commitment to aluminum can greatly slow down the adaptation of the Repix design for specific experimental needs or for newer versions of Neuropixels probes to be released in the future. Also, as the authors stated, aluminum parts are a bit heavier than plastic parts. In addition, I remain not fully convinced that the Repix design is significantly simpler than the existing designs, and I would be more convinced if the authors could quantify the number of modular components of the Repix system relative to existing designs, or perhaps provide a time estimate of assembling a Repix system compared to assembling an existing design.

      The possibility of achieving greater yield using dexamethasone is intriguing, but the authors only show this for rats and one brain region. Were the surgeries done using dexamethasone performed after the surgeries not using dexamethasone? If so, could the improved yield simply be due to improvement in surgical technique? As such, it remains unclear whether dexamethasone actually helps to achieve greater yields.

    3. Reviewer #2 (Public Review):

      Summary:

      This report describes a new "Repix" device for collecting stable, long-term recordings from chronically implanted Neuropixels probes in freely behaving rodents. The device follows the "docking module with payload" design of other similar devices that allows probe explantation and reuse but requires minimal components and is robust to a wide range of rodent behaviors. The docking module is a set of metal posts that are screwed into the payload module (cassette carrying the probe) at one end and cemented to the skull of the animal during surgery at the other end to reversibly anchor the probe to the skull. Loosening of the screws allows the cassette to travel off the posts for explantation. An additional headstage holder and cover are also available for further protection of the implant from mechanical damage during freely moving behaviors. Usage data from almost 200 procedures across multiple labs and users showcase high success rates at all stages of implementation (implantation, data collection, and explantation), even from users without direct training from the original developer of Repix. Device proficiency, defined by the authors as three successive full procedures without failure, was typically achieved within five attempts. Hundreds of neurons were consistently recorded from multiple brain regions, irrespective of animal behavior, Neuropixels probe type, and probe reuse. Impressively, neurophysiological data using Repix has already been published in two studies (one in mice and the other in rats). These findings demonstrate the intended functioning of the device as well as its ease of adoption. The effort to make the Repix system as straightforward as possible (e.g., minimal components and detailed protocols) is evident and will likely be appreciated by new adopters. Furthermore, the cell yield and procedures-to-proficiency data collected from a variety of experiments provide useful data for new adopters to plan their own studies with realistic expectations.

      Strengths:

      The main claims that the Repix device is "reliable, reusable, [and] versatile" are well-supported.

      Weaknesses:

      (1) The methodology used to quantify cell yields is concerning, potentially leading to an overestimation of "good" units and a misleading amount of "total" units. The authors define "good" unit yield as the amount of simultaneously recorded neurons labeled "good" by the automated spike sorter Kilosort without post-hoc manual curation. This definition was used to standardize cell yield between users who would otherwise manually curate cells and introduce individual variability as to what is considered a "good" unit. However, manual curation of spike sorted output is typically necessary to eliminate false positive units and "merge" spikes belonging to the same neuron that Kilosort identified as belonging to two separate neurons (i.e., spikes that share a refractory period, waveform shape, and localized to the same channels). As such, one may reasonably expect the yield for actual "good" units to be lower than what is reported. Furthermore, including units labeled by Kilosort as multi-unit activity in the "total" yield does not lend itself, by definition, to accurate quantification of individual neurons.

      (2) For transparency's sake, restatement of whether the cell yield data came from mice or rats, and from one lab or multiple labs, in the figure or figure captions would be helpful. Based on the introduction of the paper, one gets the impression that the Repix system was designed for mice and rats and, therefore, that data from mice and rats were to be roughly equally represented. This is not the case, as only 1/3 of the reported Repix users were implanted in rats, and cell yield data was shown for only two brain regions in rats (compared with four in mice). The authors state that Repix was designed "... to record neural activities during social interaction of mice" in the Discussion section. It would be helpful for this statement to appear in the Introduction so that it is clear to the reader that Repix was designed for mice but also works well for rats.

      (3) Regarding Figure 2, it would be informative to separate this data by species. Does Repix fail more in a procedural stage depending on whether the user is working with mice or rats?

    4. Reviewer #3 (Public Review):

      Summary:

      Recent work in systems neuroscience has highlighted the importance of studying the populations of neurons during naturalistic behaviors, which necessitates the use of cutting-edge devices in freely moving animals. However, it has been costly and experimentally difficult to conduct such experiments. In response to this need, Horan et al. developed and thoroughly tested a system called Repix which allows neuroscientists to record from multiple brain areas in freely moving rodents over many days, even weeks. The authors show that this device enables reasonably stable long-term recordings and that the probe can be reused for different experiments.

      Strengths:

      I deeply appreciated how thoroughly the authors have tested this across labs and different versions of Neuropixels probes (and even other probes). This is unlike many other papers that describe similar devices, which have almost always only been developed and tested in one lab. As such, I think that the Repix device and procedure are very likely to be adopted by even more labs given the robustness of the evidence provided here. The willingness of the authors to allow others to test their device, iterate on the design, and obtain feedback from users is a shining example of how open science and publication should be conducted: with patience and diligence. I'm grateful to the authors for providing this example to the research community.

      On a related note, in the discussion, the authors nicely summarize their focus on ease-of-adoption and highlight other examples from the community that have been successful. I would encourage the authors to think about what else - culturally, economically, etc. -- has been helpful in the open science adoption of software and hardware for electrophysiology, and to think critically about what these movements are still lacking or missing. Given the authors' collective experience in this effort, I believe the broader community would benefit from their perspective.

      The final strength of this manuscript is the highly detailed protocol that has itself been peer-reviewed by many users and can be adapted for multiple use cases. The authors also provide specific protocols from individual labs in the main manuscript.

      Weaknesses:

      (1) Claims about longevity. Given the clear drop-off in units in the amygdala and V1, I felt that the claims about long-term stability (particularly at the one-year mark) were oversold. Readers should note the differences between the length of the curves in Figure 3B, and take these differences into consideration when setting expectations on the durability of these probes for recordings in V1 or the amygdala (and possibly nearby areas).

      (2) Clarity around curve fitting, statistics, and impact of surgical procedures. I believe the manuscript could benefit from more detail around the curve fitting that was implemented, as well as some of the statistical tests, particularly related to the dexamethasone experiments. It seems the authors fit exponential decay to the unit curves over time, but it is not clear that this kind of fit makes sense given the data, which is a bit hard to see. Relatedly, there is a claim on page 10 about the similarity between mouse and rat decay constants in the amygdala which is hard to evaluate without quantitative evidence.

      It is very useful to know that dexamethasone (an anti-inflammatory used by many labs) could improve stability, however, a more thorough explanation of these experiments is warranted. For example, it should be noted that the dexamethasone animals start with a much higher unit yield. Also, the decay in Figure 5e looks similar between dex and non-dex animals despite the claims in the text that the "decay of unit numbers was slower." Additional details about the curve fitting and statistical tests are needed for readers to evaluate this claim.

    1. Reviewer #1 (Public Review):

      The study shows a new mechanism of NFkB-p65 regulation mediated by Vangl2-dependent autophagic targeting. Autophagic regulation of p65 has been reported earlier; this study brings an additional set of molecular players involved in this important regulatory event, which may have implications for chronic and acute inflammatory conditions.

      Comments on the revised version:

      The authors have addressed the earlier concerns and I am satisfied with the revised version. I have no additional comments to make.

    2. eLife assessment

      This valuable manuscript describes a novel role of Vangl2, a core planar cell polarity protein, in linking the NF-kB pathway to selective autophagic protein degradation in myeloid cells. The mechanistic studies suggest that Vangl2 targets p65 for NDP52-mediated autophagic degradation, limiting inflammatory NF-kB response, with functional significance of the proposed mechanism in sepsis. The presented evidence is convincing. Additional studies dissecting autophagic Vangl2 functions in various myeloid subsets in the context of inflammation could be informative, and additional Vangl2 targets in the inflammatory pathway, including IKK2, could also be explored. Overall, this exciting study will likely advance our understanding of NF-kB control, particularly in the context of inflammatory diseases.

    3. Reviewer #2 (Public Review):

      Vangl2, a core planar cell polarity protein involved in Wnt/PCP signaling, cell proliferation, differentiation, homeostasis, and cell migration. Vangl2 malfunctioning has been linked to various human ailments, including autoimmune and neoplastic disorders. Interestingly, it was shown that Vangl2 interacts with the autophagy regulator p62, and autophagic degradation limits the activity of inflammatory mediators, such as p65/NF-κB. However, the possible role of Vangl2 in inflammation has not been investigated. In this manuscript, Lu et al. describe that Vangl2 expression is upregulated in human sepsis-associated PBMCs and that Vangl2 mitigates experimental sepsis in mice by negatively regulating p65/NF-κB signaling in myeloid cells. Their mechanistic studies further revealed that Vangl2 recruits the E3 ubiquitin ligase PDLIM2 to promote K63-linked poly-ubiquitination of p65. Vangl2 also facilitated the recognition of ubiquitinated p65 by the cargo receptor NDP52. These molecular processes caused selective autophagic degradation of p65. Indeed, abrogation of PDLIM2 or NDP52 functions rescued p65 from autophagic degradation, leading to extended p65/NF-κB activity in myeloid cells. Overall, the manuscript presents convincing evidence for novel Vangl2-mediated control of inflammatory p65/NF-kB activity. The proposed pathway may expand interventional opportunities restraining aberrant p65/NF-kB activity in human ailments.

      IKK is known to mediate p65 phosphorylation, which instructs NF-kB transcriptional activity. In this manuscript, Vangl2 deficiency led to an increased accumulation of phosphorylated p65 and IKK also at 30 minutes post-LPS stimulation; however, autophagic degradation of p-p65 may not have been initiated at this early time point. Therefore, this set of data put forward the exciting possibility that Vangl2 could also be regulating the immediate early phase of inflammatory response involving the IKK-p65 axis - a proposition that may be tested in future studies.

    4. Reviewer #3 (Public Review):

      Lu et al. describe Vangl2 as a negative regulator of inflammation in myeloid cells. The primary mechanism appears to be through binding p65 and promoting its degradation, albeit in an unusual autolysosome/autophagy dependent manner. Overall, these findings are novel, valuable and the crosstalk of PCP pathway protein Vangl2 with NF-kappaB is of interest. While generally solid, some concerns still remain about the rigor and conclusions drawn.

      Comments on the revised version:

      Lu et al. address my comments through responses and new experimental data. However, some of the explanations provided are inadequate.

      The new experimental data using phosphomutants indeed adds to their claim that this is a PCP-independent function of Vangl2.

      The addition of statistics and testing JNK pathway is appreciated by this Reviewer.

      However, in response to my enquiry regarding directly exploring PCP effects, the authors simply assert "Our study revealed that Vangl2 recruits the E3 ubiquitin ligase PDLIM2 to facilitate K63-linked ubiquitination of p65, which is subsequently recognized by autophagy receptor NDP52 and then promotes the autophagic degradation of p65. Our findings by using autophagy inhibitors and autophagic-deficient cells indicate that Vangl2 regulates NFkB signaling through a selective autophagic pathway, rather than affecting the PCP pathway, WNT, HH/GLI, Fat-Dachsous or even mechanical tension."

      I do not agree that the use of autophagy inhibitors and autophagy-deficient cells can rule out the contributions of PCP or any other pathways. Only experimentally inhibiting the pathway(s) with adequate demonstration of target inhibition/abolition of well-known effector function and documenting unaltered p65 regulation under these conditions can be considered proof. Autophagy inhibitors and autophagy-deficient cells only prove that this particular pathway is necessary. Nonetheless, I do not want to dwell on proving a negative and agree that Vangl2 is a novel regulator of p65 through its role in promoting p65 degradation. The inclusion of a statement discussing the limitations of their approach would have sufficed. The response from the authors could have been better.

      I am also not satisfied with the explanation that "immune cells represent a minor fraction of the lungs and liver". There are lots of resident immune cells in the lungs and liver (alveolar macrophages in the lung and Kuppfer cells in the liver). For example, it may be so that Vangl2 is important in monocytes and not in the resident population. This might be a potential explanation. But this is not explored. The restricted tissue-specificity of the interaction between two ubiquitously present proteins is still a challenge to understand. The response from the authors is not satisfactory. There is plenty of Vangl2 in the liver in their western blot.

      I had also simply pointed out PMID: 34214490 with reference to the findings described in the manuscript. There were no suggestions of contradiction. In fact, I would refer to the publication in discussion to support the findings and stress the novelty. The response from the authors could have been better.

      The response to my enquiry regarding homo- or heterozygosity is unsupported by any reference or data.

      The listing of 8 patients and healthy controls are also appreciated. The body temperature of #6 doesn't fall in the <36 or >38 degree C SIRS criteria. The inclusion of CRP, PCT, heart rate and respiratory rate, and other lab values would have further improved the inclusion criteria. Moreover, it is difficult to understand why there are 16 value points for healthy and sepsis cohorts in Fig 1 when there are 8 patients.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In the manuscript titled "Vangl2 suppresses NF-κB signaling and ameliorates sepsis by targeting p65 for NDP52-mediated autophagic degradation" by Lu et al, the authors show that Vangl2, a planner cell polarity component, plays a direct role in autophagic degradation of NFkB-p65 by facilitating its ubiquitination via PDLIM2 and subsequent recognition and autophagic targeting via the autophagy adaptor protein NDP52. Conceptually it is a wonderful study with excellent execution of experiments and controls. The concerns with the manuscript are mainly on two counts - First issue is the kinetics of p65 regulation reported here, which does not fit into the kinetics of the mechanism proposed here, i.e., Vangl2-mediated ubiquitination followed by autophagic degradation of p65. The second issue is more technical- an absolute lack of quantitative analyses. The authors rely mostly on visual qualitative interpretation to assess an increase or decrease in associations between partner molecules throughout the study. While the overall mechanism is interesting, the authors should address these concerns as highlighted below:

      Major points:

      (1) Kinetics of p65 regulation by Vangl2: As mentioned above, authors report that LPS stimulation leads to higher IKK and p65 activation in the absence of Vangl2. The mechanism of action authors subsequently work out is that- Vangl2 helps recruit E3 ligase PDLIM to p65, which causes K63 ubiquitination, which is recognised by NDP52 for autophagic targeting. Curiously, peak p65 activation is achieved within 30 minutes of LPS stimulation. The time scale of all other assays is way longer. It is not clear that in WT cells, p65 could be targeted to autophagic degradation in Vangl2 dependent manner within 30 minutes. The HA-Myc-Flag-based overexpression and Co-IP studies do confirm the interactions as proposed. However, they do not prove that this mechanism was responsible for the Vangl2-mediated modulation of p65 activation upon LPS stimulation. Moreover, the Vangl2 KO line also shows increased IKK activation. The authors do not show the cause behind increased IKK activation, which in itself can trigger increased p65 phosphorylation.

      We thank the reviewer for this valuable suggestion.

      Indeed, we agreed with the reviewer that peak p65 activation is achieved within 30 minutes of LPS stimulation in vitro, and p65 could not be targeted to autophagic degradation in a Vangl2 dependent manner within 30 minutes. Given that the protein and mRNA levels of Vangl2 were elevated at 3-6 h of LPS stimulation (Fig. S1 C-E), we extended the stimulation time scale in the revised manuscript. The data (Fig. 2A-D in the revised manuscript) demonstrated that IKK phosphorylation was enhanced in Vangl2 KO myeloid cells during the early phase (within 3 h) of LPS stimulation, but not for the prolonged period of LPS stimulation. The underlying mechanism may be complex. Only p65 phosphorylation was continuously enhanced after long-term LPS stimulation in Vangl2 KO cells, compared to WT cells. Furthermore, the overexpression of Vangl2 in A549 cells also demonstrated a reduction of phosphorylation and total endogenous p65 (Fig. 2 I, J in the revised manuscript). These findings were corroborated by overexpression and Co-IP experiments, which collectively indicated that Vangl2 regulates the stability of p65 by promoting its interaction with NDP52 and autophagic degradation. (Page 7; Line 183-185).  

      (2) The other major concern is regarding the lack of quantitative assessments. For Co-IP experiments, I can understand it is qualitative observation. However, when the authors infer that there is an increase or decrease in the association through co-IP immunoblots, it should also be quantified, especially since the differences are quite marginal and could be easily misinterpreted.

      We are grateful to the reviewer for this suggestion. The quantitative analysis has been updated in the revised version.

      (3) Figure 4E and F: It is evident that inhibiting Autolysosome (CQ or BafA1) or autophagy (3MA) led to the recovery of p65 levels and inducing autophagy by Rapamycin led to faster decay in p65 levels. Did the authors also note/explore the possibility that Vangl2 itself may be degraded via the autophagy pathway? IB of WCL upon CQ/BAF/3MA or upon Rapa treatment does indicate the same. If true, how would that impact the dynamics of p65 activation?

      We thank the reviewer for this question. Previous studies have shown that Vangl2 is primarily degraded by the proteasome pathway, rather than by the autolysosomal pathway (doi: 10.1126/sciadv.abg2099; doi: 10.1038/s41598-019-39642-z). In our experiments, Vangl2 recruits E3 ligase PDLIM2 to enhance K63-linked ubiquitination on p65, which serves as a recognition signal for cargo receptor NDP52-mediated selective autophagic degradation. Vangl2 facilitated the interaction between p65 and NDP52, yet itself did not undergo significant autophagic degradation.

      (4) Autophagic targeting of p65 should also be shown through alternate evidence, like microscopy etc., in the LPS-stimulated WT cells.

      We thank the reviewer for this suggestion. We have added the data (co-localization of p65 and LC3 was detected by immunofluorescence) in the revised version (Fig. S4 H in the revised manuscript). (Page 9, lines 267-268)

      Reviewer #2 (Public Review):

      Vangl2, a core planar cell polarity protein involved in Wnt/PCP signaling, mediates cell proliferation, differentiation, homeostasis, and cell migration. Vangl2 malfunctioning has been linked to various human ailments, including autoimmune and neoplastic disorders. Interestingly, Vangl2 was shown to interact with the autophagy regulator p62, and indeed, autophagic degradation limits the activity of inflammatory mediators such as p65/NF-κB. However, if Vangl2, per se, contributes to restraining aberrant p65/NF-kB activity remains unclear.

      In this manuscript, Lu et al. describe that Vangl2 expression is upregulated in human sepsis-associated PBMCs and that Vangl2 mitigates experimental sepsis in mice by negatively regulating p65/NF-κB signaling in myeloid cells. Vangl2 recruits the E3 ubiquitin ligase PDLIM2 to promote K63-linked poly-ubiquitination of p65. Vangl2 also facilitates the recognition of ubiquitinated p65 by the cargo receptor NDP52. These molecular processes cause selective autophagic degradation of p65. Indeed, abrogation of PDLIM2 or NDP52 functions rescued p65 from autophagic degradation, leading to extended p65/NF-κB activity.

      As such, the manuscript presents a substantial body of interesting work and a novel mechanism of NF-κB control. If found true, the proposed mechanism may expand therapeutic opportunities for inflammatory diseases. However, the current draft has significant weaknesses that need to be addressed.

      We appreciate the reviewer’s comments on our manuscript, and we have further improved the manuscript as suggested.

      Specific comments

      (1) Vangl2 deficiency did not cause a discernible increase in the cellular level of total endogenous p65 (Fig 2A and Fig 2B) but accumulated also phosphorylated IKK.

      Even Fig 4D reveals that Vangl2 exerts a rather modest effect on the total p65 level and the figure does not provide any standard error for the quantified data. Therefore, these results do not fully support the proposed model (Figure 7) - this is a significant draw back. Instead, these data provoke an alternate hypothesis that Vangl2 could be specifically mediating autophagic removal of phosphorylated IKK and phosphorylated IKK, leading to exacerbated inflammatory NF-κB response in Vangl2-deficient cells. One may need to use phosphorylation-defective mutants of p65, at least in the over-expression experiments, to dissect between these possibilities.

      We appreciate the reviewer’s comments on our manuscript, and we have further improved the manuscript as suggested.

      (1) Indeed, we agreed with the reviewer that Vangl2 deficiency did not cause a discernible increase in the cellular level of total p65 after a short time of LPS stimulation in vitro, and p65 could not be targeted to autophagic degradation in a Vangl2 dependent manner within 30 minutes. Given that the protein and mRNA levels of Vangl2 were elevated at 3-6 h of LPS stimulation (Fig. S1 C-E), we extended the stimulation time scale in the revised manuscript. The data (Fig. 2A-D in the revised manuscript) demonstrated that IKK phosphorylation was enhanced in Vangl2 KO myeloid cells during the early phase (within 3 h) of LPS stimulation, but not for the prolonged period of LPS stimulation. The underlying mechanism may be complex. Only phosphorylation of p65 and total endogenous p65 was continuously enhanced after long-term LPS stimulation in Vangl2 KO cells, compared to WT cells. Furthermore, the overexpression of Vangl2 in A549 cells also demonstrated a reduction of phosphorylation and total endogenous p65 (Fig. 2 I, J in the revised manuscript). These findings were corroborated by overexpression and Co-IP experiments, which collectively indicated that Vangl2 regulates the stability of p65 by promoting its interaction with NDP52 and autophagic degradation. (Page 7; Line 183-185).  

      (2) Similarly, the stimulation time scale in Fig 4D was extended, and it was demonstrated that p65 was more stable in Vangl2-deficient cells.

      3) Moreover, we constructed phosphorylation-defective mutants of p65 (S536A), and found that Vangl2 could also promote the degradation of the p65 phosphorylation mutants (Fig. S4 A, B in the revised manuscript). Thus, Vangl2 promote the degradation of the basal/unphosphorylated p65. (Page 8, lines 237-240)

      (2) Fig 1A: The data indicates the presence of two subgroups within the sepsis cohort - one with high Vangl2 expressions and the other with relatively normal Vangl2 expression. Was there any difference with respect to NF-κB target inflammatory gene expressions between these subgroups?

      As suggested, we conducted an analysis of NF-kB target inflammatory gene expressions between the high and relatively low Vangl2 expression groups in sepsis patients. The results showed that the serum of the high Vangl2 expression group exhibited lower levels of IL-6, WBC, and CRP than the low Vangl2 expression group, which suggested an inverse correlation between Vangl2 and the inflammatory response (Fig. S1 A in the revised manuscript) (Page 5, lines 126-128).

      (3) The effect of Vangl2 deficiency was rather modest in the neutrophil. Could it be that Vangl2 mediates its effect mostly in macrophages?

      As showed in Fig. S1C-E, the induction of Vangl2 by LPS stimulation is more rapid in macrophages than in neutrophils. This may contribute to its dominant effect in macrophages. Consequently, we primarily focused our investigation on the role of Vangl2 in macrophages.

      (4) Fig 1D and Figure 1E: Data for unstimulated Vangl2 cells should be provided. Also, the source of the IL-1β primary antibody has not been mentioned.

      Thank you for the suggestion. We have updated the data for unstimulated cells in the revised manuscript (Fig. 1 D, E in the revised manuscript). Also, IL-1β primary antibody was purchased from Cell Signaling Technology and the information has been included in the Materials and Methods section (Table S1).

      (5) The relevance and the requirement of RNA-seq analysis are not clear in the present draft. Figure 1E already reveals upregulation of the signature NF-κB target inflammatory genes upon Vangl2 deficiency.

      We agreed with the reviewer that the data presented in Figure 1E demonstrated the upregulation of the signature NF-kB target inflammatory genes upon Vangl2 deficiency in a murine model of LPS induced sepsis. Subsequently, we proceeded to investigate the mechanism by which Vangl2 regulates NF-kB target inflammatory genes at the cellular level in Figure 2. To this end, we performed RNA-seq analysis to screen signal pathways involved in LPS-induced septic shock by comparing LPS-stimulated BMDMs from Vangl2ΔM and WT mice, and identified that TNF signaling pathway and cytokine-cytokine receptor interaction were found to be significantly enriched in Vangl2ΔM BMDMs upon LPS stimulation. This analysis provides further evidence that Vangl2 plays a role in regulating NF-kB signaling pathways and the release of related inflammatory cytokines.

      (6) Fig 2A reveals an increased accumulation of phosphorylated p65 and IKK in Vangl2-deficient macrophages upon LPS stimulation within 30 minutes. However, Vangl2 accumulates at around 60 minutes post-stimulation in WT cells. Similar results were obtained for neutrophils (Fig 2B). There appears to be a temporal disconnect between Vangl2 and phosphorylated p65 accumulation - this must be clarified.

      This concern has been addressed above (see response to questions 1 from reviewer #2). 

      (7) Figure 2E and 2F do not have untreated controls. Presentations in Fig 2E may be improved to more clearly depict IL6 and TNF data, preferably with separate Y-axes.

      Thank you for the suggestion. We have added untreated controls and separated Y-axes for IL-6 and TNF data in the revised manuscript (Fig. 2 E, F in the revised manuscript).

      (8) Line 219: "strongly with IKKα, p65 and MyD88, and weak" - should be revised.

      We have improved the manuscript as suggested in the revised manuscript (Page 7; Line 203).

      (9) It is not clear why IKKβ was excluded from interaction studies in Fig S3G.

      We added the Co-IP experiment and showed that HA-tagged Vangl2 only interacted with Flag-tagged p65, but not with Flag-tagged IKKb in 293T cells (Fig S3H). Furthermore, endogenous co-IP immunoblot analyses showed that Vangl2 did not associate with IKKb (Fig. S3I)

      (10) Fig 3F- In the text, authors mentioned that Vangl2 strongly associates with p65 upon LPS stimulation in BMDM. However, no controls, including input or another p65-interacting protein, were used.

      As reviewer suggested, we have added input and positive control (IkBa) in this experiment (Fig. 3F in the revised manuscript). The results demonstrated that the interaction between p65 and IkBa was attenuated, although the total IkBa did not undergo significant degradation over long-term course of LPS stimulation.

      (11) Figure 4D - Authors claim that Vangl2-deficient BMDMs stabilized the expression of endogenous p65 after LPS treatment. However, p65 levels were particularly constitutively elevated in knockout cells, and LPS signaling did not cause any further upregulation. This again indicates the role of Vangl2 in the basal state. The authors need to explain this and revise the test accordingly.

      Thank you for the reviewer's comments. We repeated the experiment to ascertain whether Vangl2 could stabilize the expression of endogenous p65 before and after LPS treatment. It was found that, due to the extremely low expression of Vangl2 in WT cells in the absence of stimulation, there was no observable difference on the basal level of p65 between WT and Vangl2DM cells. However, upon prolonged LPS stimulation, Vangl2 expression was induced, resulting in p65 degradation in WT cells. In contrast, p65 protein was more stable in Vangl2 deficient cells after LPS stimulation (Fig. 4D in the revised manuscript).

      Reviewer #3 (Public Review):

      Lu et al. describe Vangl2 as a negative regulator of inflammation in myeloid cells. The primary mechanism appears to be through binding p65 and promoting its degradation, albeit in an unusual autolysosome/autophagy dependent manner. Overall, the findings are novel and the crosstalk of PCP pathway protein Vangl2 with NF-kappaB is of interest. …….Regardless, Vangl2 as a negative regulator of NF-kappaB is an important finding. There are, however, some concerns about methodology and statistics that need to be addressed.

      Thank you for your comments on our manuscript, and we have further improved the manuscript as suggested.

      (1) Whether PCP is anyway relevant or if this is a PCP-independent function of Vangl2 is not directly explored (the later appears more likely from the manuscript/discussion). PCP pathways intersect often with developmentally important pathways such as WNT, HH/GLI, Fat-Dachsous and even mechanical tension. It might be of importance to investigate whether Vangl2-dependent NF-kappaB is influenced by developmental pathways.

      Thank you for the reviewer's insightful comments. Our study revealed that Vangl2 recruits the E3 ubiquitin ligase PDLIM2 to facilitate K63-linked ubiquitination of p65, which is subsequently recognized by autophagy receptor NDP52 and then promotes the autophagic degradation of p65. Our findings by using autophagy inhibitors and autophagic-deficient cells indicate that Vangl2 regulates NF-kB signaling through a selective autophagic pathway, rather than affecting the PCP pathway, WNT, HH/GLI, Fat-Dachsous or even mechanical tension. Moreover, a discussion section has been added to the revised version. (Page 12, lines 377-393)

      (2) Are Vangl2 phosphorylations (S5, S82 and S84) in anyway necessary for the observed effects on NF-kappaB or would a phospho-mutant (alanine substitution mutant) Vangl2 phenocopy WT Vangl2 for regulation of NF-kappaB?

      As suggested, we generated phospho-mutants of Vangl2 (S82/84A) and observed that Vangl2 (S82/84A) could still facilitate the degradation of p65 (Fig. S4 B in the revised manuscript), suggesting that Vangl2 regulates the NF-kB pathway independently of its phosphorylation.

      (3) Another area to strengthen might be with regards to specificity of cell types where this phenomenon may be observed. LPS treatment in mice resulted in Vangl2 upregulation in spleen and lymph nodes, but not in lung and liver. What explains the specificity of organ/cell-type Vangl2 upregulation and its consequences observed here? Why is NF-kappaB signaling not more broadly or even ubiquitously affected in all cell types in a Vangl2-dependent manner, rather than being restricted to macrophages, neutrophils and peritoneal macrophages, or, for that matter, in spleen and LN and not liver and lung? After all, one may think that the PCP proteins, as well as NF-kappaB, are ubiquitous.

      Thank you for the reviewer's comments.

      (1) LPS is an important mediator to trigger sepsis with excessive immune activation. As is well known, the spleen and lymph nodes are important peripheral immune organs, where immune cells (e.g., macrophages) are abundant and respond sensitively to LPS stimulation. Nevertheless, immune cells represent a minor fraction of the lungs and liver. Consequently, Vangl2 represents a pivotal regulator of immune function, exhibiting a more pronounced increase in the immune organs and cells.

      2) Induction of Vangl2 expression by LPS stimulation is cell specific. Given that different cells exhibit varying protein abundances, the molecular events involved may also differ. Moreover, we observed high Vangl2 expression in the liver at the basal state (Author response image 1), whereas it was not induced after 12 h of LPS stimulation. Therefore, the functional role of Vangl2 exhibits significant phenotype in macrophages and neutrophils/spleen and LN, rather than in liver or lung cells.

      Author response image 1.

      Vangl2 showed no significant changes in the liver after LPS treatment.

      Mice (n≥3) were treated with LPS (30 mg/kg, i.p.). Livers were collected at 12 h after LPS treatment. Immunoblot analysis of Vangl2.

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors):

      General points:

      Figure 4G- panels appear mislabeled. Pl correct.

      We have corrected this mislabeling as you suggested.

      The dynamics of Vangl2 interaction with p65 and autophagy adaptors is not clear/apparent. For example, Vangl2 expression destabilises p65 levels (as in Fig. 4), but in Fig. 5, it seems there is no decline in the p65 protein level, and a large fraction of it coprecipitates with NDP52.

      We appreciate the reviewer’s comments. In the co-IP assay, we used the lysosomal inhibitor CQ to inhibit p65 degradation to observe the interaction between p65 and NDP52 or Vangl2.

      Fig 5E- I would expect p65 levels to be lower in WT cells than Vangl2 KO cells. But as such, there is no difference between the two.

      We appreciate the reviewer’s comments. We repeated the experiments and updated the data. Firstly, Vangl2 was not induced in WT cells in the absence of LPS stimulation, thus there was no difference in p65 expression between the two groups at the basal level. Secondly, we used CQ/Baf-A1 to inhibit the degradation of Vangl2 in the co-IP assay to observe the interaction between p65 and other molecule.

      Reviewer #2 (Recommendations For The Authors):

      A few points that can be looked at and revised.

      (1) Quantification of the presented data is needed for Fig 4D and Fig 4E.

      We added the quantification analysis as suggested.  

      (2) The labeling of Fig 4G should be scrutinized.

      We have corrected this mislabeling as you suggested.

      (3) Fig 6B and Fig 6C should be explained in the result section more elaborately.

      We thank the reviewer for the suggestion, and we have rephrased this sentence to better describe the results. (Page 10, lines 306-313)

      (4) Line 85: "Vangl2 mediated downstream of Toll-like or interleukin (IL)-1" - unclear.

      We appreciate the reviewer’s comments on our manuscript, and we have further improved the manuscript as suggested in the revised manuscript. (Page 3, lines 68)

      (5) Line 181: "mice. Differentially expression analysis" - this should be revised.

      We appreciate the reviewer’s comments on our manuscript, and we have further improved the manuscript as suggested in the revised manuscript. (Page 11, lines 323)

      (6) Line 261-264- CHX-chase assay showed the degradation rate of p65 in Vangl2-deficient BMDM was slower compared with WT cells. However, Vangl2 is not induced in WT BMDMs upon CHX treatment (Fig. S4B).

      We appreciate the reviewer’s comments on our manuscript, and we have further improved the manuscript as suggested in the revised manuscript (Fig. S4D).

      (7) Finally, some editing to provide data only critical for the conclusions could improve the ease of reading.

      We have further improved the manuscript as suggested in the revised manuscript.

      Reviewer #3 (Recommendations For The Authors):

      Comments (general, please address at least in Discussion. Some experimental data, for example the role, if any, of Vangl2 phosphorylations will be very useful):

      (1) It might be interesting to explore whether there are any potential effects of developmental pathways on the observed effect mediated by Vangl2 or if the effects are entirely a PCP-independent function of Vangl2. Please see above public review.

      Thank you for the reviewer's insightful comments. Our study revealed that Vangl2 recruits the E3 ubiquitin ligase PDLIM2 to facilitate K63-linked ubiquitination of p65, which is subsequently recognized by autophagy receptor NDP52 and then promotes the autophagic degradation of p65. Our findings by using autophagy inhibitors and autophagic-deficient cells indicate that Vangl2 regulates NF-kB signaling through a selective autophagic pathway, rather than affecting the PCP pathway, WNT, HH/GLI, Fat-Dachsous or even mechanical tension. Furthermore, we generated phospho-mutants of Vangl2 (S82/84A) and observed that Vangl2 (S82/84A) could still facilitate the degradation of p65 (Fig. S4 B), suggesting that Vangl2 regulates the NF-kB pathway independently of its phosphorylation. In addition, a discussion section has been added to the revised version. (Page 12, lines 377-393)

      (2) What explains the specificity of organ/cell-type Vangl2 upregulation and its consequences observed here? Why is NF-kappaB signaling not more broadly or even ubiquitously affected in all cell types in a Vangl2-dependent manner, rather than being restricted to macrophages, neutrophils and peritoneal macrophages, or, for that matter, in spleen and LN and not liver and lung? Afterall, one may think that the PCP proteins, as well as NF-kappaB, are ubiquitous.

      Thank you for the reviewer's comments. A similar question has been addressed above (refer to the response to question 3 of reviewer 3).

      (3) Another specificity-related question that comes to mind is whether the Vangl2 function in autolysomal/autophagic degradation is restricted to p65 as the exclusive substrate? The cytosolic targeting of p65 as opposed to the more well-known nuclear-targeting is interesting.

      Our previous finding demonstrated that Vangl2 inhibits antiviral IFN-I signaling by targeting TBK1 for autophagic degradation (doi: 10.1126/sciadv.adg2339), thereby indicating that p65 is not the sole substrate for Vangl2. However, in the NF-kB pathway, p65 is a specific substrate for Vangl2. Moreover, our findings indicate that the interaction between Vangl2 and p65 occurs predominantly in the cytoplasm, rather than in the nucleus (Fig. S4 C).

