9,922 Matching Annotations
  1. Jul 2024
    1. Reviewer #1 (Public Review):

      In this paper, Schalcher et al. examined how barn owls' landing force affects their hunting success during two hunting strategies: strike hunting and sit-and-wait hunting. They tracked tens of barn owls that raised their nestlings in nest boxes and utilized high-resolution GPS and acceleration loggers to monitor their movement. In addition, camcorders were placed near their nest boxes and used to record the prey they brought to the nest, thus measuring their foraging success.

      This study generated a unique dataset and provided new insights into the foraging behavior of barn owls. The researchers discovered that the landing force during hunting strikes was significantly higher compared to the sit-and-wait strategy. Additionally, they found a positive relationship between landing force and foraging success during hunting strikes, whereas, during the sit-and-wait strategy, there was a negative relationship between the two. This suggests that barn owls avoid detection by generating a lower landing force and producing less noise. Furthermore, the researchers observed that environmental characteristics affect barn owls' landing force during sit-and-wait hunting. They found a greater landing force when landing on buildings, a lower landing force when landing on trees, and the lowest landing force when landing on poles. The landing force also decreased as the time to the next hunting attempt decreased. These findings collectively suggest that barn owls reduce their landing force as an acoustic camouflage to avoid detection by their prey.

      The main strength of this work is the researchers' comprehensive approach, examining different aspects of foraging behavior, including high-resolution movement, foraging success, and the influence of the environment on this behavior, supported by impressive data collection.

      The results presented support the authors' conclusion that lower landing force during sit-and-wait hunting increases hunting success, likely due to a decreased probability of detection by their prey, resulting in acoustic camouflage. The authors also hypothesized that hunting success is crucial for survival, and thus, acoustic camouflage has a direct link to fitness. This paper provides an unprecedented dataset and the first measurement of landing force during hunting in the wild. It is likely to inspire many other researchers currently studying animal foraging behavior to explore how animals' movement affects foraging success.

    1. Reviewer #1 (Public Review):

      The authors have shown the following:

      (1) SY1 aggregation enhances (in terms of number of aggregates) when Sphingolipid biosynthesis is blocked.<br /> (2) In a normal cell (where sphingolipid biosynthesis is not hampered), the aggregate of SY1 (primarily the Class I aggregate) is localized only on the mitochondrial endomembrane system.<br /> (3) The localization is due to the association of SY1 (aggregates) with mitochondrial proteins like Tom70, Tim44, etc. (Is the localization completely lost? What happens to the toxicity when the aggregates are not localized on mitochondria?)<br /> (4) This fuels the loss of mitochondrial function.<br /> (5) Mitochondrial function is further abrogated when there is a block in sphingolipid biosynthesis.<br /> (6) A similar phenomenon is conserved in mammalian cell lines.

      Comments on the revised version

      The authors have addressed all the issues raised and I am satisfied with the answers but with the following reservations.

      (1) I still think that the authors need to set the importance of the differences in aggregation in the context of toxicity arising from protein misfolding/aggregation. While the authors state the limitation in the response, and I agree that a single manuscript cannot complete a field of investigation I still think that this is an important point missing from this manuscript.

      (2) I retain my reservations about the fluorescence intensity data shown for Rho123, DCF, Jc1, and MitoSox. The errors are much lower than what we typically achieve in biological experiments in our as well as our collaborator's lab. A glimpse at published literature would also support our statement. Specifically, RHO123 shows a large difference in errors between Figure 5 and Figure 5 Supplement 2. The point to note is that the absolute intensities do not vary between these figures, but the errors are the order of magnitude lower in the main figures. I, therefore, accept these figures in good faith without further interrogation.<br /> I think the message from the manuscript is important and worth following up on.

    1. Reviewer #2 (Public Review):

      This study by Algranati et al. is a important contribution to our understanding of H3-K27M pediatric gliomas. It convincingly demonstrates that the concomitant targeting of histone deacetylases (HDACs) and MYC, through a combination therapy of Sulfopin and Vorinostat, results in a notable reduction in cell viability and tumor growth. This reduction is linked to the suppression of critical oncogenic pathways, particularly mTOR signaling, emphasizing the role of these pathways in the disease's pathogenesis. The manuscript is a step forward in the field, as it unveils a vulnerability from dual targeting HDACs and MYC in the context of pediatric gliomas.

      Comments on revised version

      The authors have nicely explained their rationale for dose selection, treatment timing, and the relationship between MYC expression and sensitivity to the combined treatment. They have also clarified the experimental conditions for the in vitro and in vivo studies, ensuring consistency across the various analyses.

      Overall, the authors have been responsive to the reviewers' comments and have made appropriate revisions to improve the clarity and robustness of their study.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript examines the contribution of dorsal and intermediate hippocampus to goal-directed navigation in a wide virtual environment where visual cues are provided by the scenery on the periphery of a wide arena. Among a choice of 2 reward zones located near the arena periphery, rats learn to navigate from the center of the arena to the reward zone associated with the highest reward. Navigation performance is largely assessed from the rats' body orientation when they leave the arena center and when they reach the periphery, as well as the angular mismatch between reward zone and the site rats reach the periphery. Muscimol inactivation of dorsal and intermediate hippocampus alters rat navigation to the reward zone, but the effect was more pronounced for the inactivation of intermediate hippocampus, with some rat trajectories ending in the zone associated with the lowest reward. Based on these results, the authors suggest that the intermediate hippocampus is critical especially for navigating to the highest reward zone.

      Strengths:

      - The authors developed an effective approach to study goal-directed navigation in a virtual environment where visual cues are provided by the peripheral scenery.

      - In general, text is clearly written and the figures are well designed and relatively straightforward to interpret, even without reading the legends.

      - An intriguing result, which would deserve to be better investigated and/or discussed, was that rats tended to rotate always in the counterclockwise direction. Could this be because of a hardware bias making it easier to turn left, some aspect of the peripheral landscape, or a natural preference of rats to turn left that is observable (or reported) in real environment?

      - Another interesting observation, which would also deserved to be addressed in the discussion, is the fact that dHP/iHP inactivations produced to some extent consistent shifts in departing and peripheral crossing directions. This is visible from the distributions in Figures 6 and 7, which still show a peak under muscimol inactivation, but this peak is shifted to earlier angles than the correct ones. Such change is not straightforward to interpret, unlike the shortening of the mean vector length.<br /> Maybe rats under muscimol could navigate simply using association of reward zone with some visual cues in the peripheral scene, in brain areas other than the hippocampus, and therefore stopped their rotation as soon as they saw the cues, a bit before the correct angle. While with their hippocampus intact, rats could estimate precisely the spatial relationship between the reward zone and visual cues.

      Weaknesses:

      - I am not sure that the differential role of dHP and iHP for navigation to high/low reward locations is supported by the data. The current results could be compatible with iHP inactivation producing a stronger impairment on spatial orientation than dHP inactivation, generating more erratic trajectories that crossed by chance the second reward zone.

      To make the point that iHP inactivation affects disambiguation of high and low reward locations, the authors should show that the fraction of trajectories aiming at the low reward zone is higher than expected by chance. Somehow we would expect to see a significant peak pointing toward the low reward zone in the distribution of Figures 6-7.

      Review of revised manuscript

      The experimental paradigm and analyses are interesting/novel and generate some intriguing phenomena such as the animals' preference for counterclockwise rotation and the stereotypical trajectory shifts induced by muscimol inactivation. Understanding better the underlying mechanisms of these phenomena and the navigational strategies involved in this apparatus will be important in the future for correctly interpreting inactivation experiments.

      The idea of a differential effect of dMUS and iMUS was toned down in the abstract and other parts of the manuscript, such that the claims now better match the data.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript aims at a quantitative model of how visual stimuli, given as time-dependent light intensity signals, are transduced into electrical currents in photoreceptors of macaque and mouse retina. Based on prior knowledge on the fundamental biophysical steps of the transduction cascade and a relatively small number of free parameters, the resulting model is found to fairly accurately capture measured photoreceptor currents under a range of diverse visual stimuli and with parameters that are (mostly) identical for photoreceptors of the same type.

      Furthermore, as the model is invertible, the authors show that it can be used to derive visual stimuli that result in a desired, predetermined photoreceptor response. As demonstrated with several examples, this can be used to probe how the dynamics of phototransduction affect downstream signals in retinal ganglion cells, for example, by manipulating the visual stimuli in such a way that photoreceptor signals are linear or have reduced or altered adaptation. This innovative approach had already previously been used by the same lab to probe the contribution of photoreceptor adaptation to differences between On and Off parasol cells (Yu et al, eLife 2022), but the present paper extends this by describing and testing the photoreceptor model more generally and in both macaque and mouse as well as for both rods and cones.

      Strengths:

      The presentation of the model is thorough and convincing, and the ability to capture responses to stimuli as different as white noise with varying mean intensity and flashes with a common set of model parameters across cells is impressive. Also, the suggested approach of applying the model to modify visual stimuli that effectively alter photoreceptor signal processing is thought-provoking and should be a powerful tool for future investigations of retinal circuit function. The examples of how this approach can be applied are convincing and corroborate, for example, previous findings that adaptation to ambient light in the primate retina, as measured by responses to light flashes, mostly originates in photoreceptors. Application of the approach by other labs is facilitated by the clear exposition and the listing of obtained optimal parameter values.

      Weaknesses:

      The model is impressive, but not perfect, including some small systematic differences between model predictions and measurements from held-out cells. The deviations likely (partly) reflect differences between cells used for parameter optimization and test cells, as stated in the text (though this is not fully proven), which has to be kept in mind when applying the model, in particular with the listed parameters.

    1. Reviewer #1 (Public Review):

      Summary:

      Microfossils from the Paleoarchean Eon represent the oldest evidence of life, but their nature has been strongly debated among scientists. To resolve this, the authors reconstructed the lifecycles of Archaean organisms by transforming a Gram-positive bacterium into a primitive lipid vesicle-like state and simulating early Earth conditions. They successfully replicated all morphologies and life cycles of Archaean microfossils and studied cell degradation processes over several years, finding that encrustation with minerals like salt preserved these cells as fossilized organic carbon. Their findings suggest that microfossils from 3.8 to 2.5 billion years ago were likely liposome-like protocells with energy conservation pathways but without regulated morphology.

      Strengths:

      The authors have crafted a compelling narrative about the morphological similarities between microfossils from various sites and proliferating wall-deficient bacterial cells, providing detailed comparisons that have never been demonstrated in this detail before. The extensive number of supporting figures is impressive, highlighting numerous similarities. While conclusively proving that these microfossils are proliferating protocells morphologically akin to those studied here is challenging, we applaud this effort as the first detailed comparison between microfossils and morphologically primitive cells.

      Weaknesses:

      Although the species used in this study closely resembles the fossils morphologically, it would be beneficial to provide a clearer explanation for its selection. The literature indicates that many bacteria, if not all, can be rendered cell wall-deficient, making the rationale for choosing this specific species somewhat unclear.

      While this manuscript includes clear morphological comparisons, we believe the authors do not adequately address the limitations of using modern bacterial species in their study. All contemporary bacteria have undergone extensive evolutionary changes, developing complex and intertwined genetic pathways unlike those of early life forms. Consequently, comparing existing bacteria with fossilized life forms is largely hypothetical, a point that should be more thoroughly emphasized in the discussion.

      Another weak aspect of the study is the absence of any quantitative data. While we understand that obtaining such data for microfossils may be challenging, it would be helpful to present the frequencies of different proliferative events observed in the bacterium used. Additionally, reflecting on the chemical factors in early life that might cause these distinct proliferation modes would provide valuable context.

    1. Reviewer #1 (Public Review):

      Summary:

      This study provides compelling evidence suggesting that ghrelin, a molecule released in the surroundings of the major adult brain neurogenic niche (V-SVZ) by blood vessels with high blood flow, controls the migration of newborn interneurons towards the olfactory bulbs.

      Strengths:

      This study is a tour de force as it provides a solid set of data obtained by time-lapse recordings in vivo. The data demonstrate that the migration and guidance of newborn neurons rely on factors released by selective types of blood vessels.

      Weaknesses:

      Some intermediate conclusions are weak and may be reinforced by additional experiments.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors investigated systemic inflammation induced by LPS in various tissues and also examined immune cells of the mice using tight junction protein-based PDZ peptide. They explored the mechanism of anti-systemic inflammatory action of PDZ peptides, which enhanced M1/M2 polarization and induced the proliferation of M2 macrophages. Additionally, they insisted the physiological mechanism that inhibited the production of ROS in mitochondria, thereby preventing systemic inflammation.

      Strength

      In the absence of specific treatments for septic shock or sepsis, the study demonstrating that tight junction-based PDZ peptides inhibit systemic inflammation caused by LPS is highly commendable. Whereas previous research focused on antibiotics, this study proves that modifying parts of intracellular proteins can significantly suppress symptoms caused by septic shock. The authors expanded the study of localized inflammation caused by LPS or PM2.5 in the respiratory track to systemic inflammation, presenting promising results. They not only elucidated the physiological mechanism by identifying the transcriptome through RNA sequencing but also demonstrated that PDZ peptides inhibit the production of ROS in mitochondria and prevent mitochondrial fission. This research is highly regarded as an excellent study with potential as a treatment for septic shock or sepsis.

      Weakness

      (1) They Focused intensively on acute inflammation for a short duration instead of chronic inflammation.<br /> (2) LPS was used to induce septic shock, but administrating actual microbes such as E.coli would yield more accurate results.<br /> (3) The authors used pegylated peptides, but future research should utilize the optimized peptides to derive the optimal peptide, and further, PK/PD studies are also necessary.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors studied the roles of SPNS1 which is a lysolipid transporter from the lysosomes in the nervous system using cell and mouse models. The authors tried to show that reduced sphingosine release from the lysosomes via SPNS1 affects myelination.

      Strengths:

      The authors used knockout models for cells and animals so the results are solid. They also used electron microscopic analysis of the phenotypes of the cells and mouse tissues.

      Weaknesses:

      The biochemical methods are not fully described at the moment. There is a lack of solid evidence to support the major claim.

      If the authors could provide solid evidence that lipids that are released from the lysosomes via SPNS1 are used for myelination, this would be a major finding for the sources of lipids for the formation of axons.

    1. Reviewer #1 (Public Review):

      Summary:

      This very short paper shows a greater likelihood of C->U substitutions at sites predicted to be unpaired in the SARS-CoV-2 RNA genome, using previously published observational data on mutation frequencies in SARS-CoV-2 (Bloom and Neher, 2023).

      General comments:

      A preference for unpaired bases as a target for APOBEC-induced mutations has been demonstrated previously in functional studies so the finding is not entirely surprising. This of course assumes that A3A or other APOBEC is actually the cause of the majority of C->U changes observed in SARS-CoV-2 sequences.

      I'm not sure why the authors did not use the published mutation frequency data to investigate other potential influences on editing frequencies, such as 5' and 3' base contexts. The analysis did not contribute any insights into the potential mechanisms underlying the greater frequency of C->U (or G->U) substitutions in the SARS-CoV-2 genome.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Floedder et al report that dopamine ramps in both Pavlovian and Instrumental conditions are shaped by reward interval statistics. Dopamine ramps are an interesting phenomenon because at first glance they do not represent the classical reward prediction errors associated with dopamine signaling. Instead, they seem somewhat to bridge the gap between tonic and phasic dopamine, with an intense discussion still being held in the field about what is their actual behavioral role. Here, in tests with head-fixed mice, and dopamine being recorded with a genetically encoded fluorescent sensor in the nucleus accumbens, the authors find that dopamine ramps were only present when intertrial intervals were relatively short and the structure of the task (Pavlovian cue or progression in a VR corridor) contained elements that indicated progression towards the reward (e.g., a dynamic cue). The authors show that these findings are well explained by their previously published model of Adjusted Net Contingency of Causal Relation (ANCCR).

      Strengths:

      This descriptive study delineates some fundamental parameters that define dopamine ramps in the studied conditions. The short, objective, and to-the-point format of the manuscript is great and really does a service to potential readers. The authors are very careful with the scope of their conclusions, which is appreciated by this reviewer.

      Weaknesses:

      The discussion of the results is very limited to the conceptual framework of the authors' preferred model (which the authors do recognize, but it still is a limitation). The correlation analysis presented in panel I of Figure 3 seems unnecessary at best and could be misleading, as it is really driven by the categorical differences between the two conditions that were grouped for this analysis. There are some key aspects of the data and their relationship with each other, the previous literature, and the methods used to collect them, that could have been better discussed and explored.

    1. Reviewer #1 (Public Review):

      Summary:

      Horan et al. present a system for the chronic implantation of Neuropixels probes in mice and rats that allows the repeated cycles of implantation, explant, and reuse. A detailed protocol of the procedure, along with technical drawings for the parts of the system are provided, for potential users to undertake the technique in their own laboratory. The authors documented the adoption of this system in ten laboratories, demonstrating that the technique can be widely deployed. Yields in the number of neurons recorded over time are reported to indicate that the technique can achieve stable yields over time.

      Strengths:

      The authors provide compelling evidence that their technique can be widely deployed and acquired by different laboratories by documenting in detail the success rates at each step of the procedure and the common failure modes across ten laboratories. This is important because an impediment for a laboratory to try out a new technique is a lack of assurance about whether that technique would be successful outside the environment where the technique was originally developed. It is helpful that the authors show that even users who were not directly trained by the original developer of the technique can acquire the technique by receiving only the protocol and the technical drawings.

      Weaknesses:

      I would have liked to see more evidence demonstrating the purported advantages of the Repix design ("We found that the key advantage of Repix is robustness and simplicity.") relative to other techniques already available for chronic implantation allowing for reuse (Juavinett 2019, Luo 2020, van Daal 2021, Bimbard 2023, Melin 2023). While it is commendable that the authors demonstrate the durability of their design during social interactions, I would have liked to see evidence demonstrating that aluminum construction (compared to plastic) is necessary for "rough-and-tumble fights of male mice."

      Aluminum parts are typically more expensive than plastic parts, and because machining aluminum parts is typically slower than 3D printing in plastic, the commitment to aluminum can greatly slow down the adaptation of the Repix design for specific experimental needs or for newer versions of Neuropixels probes to be released in the future. Also, as the authors stated, aluminum parts are a bit heavier than plastic parts. In addition, I remain not fully convinced that the Repix design is significantly simpler than the existing designs, and I would be more convinced if the authors could quantify the number of modular components of the Repix system relative to existing designs, or perhaps provide a time estimate of assembling a Repix system compared to assembling an existing design.

      The possibility of achieving greater yield using dexamethasone is intriguing, but the authors only show this for rats and one brain region. Were the surgeries done using dexamethasone performed after the surgeries not using dexamethasone? If so, could the improved yield simply be due to improvement in surgical technique? As such, it remains unclear whether dexamethasone actually helps to achieve greater yields.

    1. According to Nishant, what I agree with, the truly successful people are MASTERS in their craft. They have committed to lifelong learning.

      "Your learning capability decides your earning capacity."


      See also: Ultralearning, Scott H. Young, and Deep Work, Cal Newport... The argument is the same: your ability to adapt in a complex rapidly changing information economy, and to master material determines how much you can earn.

    1. Reviewer #1 (Public Review):

      The study shows a new mechanism of NFkB-p65 regulation mediated by Vangl2-dependent autophagic targeting. Autophagic regulation of p65 has been reported earlier; this study brings an additional set of molecular players involved in this important regulatory event, which may have implications for chronic and acute inflammatory conditions.

      Comments on the revised version:

      The authors have addressed the earlier concerns and I am satisfied with the revised version. I have no additional comments to make.

    1. Reviewer #1 (Public Review):

      In this study, Hunt et al investigated the role of the ubiquitin-conjugating enzyme UBE2D/effete (eff) in maintaining proteostasis during aging. Utilizing Drosophila as a model, the researchers observed diverse roles of E2 ubiquitin-conjugating enzymes in handling the aggregation-prone protein huntingtin-polyQ in the retina. While some E2s facilitated aggregate assembly, UBE2D/eff and other E2s were crucial for degradation of htt-polyQ. The study also highlights the significance of UBE2D/eff in skeletal muscle, showing that declining levels of eff during aging correlate with proteostasis disruptions. Knockdown of eff in muscle led to accelerated accumulation of poly-ubiquitinated proteins, shortened lifespan, and mirrored proteomic changes observed in aged muscles. The introduction of human UBE2D2, analogous to eff, partially rescued the deficits in lifespan and proteostasis caused by eff-RNAi expression in muscles.

      Comments on revised version:

      In this revised manuscript, the authors have addressed some of my concerns, yet several significant caveats remain unaddressed.

      One major concern stems from the unexpected outcome observed in the UBE2D/eff loss-of-function experiment. Despite its known role as a ubiquitin-conjugating enzyme (E2), reducing UBE2D/eff levels led to an increase in poly-ubiquitinated proteins and p62 accumulation, suggesting a more complex and multifaceted phenotype seemingly unrelated to the expected role of UBE2D/eff. The authors proposed that an overall disruption of protein quality control, indirectly caused by effRNAi, could explain these phenotypes. However, while the authors noted that effRNAi does not affect proteasome activity, they have not explored other possibilities, leaving a mechanistic explanation still missing.

      Furthermore, the comparative analysis of the old versus young proteome identified 10 out of 21 E2 enzymes, suggesting that other E2s may also contribute to age-related changes in proteostasis and lifespan. In this context, the authors mentioned that overexpression of human UBE2D2 in skeletal muscle does not influence lifespan, indicating that the reduced Eff levels observed during aging may not necessarily contribute to the aging phenotype.<br /> At this point, I believe the manuscript remains largely descriptive.

    1. Reviewer #1 (Public Review):

      Summary:

      In the present study, the authors examined the possibility of using phosphatidyl-inositol kinase 3-kinase alpha (PI3Ka) inhibitors for heterotopic ossification (HO) in fibrodysplasia ossificans progressiva (FOP). Administration of BYL719, a chemical inhibitor of PI3Ka, prevented HO in a mouse model of FOP that expressed a mutated ACVR1 receptor. Genetic ablation of PI3Ka (p110a) also suppressed HO in mice. BYL719 blocked osteochondroprogenitor specification and reduced inflammatory responses, such as pro-inflammatory cytokine expression and migration/proliferation of immune cells. The authors claimed that inhibition of PI3Ka is a safe and effective therapeutic strategy for HO.

      This is a revision of the original manuscript by Valer et al. The authors performed new experiments and added those data to the manuscript to respond to this reviewer's comments and questions.

      Strengths:

      Now it became clear that BYL719 inhibited the multiple signaling pathways in multiple types of cells.

      Weaknesses:

      However, it was not clear the critical role of PI3K in the inhibition of HO by this compound.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript by Zhou et al offers new high-resolution Cryo-EM structures of two human biotin-dependent enzymes: propionyl-CoA carboxylase (PCC) and methycrotonyl-CoA carboxylase (MCC). While X-ray crystal structures and Cryo-EM structures have previously been reported for bacterial and trypanosomal versions of MCC and for bacterial versions of PCC, this marks one of the first high resolution Cryo-EM structures of the human version of these enzymes. Using the biotin cofactor as an affinity tag, this team purified a group of four different human biotin-dependent carboxylases from cultured human Expi 293F (kidney) cells (PCC, MCC, acetyl-CoA carboxylase (ACC), and pyruvate carboxylase). Following further enrichment by size-exclusion chromatography, they were able to vitrify the sample and pick enough particles of MCC and PCC to separately refine the structures of both enzymes to relatively high average resolutions (the Cryo-EM structure of ACC also appears to have been determined from these same micrographs, though this is the subject of a separate publication). To determine the impact of substrate binding on the structure of these enzymes and to gain insights into substrate selectivity, they also separately incubated with propionyl-CoA and acetyl-CoA and vitrified the samples under active turnover conditions, yielding a set of cryo-EM structures for both MCC and PCC in the presence and absence of substrates and substrate analogues.

      Strengths:

      The manuscript has several strengths. It is clearly written, the figures are clear and the sample preparation methods appear to be well described. This study demonstrates that Cryo-EM is an ideal structural method to investigate the structure of these heterogeneous samples of large biotin-dependent enzymes. As a consequence, many new Cryo-EM structures of biotin-dependent enzymes are emerging, thanks to the natural inclusion of a built-in biotin affinity tag. While the authors report no major differences between the human and bacterial forms of these enzymes, it remains an important finding that they demonstrate how/if the structure of the human enzymes are or are not distinct from the bacterial enzymes. The MCC structures also provide evidence for a transition for BCCP-biotin from an exo-binding site to an endo-binding site in response to acetyl-CoA binding. This contributes to a growing number of biotin-dependent carboxylase structures that reveal BCCP-biotin binding at locations both inside (endo-) and outside (exo-) of the active site.

      Weaknesses:

      There are some minor weaknesses. Notably, there are not a lot of new insights coming from this paper. The structural comparisons between MCC and PCC have already been described in the literature and there were not a lot of significant changes (outside of the exo- to endo- transition) in the presence vs. absence of substrate analogues. There is not a great deal of depth of analysis in the discussion. For example, no new insights were gained with respect to the factors contributing to substrate selectivity (the factors contributing to selectivity for propionyl-CoA vs. acetyl-CoA in PCC). The authors state that the longer acyl group in propionyl-CoA may mediate stronger hydrophobic interactions that stabilize the alpha carbon of the acyl group at the proper position. This is not a particularly deep analysis and doesn't really require a cryo-EM structure to invoke. The authors did not take the opportunity to describe the specific interactions that may be responsible for the stronger hydrophobic interaction nor do they offer any plausible explanation for how these might account for an astounding difference in the selectivity for propionyl-CoA vs. acetyl-CoA. This suggests, perhaps, that these structures do not yet fully capture the proper conformational states. The authors also need to be careful with their over-interpretation of structure to invoke mechanisms of conformational change. A snapshot of the starting state (apo) and final state (ligand-bound) is insufficient to conclude *how* the enzyme transitioned between conformational states. I am constantly frustrated by structural reports in the biotin-dependent enzymes that invoke "induced conformational changes" with absolutely no experimental evidence to support such statements. Conformational changes that accompany ligand binding may occur through an induced conformational change or through conformational selection and structural snapshots of the starting point and the end point cannot offer any valid insight into which of these mechanisms is at play.

      Some of these minor deficiencies aside, the overall aim of contributing new cryo-EM structures of the human MCC and PCC has been achieved. While I am not a cryo-EM expert, I see no flaws in the methodology or approach. While the contributions from these structures are somewhat incremental, it is nevertheless important to have these representative examples of the human enzymes and it is noteworthy to see a new example of the exo-binding site in a biotin-dependent enzyme.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors show that a long-non coding RNA lncDACH1 inhibits sodium currents in cardiomyocytes by binding to and altering the localization of dystrophin. The authors use a number of methodologies to demonstrate that lncDACH1 binds to dystrophin and disrupts its localization to the membrane, which in turn downregulates NaV1.5 currents. Knockdown of lncDACH1 upregulates NaV1.5 currents. Furthermore, in heart failure, lncDACH1 is shown to be upregulated which suggests that this mechanism may have pathophysiological relevance.

      Strengths:

      (1) This study presents a novel mechanism of Na channel regulation which may be pathophysiologically important.

      (2) The experiments are comprehensive and systematically evaluate the physiological importance of lncDACH1.

    1. Reviewer #1 (Public Review):

      In this work, the authors study the dynamics of fast-adapting pathogens under immune pressure in a host population with prior immunity. In an immunologically diverse population, an antigenically escaping variant can perform a partial sweep, as opposed to a sweep in a homogeneous population. In a certain parameter regime, the frequency dynamics can be mapped onto a random walk with zero mean, which is reminiscent of neutral dynamics, albeit with differences in higher order moments. Next, they develop a simplified effective model of time dependent selection with expiring fitness advantage, and posit that the resulting partial sweep dynamics could explain the behaviour of influenza trajectories empirically found in earlier work (Barrat-Charlaix et al. Molecular Biology and Evolution, 2021). Finally, the authors put forward an interesting hypothesis: the mode of evolution is connected to the age of a lineage since ingression into the human population. A mode of meandering frequency trajectories and delayed fixation has indeed been observed in one of the long-established subtypes of human influenza, albeit so far only over a limited period from 2013 to 2020. The paper is overall interesting and well-written. Some aspects, detailed below, are not yet fully convincing and should be treated in a substantial revision.

      Major points

      (1) The quasi-neutral behaviour of amino acid changes above a certain frequency (reported in Fig, 3), which is the main overlap between influenza data and the authors' model, is not a specific property of that model. Rather, it is a generic property of travelling wave models and more broadly, of evolution under clonal interference (Rice et al. Genetics 2015, Schiffels et al. Genetics 2011). The authors should discuss in more detail the relation to this broader class of models with emergent neutrality. Moreover, the authors' simulations of the model dynamics are performed up to the onset of clonal interference \rho/s_0 = 1 (see Fig. 4). Additional simulations more deeply in the regime of clonal interference (e.g. \rho / s_0 = 5) show more clearly the behaviour in this regime.

      In this context, I also note that the modelling results of this paper, in particular the stalling of frequency increase and the decrease in the number of fixations, are very similar to established results obtained from similar dynamical assumptions in the broader context of consumer resource models; see, e.g., Good et al. PNAS 2018. The authors should place their model in this broader context.

      (2) The main conceptual problem of this paper is the inference of generic non-predictability from the quasi-neutral behaviour of influenza changes. There is no question that new mutations limit the range of predictions, this problem being most important in lineages with diverse immune groups such as influenza A(H3N2). However, inferring generic non-predictability from quasi-neutrality is logically problematic because predictability refers to individual trajectories, while quasi-neutrality is a property obtained by averaging over many trajectories (Fig. 3). Given an SIR dynamical model for trajectories, as employed here and elsewhere in the literature, the up and down of individual trajectories may be predictable for a while even though allele frequencies do not increase on average. The authors should discuss this point more carefully.

      (3) To analyze predictability and population dynamics (section 5), the authors use a Wright-Fisher model with expiring fitness dynamics. While here the two sources of the emerging neutrality are easily tuneable (expiring fitness and clonal interference), the connection of this model to the SIR model needs to be substantiated: what is the starting selection s_0 as a function of the SIR parameters (f, b, M, \epsilon), the selection decay \nu = \nu(f, b, M, \epsilon, \gamma)? This would enable the comparison of the partial sweep timing in both models and corroborate the mapping of the SIR onto the simplified W-F model. In addition, the authors' point would be strengthened if the SIR partial sweeps in Fig.1 and Fig.2 were obtained for a combination of parameters that results in a realistic timescale of partial sweeps.

    1. Reviewer #1 (Public Review):

      Summary:

      This study presents useful insights into the in vivo dynamics of insulin-producing cells (IPCs), key cells regulating energy homeostasis across the animal kingdom. The authors provide compelling evidence using adult Drosophila melanogaster that IPCs, unlike neighboring DH44 cells, do not respond to glucose directly, but that glucose can indirectly regulate IPC activity after ingestion supporting an incretin-like mechanism in flies, similar to mammals. The authors link the decreased activity of IPCs to hyperactivity observed in starved flies, a locomotive behavior aimed at increasing food search.

      Furthermore, there is supporting evidence in the paper that IPCs receive inhibitory inputs from Dh44 neurons, which are linked to increased locomotor activity. However, although the electrophysiological data underlying the dynamics of IPCs in vivo is compelling, the link between IPCs and other potential elements of the circuitry (e.g. octopaminergic neurons) regulating locomotive behaviors is not clear and would benefit from more rigorous approaches.

      This paper is of interest to cell biologists and electrophysiologists, and in particular to scientists aiming to understand circuit dynamics pertaining to internal state-linked behaviors competing with the feeding state, shown here to be primarily controlled by the IPCs.

      Strengths:

      (1) By using whole-cell patch clamp recording, the authors convincingly showed the activity pattern of IPCs and neighboring DH44 neurons under different feeding states.

      (2) The paper provides compelling evidence that IPCs are not directly and acutely activated by glucose, but rather through a post-ingestive incretin-like mechanism. In addition, the authors show that Dh44 neurons located adjacent to the IPCs respond to bath application of glucose contrary to the IPCs.

      (3) The paper provides useful data on the firing pattern of 2 key cell populations regulating food-related brain function and behavior, IPCs and Dh44 neurons, results which are useful to understand their in vivo function.

      Weaknesses:

      (1) The term nutritional state generally refers to the nutrients which are beneficial to the animal. In Figure 1, the authors showed that IPCs respond to glucose but not proteins. To validate the term nutritional state the authors could test the effect of a non-nutritive sugar (e.g. D-arabinose or L-Glucose) on the post-ingestive physiological responses of the IPCs.

      (2) It is difficult to grasp the main message from the figures in the result section as some figures have several results subsections referring to different points the authors want to make. The key results of a figure will be easier to understand if they are summarized in one section of the results. Alternatively, a figure can be split into 2 figures if there are several key messages in those figures, e.g. Figures 2 and 3.

      (3) The prime investigation of the paper is about the physiological response and locomotive behavioral readout linked to IPCs. The authors do not show a link between OANs and IPCs in terms of functional or behavioral readouts. In Figure 2 the authors first start with stating a link between OAN neurons and locomotion changes resulting from internal feeding states. The flow of the paper would be better if the authors focused on the effect of optogenetic activation of IPCs under different feeding states and their impact on fly locomotion. If the experiments done on optogenetic activation of OANs were to validate the experimental approach the data on OAN neurons is better suited for the supplement without the need of a subsection in the result section on the OANs.