      (4) Pharmacological approach is used to tease apart autolysosome versus proteasome pathway. What is the physiological importance of autophagic degradation? It is interesting to note that Vangl2 was already previously implicated in degrading LAMP-2A and increasing chaperon-mediated autophagy (CMA)-lysosome numbers (PMID: 34214490).

      Previous literature has domonstrated that Vangl2 can inhibit CMA degradation (PMID: 34214490). However, in our study, we found that Vangl2 can promote the selective autophagic degradation of p65. It is important to note that CMA degradation and selective autophagic degradation are two distinct degradation modes, which is not contradictory.

      (5) Are these phenotypes discernable in heterozygotes or only when ablated in homozygosity? Any phenotypes recapitulated in the looptail heterozygote mice?

      We found that these phenotypes discernable only in homozygosity.

      (6) What is the conservation of the Vangl2 p65-interaction site between Vangl2 and Vangl1? PDLIM2 recruitment between Vangl2 and Vangl1?

      We appreciate the reviewer’s comments on our manuscript. Previous studies have shown that human Vangl1 and Vangl2 exhibit only 72% identity and exhibit distinct functional properties (doi: 10.1530/ERC-14-0141).Thus, the interaction of Vangl2 with p65 and PDLIM2 recruitment may not necessarily occur in Vangl1.

      Comments (specific to experiments and data analyses. Please address the following):

      (7) The patient population used in Fig 1 is not described in the Methods. This is a critical omission. Were age, sex etc. controlled for between healthy and disease? How was the diagnosis made? What times during sepsis were the samples collected? As presented, this data is impossible to evaluate and interpret.

      We appreciate the reviewer’s comments on our manuscript, and we have further improved the manuscript as suggested in the revised supplement materials. (Supplementary information, Page 12, lines 146-147)

      (8) In general, the statistical method should be described for each experiment presented in the figures. Comparisons should not be made only at the time point with maximal difference (such as in Fig 1F or Fig 2C, but at all time points using appropriate statistical methods). The sample size should also be included to allow determination appropriateness of parametric or non-parametric tests.

      We appreciate the reviewer’s comments on our manuscript, and we have further improved the manuscript as suggested in the revised manuscript (Figures 1F and 2C).

      (9) PCP pathways can activate p62/SQSTM1 or JNK via RhoA. JNK activation should be tested experimentally.

      According to the reviewer's comments, we further examined the effect of Vangl2 on the JNK pathway. The results showed that Vangl2 did not affect the JNK pathway (Author response image 2). This suggests that Vangl2 functions independently of the PCP pathway.

      Author response image 1.

      Vangl2 did not affect the JNK pathway. WT and Vangl2-deficient (n≥3) BMDMs were stimulated with LPS (100 ng/ml) for the indicated times. Immunoblot analysis of total and phosphorylated JNK.

      (10) Why are different cells such as A549, HEK293, CHO, 293T, THP-1 used during the studies for different experiments? Consistency would improve rigor. At least, logical explanation driving the cell type of choice for each experiment should be included in the manuscript. Nonetheless, one aspect of using a panel of cell lines indicate that the effect of Vangl2 on NF-kappa B is pleiotropic.

      We are grateful to the reviewer for their comments on our manuscript. A549, HEK293, CHO, and 293T cells are commonly utilized in protein-protein interaction studies. The selection of cell lines for overexpression (exogenous) experiment is dependent on their transfection efficiency and the ability to express TLR4 (the receptor for LPS). Additionally, we conducted endogenous experiments by using THP-1 and BMDMs, which are human macrophage cell lines and murine primary macrophages, respectively. Moreover, we generated Vangl2f/f lyz-cre mice by specifically knocking out Vangl2 in myeloid cells, and investigated the effect of Vangl2 on NF-kB signaling in vivo.

    1. eLife assessment

      This valuable study presents findings on the role of the ubiquitin-conjugating enzyme UBE2D/eff in maintaining proteostasis during aging. The evidence supporting the conclusions is solid, although one reviewer had concerns about the readout for protein aggregation and the loss-of-function studies. In the future, mechanistic insights explaining the impact of UBE2D/eff deficiency on the accumulation of poly-ubiquitinated proteins and in shortening lifespan would be interesting. The present study is of broad interest to cell biologists working in aging and age-related diseases.

    2. Reviewer #1 (Public Review):

      In this study, Hunt et al investigated the role of the ubiquitin-conjugating enzyme UBE2D/effete (eff) in maintaining proteostasis during aging. Utilizing Drosophila as a model, the researchers observed diverse roles of E2 ubiquitin-conjugating enzymes in handling the aggregation-prone protein huntingtin-polyQ in the retina. While some E2s facilitated aggregate assembly, UBE2D/eff and other E2s were crucial for degradation of htt-polyQ. The study also highlights the significance of UBE2D/eff in skeletal muscle, showing that declining levels of eff during aging correlate with proteostasis disruptions. Knockdown of eff in muscle led to accelerated accumulation of poly-ubiquitinated proteins, shortened lifespan, and mirrored proteomic changes observed in aged muscles. The introduction of human UBE2D2, analogous to eff, partially rescued the deficits in lifespan and proteostasis caused by eff-RNAi expression in muscles.

      Comments on revised version:

      In this revised manuscript, the authors have addressed some of my concerns, yet several significant caveats remain unaddressed.

      One major concern stems from the unexpected outcome observed in the UBE2D/eff loss-of-function experiment. Despite its known role as a ubiquitin-conjugating enzyme (E2), reducing UBE2D/eff levels led to an increase in poly-ubiquitinated proteins and p62 accumulation, suggesting a more complex and multifaceted phenotype seemingly unrelated to the expected role of UBE2D/eff. The authors proposed that an overall disruption of protein quality control, indirectly caused by effRNAi, could explain these phenotypes. However, while the authors noted that effRNAi does not affect proteasome activity, they have not explored other possibilities, leaving a mechanistic explanation still missing.

      Furthermore, the comparative analysis of the old versus young proteome identified 10 out of 21 E2 enzymes, suggesting that other E2s may also contribute to age-related changes in proteostasis and lifespan. In this context, the authors mentioned that overexpression of human UBE2D2 in skeletal muscle does not influence lifespan, indicating that the reduced Eff levels observed during aging may not necessarily contribute to the aging phenotype.<br /> At this point, I believe the manuscript remains largely descriptive.

    3. Reviewer #2 (Public Review):

      The authors screened 21 E2 enzymes for their role in HTTExon1Q72-mCherry (HTT) aggregation in the Drosophila eye. They identified UBE2D, whose knockdown leads to increased HTT aggregation that can be rescued by ectopic expression of the human homolog. The protein levels of UBE2D decrease with aging and knockdown of UBED2 leads to an accumulation of ubiquitinated proteins and a shortened lifespan that can be rescued by ectopic expression of the human homolog. Knockdown of UBE2D leads to proteomic changes with up- and down-regulated proteins that include both components of the proteostasis network.

      Comments on revised version:

      The authors have not addressed a single critical point experimentally. Their explanations are not resolving my concerns and hence the following critical points remain:

      • The readout of HTT aggregation (with methods that are not suitable) as proxy for the role of UBE2D in proteostasis is not convincing.

      • UBE2D knockdown increases the number of HTT foci (Fig. 1A), but the quantification is less convincing as depicted in Fig. 1B and other E2 enzymes show a stronger effect (e.g. Ubc6 that is only studied in Figs. 1 + 2 without an explanation and Ubc84D). It does not help or add anything to this study that the authors refer to a previous publication. This review assesses this manuscript.

      • The quantification of the HTT fluorescence cannot be used as proxy for HTT aggregation. The authors should assess HTT aggregation by e.g. SDD-AGE, FRAP, filter retardation etc. The quantification of the higher MW species of HTT in the SDS-PAGE is not ideal either as this simply reflects material that is stuck in the wells that could not enter the gel. Aggregation and hence high MW size could be one reason, but it can also be HTT trapped in cell debris etc. This point is critical and I disagree with the response of the authors.

      • Does UBE2D ubiquitinate HTT? And thus, is HTT accumulation a suitable readout for the functional assessment of the E2 enzyme UBE2D? The authors state that UBE2D does not ubiquitinate HTT. Thus, HTT accumulation is an indirect consequence of perturbed proteostasis. There are certainly better readouts for the role of UBE2D once they have identified substrates.

      • The proteomic analyses could help to identify potential substrates for UBE2D. I think its is a missed chance to not follow up on the proteomic analysis to identify substrates and define the role of UBE2D in maintainig proteostasis.

      • Are there mutants available for UBE2D or conditional mutants? One caveat of RNAi are: first not complete knockdown and second, variable knockdown efficiencies that increases variability. So mutants are available and yet the authors refuse to use those.

      • The analysis of the E3 enzymes does not add anything to this manuscript and the author's response that this manuscript is a follow-up study on a previous publication of the lab is certainly not a valid argument.

      • The manuscript remains at this stage rather descriptive.

    4. Reviewer #3 (Public Review):

      This is an interesting paper that defines E2 and E3 genes in Drosophila that can impact the accumulation of the Q72-GFP protein in the fly eye. The authors then focus on the eff gene, showing which human homolog can rescue fly knockdown. They extend to skeletal muscle during natural aging to show that eff by TMT mass spec decreases with age normally in the fly muscle and that there is a significant overlap of proteins that are disrupted with eff knockdown in young animals in muscle vs aged animals normally in muscle.

      Overall these data suggest that eff decrease with age may contribute to the increase in ubiquitinated proteins in muscle with age, and that upregulation of eff activity might be of interest to extend lifespan. Because eff function can be performed by a human homologue the findings may also apply to human situations of aging.

      These data are overall interesting and of relevance for those interested in neurodegenerative disease and aging.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):  

      In this study, Hunt et al investigated the role of the ubiquitin-conjugating enzyme UBE2D/effete (eff) in maintaining proteostasis during aging. Utilizing Drosophila as a model, the researchers observed diverse roles of E2 ubiquitinconjugating enzymes in handling the aggregation-prone protein huntingtin-polyQ in the retina. While some E2s facilitated aggregate assembly, UBE2D/eff and other E2s were crucial for degradation of hL-polyQ. The study also highlights the significance of UBE2D/eff in skeletal muscle, showing that declining levels of eff during aging correlate with proteostasis disruptions. Knockdown of eff in muscle led to accelerated accumulation of poly-ubiquitinated proteins, shortened lifespan, and mirrored proteomic changes observed in aged muscles. The introduction of human UBE2D2, analogous to eff, partially rescued the deficits in lifespan and proteostasis caused by eff-RNAi expression in muscles. 

      The conclusions of this paper are mostly well supported by data, although a more precise mechanistic explanation of phenotypes associated with UBE2D/eff deficiency would have strengthened the study. Additionally, some aspects of image quantification and data analysis need to be clarified and/or extended.  

      We thank reviewer #1 for the thoughtful assessment of our work. We have amended the discussion to better explain the phenotypes associated with UBE2D/eff deficiency. We have also improved the methods describing the procedures for image quantification and data analysis.

      Reviewer #2 (Public Review):  

      Important findings: 

      - Knockdown of UBE2D increases HTT aggregation. 

      - Knockdown of UBE2D leads to an accumulation of ubiquitinated proteins and reduces the lifespan of Drosophila, which is rescued by an ectopic expression of the human homolog. 

      - UBE2D protein levels decline with aging. 

      - UBE2D knockdown is associated with an up- and downregulation of several different cellular pathways, including proteostasis components. 

      Thank you for reviewing our manuscript.

      Caveats: 

      - The readout of HTT aggregation (with methods that are not suitable) as a proxy for the role of UBE2D in proteostasis is not convincing. It would probably improve the manuscript to start with the proteomic analysis of UBE2D to demonstrate that its protein levels decrease with aging. The authors could then induce UBE2D in aged animals to assess the role of UBE2D in the proteome with aging.  

      While presenting the data in a different order would be possible, we prefer to keep the current order in which from a general screen with a proteostasis readout (HTT aggregates; see the answer below for a discussion on the methods) we proceed to identify a candidate (UBE2D) which is then studied in more detail with additional focused analyses in the retina and skeletal muscle during aging. Concerning the induction of UBE2D in aged animals, our analyses in Figure 4E demonstrate that muscle-specific induction of UBE2D2 throughout life does not increase lifespan alone: this could be explained by UBE2D2 only partially recapitulating the function and substrate diversity of Drosophila eff/UBE2D due to divergence from a single Drosophila UBE2D enzyme (eff) to multiple UBE2D enzymes in humans (UBE2D1/2/3/4).

      - UBE2D knockdown increases the number of HTT foci (Figure 1A), but the quantification is less convincing as depicted in Figure 1B, and other E2 enzymes show a stronger effect (e.g. Ubc6 that is only studied in Figures 1 and 2 without an explanation and Ubc84D). The graph is hard to interpret. What is the sample size and which genetic conditions show a significant change? P values and statistical analyses are missing.  

      The full data underlying this genetic screen is reported in Supplementary Table 1. The role of UBC6/UBE2A/B is thoroughly examined in Hunt et al 2021 (PMID: 33658508). We agree that Ubc84D has an important effect and that it should be considered for future studies. We have amended the legend of Figure 1 to indicate that each data point in the graph represents a single RNAi line targeting the corresponding gene. The mean of 5 biological replicates is shown for each RNAi, with each biological replicate representing a single eye imaged from a distinct fly. Therefore, the data points that do not show large magnitude changes may indicate RNAi lines that were not effective at knocking down the target protein (or that did not affect HTT aggregates). The E2s worth pursuing were identified because of multiple RNAi lines scoring consistently: this is the case of UBC6 (studied previously in PMID: 33658508) and eff/UBE2D (pursued in this study). This screen was therefore utilized to identify and select candidate genes (i.e. eff/UBE2D) for more in-depth studies on proteostasis.

      - The quantification of the HTT fluorescence cannot be used as a proxy for HTT aggregation. The authors should assess HTT aggregation by e.g. SDD-AGE, FRAP, filter retardation, etc. The quantification of the higher MW species of HTT in the SDS-PAGE is not ideal either as this simply reflects material that is stuck in the wells that could not enter the gel. Aggregation and hence high MW size could be one reason, but it can also be HTT trapped in cell debris, etc.  

      We agree that the use of multiple methods is a good way to assess the impact of E2 enzymes on HTT protein aggregation. In this regard, we estimated HTT aggregates by fluorescence microscopy and by western blot. Microscopy-based analyses demonstrate both the accumulation of the HTT-GFP pathogenic protein into aggregates (HTT polyQ polypeptides aggregating into one spatial region; Fig. 1 and Fig. 2B) as well as their potential cytotoxicity, resulting in the disruption of the ommatidial ultrastructure and cellular degeneration (Fig. 2A). Similar to native gels and filter retardation, we have utilized SDS-PAGE and western blotting of cellular samples isolated with strong chaotropic and denaturing reagents (8M urea plus detergents and reducing reagents used in the lysis). These experimental conditions maintain the higher-order organization of HTT into high-molecular-weight aggregates that are not broken down into individual polypeptides and that therefore do not readily travel through a gel or filter. Therefore, the biochemical methods we have used are equivalent to those proposed by the reviewer. In addition to combining microscopy-based and biochemical approaches to examine the impact of eff/UBE2D on the HTT aggregates, we have analyzed eff/UBE2D during skeletal muscle aging and found consistent phenotypes as those observed in the HTT model: RNAi for eff/UBE2D leads to the accumulation of detergent-insoluble ubiquitinated proteins that associate with protein aggregates.

      - Does UBE2D ubiquitinate HTT? And thus, is HTT accumulation a suitable readout for the functional assessment of the E2 enzyme UBE2D? 

      We propose that the accumulation of HTT in response to eff/UBE2D RNAi may be due to a generalized loss of protein quality control rather than to a direct decline in the ubiquitination of HTT by eff/UBE2D. In a previous study that examined the UBE2D interactome (Hunt et al. 2023; PMID: 37963875), we did not find an interaction between UBE2D and HTT, suggesting that HTT may not be directly modulated by eff/UBE2D via ubiquitination.

      - The proteomic analyses could help to identify potential substrates for UBE2D.

      The proteomic analyses in Figure 5 identify several proteins that are modulated by RNAi for eff and by its human homolog, UBE2D2. Such eff/UBE2D2-modulated proteins may indeed be potential substrates for UBE2D-mediated ubiquitination. For example, this is the case for Pex11 and Pex13, which were found to be upregulated upon UBE2D RNAi also in human cells, where they are ubiquitinated in a UBE2D-dependent manner (Hunt et al. 2023; PMID: 37963875).

      - Are there mutants available for UBE2D or conditional mutants? One caveat of RNAi is: first not complete knockdown and second, variable knockdown efficiencies that increase variability.

      There are potential hypomorphic alleles of eff/UBE2D that may be available, but they would present the same caveats of incomplete loss of eff/UBE2D function as RNAi. Given the strong phenotype that we find with partial eff knockdown, a caveat of full eff/UBE2D knockout is that this could be lethal.

      - The analysis of the E3 enzymes does not add anything to this manuscript. 

      The analysis of E3 enzymes relates to our recent publication (Hunt et al. 2023; PMID: 37963875) that reports the physical interactions between E2 and E3 enzymes. Analysis of these E2-E3 pairs in the genetic screen in Fig.1 therefore follows this IP-MS study to provide insight into the functional interaction between these E2-E3 pairs in proteostasis.

      - Figure 2B: the fluorescence intensities in images 2 and 4 are rather similar, yet the quantification shows significant differences. 

      Please note that some of the GFP fluorescence in image 4 is not punctate, but rather diffuse fluorescence that is not related to HTT-GFP aggregates. Our image quantitation methods utilized thresholding to identify GFP-positive puncta while eliminating background fluorescence not corresponding to HTT-GFP puncta.

      - The proteomic analyses could provide insights into the functional spectrum of UBE2D or even the identification of substrates. Yet apart from a DAVID analysis, none of the hits were followed up. In addition, only a few hits were labelled in the volcano plots (Figure 5). On what basis did the authors select those?

      Please see the previous answer above regarding the identification of eff/UBE2D protein substrates from our proteomic analysis in Fig. 5. Only some of the top-regulated hits could be labeled in Fig.5 to avoid overcrowding.

      - The manuscript remains at this stage rather descriptive. 

      Our study has demonstrated a key role for the eff/UBE2D ubiquitin-conjugating enzyme in regulating protein quality control during aging in the Drosophila retina and skeletal muscle. Our study has identified key proteins that are modulated by eff/UBE2D RNAi in Drosophila muscle, that are rescued by expression of human UBE2D2, and that may underlie the accelerated decline in proteostasis that occurs upon eff/UBE2D RNAi. While more could be known about the regulation of these eff/UBE2D-modulated proteins in Drosophila, we have previously demonstrated that some of the proteins that are upregulated by UBE2DRNAi in human cells (e.g. some peroxins) are indeed direct ubiquitination targets of UBE2D via associated E3 ubiquitin ligases (Hunt et al. 2023; PMID: 37963875).

      Reviewer #3 (Public Review):  

      This is a potentially quite interesting paper that defines E2 and E3 genes in Drosophila that can impact the accumulation of the Q72-GFP protein in the fly eye. The authors then focus on the eff gene, showing which human homolog can rescue fly knockdown. They extend to skeletal muscle, from the hL protein, to show that eff by TMT mass spec decreases with age normally in the fly muscle and that there is a significant overlap of proteins that are disrupted with eff knockdown in young animals in muscle vs aged animals normally in muscle. 

      Overall these data suggest eff decrease with age may contribute to the increase in ubiquitinated proteins in muscle with age, and that upregulation of eff activity might be of interest to extending lifespan. Because eff function can be performed by a human homologue, the findings may also apply to human situations of aging. 

      These data are overall interesting and are of relevance for those interested in neurodegenerative disease and aging, although a number of points from the figures seem confusing and need more explanation or clarity. 

      Thank you for reviewing our manuscript, we have improved the explanations and clarity of the manuscript.

      Recommendations for the authors:

      We would like to keep the manuscript title as it is currently to report the partial overlap in the proteomic changes induced by aging and effRNAi (Fig. 6).

      Reviewer #1 (Recommendations For The Authors): 

      (1) A significant concern arises from the unexpected outcome observed in the UBE2D/eff loss-of-function experiments. Despite its role as a ubiquitin-conjugating enzyme (E2), the reduction in UBE2D/eff levels paradoxically increased polyubiquitinated proteins and p62 accumulation, presenting a more intricate and seemingly unrelated phenotype to its anticipated function. 

      eff/UBE2D represents one out of 21 different Drosophila E2 ubiquitin-conjugating enzymes and therefore eff RNAi alone is unlikely to reduce the total pool of ubiquitinated proteins. The generalized increase in insoluble polyubiquitinated proteins results from an overall derangement of protein quality control caused by effRNAi. In agreement with this scenario, the protein categories that were found to be modulated by effRNAi (Fig. 5) include proteins associated with protein quality control such as proteasome components and chaperones. Therefore, derangement in the levels of a wide range of regulators of proteostasis may lead to a generalized loss of protein quality control upon effRNAi.

      I believe elucidating the mechanisms underlying the impact of UBE2D/eff deficiency on the observed phenotypes would contribute to a more comprehensive understanding of the study's implications. For instance, investigating whether the loss of UBE2D/eff influences muscle proteostasis by impeding proteasome assembly or function, modulating autophagy, etc. 

      We have previously utilized luciferase assays to measure the proteolytic activity of the proteasome in human cells treated with siRNAs targeting UBE2D1/2/3/4 but found no effect of UBE2D knockdown compared to control nontargeting siRNAs (Hunt et al. 2023; PMID: 37963875). In Drosophila muscles, we have examined the levels of GFP-CL1 (a GFP fused with a proteasomal degron) and found that effRNAi does not impact GFP-CL1 levels (data shown in author response image 1). Overall, these results suggest that effRNAi reduces protein quality control without affecting proteasome activity.

      Author response image 1.

      (2) Related to Figures 1B-C: It is not clear to this reviewer the quantification methodology used in the experiment. Does each point represent the Average +/- SD for each replicate? If so, it appears that not all cases align with the n=5 as indicated in the figure legend. Additionally, how many animals per replicate were quantified? 

      We have amended the legend of Figure 1 to indicate that each data point in the graph represents a single RNAi line targeting the corresponding gene. The mean of 5 biological replicates is shown for each RNAi line, with each biological replicate representing a single eye imaged from a distinct fly. Therefore, the data points that do not show large magnitude changes may indicate RNAi that were not effective at knocking down the target protein (or with no effect on HTT aggregates).  

      (3) Related to the previous point: The analysis of pathogenic Huntingtin aggregation in the Materials and Methods section lacks information regarding the number of individuals, replicates, etc. 

      Please see the response above.

      (4) Related to Figure 1 B: In the case of eff/UBE2D, it appears that 3 out of 9 replicates demonstrate a significant increase in HL-polyQ aggregates. Considering the strength of this result, it raises questions about whether it justifies using eff for future analyses. 

      Please see the response to point (2) above. These results indicate that 3 distinct UAS-RNAi lines targeting eff/UBE2D produced the same effect whereas 6 other effRNAi lines did not, possibly because they are less efficacious in knocking down eff/UBE2D. We have now amended the legend of Fig. 1B to better explain these results.

      (5) Related to Figure 1 D-E: Could the authors provide clarification regarding the tissue type and animal age utilized in these experiments? 

      Whole flies were utilized at 1 week of age.

      (6) Related to Figure 3: Incorporating the normal accumulation of poly-ubiquitinated proteins during aging could provide context to better interpret the effect of eff/UBE2D KD at 3 weeks of age. 

      Several papers from us and others have previously demonstrated a progressive increase in the insoluble levels of poly-ubiquitinated proteins during aging in Drosophila skeletal muscle (PMID: 36640359; PMID: 31249065; PMID: 33773104; PMID: 33658508; PMID: 24092876; PMID: 21111239; PMID: 24244197; PMID: 25199830; PMID: 28878259; PMID: 36213625). Our analyses now indicate that such age-related loss of protein quality control is accelerated by eff/UBE2D knockdown.

      (7) Related to Figure 3: Would it be possible for the authors to include a list or table detailing the specific E2, deubiquitinating enzymes, and E3s identified in the comparative analysis of the old vs young proteome? This would provide a clear reference for the identified regulatory proteins involved in the age-related proteomic changes. 

      We have added a tab to Supplementary Table 2 to report the list of age-regulated deubiquitinating enzymes (DUBs) and E1, E2, and E3 enzymes.

      (8) Related to Figures 3 and 4: Given that the comparative analysis of the old versus young proteome identified 10 out of 21 E2 ubiquitin-conjugating enzymes, exploring the impact of eff/UBE2D overexpression becomes pivotal to understanding its role in age-related changes in proteostasis and lifespan. Conducting an experiment involving eff overexpression could provide valuable insights into whether restoring eff levels mitigates aging-related phenotypes. 

      Although we have not done this experiment with eff overexpression, Fig. 4E reports that the overexpression of human UBE2D2 in skeletal muscle does not appear to influence lifespan by itself (green line in Fig. 4E), although it can partially rescue the short lifespan of flies with muscle-specific effRNAi (purple line in Fig. 4E).

      (9) Providing a more detailed description of the Supplementary Tables would significantly enhance the reader's comprehension of their content. 

      A description has been added at the end of the methods.

      Reviewer #2 (Recommendations For The Authors): 

      In addition, to the points listed above: 

      - The title does not reflect the content of the manuscript and should be changed. There is no evidence that UBE2D maintains a "youthful" (needs to be changed as well) proteome. Rather, its expression declines with aging and its depletion leads to an increase of ubiquitinated proteins. This is true for essentially the entire proteostasis network. 

      While proteostasis generally declines with aging, it is incompletely understood what specific components of the proteostasis network are dysregulated with aging. Our study now identifies the E2 ubiquitin-conjugating enzyme eff/UBE2D as a key regulator of proteostasis that is transcriptionally downregulated with aging. Comparison of the proteomic changes induced by aging versus those induced by effRNAi in young age indicates a partial overlap (Fig. 6), indicating that eff/UBE2D is, at least in part, necessary to maintain the proteome composition that is found in young age (“youthful”). On this basis, we would like to keep the current title but have amended the manuscript to indicate that such regulation of the proteome composition is only in part dependent on eff/UBE2D.

      - Molecular weight markers are missing for the gels/western blot depicted in Fig 1E, 2C, 3E, and 4A. 

      Thank you for pointing this out, these have been added.

      - Fig. 4A, the Ponceau staining for the detergent insoluble samples shows almost no signal for lane 7 and the data should hence not be analyzed. 

      The western blot membrane in Fig. 4A shows a reliable signal in all lanes (including lane 7) when probed with antibodies for ubiquitin, Ref(2)P, and tubulin. Therefore, there is no reason for excluding lane 7 from the analysis. Ponceau S staining is provided as an additional loading control but was not used to normalize the data.

      Reviewer #3 (Recommendations For The Authors): 

      There are a number of confusing or not sufficiently explained points in the figures that require clarity. 

      In Figure 1, panels B and C, one assumes the gray broad line across means no difference from control. For the genes, many have points that are scattered both above and below that control line. What do the dots and range represent for each gene, and why are the data so scattered. How do the authors explain data ranging from no effect, to a negative effect to a positive effect, all for the same gene? Akt1 and Hsp83 are controls but are not quantitated to appreciate how variable the assay is. Can they explain the figure better, and also why the data for any one gene are so variable?

      We have amended the legend of Figure 1 to indicate that each data point in the graph represents a single RNAi line targeting the corresponding gene. The mean of 5 biological replicates is shown for each RNAi line, with each biological replicate representing a single eye imaged from a distinct fly. Therefore, the data points that do not show large magnitude changes may indicate RNAi lines that were not effective at knocking down the target protein (or that did not affect HTT aggregates). Therefore, the variability in the analysis of a single gene arises because different RNAi lines targeting that gene may have different efficacy. RNAi lines for Akt1 and Hsp83 are merely used as controls (these have been quantified in Jiao et al. 2023; PMID: 36640359).

      In Figure 2A, it is not clear which animals have the hL-Q72-GFP (which eyes are "rough eyes"?). Also, do ubc6-RNAi and eff-RNAi have an impact on the normal eye? That is, can they explain the images and genotypes more clearly. 

      UBC6 and eff RNAi produce these rough eye phenotypes in the absence of HTT-polyQ and these are rescued by the expression of their human homologs. The panel images indicated in bold here below are those that have “rough eye” phenotypes: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 (a green R has been added to these panels in Fig. 2A).

      In Figure 2B, panel 3 looks very different from 1 and 4 and yet is not different from them by quantitation. Can they replace it with a more representative panel or is 3 lower (but not significantly so)? 

      Please note that some of the GFP fluorescence in image 4 is not punctate, but rather diffuse fluorescence that is not related to HTT-GFP aggregates. Our image quantitation methods utilized thresholding to identify GFP-positive puncta while eliminating background fluorescence not corresponding to HTT-GFP puncta.

      In Figures 3E and F, it would be helpful in F to put the detergent soluble bar graphs all on the left so that those data are on the left in both E and F, and then detergent-insoluble in E and F to the right. This would make the figure and quantitation easier to follow. 

      Done.

      The same point as above for Figures 4 A and B. 

      Done.

      In Figure 3A, CG7656 is nearly as reduced with age as eff. One wonders if that gene would give a different or similarly overlapping proteome with age as eff. Was CG7656 not focused on because not conserved? 

      As indicated in Figure 1B, CG7656 is orthologous to UBE2R1 (also called CDC34) and UBE2R2 in humans. In this screen, however, RNAi targeting CG7656 did not appear to influence HTT aggregates and therefore was not selected for further analyses. However, it may play a role in skeletal muscle proteostasis during aging.

      In Figure 6, the R2 value correlating age with eff-RNAi is weak. Although they discuss this in the text, it might also be helpful to include Venn diagrams for gene overlaps and the significance to make the argument more clear that there is a significant correlation in proteins up and down to indicate that eff largely recapitulates the changes of aging. Correlating this with proteins that are restored with UBE2D in muscle in a more clear manner may also be helpful for readers interested in aging. 

      We have amended the text to indicate that this relatively low correlation (R2\=~0.2, but corresponding to a consistent regulation of 70% of proteins by aging and effRNAi) could indicate that eff/UBE2D is only in part responsible for maintaining a youthful composition of the muscle proteome during aging. Other changes that occur with aging likely account for non-correlated alterations in protein levels. We have also added Venn diagrams (Fig. 6E) to further display the overlap in protein regulation by aging vs. effRNAi.

      In Figure 7, they might indicate that the accumulated insoluble protein is ubiquitinated. That is left out of the figure, although indicated in the legend. 

      Done.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Our revised version of the manuscript addresses all the comments and suggestions raised, as clarified in our point-by-point answer to the reviewers. We have performed additional experiments regarding the effects on proliferation and differentiation of additional cell types in the muscle, such as myogenic and mesenchymal progenitors as well as chondrogenesis in parental hMSCs that did not express exogenous ACVR1. Moreover, as suggested by reviewer #2, we performed all the chondrogenic experiments with addition of TGFβ in the differentiation media and analyzed chondrogenesis by both Alcian blue staining and qPCR analysis of gene markers (Sox9, Acan, Col2a1 and Mmp3). We also extended our RNA-seq analysis and included new data using both hMSCs expression wild type or R206H ACVR1 receptor, with or without different ACVR1 ligands (BMP6 and Activin A) and treated or not with the inhibitor BYL719. The new data suggests that BYL719 is able to inhibit the expression of genes involved in ossification and osteoblast differentiation irrespective of the presence of the mutation. We also discuss the effect of BYL719 in mTOR signaling and addressed all the minor comments suggested by both reviewers.

      We addressed the specific comments of the reviewers as follows:

      Reviewer # 1:

      Specific points:

      Point #1 and #2. The authors showed that BYL719 inhibited HO in FOP model mice. Did they have HO not only in the muscle but also in the bone marrow? The progenitor cells of chondrocytes and osteoblasts may differ between the muscle and bone marrow. The authors should examine the effects of BYL719 on some other types of cells in the muscle, such as myoblasts and fibro-adipogenic cells, in addition to the bone marrow-derived MSCs. Furthermore, it was unclear whether they were human or murine MSCs in the text.

      The inhibitory effect of BYL719 on HO in FOP mice was clear, but the molecular mechanisms or target cells were still unclear because BYL719 affected multiple types of cells and molecules. The authors are encouraged to show clearer mechanisms and target cells' critical inhibition of HO. Again, this reviewer believes that in vivo and in vitro experiments using muscle and bone marrow and cells prepared from them should provide additional critical information.

      As detailed in the introduction, it is known that Heterotopic Ossification develops in the skeletal muscle and connective tissues. Consistent with the current knowledge of the field, none of the mice showed HO in the bone marrow. Additionally, since activation of the mutant allele is achieved by injection of CRE-expressing adenovirus and cardiotoxin in the muscle hindlimb, it is unlikely that mesenchymal progenitors in the bone marrow would be strongly affected. Interestingly, single-cell RNA sequencing from multiple mouse tissues identified a very strong transcriptional similarity between FAPs and non-muscle mesenchymal progenitors (PMID: 37599828). As suggested, we examined the effects of BYL719 in proliferation and differentiation in additional cell types such as muscle progenitors. In this new version of the manuscript, we show that BYL719 reduces the proliferation of muscle and mesenchymal progenitors while it blocks myoblast differentiation in vitro (Figure 7, Figure Supplement 1). MSCs were murine on those experiments shown in Figure 3; whereas assays shown in Figures 5 and 6 were of human origin. We have further clarified this in the respective Figure legends.

      All the data generated strongly suggests that there is not a single mechanism supporting all the effects of BYL719 in HO. Instead, BYL719 affects multiple cell types involved in efficient HO (e.g. reduction in proliferation and osteochondrogenic specification of mesenchymal precursors (MPs), reduction on proliferation, migration, and inflammatory gene expression on monocytes, etc.). Interestingly, our data suggests that BYL719 is able to inhibit these effects on MPs and monocytes irrespective of the presence of the ACVR1-R206H mutation (Figures 5, 6 and 7). Additionally, there are several signaling mechanisms affected. BYL719 reduces SMAD1/5, p38, AKT and mTOR signaling in parental MPs or with mutations in ACVR1 (Figure 3 and our previous publication PMID: 31373426), being all these pathways required for efficient osteochondrogenic specification of MPs. We consider that the different detailed mechanisms by which BYL719 inhibits osteochondrogenic specification enhances the robustness of the findings in this study.

      Point #3. In FOP model mice, ACVR1 was mutated as Q207D. However, R206H was used in in vitro experiments. Do they have the same characteristics? This reviewer would like to recommend examining the effect of BYL719 on wild-type ACVR1, R206H, and Q207D simultaneously in each experiment.

      We already performed these experiments, assaying in parallel ACVR1-WT, ACVR1-Q207D and ACVR1-R206H, in the transcriptional responses of MPs in our previous work (PMID: 31373426). Both mutations had similar responses, being ACVR1-Q207D stronger than ACVR1-R206H, as it has been shown in vivo in mouse models of HO (PMID: 34633114). In any case, BYL719 inhibits these transcriptional responses induced by both mutant alleles.

      Point #4. Figure 5: What was the effect of BYL719 on the differentiation of parental cells that did not express exogenous ACVR1?

      We performed new assays of chondrogenic differentiation of hMSCs that are shown in the new Figure 5. BYL719 inhibits chondrogenic differentiation of parental hMSCs and also inhibits chondrogenic specification irrespective of the expression of either wild type or mutant ACVR1.