      (4) Figure 2F shows that optogenetic activation of IPCs in fed flies does not influence their locomotor output. In the text, the conclusion linked to Figure 2F-H states that IPC activation reduces starvation-induced hyperactivity which is a statement more suited to Figure 2I-K.

      (5) The authors show activation of Dh44 neurons leads to hyperpolarisation of the IPCs. What is the functional link between non-PI Dh44 neurons and the IPCs? Do IPCs express DH44R or is DH44 required for this effect on IPCs? Investigating a potential synaptic or peptidergic link between DH44 neurons and IPCs and its effect on behavior would benefit the paper, as it is so far not well connected.

    1. Reviewer #1 (Public Review):

      Summary:

      Here the authors convincingly identify and characterize the SERBP1 interactome and further define its role in the nucleus, where it is associated with complexes involved in splicing, cell division, chromosome structure, and ribosome biogenesis. Many of the SERBP1-associated proteins are RNA-binding proteins and SERBP1 exerts its impact, at least in part, through these players. SERBP1 is mostly disordered but along with its associated proteins displays a preference for G4 binding and can can bind to PAR and be PARylated. They present data that strongly suggest that complexes in which SERBP1 participates are assembled through G4 or PAR binding. The authors suggest that because SERBP1 lacks traditional functional domains yet is clearly involved in distinct regulatory complexes, SERBP1 likely acts in the early steps of assembly through the recognition of interacting sites present in RNA, DNA, and proteins.

      Strengths:

      The data is very convincing and demonstrated through multiple approaches.

      Weaknesses:

      No weaknesses were identified by this reviewer.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript studies nutrient intake rates for stationary and motile microorganisms to assess the effectiveness of swim vs. stay strategies. This work provides valuable insights on how the different strategies perform in the context of a simplified mathematical model that couples hydrodynamics to nutrient advection and diffusion. The swim and stay strategies are shown to yield similar nutrient flux under a range of conditions.

      Strengths:

      Strengths of the work include (i) the model prediction in Fig. 3 of nutrient flux applied to a range of microorganisms including an entire clade that are known to use different feeding strategies and (ii) a study of the interaction between cilia and absorption coverage showing the robustness of their predictions provided these regions have sufficient overlap.

      Weaknesses: To improve the work, the authors should further expand their discussion of the following points:

      (1) The authors comment that a number of species alternate between sessile and motile behavior. It would be helpful to discuss what is known about what causes switching between these modes and whether this provides insights regarding the advantages of the different behaviors.

      (2) An encounter zone of R=1.1a appears be used throughout the manuscript, but I could not find a biological justification for this particular value. This results appear to be quite sensitive to this choice, as shown in Supplement Fig. 3(B). In the Discussion, it is mentioned that using a much larger exclusion zone leads to significantly different nutrient flux, and it is implied that such a large exclusion zone is not biologically plausible, but this was not explained sufficiently.

      (3) In schematic of the in Fig. 2(B) it was unclear if the encounter zone in the envelope model is defined analogously to the Stokeslet model or if a different formulation is used.

      (4) The force balance argument should be clarified. Equation (3) of the supplement gives the force-velocity relation in the motile case. Since equation (4), which the authors state is the net force in the sessile case, seems to involve the same expression, would it not follow from U=0 in the sessile case that one would simply obtain quiescent flow with Fcilia=0?

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Tutak et al use a combination of pulldowns, analyzed by mass spectrometry, reporter assays, and fluorescence experiments to decipher the mechanism of protein translation in fragile X-related diseases. The topic is interesting and important.

      Although a role for Rps26-deficient ribosomes in toxic protein translation is plausible based on already available data, the authors' data are not carefully controlled and thus do not support the conclusions of the paper.

      Strengths:

      The topic is interesting and important.

      Weaknesses:

      In particular, there is very little data to support the notion that Rps26-deficient ribosomes are even produced under the circumstances. And no data that indicate that they are involved in the RAN translation. Essential controls (for ribosome numbers) are lacking, no information is presented on the viability of the cells (Rps26 is an essential protein), and the differences in protein levels could well arise from block in protein synthesis, and cell division coupled to differential stability of the proteins.

      Specific points:

      (1) Analysis of the mass spec data in Supplemental Table S3 indicates that for many of the proteins that are differentially enriched in one sample, a single peptide is identified. So the difference is between 1 peptide and 0. I don't understand how one can do a statistical analysis on that, or how it would give out anything of significance. I certainly do not think it is significant. This is exacerbated by the fact that the contaminants in the assay (keratins) are many, many-fold more abundant, and so are proteins that are known to be mitochondrial or nuclear, and therefore likely not actual targets (e.g. MCCC1, PC, NPM1; this includes many proteins "of significance" in Table S1, including Rrp1B, NAF1, Top1, TCEPB, DHX16, etc...).

      The data in Table S6/Figure 3A suffer from the same problem.

      I am not convinced that the mass spec data is reliable.

      (2) The mass-spec data however claims to identify Rps26 as a factor binding the toxic RNA specifically. The rest of the paper seeks to develop a story of how Rps26-deficient ribosomes play a role in the translation of this RNA. I do not consider that this makes sense.

      (3) Rps26 is an essential gene, I am sure the same is true for DHX15. What happens to cell viability? Protein synthesis? The yeast experiments were carefully carried out under experiments where Rps26 was reduced, not fully depleted to give small growth defects.

      (4) Knockdown efficiency for all tested genes must be shown to evaluate knockdown efficiency.

      (5) The data in Figure 1E have just one mock control, but two cell types (control si and Rps26 depletion).

      (6) The authors' data indicate that the effects are not specific to Rps26 but indeed also observed upon Rps25 knockdown. This suggests strongly that the effects are from reduced ribosome content or blocked protein synthesis. Additional controls should deplete a core RP to ascertain this conclusion.

      (7) Supplemental Figure S3 demonstrates that the depletion of S26 does not affect the selection of the start codon context. Any other claim must be deleted. All the 5'-UTR logos are essentially identical, indicating that "picking" happens by abundance (background).

      (8) Mechanism is lacking entirely. There are many ways in which ribosomes could have mRNA-specific effects. The authors tried to find an effect from the Kozak sequence, unsuccessfully (however, they also did not do the experiment correctly, as they failed to recognize that the Kozak sequence differs between yeast, where it is A-rich, and mammalian cells, where it is GGCGCC). Collisions could be another mechanism.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript focuses on an unexpected finding that a tiny change in a protein's aminoacid sequence can redefine its biological function. The authors' data and analyses explain how a chromodomain, typically implicated in interactions with histones, can also mediate binding of HP1 homolog Rhino to the non-histone partner protein Kipferl. They elegantly pinpoint the capacity for such interaction to a single aminoacid substitution (in fact, a single-nucleotide! substitution).

      Strengths:

      Both genetic and biochemical approaches are applied to rigorously probe the proposed explanation. The authors find their predictions to be borne out both in vivo, in mutant animals, and in biochemical experiments. The manuscript also features phylogenetic comparisons that put the finding into a broader evolutionary perspective.

      Weaknesses pointed out in the original submission were addressed in the revised manuscript.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Jellinger et al. performed engram-specific sequencing and identified genes that were selectively regulated in positive/negative engram populations. In addition, they performed chronic activation of the negative engram population over 3 months and observed several effects on fear/anxiety behavior and cellular events such as upregulation of glial cells and decreased GABA levels.

      Strengths:

      They provide useful engram-specific GSEA data and the main concept of the study, linking negative valence/memory encoding to cellular level outcomes including upregulation of glial cells, is interesting and valuable.

      Comments on the revised manuscript:

      The revised manuscript still does not adequately address the primary technical concern regarding long-term DREADD manipulation. The authors reference their previous work (Suthard et al., 2023) as evidence; however, this earlier paper only presents fluorescence intensity in a non-quantitative manner with merely three samples (Supplementary Figure 7). This limited evidence does not sufficiently support the claim of potent long-term activation. The discussion in the revision stating "...even if our manipulation is only working for 1 month, rather than 3 months..." is unconvincing, particularly given that the title and abstract still claims "chronic activation of...". To substantiate the technical validity of the study, at least cFos staining at various time points is necessary, which is less burdensome compared to more direct demonstrations such as slice physiology. Thus, although I believe it could be an interesting study for some audiences, I cannot support the strength of the evidence presented in the study.

      Furthermore, in response to all reviewers' concerns regarding the quantification of GABA, the authors have removed the data from the study rather than providing properly acquired images or quantified data. This action diminishes the significance of the study.

    1. Reviewer #2 (Public Review):

      Summary:

      In the manuscript the authors suggest a computational mechanism called recall-gated consolidation, which prioritizes the storage of previously experienced synaptic updates in memory. The authors investigate the mechanism with different types of learning problems including supervised learning, reinforcement learning, and unsupervised auto-associative memory. They rigorously analyse the general mechanism and provide valuable insights into its benefits.

      Strengths:

      The authors establish a general theoretical framework, which they translate into three concrete learning problems. For each, they define an individual mathematical formulation. Finally, they extensively analyse the suggested mechanism in terms of memory recall, consolidation dynamics, and learnable timescales.

      The presented model of recall-gated consolidation covers various aspects of synaptic plasticity, memory recall, and the influence of gating functions on memory storage and retrieval. The model's predictions align with observed spaced learning effects.

      The authors conduct simulations to validate the recall-gated consolidation model's predictions, and their simulated results align with theoretical predictions. These simulations demonstrate the model's advantages over consolidating any memory and showcase its potential application to various learning tasks.

      The suggestion of a novel consolidation mechanism provides a good starting point to investigate memory consolidation in diverse neural systems and may inspire artificial learning algorithms.

      Weaknesses:

      I appreciate that the authors devoted a specific section to the model's predictions, and point out how the model connects to experimental findings in various model organisms. However, the connection is rather weak and the model needs to make more specific predictions to be distinguishable from other theories of memory consolidation (e.g. those that the authors discuss) and verifiable by experimental data.

      The model is not compared to other consolidation models in terms of performance and how much it increases the signal-to-noise ratio. It is only compared to a simple STM or a parallel LTM, which I understand to be essentially the same as the STM but with a different timescale (so not really an alternative consolidation model). It would be nice to compare the model to an actual or more sophisticated existing consolidation model to allow for a fairer comparison.

      The article is lengthy and dense and it could be clearer. Some sections are highly technical and may be challenging to follow. It could benefit from more concise summaries and visual aids to help convey key points.

    1. Reviewer #1 (Public Review):

      The mechanisms of how axonal projections find their correct target requires the interplay of signalling pathways, and cell adhesion that act over short and long distances. The current study aims to use the small ventral lateral clock neurons (s-LNvs) of the Drosophila clock circuit as a model to study axon projections. These neurons are born during embryonic stages and are part of the core of the clock circuit in the larval brain. Moreover, these neurons are maintained through metamorphosis and become part of the adult clock circuit. The authors use the axon length by means of anti-Pdf antibody or Pdf>GFP as a read-out for the axonal length. Using ablation of the MB- the overall target region of the s-LNvs, the authors find defects in the projections. Next, by using Dscam mutants or knock-down they observe defects in the projections. Manipulations by the DNs - another group of clock neurons - can induce defects in the s-LNvs axonal form, suggesting an active role of these neurons in the morphology of the s-LNvs.

    1. Reviewer #1 (Public Review):

      This manuscript puts forward the concept that there is a specific time window during which YAP/TAZ driven transcription provides feedback for optimal endothelial cell adhesion, cytoskeletal organization and migration. The study follows up on previous elegant findings from this group and others which established the importance of YAP/TAZ-mediated transcription for persistent endothelial cell migration. The data presented here extends the concept at two levels: first, the data may explain why there are differences between experimental setups where YAP/TAZ activity are inhibited for prolonged times (e.g. cultures of YAP knockdown cells), versus experiments in which the transient inhibition of YAP/TAZ and (global) transcription affects endothelial cell dynamics prior to their equilibrium.

      All experiments are convincing, clearly visualized and quantified.

      The strength of the paper is that it clearly indicates that there are temporal controlled feedback systems which which is important for endothelial collective cell behavior.

      A limitation of the study is that the inhibitory studies in vivo may include off-target effects as well. Future endeavors, including specific knockout models, optogenetics and/or transgenic zebrafish lines that visualize endothelial cell properties (proliferation and migration) will be informative to track individual endothelial cell responses upon feedback signals.

    1. Reviewer #1 (Public Review):

      In this work the authors propose a new regulatory role for one of the most abundant circRNAs, circHIPK3. They demonstrate that circHIPK3 interacts with an RNA binding protein (IGF2BP2), sequestering it away from its target mRNAs. This interaction is shown to regulate the expression of hundreds of genes that share a specific sequence motif (11-mer motif) in their untranslated regions (3'-UTR), identical to one present in circHIPK3 where IGF2BP2 binds. The study further focuses on the specific case of STAT3 gene, whose mRNA product is found to be downregulated upon circHIPK3 depletion. This suggests that circHIPK3 sequesters IGF2BP2, preventing it from binding to and destabilizing STAT3 mRNA. The study presents evidence supporting this mechanism and discusses its potential role in tumor cell progression. These findings contribute to the growing complexity of understanding cancer regulation and highlight the intricate interplay between circRNAs and protein-coding genes in tumorigenesis.

      Strengths:

      The authors show mechanistic insight into a proposed novel "sponging" function of circHIPK3 which is not mediated by sequestering miRNAs but rather a specific RNA binding protein (IGF2BP2). They address the stoichiometry of the molecules involved in the interaction, which is a critical aspect that is frequently overlooked in this type of study. They provide both genome-wide analysis and a specific case (STAT3) which is relevant for cancer progression. Overall, the authors have significantly improved their manuscript in their revised version.

      Weaknesses:

      There are seemingly contradictory effects of circHIPK3 and STAT3 depletion in cancer progression. However, the authors have addressed these issues in their revised manuscript, incorporating potential reasons that might explain such complexity.

    1. Reviewer #1 (Public Review):

      Plasticity in the basolateral amygdala (BLA) is thought to underlie the formation of associative memories between neutral and aversive stimuli, i.e. fear memory. Concomitantly, fear learning modifies the expression of BLA theta rhythms, which may be supported by local interneurons. Several of these interneuron subtypes, PV+, SOM+, and VIP+, have been implicated in the acquisition of fear memory. However, it was unclear how they might act synergistically to produce BLA rhythms that structure the spiking of principal neurons so as to promote plasticity. Cattani et al. explored this question using small network models of biophysically detailed interneurons and principal neurons.

      Using this approach, the authors had four principal findings:<br /> (1) Intrinsic conductances in VIP+ interneurons generate a slow theta rhythm that periodically inhibits PV+ and SOM+ interneurons, while disinhibiting principal neurons.<br /> (2) A gamma rhythm arising from the interaction between PV+ and principal neurons establishes the precise timing needed for spike-timing-dependent plasticity.<br /> (3) Removal of any of the interneuron subtypes abolishes conditioning-related plasticity.<br /> (4) Learning-related changes in principal cell connectivity enhance the expression of slow theta in the local field potential.

      The strength of this work is that it explores the role of multiple interneuron subtypes in the formation of associative plasticity in the basolateral amygdala. The authors use biophysically detailed cell models that capture many of their core electrophysiological features, which helps translate their results into concrete hypotheses that can be tested in vivo. Moreover, they try to align the connectivity and afferent drive of their model with those found experimentally. However, the weakness is that their attempt to align with the experimental literature (specifically Krabbe et al. 2019) is performed inconsistently. Some connections between cell types were excluded without adequate justification (e.g. SOM+ to PV+). In addition, the construction of the afferent drive to the network does not reflect the stimulus presentations that are given in fear conditioning tasks. For instance, the authors only used a single training trial, the conditioning stimulus was tonic instead of pulsed, the unconditioned stimulus duration was artificially extended in time, and its delivery overlapped with the neutral stimulus, instead of following its offset. These deviations undercut the applicability of their findings.

      This study partly achieves its aim of understanding how networks of biophysically distinctive interneurons interact to generate nested rhythms that coordinate the spiking of principal neurons. What still remains to demonstrate is that this promotes plasticity for training protocols that emulate what is used in studies of fear conditioning.

      Setting aside the issues with the conditioning protocol, the study offers a model for the generation of multiple rhythms in the BLA that is ripe for experimental testing. The most promising avenue would be in vivo experiments testing the role of local VIP+ neurons in the generation of slow theta. That would go a long way to resolving whether BLA theta is locally generated or inherited from medial prefrontal cortex or ventral hippocampus afferents.

      The broader importance of this work is that it illustrates that we must examine the function of neurons not just in terms of their behavioral correlates, but by their effects on the microcircuit they are embedded within. No one cell type is instrumental in producing fear learning in the BLA. Each contributes to the orchestration of network activity to produce plasticity. Moreover, this study reinforces a growing literature highlighting the crucial role of theta and gamma rhythms in BLA function.