      Point #5. Figure 6: In this experiment, gene expression was examined in pretreated MSCs-ALK2 (ACVR1?) R206H with and without BYL719. It was clear whether suppression of gene expression by BYL719 was specifically caused in cells expressing R206H. What were the effects of BYL719 on parental cells that did not express exogenous ACVR1?

      To be consistent, we relabeled ALK2 to ACVR1 in the figure. We expanded the conditions analyzed in the RNA-sequencing. We included conditions where we activate ACVR1 (either WT or R206H) with their known physiological ligand BMP6. In both, human MSCs expressing ACVR1-R206H and human MSCs expressing Wild Type ACVR1, we observed a downregulation of differentially expressed genes upon addition of BYL719, irrespective of ligand (BMP6 or Activin A) or receptor (RH or WT) (added new Figure 6: B and C).

      Point #6. Figure 7: BYL719 suppressed cell proliferation of all cells examined partially at 2 uM and almost completely at 10 uM, respectively. There is a possibility that BYL719 inhibits HO by inhibiting osteochondroprogenitor proliferation. The authors are encouraged to show data on the effect of BYL719 on the proliferation of other types of cells, such as myoblasts, fibro-adipogenic cells, or bone marrow cells.

      We examined the effects of BYL719 in proliferation in additional cell types such as muscle and mesenchymal progenitors. BYL719 slightly reduced the proliferation of myoblasts and mesenchymal cells in vitro (Figure 7, Figure Supplement 1). However, the reduction in the proliferation in myoblasts or MPs did not reach the extent to that observed in monocytes or macrophages (Figure 7).

      Point #7. Figure 8: How was the effect of BYL719 on muscle regeneration in wild-type? It was reported that mTOR signaling is important in HO in FOP. The authors are encouraged to show the effect of BYL719 on mTOR signaling.

      Muscle regeneration in wild-type mice has also been shown in our previous results PMID: 31373426. In addition, we included images of the muscle regeneration after 23 days of treatment with BYL719 in mice ACVR1Q207D with or without PI3Kα deletion after induction of HO in the new Figure 2, Figure Supplement 2. These mice showed full muscle regeneration or small calcifications surrounded by muscle at most. The effects of PI3Kα inhibitors, either BYL719 or A66, on mTOR signaling had been previously shown by our group (PMID: 31373426). Both inhibitors strongly reduced signaling of mTOR, visualized by activation of p70 S6-kinase, a surrogate marker of mTOR activity.

      Minor points:

      (9) SMAD 1/5 should be SMAD1/5.

      (10) The source of human MSCs should be indicated in the text.

      (11) ALK2 should be ACVR1 in Figure 6A.

      (12) The protein levels of each receptor should be examined in Fig. 4.

      We introduced the suggested changes in the manuscript and Figure 6 and indicated the source of human MSCs in Materials and Methods. We also examined the levels of each receptor that are shown in the new Figure 4, Figure Supplement 1.

      Reviewer # 2:

      Specific points:

      Point #1. Because the involvement of PI3K in HO of FOP, was already reported by authors' group and also others (Hino et al, Clin Invest, 2017), the main purpose of this study was to disclose the mechanism of how PI3K was activated in FOP cells. In the published study (Hino et al, Clin Invest, 2017), PI3K was activated by the ENPP2-LPA-LPR cascade. Unfortunately, there were no new data for this important issue.

      The main purpose of this study is to demonstrate that the pharmacological and genetic inhibition of PI3Kα in HO progenitors at injury sites reduces HO in vivo, to extend the insights into the molecular and cellular mechanisms responsible for the therapeutic effect of PI3K inhibition, and to optimize the timing of the administration of BYL719. Class I PI3Ks are heterodimers of a p110 catalytic subunit in complex with a regulatory subunit. They engage in signaling downstream of tyrosine kinases, G protein-coupled receptors and monomeric small GTPases. Therefore, a plethora of growth factors, cytokines, inflammatory agents, hormones and additional external and internal stimuli are able to activate PI3Kα (PMID: 31110302). In fact, TGF-β family members, including activin A, are able to activate PI3K and mediate some of their non-canonical responses (PMID: 19114990). Multiple factors with known increased expression in the ossifying niche in HO and FOP (e.g. activin A, TGF-β, inflammatory agents such as TNFα, IL6, IL3, etc.) are known activators of PI3K (PMID: 30429363). Interestingly, in our RNA-seq analysis in hMSCs we did not observe increased expression levels of Enpp2 when comparing wild type and R206H mutated cells treated with activin A.

      Point #2. The HO formation of ACVR1/Q207D model mice in this study is extremely unstable (Figure 1B, DMSO). Even the bone volume of some red symbols, which indicate the presence of HO, is located on the base (0.00) line. I would examine carefully the credibility of the data. Also, it is well known that the molecular behavior of mice Acvr1/Q207D and human ACVR1/R206H was different.

      We agree with the reviewer that induction of HO is variable between mice showing variations in penetrance and intensity of the ossifying lesions. This variability is a known common trend that appears in all the models of HO published so far (e.g. PMID: 28758906, PMID: 26333933). Accordingly, we did not exclude any animal that has been injected with CRE-expressing adenovirus plus cardiotoxin in the μCT analysis. Regarding the behavior of mice Acvr1/Q207D and human ACVR1/R206H, it is well known that Q207D produces more robust and stronger responses in terms of signaling and formation of heterotopic ossification (PMID: 34633114). Therefore, reduction of HO by BYL719 would be more stringent in the Acvr1/Q207D model.

      Point #3. The experimental design of Figure 5 experiments is confusing. Although the authors mentioned that the data in Figure 5A were taken seven days after chondrogenic induction, I am skeptical whether the chondrogenic induction was successful. Based on the description of Material and Methods, the authors did not include TGFβ in their "Differentiation Medium", which is an essential growth factor to induce chondrogenic differentiation of human MSC. Why did the ALP activity increase after chondrogenic induction? The authors should demonstrate the evidence of successful chondrogenic induction by showing the expression of key chondrogenic genes such as SOX9, ACAN, or COL2A1. The data in Figure 5B-E are also confusing. The addition of Activin A showed no difference between ACVR1/WT and ACVR1/R206H cells, suggesting that these cells did not reproduce the situation of FOP.

      We performed new assays of chondrogenic differentiation of hMSCs that are shown in the new Figure 5. We included TGFβ1 in the differentiation medium and also included the parental cell line in the analysis. In addition of being a marker of osteoblast differentiation, alkaline phosphatase (ALPL) has also been shown to be induced during chondroblast differentiation in vitro (PMID: 19855136; PMID: 9457080; PMID: 18377198; PMID: 23388029). Moreover, expression data of SOX9, COL2A1, ACAN and MMP13 of cells after chondrogenic differentiation is included in the new Figure 5. Expression of some markers (e.g. ACAN) are increased by the expression of ACVR1R206H, however, we did not observe significant differences in chondroblast differentiation gene expression between ACVR1wt and ACVR1R206H expressing cells. In any case, BYL719 could inhibit chondrogenic differentiation of parental hMSCs and also the chondrogenic specification irrespective of the expression of either wild type or mutant ACVR1.

      Point #4. The experimental design and data analyses of RNA-seq were inappropriate and insufficient, which is disappointing for the reviewer because this will be a key experiment in this study. Because the most important point is to identify the signal for PI3Kα induced by Activin A via ACVR1/R206H, they should also use hMSC-ACVR1/WT for this experiment. Because the authors clearly demonstrated that TGFBR were not targets of BYL719, they should compare the expression profiles between MSC-ACVR1/WT and MSC-ACVR1/WT with BYL719 to identify the targets of BYL719 unrelated to Activin A signal. Then the expression profiles of ACVR1/R206H cells treated with Activin A and Activin A plus BYL719 were compared. Among down-regulated signals by BYL719, those found also in MSC-ACVR1/WT should be discarded. It is important to investigate whether the GO term of ossification or osteoblast differentiation is found also in MSC-ACVR1/WT. If it is so, the effect of BYL719 is not specific for FOP cells.

      We extended our RNA sequencing analysis with additional experimental conditions and comparisons. In new Figure 6, we now compare hMSCs expressing wild type or R206H receptors, with or without BYL719 inhibition, and with or without different ligand activations (BMP6 or Activin A) (New Figure 6A). New Figure 6B shows the Gene ontology analysis of the differentially expressed genes between cells expressing WT and RH receptors under control conditions. We can observe that ossification (GO:0001503) and osteoblast differentiation (GO:0001649) were detected within the top 10 significantly differentially regulated biological processes between these conditions. Therefore, we analyzed these relevant identified GO terms in 5 different comparisons upon GO enrichment analysis (Figure 6C). In addition to the comparison between cells expressing WT and RH receptors under control conditions explained above, we also compared cells expressing WT or RH receptor, with different ACVR1 ligands (BMP6 and Activin A), and with or without BYL719 inhibitor. The addition of BYL719 resulted in a downregulation of the GO terms “ossification” and “osteoblast differentiation” (new Figure 6C). These results confirm the inhibitory effect of BYL719 on ossification and osteoblast differentiation biological processes, and inform that this inhibitory effect remains consistent upon BMP6 or Activin A ligand activation, and with ACVR1 WT and RH expression.

      Point #5. The data in Figure 7 were not related to the aim of this study because cell lines used in these experiments did not have ACVR1/R206H mutations. It is not appropriate to extrapolate these data in the FOP situation.

      We utilized immune cell lines where we could activate ACVR1 with their known physiological ligand BMP6. Mutated ACVR1 gains response to activin A in addition to maintaining the physiological response to BMP6 as the wild type form. Therefore, in these assays we interrogated in vitro, with addition of BMP6, the effects of BYL719 in the growth, migration and inflammatory gene expression upon conditions of activated ACVR1 receptor downstream signaling. We consider that understanding the effects of PI3Kα inhibition in the regulation of proliferation, migration and inflammatory cytokine expression in monocytes, macrophages and mast cells is essential to better define the potential outcome of BYL719 treatment for heterotopic ossifications.

      Minor comments:

      (1) The legends for Figure 1C were those for Figure 1D, and there were no descriptions for Figure 1C in the legends and methods section. The reviewer was unable to understand the meaning of BV/TV. What is TV?

      (2) “However, in PI3Kα deficient mice ACVR1Q207D expression only led to minor ectopic calcifications that were already surrounded by fully regenerated muscle tissue on the 23rd day after injury (Figure 2D, Figure 2-Figure Supplement 1B)": There were no histological data either Figure 2D, Figure 2-Figure Supplement 1B), which showed muscle tissues.

      (3) "The overexpression of Acvr1R206H increased basal and activin dependent expression of canonical (Id1 and Sp7) and non-canonical (Ptgs2) BMP target genes (Figure 3C),": There was no increase of Ptgs2 gene in basal level.

      (4) Materials and Methods. Production of human fetal mesenchymal stem cells expressing ACVR1.: Is it derived from a fetus?

      (5) Figure 6C: There was no description of the meaning of each column. What does AA mean and what is the number?

      We introduced the missing information in the manuscript, Figure legends and material and methods section for points #1, 4 and 5. AA was Activin A, the number was the number of replicates. This has been detailed in the figure legend. We included images of the muscle regeneration after 23 days of treatment with BYL719 in mice after induction of HO in the new Figure 2, Figure Supplement 2 (point #2). We corrected the mistake in the manuscript refraining for suggesting increase of Ptgs2 gene expression by ACVR1-R206 at the basal level (Point #3).

    2. eLife assessment

      This study provides valuable insights by demonstrating that BYL719 is a promising therapeutic agent for the treatment of heterotopic ossification (HO), with inhibition of PI3Ka via BYL719 appearing to be a critical factor. However, the results of the study are incomplete because BYL719 affects multiple intracellular signaling pathways beyond PI3Ka, and it thus remains uncertain whether BYL719 attenuates HO exclusively through suppression of the PI3Ka pathway or through modulation of alternative signaling pathways. A detailed elucidation of the molecular mechanisms of action of BYL719 is essential for a thorough understanding of its effects.

    3. Reviewer #1 (Public Review):

      Summary:

      In the present study, the authors examined the possibility of using phosphatidyl-inositol kinase 3-kinase alpha (PI3Ka) inhibitors for heterotopic ossification (HO) in fibrodysplasia ossificans progressiva (FOP). Administration of BYL719, a chemical inhibitor of PI3Ka, prevented HO in a mouse model of FOP that expressed a mutated ACVR1 receptor. Genetic ablation of PI3Ka (p110a) also suppressed HO in mice. BYL719 blocked osteochondroprogenitor specification and reduced inflammatory responses, such as pro-inflammatory cytokine expression and migration/proliferation of immune cells. The authors claimed that inhibition of PI3Ka is a safe and effective therapeutic strategy for HO.

      This is a revision of the original manuscript by Valer et al. The authors performed new experiments and added those data to the manuscript to respond to this reviewer's comments and questions.

      Strengths:

      Now it became clear that BYL719 inhibited the multiple signaling pathways in multiple types of cells.

      Weaknesses:

      However, it was not clear the critical role of PI3K in the inhibition of HO by this compound.

    4. Reviewer #2 (Public Review):

      Summary:

      The authors in this study previously reported that BYL719, an inhibitor of PI3Kα, suppressed heterotopic ossification in mice model of a human genetic disease, fibrodysplasia ossificans progressive, which is caused by the activation of mutant ACVR1/R206H by Activin A. The aim of this study is to identify the mechanism of BYL719 for the inhibition of heterotopic ossification. They found that BYL719 suppressed heterotopic ossification in two ways: one is to inhibit the specification of precursor cells for chondrogenic and osteogenic differentiation and the other is to suppress the activation of inflammatory cells.

      Strengths:

      This study is based on authors' previous reports and the experimental procedures including the animal model are established. In addition, to confirm the role of PI3Kα, authors used the conditional knock-out mice of the subunit of PI3Kα. They clearly demonstrated the evidence indicating that the targets of PI3Kα are not members of TGFBR by a newly established experimental method.

      Weaknesses:

      Overall, the presented data were closely related to those previously published by authors' group or others and there were very few new findings. The molecular mechanisms through which BYL719 inhibits HO remain unclear, even in the revised manuscript.

      Heterotopic ossification in the mice model was not stable and inappropriate for the scientific evaluation.

      The method for chondrogenic differentiation was not appropriate, and the scientific evidence of successful differentiation was lacking.

      The design of the gene expression profile comparison was not appropriate and failed to obtain the data for the main aim of this study.

      The experiments of inflammatory cells were performed in cell lines without ACVR1/R206H mutation, and therefore the obtained data were not precisely related to the inflammation in FOP.

    1. eLife assessment

      This study presents the cryo-EM structures of two human biotin-dependent mitochondria carboxylases involved in various biological pathways, including the metabolism of certain amino acids, cholesterol, and odd chain fatty acids. The cryo-EM structures offer a valuable addition to the structural description of biotin-dependent carboxylases and provide solid evidence to support the major conclusions of this study. This paper would be of interest to biochemists and structural biologists working on biotin-dependent carboxylases.

    2. Reviewer #1 (Public Review):

      Summary:

      The manuscript by Zhou et al offers new high-resolution Cryo-EM structures of two human biotin-dependent enzymes: propionyl-CoA carboxylase (PCC) and methycrotonyl-CoA carboxylase (MCC). While X-ray crystal structures and Cryo-EM structures have previously been reported for bacterial and trypanosomal versions of MCC and for bacterial versions of PCC, this marks one of the first high resolution Cryo-EM structures of the human version of these enzymes. Using the biotin cofactor as an affinity tag, this team purified a group of four different human biotin-dependent carboxylases from cultured human Expi 293F (kidney) cells (PCC, MCC, acetyl-CoA carboxylase (ACC), and pyruvate carboxylase). Following further enrichment by size-exclusion chromatography, they were able to vitrify the sample and pick enough particles of MCC and PCC to separately refine the structures of both enzymes to relatively high average resolutions (the Cryo-EM structure of ACC also appears to have been determined from these same micrographs, though this is the subject of a separate publication). To determine the impact of substrate binding on the structure of these enzymes and to gain insights into substrate selectivity, they also separately incubated with propionyl-CoA and acetyl-CoA and vitrified the samples under active turnover conditions, yielding a set of cryo-EM structures for both MCC and PCC in the presence and absence of substrates and substrate analogues.

      Strengths:

      The manuscript has several strengths. It is clearly written, the figures are clear and the sample preparation methods appear to be well described. This study demonstrates that Cryo-EM is an ideal structural method to investigate the structure of these heterogeneous samples of large biotin-dependent enzymes. As a consequence, many new Cryo-EM structures of biotin-dependent enzymes are emerging, thanks to the natural inclusion of a built-in biotin affinity tag. While the authors report no major differences between the human and bacterial forms of these enzymes, it remains an important finding that they demonstrate how/if the structure of the human enzymes are or are not distinct from the bacterial enzymes. The MCC structures also provide evidence for a transition for BCCP-biotin from an exo-binding site to an endo-binding site in response to acetyl-CoA binding. This contributes to a growing number of biotin-dependent carboxylase structures that reveal BCCP-biotin binding at locations both inside (endo-) and outside (exo-) of the active site.

      Weaknesses:

      There are some minor weaknesses. Notably, there are not a lot of new insights coming from this paper. The structural comparisons between MCC and PCC have already been described in the literature and there were not a lot of significant changes (outside of the exo- to endo- transition) in the presence vs. absence of substrate analogues. There is not a great deal of depth of analysis in the discussion. For example, no new insights were gained with respect to the factors contributing to substrate selectivity (the factors contributing to selectivity for propionyl-CoA vs. acetyl-CoA in PCC). The authors state that the longer acyl group in propionyl-CoA may mediate stronger hydrophobic interactions that stabilize the alpha carbon of the acyl group at the proper position. This is not a particularly deep analysis and doesn't really require a cryo-EM structure to invoke. The authors did not take the opportunity to describe the specific interactions that may be responsible for the stronger hydrophobic interaction nor do they offer any plausible explanation for how these might account for an astounding difference in the selectivity for propionyl-CoA vs. acetyl-CoA. This suggests, perhaps, that these structures do not yet fully capture the proper conformational states. The authors also need to be careful with their over-interpretation of structure to invoke mechanisms of conformational change. A snapshot of the starting state (apo) and final state (ligand-bound) is insufficient to conclude *how* the enzyme transitioned between conformational states. I am constantly frustrated by structural reports in the biotin-dependent enzymes that invoke "induced conformational changes" with absolutely no experimental evidence to support such statements. Conformational changes that accompany ligand binding may occur through an induced conformational change or through conformational selection and structural snapshots of the starting point and the end point cannot offer any valid insight into which of these mechanisms is at play.

      Some of these minor deficiencies aside, the overall aim of contributing new cryo-EM structures of the human MCC and PCC has been achieved. While I am not a cryo-EM expert, I see no flaws in the methodology or approach. While the contributions from these structures are somewhat incremental, it is nevertheless important to have these representative examples of the human enzymes and it is noteworthy to see a new example of the exo-binding site in a biotin-dependent enzyme.

    3. Reviewer #2 (Public Review):

      Summary:

      This paper reports the structures of two human biotin-dependent carboxylases. The authors used endogenously purified proteins and solved the structures in high resolutions. Based on the structures, they defined the binding site for acyl-CoA and biotin and reported the potential conformational changes in biotin position.

      Strengths:

      The authors effectively utilized the biotin of the two proteins and obtained homogeneous proteins from human cells. They determined the high-resolution structures of the two enzymes in apo and substrate-bound states.

      Comments and questions to the manuscripts:

      (1) I'm quite impressed with the protein purification and structure determination, but I think some functional characterization of the purified proteins should be included in the manuscript. The activity of enzymes should be the foundation of all structures and other speculations based on structures.

      (2) In Figure 1B, the structure of MCC is shown as two layers of beta units and two layers of alpha units, while there is only one layer of alpha units resolved in the density maps. I suggest the authors show the structures resolved based on the density maps and show the complete structure with the docked layer in the supplementary figure.

      (3) In the introduction, I suggest the author provide more information about the previous studies about the structure and reaction mechanisms of BDCs, what is the knowledge gap, and what problem you will resolve with a higher resolution structure. For example, you mentioned in line 52 that G437 and A438 are catalytic residues, are these residues reported as catalytic residues or this is based on your structures? Has the catalytic mechanism been reported before? Has the role of biotin in catalytic reactions revealed in previous studies?

      (4) In the discussion, the authors indicate that the movement of biotin could be related to the recognition of acyl-CoA in BDCs, however, they didn't observe a change in the propionyl-CoA bound MCC structure, which is contradictory to their speculation. What could be the explanation for the exception in the MCC structure?

      (5) In the discussion, the authors indicate that the selectivity of PCC to different acyl-CoA is determined by the recognition of the acyl chain. However, there are no figures or descriptions about the recognition of the acyl chain by PCC and MCC. It will be more informative if they can show more details about substrate recognition in Figures 3 and 4.

      (6) How are the solved structures compared with the latest Alphafold3 prediction?

    4. Author response:

      Reviewer #1 (Public Review):

      Weaknesses:

      There are some minor weaknesses.

      Notably, there are not a lot of new insights coming from this paper. The structural comparisons between MCC and PCC have already been described in the literature and there were not a lot of significant changes (outside of the exo- to endo- transition) in the presence vs. absence of substrate analogues.

      We agree that the structures of the human MCC and PCC holoenzymes are similar to their bacterial homologs. That is due to the conserved sequences and functions of MCC and PCC across different species.

      There is not a great deal of depth of analysis in the discussion. For example, no new insights were gained with respect to the factors contributing to substrate selectivity (the factors contributing to selectivity for propionyl-CoA vs. acetyl-CoA in PCC). The authors state that the longer acyl group in propionyl-CoA may mediate stronger hydrophobic interactions that stabilize the alpha carbon of the acyl group at the proper position. This is not a particularly deep analysis and doesn't really require a cryo-EM structure to invoke. The authors did not take the opportunity to describe the specific interactions that may be responsible for the stronger hydrophobic interaction nor do they offer any plausible explanation for how these might account for an astounding difference in the selectivity for propionyl-CoA vs. acetyl-CoA. This suggests, perhaps, that these structures do not yet fully capture the proper conformational states.

      We appreciate this comment. Unfortunately, in the cryo-EM maps of the PCC holoenzymes, the acyl groups were not resolved (fig. S6), so we were unable to analyze the specific interactions between the acyl-CoAs and PCC. We will discuss this limitation in our revised manuscript.

      The authors also need to be careful with their over-interpretation of structure to invoke mechanisms of conformational change. A snapshot of the starting state (apo) and final state (ligand-bound) is insufficient to conclude *how* the enzyme transitioned between conformational states. I am constantly frustrated by structural reports in the biotin-dependent enzymes that invoke "induced conformational changes" with absolutely no experimental evidence to support such statements. Conformational changes that accompany ligand binding may occur through an induced conformational change or through conformational selection and structural snapshots of the starting point and the end point cannot offer any valid insight into which of these mechanisms is at play.

      Point accepted. We will revise our manuscript to use "conformational differences" instead of "conformational changes" to describe the differences between the apo and ligand-bound states.

      Reviewer #2 (Public Review):

      Comments and questions to the manuscripts:

      I'm quite impressed with the protein purification and structure determination, but I think some functional characterization of the purified proteins should be included in the manuscript. The activity of enzymes should be the foundation of all structures and other speculations based on structures.

      We appreciate this comment. However, since we purified the endogenous BDCs and the sample we obtained was a mixture of four BDCs, the enzymatic activity of this mixture cannot accurately reflect the catalytic activity of PCC or MCC holoenzyme. We will acknowledge this limitation in the discussion section of our revised manuscript.

      In Figure 1B, the structure of MCC is shown as two layers of beta units and two layers of alpha units, while there is only one layer of alpha units resolved in the density maps. I suggest the authors show the structures resolved based on the density maps and show the complete structure with the docked layer in the supplementary figure.

      We appreciate this comment. We have shown the cryo-EM maps of the PCC and MCC holoenzymes in fig. S8 to indicate the unresolved regions in these structures. The BC domains in one layer of MCCα in the MCC-apo structure were not resolved. However, we think it would be better to show a complete structure in Fig. 1 to provide an overall view of the MCC holoenzyme. We will revise Fig. 1B and the figure legend to clearly point out which domains were not resolved in the cryo-EM map and were built in the structure through docking.

      In the introduction, I suggest the author provide more information about the previous studies about the structure and reaction mechanisms of BDCs, what is the knowledge gap, and what problem you will resolve with a higher resolution structure. For example, you mentioned in line 52 that G437 and A438 are catalytic residues, are these residues reported as catalytic residues or this is based on your structures? Has the catalytic mechanism been reported before? Has the role of biotin in catalytic reactions revealed in previous studies?

      Point accepted. It was reported that G419 and A420 in S. coelicolor PCC, corresponding to G437 and A438 in human PCC, were the catalytic residues (PMID: 15518551). The same study also reported the catalytic mechanism of the carboxyl transfer reaction. The role of biotin in the BDC-catalyzed carboxylation reactions has been extensively studied (PMIDs: 22869039, 28683917). We will include these information in the introduction section of our revised manuscript.

      In the discussion, the authors indicate that the movement of biotin could be related to the recognition of acyl-CoA in BDCs, however, they didn't observe a change in the propionyl-CoA bound MCC structure, which is contradictory to their speculation. What could be the explanation for the exception in the MCC structure?

      We appreciate this comment. We do not have a good explanation for why we did not observe a change in the propionyl-CoA bound MCC structure. It is noteworthy that neither acetyl-CoA nor propionyl-CoA is the natural substrate of MCC. Recently, a cryo-EM structure of the human MCC holoenzyme in complex with its natural substrate, 3-methylcrotonyl-CoA, has been resolved (PDB code: 8J4Z). In this structure, the binding site of biotin and the conformation of the CT domain closely resemble that in our acetyl-CoA-bound MCC structure. Therefore, the movement of biotin induced by acetyl-CoA binding mimics that induced by the binding of MCC's natural substrate, 3-methylcrotonyl-CoA, indicating that in comparison with propionylCoA, acetyl-CoA is closer to 3-methylcrotonyl-CoA regarding its ability to bind to MCC. We will discuss this possibility in our revised manuscript.

      In the discussion, the authors indicate that the selectivity of PCC to different acyl-CoA is determined by the recognition of the acyl chain. However, there are no figures or descriptions about the recognition of the acyl chain by PCC and MCC. It will be more informative if they can show more details about substrate recognition in Figures 3 and 4.

      We appreciate this comment. Unfortunately, in the cryo-EM maps of the PCC holoenzymes, the acyl groups were not resolved (fig. S6), so we were unable to analyze the specific interactions between the acyl-CoAs and PCC. We will discuss this limitation in our revised manuscript.

      How are the solved structures compared with the latest Alphafold3 prediction?

      Since AlphaFold3 was not released when our manuscript was submitted, we did not compare the solved structures with the AlphaFold3 predictions. We have now carried out the predictions using Alphafold3. Due to the token limitation of the AlphaFold3 server, we can only include two α and six β subunits of human PCC or MCC in the prediction. The overall assembly patterns of the Alphafold3-predicted structures are similar to that of the cryo-EM structures. The RMSDs between PCCα, PCCβ, MCCα, and MCCβ in the apo cryo-EM structures and those in the AlphaFold3-predicted structures are 7.490 Å, 0.857 Å, 7.869 Å, and 1.845 Å, respectively. The PCCα and MCCα subunits adopt an open conformation in the cryo-EM structures but adopt a closed conformation in the AlphaFold-3 predicted structures, resulting in large RMSDs.

    1. eLife assessment

      This study presents an important contribution to cardiac arrhythmia research by demonstrating long noncoding RNA Dachshund homolog 1 (lncDACH1) tunes sodium channel functional expression and affects cardiac action potential conduction and rhythms. The evidence supporting the major claims are convincing. The work will be of broad interest to cell biologists and cardiac electrophysiologists.

    2. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors show that a long-non coding RNA lncDACH1 inhibits sodium currents in cardiomyocytes by binding to and altering the localization of dystrophin. The authors use a number of methodologies to demonstrate that lncDACH1 binds to dystrophin and disrupts its localization to the membrane, which in turn downregulates NaV1.5 currents. Knockdown of lncDACH1 upregulates NaV1.5 currents. Furthermore, in heart failure, lncDACH1 is shown to be upregulated which suggests that this mechanism may have pathophysiological relevance.

      Strengths:

      (1) This study presents a novel mechanism of Na channel regulation which may be pathophysiologically important.

      (2) The experiments are comprehensive and systematically evaluate the physiological importance of lncDACH1.

    3. Reviewer #2 (Public Review):

      This manuscript by Xue et al. describes the effects of a long noncoding RNA, lncDACH1, on the localization of Nav channel expression, the magnitude of INa, and arrhythmia susceptibility in the mouse heart. Because lncDACH1 was previously reported to bind and disrupt membrane expression of dystrophin, which in turn is required for proper Nav1.5 localization, much of the findings are inferred through the lens of dystrophin alterations.

      The results report that cardiomyocyte-specific transgenic overexpression of lncDACH1 reduces INa in isolated cardiomyocytes; measurements in the whole heart show a corresponding reduction in conduction velocity and enhanced susceptibility to arrhythmia. The effect on INa was confirmed in isolated WT mouse cardiomyocytes infected with a lncDACH1 adenoviral construct. Importantly, reducing lncDACH1 expression via either a cardiomyocyte-specific knockout or using shRNA had the opposite effect: INa was increased in isolated cells, as was conduction velocity in the heart. Experiments were also conducted with a fragment of lnDACH1 identified by its conservation with other mammalian species. Overexpression of this fragment resulted in reduced INa and greater proarrhythmic behavior. Alteration of expression was confirmed by qPCR.

      The mechanism by which lnDACH1 exerts its effects on INa was explored by measuring protein levels from cell fractions and immunofluorescence localization in cells. In general, overexpression was reported to reduce Nav1.5 and dystrophin levels and knockout or knockdown increased them.

      The strengths of this manuscript include convincing evidence of a link between lncDACH1 and Na channel function. The identification of a lncDACH1 segment conserved among mammalian species is compelling. The observation that lncDACH1 is increased in a heart failure model and provides a plausible hypothesis for disease mechanism.

    4. Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors report the first evidence of Nav1.5 regulation by a long noncoding RNA, LncRNA-DACH1, and suggest its implication in the reduction in sodium current observed in heart failure. Since no direct interaction is observed between Nav1.5 and the LncRNA, they propose that the regulation is via dystrophin and targeting of Nav1.5 to the plasma membrane.

      Strengths:

      (1) First evidence of Nav1.5 regulation by a long noncoding RNA.<br /> (2) Implication of LncRNA-DACH1 in heart failure and mechanisms of arrhythmias.<br /> (3) Demonstration of LncRNA-DACH1 binding to dystrophin.<br /> (4) Potential rescuing of dystrophin and Nav1.5 strategy.

    5. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment

      This study presents an important contribution to cardiac arrhythmia research by demonstrating long noncoding RNA Dachshund homolog 1 (lncDACH1) tunes sodium channel functional expression and affects cardiac action potential conduction and rhythms. The evidence supporting the major claims are solid. The work will be of broad interest to cell biologists and cardiac electrophysiologists.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, the authors show that a long-non coding RNA lncDACH1 inhibits sodium currents in cardiomyocytes by binding to and altering the localization of dystrophin. The authors use a number of methodologies to demonstrate that lncDACH1 binds to dystrophin and disrupt its localization to the membrane, which in turn downregulates NaV1.5 currents. Knockdown of lncDACH1 upregulates NaV1.5 currents. Furthermore, in heart failure, lncDACH1 is shown to be upregulated which suggests that this mechanism may have pathophysiological relevance.

      Strengths:

      (1) This study presents a novel mechanism of Na channel regulation which may be pathophysiologically important.

      (2) The experiments are comprehensive and systematically evaluate the physiological importance of lncDACH1.

      Reviewer #2 (Public Review):

      This manuscript by Xue et al. describes the effects of a long noncoding RNA, lncDACH1, on the localization of Nav channel expression, the magnitude of INa, and arrhythmia susceptibility in the mouse heart. Because lncDACH1 was previously reported to bind and disrupt membrane expression of dystrophin, which in turn is required for proper Nav1.5 localization, much of the findings are inferred through the lens of dystrophin alterations.

      The results report that cardiomyocyte-specific transgenic overexpression of lncDACH1 reduces INa in isolated cardiomyocytes; measurements in whole heart show a corresponding reduction in conduction velocity and enhanced susceptibility to arrhythmia. The effect on INa was confirmed in isolated WT mouse cardiomyocytes infected with a lncDACH1 adenoviral construct. Importantly, reducing lncDACH1 expression via either a cardiomyocyte-specific knockout or using shRNA had the opposite effect: INa was increased in isolated cells, as was conduction velocity in heart. Experiments were also conducted with a fragment of lnDACH1 identified by its conservation with other mammalian species. Overexpression of this fragment resulted in reduced INa and greater proarrhythmic behavior. Alteration of expression was confirmed by qPCR.

      The mechanism by which lnDACH1 exerts its effects on INa was explored by measuring protein levels from cell fractions and immunofluorescence localization in cells. In general, overexpression was reported to reduce Nav1.5 and dystrophin levels and knockout or knockdown increased them.

      The strengths of this manuscript include convincing evidence of a link between lncDACH1 and Na channel function. The identification of a lncDACH1 segment conserved among mammalian species is compelling. The observation that lncDACH1 is increased in a heart failure model and provides a plausible hypothesis for disease mechanism.

      One limitation of the fractionation approach is the uncertain disposition of Na channel protein deemed "cytoplasmic." It seems likely that the membrane fraction includes ER membrane. The signal may reasonably be attributed to Na channel protein in stalled transport vesicles, or alternatively in stress granules, but this was not directly addressed.

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors report the first evidence of Nav1.5 regulation by a long noncoding RNA, LncRNA-DACH1, and suggest its implication in the reduction in sodium current observed in heart failure. Since no direct interaction is observed between Nav1.5 and the LncRNA, they propose that the regulation is via dystrophin and targeting of Nav1.5 to the plasma membrane.

      Strengths:

      (1) First evidence of Nav1.5 regulation by a long noncoding RNA.

      (2) Implication of LncRNA-DACH1 in heart failure and mechanisms of arrhythmias.

      (3) Demonstration of LncRNA-DACH1 binding to dystrophin.

      (4) Potential rescuing of dystrophin and Nav1.5 strategy.

      Weaknesses:

      (1) The fact that the total Nav1.5 protein is reduced by 50% which is similar to the reduction in the membrane reduction questions the main conclusion of the authors implicating dystrophin in the reduced Nav1.5 targeting. The reduction in membrane Nav1.5 could simply be due to the reduction in total protein.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Weaknesses:

      (1) What is indicated by the cytoplasmic level of NaV1.5, a transmembrane protein?

      This is still confusing. Since Nav1.5 is an integral membrane protein, I am not sure what is really meant here by cytosolic fraction. From the workflow, it seems a separate organelle fraction is also collected. Is the amount of Nav1.5 in this fraction (which I assume includes for e.g. lysosome) also increased with lncDACH1? I recommend the authors to refer to the Nav channels not at the plasma membrane as 'intracellular' rather than 'cytoplasmic'.

      Thanks for the insightful comment. We completely agree. Accordingly, we have changed “cytoplasmic” to “ intracellular“.