    1. Reviewer #1 (Public Review):

      Plasticity in the basolateral amygdala (BLA) is thought to underlie the formation of associative memories between neutral and aversive stimuli, i.e. fear memory. Concomitantly, fear learning modifies the expression of BLA theta rhythms, which may be supported by local interneurons. Several of these interneuron subtypes, PV+, SOM+, and VIP+, have been implicated in the acquisition of fear memory. However, it was unclear how they might act synergistically to produce BLA rhythms that structure the spiking of principal neurons so as to promote plasticity. Cattani et al. explored this question using small network models of biophysically detailed interneurons and principal neurons.

      Using this approach, the authors had four principal findings:

      (1) Intrinsic conductances in VIP+ interneurons generate a slow theta rhythm that periodically inhibits PV+ and SOM+ interneurons, while disinhibiting principal neurons.<br /> (2) A gamma rhythm arising from the interaction between PV+ and principal neurons establishes the precise timing needed for spike-timing-dependent plasticity.<br /> (3) Removal of any of the interneuron subtypes abolishes conditioning-related plasticity.<br /> (4) Learning-related changes in principal cell connectivity enhance expression of slow theta in the local field potential.

      The strength of this work is that it explores the role of multiple interneuron subtypes in the formation of associative plasticity in the basolateral amygdala. The authors use biophysically detailed cell models that capture many of their core electrophysiological features, which helps translate their results into concrete hypotheses that can be tested in vivo. Moreover, they try to align the connectivity and afferent drive of their model with those found experimentally.

      Deficient in this study is the construction of the afferent drive to the network, which does elicit activities that are consistent with those observed to similar stimuli. It still remains to be demonstrated that their mechanism promotes plasticity for training protocols that emulate the kinds of activities observed in the BLA during fear conditioning.

      Setting aside the issues with the conditioning protocol, the study offers a model for the generation of multiple rhythms in the BLA that is ripe for experimental testing. The most promising avenue would be in vivo experiments testing the role of local VIP+ neurons in the generation of slow theta. That would go a long way to resolving whether BLA theta is locally generated or inherited from medial prefrontal cortex or ventral hippocampus afferents.

      The broader importance of this work is that it illustrates that we must examine the function of neurons not just in terms of their behavioral correlates, but by their effects on the microcircuit they are embedded within. No one cell type is instrumental in producing fear learning in the BLA. Each contributes to the orchestration of network activity to produce plasticity. Moreover, this study reinforces a growing literature highlighting the crucial role of theta and gamma rhythms in BLA function.

  2. Jun 2024
    1. Reviewer #1 (Public Review):

      Summary:

      Tiemann et al. have undertaken an original study on the availability of molecular dynamics (MD) simulation datasets across the Internet. There is a widespread belief that extensive, well-curated MD datasets would enable the development of novel classes of AI models for structural biology. However, currently, there is no standard for sharing MD datasets. As generating MD datasets is energy-intensive, it is also important to facilitate the reuse of MD datasets to minimize energy consumption. Developing a universally accepted standard for depositing and curating MD datasets is a huge undertaking. The study by Tiemann et al. will be very valuable in informing policy developments toward this goal.

      Strengths:

      The study presents an original approach to addressing a growing concern in the field. It is clear that adopting a more collaborative approach could significantly enhance the impact of MD simulations in modern molecular sciences.

      The timing of the work is appropriate, given the current interest in developing AI models for describing biomolecular dynamics.

      Weaknesses:

      The study primarily focuses on one major MD engine (GROMACS), although this limitation is not significant considering the proof-of-concept nature of the study.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript proposes an alternative method by SDS-PAGE calibration of Halo-Myo10 signals to quantify myosin molecules at specific subcellular locations, in this specific case filopodia, in epifluorescence datasets compared to the more laborious and troublesome single molecule approaches. Based on these preliminary estimates, the authors developed further their analysis and discussed different scenarios regarding myosin 10 working models to explain intracellular diffusion and targeting to filopodia.

      Strengths:

      I confirm my previous assessment. Overall, the paper is elegantly written and the data analysis is appropriately presented. Moreover, the novel experimental approach offers advantages to labs with limited access to high-end microscopy setups (super-resolution and/or EM in particular), and the authors proved its applicability to both fixed and live samples.

      Weaknesses:

      Myself and the other two reviewers pointed to the same weakness, the use of protein overexpression in U2OS. The authors claim that Myosin10 is not expressed by U2OS, based on Western blot analysis. Does this completely rule out the possibility that what they observed (the polarity of filopodia and the bulge accumulation of Myo10) could be an artefact of overexpression? I am afraid this still remains the main weakness of the paper, despite being properly acknowledged in the Limitations.

      I consider all the remaining issues I expressed during the first revision solved.

    1. Reviewer #1 (Public Review):

      This study is convincing because they performed time-resolved X-ray crystallography under different pH conditions using active/inactive metal ions and PpoI mutants, as with the activity measurements in solution in conventional enzymatic studies. Although the reaction mechanism is simple and may be a little predictable, the strength of this study is that they were able to validate that PpoI catalyzes DNA hydrolysis through "a single divalent cation" because time-resolved X-ray study often observes transient metal ions which are important for catalysis but are not predictable in previous studies with static structures such as enzyme-substrate analog-metal ion complexes. The discussion of this study is well supported by their data. This study visualized the catalytic process and mutational effects on catalysis, providing new insight into the catalytic mechanism of I-PpoI through a single divalent cation. The authors found that His98, a candidate of proton acceptor in the previous experiments, also affects the Mg2+ binding for catalysis without the direct interaction between His98 and the Mg2+ ion, suggesting that "Without a proper proton acceptor, the metal ion may be prone for dissociation without the reaction proceeding, and thus stable Mg2+ binding was not observed in crystallo without His98". In future, this interesting feature observed in I-PpoI should be investigated by biochemical, structural, and computational analyses using other metal-ion dependent nucleases.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors follow up on their published observation that providing a lower glucose parental nutrition (PN) reduces sepsis from a common pathogen [Staphylococcus epidermitis (SE)] in preterm piglets. Here they found that a higher dose of glucose could thread the needle and get the protective effects of low glucose without incurring significant hypoglycemia. They then investigate whether the change in low glucose PN impacts metabolism to confer this benefit. The finding that lower glucose reduces sepsis is important as sepsis is a major cause of morbidity and mortality in preterm infants, and adjusting PN composition is a feasible intervention.

      Strengths:

      (1) They address a highly significant problem of neonatal sepsis in preterm infants using a preterm piglet model.

      (2) They have compelling data in this paper (and in a previous publication, ref 27) that low glucose PN confers a survival advantage. A downside of the low glucose PN is hypoglycemia which they mitigate in this paper by using a slightly high amount of glucose in the PN.

      (3) The experiment where they change PN from high to low glucose after infection is very important to determine if this approach might be used clinically. Unfortunately, this did not show an ability to reduce sepsis risk with this approach. Perhaps this is due to the much lower mortality in the high glucose group (~20% vs 87% in the first figure).

      (4) They produce an impressive multiomics data set from this model of preterm piglet sepsis which is likely to provide additional insights into the pathogenesis of preterm neonatal sepsis.

      Weaknesses:

      (1) The high glucose control gives very high blood glucose levels (Figure 1C). Is this the best control for typical PN and glucose control in preterm neonates? Is the finding that low glucose is protective or high glucose is a risk factor for sepsis?

      (2) In Figure 1B, preterm piglets provided the high glucose PN have 13% survival while preterm piglets on the same nutrition in Figure 6B have ~80% survival. Were the conditions indeed the same? If so, this indicates a large amount of variation in the outcome of this model from experiment to experiment.

      (3) Piglets on the low glucose PN had consistently lower density of SE (~1 log) across all time points. This may be due to changes in immune response leading to better clearance or it could be due to slower growth in a lower glucose environment.

      (4) Many differences in the different omics (transcriptomics, metabolomics, proteomics) were identified in the SE-LOW vs SE-HIGH comparison. Since the bacterial load is very different between these conditions, could the changes be due to bacterial load rather than metabolic reprogramming from the low glucose PN?

    1. Reviewer #1 (Public Review):

      Summary:

      The current manuscript uses electron spin resonance spectroscopy to understand how the dynamic behavior and conformational heterogeneity of the LPS transport system change during substrate transport and in response to the membrane, bound nucleotide (or transition state analog), and accessory subunits. The study builds on prior structural studies to expand our molecular understanding of this highly significant bacterial transport system.

      Strengths

      This series of well-designed and well-executed experiments provides new mechanistic insights into the dynamic behavior of the LPS transport system. Notable new insights provided by this study include its indication of the spatial organization of the LptC domain, which was poorly resolved in structures, and how the LptC domain modulates the dynamic behavior of the gate through which lipids access the binding site. In addition, a mass spectrometry approach designed to examine LPS binding at different stages in the nucleotide-dependent conformational cycle provides insight into the order of operations of LPS binding and transport.

    1. Reviewer #1 (Public Review):

      Summary:

      Schafer et al. tested whether the hippocampus tracks social interactions as sequences of neural states within an abstract social space defined by dimensions of affiliation and power, using a task in which participants engaged in narrative-based social interactions. The findings of this study revealed that individual social relationships are represented by unique sequences of hippocampal activity patterns. These neural trajectories corresponded to the history of trial-to-trial affiliation and power dynamics between participants and each character, suggesting an extended role of the hippocampus in encoding sequences of events beyond spatial relationships.

      The current version has limited information on details in decoding and clustering analyses which can be improved in the future revision.

      Strengths:

      (1) Robust Analysis: The research combined representational similarity analysis with manifold analyses, enhancing the robustness of the findings and the interpretation of the hippocampus's role in social cognition.

      (2) Replicability: The study included two independent samples, which strengthens the generalizability and reliability of the results.

      Weaknesses:

      I appreciate the authors for utilizing contemporary machine-learning techniques to analyze neuroimaging data and examine the intricacies of human cognition. However, the manuscript would benefit from a more detailed explanation of the rationale behind the selection of each method and a thorough description of the validation procedures. Such clarifications are essential to understand the true impact of the research. Moreover, refining these areas will broaden the manuscript's accessibility to a diverse audience.

    1. Reviewer #1 (Public Review):

      Summary:

      An online database called MRAD has been developed to identify the risk or protective factors for AD.

      Strengths:

      This study is a very intriguing study of great clinical and scientific significance that provided a thorough and comprehensive evaluation with regard to risk or protective factors for AD. It also provided physicians and scientists with a very convenient, free as well as user-friendly tool for further scientific investigation.

      Weaknesses:

      (1) The paper mentions that the MRAD database currently contains data only from European populations, with no mention of data from other populations or ethnicities. Given potential differences in Alzheimer's Disease (AD) across different populations, the limitations of the data should be emphasized in the discussion, along with plans to expand the database to include data from more racial and geographic regions.

      (2) Sufficient information should be provided to clarify the data sources, sample selection, and quality control methods used in the MRAD database. Readers may expect more detailed information about the data to ensure data reliability, representativeness, and research applicability.

      (3) While the authors mention that the MRAD database offers interactive visualization interfaces, the paper lacks detailed information on how to interpret and understand these visual results. Guidelines on effectively using these visualization tools to help researchers better comprehend the data are essential.

      (4) In the conclusion section of the paper, it is advisable to explicitly emphasize the practical applications and potential clinical significance of the MRAD database. The paper should articulate how MRAD can contribute to the early identification, diagnosis, prevention, and treatment of AD and its potential societal and clinical value more clearly.

      (5) Grammar and Spelling Errors: There are several spelling and grammar errors in the paper. Referring to a scientific editing service is recommended.

    1. Reviewer #1 (Public Review):

      This study by Hallada et al. reported the detailed characterization of cis and trans-binding of JAM-C in mediating the developmental migration of CGNs, combining ex vivo cultures, time-lapse imaging, and mathematical analyses. Overall, the study was comprehensively carried out, and the conclusion is important in our understanding of the signaling mechanism of cerebellar development.

      Weaknesses:

      Several technical concerns need to be clarified.

      (1) The efficiency of shRNA knockdown of endogenous JAM-C. The entire study was based on the assumption that the endogenous wild-type JAM-C was depleted to the extent that it would not influence the observed phenotypes. However, this point requires verification, particularly in the ex vivo cultures.

      (2) The expression levels of mutant JAM-C proteins. It is unclear whether the exogenous expression of mutant JAM-C proteins would be comparable to that of the endogenous JAM-C. In addition, the levels of exogenously expressed JAM-C may likely alter over the time course of experiments, e.g., in some experiments over 48 hours.

      (3) The resolution of imaging methods. Different imaging methods were utilized in the study, and it is essential to clearly state the resolution of each imaging dataset (e.g., 0.2 x 0.2 um per pixel). This information is crucial to assess the reliability of observed phenotypes, which in some cases were relatively unimpressive.

    1. Reviewer #1 (Public Review):

      Summary:

      In this important paper, the authors investigate the temporal dynamics of expectation of pain using a combined fMRI-EEG approach. More specifically, by modifying the expectations of higher or lower pain on a trial-to-trial basis, they report that expectations largely share the same set of activations before the administration of the painful stimulus, and that the coding of the valence of the stimulus is observed only after the nociceptive input has been presented. fMRI-informed EEG analysis suggested that the temporal sequence of information processing involved the Dorsolateral prefrontal cortex (DLPFC), the anterior insula, and the anterior cingulate cortex. The strength of evidence is convincing, and the methods are solid, but a few alternative interpretations about the findings related to the control group, as well as a more in-depth discussion on the correlations between the BOLD and EEG signals would strengthen the manuscript.

      Strengths:

      In line with open science principles, the article presents the data and the results in a complete and transparent fashion.

      From a theoretical standpoint, the authors make a step forward in our understanding of how expectations modulate pain by introducing a combination of spatial and temporal investigation. It is becoming increasingly clear that our appraisal of the world is dynamic, guided by previous experiences, and mapped on a combination of what we expect and what we get. New research methods, questions, and analyses are needed to capture these evolving processes.

      Weaknesses:

      The control condition is not so straightforward. Across the manuscript it is defined as "no expectation", and in the legend of Figure 1 it is mentioned that the third state would be "no prediction". However, it is difficult to conceive that participants would not have any expectations or predictions. Indeed, in the description of the task it is mentioned that participants were instructed that they would receive stimuli during "intermediate sensitive states". The results of the pain scores and expectations might support the idea that the control condition is situated in between the placebo and nocebo conditions. However, since this control condition was not part of the initial conditioning, and = participants had no reference to previous stimuli, one might expect that some ratings might have simply "regressed to the mean" for a lack of previous experience.

      General considerations and reflections:

      Inducing expectations in the desired direction is not a straightforward task, and results might depend on the exact experimental conditions and the comparison group. In this sense, the authors' choice of having 3 groups of positive, negative, and "neutral" expectations is to be praised. On the other hand, also control groups form their expectations, and this can constitute a confounder in every experiment using expectation manipulation, if not appropriately investigated.

      In addition, although fMRI is still (probably) the best available tool we have to understand the spatial representation of cortical processing, limitations about not only the temporal but even the spatial resolution should be acknowledged. Given the anatomical and physiological complexity of the cortical connections, as we know from the animal world, it is still well possible that subcircuits are activated also for positive and negative expectations, but cannot be observed due to the limitation of our techniques. Indeed, on an empirical/evolutionary basis it would remain unclear why we should have a system that waits for the valence of a stimulus to show differential responses.

      Also, moving in a dimension of network and graph theory, one would not expect single areas to be responsible for distinct processes, but rather that they would integrate information in a shared way, potentially with different feedback and feedforward communications. As such, it becomes more difficult to assume the insula is a center for coding potential pain, perhaps more of a node in a system that signals potential dangers for the integrity of the body.

      The authors analyze the EEG signal between 0.5 to 128 Hz, finding significant results in the correlation between single-trial BOLD and EEG activity in the higher gamma range (see Figure 6 panel C). It would be interesting to understand the rationale for including such high frequencies in the signal, and the interpretation of the significant correlation in the high gamma range.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, BOUTRY et al examined a cnidarian Hydra model system where spontaneous tumors manifest in laboratory settings, and lineages featuring vertically transmitted neoplastic cells (via host budding) have been sustained for over 15 years. They observed that hydras harboring long-term transmissible tumors exhibit an unexpected augmentation in tentacle count. In addition, the presence of extra tentacles, enhancing the host's foraging efficiency, correlated with an elevated budding rate, thereby promoting tumor transmission vertically. This study provided evidence that tumors, akin to parasitic entities, can also exert control over their hosts.

      Strengths:

      The manuscript is well-written, and the phenotype is intriguing.

      Weaknesses:

      The quality of this manuscript could be improved if more evidence were to be provided regarding the beneficial versus detrimental effects of the tumors.