      Line 226. "In consistent with the results" Perhaps unnecessary to have "in"

      Thank you for the insightful comment. We have corrected it.

      Line 228. Is it optimal or optical?

      Sorry for the mistake, it should be optical. We have corrected it.

      Reviewer #3 (Recommendations For The Authors):

      I still have an issue with the total reduction in Nav1.5 which is about the same as the reduction in membrane and currents. The authors argue that there is an increase in cytoplasmic Nav1.5. However the controls that they provide for membrane and cytoplasmic fractions are not convincing.

      Thank you for the insightful comment. We can not rule out the possibility that the reduction in membrane Nav1.5 maybe be due to the reduction in total protein. Our data indicates that the membrane and total protein levels of Nav1.5 were reduced by 50%. However, the intracellular Nav1.5 was not decreased, but increased in the hearts of lncDACH1-TG mice than WT controls, which indicates that the intracellular Nav1.5 failed to traffic to the membrane.

    1. eLife assessment

      This important study provides a new perspective on how human immunity shapes the antigenic evolution of pathogens. By combining theory and simulation the authors make a solid case for the importance of eco-evolutionary interactions in population-level virus-host dynamics, which arise due to coupling between the dynamics of immune memories and viral variants. Although the work does not propose improved data-driven viral forecasting methods, it makes a conceptual contribution that advances the field's understanding of this problem's intrinsic difficulty.

    2. Reviewer #1 (Public Review):

      In this work, the authors study the dynamics of fast-adapting pathogens under immune pressure in a host population with prior immunity. In an immunologically diverse population, an antigenically escaping variant can perform a partial sweep, as opposed to a sweep in a homogeneous population. In a certain parameter regime, the frequency dynamics can be mapped onto a random walk with zero mean, which is reminiscent of neutral dynamics, albeit with differences in higher order moments. Next, they develop a simplified effective model of time dependent selection with expiring fitness advantage, and posit that the resulting partial sweep dynamics could explain the behaviour of influenza trajectories empirically found in earlier work (Barrat-Charlaix et al. Molecular Biology and Evolution, 2021). Finally, the authors put forward an interesting hypothesis: the mode of evolution is connected to the age of a lineage since ingression into the human population. A mode of meandering frequency trajectories and delayed fixation has indeed been observed in one of the long-established subtypes of human influenza, albeit so far only over a limited period from 2013 to 2020. The paper is overall interesting and well-written. Some aspects, detailed below, are not yet fully convincing and should be treated in a substantial revision.

      Major points

      (1) The quasi-neutral behaviour of amino acid changes above a certain frequency (reported in Fig, 3), which is the main overlap between influenza data and the authors' model, is not a specific property of that model. Rather, it is a generic property of travelling wave models and more broadly, of evolution under clonal interference (Rice et al. Genetics 2015, Schiffels et al. Genetics 2011). The authors should discuss in more detail the relation to this broader class of models with emergent neutrality. Moreover, the authors' simulations of the model dynamics are performed up to the onset of clonal interference \rho/s_0 = 1 (see Fig. 4). Additional simulations more deeply in the regime of clonal interference (e.g. \rho / s_0 = 5) show more clearly the behaviour in this regime.

      In this context, I also note that the modelling results of this paper, in particular the stalling of frequency increase and the decrease in the number of fixations, are very similar to established results obtained from similar dynamical assumptions in the broader context of consumer resource models; see, e.g., Good et al. PNAS 2018. The authors should place their model in this broader context.

      (2) The main conceptual problem of this paper is the inference of generic non-predictability from the quasi-neutral behaviour of influenza changes. There is no question that new mutations limit the range of predictions, this problem being most important in lineages with diverse immune groups such as influenza A(H3N2). However, inferring generic non-predictability from quasi-neutrality is logically problematic because predictability refers to individual trajectories, while quasi-neutrality is a property obtained by averaging over many trajectories (Fig. 3). Given an SIR dynamical model for trajectories, as employed here and elsewhere in the literature, the up and down of individual trajectories may be predictable for a while even though allele frequencies do not increase on average. The authors should discuss this point more carefully.

      (3) To analyze predictability and population dynamics (section 5), the authors use a Wright-Fisher model with expiring fitness dynamics. While here the two sources of the emerging neutrality are easily tuneable (expiring fitness and clonal interference), the connection of this model to the SIR model needs to be substantiated: what is the starting selection s_0 as a function of the SIR parameters (f, b, M, \epsilon), the selection decay \nu = \nu(f, b, M, \epsilon, \gamma)? This would enable the comparison of the partial sweep timing in both models and corroborate the mapping of the SIR onto the simplified W-F model. In addition, the authors' point would be strengthened if the SIR partial sweeps in Fig.1 and Fig.2 were obtained for a combination of parameters that results in a realistic timescale of partial sweeps.

    3. Reviewer #2 (Public Review):

      Summary:

      This work addresses a puzzling finding in the viral forecasting literature: high-frequency viral variants evince signatures of neutral dynamics, despite strong evidence for adaptive antigenic evolution. The authors explicitly model interactions between the dynamics of viral adaptations and of the environment of host immune memory, making a solid theoretical and simulation-based case for the essential role of host-pathogen eco-evolutionary dynamics. While the work does not directly address improved data-driven viral forecasting, it makes a valuable conceptual contribution to the key dynamical ingredients (and perhaps intrinsic limitations) of such efforts.

      Strengths:

      This paper follows up on previous work from these authors and others concerning the problem of predicting future viral variant frequency from variant trajectory (or phylogenetic tree) data, and a model of evolving fitness. This is a problem of high impact: if such predictions are reliable, they empower vaccine design and immunization strategies. A key feature of this previous work is a "traveling fitness wave" picture, in which absolute fitnesses of genotypes degrade at a fixed rate due to an advancing external field, or "degradation of the environment". The authors have contributed to these modeling efforts, as well as to work that critically evaluates fitness prediction (references 11 and 12). A key point of that prior work was the finding that fitness metrics performed no better than a baseline neutral model estimate (Hamming distance to a consensus nucleotide sequence). Indeed, the apparent good performance of their well-adopted "local branching index" (LBI) was found to be an artifact of its tendency to function as a proxy for the neutral predictor. A commendable strength of this line of work is the scrutiny and critique the authors apply to their own previous projects. The current manuscript follows with a theory and simulation treatment of model elaborations that may explain previous difficulties, as well as point to the intrinsic hardness of the viral forecasting inference problem.

      This work abandons the mathematical expedience of traveling fitness waves in favor of explicitly coupled eco-evolutionary dynamics. The authors develop a multi-compartment susceptible/infected model of the host population, with variant cross-immunity parameters, immune waning, and infectious contact among compartments, alongside the viral growth dynamics. Studying the invasion of adaptive variants in this setting, they discover dynamics that differ qualitatively from the fitness wave setting: instead of a succession of adaptive fixations, invading variants have a characteristic "expiring fitness": as the immune memories of the host population reconfigure in response to an adaptive variant, the fitness advantage transitions to quasi-neutral behavior. Although their minimal model is not designed for inference, the authors have shown how an elaboration of host immunity dynamics can reproduce a transition to neutral dynamics. This is a valuable contribution that clarifies previously puzzling findings and may facilitate future elaborations for fitness inference methods.

      The authors provide open access to their modeling and simulation code, facilitating future applications of their ideas or critiques of their conclusions.

      Weaknesses:

      The current modeling work does not make direct contact with data. I was hoping to see a more direct application of the model to a data-driven prediction problem. In the end, although the results are compelling as is, this disconnect leaves me wondering if the proposed model captures the phenomena in detail, beyond the qualitative phenomenology of expiring fitness. I would imagine that some data is available about cross-immunity between strains of influenza and sarscov2, so hopefully some validation of these mechanisms would be possible.

      After developing the SIR model, the authors introduce an effective "expiring fitness" model that avoids the oscillatory behavior of the SIR model. I hoped this could be motivated more directly, perhaps as a limit of the SIR model with many immune groups. As is, the expiring fitness model seems to lose the eco-evolutionary interpretability of the SIR model, retreating to a more phenomenological approach. In particular, it's not clear how the fitness decay parameter nu and the initial fitness advantage s_0 relate to the key ecological parameters: the strain cross-immunity and immune group interaction matrices.

    4. Reviewer #3 (Public Review):

      Summary:

      In this work the authors start presenting a multi-strain SIR model in which viruses circulate in an heterogeneous population with different groups characterized by different cross-immunity structures. They argue that this model can be reformulated as a random walk characterized by new variants saturating at intermediate frequencies. Then they recast their microscopic description to an effective formalism in which viral strains lose fitness independently from one another. They study several features of this process numerically and analytically, such as the average variants frequency, the probability of fixation, and the coalescent time. They compare qualitatively the dynamics of this model to variants dynamics in RNA viruses such as flu and SARS-CoV-2

      Strengths:

      The idea that a vanishing fitness mechanisms that produce partial sweeps may explain important features of flu evolution is very interesting. Its simplicity and potential generality make it a powerful framework. As noted by the authors, this may have important implications for predictability of virus evolution and such a framework may be beneficial when trying to build predictive models for vaccine design. The vanishing fitness model is well analyzed and produces interesting structures in the strains coalescent. Even though the comparison with data is largely qualitative, this formalism would be helpful when developing more accurate microscopic ingredients that could reproduce viral dynamics quantitatively.<br /> This general framework has a potential to be more universal than human RNA viruses, in situations where invading mutants would saturate at intermediate frequencies.

      Weaknesses:

      The authors build the narrative around a multi-strain SIR model in which viruses circulate in an heterogeneous population, but the connection of this model to the rest of the paper is not well supported by the analysis.<br /> When presenting the random walk coarse-grained description in section 3 of the Results, there is no quantitative relation between the random walk ingredients - importantly P(\beta) - and the SIR model, just a qualitative reasoning that strains would initially grow exponentially and saturate at intermediate frequencies. So essentially any other microscopic description with these two features would give rise to the same random walk.

      Currently it's unclear whether the specific choices for population heterogeneity and cross-immunity structure in the SIR model matter for the main results of the paper. In section 2, it seems that the main effect of these ingredients are reduced oscillations in variants frequencies and a rescaled initial growth rate. But ultimately a homogeneous population would also produce steady state coexistence between strains, and oscillation amplitude likely depends on parameters choices. Thus a homogeneous population may lead to a similar coarse-grained random walk.

      Similarly, it's unclear how the SIR model relates to the vanishing fitness framework, other than on a qualitative level given by the fact that both descriptions produce variants saturating at intermediate frequencies. Other microscopic ingredients may lead to a similar description, yet with quantitative differences.

      At the same time, from the current analysis the reader cannot appreciate the impact of such a mean field approximation where strains lose fitness independently from one another, and under what conditions such assumption may be valid.

      In summary, the central and most thoroughly supported results in this paper refer to a vanishing fitness model for human RNA viruses. The current narrative, built around the SIR model as a general work on host-pathogen eco-evolution in the abstract, introduction, discussion and even title, does not seem to match the key results and may mislead readers. The SIR description rather seems one of the several possible models, featuring a negative frequency dependent selection, that would produce coarse-grained dynamics qualitatively similar to the vanishing fitness description analyzed here.

    1. eLife assessment

      This study reports on the in vivo dynamics of insulin-producing cells (IPCs) in Drosophila. IPC activity is shown to be modulated by the nutritional state and age of the animal, with convincing evidence for an incretin-like effect. These important findings establish IPCs in Drosophila as a system to study circuits governing behaviors related to the internal state in competition with the feeding state, and will be of interest to both neuroscientists and cell biologists.

    2. Reviewer #1 (Public Review):

      Summary:

      This study presents useful insights into the in vivo dynamics of insulin-producing cells (IPCs), key cells regulating energy homeostasis across the animal kingdom. The authors provide compelling evidence using adult Drosophila melanogaster that IPCs, unlike neighboring DH44 cells, do not respond to glucose directly, but that glucose can indirectly regulate IPC activity after ingestion supporting an incretin-like mechanism in flies, similar to mammals. The authors link the decreased activity of IPCs to hyperactivity observed in starved flies, a locomotive behavior aimed at increasing food search.

      Furthermore, there is supporting evidence in the paper that IPCs receive inhibitory inputs from Dh44 neurons, which are linked to increased locomotor activity. However, although the electrophysiological data underlying the dynamics of IPCs in vivo is compelling, the link between IPCs and other potential elements of the circuitry (e.g. octopaminergic neurons) regulating locomotive behaviors is not clear and would benefit from more rigorous approaches.

      This paper is of interest to cell biologists and electrophysiologists, and in particular to scientists aiming to understand circuit dynamics pertaining to internal state-linked behaviors competing with the feeding state, shown here to be primarily controlled by the IPCs.

      Strengths:

      (1) By using whole-cell patch clamp recording, the authors convincingly showed the activity pattern of IPCs and neighboring DH44 neurons under different feeding states.

      (2) The paper provides compelling evidence that IPCs are not directly and acutely activated by glucose, but rather through a post-ingestive incretin-like mechanism. In addition, the authors show that Dh44 neurons located adjacent to the IPCs respond to bath application of glucose contrary to the IPCs.

      (3) The paper provides useful data on the firing pattern of 2 key cell populations regulating food-related brain function and behavior, IPCs and Dh44 neurons, results which are useful to understand their in vivo function.

      Weaknesses:

      (1) The term nutritional state generally refers to the nutrients which are beneficial to the animal. In Figure 1, the authors showed that IPCs respond to glucose but not proteins. To validate the term nutritional state the authors could test the effect of a non-nutritive sugar (e.g. D-arabinose or L-Glucose) on the post-ingestive physiological responses of the IPCs.

      (2) It is difficult to grasp the main message from the figures in the result section as some figures have several results subsections referring to different points the authors want to make. The key results of a figure will be easier to understand if they are summarized in one section of the results. Alternatively, a figure can be split into 2 figures if there are several key messages in those figures, e.g. Figures 2 and 3.

      (3) The prime investigation of the paper is about the physiological response and locomotive behavioral readout linked to IPCs. The authors do not show a link between OANs and IPCs in terms of functional or behavioral readouts. In Figure 2 the authors first start with stating a link between OAN neurons and locomotion changes resulting from internal feeding states. The flow of the paper would be better if the authors focused on the effect of optogenetic activation of IPCs under different feeding states and their impact on fly locomotion. If the experiments done on optogenetic activation of OANs were to validate the experimental approach the data on OAN neurons is better suited for the supplement without the need of a subsection in the result section on the OANs.

      (4) Figure 2F shows that optogenetic activation of IPCs in fed flies does not influence their locomotor output. In the text, the conclusion linked to Figure 2F-H states that IPC activation reduces starvation-induced hyperactivity which is a statement more suited to Figure 2I-K.

      (5) The authors show activation of Dh44 neurons leads to hyperpolarisation of the IPCs. What is the functional link between non-PI Dh44 neurons and the IPCs? Do IPCs express DH44R or is DH44 required for this effect on IPCs? Investigating a potential synaptic or peptidergic link between DH44 neurons and IPCs and its effect on behavior would benefit the paper, as it is so far not well connected.

    3. Reviewer #2 (Public Review):

      Summary:

      In this study, Bisen et al. characterized the state-dependency of insulin-producing cells in the brain of *Drosophila melanogaster*. They successfully established that IPC activity is modulated by the nutritional state and age of the animal. Interestingly, they demonstrate that IPCs respond to the ingestion of glucose, rather than to perfusion with it, an observation reminiscent of the incretin effect in mammals. The study is well conducted and presented and the experimental data convincingly support the claims made.

      Strengths:

      The study makes great use of the tools available in *Drosophila* research, demonstrating the effect that starvation and subsequent refeeding have on the physiological activity of IPCs as well as on the behavior of flies to then establish causal links by making use of optogenetic tools.

      It is particularly nice to see how the authors put their findings in context to published research and use for example TDC2 neuron activation or DH44 activity to establish baselines to relate their data to.

      Weaknesses:

      I find the inability of SD to rescue the IPC starvation effect in Figure 1G&H surprising, given that the fully fed flies were raised and kept on that exact diet. Did the authors try to refeed flies with SD for longer than 24 hours? I understand that at some point the age effect would also kick in and counteract potential IPC activity rescue. I think the manuscript would benefit if the authors could indicate the exact age of the SD refed flies and expand a bit on the discussion of that point.

      The incretin-like effect is exciting and it will be interesting in the future to find out what might be the signal mediating this effect. It is interesting that IPCs in explants seem to be responsive to glucose. I think it would help if the authors could briefly discuss possible sources for the different findings between these in fact very different preparations. Could the the absence of the inhibitory DH44 feedback in the *ex-vivo* recordings for example play a role?

      The incretin-like effect the authors observed seems to start only after 5h which seems longer than in mammals where, as far as I know, insulin peaks around 1h. Do the authors have ideas on how this timescale relates to ingestion and glucose dynamics in flies?

      The authors mention "a decrease in the FV of IPC-activated starved flies even before the first optogenetic stimulation (Figure 2I),". Could this be addressed by running an experiment in darkness, only using the IR illumination of their behavioral assay?

      The authors show an inhibitory effect of DH44 neuron activation on IPC activity. They further demonstrate that DH44PI neurons are not the ones driving this and thus conclude that "...IPCs are inhibited by DH44Ns outside the PI.". As the authors mentioned the broad expression of the DH44-Gal4 line, can they be sure that the cells labeled outside the PI are actually DH44+? If so they should state this more clearly, if not they should adapt the discussion accordingly.

    4. Reviewer #3 (Public Review):

      Although insulin release is essential in the control of metabolism, adjusted to nutritional state, and plays major roles in normal brain function as well as in aging and disease, our knowledge about the activity of insulin-producing (and releasing) cells (IPCs) in vivo is limited.

      In this technically demanding study, IPC activity is studied in the Drosophila model system by fine in vivo patch clamp recordings with parallel behavioral analyses and optogenetic manipulation.

      The data indicate that IPC activity is increased with a slow time course after feeding a high-glucose diet. By contrast, IPC activity is not directly affected by increasing blood glucose levels. This is reminiscent of the incretin effect known from vertebrates and points to a conserved mechanism in insulin production and release upon sugar feeding.

      Moreover, the data confirm earlier studies that nutritional state strongly affects locomotion. Surprisingly, IPC activity makes only a negligible contribution to this. Instead, other modulatory neurons that are directly sensitive to blood glucose levels strongly affect modulation. Together, these data indicate a network of multiple parallel and interacting neuronal layers to orchestrate the physiological, metabolic, and behavioral responses to nutritional state. Together with the data from a previous study, this work sets the stage to dissect the architecture and function of this network.

      Strengths:

      State-of-the-art current clamp in situ patch clamp recordings in behaving animals are a demanding but powerful method to provide novel insight into the interplay of nutritional state, IPC activity, and locomotion. The patch clamp recordings and the parallel behavioral analyses are of high quality, as are the optogenetic manipulations. The data showing that starvation silences IPC activity in young flies (younger than 1 week) are compelling. The evidence for the claim that locomotor activity is not increased upon IPC activity but upon the activity of other blood glucose-sensitive modulatory neurons (Dh44) is strong. The study provides a great system to experimentally dissect the interplay of insulin production and release with metabolism, physiology, and behavior.

      Weaknesses:

      Neither the mechanisms underlying the incretin effect, nor the network to orchestrate physiological, metabolic, and behavioral responses to nutritional state have been fully uncovered. Without additional controls, some of the conclusions would require significant downtoning. Controls are required to exclude the possibility that IPCs sense other blood sugars than glucose. The claim that IPC activity is controlled by the nutritional state would require that starvation-induced IPC silencing in young animals can be recovered by feeding a normal diet. At current firing in starvation, silenced IPCs can only be induced by feeding a high-glucose diet that lacks other important ingredients and reduces vitality. Therefore, feasible controls are needed to exclude that diet-induced increases in IPC firing rate are caused by stress rather than nutritional changes in normal ranges. The finding that refeeding starved flies with a standard diet had no effect on IPC activity but a strong effect on the locomotor activity of starved flies contradicts the statement that locomotor activity is affected by the same dietary manipulations that affect IPC activity. The compelling finding that starvation induces IPC firing would benefit from determining the time course of the effect. The finding that IPCs are not active in fed animals older than 1 week is surprising and should be further validated.

    1. eLife assessment

      This study reports valuable insights into the interactome of the RNA-binding protein SERBP1 and possible links through PARylation to a diverse set of processes including splicing, cell division, and ribosome biogenesis. The diversity of processes SERBP1 may regulate means this work would be of very broad interest to the cell biology community. However, whereas the proteomics data are solid, the functional connection to downstream processes and the link to Alzheimer's disease are still incomplete, as they rely on a very limited set of experiments and patient samples.

    2. Reviewer #1 (Public Review):

      Summary:

      Here the authors convincingly identify and characterize the SERBP1 interactome and further define its role in the nucleus, where it is associated with complexes involved in splicing, cell division, chromosome structure, and ribosome biogenesis. Many of the SERBP1-associated proteins are RNA-binding proteins and SERBP1 exerts its impact, at least in part, through these players. SERBP1 is mostly disordered but along with its associated proteins displays a preference for G4 binding and can can bind to PAR and be PARylated. They present data that strongly suggest that complexes in which SERBP1 participates are assembled through G4 or PAR binding. The authors suggest that because SERBP1 lacks traditional functional domains yet is clearly involved in distinct regulatory complexes, SERBP1 likely acts in the early steps of assembly through the recognition of interacting sites present in RNA, DNA, and proteins.

      Strengths:

      The data is very convincing and demonstrated through multiple approaches.

      Weaknesses:

      No weaknesses were identified by this reviewer.

    3. Reviewer #2 (Public Review):

      Summary:

      In this study the authors have used pull-down experiments in a cell line overexpressing tagged SERPINE1 mRNA binding protein 1 (SERBP1) followed by mass spectrometry-based proteomics, to establish its interactome. Extensive analyses are performed to connect the data to published resources. The authors attempt to connect SERBP1 to stress granules and Alzheimer's disease-associated tau pathology. Based on the interactome, the authors propose a cross-talk between SERBP1 and PARP1 functions.

      Strengths:

      The main strength of this study lies in the proteomics data analysis, and its effort to connect the data to published studies.

      Weaknesses:

      While the authors propose a feedback regulatory model for SERBP1 and PARP1 functions, strong evidence for PARylation modulating SERBP1 functions is lacking. PARP inhibition decreasing the amount of PARylated proteins associated with SERBP1 and likely all other PARylated proteins is expected. This study is also incomplete in its attempt to establish a connection to Alzheimer's disease related tauopathy. A single AD case is not sufficient, and frozen autopsy tissue shows unexplained punctate staining likely due to poor preservation of cellular structures for immunohistochemistry. There is a lack of essential demographic data, source of the tissue, brain regions shown, and whether there was an IRB protocol for the human brain tissue. The presence of phase-separated transient stress granules in an autopsy brain is unlikely, even if G3BP1 staining is present. Normally, stress granule proteins move to the cytoplasm under cellular stress, whereas SERBP1 becomes nuclear. The co-localization of abundant cytoplasmic G3BP1 and SERBP1 under normal conditions does not indicate an association with stress granules.

    4. Reviewer #3 (Public Review):

      Summary:

      A survey of SERBP1-associated functions and their impact on the transcriptome upon gene depletion, as well as the identification of chemical inhibitors upon gene over-expression.

      Strengths:

      (1) Provides a valuable resource for the community, supported by statistical analyses.

      (2) Offers a survey of different processes with correlation data, serving as a good starting point for the community to follow up.

      Weaknesses:

      (1) The authors provided numerous correlations on diverse topics, from cell division to RNA splicing and PARP1 association, but did not follow up their findings with experiments, offering little mechanistic insight into the actual role of SERBP1. The model in Figure 5D is entirely speculative and lacks data support in the manuscript.

      (2) Following up with experiments to demonstrate that their findings are real (e.g., those related to splicing defects and the PARylation/PAR-binding association) would be beneficial. For example, whether the association between PARP1 and SERBP1 is sensitive to PAR-degrading enzymes is unclear.

      (3) They did not clearly articulate how experiments were performed. For instance, the drug screen and even the initial experiment involving the pull-down were poorly described. Many in the community may not be familiar with vectors such as pSBP or pUltra without looking up details.

      (4) The co-staining of SERBP1 with pTau, PARP1, and G3BP1 in the brain is interesting, but it would be beneficial to follow up with immunoprecipitation in normal and patient samples to confirm the increased physical association.

      (5) The combination index of 0.7-0.9 for PJ34 + siSERBP1 is weak. Could this be due to the non-specific nature of the drug against other PARPs? Have the authors looked into this possibility?

    1. eLife assessment

      This important paper addresses the role of fluid flows in nutrient uptake by microorganisms propelled by the action of cilia or flagella. Using a range of mathematical models for the flows created by such appendages, the authors provide convincing evidence that the two strategies of swimming and sessile motion can be competitive. These results will have significant implications for our understanding of the evolution of multicellularity in its various forms.

    2. Reviewer #1 (Public Review):

      Summary:

      The manuscript studies nutrient intake rates for stationary and motile microorganisms to assess the effectiveness of swim vs. stay strategies. This work provides valuable insights on how the different strategies perform in the context of a simplified mathematical model that couples hydrodynamics to nutrient advection and diffusion. The swim and stay strategies are shown to yield similar nutrient flux under a range of conditions.

      Strengths:

      Strengths of the work include (i) the model prediction in Fig. 3 of nutrient flux applied to a range of microorganisms including an entire clade that are known to use different feeding strategies and (ii) a study of the interaction between cilia and absorption coverage showing the robustness of their predictions provided these regions have sufficient overlap.

      Weaknesses: To improve the work, the authors should further expand their discussion of the following points:

      (1) The authors comment that a number of species alternate between sessile and motile behavior. It would be helpful to discuss what is known about what causes switching between these modes and whether this provides insights regarding the advantages of the different behaviors.

      (2) An encounter zone of R=1.1a appears be used throughout the manuscript, but I could not find a biological justification for this particular value. This results appear to be quite sensitive to this choice, as shown in Supplement Fig. 3(B). In the Discussion, it is mentioned that using a much larger exclusion zone leads to significantly different nutrient flux, and it is implied that such a large exclusion zone is not biologically plausible, but this was not explained sufficiently.

      (3) In schematic of the in Fig. 2(B) it was unclear if the encounter zone in the envelope model is defined analogously to the Stokeslet model or if a different formulation is used.

      (4) The force balance argument should be clarified. Equation (3) of the supplement gives the force-velocity relation in the motile case. Since equation (4), which the authors state is the net force in the sessile case, seems to involve the same expression, would it not follow from U=0 in the sessile case that one would simply obtain quiescent flow with Fcilia=0?

    3. Reviewer #2 (Public Review):

      Summary:

      The authors have collected a significant amount of data from the literature on the flow regimes associated with microorganisms whose propulsion is achieved through the action of cilia or flagella, with particular interest in the competition between sessile and motile lifestyles. They then use several distinct hydrodynamic models for the cilia-driven flows to quantify the nutrient uptake and clearance rate, reported as a function of the Peclet number. Among the interesting conclusions the authors draw concerns the question of whether, for certain ciliates, there is a clear difference in nutrient uptake rates in the sessile versus motile forms. The authors show that this is not the case, thereby suggesting that the evolutionary pressure associated with such a difference is not present. The analysis also includes numerical calculations of the uptake rate for spherical swimmers in the regime of large Peclet numbers, where the authors note an enhancement due to advection-generated thinning of the solutal boundary layer around the organism.

      Strengths:

      In addressing the whole range of organism sizes and Peclet numbers the authors have achieved an important broad perspective on the problem of nutrient uptake of ciliates, with implications for understanding evolutionary driving forces toward particular lifestyles (e.g. sessile versus motile).

      Weaknesses:

      The authors appear to be unaware of rather similar calculations that were done some years ago in the context of Volvox, in which the issue of the boundary layer size and nutrient uptake enhancement were clearly recognized [M.B. Short, et al., Flows Driven by Flagella of Multicellular Organisms Enhance Long-Range Molecular Transport, PNAS 103, 8315-8319 (2006)]. This reference also introduced the model of a fixed shear stress at the surface of the sphere as a representation of the action of the cilia, which may be more realistic than the squirmer-type boundary condition, although the two lead to similar large-Pe scalings.

      The findings reported in Figure 4, that the uptake rate is robust to variations in cilia coverage and absorption fraction, are similar in spirit to an observation made recently in the context of the somatic cell neighbourhood areas in Vovox [Day, et al., eLife 11, e72707 (2022)]. There, it was found that while there is a broad distribution of those areas, and hence of the coarse-grained tangential flagellar force acting on the fluid, the propulsion speed is rather insensitive to those variations.

    1. Author response:

      First we thank the reviewers for a thorough reading of our paper and some useful comments. A recurrent remark of the reviewers concerns the appearance of kRas-expressing cells (labelled by a nuclear blue fluorescent marker) which we attribute to the progeny of the initially induced cell. The reviewers suggest that these cells may have been obtained through activation of the Cre-recombinase in other cells by cyclofen released from light scattering, via diffusion, leakiness, etc. These remarks are perfectly reasonable from people not familiar with the cyclofen uncaging approach that we are using but are unwarranted as we shall show below.

      We have been using cyclofen uncaging with subsequent activation of a Cre-recombinase (or some other proteins) since 2010 (see ref.34, Sinha et al., Zebrafish 7, 199-204 (2010) and our 2018 review (ref.35, Zhang et al., ChemBioChem 19,1-8 (2018)). In our experiments, the embryos are incubated in the dark in 6M caged cyclofen (cCyc) and washed in E3 medium (or transferred to a new medium with no cCyc). In these conditions, over many years we never observed activation of the recombinase, i.e. the appearance of the associated fluorescent label in cells of embryos grown in E3 medium. Hence leakiness can be ruled out (in presence of cCyc or in its absence).

      Following transfer of the embryos to new E3 medium we illuminate the embryos locally with light at 405nm. In these conditions, cCyc is only partially uncaged and results in activation of Cre-recombinase in only a few cells (1,2, 3, …) within the illuminated region only, namely in the appearance of the kRas-associated nuclear blue fluorescent label in usually one cell (and sometimes in a few more; data and statistics will be incorporated in a revised manuscript). In absence of any further treatment (e.g. activation of a reprogramming factor) these fluorescently labelled cells disappear within a few days (either via shut-down of their promotor, apoptosis or some other mechanism). The crucial point here is that we see less and not more kRas expressing cells (i.e. with nuclear blue fluorescence). This observation rules out activation of Cre-recombinase in other cells days after illumination due to leakiness, cyclofen released by light or diffusing from the illumination spot.

      To observe many more fluorescent cells days after activation of the initial cell, one needs to transiently activate VentX-GR by overnight incubation in dexamethasone (DEX) (Injecting the embryos at 1-cell stage with VentX-GR or incubating them in DEX does not result in the appearance of more blue fluorescent cells). Following activation of VentX-GR, the fluorescent cells observed a couple of days after initiation are visualized in E3 medium (i.e. in absence of cyclofen) and are localized to the vicinity of the otic vesicle (the region where the initial cell was activated). In a revised manuscript we will present images of these fluorescent cells taken a few days apart from the same embryo in which a single cell was initially activated. Hence, we attribute these cells to the progeny of the activated cell. Obviously, single cell tracking via time-lapse microscopy would nail down this issue and provide fascinating insight into the initial stages of tumor growth. Unfortunately, immobilization of embryos in the usual medium (e.g. MS222, tricaine) over 5-6 days to track the division and motion of single cells is not possible. We are considering some other possibilities (immobilization in bungarotoxin or via photo-activation of anionic channels), but these challenging experiments are for a future paper.

      Reviewer #1 (Public Review):

      The authors then performed allotransplantations of allegedly single fluorescent TICs in recipient larvae and found a large number of fluorescent cells in distant locations, claiming that these cells have all originated from the single transplanted TIC and migrated away. The number of fluorescent cells showed in the recipient larve just after two days is not compatible with a normal cell cycle length and more likely represents the progeny of more than one transplanted cell.

      As mentioned in the manuscript, we measure the density of cells/nl and inject in the yolk of 2dpf Nacre embryos a volume containing about 1 cell, following published protocols (S.Nicoli and M.Presta, Nat.Prot. 2,2918 (2007)). We further image the injected cell(s) by fluorescence microscopy immediately following injection, as shown in Fig.4A and Fig.S8B. We might miss a few cells but not many. With a typical cell cycle of ~10h the images of tumors in larvae at 3dpt (and not 2dpt as misunderstood by this reviewer) correspond to ~100 cells. In any case the purpose of this experiment was not to study tumorigenesis upon transplantation but to show that the progeny of the initially induced cells is capable of developing into a tumor in a naïve fish, which is the operational definition of cancer that we adopted here.

      The ability to migrate from the injection site should be documented by time-lapse microscopy.

      As stated above our purpose here is not to study tumor formation from transplanted cell(s) but to use that assay as an operational test of cancer. Besides as mentioned earlier single cell tracking in larvae over 3-4dpt is not a trivial task.

      Then, the authors conclude that "By allowing for specific and reproducible single cell malignant transformation in vivo, their optogenetic approach opens the way for a quantitative study of the initial stages of cancer at the single cell level". However, the evidence for these claims are weak and further characterization should be performed to:

      (1) show that they are actually activating the oncogene in a single cell (the magnification is too low and it is difficult to distinguish a single nucleus, labelling of the cell membrane may help to demonstrate that they are effectively activating the oncogene in, or transplanting, a single cell)

      In a revised manuscript we will provide larger magnification of the initial induced cell and show examples of oncogene activation in more than one cell.

      (2) the expression of the genes used as markers of tumorigenesis is performed in whole larvae, with only a few transformed cells in them. Changes should be confirmed in FACS sorted fluorescent cells

      When the oncogene is activated in a whole larvae all cells are fluorescent and thus FACS is of no use for cell sorting. Sorting could be done in larvae where single cells are activated, but then the efficiency of FACS is not good enough to isolate the few fluorescent cells among the many more non-fluorescent ones. We agree that the change in expression of the genes used as markers of tumorigenesis is an underestimate of their true change, but our goal at this time is not to precisely measure the change in expression level, but to show that the pattern of change is different from the controls and corresponds to what is expected in tumorigenesis.

      (3) the histology of the so called "tumor masses" is not showing malignant transformation, but at the most just hyperplasia.

      The histology of the hyperplasic tissues displays cellular proliferation with a higher density of nuclear material which is characteristic of tumors, Fig.S4C. Besides the increased expression of pERK in these tissues, Fig.S4A,B is also a hallmark of cancer.

      In the brain, the sections are not perfectly symmetrical and the increase of cellularity on one side of the optic tectum is compatible with this asymmetry.

      The expected T-shape formed by the sections of the tegmentum and hypothalamus are compatible with the symmetric sections shown in Fg.2D. The asymmetry in the optic tectum is a result of the hyperplasic growth.

      (4) The number of fluorescent cells found dispersed in the larvae transplanted with one single TIC after 48 hours will require a very fast cell cycle to generate over 50 cells. Do we have an idea of the cell cycle features of the transplanted TICs?

      As answered above, the transplanted larvae are shown at 3dpt (and not 2dpt as misunderstood by this reviewer). With a cell cycle of about 10h, a single cell can give rise to about 100 cells in that time lapse.

      Reviewer #2 (Public Review):

      Summary:

      This paper describes a genetically tractable and modifiable system …which could be used to study an array of combinations and temporal relationships of these cancer drivers/modifiers.