    1. Reviewer #1 (Public Review):

      Summary:

      Using fiber photometry, Mitchell et al. report that the calcium activity of lateral hypothalamic orexin neurons increases during the approach to a food pellet in a manner that depends on the metabolic state and begins to return to baseline prior to and during food consumption. This activity is also enhanced during the approach to palatable food relative to a standard chow pellet. They also present ex vivo electrophysiological evidence that GABAergic neurons in the ventral pallidum and lateral nucleus accumbens shell, but not medial nucleus accumbens shell, provide predominantly inhibitory, monosynaptic input onto lateral hypothalamic neurons. Overall, most claims are well supported by the data, though the electrophysiology analysis is somewhat limited and some information that could inform interpretation of the data is lacking.

      Strengths:

      (1) The fiber photometry recordings make use of an isosbestic control, and the signals were aligned using linear regression after baseline correction and calculation of robust z-scores.

      (2) The fiber photometry analyses are based on animal averages, rather than trial-based averages, which can result in Type 1 errors without appropriate measures to account for the influence of the subject.

      (3) Monosynaptic currents from GABAergic inputs from the ventral pallidal and lateral shell are identified by the remaining current in the presence of tetrodotoxin (TTX) and 4-aminopyridine (4-AP).

      Weaknesses:

      (1) The data are not discussed in the context of the prior literature on ventral pallidal GABAergic inputs to the lateral hypothalamus (such as Prasad et al. 2020, JNeurosci) and it is not clear whether these patterns of monosynaptic inhibitory inputs are specific to orexin neurons.

      (2) The paper does not address whether there are synaptic inputs from non-GABAergic ventral pallidum neurons, though very recent work suggests that ventral pallidal projections to the lateral hypothalamus may be enriched with glutamatergic RNA markers relative to other projections (Bernet et al. 2024, JNeurosci). Some statements in the manuscript refer to ventral pallidal inputs in general, despite the use of cell-type specific expression in VGAT-cre mice.

      (3) The statistical analysis of the electrophysiology data is limited and does not appear to account for the lack of independence for cells recorded from the same mouse.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors propose that the energy landscape of animals can be thought of in the same way as the fundamental versus realized niche concept in ecology. Namely, animals will use a subset of the fundamental energy landscape due to a variety of factors. The authors then show that the realized energy landscape of eagles increases with age as the animals are better able to use the energy landscape.

      Strengths:

      This is a very interesting idea and that adds significantly to the energy landscape framework. They provide convincing evidence that the available regions used by birds increase with size.

      Weaknesses:

      Some of the measures used in the manuscript are difficult to follow and there is no mention of the morphometrics of birds or how these change with age (other than that they don't change which seems odd as surely they grow). Also, there may need to be more discussion of other ontogenetic changes such as foraging strategies, home range size etc.

    1. Reviewer #1 (Public Review):

      Summary:

      In this paper the authors develop a comprehensive program to investigate the organization of chromosome structures at 100 kb resolution. It is extremely well executed. The authors have thought through all aspects of the problem. The resulting software will be most useful to the community. Interestingly they capture many experimental observations accurately. I have very little complaints.

      Strengths:

      A lot of details are provided. The success of the method is well illustrated. Software is easily available,

      Weaknesses:

      The number of parameters in the energy function is very large. Any justification? Could they simply be the functions?

      What would the modification be if the resolution is increased?

      They should state that the extracted physical values are scale dependent. Example, viscosity.

    1. Reviewer #1 (Public Review):

      Summary

      This manuscript aimed to study the role of Rudhira (also known as Breast Carcinoma Amplified Sequence 3), an endothelium-restricted microtubules-associated protein, in regulating of TGFβ signaling. The authors demonstrate that Rudhira is a critical signaling modulator for TGFβ signaling by releasing Smad2/3 from cytoskeletal microtubules and how Rudhira is a Smad2/3 target gene. Taken together, the authors provide a model of how Rudhira contributes to TGFβ signaling activity to stabilize the microtubules, which is essential for vascular development.

      Strengths

      The study used different methods and techniques to achieve aims and support conclusions, such as Gene Ontology analysis, functional analysis in culture, immunostaining analysis, and proximity ligation assay. This study provides an unappreciated additional layer of TGFβ signaling activity regulation after ligand-receptor interaction.

      Weaknesses

      (1) It is unclear how current findings provide a better understanding of Rudhira KO mice, which the authors published some years ago.<br /> (2) Why do they use HEK cells instead of SVEC cells in Figure 2 and 4 experiments?<br /> (3) A model shown in Figure 5E needs improvement to grasp their findings easily.

    1. Reviewer #1 (Public Review):

      Summary:

      Lee, Eugine et al. use in vivo barcoded lineage tracing to investigate the evolutionary paths to androgen receptor signaling inhibition (ARSI) resistance in two different prostate cancer clinical scenario models: measurable disease and minimal residual disease. Using two prostate cancer cell lines, LNCaP/AR and CWR22PC, the authors find that in their minimal residual disease models, the outgrowth of pre-existing resistant clones gives rise to ARSI-resistant tumors. Interestingly, in their measurable disease model or post-engraftment ARSI setting, these pre-existing resistant clones are depleted and rather a subset of clones that give rise to the treatment of naïve tumors adapt to ARSI treatment and are enriched in resistant tumors. For the LNCaP/AR cell line, characterization of pre-existing resistant clones in treatment naïve and ARSI treatment settings reveal increased baseline androgen receptor transcriptional output as well as baseline upregulation of glucocorticoid receptor (GR) as the primary driver of pre-existing resistance. Similarly, the authors found induction of high GR expression over long-term ARSI treatment in ARSI-sensitive clones for adaptive resistance to ARSI. For CWR22Pc cells, HER3/NRG1 signaling was the primary driver for ARSI resistance in both measurable disease and minimal residual disease models. Not only were these findings consistent with the authors' previous reports of GR and NRG1/Her3 as the molecular drivers of ARSI resistance in LNCaP/AR and CWR22Pc, respectively, but also demonstrate conserved resistance mechanisms despite pre-existing or adaptive evolutionary paths to resistance. Lastly, the authors show adaptive ARSI resistance is dependent on interclonal cooperation, where the presence of pre-existing resistant clones or "helper" clones is required to promote adaptive resistance in ARSI-sensitive clones.

      Strengths:

      The authors employ DNA barcoding, powerful a tool already demonstrated by others to track the clonal evolution of tumor populations during resistance development, to study the effects of the timing of therapy as a variable on resistance evolution. The authors use barcoding in two cell line models of prostate cancer in two clinical disease scenarios to demonstrate divergent evolutionary paths converging on common resistant mechanisms. By painstakingly isolating clones with barcodes of interest to generate clonal cell lines from the treatment of naïve cell populations, the authors are able to not only characterize pre-existing resistance but also show cooperativity between resistant and drug-sensitive populations for adaptive resistance.

      Weaknesses:

      While the finding that different evolutionary paths result in common molecular drivers of ARSI resistance is novel and unexpected, this work primarily confirms the authors' previous published work identifying the resistance mechanisms in these cell lines. The impact of the work would be greater with additional studies understanding the specific molecular/genetic mechanisms by which cells become resistant or cooperate within a population to give rise to resistant population subclones.

      This study would also benefit from additional explanation or exploration of why the two resistance driver pathways described (GR and NRG1/Her3) are cell line specific and if there are genetic or molecular backgrounds in which specific resistance signaling is more likely to be the predominant driver of resistance.

    1. Reviewer #1 (Public Review):

      In this manuscript, Chowdhury and co-workers provide interesting data to support the role of G4-structures in promoting chromatin looping and long-range DNA interactions. The authors achieve this by artificially inserting a G4-containing sequence in an isolated region of the genome using CRISPR-Cas9 and comparing it to a control sequence that does not contain G4 structures. Based on the data provided, the authors can conclude that G4-insertion promotes long-range interactions (measured by Hi-C) and affects gene expression (measured by qPCR) as well as chromatin remodelling (measured by ChIP of specific histone markers).

      In this revised version of the manuscript, G4 formation of the inserted sequence was validated by ChIP-qPCR, and the same G4-containing sequence was inserted at a second locus, and similar, though not identical, effects on chromatin and gene expression were observed.

      Strengths:

      This is the first attempt to connect genomics datasets of G4s and HiC with gene expression.<br /> The use of Cas9 to artificially insert a G4 is also very elegant.

    1. Reviewer #1 (Public Review):

      Cystinosis is a rare hereditary disease caused by biallelic loss of the CTNS gene, encoding two cystinosin protein isoforms; the main isoform is expressed in lysosomal membranes where it mediates cystine efflux whereas the minor isoform is expressed at the plasma membrane and in other subcellular organelles. Sur et al proceed from the assumption that the pathways driving the cystinosis phenotype in the kidney might be identified by comparing the transcriptome profiles of normal vs CTNS-mutant proximal tubular cell lines. They argue that key transcriptional disturbances in mutant kidney cells might not be present in non-renal cells such as CTNS-mutant fibroblasts.

      Using cluster analysis of the transcriptomes, the authors selected a single vacuolar H+ATPase (ATP6VOA1) for further study, asserting that it was the "most significantly downregulated" vacuolar H+ATPase (about 58% of control) among a group of similarly downregulated H+ATPases. They then showed that exogenous ATP6VOA1 improved CTNS(-/-) RPTEC mitochondrial respiratory chain function and decreased autophagosome LC3-II accumulation, characteristic of cystinosis. The authors then treated mutant RPTECs with 3 "antioxidant" drugs, cysteamine, vitamin E, and astaxanthin (ATX). ATX (but not the other two antioxidant drugs) appeared to improve ATP6VOA1 expression, LC3-II accumulation, and mitochondrial membrane potential. Respiratory chain function was not studied. RTPC cystine accumulation was not studied.

      The major strengths of this manuscript reside in its two primary findings.<br /> (1) Plasmid expression of exogenous ATP6VOA1 improves mitochondrial integrity and reduces aberrant autophagosome accumulation.<br /> (2) Astaxanthin partially restores suboptimal endogenous ATP6VOA1 expression.

      Taken together, these observations suggest that astaxanthin might constitute a novel therapeutic strategy to ameliorate defective mitochondrial function and lysosomal clearance of autophagosomes in the cystinotic kidney. This might act synergistically with the current therapy (oral cysteamine) which facilitates defective cystine efflux from the lysosome.

      There are, however, several weaknesses in the manuscript.<br /> (1) The reductive approach that led from transcriptional profiling to focus on ATP6VOA1 is not transparent and weakens the argument that potential therapies should focus on correction of this one molecule vs the other H+ ATPase transcripts that were equally reduced - or transcripts among the 1925 belonging to at least 11 pathways disturbed in mutant RPTECs.<br /> (2) A precise description of primary results is missing -- the Results section is preceded by or mixed with extensive speculation. This makes it difficult to dissect valid conclusions from those derived from less informative experiments (eg data on CDME loading, data on whole-cell pH instead of lysosomal pH, etc).<br /> (3) Data on experimental approaches that turned out to be uninformative (eg CDME loading, or data on whole=cell pH assessment with BCECF).<br /> (4) The rationale for the study of ATX is unclear and the mechanism by which it improves mitochondrial integrity and autophagosome accumulation is not explored (but does not appear to depend on its anti-oxidant properties).<br /> (5) Thoughtful discussion on the lack of effect of ATP6VOA1 correction on cystine efflux from the lysosome is warranted, since this is presumably sensitive to intralysosomal pH.<br /> (6) Comparisons between RPTECs and fibroblasts cannot take into account the effects of immortalization on cell phenotype (not performed in fibroblasts).

      This work will be of interest to the research community but is self-described as a pilot study. It remains to be clarified whether transient transfection of RPTECs with other H+ATPases could achieve results comparable to ATP6VOA1. Some insight into the mechanism by which ATX exerts its effects on RPTECs is needed to understand its potential for the treatment of cystinosis.

    1. Reviewer #1 (Public Review):

      Weber et al. investigated the role of human DDX6 in messenger RNA decay using CRISPR/Cas9 mediated knockout (KO) HEK293T cells. The authors showed that stretches of rare codons or codons known to cause ribosome stalling in reporter mRNAs leads to a DDX6 specific loss of mRNA decay. The authors moved on to show that there is a physical interaction between DDX6 and the ribosome. Using co-immunoprecipitation (co-IP) experiments, the authors determined that the FDF-binding surface of DDX6 is necessary for binding to the ribosome, the same domain which is necessary for binding several decapping factors such as EDC3, LSM14A, and PatL. However, they determine the interaction between DDX6, and the ribosome is independent of the DDX6 interaction with the NOT1 subunit of the CCR4-NOT complex. Interestingly, the authors were able to determine that all known functional domains, including the ATPase activity of DDX6, are required for its effect on mRNA decay. Using ribosome profiling and RNA-sequencing, the authors were able to identify a group of 260 mRNAs that exhibit increased translational efficiency (TE) in DDX6 Knockout cells, suggesting that DDX6 translationally represses certain mRNAs. The authors determined this group of mRNAs has decreased GC content, which has been previously noted to coincide with low codon optimality, the authors thus conclude DDX6 may translationally repress transcripts of low codon optimality. Furthermore, the authors identify 35 transcripts that are both upregulated in DDX6 KO cells and exhibit locally increased ribosome footprints (RBFs), suggestive of a ribosome stalling sequence. Lastly, the authors showed that both endogenous and tethering of DDX6 to reporter mRNAs with and without these translational stalling sequences leads to a relative increase in ribosome association to a transcript. Overall, this work confirms that the role of DDX6 in mRNA decay shares several conserved features with the yeast homolog Dhh1. Dhh1 is known to bind slow-moving ribosomes and lead to the differential decay of non-optimal mRNA transcripts (Radhakrishnan et al. 2016). The novelty of this work lies primarily in the identification of the physical interaction between DDX6 and the ribosome and the breakdown of which domains of DDX6 are necessary for this interaction. This work provides major insight into the role of the human DDX6 in the process of mRNA decay and emphasizes the evolutionary conservation of this process across Eukaryotes.

      Overall, the work done by Weber et al. is sound, with the proper controls. The authors expand significantly on the knowledge of what we know about DDX6 in the process of mRNA decay in humans, confirming the evolutionary conservation of the role of this factor across eukaryotes. The analysis of the RNA-seq and Ribo-seq data could be more in-depth, however, the authors were able to show with certainty that some transcripts containing known repetitive sequences or polybasic sequences exhibited a DDX6-mRNA decay effect.

    1. Joint Public Review:

      Detection of early-stage colorectal cancer is of great importance. Laboratory scientists and clinicians have reported different exosomal biomarkers to identify colorectal cancer patients. This is a proof-of-principle study of whether exosomal RNAs, and particularly predicted lncRNAs, are potential biomarkers of early-stage colorectal cancer and its precancerous lesions.

      Strengths:

      The study provides a valuable dataset of the whole-transcriptomic profile of circulating sEVs, including miRNA, mRNA, and lncRNA. This approach adds to the understanding of sEV-RNAs' role in CRC carcinogenesis and facilitates the discovery of potential biomarkers.

      The developed 60-gene t-SNE model successfully differentiated T1a stage CRC/AA from normal controls with high specificity and sensitivity, indicating the potential of sEV-RNAs as diagnostic markers for early-stage colorectal lesions.

      The study combines RNA-seq, RT-qPCR, and modelling algorithms to select and validate candidate sEV-RNAs, maximising the performance of the developed RNA signature. The comparison of different algorithms and consideration of other factors enhance the robustness of the findings.

      Weaknesses:

      Validation in larger cohorts would be required to establish as biomarkers and to demonstrate whether the predicted lncRNAs implicated in these biomarkers are indeed present and whether they are robustly predictive/prognostic.

      The following points were noted during preprint review:

      (1) Lack of analysis on T1-only patients in the validation cohort: While the study identifies key sEV-RNAs associated with T1a stage CRC and AA, the validation cohort is only half of the patients in T1(25 out of 49). It would be better to do an analysis using only the T1 patients in the validation cohort, so the conclusion is not affected by the T2-T3 patients.

      (2) Lack of performance analysis across different demographic and tumor pathology factors listed in Supplementary Table 12. It's important to know if the sEV-RNAs identified in the study work better/worse in different age/sex/tumor size/Yamada subtypes etc.

      (3) The authors tested their models in a medium size population of 124 individuals, which is not enough to obtain an accurate evaluation of the specificity and sensitivity of the biomarkers proposed here. External validation would be required.

      (4) Depicting the full RNA landscape of circulating exosomes is still quite challenging. The authors annotated 58,333 RNA species in exosomes, most of which were lncRNAs, with annotation methods briefly described in Suppl Methods.

    1. Reviewer #1 (Public Review):

      Summary:

      Ger and colleagues address an issue that often impedes computational modeling: the inherent ambiguity between stochasticity in behavior and structural mismatch between the assumed and true model. They propose a solution to use RNNs to estimate the ceiling on explainable variation within a behavioral dataset. With this information in hand, it is possible to determine the extent to which "worse fits" result from behavioral stochasticity versus failures of the cognitive model to capture nuances in behavior (model misspecification). The authors demonstrate the efficacy of the approach in a synthetic toy problem and then use the method to show that poorer model fits to 2-step data in participants with low IQ are actually due to an increase in inherent stochasticity, rather than systemic mismatch between model and behavior.

      Strengths:

      Overall I found the ideas conveyed in the paper interesting and the paper to be extremely clear. The method itself is clever and intuitive and I believe it could potentially be useful in certain circumstances, particularly ones where the sources of structure in behavioral data are unknown. Support for the method from synthetic data is clear and compelling. The flexibility of the method means that it could potentially be applied to different types of behavioral data - without any hypotheses about the exact behavioral features that might be present in a given task.

      Weaknesses:

      That said, I have some concerns with the manuscript in its current form, largely related to the applicability of the proposed methods for problems of importance in computational cognitive neuroscience. This concern stems from the fact that the toy problem explored in the manuscript is somewhat simple, and the theoretical problem addressed in it could have been identified through other means (for example through use of posterior predictive checking for model validation), and the actual behavioral data analyzed were interpreted as a null result (failure to reject that the behavioral stochasticity hypothesis), rather than actual identification of model misspecification. Thus, in my opinion, the jury is still out on whether this method could be used to identify a case of model misspecification that actually affects how individual differences are interpreted in a real cognitive task. Furthermore, the method requires considerable data for pretraining, well beyond what would be collected in a typical behavioral study, raising further questions about its applicability in problems of practical relevance. I expand on these primary concerns and raise several smaller points below.

      A primary concern I have about this work is that it is unclear whether the method described could provide any advantage for real cognitive modeling problems beyond what is typically done to minimize the chance of model misspecification (in particular, posterior predictive checking). The toy problem examined in the manuscript is pretty extreme (two of the three synthetic agents are very far from what a human would do on the task, and the models deviate from one another to a degree that detecting the difference should not be difficult for any method). The issue posed in the toy data would easily be identified by following good modeling practices, which include using posterior predictive checking over summary measures to identify model insufficiencies, which in turn would call for the need for a broader set of models (See Wilson & Collins 2019). In this manuscript descriptive analyses are not performed ( which, to me, feels a bit problematic for a paper that aims to improve cognitive modeling practices), however I think it is almost certain that the differences between the toy models would be evident by eye in standard summary measures of two-step task data. The primary question posed in the analysis of the empirical data is as to whether fit differences related IQ might reflect systematic differences in the model across individuals, but in this case application of the newly developed method provides little evidence for structural (model) differences. Thus, it remains unclear whether the method could identify model misspecification in real world data, and even more so whether it could reveal misspecification in situations where standard posterior predictive checking techniques would fall short. The rebuttal highlighted the better fit of the RNN on the empirical data as providing positive evidence for the ability of the method to identify model insufficiency, but I see this result as having limited epistemological value, given that there is no follow up to explore what the insufficiency actually was, or why accounting for it might be important. The authors list many of the points above as limitations in their discussion section, but in my opinion, they are relatively major ones.

      The manuscript now mentions in the discussion that the newly developed methods should be seen as being just one tool in the larger toolkit of the computational cognitive modeler. However, one practical consideration here is that, since other existing tools such as simulation and descriptive analyses can be combined to 1) identify model insufficiency, 2) motivate specific model changes that can fix the problem, it is not exactly clear what the value added from the proposed method is.

      One final practical limitation of the method is that it requires extensive pretraining (on >500 participants) in existing study, limiting its applicability for most use cases.

    1. Reviewer #1 (Public Review):

      In this paper the authors provide a characterisation of auditory responses (tones, noise, and amplitude modulated sounds) and bimodal (somatosensory-auditory) responses and interactions in the higher order lateral cortex (LC) of the inferior colliculus (IC) and compare these characteristic with the higher order dorsal cortex (DC) of the IC - in awake and anaesthetised mice. Dan Llano's group have previously identified gaba'ergic patches (modules) in the LC distinctly receiving inputs from somatosensory structures, surrounded by matrix regions receiving inputs from auditory cortex. They here use 2P calcium imaging combined with an implanted prism to - for the first time - get functional optical access to these subregions (modules and matrix) in the lateral cortex of IC in vivo, in order to also characterise the functional difference in these subparts of LC. They find that both DC and LC of both awake and anaesthetised appears to be more responsive to more complex sounds (amplitude modulated noise) compared to pure tones and that under anesthesia the matrix of LC is more modulated by specific frequency and temporal content compared to the gaba'ergic modules in LC. However, while both LC and DC appears to have low frequency preferences, this preference for low frequencies is more pronounced in DC. Furthermore, in both awake and anesthetized mice somatosensory inputs are capable of driving responses on its own in the modules of LC, but very little in the matrix. The authors now compare bimodal interactions under anaesthesia and awake states and find that effects are different in some cases under awake and anesthesia - particularly related to bimodal suppression and enhancement in the modules.

      The paper provides new information about how subregions with different inputs and neurochemical profiles in the higher order auditory midbrain process auditory and multisensory information, and is useful for the auditory and multisensory circuits neuroscience community.

      The manuscript is improved by the response to reviewers. The authors have addressed my comments by adding new figures and panels, streamlining the analysis between awake and anaesthetised data (which has led to a more nuanced, and better supported conclusion), and adding more examples to better understand the underlying data. In streamlining the analyses between anaesthetised and awake data I would probably have opted for bringing these results into merged figures to avoid repetitiveness and aid comparison, but I acknowledge that that may be a matter of style. The added discussions of differences between awake and anaesthesia in the findings and the discussion of possible reasons why these differences are present help broaden the understanding of what the data looks like and how anaesthesia can affect these circuits.

      As mentioned in my previous review, the strength of this study is in its demonstration of using prism 2p imaging to image the lateral shell of IC to gain access to its neurochemically defined subdivisions, and they use this method to provide a basic description of the auditory and multisensory properties of lateral cortex IC subdivisions (and compare it to dorsal cortex of IC). The added analysis, information and figures provide a more convincing foundation for the descriptions and conclusions stated in the paper. The description of the basic functionality of the lateral cortex of the IC are useful for researchers interested in basic multisensory interactions and auditory processing and circuits. The paper provides a technical foundation for future studies (as the authors also mention), exploring how these neurochemically defined subdivisions receiving distinct descending projections from cortex contribute to auditory and multisensory based behaviour.

      Minor comment:<br /> - The authors have now added statistics and figures to support their claims about tonotopy in DC and LC. I asked for and I think allows readers to better understand the tonotopical organisation in these areas. One of the conclusions by the authors is that the quadratic fit is a better fit that a linear fit in DCIC. Given the new plots shown and previous studies this is likely true, though it is worth highlighting that adding parameters to a fitting procedure (as in the case when moving from linear to quadratic fit) will likely lead to a better fit due to the increased flexibility of the fitting procedure.

    1. Reviewer #1 (Public Review):

      This study reports that spatial frequency representation can predict category coding in the inferior temporal cortex. The original conclusion was based on likely problematic stimulus timing (33 ms which was too brief). Now the authors claim that they also have a different set of data on the basis of longer stimulus duration (200 ms).

      One big issue in the original report was that the experiments used a stimulus duration that was too brief and could have weakened the effects of high spatial frequencies and confounded the conclusions. Now the authors provided a new set of data on the basis of a longer stimulus duration and made the claim that the conclusions are unchanged. These new data and the data in the original report were collected at the same time as the authors report.

      The authors may provide an explanation why they performed the same experiments using two stimulus durations and only reported one data set with the brief duration. They may also explain why they opted not to mention in the original report the existence of another data set with a different stimulus duration, which would otherwise have certainly strengthened their main conclusions.

      I suggest the authors upload both data sets and analyzing codes, so that the claim could be easily examined by interested readers.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors ran an explorative analysis in order to describe how a "tri-partite" brain network model could describe the combination between resting fMRI data and individual characteristics. They utilized previously obtained fMRI data across four scanning runs in 144 individuals. At the end of each run, participants rated their patterns of thinking on 12 statements (short multi-dimensional experience sampling-MDES) using a 0-100% visual analog scale. Also, 71 personality traits were obtained on 21 questionnaires. The authors ran two separate principal component analyses (PCAs) to obtain low dimensional summaries of the two individual characteristics (personality traits from questionnaires, and thought patterns from MDES). The dimensionality reduction of the fMRI data was done by means of gradient analysis, which was combined with Neurosynth decoding to visualize the functional axis of the gradients. To test the reliability of thought components across scanning time, intra-class correlation coefficients (ICC) were calculated for the thought patterns, and discriminability indices were calculated for whole gradients. The relationship between individual differences in traits, thoughts, and macro-scale gradients was tested with multivariate regression. The authors found: a) reliability of thought components across the one hour of scanning, b) Gradient 1 differentiated between visual regions and DMN, Gradient 2 dissociated somatomotor from visual cortices, Gradient 3 differentiated the DMN from the fronto-parietal system), c) the associations between traits/thought patterns and brain gradients revealed significant associations with "introversion" and "specific internal" thought: "Introversion" was associated with variant parcels on the three gradients, with most of parcels belonging to the VAN and then to the DMN; and "Specific internal thought" was associated with variant parcels on the three gradients with most of parcels belonging to the DAN and then the visual. The authors conclude that interactions between attention systems and the DMN are important influences on ongoing thought at rest.

      Strengths:

      The study's strength lies in its attempt to combine brain activity with individual characteristics using state-of-the-art methodologies.

      Weaknesses:<br /> The study protocol in its current form restricts replicability. This is largely due to missing information on the MRI protocol and data preprocessing. The article refers the reader to the work of Mendes et al 2019 which is said to provide this information, but the paper should rather stand alone with all this crucial material mentioned here, as well. Also, effect sizes are provided only for the multiple multivariate regression of the inter-class correlations, which makes it difficult to appreciate the power of the other obtained results.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Kennedy et al examine how new information is organized in memory. They tested an idea based on latent theory that suggests that large prediction error leads to the formation of a new memory, whereas small prediction error leads to memory updating. They directly tested the prediction by extinguishing fear conditioned rats with gradual extinction. For their experiment, gradual extinction was carried out by progressively reducing the intensity of shocks that were co-terminated with the CS, until the CS was presented alone. Doing so resulted in diminished spontaneous recovery and reinstatement compared to Standard Extinction. The results are compelling and have important implications for the field of fear learning and memory as well as translation to anxiety-related disorders.

      The authors carried out the Spontaneous Recovery experiment in 2 separate experiments. In one, they found differences between the Gradual and Standard Extinction groups, but in the second, they did not. It seems that their reinstatement test was more robust, and showed significant differences between the Gradual and Standard Extinction groups.

      The authors carried out important controls which enable proper contextualization of the findings. They included a "Home" group, in which rats received fear conditioning, but not an extinction manipulation. Relative to this group, the Gradual and Standard extinction groups showed a reduction in freezing.

      In Experiments 3 and 4, the authors essentially carried out clever controls which served to examine whether shock devaluation (Experiment 4) and reduction in shock intensity (rather than a gradual decrease in shock intensity) (Experiment 3) would also yield a decrease in the return of fear. In-line with a latent-cause updating explanation for accounting for the Gradual Extinction, they did not.

      In Experiment 5, the authors examined whether a prediction error produced by a change of context might contribute interference to the latent cause updating afforded by the Gradual Extinction. Such a prediction would align with a more flexible interpretation of a latent-cause model, such as those proposed by Redish (2007) and Gershman et al (2017), but not the latent-cause interpretation put forth by the Cochran-Cisler model (2019). Their findings showed that whereas Gradual Extinction carried out in the same context as acquisition resulted in less return of fear than Standard Extinction, it actually yielded a greater degree of return of fear when carried out in a different context, in support of the Redish and Gershman accounts, but not Cochran-Cisler.

      Experiment 6 extended the findings from Experiment 5 in a different state-splitting modality: timing. In this experiment, the authors tested whether a shift in temporal context also influenced the gradual extinction effect. They thus carried out the extinction sessions 21 days after conditioning. They found that while Gradual Extinction was indeed effective when carried out one day after fear conditioning, it did not when conducted 21 days later.

      The authors next carried out an omnibus analysis which included all the data from their 6 experiments, and found that overall, Gradual Extinction resulted in diminished return of fear relative to Standard Extinction. I thought the omnibus analysis was a great idea, and an appropriate way to do their data justice.

      Strengths: Compelling findings. The data support the conclusions. 6 rigorous experiments were conducted which included clever controls. Data include male and female rats. I really liked the omnibus analysis.

      Weaknesses: None noted

    1. Joint Public Review:

      Summary:

      This manuscript investigates how energetic demands affect the sleep-wake cycle in Drosophila larvae. L2 stage larvae do not show sleep rhythm and long-term memory (LTM), however, L3 larvae do. The authors manipulate food content to provide insufficient nutrition, which leads to more feeding, no LTM, and no sleep even in older larvae. Similarly, activation of NPF neurons suppresses sleep rhythm. Furthermore, they try to induce a sleep-like state using pharmacology or genetic manipulations in L2 larvae, which can mimic some of the L3 behaviours. A key experimental finding is that activation of DN1a neurons activates the downstream DH44 neurons, as assayed by GCaMP calcium imaging. This occurs only in the third instar and not in the second instar, in keeping with the development of sleep-wake and feeding separation. The authors also show that glucose metabolic genes are required in Dh44 neurons to develop sleep rhythm and that DH44 neurons respond differently in malnutrition or younger larvae.

      Strengths:

      Previous studies from the same lab have shown that sleep is required for LTM formation in the larvae, and that this requires DN1a and DH44 neurons. The current work builds upon this observation and addresses in more detail when and how this might develop. The authors can show that low quality food exposure and enhanced feeding during larval stage of Drosophila affects the formation of sleep rhythm and long-term memory. This suggests that the development of sleep and LTM are only possible under well fed and balanced nutrition in fly larvae. Non-sleep larvae were fed in low sugar conditions and indeed, the authors also find glucose metabolic genes to be required for a proper sleep rhythm. The paper presents precise genetic manipulations of individual classes of neurons in fly larvae followed by careful behavioural analysis. The authors also combine thermogenetic or peptide bath application experiments with direct calcium imaging of specific neurons.

      Weaknesses:

      The authors tried to induce sleep in younger L2 larvae with Gaboxadol feeding, however, the behavioral results suggest that they were not able to induce proper sleep behaviour as in normal L3 larvae.

      Some of the genetic controls seem to be inconsistent. Given that the experiments were carried out in isogenized background, this is likely due to the high variability of some of the behaviours.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript by Hussain and collaborators aims at deciphering the microtubule-dependent ribbon formation in zebrafish hair cells. By using confocal imaging, pharmacology tools, and zebrafish mutants, the group of Katie Kindt convincingly demonstrated that ribbon, the organelle that concentrates glutamate-filled vesicles at the hair cell synapse, originates from the fusion of precursors that move along the microtubule network. This study goes hand in hand with a complementary paper (Voorn et al.) showing similar results in mouse hair cells.

      Strengths:

      This study clearly tracked the dynamics of the microtubules, and those of the microtubule-associated ribbons and demonstrated fusion ribbon events. In addition, the authors have identified the critical role of kinesin Kif1aa in the fusion events. The results are compelling and the images and movies are magnificent.

      Weaknesses:

      The lack of functional data regarding the role of Kif1aa. Although it is difficult to probe and interpret the behavior of zebrafish after nocodazole treatment, I wonder whether deletion of kif1aa in hair cells may result in a functional deficit that could be easily tested in zebrafish?

      Impact:

      The synaptogenesis in the auditory sensory cell remains still elusive. Here, this study indicates that the formation of the synaptic organelle is a dynamic process involving the fusion of presynaptic elements. This study will undoubtedly boost a new line of research aimed at identifying the specific molecular determinants that target ribbon precursors to the synapse and govern the fusion process.

    1. Reviewer #1 (Public Review):

      Summary:

      The study by Pudlowski et al. investigates how the intricate structure of centrioles is formed by studying the role of a complex formed by delta- and epsilon-tubulin and the TEDC1 and TEDC2 proteins. For this, they employ knockout cell lines, EM, and ultrastructure expansion microscopy as well as pull-downs. Previous work has indicated a role of delta- and epsilon-tubulin in triplet microtubule formation. Without triplet microtubules centriolar cylinders can still form, but are unstable, resulting in futile rounds of de novo centriole assembly during S phase and disassembly during mitosis. Here the authors show that all four proteins function as a complex and knockout of any of the four proteins results in the same phenotype. They further find that mutant centrioles lack inner scaffold proteins and contain an extended proximal end including markers such as SAS6 and CEP135, suggesting that triplet microtubule formation is linked to limiting proximal end extension and formation of the central region that contains the inner scaffold. Finally, they show that mutant centrioles seem to undergo elongation during early mitosis before disassembly, although it is not clear if this may also be due to prolonged mitotic duration in mutants.