      We thank this referee for its positive comments. We would also like to point out that our approach provides for the first quantitative means to estimate the probability of tumorigenesis from a single cell, an estimate which is crucial in any assessment of cancer malignancy and the effectiveness of prophylactics.

      Weaknesses:

      There is minimal quantitation of … the efficiency of activation of the Ras-TFP fusion (Fig 1) in, purportedly, a single cell. …, such information seems essential.

      In a revised manuscript we will add more images of induction of a single (or a few cells) and a table where the efficiency of RAS activation is detailed.

      The authors indicate that a single cell is "initiated" (Fig 2) using the laser optogenetic technique, but without definitive genetic lineage tracing, it is not possible to conclude that cells expressing TFP distant from the target site near the ear are daughter cells of the claimed single "initiated" cell. A plausible alternative explanation is 1) that the optogenetic targeting is more diffuse (i.e. some of the light of the appropriate wavelength hits other cells nearby due to reflection/diffraction), so these adjacent cells are additional independent "initiated" cells or 2) that the uncaged tamoxifen analogue can diffuse to nearby cells and allow for CreER activation and recombination.

      We have addressed this point in our general comments to the reviewers’ remarks. The possibilities mentioned by this reviewer would result in cells expressing TFP in absence of VentX activation, which is not the case. Cells expressing TFP away from the initial site are observed days after activation of the oncogene (and TFP) in a single cell and only upon activation of VentX.

      In Fig 2B, the claim is made that "the activated cell has divided, giving rise to two cells" - unless continuously imaged or genetically traced, this is unproven.

      We have addressed this remark previously. Tracking of larvae over many days is not possible with the usual protocol using tricaine to immobilize the larvae. Nonetheless, in a revised version we will present images of an embryo imaged at various times post activation where proliferation of the cells can be observed. We are pursuing other alternatives for time-lapse microscopy over many days since, besides convincing the sceptics, a single cell tracking experiment (possibly coupled with in-situ spatial transcriptomics) will shed a new and fascinating light on the initial stages of tumor growth.

      In addition, it appears that Figures S3 and S4 are showing that hyperplasia can arise in many different tissues (including intestine, pancreas, and liver, S4C) with broad Ras + Ventx activation …. This should be clarified in the manuscript).

      This is true and will be clarified in the new version.

      In Fig S7 where single cell activation and potential metastasis is discussed, similar gut tissues have TFP+ cells that are called metastatic, but this seems consistent with the possibility that multiple independent sites of initiation are occurring even when focal activation is attempted.

      As mentioned previously this is ruled out by the fact that these cells are observed days after cyclofen uncaging (and TFP activation) and if and only if VentX is activated.

      Although the hyperplastic cells are transplantable (Fig 4), the use of the term "cells of origin of cancer" or metastatic cells should be viewed with care in the experiments showing TFP+ cells (Fig 1, 2, 3) in embryos with targeted activation for the reasons noted above.

      The purpose of this transplantation experiment was to show that cell in which both kRas and VentX have been activated possess the capacity to metastasize and develop a tumor mass when transplanted in a naïve zebrafish. This - to the best of our knowledge - is the operational definition of a malignant tumor.

      Reviewer #3 (Public Review):

      Summary:

      This study employs an optogenetics approach … to examine tumourigenesis probabilities under altered tissue environments.

      We thank this reviewer for this remark, since we believe that the opportunity to assess the probability of tumorigenesis from a single cell is possibly the most significant contribution of this work. To the best of our knowledge this has never been done before.

      Weaknesses:

      Lack of Methodological Clarity: The manuscript lacks detailed descriptions of methodologies,

      In a revised manuscript we will include additional detail of our methodology.

      Sub-optimal Data Presentation and Quality:

      Lack of quantitative data and control condition data obtained from images of higher magnification limits the ability to robustly support the conclusions.

      In a revised version we will include more images at higher magnification and quantitative data to support the main report of targeted single cell induction.

      Here are some details:

      Authors might want to provide more evidence to support their claim on the single cell KRAS activation.

      More images and a data on activation of single or few cells in the illumination field will be provided in a revised version.

      · Stability of cCYC: The manuscript does not provide information on the half-life and stability of cCYC. Understanding these properties is crucial for evaluating the system's reliability and the likelihood of leakiness, which could significantly influence the study's outcomes.

      We have been using the cCyc system for about 14 years. We refer the reader to our previous papers and reviews on this methodology (e.g. ref. 34,35). Briefly, cCyc is stable when not illuminated with light around 375nm. Typically, we incubate our embryos in the dark for about 1h before transferring them into E3 medium and illuminating them. Assessing the leakiness of the system is easy as expression of the fluorescent marker is permanently turned on. We have observed none in the conditions of our experiment.

      · Metastatic Dissemination claim: However, the absence of a supportive cellular compartment within the fin-fold tissue makes the presence of mTFP-positive metastatic cells there particularly puzzling. This distribution raises concerns about the spatial specificity of the optogenetic activation protocol … The unexpected locations of these signals suggest potential ectopic activation of the KRAS oncogene,

      We have addressed this remark in the introduction and above. Specifically, metastatic and proliferative mTFP-positive cells are observed if and only if VentX is also activated concomitant with activation of kRAS in a single cell. No proliferative cells are observed in absence of VentX activation, or in presence of VentX or Dex alone, or if kRAS has not been activated by cyclofen uncaging.

      · Image Resolution Concerns: The cells depicted in Figure 3C β, which appear to be near the surface of the yolk sac and not within the digestive system as suggested in the MS, underscore the necessity for higher-resolution imaging. Without clearer images, it is challenging to ascertain the exact locations and states of these cells, thus complicating the assessment of experimental results.

      Better images will be provided in the revised version.

      · The cell transplantation experiment is lacking protocol details:

      Details will be provided in the revised version. We have followed regular protocols for transplantation: S.Nicoli and M.Presta, Nat.Prot. 2,2918 (2007).

      • If the cells are obtained from whole larvae with induced RAS + VX expression, it is notable and somewhat surprising that the larvae survived up to six days post-induction (6dpi) before cells were harvested for transplantation. This survival rate and the subsequent ability to obtain single cell suspensions raise questions about the heterogeneity of the RAS + VX expressing cells that transplanted.

      From Fig.S4D, about 50% of the embryos survive at 6dpi. Though an interesting question by itself we have not (yet) addressed the important issue of the heterogeneity of the outgrowth obtained from a single cell. Our purpose here was just to show that cells in which both kRAS and VentX have been activated possess the capacity to metastasize and develop a tumor mass when transplanted in a naïve zebrafish. This - to the best of our knowledge - is the operational definition of a malignant tumor.

      · Unclear Experimental Conditions in Figure S3B: …It is not specified whether the activation of KRAS was targeted to specific cells or involved whole-body exposure.

      This was whole body (global) illumination and will be specified in the revised version.

      · Contrasting Data in Figure S3C compared to literature: The graph in Figure S3C indicates that KRAS or KRAS + DEX induction did not result in any form of hyperplastic growth. The authors should provide detailed descriptions of the conditions under which the experiments were conducted in Figure S3B and clarifying the reasons for the discrepancies observed in Figure S3C are crucial. The authors should discuss potential reasons for the deviation from previous reports.

      This discrepancy will be discussed in the revised version. First the previous reports consider the development of tumors over a longer time-span (4-5 weeks) which we have not studied here. Second, the expression of the oncogene in these reports might be stronger than in ours. Third, the stochastic appearance of tumors in these reports suggest that some other mechanism (transient stress-induced reprogramming?) might have activated the oncogene in the initial cell.

      Further comments:

      Throughout the study, KRAS-activated cell expansion and metastasis are two key phenotypes discussed that Ventx is promoting. However, the authors did not perform any experiments to directly show that KRAS+ cells proliferate only in Ventx-activated conditions.

      Yes, we did. See Fig. S1 and compare with Fig.S3B, or Fig.S8A in comparison with Fig.2A,B.

      The authors also did not show any morphological features or time-lapse videos demonstrating that KRAS+ cells are motile, even though zebrafish is an excellent model for in vivo live imaging. This seems to be a missed opportunity for providing convincing evidence to support the authors' conclusions.

      Performing single cell time-lapse microscopy on larvae over many (4-5) days is not possible with the regular tricaine protocol for immobilization. We are definitely planning such experiments, but they will require some other protocol, perhaps using bungarotoxin or some optogenetic inhibitory channels. Nonetheless, in the revised version we will show images of the same embryos at various times post single cell induction displaying proliferation of cells.

      There were minimal experimental details provided for the qPCR data presented in the supplementary figures S5 and S6, therefore, it is hard to evaluate result obtained.

      More details will be given in the revised version.

    1. eLife assessment

      In this study, Tutak and colleagues set out to identify factors that mediate Repeat Associated Non-AUG (RAN) translation of CGG repeats in the FMR1 mRNA which are implicated in toxic protein accumulation that underpins ensuing neurological pathologies. This is a useful article that suggests that RPS26 may be implicated in mediating the RAN translation of FMR1 mRNA. However, the evidence supporting the proposed mechanism is incomplete, since the provided data only partially support the authors' conclusion.

    2. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Tutak et al use a combination of pulldowns, analyzed by mass spectrometry, reporter assays, and fluorescence experiments to decipher the mechanism of protein translation in fragile X-related diseases. The topic is interesting and important.

      Although a role for Rps26-deficient ribosomes in toxic protein translation is plausible based on already available data, the authors' data are not carefully controlled and thus do not support the conclusions of the paper.

      Strengths:

      The topic is interesting and important.

      Weaknesses:

      In particular, there is very little data to support the notion that Rps26-deficient ribosomes are even produced under the circumstances. And no data that indicate that they are involved in the RAN translation. Essential controls (for ribosome numbers) are lacking, no information is presented on the viability of the cells (Rps26 is an essential protein), and the differences in protein levels could well arise from block in protein synthesis, and cell division coupled to differential stability of the proteins.

      Specific points:

      (1) Analysis of the mass spec data in Supplemental Table S3 indicates that for many of the proteins that are differentially enriched in one sample, a single peptide is identified. So the difference is between 1 peptide and 0. I don't understand how one can do a statistical analysis on that, or how it would give out anything of significance. I certainly do not think it is significant. This is exacerbated by the fact that the contaminants in the assay (keratins) are many, many-fold more abundant, and so are proteins that are known to be mitochondrial or nuclear, and therefore likely not actual targets (e.g. MCCC1, PC, NPM1; this includes many proteins "of significance" in Table S1, including Rrp1B, NAF1, Top1, TCEPB, DHX16, etc...).

      The data in Table S6/Figure 3A suffer from the same problem.

      I am not convinced that the mass spec data is reliable.

      (2) The mass-spec data however claims to identify Rps26 as a factor binding the toxic RNA specifically. The rest of the paper seeks to develop a story of how Rps26-deficient ribosomes play a role in the translation of this RNA. I do not consider that this makes sense.

      (3) Rps26 is an essential gene, I am sure the same is true for DHX15. What happens to cell viability? Protein synthesis? The yeast experiments were carefully carried out under experiments where Rps26 was reduced, not fully depleted to give small growth defects.

      (4) Knockdown efficiency for all tested genes must be shown to evaluate knockdown efficiency.

      (5) The data in Figure 1E have just one mock control, but two cell types (control si and Rps26 depletion).

      (6) The authors' data indicate that the effects are not specific to Rps26 but indeed also observed upon Rps25 knockdown. This suggests strongly that the effects are from reduced ribosome content or blocked protein synthesis. Additional controls should deplete a core RP to ascertain this conclusion.

      (7) Supplemental Figure S3 demonstrates that the depletion of S26 does not affect the selection of the start codon context. Any other claim must be deleted. All the 5'-UTR logos are essentially identical, indicating that "picking" happens by abundance (background).

      (8) Mechanism is lacking entirely. There are many ways in which ribosomes could have mRNA-specific effects. The authors tried to find an effect from the Kozak sequence, unsuccessfully (however, they also did not do the experiment correctly, as they failed to recognize that the Kozak sequence differs between yeast, where it is A-rich, and mammalian cells, where it is GGCGCC). Collisions could be another mechanism.

    3. Reviewer #2 (Public Review):

      Summary:

      Translation of CGG repeats leads to the accumulation of poly G, which is associated with neurological disorders. This is a valuable paper in which the authors sought out proteins that modulate RAN translation. They determined which proteins in Hela cells bound to CGG repeats and affected levels of polyG encoded in the 5'UTR of the FMR1 mRNA. They then showed that siRNA depletion of ribosomal protein RPS26 results in less production of FMR1polyG than in control. There are data supporting the claim that RPS26 depletion modulates RAN translation in this RNA, although for some results, the Western results are not strong. The data to support increased aggregation by polyG expression upon S26 KD are incomplete.

      Strengths:

      The authors have proteomics data that show the enrichment of a set of proteins on FMR1 RNA but not a related RNA.

      Weaknesses:

      -It is insinuated that RPS26 binds the RNA to enhance CGG-containing protein expression. However, RPS26 reduction was also shown previously to affect ribosome levels, and reduced ribosome levels can result in ribosomes translating very different RNA pools.

      -A significant claim is that RPS26 KD alleviates the effects of FMR polyG expression, but those data aren't presented well.

    4. Reviewer #3 (Public Review):

      Tutak et al provide interesting data showing that RPS26 and relevant proteins such as TSR2 and RPS25 affect RAN translation from CGG repeat RNA in fragile X-associated conditions. They identified RPS26 as a potential regulator of RAN translation by RNA-tagging system and mass spectrometry-based screening for proteins binding to CGG repeat RNA and confirmed its regulatory effects on RAN translation by siRNA-based knockdown experiments in multiple cellular disease models and patient-derived fibroblasts. Quantitative mass spectrometry analysis found that the expressions of some ribosomal proteins are sensitive to RPS26 depletion while approximately 80% of proteins including FMRP were not influenced. Since the roles of ribosomal proteins in RAN translation regulation have not been fully examined, this study provides novel insights into this research field. However, some data presented in this manuscript are limited and preliminary, and their conclusions are not fully supported.

      (1) While the authors emphasized the importance of ribosomal composition for RAN translation regulation in the title and the article body, the association between RAN translation and ribosomal composition is apparently not evaluated in this work. They found that specific ribosomal proteins (RPS26 and RPS25) can have regulatory effects on RAN translation(Figures 1C, 2B, 2C, 2E, 4A, 5A, and 5B), and that the expression levels of some ribosomal proteins can be changed by RPS26 knockdown (Figure 3B, however, the change of the ribosome compositions involved in the actual translation has not been elucidated). Therefore, their conclusive statement, that is, "ribosome composition affects RAN translation" is not fully supported by the presented data and is misleading.

      (2) The study provides insufficient data on the mechanisms of how RPS26 regulates RAN translation. Although authors speculate that RPS26 may affect initiation codon fidelity and regulate RAN translation in a CGG repeat sequence-independent manner (Page 9 and Page 11), what they really have shown is just identification of this protein by the screening for proteins binding to CGG repeat RNA (Figure 1A, 1B), and effects of this protein on CGG repeat-RAN translation. It is essential to clarify whether the regulatory effect of RPS26 on RAN translation is dependent on CGG repeat sequence or near-cognate initiation codons like ACG and GUG in the 5' upstream sequence of the repeat. It would be better to validate the effects of RPS26 on translation from control constructs, such as one composed of the 5' upstream sequence of FMR1 with no CGG repeat, and one with an ATG substitution in the 5' upstream sequence of FMR1 instead of near-cognate initiation codons.

      (3) The regulatory effects of RPS26 and other molecules on RAN translation have all been investigated as effects on the expression levels of FMRpolyG-GFP proteins in cellular models expressing CGG repeat sequences (Figures 1C, 2B, 2C, 2E, 4A, 5A, and 5B). In these cellular experiments, there are multiple confounding factors affecting the expression levels of FMRpolyG-GFP proteins other than RAN translation, including template RNA expression, template RNA distribution, and FMRpolyG-GFP protein degradation. Although authors evaluated the effect on the expression levels of template CGG repeat RNA, it would be better to confirm the effect of these regulators on RAN translation by other experiments such as in vitro translation assay that can directly evaluate RAN translation.

      (4) While the authors state that RPS26 modulated the FMRpolyG-mediated toxicity, they presented limited data on apoptotic markers, not cellular viability (Figure 1E), not fully supporting this conclusion. Since previous work showed that FMRpolyG protein reduces cellular viability (Hoem G et al., Front Genet 2019), additional evaluations for cellular viability would strengthen this conclusion.

    5. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Tutak et al use a combination of pulldowns, analyzed by mass spectrometry, reporter assays, and fluorescence experiments to decipher the mechanism of protein translation in fragile X-related diseases. The topic is interesting and important.

      Although a role for Rps26-deficient ribosomes in toxic protein translation is plausible based on already available data, the authors' data are not carefully controlled and thus do not support the conclusions of the paper.

      Strengths:

      The topic is interesting and important.

      Weaknesses:

      In particular, there is very little data to support the notion that Rps26-deficient ribosomes are even produced under the circumstances. And no data that indicate that they are involved in the RAN translation. Essential controls (for ribosome numbers) are lacking, no information is presented on the viability of the cells (Rps26 is an essential protein), and the differences in protein levels could well arise from block in protein synthesis, and cell division coupled to differential stability of the proteins.

      We agree that presented data could benefit from addition of suggested experiments. We will  address the ribosome content, global translation rate and cell viability upon RPS26 depletion. We are also planning to apply polysome profiling to determine if RPS26-depleted ribosomes are translationally active.

      Specific points:

      (1) Analysis of the mass spec data in Supplemental Table S3 indicates that for many of the proteins that are differentially enriched in one sample, a single peptide is identified. So the difference is between 1 peptide and 0. I don't understand how one can do a statistical analysis on that, or how it would give out anything of significance. I certainly do not think it is significant. This is exacerbated by the fact that the contaminants in the assay (keratins) are many, many-fold more abundant, and so are proteins that are known to be mitochondrial or nuclear, and therefore likely not actual targets (e.g. MCCC1, PC, NPM1; this includes many proteins "of significance" in Table S1, including Rrp1B, NAF1, Top1, TCEPB, DHX16, etc...).

      The data in Table S6/Figure 3A suffer from the same problem.

      Tables S3 and S6 show the mass spectrometry output data from MaxQuant analysis  without any flittering.  Certain identifications, i.e. those denoted as contaminants (such as keratins) were removed during statistical analysis in Perseus software. Regarding the data presented in Table S6 (SILAC data), we argue that these data are of very good quality. More than 2000 proteins were identified in a 125min gradient, with over 80% of proteins that were identified with at least 2 unique peptides. However, we acknowledge that the description of Tables S3 and S6 may lead to misunderstanding, thus we will clarify their explanation.

      I am not convinced that the mass spec data is reliable.

      (2) The mass-spec data however claims to identify Rps26 as a factor binding the toxic RNA specifically. The rest of the paper seeks to develop a story of how Rps26-deficient ribosomes play a role in the translation of this RNA. I do not consider that this makes sense.

      Indeed, we identified RPS26 as a protein co-precipitated with FMR1 RNA containing expanded CGG repeats. However, we do not claim that they interact directly. Downregulation of FMRpolyG biosynthesis could be an outcome of the alteration of ribosomal assembly, changes in efficiency and fidelity of PIC scanning or impeded elongation or more likely combination of some of these processes. We will  provide better explanation regarding those issues in the revised version of the manuscript.

      (3) Rps26 is an essential gene, I am sure the same is true for DHX15. What happens to cell viability? Protein synthesis? The yeast experiments were carefully carried out under experiments where Rps26 was reduced, not fully depleted to give small growth defects.

      We agree with the Reviewer 1 that RPS26 is an essential protein. Previously, it was shown that cell viability in cells with mutated C-terminal deletion of RPS26 is decreased (Havkin-Solomon T, Nucleic Acids Res 2023). We will address the question regarding the suppression of FMRpolyG in models with partial RPS26 knock-down.

      (4) Knockdown efficiency for all tested genes must be shown to evaluate knockdown efficiency.

      Missing experiments showing efficiency of knock-down will be included in the revised version of the manuscript.

      (5) The data in Figure 1E have just one mock control, but two cell types (control si and Rps26 depletion).

      We will clarify this ambiguity in the revised version of the manuscripts.

      (6) The authors' data indicate that the effects are not specific to Rps26 but indeed also observed upon Rps25 knockdown. This suggests strongly that the effects are from reduced ribosome content or blocked protein synthesis. Additional controls should deplete a core RP to ascertain this conclusion.

      We agree that observed effect may stem partially from reduced ribosome content, however, we argue that this is not the only explanation. In the publication concerning RPS25 regulation of G4C2-related RAN translation (Yamada SB, 2019, Nat Neurosci), it was shown that RPS25 KO does not affect global translation. Our experiments (SUnSET assay, unpublished) indicated that RPS26 KD also did not reduce global translation rate significantly. We will present that data in the revised version of the manuscript.

      (7) Supplemental Figure S3 demonstrates that the depletion of S26 does not affect the selection of the start codon context. Any other claim must be deleted. All the 5'-UTR logos are essentially identical, indicating that "picking" happens by abundance (background).

      Results shown in Fig.S3 does not imply that RPS26 does not affect the selection of start codon context entirely. We just tested a few hypotheses. We decided to test -4 position, because this position was indicated as the most sensitive to RPS26 regulation in yeast (Ferretti M, 2017, Nat Struct Mol Biol). Regarding WebLOGO analysis; we wrote in the manuscript that we did not identify any specific motif or enrichment within analysed transcripts in comparison to background. We will clarify this ambiguity in revised version of the manuscript.

      (8) Mechanism is lacking entirely. There are many ways in which ribosomes could have mRNA-specific effects. The authors tried to find an effect from the Kozak sequence, unsuccessfully (however, they also did not do the experiment correctly, as they failed to recognize that the Kozak sequence differs between yeast, where it is A-rich, and mammalian cells, where it is GGCGCC). Collisions could be another mechanism.

      As in (7).

      Reviewer #2 (Public Review):

      Summary:

      Translation of CGG repeats leads to the accumulation of poly G, which is associated with neurological disorders. This is a valuable paper in which the authors sought out proteins that modulate RAN translation. They determined which proteins in Hela cells bound to CGG repeats and affected levels of polyG encoded in the 5'UTR of the FMR1 mRNA. They then showed that siRNA depletion of ribosomal protein RPS26 results in less production of FMR1polyG than in control. There are data supporting the claim that RPS26 depletion modulates RAN translation in this RNA, although for some results, the Western results are not strong. The data to support increased aggregation by polyG expression upon S26 KD are incomplete.

      Strengths:

      The authors have proteomics data that show the enrichment of a set of proteins on FMR1 RNA but not a related RNA.

      Weaknesses:

      - It is insinuated that RPS26 binds the RNA to enhance CGG-containing protein expression. However, RPS26 reduction was also shown previously to affect ribosome levels, and reduced ribosome levels can result in ribosomes translating very different RNA pools.

      We agree that presented data could benefit from addition of some experiments. Therefore we will address questions regarding the ribosome content, global translation rate and cell viability upon RPS26 depletion. We are also planning to apply polysome profiling to determine if RPS26-depleted ribosomes are translationally active. However, we did not state that RPS26 binds directly to RNA with expanded CGG repeats and that this interaction is crucial for translation regulation of studied RNA. We just tested such hypotheses. We will improve the text narration in revised version of the manuscript to make major conclusions clearer.

      - A significant claim is that RPS26 KD alleviates the effects of FMRpolyG expression, but those data aren't presented well.

      We thank the Reviewer 2 for this comment. We will show the data derived from a few different cell models that we already have obtained. Moreover, we will include results of experiments with luminescence readout for FMRpolyG fused with luciferase upon RPS26 KD.

      Reviewer #3 (Public Review):

      Tutak et al provide interesting data showing that RPS26 and relevant proteins such as TSR2 and RPS25 affect RAN translation from CGG repeat RNA in fragile X-associated conditions. They identified RPS26 as a potential regulator of RAN translation by RNA-tagging system and mass spectrometry-based screening for proteins binding to CGG repeat RNA and confirmed its regulatory effects on RAN translation by siRNA-based knockdown experiments in multiple cellular disease models and patient-derived fibroblasts. Quantitative mass spectrometry analysis found that the expressions of some ribosomal proteins are sensitive to RPS26 depletion while approximately 80% of proteins including FMRP were not influenced. Since the roles of ribosomal proteins in RAN translation regulation have not been fully examined, this study provides novel insights into this research field. However, some data presented in this manuscript are limited and preliminary, and their conclusions are not fully supported.

      (1) While the authors emphasized the importance of ribosomal composition for RAN translation regulation in the title and the article body, the association between RAN translation and ribosomal composition is apparently not evaluated in this work. They found that specific ribosomal proteins (RPS26 and RPS25) can have regulatory effects on RAN translation(Figures 1C, 2B, 2C, 2E, 4A, 5A, and 5B), and that the expression levels of some ribosomal proteins can be changed by RPS26 knockdown (Figure 3B, however, the change of the ribosome compositions involved in the actual translation has not been elucidated). Therefore, their conclusive statement, that is, "ribosome composition affects RAN translation" is not fully supported by the presented data and is misleading.

      We thank Reviewer 3 for critical comments and suggestions. We agree that the proposed title may be misleading and the presented data does not fully support the aforementioned statement regarding ribosomal composition affecting FMRpolyG synthesis. Hence, we will change the title together with a narrative regarding these unfortunate statements that go beyond the presented results.

      (2) The study provides insufficient data on the mechanisms of how RPS26 regulates RAN translation. Although authors speculate that RPS26 may affect initiation codon fidelity and regulate RAN translation in a CGG repeat sequence-independent manner (Page 9 and Page 11), what they really have shown is just identification of this protein by the screening for proteins binding to CGG repeat RNA (Figure 1A, 1B), and effects of this protein on CGG repeat-RAN translation. It is essential to clarify whether the regulatory effect of RPS26 on RAN translation is dependent on CGG repeat sequence or near-cognate initiation codons like ACG and GUG in the 5' upstream sequence of the repeat. It would be better to validate the effects of RPS26 on translation from control constructs, such as one composed of the 5' upstream sequence of FMR1 with no CGG repeat, and one with an ATG substitution in the 5' upstream sequence of FMR1 instead of near-cognate initiation codons.

      We will address the question regarding the influence of the content of CGG repeats and START codon selection (including different near-cognate start codons) on RPS26-sensitive translation, and present these data in revised version of the manuscript.

      (3) The regulatory effects of RPS26 and other molecules on RAN translation have all been investigated as effects on the expression levels of FMRpolyG-GFP proteins in cellular models expressing CGG repeat sequences Figures 1C, 2B, 2C, 2E, 4A, 5A, and 5B). In these cellular experiments, there are multiple confounding factors affecting the expression levels of FMRpolyG-GFP proteins other than RAN translation, including template RNA expression, template RNA distribution, and FMRpolyG-GFP protein degradation. Although authors evaluated the effect on the expression levels of template CGG repeat RNA, it would be better to confirm the effect of these regulators on RAN translation by other experiments such as in vitro translation assay that can directly evaluate RAN translation.

      We agree that there are multiple factors affecting final translation of investigated mRNA including aforementioned processes. We evaluated the level of FMR1 mRNA, which turned out not to be affected upon RPS26 depletion (Figure 2B&C), however, we will address other possibilities as well.

      (4) While the authors state that RPS26 modulated the FMRpolyG-mediated toxicity, they presented limited data on apoptotic markers, not cellular viability (Figure 1E), not fully supporting this conclusion. Since previous work showed that FMRpolyG protein reduces cellular viability (Hoem G et al., Front Genet 2019), additional evaluations for cellular viability would strengthen this conclusion.

      We thank Reviewer 3 for this suggestion. We addressed the effect of RPS26 KD on apoptotic process induced by FMRpolyG. We will perform other experiments regarding different aspects of FMRpolyG-mediated cell toxicity as well.

    1. eLife assessment

      This fundamental work has completed our understanding of the singular binding profile of the Rhino HP1 protein to chromatin, a key step in converting certain genomic regions into piRNA source loci. The evidence supporting the conclusions is compelling. Phylogenetic analyses, structure prediction, rigorous biochemical assays and in vivo genetics emphasize the importance of the Rhino chromodomain in the recognition of both a histone mark and a DNA-binding protein, and highlight the importance of a single chromodomain residue in the protein-protein interaction.

    2. Reviewer #1 (Public Review):

      Summary:

      The manuscript focuses on an unexpected finding that a tiny change in a protein's aminoacid sequence can redefine its biological function. The authors' data and analyses explain how a chromodomain, typically implicated in interactions with histones, can also mediate binding of HP1 homolog Rhino to the non-histone partner protein Kipferl. They elegantly pinpoint the capacity for such interaction to a single aminoacid substitution (in fact, a single-nucleotide! substitution).

      Strengths:

      Both genetic and biochemical approaches are applied to rigorously probe the proposed explanation. The authors find their predictions to be borne out both in vivo, in mutant animals, and in biochemical experiments. The manuscript also features phylogenetic comparisons that put the finding into a broader evolutionary perspective.

      Weaknesses pointed out in the original submission were addressed in the revised manuscript.

    3. Reviewer #3 (Public Review):

      Summary:

      This article is a direct follow-up to the paper published last year in eLife by the same group. In the previous article, the authors discovered a zinc finger protein, Kipferl, capable of guiding the HP1 protein Rhino towards certain genomic regions enriched in GRGGN motifs and packaged in heterochromatin marked by H3K9me3. Unlike other HP1 proteins, Rhino recruitment activates the transcription of heterochromatic regions, which are then converted into piRNA source loci. The molecular mechanism by which Kipferl interacts specifically with Rhino (via its chromodomain) and not with other HP1 proteins remained enigmatic.

      In this latest article, the authors go a step further by elucidating the molecular mechanisms important for the specific interaction of Rhino and not other HP1 proteins with Kipferl. A phylogenetic study carried out between the HP1 proteins of 5 Drosophila species led them to study the importance of an AA Glycine at position 31 located in the Rhino chromodomain, an AA different from the AA (aspartic acid) found at the same position in the other HP1 proteins. The authors then demonstrate, through a series of structure predictions, biochemical and genetic experiments, that this specific AA in the Rhino-specific chromodomain explains the difference in the chromatin binding pattern between Rhino and the other Drosophila HP1 proteins. Importantly, the G31D conversion of the Rhino protein prevents interaction between Rhino and Kipferl, phenocopying a Kipfer mutant.

      Strengths:

      The strength of this study is to test at the molecular and genetic level whether the difference in the AA sequence- encovered by phylogenetic analysis of HP1 proteins including Rhino combined with structure prediction- can explain the difference in chromatin binding patterns between HP1 proteins and Rhino.<br /> To do so they have created a Rhino mutant by introducing a point mutation into the endogenous rhino gene, reverting the Glycine in position 31 to the aspartic acid found in all other HP1 proteins. Even if the Rhino G31D mutant retains its ability to interact with H3K9me3 (predictive and biochemistry approaches that I'm less familiar with) it does not localize correctly on the chromatin preventing certain regions such as locus 80F from being converted into piRNA source loci. However other regions such as satellite regions attract the Rhino mutant protein converting them into super piRNA source loci, phenocopying the effects observed in a Kipferl mutant. Why Rhino when not bound to Kipferl concentrates in satellite regions is a question that remains unanswered.

      Weaknesses:

      In this new version of the manuscript, the authors have answered all the questions and weaknesses raised previously.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Public Review:

      This article is a direct follow-up to the paper published last year in eLife by the same group. In the previous article, the authors discovered a zinc finger protein, Kipferl, capable of guiding the HP1 protein Rhino towards certain genomic regions enriched in GRGGN motifs and packaged in heterochromatin marked by H3K9me3. Unlike other HP1 proteins, Rhino recruitment activates the transcription of heterochromatic regions, which are then converted into piRNA source loci. The molecular mechanism by which Kipferl interacts specifically with Rhino (via its chromodomain) and not with other HP1 proteins remained enigmatic. 

      In this latest article, the authors go a step further by elucidating the molecular mechanisms important for the specific interaction of Rhino and not other HP1 proteins with Kipferl. A phylogenetic study carried out between the HP1 proteins of 5 Drosophila species led them to study the importance of an AA Glycine at position 31 located in the Rhino chromodomain, an AA different from the AA (aspartic acid) found at the same position in the other HP1 proteins. The authors then demonstrate, through a series of structure predictions, biochemical, and genetic experiments, that this specific AA in the Rhino-specific chromodomain explains the difference in the chromatin binding pattern between Rhino and the other Drosophila HP1 proteins. Importantly, the G31D conversion of the Rhino protein prevents interaction between Rhino and Kipferl, phenocopying a Kipferl mutant. 

      Strengths: 

      The authors' effective use of phylogenetic analyses and protein structure predictions to identify a substitution in the chromodomain that allows Rhino's specific interaction with Kipferl is very elegant. Both genetic and biochemical approaches are applied to rigorously probe the proposed explanation. They used a point mutation in the endogenous locus that replaces the Rhino-specific residue with the aspartic acid residue present in all other HP1 family members. This novel allele largely phenocopies the defects in hatch rate, chromatin organization, and piRNA production associated with kipferl mutants, and does not support Kipferl localization to clusters. The data are of high quality, the presentation is clear and concise, and the conclusions are generally well-supported.

      Weaknesses: 

      The reviewers identified potential ways to further strengthen the manuscript.

      (1) The one significant omission is RNAseq on the rhino point mutant, which would allow direct comparison to cluster, transposon, and repeat expression in kipferl mutants. 

      In this eLife Advances submission, we aim to elucidate the molecular interaction between Rhino and the zinc finger protein Kipferl and how it evolved. Using various assays, of which piRNA sequencing is the most relevant and comprehensive, we show that the rhino[G31D] mutation phenocopies a rhino loss-of-function situation for Kipferl and a kipferl loss-of-function situation for Rhino. Further confirmation of this statement by additional RNA-seq experiments to probe the extent of selective TE de-repression would indeed be a possibility. We decided to test for TE de-repression phenotypes using sensitive RNA-FISH experiments of a handful of TEs that are deregulated in kipferl loss of function flies (Baumgartner at al. 2022). This showed that the same TEs are also deregulated in rhino[G31D] flies, further confirming the similarity of the two genotypes. We have added these data to the text and to Figure 5-figure supplement 2, which shows representative RNA FISH images.

      (2) The manuscript would benefit from adding more evolutionary comparisons. The following or similar analyses would help put the finding into a broader evolutionary perspective:

      i) Is Kipferl's surface interacting with Rhino also conserved in Kipferl orthologs? In other words, are the Rhino-interacting amino acids of Kipferl under any pressure to be conserved?

      We performed an analysis of the Kipferl interface that interacts with the Rhino chromodomain in those species where Kipferl could be unambiguously identified. This showed that the residues involved in the Rhino interaction are generally conserved. We have added this analysis to Figure 1-figure supplement 4.

      ii) The remarkable conservation of Rhino's G31 is at odds with the arms race that is proposed to be happening between the fly's piRNA pathway proteins and transposons. Does this mean that Rhino's chromodomain is "untouchable" for such positive selection? 

      We agree that the conservation of the G31 residue argues against this binding interface being under positive selection in Rhino. Without understanding the pressures acting on Rhino that underlie the previously published positive selection, we find it difficult to draw firm conclusions. Mutating G31 in fly species that lack Kipferl would be an interesting experiment.

      Recommendations for the authors:

      (1) RNAseq is important to the full characterization of the phenotype and should be included. It's now clear that the major piRNA clusters are not required for fertility, so I would also include an analysis of piRNA production and Rhino binding to regions flanking isolated insertions. 