      Strengths:

      Overall this is a well-performed study, well presented, with conclusions mostly supported by the data. The use of knockout cell lines and rescue experiments is convincing.

      Weaknesses:

      In some cases, additional controls and quantification would be needed, in particular regarding cell cycle and centriole elongation stages, to make the data and conclusions more robust.

    1. Reviewer #1 (Public Review):

      Summary:

      This study by Fuqua et al. studies the emergence of sigma70 promoters in bacterial genomes. While there have been several studies to explore how mutations lead to promoter activity, this is the first to explore this phenomenon in a wide variety of backgrounds, which notably contain a diverse assortment of local sigma70 motifs in variable configurations. By exploring how mutations affect promoter activity in such diverse backgrounds, they are able to identify a variety of anecdotal examples of gain/loss of promoter activity and propose several mechanisms for how these mutations interact within the local motif landscape. Ultimately, they show how different sequences have different probabilities of gaining/losing promoter activity and may do so through a variety of mechanisms.

      Major strengths and weaknesses of the methods and results:

      This study uses Sort-Seq to characterize promoter activity, which has been adopted by multiple groups and shown to be robust. Furthermore, they use a slightly altered protocol that allows measurements of bi-directional promoter activity. This combined with their pooling strategy allows them to characterize expressions of many different backgrounds in both directions in extremely high throughput which is impressive! A second key approach this study relies on is the identification of promoter motifs using position weight matrices (PWMs). While these methods are prone to false positives, the authors implement a systematic approach which is standard in the field. However, drawing these types of binary definitions (is this a motif? yes/no) should always come with the caveat that gene expression is a quantitative trait that we oversimplify when drawing boundaries.

      Their approach to randomly mutagenizing promoters allowed them to find many anecdotal examples of different types of evolutions that may occur to increase or decrease promoter activity. However, the lack of validation of these phenomena in more controlled backgrounds may require us to further scrutinize their results. That is, their explanations for why certain mutations lead or obviate promoter activity may be due to interactions with other elements in the 'messy' backgrounds, rather than what is proposed.

      An appraisal of whether the authors achieved their aims, and whether the results support their conclusions:

      The authors express a key finding that the specific landscape of promoter motifs in a sequence affects the likelihood that local mutations create or destroy regulatory elements. The authors have described many examples, including several that are non-obvious, and show convincingly that different sequence backgrounds have different probabilities for gaining or losing promoter activity. While this overarching conclusion is supported by the manuscript, the proposed mechanisms for explaining changes in promoter activity are not sufficiently validated to be taken for absolute truth. There is not sufficient description of the strength of emergent promoter motifs or their specific spacings from existing motifs within the sequence. Furthermore, they do not define a systematic process by which mutations are assigned to different categories (e.g. box shifting, tandem motifs, etc.) which may imply that the specific examples are assigned based on which is most convenient for the narrative.

      Impact of the work on the field, and the utility of the methods and data to the community:

      From this study, we are more aware of different types of ways promoters can evolve and devolve, but do not have a better ability to predict when mutations will lead to these effects. Recent work in the field of bacterial gene regulation has raised interest in bidirectional promoter regions. While the authors do not discuss how mutations that raise expression in one direction may affect another, they have created an expansive dataset that may enable other groups to study this interesting phenomenon. Also, their variation of the Sort-Seq protocol will be a valuable example for other groups who may be interested in studying bidirectional expression. Lastly, this study may be of interest to groups studying eukaryotic regulation as it can inform how the evolution of transcription factor binding sites influences short-range interactions with local regulator elements.

      Any additional context to understand the significance of the work:

      The task of computationally predicting whether a sequence drives promoter activity is difficult. By learning what types of mutations create or destroy promoters from this study, we are better equipped for this task.

    1. Reviewer #1 (Public Review):

      Summary:

      This study assessed conditional survival in elderly patients with non-metastatic colon cancer who underwent colectomy. The study found that 5-year conditional overall survival rates exhibited a slight increase initially, followed by a decrease over time. In contrast, 5-year conditional colon-specific survival rates consistently improved over the same period. Nomograms were developed to predict survival probabilities at baseline and for patients surviving 1, 3, and 5 years post-diagnosis, with good predictive performance. The study concludes that conditional survival offers valuable insights into medium- and long-term survival probabilities for these patients.

      Strengths:

      The strengths of this study include robust study design, methodology, statistical analysis, and interpretation of the findings. Utilizing a well-known database for the analysis is another strength. Differentiating overall survival and colon-specific survival rates could be another one. Focusing on elderly patients with this condition is another major point. Providing nomograms for an easier implication of the findings in real-world clinical practice is a major strength of the study.

      Weaknesses:

      Relying on only one database of patients and narrowing down the population to only elderly patients who underwent colectomy could be mentioned as a weakness. Less generalizability of the findings for other populations and not including more diverse databases is a major weakness of this study. The good predictive capabilities of the developed tools are another weakness that could be improved to be excellent.

    1. Reviewer #1 (Public Review):

      Summary

      The authors were trying to discover a novel bone remodeling network system. They found that an IncRNA Malat1 plays a central role in the remodeling by binding to β-catenin and functioning through the β-catenin-OPG/Jagged1 pathway in osteoblasts and chondrocytes. In addition, Malat1 significantly promotes bone regeneration in fracture healing in vivo. Their findings suggest a new concept of Malat1 function in the skeletal system. One significantly different finding between this manuscript and the competing paper pertains to the role of Malat1 in osteoclast lineage, specifically, whether Malat1 functions intrinsically in osteoclast lineage or not.

      Strengths:

      This study provides strong genetic evidence demonstrating that Malat1 acts intrinsically in osteoblasts while suppressing osteoclastogenesis in a non-autonomous manner, whereas the other group did not utilize relevant conditional knockout mice. As shown in the results, Malat1 knockout mouse exhibited abnormal bone remodeling and turnover. Furthermore, they elucidated molecular function of Malat1, which is sufficient to understand the phenotype in vivo.

      Weaknesses:

      Discussing differences between previous paper and their status would be highly informative and beneficial for the field, as it would elucidate the solid underlying mechanisms.

    1. Reviewer #1 (Public Review):

      Summary:

      Guo, Hue et al. focused on understanding the epigenetic activity and functional dependencies for two different fusions found in infantile rhabdomyosarcoma, VGLL2::NCOA2, and TEAD1::NCOA2. They use a variety of models and methods; specifically, ectopic expression of the fusions in human 293T cells to perform RNAseq (both fusions), CUT&RUN (VGLL2::NCOA2), and BioID mass spec (both fusions). These data identify that the VGLL2::NCOA2 fusion has peaks that are enriched for TEAD motifs. Further, CPB/p300 CUT&RUN support an enrichment of binding sites and three TEAD targets in VGLL2::NCOA2 and TEAD1::NCOA2 expressing cells. They also functionally evaluated genetic and chemical dependencies (TEAD inhibition), and found this was only effective for the VGLL2::NCOA2 fusion, and not for TEAD1::NCOA2. Using complementary biochemical approaches they suggest (with other supporting data) that the fusions regulate TEAD transcriptional outputs via a YAP/TAZ independent mechanism. Further, they expand into a C2C12 myoblast model and show that TEAD1::NCOA2 is transforming in colony formation assays and in mouse allografts. This is consistent with previously published strategies using VGLL2::NCOA2. Importantly, they show that a CBP/p300 (a binding partner found in their BioID mass spec) small molecule inhibitor suppresses tumor formation using this mouse allograft model, that the tumors are less proliferative, and have a reduction in transcriptional of three TEAD target genes. Generally, the data is interesting and suggests new biology for these fusion-oncogenes. However, the choice of 293T for the majority of the transcriptional, epigenetic, and proteomic studies makes the findings difficult to interpret in the context of the human disease, and the rationale for the choice of an epithelial-like kidney cell line is not discussed. Further, details are missing from the figures, figure legends, and methods that make the data difficult to interpret, and should be added to improve the reader's understanding. Overall, the breadth of methods used in this study, and the comparison of the two fusion-oncogene's biology is of interest to the fusion-oncogene, pediatric sarcoma, and epigenetic therapeutic targeting fields.

      Strengths:

      (1) Multiple experimental approaches were used to understand the biology of the fusion-oncogenes, including genomic, proteomic, chemical, and genetic inhibition. These approaches identify potential new mechanisms of convergent fusion-oncogene activity, around TEAD transcriptional targeting (that is YAP/TAZ independent) and reveal CBP/p300 as a functional dependency.

      (2) Complementary models were used, including cell-based assays and mouse allograft models to show the dependency on CBP/P300.

      (3) Co-IPs were clear and convincing and showed direct interaction of the fusion-oncogene with ectopic and endogenous TEAD1/pan-TEAD, but not YAP/TAZ.

      (4) Potential to follow-up on additional targets/mechanisms of tumorigenesis. For example, in the BioID proteomics screen, a unique VGLL2::NCOA2 and TEAD::NCOA2 interactor is P53, which also is an enriched pathway in Figure 4C in the p300 CUT&RUN peaks in the VGLL2::NCOA2 and TEAD1::NCOA2 expressing cells - is this indicative of the toxicity of the fusion-oncogenes or do you think this informs potential mechanisms for transformation.

      Weaknesses:

      (1) The rationale for performing genomics, transcriptional, and proteomics work in 293T cells is not discussed. Further, there are no functional readouts mentioned in the 293T cells with expression of the fusion-oncogenes. Did these cells have any phenotypes associated with fusion-oncogene expression (proliferation differences, morphological changes, colony formation capacity)? Further, how similar are the gene expression signatures from RNA-seq to rhabdomyosarcoma? This would help the reader interpret how similar these cell models are to human disease.

      (2) TEAD1::NCOA2 fusion-oncogene model was not credentialed past H&E, and expression of Desmin. Is the transcriptional signature in C2C12 or 293T similar to a rhabdomyosarcoma gene signature?

      (3) For the fusion-oncogenes, did the HA, FLAG, or V5 tag impact fusion-oncogene activity? Was the tag on the 3' or 5' of the fusion? This was not discussed in the methods.

      (4) Generally, the lack of details in the figures, figure legends, and methods make the data difficult to interpret. A few examples are below:

      a. Individual data points are not shown for figure bar plots (how many technical or biological replicates are present and how many times was the experiment repeated?).<br /> b. What exons were included in the fusion-oncogenes from VGLL2 and NCOA2 or TEAD1 and NCOA2?<br /> c. For how long were the colony formation experiments performed? Two weeks?<br /> d. In Figure 2D, what concentration of CP1 was used and for how long?<br /> e. How was A485 resuspended for cell culture and mouse experiments, what is the percentage of DMSO?<br /> f. How many replicates were done for RNA-seq, CUT&RUN, and ATACseq experiments?

    1. Reviewer #1 (Public Review):

      This study excellently complements the previous one by unveiling the properties of NPRL2 in augmenting the effect of immune checkpoint inhibitors such as pembrolizumab in KRAS mutant lung cancer models.

      The following points should be clarified:

      (1) In KRAS mutant cell lines with LKB1 co-mutations or deletions, such as A549 cells, does treatment with NPRL2 not increase the efficacy of immunotherapy? Is this correct? Similarly, does the delivery of NPRL2 only potentiate the effect of immunotherapy in KRAS mutant cell lines without associated LKB1 mutations?

      (2) Do the authors analyze by western blot if NPRL2 influences or restores STING and LKB1 in the A549 cell line that lacks LKB1 and STING?

      (3) Mechanistically, is there any explanation as to why NPRL2 delivery increases the efficacy of immunotherapy? Is there any effect on FUS or MYC?

      (4) Is there any way to carry out a clinical study of systematically delivering NPRL2 in KRAS lung cancer patients?

    1. Reviewer #1 (Public Review):

      [Editors' note: this is an overall synthesis from the Reviewing Editor in consultation with the reviewers.]

      The three reviews expand our critique of this manuscript in some depth and complementary directions. These can be synthesized in the following main points (we point out that there is quite a bit more that could be written about the flaws with this study; however, time constraints prevented us from further elaborating on the issues we see):

      (1) It is unclear what the authors want to do. It seems their main point is that the large BEF literature and especially biodiversity experiments overstate the occurrence of positive biodiversity effects because some of these can result from competition. Because reduced interspecific relative to intraspecific competition in mixture is sufficient to produce positive effects in mixtures (if interspecific competition = 0 then RYT = S, where S is species richness in mixture -- this according to the reciprocal yield law = law of constant final yield), they have a problem accepting NE > 0 as true biodiversity effect (see additive partitioning method of Loreau & Hector 2001 cited in manuscript).

      (2) The authors' next claim, without justification, that additive partitioning of NE is flawed and theoretically and biologically meaningless. They misinterpret the CE component as biological niche partitioning and the SE component as biological dominance. They do not seem to accept that the additive partitioning is a logically and mathematically sound derivation from basic principles that cannot be contested.

      (3) The authors go on to introduce a method to calculate species-level overyielding (RY > 1/S in replacement series experiments) as a competitive growth response and multiply this with the species monoculture biomass relative to the maximum to obtain competitive expectation. This method is based on resource competition and the idea that resource uptake is fully converted into biomass (instead of e.g. investing it in allelopathic chemical production).

      (4) It is unclear which experiments should be done, i.e. are partial-density monocultures planted or simply calculated from full-density monocultures? At what time are monocultures evaluated? The framework suggests that monocultures must have the full potential to develop, but in experiments, they are often performing very poorly, at least after some time. I assume in such cases the monocultures could not be used.

      (5) There are many reasons why the ideal case of only resource competition playing a role is unrealistic. This excludes enemies but also differential conversion factors of resources into biomass and antagonistic or facilitative effects. Because there are so many potential reasons for deviations from the null model of only resource competition, a deviation from the null model does not allow conclusions about underlying mechanisms.

      Furthermore, this is not a systematically developed partitioning, but some rather empirical ad hoc formulation of a first term that is thought to approximate competitive effects as understood by the authors (but again, there already are problems here). The second residual term is not investigated. For a proper partitioning approach, one would have to decompose overyielding into two (or more) terms and demonstrate (algebraically) that under some reasonable definitions of competitive and non-competitive interactions, these end up driving the respective terms.

      (6) Using a simplistic simulation to test the method is insufficient. For example, I do not see how the simulation includes a mechanism that could create CE in additive partitioning if all species would have the same monoculture yield. Similarly, they do not include mechanisms of enemies or antagonistic interactions (e.g. allelopathy).

      (7) The authors do not cite relevant literature regarding density x biodiversity experiments, competition experiments, replacement-series experiments, density-yield experiments, additive partitioning, facilitation, and so on.

      Overall, this manuscript does not lead further from what we have already elaborated in the broad field of BEF and competition studies and rather blurs our understanding of the topic.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper uses a model of binge alcohol consumption in mice to examine how the behaviour and its control by a pathway between the anterior insular cortex (AIC) to the dorsolateral striatum (DLS) may differ between males and females. Photometry is used to measure the activity of AIC terminals in the DLS when animals are drinking and this activity seems to correspond to drink bouts in males but not females. The effects appear to be lateralized with inputs to the left DLS being of particular interest.

      Strengths:

      Increasing alcohol intake in females is of concern and the consequences for substance use disorder and brain health are not fully understood, so this is an area that needs further study. The attempt to link fine-grained drinking behaviour with neural activity has the potential to enrich our understanding of the neural basis of behaviour, beyond what can be gleaned from coarser measures of volumes consumed etc.

      Weaknesses:

      The introduction to the drinking in the dark (DID) paradigm is rather narrow in scope (starting line 47). This would be improved if the authors framed this in the context of other common intermittent access paradigms and gave due credit to important studies and authors that were responsible for the innovation in this area (particularly studies by Wise, 1973 and returned to popular use by Simms et al 2010 and related papers; e.g., Wise RA (1973). Voluntary ethanol intake in rats following exposure to ethanol on various schedules. Psychopharmacologia 29: 203-210; Simms, J., Bito-Onon, J., Chatterjee, S. et al. Long-Evans Rats Acquire Operant Self-Administration of 20% Ethanol Without Sucrose Fading. Neuropsychopharmacol 35, 1453-1463 (2010).) The original drinking in the dark demonstrations should also be referenced (Rhodes et al., 2005). Line 154 Theile & Navarro 2014 is a review and not the original demonstration.

      When sex differences in alcohol intake are described, more care should be taken to be clear about whether this is in terms of volume (e.g. ml) or blood alcohol levels (BAC, or at least g/kg as a proxy measure). This distinction was often lost when lick responses were being considered. If licking is similar (assuming a single lick from a male and female brings in a similar volume?), this might mean males and females consume similar volumes, but females due to their smaller size would become more intoxicated so the implications of these details need far closer consideration. What is described as identical in one measure, is not in another.