      See our response to raised weakness #1 above. Briefly, we have now added an analysis of TE de-repression based on RNA-FISH experiments (Figure 5-figure supplement 2). Regarding the proposed analysis of piRNA production and Rhino binding to regions flanking isolated TE insertions: this is an important issue that we carefully analysed in our previous work characterising the kipferl mutant (Baumgartner et al. 2022). In the present work, we focused on generating a rhino mutant that uncouples Rhino from Kipferl.

      (2) The authors do not provide direct biochemical evidence that the chromodomain substitution blocks Rhino binding to Kipferl. However, Rhino protein is very low abundance, making analysis of the endogenous protein very difficult.

      Based on our previous work (Baumgartner et al 2022), the Rhino chromodomain interacts directly with the fourth zinc finger of Kipferl. Mutation of a single residue in the predicted interface (Rhino[G31D]) phenocopies a kipferl mutant, strongly suggesting that this mutation disrupts the Rhino-Kipferl interaction. Definitive evidence will have to await the reconstitution of this interaction using recombinant proteins. Our attempts to purify recombinant Kipferl (expressed in bacteria or in insect cells) or the protein fragments relevant to the interaction were unsuccessful so far. While we obtained soluble fractions of the first ZnF array, there was always a high level of co-purifying nucleic acids that we were not able to remove.

      (3) Even if the Rhino G31D mutant retains its ability to interact with H3K9me3 it does not localize correctly on the chromatin preventing certain regions such as locus 80F from being converted into piRNA source loci. However other regions such as satellite regions attract the Rhino mutant protein converting them into super piRNA source loci, phenocopying the effects observed in a Kipferl mutant. Why Rhino when not bound to Kipferl concentrates in satellite regions is a question that remains unanswered.

      This is a very interesting question indeed. We have not been able to elucidate the molecular basis of how Rhino is recruited to satellite repeats in Kipferl mutants. For example, we performed a proximity biotinylation experiment with GFP-Rhino in Kipferl mutant ovaries, but this experiment did not reveal any protein that would explain the observed accumulation of Rhino at the complex satellite repeats.

      (4) In the phylogenetic analysis the authors identified two residues as Rhino-specific and conserved sequence alterations, the D31G mutation and the G62 insertion. However, the authors limit their study to D31G mutation, and nothing is performed on the G32 insertion. It would have been interesting to know the impact of this insertion on Rhino's biology. 

      The role, if any, of the Rhino-specific G62 insertion and its effect on Rhino localisation or function is an interesting topic for further study. We have not investigated the G62 residue experimentally. In the current manuscript, we limited our efforts to the analysis of the G31D mutation, as the goal was to identify the mode of interaction with Kipferl, and the G62 residue is not predicted to contact Kipferl according to AlphaFold.

      (5) The authors report that the G31D mutation of Rhino phenocopies the Kipferl mutant. Rhino is wrongly localized in the nucleus, and Rhino G31D recruitment in certain Kipferl-enriched regions is affected, as at the 80F locus, which correlates with a strong drop in piRNA production from this locus. To go a step further in demonstrating that G31D phenocopies the Kipferl mutant, it would have been informative to analyse how much TE piRNAs are affected and whether TEs are deregulated.

      See our response to similar comments above. We have added RNA-FISH experiments to illustrate that the TE de-repression phenotypes are comparable between rhino[G31D] and kipferl loss of function ovaries (Figure 5-figure supplement 2). Analyses of TE-mapping piRNAs also show well correlated phenotypes (Figure 5-figure supplement 1).

      (6) Figure 3A: To homogenize with the immunostaining presented in Figure 3B, can the authors add on the bar graph depicting female fertility the results obtained with kipferl-/- and rhino-/- genotype? 

      rhino mutants are completely (100%) sterile and the fertility of kipferl mutants was previously measured to range between 15% and 40% (Baumgartner et al. 2022).

      (7) Figure 4A: It would have been interesting to show Venn diagrams showing the overlap of genomic regions enriched for Kipferl versus regions enriched for Rhi in a WT and in a Rhi G31D mutant. 

      We consider the analysis presented in Figure 4 to be more meaningful, as a Venn diagram would require binary cut-offs.

      (8) Figure 1B: In the phylogenic analysis for Rhino/HP1d two D. simulans lines are presented. Can the authors clarify this point?

      There are two Rhino paralogs in D. simulans: one paralog (NCBI: AAY34025.1) is more similar to D. melanogaster Rhino, contains one intron and is located at chromosome chr2R (assembly Apr. 2005, WUGSC mosaic 1.0/droSim1: 12256895-12258668). The second paralog (XP_002106478.1) is located on chromosome X (6734493-6735248) and does not contain an intron. We have added a clarifying statement to the corresponding figure legend.

      (9) To determine whether Rhino G31D point mutation affects the overall function of Rhino, the authors analysed Kipferl-independent piRNA source loci by looking at Responder and 1,688 family satellites. I'm not sure that these loci can be classified as Kipferl-independent piRNA source loci since a strong increase of piRNA production from these loci in Kipferl mutant is observed. In my point of view, the 42AB and 38C are real Kipferl-independent piRNA source loci as piRNA production from these loci is not affected by Kipferl KD. 

      Indeed, the Rsp and 1,688 family satellites are not completely independent of Kipferl, as their expression and Rhino occupancy differ between wild-type and kipferl loss-of-function phenotypes (including rhino[G31D]). However, we believe that this increase is due to a strong dependence on different sequestration mechanisms and is not mediated by a direct function of Kipferl at these sites. Similarly, we observe slight differences in piRNA production for the peripheral parts of cluster 42AB, as well as differences in Rhino occupancy despite an unaltered piRNA profile at cluster 38C (Baumgartner et al. 2022). Thus, different flavours of Kipferl-independence exist, with the only truly Kipferl-independent piRNA sources likely to be the piRNA clusters in the testis. A clear classification is further complicated by previously observed compensatory effects in the piRNA pathway, leading us to adopt the current definition of "requiring Kipferl for Rhino recruitment" to distinguish Kipferl-dependent from Kipferl-independent sites.

      (10) The authors report that the G31D mutation of Rhino phenocopies the Kipferl mutant. Rhino is wrongly localized in the nucleus, and Rhino G31D recruitment in certain Kipferl-enriched regions is affected, as at 80F locus, which correlates with a strong drop in piRNA production from this locus. To go a step further in demonstrating that G31D phenocopies the Kipferl mutant, it would have been interesting to look at how much TE piRNAs are affected and whether TEs (and which class of TE) are deregulated by RNAseq and/or in situ hybridization. 

      See our response to similar comments above. Our new RNA-FISH experiments and TE-mapping piRNA analysis extend the comparison of phenotypes between kipferl mutants and rhino[G31D] mutants and are consistent with our previous conclusions (Figure 5-figure supplements 1 and 2).

    1. eLife assessment

      Schafer et al. investigate the extremely interesting and important claim that the human hippocampus represents the interactions with multiple social interaction partners on two relatively abstract social dimensions – and that this ability correlates with the social network size of the participant. This research potentially demonstrates the intricate role of the hippocampus in navigating our social world. While some results are tantalizing, the empirical evidence for the main claims is currently incomplete and requires clarifications and substantial revisions.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Jellinger et al. performed engram-specific sequencing and identified genes that were selectively regulated in positive/negative engram populations. In addition, they performed chronic activation of the negative engram population over 3 months and observed several effects on fear/anxiety behavior and cellular events such as upregulation of glial cells and decreased GABA levels.

      Strengths:

      They provide useful engram-specific GSEA data and the main concept of the study, linking negative valence/memory encoding to cellular level outcomes including upregulation of glial cells, is interesting and valuable.

      Comments on the revised manuscript:

      The revised manuscript still does not adequately address the primary technical concern regarding long-term DREADD manipulation. The authors reference their previous work (Suthard et al., 2023) as evidence; however, this earlier paper only presents fluorescence intensity in a non-quantitative manner with merely three samples (Supplementary Figure 7). This limited evidence does not sufficiently support the claim of potent long-term activation. The discussion in the revision stating "...even if our manipulation is only working for 1 month, rather than 3 months..." is unconvincing, particularly given that the title and abstract still claims "chronic activation of...". To substantiate the technical validity of the study, at least cFos staining at various time points is necessary, which is less burdensome compared to more direct demonstrations such as slice physiology. Thus, although I believe it could be an interesting study for some audiences, I cannot support the strength of the evidence presented in the study.

      Furthermore, in response to all reviewers' concerns regarding the quantification of GABA, the authors have removed the data from the study rather than providing properly acquired images or quantified data. This action diminishes the significance of the study.

    2. eLife assessment

      This useful study reports the behavioural and physiological effects of the longitudinal activation of neurons associated with negative experiences. The main claims of the paper are supported by solid experimental evidence, although the specificity of the long-term manipulation could have benefitted from additional validation. This study will be of interest to neuroscientists working on memory.

    3. Reviewer #2 (Public Review):

      Summary:

      Jellinger, Suthard, et al. investigated the transcriptome of positive and negative valence engram cells in the ventral hippocampus, revealing anti- and pro-inflammatory signatures of these respective valences. The authors further reactivated the negative valence engram ensembles to assay the effects of chronic negative memory reactivation in young and old mice. This chronic re-activation resulted in differences in aspects of working memory, fear memory, and caused morphological changes in glia. Such reactivation-associated changes are putatively linked to GABA changes and behavioral rumination.

      Strengths:

      Much the content of of this manuscript is of benefit to the community, such as the discovery of differential engram transcriptomes dependent on memory valence. The chronic activation of neurons, and the resultant effects on glial cells and behavior, also provide the community with important data. Laudable points of this manuscript include the comprehensiveness of behavioral experiments, as well as the cross-disciplinary approach.

      Weaknesses:

      Weaknesses noted in the previous version of the manuscript have been accounted for.

    4. Reviewer #3 (Public Review):

      Summary:

      The authors note that negative ruminations can lead to pathological brain states and mood/anxiety dysregulation. They test this idea by using mouse engram-tagging technology to label dentate gyrus ensembles activated during a negative experience (fear conditioning). They show that chronic chemogenetic activation of these ensembles leads to behavioral (increased anxiety, increased fear generalization, reduced fear extinction) and neural (increases in neuroinflammation, microglia and astrocytes).

      Strengths:

      The question the authors ask here is an intriguing one, and the engram activation approach is a powerful way to address the question. Examination of a wide range of neural and behavioral dependent measures is also a strength.

      Weaknesses:

      The major weakness is that the authors have found a range of changes that are correlates of chronic negative engram reactivation. However, they do not manipulate these outcomes to test whether microglia, astrocytes, neuroinflammation are causally linked to the dysregulated behaviors.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, Jellinger et al. performed engram-specific sequencing and identified genes that were selectively regulated in positive/negative engram populations. In addition, they performed chronic activation of the negative engram population over 3 months and observed several effects on fear/anxiety behavior and cellular events such as upregulation of glial cells and decreased GABA levels.

      Strengths:

      They provide useful engram-specific GSEA data and the main concept of the study, linking negative valence/memory encoding to cellular level outcomes including upregulation of glial cells, is interesting and valuable.

      Weaknesses:

      A number of experimental shortcomings make the conclusion of the study largely unsupported. In addition, the observed differences in behavioral experiments are rather small, inconsistent, and the interpretation of the differences is not compelling.

      Major points for improvement:

      (1) Lack of essential control experiments

      With the current set of experiments, it is not certain that the DREADD system they used was potent and stable throughout the 3 months of manipulations. Basic confirmatory experiments (e.g., slice physiology at 1m vs. 3m) to show that the DREADD effects on these vHP are stable would be an essential bottom line to make these manipulation experiments convincing.

      In previous work from our lab performing long-term activation of Gq DREADD receptors in the vHPC, we quantify the presence of Gq receptor expression over 3-, 6- and 9-month timepoints and show that there is no decrease in receptor expression, as measured via fluorescence intensity (Suthard et al., 2023). In this study, we also address that even if our manipulation is only working for 1 month, rather than 3 months, we are observing the long-term effects of this shorter-term stimulation. This is still relevant, and only changes how we interpret these findings, as shorter-term stimulation or disruption of neuronal activity can still have detrimental effects on behavior.

      Furthermore, although the authors use the mCherry vector as a control, they did not have a vehicle/saline control for the hM3Dq AAV. Thus, the long-term effects such as the increase in glial cells could simply be due to the toxicity of DREADD expression, rather than an induced activity of these cells.

      For chemogenetic studies, our experimental rationale utilized a standard approach in the field, which includes one of two control options: 1) active receptor vs. control vector + ligand or 2) active receptor + ligand or saline control. We chose the first option, as this more properly controls for the potential off-target effects of the ligand itself, as shown in other previous work (Xia et al., 2017). This is particularly important for studies using CNO, as many off-target effects have been noted as a limitation (Manvich et al., 2018). We chose to use DCZ as it is closely related to CNO and newer ligands, but comes with added benefits of high specificity, low off-target effects, high potency and brain penetrance (Nagai et al., 2020), but any potential off-target effects of DCZ are yet to be completely investigated as this ligand is very new.

      Evidence of DREADD toxicity has been shown at high titer levels of AAV2/7- CamKIIα-hM4D(Gi)-mCherry in the hippocampus at 5 weeks, as the reviewer pointed out in their above comment (Goossens et al., 2021). Our viral strategy is targeted to a much smaller number of cells using AAV9-DIO-Flex-hM3Dq-mCherry at a lower titer, unlike expression within a much larger population of CaMKII+ excitatory neurons in this study. Additionally, visual comparison of their viral load and expression with ours shows much more intense expression that spans a larger area of the hippocampus (Goossens et al, 2021; Figure 1D), whereas ours is isolated to a smaller region of vHPC (see Figure 1B).

      Further, we attempted to quantify a decrease in neuronal health (Yousef et al., 2017) resulting from DREADD expression via NeuN counts within multiple hippocampal subregions for the 6- and 14-month groups across active Gq receptor and mCherry conditions and did not observe significant decreases in NeuN as a result (Supplemental Figure 1). However, immunohistochemistry of an individual marker may not be sufficient to capture the entire health profile of an individual neuron and future work should consider other markers of cell death or inflammation, which we have added to the Limitations & Future Work section of our Discussion.

      (2) Figure 1 and the rest of the study are disconnected

      The authors used the cFos-tTA system to label positive/negative engram populations, while the TRAP2 system was used for the chronic activation experiments. Although both genetic tools are based on the same IEG Fos, the sensitivity of the tools needs to be validated. In particular, the sensitivity of the TRAP2 system can be arbitrarily altered by the amount of tamoxifen (or 4OHT) and the administration protocols. The authors should at least compare and show the percentage of labeled cells in both methods and discuss that the two experiments target (at least slightly) different populations. In addition, the use of TRAP2 for vHP is relatively new; the authors should confirm that this method actually captures negative engram populations by checking for reactivation of these cells during recall by overlap analysis of Fos staining or by artificial activation.

      We thank the reviewer for their comments and opportunity to discuss the marked differences between TRAP2 and DOX systems. In particular, we agree that while both systems rely on the the Fos promoter to drive an effector of interest, their efficacy and temporal resolution vary substantially depending on genetic cell-type, brain region, temporal parameters of Dox or 4-OHT delivery, subject-by-subject metabolic variability, and threshold to Fos induction given the promoter sequences inherent to each system. For example, recent studies have reported the following:

      - The TRAP2 line labels a subset of endogenously activeCA1 pyramidal cells (e.g. 5-18%) while the DOX system labels 20-40% of CA1 pyramidal cells (DeNardo et al, 2019; Monasterio et al, BioRxiv 2024 ).

      - The temporal windows for each range from hours in TRAP2 to 24-48 hours for DOX (DeNardo et al, 2019; Denny et al, 2014; Liu & Ramirez et al, 2012).

      - The efficacy of “tagging” a population of cells with TRAP2 vs with DOX will constrain the number of possible cells that may overlap with cFos upon re-exposure to a given experience (e.g. see the observed overlaps in vCA1 - BLA circuits (Kim & Cho, 2020), compared to vCA1 in general (Ortega-de San Luis et al, 2023) and valence-specific vCA1 populations (Shpokayte et al, 2022).

      - Tagging vCA1 cells with both the TRAP2 and DOX systems are nonetheless sufficient to drive corresponding behaviors (e.g. vCA1 terminal stimulation drives behavioral changes with the DOX and TRAP2 system (Shpokayte et al, 2022) and vCA1 stimulation of an updated fear-linked ensemble drives light-induced freezing in a neutral context utilizing the TRAP2 and DOX systems (Ortega-de San Luis et al, 2023)).

      Finally, and promisingly, as more studies continue to link the in vivo physiological dynamics of these cell populations tagged using each system (e.g. compare Pettit et al, 2022 with Tanaka et al, 2018) and correlating their activity to behavioral phenotypes, our field is in the prime position to uncover deeper principles governing hippocampus-mediated engrams in the brain. Together, we believe a more comprehensive understanding of these systems is fully warranted, especially in the service of further cataloging cellular similarities and differences within such tagged populations.

      (3)  Interpretation of the behavior data

      In Figures 3a and b, the authors show that the experimental group showed higher anxiety based on time spent in the center/open area. However, there were no differences in distance traveled and center entries, which are often reduced in highly anxious mice. Thus, it is not clear what the exact effect of the manipulation is. The authors may want to visualize the trajectories of the mice's locomotion instead of just showing bar graphs.

      Our findings show that our experimental group displays higher levels of anxiety-like behaviors as measured via time spent in center/open area, while there are no differences in distance traveled or center entries. For distance traveled, our interpretation is in line with complementary research (Jimenez et al, 2018; Kheirbek et al, 2013) that shows no changes in distance traveled/distance traveled in the center coupled with changes in anxiety levels as a result of manipulation within anxiety-related circuits. More broadly, any locomotion-related deficit could cause a change in distance traveled that is unrelated to anxiety-like behaviors alone. For example, a reduction in distance traveled could be coupled with a decrease in time spent in the center, but could also result only from motor or exploratory deficits. We hope that this explanation clarifies our interpretation of the open field and elevated plus maze findings in light of other literature.

      In addition, the data shown in Figure 4b is somewhat surprising - the 14MO control showed more freezing than the 6MO control, which can be interpreted as "better memory in old". As this is highly counterintuitive, the authors may want to discuss this point. The authors stated that "Mice typically display increased freezing behavior as they age, so these effects during remote recall are expected" without any reference. This is nonsense, as just above in Figure 4a, older mice actually show less freezing than young mice. Overall, the behavioral effects are rather small and random. I would suggest that these data be interpreted more carefully.

      In Figure 4B, we present our findings from remote recall and observe increased freezing levels in control mice with age, as mentioned by the reviewer, indicating increased memory. This is in line with previous work from Shoji & Miyakawa, 2019 which has been added as a reference for the quotation described above; we thank the reviewer for pointing this error out. As the reviewer has pointed out, above in Figure 4A, we measured freezing levels across all groups during contextual fear conditioning before the start of chronic stimulation, as this was the session we ‘tagged’ a negative memory in. Although it appears that there may be slightly lower levels of freezing in older (14-month old) mice, our findings do not determine statistical significance for difference between age group, only effects of time and subject which are expected as freezing increases within the session and animals display high levels of variability in freezing levels across many experiments (Figure 4A i-iii). We also find in previous work that control mice receiving 3-, 6- and 9-months of chronic DCZ stimulation in the vHPC with empty vector (mCherry) receptor show an increase in freezing with age (Suthard et al, 2023; Figure 2A ii).

      (4) Lack of citation and discussion of relevant study

      Khalaf et al. 2018 from Gräff lab showed that experimental activation of recall-induced populations leads to fear attenuation. Despite the differences in experimental details, the conceptual discrepancy should be discussed.

      As mentioned by the reviewer, Khalaf et al. 2018 showed that experimental activation of recall-induced populations in the dentate gyrus leads to fear attenuation. Specifically, they pose that this fear attenuation occurs in these ensembles through updating or unlearning of the original memory trace via the engagement, rather than suppression, of an original traumatic experience. Despite the differences in experimental details with our current study and this work, we agree that the conceptual discrepancy should be discussed. First, one major difference is that we are reactivating an ensemble that was tagged during fear memory encoding, while Khalaf et al. are activating a remote recall-induced ensemble that was tagged one month after encoding. Although there is high overlap between the encoding and recall ensembles when mice are exposed to the conditioning context, these ensembles are not identical and may result in different behavioral phenotypes when chronically reactivated. Further, Khalaf et al rely on reactivation of the recall-induced ensemble during extinction to facilitate rapid fear attenuation. This differs from our current work, as their reactivation is occurring during the extinction process in the previously conditioned context, while we are reactivating chronically in the animal’s home cage over the course of a longer time period. It may be necessary that the memory is first reactivated, and thus, more liable to re-contextualization, in the original context compared to an unrelated homecage environment where there are presumably no related cues present. Importantly, this previous work tests the attenuation of fear shortly after an extinction process, while we are not traditionally extinguishing the context with aid of the memory reactivation. Finally, we are testing remote recall (3 months post-conditioning), while they are testing at a shorter time interval (28 days). In line with these ideas, future work may seek to tease out the mechanistic differences between recent and remote memory extinction both in terms of natural memory recall and chronically manipulated memory-bearing cells.

      Reviewer #2 (Public Review):

      Summary:

      Jellinger, Suthard, et al. investigated the transcriptome of positive and negative valence engram cells in the ventral hippocampus, revealing anti- and pro-inflammatory signatures of these respective valences. The authors further reactivated the negative valence engram ensembles to assay the effects of chronic negative memory reactivation in young and old mice. This chronic re-activation resulted in differences in aspects of working memory, and fear memory, and caused morphological changes in glia. Such reactivation-associated changes are putatively linked to GABA changes and behavioral rumination.

      Strengths:

      Much of the content of this manuscript is of benefit to the community, such as the discovery of differential engram transcriptomes dependent on memory valence. The chronic activation of neurons, and the resultant effects on glial cells and behavior, also provide the community with important data. Laudable points of this manuscript include the comprehensiveness of behavioral experiments, as well as the cross-disciplinary approach.

      Weaknesses:

      There are several key claims made that are unsubstantiated by the data, particularly regarding the anthropomorphic framing of "rumination" on a mouse model and the role of GABA. The conclusions and inferences in these areas need to be carefully considered.

      (1) There are many issues regarding the arguments for the behavioural data's human translation as "rumination." There is no definition of rumination provided in the manuscript, nor how rumination is similar/different to intrusive thoughts (which are psychologically distinct but used relatively interchangeably in the manuscript), nor how rumination could be modelled in the rodent. The authors mention that they are attempting to model rumination behaviours by chronically reactivating the negative engram ("To understand if our experimental model of negative rumination..."), but this occurs almost at the very end of the results section, and no concrete evidence from the literature is provided to attempt to link the behavioural results (decreased working memory, increased fear extinction times) to rumination-like behaviours. The arguments in the final paragraph of the Discussion section about human rumination appear to be unrelated to the data presented in the manuscript and contain some uncited statements. Finally, the rumination claims seem to be based largely upon a single data figure that needs to be further developed (Figure 6, see also point 2 below).

      (2) The staining and analysis in Figure 6 are challenging to interpret, and require more evidence to substantiate the conclusions of these results. The histological images are zoomed out, and at this resolution, it appears that only the pyramidal cell layer is being stained. A GABA stain should also label the many sparsely spaced inhibitory interneurons existing across all hippocampal layers, yet this is not apparent here. Moreover, both example images in the treatment group appear to have lower overall fluorescence intensity in both DAPI and GABA. The analysis is also unclear: the authors mention "ROIs" used to measure normalized fluorescence intensity but do not specify what the ROI encapsulates. Presumably, the authors have segmented each DAPI-positive cell body and assessed fluorescence however, this is not explicated nor demonstrated, making the results difficult to interpret.

      Based on the collective discussion from all reviewers on the completeness of our GABA quantification and its implications, we have decided to remove this figure and perform more substantive analysis of this E/I imbalance in future work.

      (3) A smaller point, but more specific detail is needed for how genes were selected for GSEA analysis. As GSEA relies on genes to be specified a priori, to avoid a circular analysis, these genes need to be selected in a blind/unbiased manner to avoid biasing downstream results and conclusions. It's likely the authors have done this, but explicitly noting how genes were selected is an important context for this analysis.

      As mentioned in our Methods section, gene sets were selected based on pre-existing biology and understanding of genes canonically involved in “neurodegeneration” such as those related to apoptotic pathways and neuroinflammation or “neuroprotection” such as brain-derived neurotrophic factor, to name a few. A limitation of this method is that we must avoid making strong claims about the actual function of these up- or down-regulated genes without performing proper knock-in or knock-out studies, but we hope that this provides an unbiased inventory for future experiments to perform causal manipulations.

      Reviewer #3 (Public Review):

      Summary:

      The authors note that negative ruminations can lead to pathological brain states and mood/anxiety dysregulation. They test this idea by using mouse engram-tagging technology to label dentate gyrus ensembles activated during a negative experience (fear conditioning). They show that chronic chemogenetic activation of these ensembles leads to behavioral (increased anxiety, increased fear generalization, reduced fear extinction) and neural (increases in neuroinflammation, microglia, and astrocytes).

      Strengths:

      The question the authors ask here is an intriguing one, and the engram activation approach is a powerful way to address the question. Examination of a wide range of neural and behavioral dependent measures is also a strength.

      Weaknesses:

      The major weakness is that the authors have found a range of changes that are correlates of chronic negative engram reactivation. However, they do not manipulate these outcomes to test whether microglia, astrocytes, or neuroinflammation are causally linked to the dysregulated behaviors.

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors):

      - Figure 2c should include Month0, the BW before the start of the manipulation.

      Regrettably, we do not have access to the Month 0 body weights at this time as this project changed hands over the course of the past year or so. This is an inherent limitation that we missed during analysis and we pose this as a limitation in the Results section after describing this finding. Therefore, it is possible that over the first month of stimulation (Month 0-1), there may have been a drop in body weight that rebounded by the first measurement at Month 1 that continued to increase normally through Months 2-3, as shown in our Figure 1. Thank you for this note.

      - Figure 6a looks confusing - the background signal in the green channel is very different between control and experimental groups. Were representative images taken with different microscope settings?

      The representative images were taken with the same microscope power settings, but were adjusted in brightness/contrast within FIJI for clarity in the Figure – we apologize that this was misleading in any way and thank the reviewer for their feedback. Further, based on the collective discussion from all reviewers on the completeness of our GABA quantification and its implications, we have decided to remove this figure and perform more substantive analysis of this E/I imbalance in future work.

      - Typo mChe;try

      This typo was fixed

      - "During this contextual... mice in the 6- and 14- month groups..." Isn't it 3- and 11- month respectively at the time of fear conditioning? Throughout the manuscript, this point was written very confusingly.

      Yes, we thank the reviewer for pointing this out. It has been corrected to 3- and 11-month old mice at the timing of fear conditioning and clarified throughout the manuscript where applicable.

      - "GABAergic eYFP fluorescence" Where does the eYFP come from? The methods state that GABA quantification is based on IHC staining.

      Based on the collective discussion from all reviewers on the completeness of our GABA quantification and its implications, we have decided to remove this figure and perform more substantive analysis of this

      E/I imbalance in future work. We discuss this E/I balance not being directly assessed in the Limitations & Future Directions section of our Discussion, noting the importance of detailed quantification of both excitatory and inhibitory markers within the hippocampus.

      Reviewer #2 (Recommendations For The Authors):

      (1) There is a full methods section ("Analysis of RNA-seq data") that mostly describes RNA-seq analysis that seemingly does not appear in the paper. This section should be reviewed.

      We have included this portion of the methods that explain the previous workflow from Shpokayte et al., 2022 where this dataset was generated and this has been noted in the “Analysis of RNA-seq data” section of the methods.

      (2) Figure 6: GABA staining should be more critically analyzed, as discussed above, and validated with another GABA antibody for rigor. From the representative images provided in Figure 6, it looks possibly as though the hM3Dq images were simply not fully in the focal plane when being imaged or were over-washed, as DAPI staining also appears to be lower in these images.

      Based on the collective discussion from all reviewers on the completeness of our GABA quantification and its implications, we have decided to remove this figure and perform more substantive analysis of this E/I imbalance in future work. Specifically, it will be necessary to rigorously investigate both excitatory and inhibitory markers within this region to ensure these claims are substantiated. Thank you for this suggestion.

      (3) The first claim that human GABAergic interneurons cause rumination is uncited. (Page 19, first sentence beginning with: "Evidence from human studies suggests...").

      Based on the collective discussion from all reviewers on the completeness of our GABA quantification and its implications, we have decided to remove this figure and perform more substantive analysis of this E/I imbalance in future work. Apologies for the lack of citation in-text, the proper citation for this finding is Schmitz et al, 2017.

      (4) Gene names throughout the manuscript and figure are written in the wrong format for mice (eg: Page 13, second line: SPP1, TTR, and C1QB1 instead of Spp1, Ttr, C1qb1).

      This was corrected throughout the manuscript.

      (5) Tense on Page 15 third sentence of the second paragraph: "...spatial working memory was assessed...".

      This was corrected throughout the manuscript.

      (6) Supplemental Figure 1 would benefit from normalization of the NeuN+ cell counts. The inclusion of an excitatory and inhibitory neuron marker in this figure might benefit the argument that there is a change in the excitation/inhibition of the hippocampus - as the numbers of excitatory neurons outweigh the numbers of inhibitory neurons that would be assayed here.

      In an effort to normalize the NeuN+ cell counts, for each of our ROIs (6-8 single tiles for each brain region (DG, vCA1, vSub) x 3-5 coronal slices = ~18 single tiles per mouse x 3-4 mice) we captured a 300 x 300 micrometer, single-tile z-stack at 20x magnification. These ROIs were matched for dimensions and brain regions across all groups for each hippocampal subregion quantified. We initially proposed to normalize these NeuN counts over DAPI, but because DAPI includes all nuclei (microglia, oligodendrocytes, astrocytes and neurons), we weren’t sure this was the most optimal tool. We do agree that further quantification of excitatory and inhibitory cell markers would be vital to more concrete interpretation of our findings and we have added this to our Limitations & Future Work section of the Discussion.

      Reviewer #3 (Recommendations For The Authors):

      (1) The DOX tagging window lacks temporal precision. I suggest the authors note this as a limitation.

      We thank the reviewer for noting this, and we have added this limitation to the Methods section with the context of the 24-48 hour DOX window being longer than other methods like TRAP.

      (2) Is there a homeostatic response to chronic engram stimulation? That is, is DCZ as effective in increasing neuronal excitability on day 90 as it is on day 1. This could be addressed with electrophysiology, or with IEG induction. Alternatively, the authors could refer to previous literature-- for example, Xia et al (2017) eLife-- that examined whether there was any blunting of the effects of DREADD ligands after sustained delivery via drinking water. There, of course, may be other papers as well.

      As noted by the reviewer, it is important to determine if DCZ maintains its effects on neuronal excitability throughout the 3 month administration period. To address this, previous work has shown that CNO administration in drinking water over one month consistently inhibited hM4Di+ neurons without altering baseline neuronal excitability as measured by firing rate and potassium currents (Xia et al, 2017). Although this is only for one month, it is administered via the same oral route as our DCZ protocol and suggests that at least for that amount of time we are likely producing consistent effects. In our reply above to Reviewer #1’s comment, we also note that even if DCZ is only having an effect for one month, rather than 3 months, we are still observing enduring changes that resulted from this short-term disturbance.

      (3) Please double check there is no group effect on weight in 6-month-old mice in Figure 2C.

      Two-way RM ANOVA showed no main effect of Group within the 6-month-old control and hM3Dq groups.

      Group: F(1,17) = 1.361, p=0.2594.

      (4) The shock intensity is much higher than is typical for fear conditioning studies in mice. Why was this the case?

      Yes, we do agree that this shock intensity is on the higher side of typical paradigms in mice, however, our lab has utilized 0.75mA to 1.5mA intensity foot shocks for contextual fear conditioning in the past (Suthard & Senne et al, 2023; 2024; Dorst & Senne et al, 2023; Grella et al., 2022; Finkelstein et al., 2022) and we maintained this protocol for internal consistency. However, it would be interesting to systematically investigate how differing intensities of foot shock, subsequent tagging of this ensemble and reactivation would uniquely impact behavioral state acutely and chronically in mice.

      (5) Remote freezing is very low. The authors should comment on this-- perhaps repeated testing has led to some extinction?

      A reviewer above suggested a similar phenomenon may be occuring, specifically fear attenuation as a result of chronic stimulation. They referenced previous work from Khalaf et al. 2018, where they reactivated a recall-induced ensemble, while we reactivated an ensemble tagged during encoding. We expand upon this work in light of our findings within the Limitations & Future Work section of our Discussion. However, we do appreciate the lower levels of freezing observed in remote recall and sought out other literature to understand the typical range of remote freezing levels. One thing that we note is that our remote recall is occurring 3 months after conditioning, which is much longer than typical 14-28 day protocols. However, we find that freezing levels at remote timepoints from 21-45 days results in contextual freezing levels of between 20-50% approximately (Kol et al., 2020), as well as 40-75% approximately in a variety of 28 day remote recall experiments (Lee et al., 2023). This information, together with our current experimental protocol demonstrates a wide range of remote freezing levels that may depend heavily on the foot shock intensity, duration of days after conditioning, and animal variability.

      (6) "mice display increased freezing with age": please add a reference.

      Apologies, we missed the citation for that claim and it has been added in-text and in the references list (Shoji & Miyakawa, 2019).

      (7) Related to the low freezing levels for remote memory, why is generalization minimal? Many studies have shown that there is a time-dependent emergence of generalized fear, yet here this is not seen. Is it linked to extinction (as above)? Or genetic background?

      Previous work has shown that rats receiving multiple foot shocks during conditioning displayed a time-dependent generalization of context memory, while those receiving less shocks did not (Poulos et al., 2016), as the reviewer noted in their comment. In our current study, we observe low levels of generalization in all of our groups compared to freezing levels displayed in the conditioned context at the remote timepoint, in opposition to this time-dependent enhancement of generalization. It is possible that the genetic background of our C57BL/6J mice compared to the Long-Evans rat strain in this previous work accounts for some of this difference. In addition, it is possible that the longer duration of time (3 months) compared to their remote timepoint (28 days) resulted in time-dependent decrease in generalization that decreases with greater durations of time from original conditioning. As noted above, it is indeed plausible that the reactivation of a contextual fear ensemble over time is attenuating freezing levels for both the original and similar contexts (Khalaf et al, 2018). We discuss the differences in our study and this 2018 work more comprehensively above.

      (8) Morphological phenotypes of astrocytes/microglia. Would be great to do some transcriptomic profiling of microglia/astrocytes to couple with the morphological characterization (but appreciate this is beyond the scope of current work).

      We thank the reviewer this suggestion, we agree that would be an incredibly informative future experiment and have added this to our Limitations & Future Experiments section of the Discussion.

      (9) The authors could consider including a limitations section in their discussion which discusses potential future directions for this work:

      - causal experiments.

      - E/I balance is not assessed directly (interestingly, in this regard, expanded engrams are linked to increased generalization [e.g., Ramsaran et al 2023]).

      Thank you for this suggestion, we have added a Limitations & Future Directions section to our Discussion and have expanded upon these suggested points.

      (10) For Figure 10, consider adding an experimental design/timeline.

      We are making the assumption that the reviewer meant Figure 1 instead of Figure 10 here, but note that there is a description of the viral expression duration (D0-D10), followed by an off Dox period of 48 hours (D10-D12), with subsequent engram tagging of a negative (foot shock) or positive (male-to-female exposure) on D12. In our experiments (Shpokayte et al., 2022), Dox was administered for 24 hours (D12-D13), which was followed by sacrificing the animal for cell suspension and sequencing of the positive and negative engram populations. This figure also shows the viral strategy for the Tet-tag system (Figure 1A), as well as representative viral expression in vHPC (Figure 1B). We are happy to add additional experimental design/timeline information to this figure that would be helpful to the reviewer.

    1. eLife assessment

      This fundamental work proposes a novel mechanism for memory consolidation where short-term memory provides a gating signal for memories to be consolidated into long-term storage. The work combines extensive analytical and numerical work applied to three different scenarios and provides a convincing analysis of the benefits of the proposed model, although some of the analyses are limited to the type of memory consolidation the authors consider (and don't consider), which limits the impact. The work will be of interest to neuroscientists and many other researchers interested in the mechanistic underpinnings of memory.

    2. Reviewer #2 (Public Review):

      Summary:

      In the manuscript the authors suggest a computational mechanism called recall-gated consolidation, which prioritizes the storage of previously experienced synaptic updates in memory. The authors investigate the mechanism with different types of learning problems including supervised learning, reinforcement learning, and unsupervised auto-associative memory. They rigorously analyse the general mechanism and provide valuable insights into its benefits.

      Strengths:

      The authors establish a general theoretical framework, which they translate into three concrete learning problems. For each, they define an individual mathematical formulation. Finally, they extensively analyse the suggested mechanism in terms of memory recall, consolidation dynamics, and learnable timescales.

      The presented model of recall-gated consolidation covers various aspects of synaptic plasticity, memory recall, and the influence of gating functions on memory storage and retrieval. The model's predictions align with observed spaced learning effects.

      The authors conduct simulations to validate the recall-gated consolidation model's predictions, and their simulated results align with theoretical predictions. These simulations demonstrate the model's advantages over consolidating any memory and showcase its potential application to various learning tasks.

      The suggestion of a novel consolidation mechanism provides a good starting point to investigate memory consolidation in diverse neural systems and may inspire artificial learning algorithms.

      Weaknesses:

      I appreciate that the authors devoted a specific section to the model's predictions, and point out how the model connects to experimental findings in various model organisms. However, the connection is rather weak and the model needs to make more specific predictions to be distinguishable from other theories of memory consolidation (e.g. those that the authors discuss) and verifiable by experimental data.

      The model is not compared to other consolidation models in terms of performance and how much it increases the signal-to-noise ratio. It is only compared to a simple STM or a parallel LTM, which I understand to be essentially the same as the STM but with a different timescale (so not really an alternative consolidation model). It would be nice to compare the model to an actual or more sophisticated existing consolidation model to allow for a fairer comparison.

      The article is lengthy and dense and it could be clearer. Some sections are highly technical and may be challenging to follow. It could benefit from more concise summaries and visual aids to help convey key points.

    3. Reviewer #3 (Public Review):

      Summary:

      In their article Jack Lindsey and Ashok Litwin-Kumar describe a new model for systems memory consolidation. Their idea is that a short-term memory acts not as a teacher for a long-term memory - as is common in most complementary learning systems -, but as a selection module that determines which memories are eligible for long term storage. The criterion for the consolidation of a given memory is a sufficient strength of recall in the short term memory.

      The authors provide an in-depth analysis of the suggested mechanism. They demonstrate that it allows substantially higher SNRs than previous synaptic consolidation models, provide an extensive mathematical treatment of the suggested mechanism, show that the required recall strength can be computed in a biologically plausible way for three different learning paradigms, and illustrate how the mechanism can explain spaced training effects.

      Strengths:

      The suggested consolidation mechanism is novel and provides a very interesting alternative to the classical view of complementary learning systems. The analysis is thorough and convincing.

      Weaknesses:

      The main weakness of the paper is the equation of recall strength with the synaptic changes brought about by the presentation of a stimulus. In most models of learning, synaptic changes are driven by an error signal and hence cease once the task has been learned. The suggested consolidation mechanism would stop at that point, although recall is still fine. The authors should discuss other notions of recall strength that would allow memory consolidation to continue after the initial learning phase. Aside from that, I have only a few technical comments that I'm sure the authors can address with a reasonable amount of work.

    4. Author response:

      The following is the authors’ response to the original reviews.

      In light of some reviewer comments requesting more clarity on the relationship between our model and prior theoretical studies of systems consolidation, we propose a modification to the title of our manuscript: “Selective consolidation of learning and memory via recall-gated plasticity.” We believe this title better reflects the key distinguishing feature of our model, that it selectively consolidates only a subset of memories, and also highlights the model’s applicability to task learning as well as memory storage.

      Major comments:

      Reviewer #3’s primary concern with the paper is the following: “The main weakness of the paper is the equation of recall strength with the synaptic changes brought about by the presentation of a stimulus. In most models of learning, synaptic changes are driven by an error signal and hence cease once the task has been learned. The suggested consolidation mechanism would stop at that point, although recall is still fine. The authors should discuss other notions of recall strength that would allow memory consolidation to continue after the initial learning phase.”

      We thank the reviewer for drawing attention to this issue, which primarily results from a poor that memories should be interpreted as actual synaptic weight updates,∆𝑤and thus in the context choice of notation on our part. Our decision to denote memories as gives the impression of supervised learning would go to zero when the task is learned. However, in the formalism of our model, memories are in fact better interpreted as target values of synaptic weights, and the synaptic model/plasticity rule is responsible for converting these target values into synaptic weight updates. We were unclear on this point in our initial submission, because our paper primarily considers binary synaptic weights, where target synaptic weights have a one-to-one correspondence with candidate synaptic weight updates. We have updated the paper to use w* to refer to memories, which we hope resolves this confusion, and have updated our introduction to the term “memory” to reflect their interpretation as target synaptic weight values. We have also updated the paper’s language to more clearly disambiguate between the “learning rule,” which determines how the memory vector (target synaptic weight vectors) are derived from task variables, and the “plasticity rule,” which governs how these are translated into actual synaptic weight updates. We acknowledge that our manuscript still does not explicitly consider a plasticity rule that is sensitive to continuous error error signals, as our analysis is restricted to binary weights. However, we believe that the updated notation and exposition makes it more clear that our model could be applied in such a case.

      Reviewer #1 brought up that our framework cannot capture “single-shot learning, for example, under fear conditioning or if a presented stimulus is astonishing.” Reviewer #2 raised a related question of how our model “relates to the opposite more intuitive idea, that novel surprising experiences should be stored in memory, as the familiar ones are presumably already stored.”

      We agree that the built-in inability to consolidate memories after a single experience is a limitation of our model, and that extreme novelty is one factor (among others, such as salience or reward) that might incentivize one-shot consolidation. We have added a comment to the discussion to acknowledge these points (added text in bold): “ Moreover, in real neural circuits, additional factors besides recall, such as reward or salience, are likely to influence consolidation as well. For instance, a sufficiently salient event should be stored in long-term memory even if encountered only once. Furthermore, while in our model familiarity drives consolidation, certain forms of novelty may also incentivize consolidation, raising the prospect of a non-monotonic relationship between consolidation probability and familiarity.” We agree that future work should address the combined influence of recall (as in our model) and other factors on the propensity to consolidate a memory.

      Reviewer #1 requested, “a comparison/discussion of the wide range of models on synaptic tagging for consolidation by various types of signals. Notably, studies from Wulfram Gerstner's group (e.g., Brea, J., Clayton, N. S., & Gerstner, W. (2023). Computational models of episodic-like memory in food-caching birds. Nature Communications, 14(1); and studies on surprise).”

      We thank the reviewer for the reference, which we have added to the manuscript. The model of Brea et al.(2023) is similar to that of Roxin & Fusi (2013), in that consolidation consists of “copying” synaptic weights from one population to another. As a result, just like the model of Roxin & Fusi (2013), this model does not provide the benefit that our model offers in the context of consolidating repeatedly recurring memories. However, the model of Brea et al. does have other interesting properties – for instance, it affords the ability to decode the age of a memory, which our model does not. We have added a comment on this point in the subsection of the Discussion tilted “Other models of systems consolidation.”

      Reviewer #2 noted, “While the article extensively discusses the strengths and advantages of the recall-gated consolidation model, it provides a limited discussion of potential limitations or shortcomings of the model, such as the missing feature of generalization, which is part of previous consolidation models. The model is not compared to other consolidation models in terms of performance and how much it increases the signal-to-noise ratio.”

      We agree that our work does not consider the notion of generalization and associated changes to representational geometry that accompany consolidation, which is the focus of many other studies on consolidation. We have further highlighted this limitation in the discussion. Regarding the comparison to other models, this is a tricky point as the desiderata we emphasize in this study (the ability to recall memories that are intermittently reinforced) is not the focus of other studies. Indeed, our focus is primarily on the ability of systems consolidation to be selective in which memories are consolidated, which is somewhat orthogonal to the focus of many other theoretical studies of consolidation. We have updated some wording in the introduction to emphasize this focus.

      Additional comments made by reviewer #1

      Reviewer #1 pointed out issues in the clarity of Fig. 2A. We have added substantial clarifying text to the figure caption.

      Reviewer #1 pointed out lack of clarity in our introduction to the terms “reliability” and “reinforcement.” We have now made it more clear what we mean by these terms the first time they are used.

      We have updated our definition of “recall” to use the term “recall factor,” which is how we refer to it subsequently in the paper.

      We have made explicit in the main text our simplifying assumption that memories are mean-centered.

      We have made consistent our use of “forgetting curve” and “memory trace”.

      Additional comments made by reviewer #2

      We have added a comment in the discussion acknowledging alternative interpretations of the result of Terada et al. (2021)

      We have significantly expanded the discussion of findings about the mushroom body to make it accessible to readers who do not specialize in this area. We hope this clarifies the nature of the experimental finding, which uncovered a circuit that performs a strikingly clean implementation of our model.

      The reviewer expresses concern that the songbird study (Tachibana et al., 2022) does not provide direct evidence for consolidation being gated by familiarity of patterns of activity. Indeed, the experimental finding is one-step removed from the direct predictions of our model. That said, the finding – that the rate of consolidation increases with performance – is highly nontrivial, and is predicted by our model when applied to reinforcement learning tasks. We have added a comment to the discussion acknowledging that this experimental support for our model is behavioral and not mechanistic.

      We do not regard it as completely trivial that the parallel LTM model performs roughly the same as the STM model, since a slower learning rate can achieve a higher SNR (as in Fig. 2C). Nevertheless we have added wording to the main text around Fig. 4B to note that the result is not too surprising.

      We have added a sentence that clarifies the goal / question of our paper earlier on in the introduction.

      We have updated Figure 3 by labeling the key components of the schematics and adding more detail to the legend, as suggested by the reviewer. We also reordered the figure panels as suggested.

      Additional comments made by reviewer #3:

      We have clarified in the main text that Fig. 2C and all results from Fig. 4 onward are derived from an ideal observer model (which we also more clearly define).

      We have now emphasized in the main text that the derivations of the recall factors for specific learning rules are derived in the Supplementary Information.

      We have highlighted more clearly in the main text that the recall factors associated with specific learning rules may correspond to other notions that do not intuitively correspond to “recall,” and have added a pointer to Fig. 3A where these interpretations are spelled out.

      We have added references corresponding to the types of learning rules we consider.

      The cutoffs / piecewise-looking behavior of plots in Fig. 4 are primarily the result of finite N, which limits the maximum SNR of the system, rather than coarse sampling of parameter values.

      Thank you for pointing out the error in the legend in Fig. 5D (also affected Supp Fig. S7/S8), which is now fixed.

      The reference to the nonexistence panel Fig. 5G has been removed.

      As the reviewer points out, the use of a binary action output in our reinforcement learning task renders it quite similar to the supervised learning task, making the example less compelling. In the revised manuscript we have updated the RL simulation to use three actions. Note also that in our original submission the network outputs represented action probabilities directly (which is straightforward to do for binary actions, but not for more than two available actions). In order to parameterize a policy when more than two actions are available, we sample actions using a softmax policy, as is more standard in the field and as the reviewer suggested. The associated recall factor is still a product of reward and a “confidence factor,” and the confidence factor is still the value of the network output in the unit corresponding to the chosen action, but in the updated implementation this factor is equal to , similar (though with a sign difference) to the reviewer’s suggestion. We believe these updates make our RL implementation and simulation more compelling, as it allows them to be applied to tasks with arbitrary numbers of actions.

      Additional minor comments

      The reviewers made a number of other specific line-by-line wording suggestions, typo corrections,

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      (1) Point for more elaborate discussion: Apparently the timescale of negative feedback signals is conserved between endothelial cell migration in vitro (with human cells) and endothelial migration during the formation of ISVs in zebrafish. What do you think might be an explanation for such conserved timescales? Are there certain processes within cytoskeletal tension build up that require this quantity of time to establish? Or does it relate to the time that is needed to begin to express the YAP/TAZ target genes that mediate feedback?

      The underlying mechanisms responsible for the conserved timescale is a major direction that we continue to explore. Localization of YAP/TAZ to the nucleus is likely not rate-limiting. We showed previously that acute RhoA activation produced significant YAP/TAZ nuclear localization within minutes, while subsequent co-transcriptional activity aligned with the gene expression dynamics observed here (Berlew et al., 2021). We hypothesize that the dynamics of YAP/TAZdependent transcription and the translation of those target genes are rate-limiting for initial feedback loop completion (tic = 4 hours). This is supported by work from us and others in a variety of cell lines showing YAP/TAZ transcriptional responses take place during the first few hours after activation. (Franklin et al., 2020; Mason et al., 2019; Plouffe et al., 2018) While our data identify mediators of initial feedback loop completion, the molecular effectors that determine the timescale of new cytoskeletal equilibrium establishment (teq = 8 hours) remain unclear.

      (2) Do you expect different timescales for slower endothelial migratory processes (e.g. for instance during fin vascular regeneration which takes days)?

      We selected the ISV development model because it exhibits similar migratory kinetics to our previously-explored human ECFC migration in vitro. The comparable kinetics allowed us to study dynamics of the feedback loop in vivo on similar time scales, but we have not explored models featuring either slower or faster dynamics. 

      It would be interesting to test how feedback dynamics are impacted in distinct endothelial migratory processes. Our data suggest that the feedback loop is necessary for persistent migration; however, YAP and TAZ respond to a diversity of upstream regulators in addition to mechanical signals, which might depend on the process of vascular morphogenesis. For example, after fin amputation, inflammation and tissue regeneration may impact the biochemical and mechanical environment experienced by the endothelium. Additionally, cells display different migratory behaviors in ISV morphogenesis compared to fin regeneration. During ISV formation, sprouting tip cells migrate dorsally through avascular tissue, followed by stalk cells. (Ellertsdóttir et al., 2010) In contrast, the fin vasculature regenerates by forming an intermediate vascular plexus, where some venous-derived endothelial cells migrate towards the sprouting front, while others migrate against it. (Xu et al., 2014) We are excited to study the role of this feedback loop in these different modes of neovessel formation in future studies.

      (3) Is the ~4hrs and 8hrs feedback time window a general property or does it differ between specific endothelial cell types? In the veins the endothelial cells generate less stress fibers and adhesions compared to in the arteries. Does this mean that there might be a difference in the feedback time window, or does that mean that certain endothelial cell types may not have such YAP/TAZcontrolled feedback system?

      Recent studies suggest that venous endothelial cells are the primary endothelial subtype responsible for blood vessel morphogenesis. (Lee et al., 2022, 2021; Xu et al., 2014) They are highly motile and mechanosensitive, migrating against blood flow. (Lee et al., 2022) The Huveneers group has shown that the actin cytoskeleton is differently organized in adult arteries and veins in response to biomechanical properties of its extracellular matrix, rather than intrinsic differences between arterial and venous cells. (van Geemen et al., 2014) This suggests that arterial and venous cells have distinct cytoskeletal setpoints due to mechanical cues in their environment (Price et al., 2021). We expect this to impact the degree of cytoskeletal remodeling and cell migration at equilibrium, rather than the kinetics of the feedback loop per se, though we have not yet tested this hypothesis. Testing these predictions on cytoskeletal setpoint stability and adaptation is a major direction that we continue to explore. 

      (4) The experiments are based on perturbations to prove that transcriptional feedback is needed for endothelial migration. What would happen if the feedback systems is always switched on? An experiment to add might be to analyse the responsiveness of endothelial cells expressing constitutively active YAP/TAZ.

      This is a problem that we are actively pursuing. Though the feedback system forms a coherent loop, we anticipate that the identity of the node of the loop selected for constitutive activation will influence the outcome, depending on whether that node is rate-limiting for feedback kinetics and the extent of intersection of that node with other signaling events in the cell. For example, we have observed that constitutive YAP activation drives profound changes to the transcriptional landscape including, but not limited to, RhoA signaling (Jones et al., 2023). We further anticipate that constitutive activation of feedback loop nodes may alter feedback dynamics, while dynamic or acute perturbation will be required to dissect these contributions in real time. For these reasons, ongoing work in the lab is pursuing these questions using optogenetic tools that enable precise spatial and temporal control (Berlew et al., 2021).   

      (5) To investigate the role of YAP-mediated transcription in an accurate time-dependent manner the authors may consider using the recently developed optogenetic YAP translocation tool: https://doi.org/10.15252/embr.202154401

      We are enthusiastic about the power of optogenetics to interrogate the nodes and timescales of this feedback system, and we are now funded to pursue this line of research. 

      Reviewer #2:

      The idea is intriguing, but it is not clear how the feedback actually works, so it is difficult to determine if the events needed could occur within 4 hrs. Specifically, it is not clear what gene changes initiated by YAP/TAZ translocation eventually lead to changes in Rho signaling and contractility. Much of the evidence to support the model is preliminary. Some of the data is consistent with the model, but alternative explanations of the data are not excluded. The fish washout data is quite interesting and does support the model. It is unclear how some of the in vitro data supports the model and excludes alternatives.

      Major strengths:

      The combination of in vitro and in vivo assessment provides evidence for timing in physiologically relevant contexts, and a rigorous quantification of outputs is provided. The idea of defining temporal aspects of the system is quite interesting.

      Major weaknesses:

      The evidence for a "loop" is not strong; rather, most of the data can also be interpreted as a linear increase in effect with time once a threshold is reached. Washout experiments are key to setting up a time window, yet these experiments are presented only for the fish model. A major technical challenge is that siRNA experiments take time to achieve depletion status, making precise timing of events on short time scales problematic. Also, Actinomycin D blocks most transcription so exposure for hours likely leads to secondary and tertiary effects and perhaps effects on viability. No RNA profiling is presented to validate proposed transcriptional changes.

      We thank the reviewer for these helpful suggestions. We have expanded our explanation of the history and known mediators of the feedback loop in the introduction. We and, independently, the Huveneers group recently reported that human endothelial cells maintain cytoskeletal equilibrium for persistent motility through a YAP/TAZ-mediated feedback loop that modulates cytoskeletal tension. (Mason et al., 2019; van der Stoel et al., 2020) Because YAP and TAZ are activated by tension of the cytoskeleton (Dupont et al., 2011), suppression of cytoskeletal tension by YAP/TAZ transcriptional target genes constitutes a negative feedback loop (Fig. 1A). We described key components of this cell-intrinsic feedback loop, which acts as a control system to maintain cytoskeletal homeostasis for persistent motility via modulation of Rho-ROCK-myosin II activity. (Mason et al., 2019) Both we and the Huveneers group found that perturbation of genes and pathways regulated by YAP/TAZ mechanoactivation can functionally rescue motility in YAP/TAZ-depleted cells (e.g., RhoA/ROCK/myosin II, NUAK2, DLC1). (Mason et al., 2019; van der Stoel et al., 2020) We further showed previously that both YAP/TAZ depletion and acute YAP/TAZ-TEAD inhibition consistently increased stress fiber and FA maturation and arrested cell motility, accounting for these limitations of siRNA. (Mason et al., 2019)

      Enduring limitations to the temporal, spatial, and cell-specific control of the genetic and pharmacologic methods have inspired us to initiate alternative approaches, which are the subject of ongoing efforts. Further research will be necessary in the zebrafish to determine the extent to which the observed migratory dynamics are driven by cytoskeletal arrest. 

      To identify early YAP/TAZ-regulated transcriptional changes, we have added RNA profiling of control and YAP/TAZ depleted cells cultured on stiff matrices for four hours. Genes upregulated by YAP/TAZ depletion were enriched for Gene Ontology (GO) terms associated with Rho protein signal transduction, vascular development, cellular response to vascular endothelial growth factor (VEGF) stimulus, and endothelial cell migration (Fig. 9B). These data support a role for YAP and TAZ as negative feedback mediators that maintain cytoskeletal homeostasis for endothelial cell migration and vascular morphogenesis.  

      Reviewer #3:

      The authors used ECFC - endothelial colony forming cells (circulating endothelial cells that activate in response to vascular injury).

      Q: Did the authors characterize these cells and made sure that they are truly endothelial cells - for example examine specific endothelial markers, arterial-venous identity markers & Notch signalling status, overall morphology etc prior to the start of the experiment. How were ECFC isolated from human individuals, are these "healthy" volunteers - any underlying CVD risk factors, cells from one patient or from pooled samples, what injury where these humans exposed to trigger the release of the ECPFs into the circulation, etc. The materials & methods on ECFC should be expanded.

      Human umbilical cord blood-derived ECFCs were isolated at Indiana University School of Medicine and kindly provided by Dr Mervin Yoder. Cells were cultured as described by the Yoder group (Rapp et al., 2011) and our prior paper (Mason et al., 2019). We have expanded the materials and methods section to describe the source and characterization of these cells.

      The authors suggest that loss of YAP/TAZ phenocopies actinomycin-D inhibition - "both transcription inhibition and YAP/TAZ depletion impaired polarization, and induced robust ventral stress fiber formation and peripheral focal adhesion maturation". However, the cell size of actinomycin-D treated cells (Fig. 1B, top right panel), differs from the endothelial cell size upon siYAP/TAZ (Fig. 1E, top right panel) - and vinculin staining seems more pronounced in actinomycin-D treated cells (B, bottom right) when compared to siYAP/TAZ group. Cell shape is defined by acto-myosin tension.

      Q: Besides Fraction of focal adhesion >1um; focal adhesion number did the authors measure additional parameters related to cytoskeleton remodelling / focal adhesions that can substantiate their statement on similarity between loss of YAP/TAZ and actinomycin-D treatment. Would it be possible to make a more specific genetic intervention (besides YAP/TAZ) interfering with the focal adhesion pathway as opposed to the broad spectrum inhibitor actinomyocin-D.

      Our previous paper (Mason et al., 2019) delineated the mechanistic relationships between YAP/TAZ signaling, focal adhesion turnover, actomyosin polymerization, and the intervening mechanisms of myosin regulation. Specifically, we demonstrated that YAP/TAZ regulate the myosin phosphatase kinase, NUAK2, and ARHGAP genes to mediate this feedback. Expanding on this work, the current study aimed to define the temporal kinetics of the cytoskeletal mechanotransductive feedback in vitro and in vivo. We used actinomycin-D and YAP/TAZ depletion to interrogate the role of transcriptional regulation and YAP/TAZ signaling, respectively. In this revision, we have added RNA profiling that identifies early YAP/TAZ-regulated transcriptional changes and further points to other molecular mediators of focal adhesions (e.g. TRIO, RHOB, THBS1) that will be the subjects of future studies.    

      Q: Does the actinomycin-D treatment affect responsiveness to Vegf? induce apoptosis or reduce survival of the ECFC?

      We have not looked specifically at the effect of actinomycin-D treatment on responsiveness to VEGF. However, actinomycin-D has been reported to reduce transcription of VEGF receptors (E et al., 2012). In contrast, we found that YAP/TAZ depletion upregulated GO terms associated with endothelial cell migration and response to VEGF stimulus (Fig. 9B), as well as receptors to angiogenic growth factors, including KDR and FLT4 (Fig. 9E). These results suggest YAP/TAZ depleted cells may be more sensitive to VEGF stimulation but remain nonmotile due to cytoskeletal arrest.

      We showed previously that long-term treatment with actinomycin-D reduces ECFC survival (Mason et al., 2019).

      Q: Which mechanism links ECM stiffness with endothelial surface area in the authors scenario. In zebrafish, activity of endothelial guanine exchange factor Trio specifically at endothelial cell junctions (Klems, Nat Comms, 2020) and endoglin in response to hemodynamic factors (Siekmann, Nat Cell Biol 2017) have been show to control EC shape/surface area - do these factors play a role in the scenario proposed by the authors.

      Our new transcriptional profiling indicates both Trio and endoglin are regulated through YAP and TAZ in human ECFCs. We plan to follow up on these findings.

      Q: The authors report that EC migrate faster on stiff substrate, and concomitantly these cells have a larger surface area. What is the physiological rationale behind these observations. Did the authors observe such behaviors in their zebrafish ISV model? How do these observations integrate with the tip - stalk cell shuffling model (Jakobsson & Gerhardt, Nat Cell Biol, 2011) and Notch activity in developing ISVs.

      This question raises important distinctions between the mode of migration in ISV morphogenesis and endothelial cells adherent to substrates. Cells behave and respond to mechanical cues differently in 2D vs. 3D matrices. (LaValley and Reinhart-King, 2014) Additionally, the microenvironment in vivo is much more complex, combining numerous biochemical signals and changing mechanical properties. (Whisler et al., 2023) We are actively investigating the downstream targets of YAP/TAZ mechanotransduction and how that integrates with other pathways known to regulate vascular morphogenesis, such as Notch signaling. 

      The authors examined the formation of arterial intersegmental vessels in the trunk of developing zebrafish embryos in vivo. They used a variety of pharmacological inhibitors of transcription and acto-myosin remodelling and linked the observed morphological changes in ISV morphogenesis with changes in endothelial cell motility.

      Q: Reduced formation and dorsal extension of ISVs may have several reasons, including reduced EC migration and proliferation. The Tg(fl i1a:EGFP) reporter however is not the most suitable line to monitor migration of individual endothelial cells. Can the authors repeat the experiments in Tg(fl i1a:nEGFP); Tg(kdrl:HRAS-mCherry) double transgenics to visualize movement-migration of the individual endothelial cells and EC proliferation events, in the different treatment regimes.

      So far, we have not tracked individual endothelial cells during ISV morphogenesis. We agree this is the best approach and are pursuing a similar technique for these experiments.

      ISV formation is furthermore affected by Notch signalling status and a series of (repulsive) guidance cues.

      Q: Does de novo blockade of gene expression with Actinomycin D affect Notch signalling status, expression of PlexinD - sFlt1, netrin1 or arterial-venous identify genes.

      While we have not performed gene expression analysis under the Actinomycin D condition, Actinomycin D functions as a broad transcription inhibitor. We are currently pursuing the downstream targets of YAP/TAZ mechanotransduction in both ECFCs and zebrafish.

      Remark: The authors may want to consider using the Tg(fl i1:LIFEACT-GFP) reporter for in vivo imaging of actin remodelling events.

      We thank the reviewer for their helpful suggestion.

      Remark: the authors report "As with broad transcription inhibition, in situ depletion of YAP and TAZ by RNAi arrested cell motility, illustrated here by live-migration sparklines over 10 hours: siControl: , siYAP/TAZ: (25 μm scale-bar: -)". Can the authors make a separate figure panel for this, how many cells were measured?

      Please refer to our previous publication for the complete details on this data (Mason et al., 2019). We have added the citation in the text.

      Remark: in the wash-out experiments, exposure to the inhibitors is not the same in the different scenarios - could it be that the longer exposure time induces "toxic" side effect that cannot be "washed out" when compared to the short treatment regimes?

      This is a possible limitation of the pharmacological approach and have included it in the discussion section. We are currently exploring alternative approaches to interrogate the timescale of the feedback loop more precisely.  

      References

      Berlew EE, Kuznetsov IA, Yamada K, Bugaj LJ, Boerckel JD, Chow BY. 2021. Single-Component Optogenetic Tools for Inducible RhoA GTPase Signaling. Advanced Biology 5:2100810. doi:10.1002/adbi.202100810

      Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J,Forcato M, Bicciato S, Elvassore N, Piccolo S. 2011. Role of YAP/TAZ in mechanotransduction. Nature 474:179–183. doi:10.1038/nature10137

      E G, Cao Y, Bhattacharya S, Dutta S, Wang E, Mukhopadhyay D. 2012. Endogenous Vascular Endothelial Growth Factor-A (VEGF-A) Maintains Endothelial Cell Homeostasis by Regulating VEGF Receptor-2 Transcription. J Biol Chem 287:3029–3041. doi:10.1074/jbc.M111.293985

      Ellertsdóttir E, Lenard A, Blum Y, Krudewig A, Herwig L, Affolter M, Belting H-G. 2010. Vascular morphogenesis in the zebrafish embryo. Developmental Biology, Special Section: Morphogenesis 341:56–65. doi:10.1016/j.ydbio.2009.10.035

      Franklin JM, Ghosh RP, Shi Q, Reddick MP, Liphardt JT. 2020. Concerted localization-resets precede YAP-dependent transcription. Nat Commun 11:4581. doi:10.1038/s41467-02018368-x

      Jones DL, Hallström GF, Jiang X, Locke RC, Evans MK, Bonnevie ED, Srikumar A, Leahy TP, Nijsure MP, Boerckel JD, Mauck RL, Dyment NA. 2023. Mechanoepigenetic regulation of extracellular matrix homeostasis via Yap and Taz. Proceedings of the National Academy of Sciences 120:e2211947120. doi:10.1073/pnas.2211947120

      LaValley DJ, Reinhart-King CA. 2014. Matrix stiffening in the formation of blood vessels. Advances in Regenerative Biology 1:25247. doi:10.3402/arb.v1.25247

      Lee H-W, Shin JH, Simons M. 2022. Flow goes forward and cells step backward: endothelial migration. Exp Mol Med 54:711–719. doi:10.1038/s12276-022-00785-1

      Lee H-W, Xu Y, He L, Choi W, Gonzalez D, Jin S-W, Simons M. 2021. Role of Venous Endothelial Cells in Developmental and Pathologic Angiogenesis. Circulation 144:1308–1322. doi:10.1161/CIRCULATIONAHA.121.054071

      Mason DE, Collins JM, Dawahare JH, Nguyen TD, Lin Y, Voytik-Harbin SL, Zorlutuna P, Yoder MC, Boerckel JD. 2019. YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. Journal of Cell Biology 218:1369–1389. doi:10.1083/jcb.201806065

      Plouffe SW, Lin KC, Moore JL, Tan FE, Ma S, Ye Z, Qiu Y, Ren B, Guan K-L. 2018. The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell. J Biol Chem 293:11230–11240. doi:10.1074/jbc.RA118.002715

      Price CC, Mathur J, Boerckel JD, Pathak A, Shenoy VB. 2021. Dynamic self-reinforcement of gene expression determines acquisition of cellular mechanical memory. Biophysical Journal 120:5074–5089. doi:10.1016/j.bpj.2021.10.006

      Rapp BM, Saadatzedeh MR, Ofstein RH, Bhavsar JR, Tempel ZS, Moreno O, Morone P, Booth DA, Traktuev DO, Dalsing MC, Ingram DA, Yoder MC, March KL, Murphy MP. 2011. Resident Endothelial Progenitor Cells From Human Placenta Have Greater Vasculogenic Potential Than Circulating Endothelial Progenitor Cells From Umbilical Cord Blood. Cell Med 2:85–96. doi:10.3727/215517911X617888

      Tammela T, Zarkada G, Nurmi H, Jakobsson L, Heinolainen K, Tvorogov D, Zheng W, Franco CA, Murtomäki A, Aranda E, Miura N, Ylä-Herttuala S, Fruttiger M, Mäkinen T, Eichmann A, Pollard JW, Gerhardt H, Alitalo K. 2011. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol 13:1202–1213. doi:10.1038/ncb2331

      van der Stoel M, Schimmel L, Nawaz K, van Stalborch A-M, de Haan A, Klaus-Bergmann A, Valent ET, Koenis DS, van Nieuw Amerongen GP, de Vries CJ, de Waard V, Gloerich M, van Buul JD, Huveneers S. 2020. DLC1 is a direct target of activated YAP/TAZ that drives collective migration and sprouting angiogenesis. Journal of Cell Science 133:jcs239947. doi:10.1242/jcs.239947

      van Geemen D, Smeets MWJ, van Stalborch A-MD, Woerdeman LAE, Daemen MJAP, Hordijk PL, Huveneers S. 2014. F-Actin–Anchored Focal Adhesions Distinguish Endothelial Phenotypes of Human Arteries and Veins. Arteriosclerosis, Thrombosis, and Vascular Biology 34:2059–2067. doi:10.1161/ATVBAHA.114.304180

      Whisler J, Shahreza S, Schlegelmilch K, Ege N, Javanmardi Y, Malandrino A, Agrawal A, Fantin A, Serwinski B, Azizgolshani H, Park C, Shone V, Demuren OO, Del Rosario A, Butty VL, Holroyd N, Domart M-C, Hooper S, Szita N, Boyer LA, Walker-Samuel S, Djordjevic B, Sheridan GK, Collinson L, Calvo F, Ruhrberg C, Sahai E, Kamm R, Moeendarbary E. 2023. Emergent mechanical control of vascular morphogenesis. Science Advances 9:eadg9781. doi:10.1126/sciadv.adg9781

      Xu C, Hasan SS, Schmidt I, Rocha SF, Pitulescu ME, Bussmann J, Meyen D, Raz E, Adams RH, Siekmann AF. 2014. Arteries are formed by vein-derived endothelial tip cells. Nat Commun 5:5758. doi:10.1038/ncomms6758

    2. eLife assessment

      This valuable manuscript delineates the role of YAP/TAZ-dependent transcriptional suppression in a mechanodransductive feedback loop. The evidence presented in the manuscript is generally solid. However, compared to an earlier version, some concerns remain. In particular, the in vivo validation should be strengthened, and the in vitro and in vivo models used in this work should be carefully compared in order to improve the main message of the manuscript.

    3. Reviewer #1 (Public Review):

      This manuscript puts forward the concept that there is a specific time window during which YAP/TAZ driven transcription provides feedback for optimal endothelial cell adhesion, cytoskeletal organization and migration. The study follows up on previous elegant findings from this group and others which established the importance of YAP/TAZ-mediated transcription for persistent endothelial cell migration. The data presented here extends the concept at two levels: first, the data may explain why there are differences between experimental setups where YAP/TAZ activity are inhibited for prolonged times (e.g. cultures of YAP knockdown cells), versus experiments in which the transient inhibition of YAP/TAZ and (global) transcription affects endothelial cell dynamics prior to their equilibrium.

      All experiments are convincing, clearly visualized and quantified.

      The strength of the paper is that it clearly indicates that there are temporal controlled feedback systems which which is important for endothelial collective cell behavior.

      A limitation of the study is that the inhibitory studies in vivo may include off-target effects as well. Future endeavors, including specific knockout models, optogenetics and/or transgenic zebrafish lines that visualize endothelial cell properties (proliferation and migration) will be informative to track individual endothelial cell responses upon feedback signals.

    4. Reviewer #2 (Public Review):

      Summary:

      Here the effect of overall transcription blockade, and then specifically depletion of YAP/TAZ transcription factors was tested on cytoskeletal responses, starting from a previous paper showing YAP/TAZ-mediated effects on the cytoskeleton and cell behaviors. Here, primary endothelial cells were assessed on substrates of different stiffness and parameters such as migration, cell spreading, and focal adhesion number/length were tested upon transcriptional manipulation. Zebrafish subjected to similar manipulations were also assessed during the phase of intersegmental vessel elongation. The conclusion was that there is a feedback loop of 4 hours that is important for the effects of mechanical changes to be translated into transcriptional changes that then permanently affect the cytoskeleton.

      The idea is intriguing and a previous paper contains data supporting the overall model. The fish washout data is quite interesting and supports the kinetics conclusions. New transcriptional profiling in this version supports that cytoskeletal genes are differentially regulated with YAP/TAZ manipulations.

      Major strengths: The combination of in vitro and in vivo assessment provides evidence for timing in physiologically relevant contexts, and rigorous quantification of outputs is provided. The idea of defining temporal aspects of the system is quite interesting. New RNA profiling supports the model.

      Weaknesses:

      Actinomycin D blocks most transcription so exposure for hours likely leads to secondary and tertiary effects and perhaps effects on viability.

    5. Reviewer #4 (Public Review):

      Summary:

      Mason DE et al. have extended their previous study on continuous migration of cells regulated by a feedback loop that controls gene expression by YAP and TAZ. Time scale of the negative feedback loop is derived from the authors' adhesion-spreading-polarization-migration (ASPM) assay. Involvement of transcription-translation in the negative feedback loop is evidenced by the experiments using Actinomycin D. The time scale of mechanotransduction-dependent feedback demonstrated by cytoskeletal alteration in the actinomycin D-treated endothelial colony forming cells (ECFCs) and that shown in the ECFCs depleted of YAP/TAZ by siRNA. The authors examine the time scale when ECFCs are attached to MeHA matrics (soft, moderate, and stiff substrate) and show the conserved time scale among the conditions they use, although instantaneous migration, cell area, and circularity vary. Finally, they tried to confirm that the time scale of the feedback loop-dependent endothelial migration by the effect of washout of Actinomycin D (inhibition of gene transcription), Puromycin (translational inhibition), and Verteporfin (YAP/TAZ inhibitor) on ISV extension during sprouting angiogenesis. They conclude that endothelial motility required for vascular morphogenesis is regulated by mechanotransduction-mediated feedback loop that is dependent on YAP/TAZ-dependent transcriptional regulation.

      Strengths:

      The authors conduct ASPM assay to find the time scale of feedback when ECFCs attach to three different matrics. They observe the common time scale of feedback. Thus, under very specific conditions they use, the reproducibility is validated by their ASPM assay. The feedback loop mediated by inhibition of gene expression by Actinomycin D is similar to that obtained from YAP/TAZ-depleted cells, suggesting the mechanotranduction might be involved in the feedback loop. The time scale representing infection point might be interesting when considering the continuous motility in cultured endothelial cells, although it might not account for the migration of endothelial cells that is controlled by a wide variety of extracellular cues. In vivo, stiffness of extracellular matrix is merely one of the cues.

      Weaknesses:

      ASPM assay is based on attachment-dependent phenomenon. The time scale including the inflection point determined by ASPM experiments using cultured cells and the mechanotransduction-based theory do not seem to fit in vivo ISV elongation. Although it is challenging to find the conserved theory of continuous cell motility of endothelial cells, the data is preliminary and does not support the authors' claim. There is no evidence that mechanotransduction solely determines the feedback loop during elongation of ISVs. The points to be addressed are listed in recommendations for the authors.

    1. Reviewer #3 (Public Review):

      Summary:

      In Okholm et al., the authors evaluate the functional impact of circHIPK3 in bladder cancer cells. By knocking it down and performing an RNA-seq analysis, the authors found a thousand deregulated genes which look unaffected by miRNAs sponging function and that are, instead, enriched for a 11-mer motif. Further investigations showed that the 11-mer motif is shared with the circHIPK3 and able to bind the IGF2BP2 protein. The authors validated the binding of IGF2BP2 and demonstrated that IGF2BP2 KD antagonizes the effect of circHIPK3 KD and leads to the upregulation of genes containing the 11-mer. Among the genes affected by circHIPK3 KD and IGF2BP2 KD, resulting in downregulation and upregulation respectively, the authors found STAT3 gene which also consistently leads to the concomitant upregulation of one of its targets TP53. The authors propose a mechanism of competition between circHIPK3 and IGF2BP2 triggered by IGF2BP2 nucleation, potentially via phase separation.

      Strengths:

      The number of circRNAs continues to drastically grow however the field lacks detailed molecular investigations. The presented work critically addresses some of the major pitfalls in the field of circRNAs and there has been a careful analysis of aspects frequently poorly investigated. The time-point KD followed by RNA-seq, investigation of miRNAs-sponge function of circHIPK3, identification of 11-mer motif, identification and validation of IGF2BP2, and the analysis of copy number ratio between circHIPK3 and IGF2BP2 in assessing the potential ceRNA mode of action has been extensively explored and, comprehensively convincing.

      Weaknesses:

      The authors addressed the majority of the weak points raised initially. However, the role played by the circHIPK3 in cancer remains elusive and not elucidated in full in this study.

      Overall, the presented study surely adds some further knowledge in describing circHIPK3 function, its capability to regulate some downstream genes, and its interaction and competition for IGF2BP2. However, whereas the experimental part sounds technically logical, it remains unclear the overall goal of this study and the achieved final conclusions.

      This study is a promising step forward in the comprehension of the functional role of circHIPK3. These data could possibly help to better understand the circHIPK3 role in cancer.

    2. eLife assessment

      This work explores the role of one the most abundant circRNAs, circHIPK3, in bladder cancer cells, showing with convincing data that circHIPK3 depletion affects thousands of genes and that those downregulated (including STAT3) share an 11-mer motif with circHIPK3, corresponding to a binding site for IGF2BP2. The experiments demonstrate that circHIPK3 can compete with the downregulated mRNAs targets for IGF2BP2 binding and that IGF2BP2 depletion antagonizes the effect of circHIPK3 depletion by upregulating the genes containing the 11-mer. These important findings contribute to the growing recognition of the complexity of cancer signaling regulation and highlight the intricate interplay between circRNAs and protein-coding genes in tumorigenesis.

    3. Reviewer #1 (Public Review):

      In this work the authors propose a new regulatory role for one of the most abundant circRNAs, circHIPK3. They demonstrate that circHIPK3 interacts with an RNA binding protein (IGF2BP2), sequestering it away from its target mRNAs. This interaction is shown to regulate the expression of hundreds of genes that share a specific sequence motif (11-mer motif) in their untranslated regions (3'-UTR), identical to one present in circHIPK3 where IGF2BP2 binds. The study further focuses on the specific case of STAT3 gene, whose mRNA product is found to be downregulated upon circHIPK3 depletion. This suggests that circHIPK3 sequesters IGF2BP2, preventing it from binding to and destabilizing STAT3 mRNA. The study presents evidence supporting this mechanism and discusses its potential role in tumor cell progression. These findings contribute to the growing complexity of understanding cancer regulation and highlight the intricate interplay between circRNAs and protein-coding genes in tumorigenesis.

      Strengths:

      The authors show mechanistic insight into a proposed novel "sponging" function of circHIPK3 which is not mediated by sequestering miRNAs but rather a specific RNA binding protein (IGF2BP2). They address the stoichiometry of the molecules involved in the interaction, which is a critical aspect that is frequently overlooked in this type of study. They provide both genome-wide analysis and a specific case (STAT3) which is relevant for cancer progression. Overall, the authors have significantly improved their manuscript in their revised version.

      Weaknesses:

      There are seemingly contradictory effects of circHIPK3 and STAT3 depletion in cancer progression. However, the authors have addressed these issues in their revised manuscript, incorporating potential reasons that might explain such complexity.

    4. Reviewer #2 (Public Review):

      The manuscript by Okholm and colleagues identified an interesting new instance of ceRNA involving a circular RNA. The data are clearly presented and support the conclusions. Quantification of the copy number of circRNA and quantification of the protein were performed, and this is important to support the ceRNA mechanism.

      This is the second rebuttal and the authors further improved the manuscript. The data are of interest to the large spectrum of readers of the journal.

      Comments on revision:

      The authors explain that they have compared primer efficiencies of two linear Laccase version amplicons and their divergent primers targeting circHIPK3 using amplification standard curves (not shown). They claim that all amplicons were found to be directly comparable, ensuring that their estimation of cirRNA:lineal ratio estimation by RT-qPCR was accurate. I agree that this is not a technically trivial experiment. However, for this measurement to be valid, it is not enough to compare the efficiencies of primers using cDNA/DNA standard curves in the context of the qPCR reaction alone. Instead, one should perform the full RT-qPCR tandem reactions in the context of standard curves of the specific RNAs (for example, obtained by in vitro synthesis). RNA absolute amounts in these standard curves should be known in order to compare the different RNA species (linear or circular).

      I do not have major concerns about this issue.

    5. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Recommendations For The Authors): 

      Major points about revised manuscript 

      (1) While I acknowledge that the Laccase2 vector is probably the best available in terms of its clean circRNA-expression potential, the authors still lack an estimation of the circRNA overexpression efficiency, specifically the circular-to-linear expression ratio. In their second rebuttal letter, the authors argue that they do not have the option to use another probe and that they are limited by the Backsplicing junction (BSJ)-specific one. I assume they mean that such a probe might only partially hybridize with the linear form and therefore give a poor or no signal in the Northern blot. However, in this referee's opinion, it is precisely because of this limitation that the authors should have used another probe against both the linear and circular RNAs to simultaneously and quantitatively detect both isoforms. This would have allowed them to reliably estimate a circular-to-linear ratio. Perhaps the linear isoform is indeed not expressed or is very low for this circRNA overexpression vector, but the probe used by the authors does not prove it. I think that this addition to the manuscript is not strictly necessary at this stage, but it would certainly improve the results.  

      We fully agree with this recommendation. Our efforts to show this using northern blotting was unfortunately unsuccesful due to background signal. To accommodate the question about circ-to-linear ratio, we instead used an RT-qPCR strategy to measure the linear vs circRNA expression derived from the LaccasecircHIPK3 expression constructs/cell lines. To be able to compare obtained results from different amplicons, we measured primer efficiencies (using amplification standard curves – not shown) of two linear Laccase version amplicons and our divergent primers targeting circHIPK3, which were found to be directly comparable. Using these primer sets in RT-qPCR on the same RNA preparation (total cellular RNA) from the northern blot (Supplementary figure S5H) revealed a ~4 fold higher expression of circHIPK3 compared to linear precursor RNA (Supplementary Figure S5I). 

      This demonstrates that the Laccase vector system efficiently produces circHIPK3 RNA as expected. 

      The few changes to the manuscript (results section text and reference to Supplementary Figure S5I) has been highlighted in yellow. The materials and methods section and Table S1 have been modified to include description of RTqPCR and specific primers.

    1. Reviewer #1 (Public Review):

      Plasticity in the basolateral amygdala (BLA) is thought to underlie the formation of associative memories between neutral and aversive stimuli, i.e. fear memory. Concomitantly, fear learning modifies the expression of BLA theta rhythms, which may be supported by local interneurons. Several of these interneuron subtypes, PV+, SOM+, and VIP+, have been implicated in the acquisition of fear memory. However, it was unclear how they might act synergistically to produce BLA rhythms that structure the spiking of principal neurons so as to promote plasticity. Cattani et al. explored this question using small network models of biophysically detailed interneurons and principal neurons.

      Using this approach, the authors had four principal findings:<br /> (1) Intrinsic conductances in VIP+ interneurons generate a slow theta rhythm that periodically inhibits PV+ and SOM+ interneurons, while disinhibiting principal neurons.<br /> (2) A gamma rhythm arising from the interaction between PV+ and principal neurons establishes the precise timing needed for spike-timing-dependent plasticity.<br /> (3) Removal of any of the interneuron subtypes abolishes conditioning-related plasticity.<br /> (4) Learning-related changes in principal cell connectivity enhance the expression of slow theta in the local field potential.

      The strength of this work is that it explores the role of multiple interneuron subtypes in the formation of associative plasticity in the basolateral amygdala. The authors use biophysically detailed cell models that capture many of their core electrophysiological features, which helps translate their results into concrete hypotheses that can be tested in vivo. Moreover, they try to align the connectivity and afferent drive of their model with those found experimentally. However, the weakness is that their attempt to align with the experimental literature (specifically Krabbe et al. 2019) is performed inconsistently. Some connections between cell types were excluded without adequate justification (e.g. SOM+ to PV+). In addition, the construction of the afferent drive to the network does not reflect the stimulus presentations that are given in fear conditioning tasks. For instance, the authors only used a single training trial, the conditioning stimulus was tonic instead of pulsed, the unconditioned stimulus duration was artificially extended in time, and its delivery overlapped with the neutral stimulus, instead of following its offset. These deviations undercut the applicability of their findings.

      This study partly achieves its aim of understanding how networks of biophysically distinctive interneurons interact to generate nested rhythms that coordinate the spiking of principal neurons. What still remains to demonstrate is that this promotes plasticity for training protocols that emulate what is used in studies of fear conditioning.

      Setting aside the issues with the conditioning protocol, the study offers a model for the generation of multiple rhythms in the BLA that is ripe for experimental testing. The most promising avenue would be in vivo experiments testing the role of local VIP+ neurons in the generation of slow theta. That would go a long way to resolving whether BLA theta is locally generated or inherited from medial prefrontal cortex or ventral hippocampus afferents.

      The broader importance of this work is that it illustrates that we must examine the function of neurons not just in terms of their behavioral correlates, but by their effects on the microcircuit they are embedded within. No one cell type is instrumental in producing fear learning in the BLA. Each contributes to the orchestration of network activity to produce plasticity. Moreover, this study reinforces a growing literature highlighting the crucial role of theta and gamma rhythms in BLA function.

    2. Reviewer #2 (Public Review):

      The authors of this study have investigated how oscillations may promote fear learning using a network model. They distinguished three types of rhythmic activities and implemented an STDP rule to the network aiming to understand the mechanisms underlying fear learning in the BLA. My comments are the following.

      (1) Gamma oscillations are generated locally; thus, it is appropriate to model in any cortical structure. However, the generation of theta rhythms is based on the interplay of many brain areas therefore local circuits may not be sufficient to model these oscillations. Moreover, to generate the classical theta, a laminal structure arrangement is needed (where neurons form layers like in the hippocampus and cortex)(Buzsaki, 2002), which is clearly not present in the BLA. To date, I am not aware of any study which has demonstrated that theta is generated in the BLA. All studies that recorded theta in the BLA performed the recordings referenced to a ground electrode far away from the BLA, an approach that can easily pick up volume conducted theta rhythm generated e.g., in the hippocampus or other layered cortical structure. To clarify whether theta rhythm can be generated locally, one should have conducted recordings referenced to a local channel (see Lalla et al., 2017 eNeuro). In summary, at present, there is no evidence that theta can be generated locally within the BLA. Though, there can be BLA neurons, firing of which shows theta rhythmicity, e.g., driven by hippocampal afferents at theta rhythm, this does not mean that theta rhythm per se can be generated within the BLA as the structure of the BLA does not support generation of rhythmic current dipoles. This questions the rationale of using theta as a proxy for BLA network function which does not necessarily reflect the population activity of local principal neurons in contrast to that seen in the hippocampus.

      (2) The authors distinguished low and high theta. This may be misleading, as the low theta they refer to is basically a respiratory-driven rhythm typically present during an attentive state (Karalis and Sirota, 2022; Bagur et al., 2021, etc.). Thus, it would be more appropriate to use breathing-driven oscillations instead of low theta. Again, this rhythm is not generated by the BLA circuits, but by volume conducted into this region. Yet, the firing of BLA neurons can still be entrained by this oscillation. I think it is important to emphasize the difference.

      (3) The authors implemented three interneuron types in their model, ignoring a large fraction of GABAergic cells present in the BLA (Vereczki et al., 2021). Recently, the microcircuit organization of the BLA has been more thoroughly uncovered, including connectivity details for PV interneurons, firing features of neurochemically identified interneurons (instead of mRNA expression-based identification, Sosulina et al., 2010), synaptic properties between distinct interneuron types as well as principal cells and interneurons using paired recordings. These recent findings would be vital to incorporate into the model instead of using results obtained in the hippocampus and neocortex. I am not sure that a realistic model can be achieved by excluding many interneuron types.

      (4) The authors set the reversal potential of GABA-A receptor-mediated currents to -80 mV. What was the rationale for choosing this value? The reversal potential of IPSCs has been found to be -54 mV in fast-spiking (i.e., parvalbumin) interneurons and around -72 mV in principal cells (Martina et al., 2001, Veres et al., 2017).

      (5) Proposing neuropeptide VIP as a key factor for learning is interesting. Though, it is not clear why this peptide is more important in fear learning in comparison to SST and CCK, which are also abundant in the BLA and can effectively regulate the circuit operation in cortical areas.

  2. Jun 2024
    1. eLife assessment

      This work is an important contribution to the development of a biologically plausible theory of statistical modeling of spiking activity. The authors convincingly implemented the statistical inference of input likelihood in a simple neural circuit, demonstrating the relationship between synaptic homeostasis, neural representations, and computational accuracy. This work will be of interest to neuroscientists, both theoretical and experimental, who are exploring how statistical computation is implemented in neural networks. There are questions about the performance of the methods in the case where other biologically significant parameters, such as firing rate and thresholds, are optimized together with the synaptic weights.

    1. eLife assessment

      This study provides valuable new insights into how multisensory information is processed in the lateral cortex of the inferior colliculus, a poorly understood part of the auditory midbrain. By developing new imaging techniques that provide the first optical access to the lateral cortex in a living animal, the authors provide convincing in vivo evidence that this region contains separate subregions that can be distinguished by their sensory inputs and neurochemical profiles, as suggested by previous anatomical and in vitro studies. This work provides a foundation for future research exploring how this part of the auditory midbrain contributes to multisensory-based behavior.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Joint Public Review:

      Xie et al. propose that the asymmetric segregation of the NuRD complex is regulated in a V-ATPase-dependent manner, and plays a crucial role in determining the differential expression of the apoptosis activator egl-1 and thus critical for the life/death fate decision.

      Remaining concerns are the following:

      The authors should provide the point-by-point response to the following issues. In particular, authors should provide clear reasoning as to why they did not address some of the following comments in the previous revisions. The next response should be directly answering to the following concerns.

      (1) Discussion should be added regarding the criticism that NuRD asymmetric segregation is simply a result of daughter cell size asymmetry. It is perfectly fine that the NuRD asymmetry is due to the daughter cell size difference (still the nucleus within the bigger daughter would have more NuRD, which can determine the fate of daughter cells). Once the authors add this clarification, some criticisms about 'control' may become irrelevant.

      We thank the reviewer for this suggestion. We will add the following text in the revised discussion on page 14, line 26:

      “…We cannot rule out the possibility that NuRD asymmetric segregation results from daughter cell size asymmetry. According to this perspective, the nucleus in the larger daughter cell could possess more NuRD, potentially influencing the fate of the daughter cells. However, it is important to note that the nuclear protein histone or the MYST family histone acetyltransferase is equally segregated in daughter cells of different sizes.….”

      (2) ZEN-4 is a kinesin that predominantly associates with the midzone microtubules and a midbody during mitosis. Given that midbodies can be asymmetrically inherited during cell division, ZEN-4 is not a good control for monitoring the inheritance of cytoplasmic proteins during asymmetric cell division. Other control proteins, such as a transcriptional factor that predominantly localizes in the cytoplasm during mitosis and enters into nucleus during interphase, are needed to clarify the concern.

      We clarified the issue of ZEN-4 below:

      The critique assumes that "midbodies can be asymmetrically inherited during cell division." However, this assumption does not apply to our study of Q cell asymmetric divisions. In our earlier research, we demonstrated that midbodies in Q cells are released post-division and subsequently engulfed by surrounding epithelial cells (Chai et al., Journal of Cell Biology, 2012). Moreover, we have shown that midbodies from the first cell division in C. elegans embryos are also released and engulfed by the P1 cell (Ou et al., Cell Research, 2013). Therefore, the notion of midbody asymmetric inheritance is irrelevant to this manuscript. Additionally, our manuscript already presents the example of the MYST family histone acetyltransferase, illustrating a nuclear protein that predominantly localizes in the cytoplasm during mitosis and symmetrically enters the nucleus during interphase.

      As for pHluorin experiments, symmetric inheritance of GFP and mCherry is not an appropriate evidence to estimate the level of pHluorin during asymmmetric Q cell division. This issue remains unsolved.

      We acknowledge the limitation of pHluorin in measuring the pH level in a living cell. Future studies could be performed to measure the dynamics of pH levels when advanced tools are available.

      (3) Q-Q plot (quantile-quantile plot) in Figure S10 can be used for visually checking normality of the data, but it does not guarantee that the distribution of each sample is normal and has the standard deviation compared with the other samples. I recommend the authors to show the actual statistical comparison P-values for each case. The authors also need to show the number of replicate experiments for each figure panel.

      We thank the reviewer for pointing this out. We will provide P-values for each case and the number of replicate experiments in the revised Figure 5-figure supplement 1 ( corresponding to Figure S10) and the figure legend.

      The authors left inappropriate graphs in the revised manuscript. In Figure 3E, some error bars are disconnected and the other are stuck in the bars. In Figure S4C, LIN-53 in QR.a/p graph shows lines disconnected from error bars.

      We thank the reviewer for pointing this out. We will correct these error bars.

      I am bit confused with the error bars in Figure 2B. Each dot represents a fluorescent intensity ratio of either HDA-1 or LIN-53 between the two daughter cells in a single animal. Plots are shown with mean and SEM, but several samples (for example, the left end) exhibit the SEM error bar very close to a range of min and max. I might misunderstand this graph but am concerned that Figure 2B may contain some errors in representing these data sets. I would like to ask the authors to provide all values in a table format so that the reviewers could verify the statistical tests and graph representation.

      We thank the reviewer for pointing this out. We apologize for the typo in Figure 2B figure legend. We will correct SEM to SD.

      (4) The authors still do not provide evidence that the increase in sAnxV::GFP and Pegl-1gfp or the increase in H3K27ac at the egl-1 gene in hda-1(RNAi) and lin-53(RNAi) animals is not a consequence of global effects on development. Indeed, the images provided in Figure S7B demonstrate that there are global effects in these animals. no causal interactions have been demonstrated.

      We cannot exclude the global effects and have discussed this issue in our previous manuscript on page 9, line 26:

      “...Considering the pleiotropic phenotypes caused by loss of HDA-1, we cannot exclude the possibility that ectopic cell death might result from global changes in development, even though HDA-1 may directly contribute to the life-versus-death fate determination.”

      (5) Figure 4: Due to the lack of appropriate controls for the co-IP experiment (Fig. 4), I remain unconvinced of the claim that the NuRD complex and V-ATPase specifically interact. Concerning the co-IP, the authors now mention that the co-IP was performed three times: "Assay was performed using three biological replicates. Three independent biological replicates of the experiment were conducted with similar results." However, the authors did not use ACT-4::GFP or GFP alone as controls for their co-IP as previously suggested. This is critical considering that the evidence for a specific HDA-1::GFP - V-ATPase interaction is rather weak (compare interactions between HDA-1::GFP and V-ATPase subunits in Fig 4B with those of HDA-1::GFP and subunits of NuRD in Fig S8B).

      We conducted GFP pull-down experiments and MS spectrometric analysis for HDA-::GFP and ACT-4::GFP using identical protocols, yielding consistent results. We agree with the reviewer that in our Western blot, inclusion of ACT-4::GFP is a more effective negative control compared to empty beads.

      (6) Based on Fig 5E, it appears that Bafilomycin treatment causes pleiotropic effects on animals (see differences in HDA-1::GFP signal in the three rows). The authors now state: "Although BafA1-mediated disruption of lysosomal pH homeostasis is recognized to elicit a wide array of intracellular abnormalities, we found no evidence of such pleiotropic effects at the organismal level with the dosage and duration of treatment employed in this study". However, the 'evidence' mentioned is not shown. It is critical that the authors provide this evidence.

      We thank the Reviewer for pointing out this issue. We only checked the viability of the L1 larvae and morphology of animals at the organismal level with the BafA1 dosage and duration of treatment and did not notice any death of the animals and apparent abnormality in morphology (N > 20 for each treatment). However, as the reviewer pointed out, there can be some abnormalities at the cellular level. We thus revised this above description as the following, on page 11, line 27:

      “…Although BafA1-mediated disruption of lysosomal pH homeostasis is recognized to elicit a wide array of intracellular abnormalities, we did not observe any larval deaths and apparent abnormality in morphology at the organismal level (N > 20 for each treatment) at the dose and duration of treatment employed in this study...”


      The following is the authors’ response to the previous reviews.

      eLife assessment

      The authors propose that the asymmetric segregation of the NuRD complex in C. elegans is regulated in a V-ATPase-dependent manner, that this plays a crucial role in determining the differential expression of the apoptosis activator egl-1, and that it is therefore critical for the life/death fate decision in this species. If proven, the proposed model of the V-ATPase-NuRD-EGL-1-Apoptosis cascade would shed light onto the mechanisms underlying the regulation of apoptosis fate during asymmetric cell division, and stimulate further investigation into the intricate interplay between V-ATPase, NuRD, and epigenetic modifications. However, the strength of evidence for this is currently incomplete.

      Public Review:

      Xie et al. propose that the asymmetric segregation of the NuRD complex is regulated in a V-ATPase-dependent manner, and plays a crucial role in determining the differential expression of the apoptosis activator egl-1 and thus critical for the life/death fate decision.

      While the model is very intriguing, the reviewers raised concerns regarding the rigor of the method. One issue is with statistics (either insufficient information or inadequate use of statistics), and second is the concern that the asymmetry observed may be caused by one cell dying (resulting in protein degradation, RNA degradation etc). We recommend that the authors address these issues.

      We extend our sincere thanks to the Editors and Reviewers for their insightful comments on this study.

      Major #1:

      There are still many misleading statements/conclusions that are not rigorously tested or that are logically flawed. These issues must be thoroughly addressed for this manuscript to be solid.

      (1) Asymmetry detected by scRNA seq vs. imaging may not represent the same phenomenon, thus should not be discussed as two supporting pieces of evidence for the authors' model, and importantly each method has its own flaw. First, for scRNA seq, when cells become already egl-1 positive, those cells may be already dying, and thus NuRD complex's transcripts' asymmetry may not have any significance. The data presented in FigS1D, E show that there are lots of genes (6487 out of 8624) that are decreased in dying cells. Thus, it is not convincing to claim that NuRD asymmetry is regulated by differential RNA amount.

      We agree with the reviewer's comment. Indeed, scRNA-seq reveals phenomena different from those observed in protein imaging, and NuRD asymmetry may not be regulated by differential RNA levels. Seven years ago, when we started this project, NuRD asymmetry during asymmetric neuroblast division was unknown. We first found NuRD mRNA asymmetry using scRNA-seq and then NuRD protein asymmetry using fluorescence imaging. We have documented the whole process of discovering NuRD asymmetry, although the asymmetry of NuRD complex transcripts does not necessarily imply protein asymmetry. We have revised statements related to "NuRD asymmetry being regulated by differential RNA amounts" and discussed this issue in the revised manuscript on page 14, line 2:

      " The transcript asymmetry detected by scRNA-seq may not correspond to the protein asymmetry detected by microscopic imaging. Our scRNA-seq data shows that 6487 out of 8624 genes were not detected in egl-1-positive cells, the putative apoptotic cells. Cells that are egl-1 positive may be undergoing apoptosis, rendering the asymmetry of NuRD complex transcripts insignificant in inferring protein asymmetry. Thus, the observed transcript asymmetry of the NuRD subunits between live and dead cells may be coincidental with NuRD protein asymmetry during asymmetric neuroblast division, rather than serving as a regulatory mechanism."

      (2) Regarding NuRD protein's asymmetry, there are still multiple issues. Most likely explanation of their asymmetry is purely daughter size asymmetry. Because one cell is much bigger than the other (3 times larger), NuRD components, which are not chromatin associated, would be inherited to the bigger cell 3 times more than the smaller daughter. Then, upon nuclear envelope reformation, NuRD components will enter the nucleus, and there will be 3 times more NuRD components in the bigger daughter cell. It is possible that this is actually the underling mechanism to regulate gene expression differentially, but this possibility is not properly acknowledged. Currently, the authors use chromatin associated protein (Mys-1) as 'symmetric control', but this is not necessarily a fair comparison. For NuRD asymmetry to be meaningful, an example of protein is needed that is non-chromatin associated in mitosis, distributed to daughter cells proportional to daughter cell size, and re-enter nucleus after nuclear envelope formation to show symmetric distribution. And if daughter size asymmetry is the cause of NuRD asymmetry, other lineages that do not undergo apoptosis but exhibit daughter size asymmetry would also show NuRD asymmetry. The authors should comment on this (if such examples exist, it is fine in that in those cell types, NuRD asymmetry may be used for differential gene expression, not necessarily to induce cell death, but such comparison provides the explanation for NuRD asymmetry, and puts the authors finding in a better context).

      For more than one decade, we have meticulously explored the relationship between protein asymmetry and cell size asymmetry during ACDs of Q cells. A notable example of even protein distribution is the cytokinetic kinesin ZEN-4, as documented in our 2012 publication in the Journal of Cell Biology (Chai et al., JCB, 2012). This study, primarily focusing on the fate of the midbody post-cell division, also showcased the dynamics of GFP-tagged ZEN-4 during ACDs of QR.a cells in movie S1. Intriguingly, beyond its role in the cytokinetic ring, we observed a uniform dispersal of ZEN-4 throughout the cytoplasm. Remarkably, following cell division, ZEN-4 transitions evenly into the nuclei of the daughter cells, a phenomenon with implications yet to be fully understood. One hypothesis is that ZEN-4's nuclear localization may prevent the formation of ectopic microtubule bundles in the cytosol during interphase. Below, we present a snapshot from our original movie, clearly showing the symmetrical distribution of ZEN-4 into the nuclei of the two daughter cells.

      (3) For the analysis of protein asymmetry between two daughters in Fig S4C, the method of calibration is unclear, making it difficult to interpret the results.

      In Figure S4C, we quantified the relative total fluorescence of the Q cell, with the quantification method illustrated in Figure S4A. To further clarify our quantification approach, we have updated Figure S4A and the "Live-Cell Imaging and Quantification" section in the Materials and Methods:

      “…To determine the ratios of fluorescence intensities in the posterior to anterior half (P/A) of Q.a lineages or A/P of Q.p lineages, the cell in the mean intensity projection was divided into posterior and anterior halves. ImageJ software was used to measure the mean fluorescence intensities of two halves with background subtraction. The slide background's mean fluorescence intensity was measured in a region devoid of worm bodies. The background-subtracted mean fluorescence intensities of the two halves were divided to calculate the ratio. The same procedure was used to determine the fluorescence intensity ratios between two daughter cells. Total fluorescence intensity was the sum of the posterior and anterior fluorescence intensities or the sum of fluorescence intensities from two daughter cells (Figure S4A). …”

      (4) As for pHluorin experiments, the authors were asked to test the changes in fluorescence observed are due to changes in pH or changes in the amount of pHluorin protein. They need to add a ratio-metric method in this manuscript. A brief mention to Page 12 line 12 is insufficient to clarify this issue.

      We appreciate the concerns about potential changes in pH or pHluorin protein levels. While we cannot completely dismiss the impact of changes in the amount of pHluorin protein, it appears improbable that the asymmetry of pHluorin fluorescence is attributed to an asymmetric amount of pHluorin protein. This inference is supported by the observation that other fluorescent proteins, such as GFP or mCherry, did not exhibit any asymmetry during ACDs of Q cells. An example of GFP alone during the ACD of QL.p is illustrated in figure 5A from Ou and Vale, JCB, 2009. The fluorescence intensities in the large QL.pa cell and the small QL.aa are indistinguishable.

      Major #2:

      Some issues surrounding statistics must be resolved.

      (1) Fig. 1FG, 2D, 3BDEG, 5BD and 6B used either one-sample t-test or unpaired two-tailed parametric t-test for statistical comparison. These t-tests require a verification of each sample fitting to a normal distribution. The authors need to describe a statistical test used to verify a normal distribution of each sample.

      (2) Fig. 2D, 3D, and 3G have very small sample size (N=3-4, N=6, N=3, respectively), it is possible that a normal distribution cannot be verified. How can the authors justify the use of one-sample t-test and unpaired parametric t-test ?

      (3) Statistical comparison in Fig. 2D and Fig. 6B should be re-assessed. For Fig. 2D, the authors need to compare the intensity ratio of HDA-1/LIN53 between sister cells dying within 35 min and those over 400 min. For Fig. 6B, they need to compare the intensity ratio of VHA-17 between DMSO- and BafA1- treated cells at the same time point after anaphase.

      We appreciate the reviewer's advice on the statistical analysis of our data. In response, we performed normality tests on the datasets presented in Figures 1F, 1G, 3B, 5B, 5D, and 6B, all of which passed the tests (as demonstrated in Figure S10). We also acknowledge the reviewer's comment on the inadequate sample sizes in Figures 2D, 3D, 3E, and 3G for fitting a normal distribution. Therefore, we have revised our statistical analysis methods for these figures and updated both the figures and their legends. The revised statistical results support the primary conclusions of this study.

      In response to the reviewer's observation regarding the small sample size in Figure 2D , which precluded normality verification, and the suggestion to compare sister cells that die within 35 minutes to those surviving over 400 minutes, we adapted our approach. We implemented the Kruskal-Wallis test to evaluate the differences among the groups. To assess the specific differences between each group and the 400 min MSpppaap group, we conducted the Dunn’s multiple comparisons test. The revised Figure 2D illustrates the updated statistical significance.

      For Figure 3D, due to the small sample size precluding normality verification, we applied the Wilcoxon test with 1 as the theoretical median. The revised Figure 3D illustrates the updated statistical significance.

      For Figure 3E, where the sample size also hindered normality verification, we conducted the Kruskal-Wallis test to evaluate the overall effect. Additionally, Dunn’s multiple comparisons test was utilized to examine the differences between groups. The revised Figure 3E illustrates the updated statistical significance.

      For Figure 3G, the reviewer pointed out the small sample size and the limited statistical power due to having only three data points per group. To address this, we revised the figure to visually present each data point, aiming to more clearly illustrate the variation trends.

      For Figure 6B, following the reviewer's suggestion, we compared the DMSO group directly with the Baf A1 group, updating Figure 6B to reflect this comparison as advised.

      These adjustments have been made to ensure the statistical analyses are robust and appropriate given the sample sizes and to align with the reviewer's recommendations, enhancing the clarity and accuracy of our findings.

      Recommendations for the authors:

      We recommend using grey scale (instead of 'heatmap' representation) to show the protein distribution of interest. Heatmap does not help at all, because 'total protein amount per cell' (instead of signal intensity on each pixel) is what matters in the context of this paper. Heatmap presentation does not allow readers to integrate signal intensity with their eyes.

      We thank the editor for pointing this out. We have changed heatmaps to inverted fluorescence images in grey scale.

    1. eLife assessment

      The study presents a valuable tool for searching molecular dynamics simulation data, making such datasets accessible for open science. The authors provide convincing evidence that it is possible to identify noteworthy molecular dynamics simulation datasets and that their analysis can produce information of value to the community.