      No conclusions regarding the photometry results can be drawn based on the histology provided. Localization and quantification of viral expression are required at a minimum to verify the efficacy of the dual virus approach (the panel in Supplementary Figure 1 is very small and doesn't allow terminals to be seen, and there is no quantification). Whether these might differ by sex is also necessary before we can be confident about any sex differences in neural activity.

      While the authors have some previous data on the AIC to DLS pathway, there are many brain regions and pathways impacted by alcohol and so the focus on this one in particular was not strongly justified. Since photometry is really an observational method, it's important to note that no causal link between activity in the pathway and drinking has been established here.

      It would be helpful if the authors could further explain whether their modified lickometers actually measure individual licks. While in some systems contact with the tongue closes a circuit which is recorded, the interruption of a photobeam was used here. It's not clear to me whether the nose close to the spout would be sufficient to interrupt that beam, or whether a tongue protrusion is required. This detail is important for understanding how the photometry data is linked to behaviour. The temporal resolution of the GCaMP signal is likely not good enough to capture individual links but I think more caution or detail in the discussion of the correspondence of these events is required.

      Even if the pattern of drinking differs between males and females, the use of the word "strategy" implies a cognitive process that was never described or measured.

    1. Reviewer #1 (Public Review):

      Summary:

      Understanding large-scale neural activity remains a formidable challenge in neuroscience. While several methods have been proposed to discover the assemblies from such large-scale recordings, most previous studies do not explicitly model the temporal dynamics. This study is an attempt to uncover the temporal dynamics of assemblies using a tool that has been established in other domains.

      The authors previously introduced the compositional Restricted Boltzmann Machine (cRBM) to identify neuron assemblies in zebrafish brain activity. Building upon this, they now employ the Recurrent Temporal Restricted Boltzmann Machine (RTRBM) to elucidate the temporal dynamics within these assemblies. By introducing recurrent connections between hidden units, RTRBM could retrieve neural assemblies and their temporal dynamics from simulated and zebrafish brain data.

      Strengths:

      The RTRBM has been previously used in other domains. Training in the model has been already established. This study is an application of such a model to neuroscience. Overall, the paper is well-structured and the methodology is robust, the analysis is solid to support the authors' claim.

      Weaknesses:

      The overall degree of advance is very limited. The performance improvement by RTRBM compared to their cRBM is marginal, and insights into assembly dynamics are limited.

      (1) The biological insights from this method are constrained. Though the aim is to unravel neural ensemble dynamics, the paper lacks in-depth discussion on how this method enhances our understanding of zebrafish neural dynamics. For example, the dynamics of assemblies can be analyzed using various tools such as dimensionality reduction methods once we have identified them using cRBM. What information can we gain by knowing the effective recurrent connection between them? It would be more convincing to show this in real data.

      (2) Despite the increased complexity of RTRBM over cRBM, performance improvement is minimal. Accuracy enhancements, less than 1% in synthetic and zebrafish data, are underwhelming (Figure 2G and Figure 4B). Predictive performance evaluation on real neural activity would enhance model assessment. Including predicted and measured neural activity traces could aid readers in evaluating model efficacy.

    1. Reviewer #1 (Public Review):

      Summary

      A novel statistical model of neural population activity called the Random Projection model has been recently proposed. Not only is this model accurate, efficient, and scalable, but also is naturally implemented as a shallow neural network. This work proposes a new class of RP model called the reshaped RP model. Inheriting the virtue of the original RP model, the proposed model is more accurate and efficient than the original, as well as compatible with various biological constraints. In particular, the authors have demonstrated that normalizing the total synaptic input in the reshaped model has a homeostatic effect on the firing rates of the neurons, resulting in even more efficient representations with equivalent computational accuracy. These results suggest that synaptic normalization contributes to synaptic homeostasis as well as efficiency in neural encoding.

      Strengths<br /> This paper demonstrates that the accuracy and efficiency of the random projection models can be improved by extending the model with reshaped projections. Furthermore, it broadens the applicability of the model under biological constraints of synaptic regularization. It also suggests the advantage of the sparse connectivity structure over the fully connected model for modeling spiking statistics. In summary, this work successfully integrates two different elements, statistical modeling of the spikes and synaptic homeostasis in a single biologically plausible neural network model. The authors logically demonstrate their arguments with clear visual presentations and well-structured text, facilitating an unambiguous understanding for readers.

      Weaknesses<br /> It would be helpful if the following issues about the major claims of the manuscript could be expanded and/or clarified:

      (1) We find it interesting that the reshaped model showed decreased firing rates of the projection neurons. We note that maximizing the entropy <-ln p(x)> with a regularizing term -\lambda <\sum _i f(x_i)>, which reflects the mean firing rate, results in \lambda _i = \lambda for all i in the Boltzmann distribution. In other words, in addition to the homeostatic effect of synaptic normalization which is shown in Figures 3B-D, setting all \lambda_i = 1 itself might have a homeostatic effect on the firing rates. It would be better if the contribution of these two homeostatic effects be separated. One suggestion is to verify the homeostatic effect of synaptic normalization by changing the value of \lambda.

      (2) As far as we understand, \theta_i (thresholds of the neurons) are fixed to 1 in the article. Optimizing the neural threshold as well as synaptic weights is a natural procedure (both biologically and engineeringly), and can easily be computed by a similar expression to that of a_ij (equation 3). Do the results still hold when changing \theta _i is allowed as well? For example,

      a. If \theta _i becomes larger, the mean firing rates will decrease. Does the backprop model still have higher firing rates than the reshaped model when \theta _i are also optimized?

      b. Changing \theta _i affects the dynamic range of the projection neurons, thus could modify the effect of synaptic constraints. In particular, does it affect the performance of the bounded model (relative to the homeostatic input models)?

      (3) In Figure 1, the authors claim that the reshaped RP model outperforms the RP model. This improved performance might be partly because the reshaped RP model has more parameters to be optimized than the RP model. Indeed, let the number of projections N and the in-degree of the projections K, then the RP model and the reshaped RP model have N and KN parameters, respectively. Does the reshaped model still outperform the original one when only (randomly chosen) N weights (out of a_ij) are allowed to be optimized and the rest is fixed? (or, does it still outperform the original model with the same number of optimized parameters (i.e. N/K neurons)?)

      (4) In Figure 2, the authors have demonstrated that the homeostatic synaptic normalization outperforms the bounded model when the allowed synaptic cost is small. One possible hypothesis for explaining this fact is that the optimal solution lies in the region where only a small number of |a_ij| is large and the rest is near 0. If it is possible to verify this idea by, for example, exhibiting the distribution of a_ij after optimization, it would help the readers to better understand the mechanism behind the superiority of the homeostatic input model.

      (5) In Figures 5D and 5E, the authors present how different reshaping constraints result in different learning processes ("rotation"). We find these results quite intriguing, but it would help the readers understand them if there is more explanation or interpretation. For example,

      a. In the "Reshape - Hom. circuit 4.0" plot (Fig 5D, upper-left), the rotation angle between the two models is almost always the same. This is reasonable since the Homeostatic Circuit model is the least constrained model and could be almost irrelevant to the optimization process. Is there any similar interpretation to the other 3 plots of Figure 5D?

      b. In Figure 5E, is there any intuitive explanation for why the three models take minimum rotation angle at similar global synaptic cost (~0.3)?

    1. Reviewer #1 (Public Review):

      - A summary of what the authors were trying to achieve:

      The authors focused on Rac1, one of the most extensively studied members of the Ras superfamily of small GTPases, an intracellular signal transducer that remodels actin and phosphorylation signaling networks. They performed an extensive series of behavioral tests and found a striking result of selectively inhibiting presynaptic Rac1. Previous studies have made the claim that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory. Rac1 was known to modulate both pre- and postsynaptic plasticity. What was missing was selective manipulation of Rac1 function at either pre- or postsynaptic loci. Kim, Soderling, and colleagues showed that following the expression of a genetically encoded Rac1-inhibitor at presynaptic terminals, spatial working memory is selectively impaired. In contrast, Rac1 inhibition at postsynaptic sites spared the spatial working memory but affected longer-term cognitive processes.

      - An account of the major strengths and weaknesses of the methods and results:

      This paper is part of an ambitious research trajectory, presented in multiple rigorous studies, that combines hypothesis-free fishing for candidate signal transduction elements with precise testing of physiological and behavioral outcomes. Each of these arenas has challenges and pitfalls. This paper contains punchlines in both behavioral and cell biological areas. The effect of presynaptic Rac1 inhibition on short-term behavioral memory was convincingly demonstrated with three different behavioral tests, including a quite striking result on delayed non-matching to place task. I found the claim of a specific effect on working memory more convincing here than in previous work. On the other hand, the authors sought to clarify the presynaptic regulatory mechanisms, leveraging new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. They identified particular serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins that became enriched with active Rac1. They argued that phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. They found changes in the distribution and morphology of synaptic vesicles following presynaptic Rac1 inhibition. They also report a postsynaptic consequence, a slightly increased spine cross-sectional area.

      - An appraisal of whether the authors achieved their aims, and whether the results support their conclusions:

      The selective agent is the Rac1-inhibiting polypeptide W56; W56 is fused to a protein with specific subcellular localizations in neurons. Hedrick, Yasuda, et al., 2016 showed that this kind of strategy enabled a spatially targeted inhibitory effect. Collaborating with Yasuda, O'Neil in Soderling's group previously reported that Rac1 negatively regulates synaptic vesicle replenishment at both excitatory and inhibitory synapses.

      In the current study by Kim et al., the goal is to interfere with Rac1 function in vivo. Once again, as in O'Neil, the functional intervention was to virally express a W56 peptide, fused to synapsin, a protein with specific subcellular localization-in this case presynaptic. The key control was to compare the effect of W56 with a scrambled sequence (Scr) in the negative control group. As verification of presynaptic efficacy, Kim found that W56-pre makes vesicles larger and further from the active zone without changing overall bouton morphology. Fresh fishing with MassSpec suggests that presynaptic vesicle proteins are affected.

      I am convinced that the presynaptic Rac1 function was successfully tweaked and that this had an effect on working memory tested with 5 s intertrial intervals, in a time range where the field is hard-pressed to find robust cell biological mechanisms for memory storage. (Ion channel dynamics are an alternative, but the focus here was on cytoskeletal, not plasma membrane proteins). What was missing was a direct index of vesicle dynamics or an explanation of why a hypothetical alteration in vesicle dynamics shows up as a change in vesicle size or location. The summarizing scheme is necessarily vague; it lacks specific details about how the effect on working memory occurs, or whether it involves excitatory as opposed to inhibitory nerve terminals.

      - A discussion of the likely impact of the work on the field, and the utility of the methods and data to the community:

      This study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.

      An outside observer might appreciate evidence that clearly shows that pivotal cytoskeletal cell biology is not the exclusive monopoly of either side of the synaptic cleft.

      - Any additional context you think would help readers interpret or understand the significance of the work:

      --Overall, it shows off the art of combining fishing with causal experiments, parallel to Steve Marx's work on L-type calcium channel modulation (Nature).

      --Multiple mutations associated with human neurodevelopmental and psychiatric disorders involve genes that encode regulators of the synaptic cytoskeleton. A major, unresolved question is how the disruption of specific actin filament structures leads to the onset and progression of complex synaptic and behavioral phenotypes.

      --The formation of long actin filaments along the axon's longitudinal axis is relevant to the sharing of synaptic vesicles amongst multiple boutons in so-called vesicle superpools (Chenouard & Tsien, NatComm)

    1. Reviewer #1 (Public Review):

      Hippocampal place cells display a sequence of firing activities when the animal travels through a spatial trajectory at a behavioral time scale of seconds to tens of seconds. Interestingly, parts of the firing sequence also occur at a much shorter time scale: ~120 ms within individual cycles of theta oscillation. These so-called theta sequences are originally thought to naturally result from the phenomenon of theta phase precession. However, there is evidence that theta sequences do not always occur even when theta phase precession is present, for example, during the early experience of a novel maze. The question is then how they emerge with experience (theta sequence development). This study presents evidence that a special group of place cells, those tuned to fast-gamma oscillations, may play a key role in theta sequence development.

      The authors analyzed place cells, LFPs, and theta sequences as rats traveled a circular maze in repeated laps. They found that a group of place cells were significantly tuned to a particular phase of fast-gamma (FG-cells), in contrast to others that did not show such tunning (NFG-cells). The authors then omitted FG-cells or the same number of NFG-cells, in their algorithm of theta sequence detection and found that the quality of theta sequences, quantified by a weighted correlation, was worse with the FG-cell omission, compared to that with the NFG-cell omission, during later laps, but not during early laps. What made the FG-cells special for theta sequences? The authors found that FG-cells, but not NFG-cells, displayed phase recession to slow-gamma (25 - 45 Hz) oscillations (within theta cycles) during early laps (both FG- and NFG-cells showed slow-gamma phase precession during later laps). Overall, the authors conclude that FG-cells contribute to theta sequence development through slow-gamma phase precession during early laps.

      How theta sequences are formed and developed during experience is an important question, because these sequences have been implicated in several cognitive functions of place cells, including memory-guided spatial navigation. The identification of FG-cells in this study is straightforward. Evidence is also presented for the role of these cells in theta sequence development. However, given several concerns elaborated below, whether the evidence is sufficiently strong for the conclusion needs further clarification, perhaps, in future studies.

      (1) The results in Figure 3 and Figure 8 seems contradictory. In Figure 8, all theta sequences displayed a seemingly significant weighted correlation (above 0) even in early laps, which was mostly due to FG-cell sequences but not NFG-cell sequences (correlation for NFG-sequences appeared below 0). However, in Figure 3H, omitting FG-cells and omitting NFG-cells did not produce significant differences in the correlation. Conversely, FG-cell and NFG-cell sequences were similar in later laps in Figure 8 (NFG-cell sequences appeared even better than FG-cell sequences), yet omitting NFG-cells produced a better correlation than omitting FG-cells. This confusion may be related to how "FG-cell-dominant sequences" were defined, which is unclear in the manuscript. Nevertheless, the different results are not easy to understand.

      (2) The different contributions between FG-cells and NFG-cells to theta sequences are supposed not to be caused by their different firing properties (Figure 5). However, Figure 5D and E showed a large effect size (Cohen's D = 07, 0.8), although not significant (P = 0.09, 0.06). But the seemingly non-significant P values could be simply due to smaller N's (~20). In other parts of the manuscript, the effect sizes were comparable or even smaller (e.g. D = 0.5 in Figure 7B), but interpreted as positive results: P values were significant with large N's (~480 in Fig. 7B). Drawing a conclusion purely based on a P value while N is large often renders the conclusion only statistical, with unclear physical meaning. Although this is common in neuroscience publications, it makes more sense to at least make multiple inferences using similar sample sizes in the same study.

      (3) In supplementary Figure 2 - S2, FG-cells displayed stronger theta phase precession than NFG-cells, which could be a major reason why FG-cells impacted theta sequences more than NFG cells. Although factors other than theta phase precession may contribute to or interfere with theta sequences, stronger theta phase precession itself (without the interference of other factors), by definition, can lead to stronger theta sequences.

      (4) The slow-gamma phase precession of FG-cells during early laps is supposed to mediate or contribute to the emergence of theta sequences during late laps (Figure 1). The logic of this model is unclear. The slow-gamma phase precession was present in both early and late laps for FG-cells, but only present in late laps for NFG-cells. It seems more straightforward to hypothesize that the difference in theta sequences between early and later laps is due to the difference in slow-gamma phase precession of NFG cells between early and late laps. Although this is not necessarily the case, the argument presented in the manuscript is not easy to follow.

      (5) There are several questions on the description of methods, which could be addressed to clarify or strengthen the conclusions.

      (i) Were the identified fast- and slow-gamma episodes mutually exclusive?

      (ii) Was the task novel when the data were acquired? How many days (from the 1st day of the task) were included in the analysis? When the development of the theta sequence was mentioned, did it mean the development in a novel environment, in a novel task, or purely in a sense of early laps (Lap 1, 2) on each day?

      (iii) How were the animals' behavioral parameters equalized between early and later laps? For example, speed or head direction could potentially produce the differences in theta sequences.

    1. Reviewer #1 (Public Review):

      Summary

      The manuscript by Voorn and collaborators aims at deciphering the microtubule-dependent ribbon formation in mouse hair cells. Using STED/confocal imaging, pharmacology tools, and mouse mutant, the group of Christian Vogl convincingly demonstrated that ribbon, the organelle that tethers vesicles at the hair cell synapse, results from the fusion and fission of ribbon precursors, moving along the microtubule network. This study goes hand in hand with a complementary paper (Hussain et al.) showing similar findings in zebrafish hair cells.

      Strengths

      This study demonstrated i) the motion of ribbons precursors along the microtubules, ii) ribbons precursors undergo multiple cycles of fusion-fission events and iii) kinesin Kif1a is critical for synaptic maturation. The results are solid and the images are mesmeric.

      Weaknesses

      As stated by the authors in the discussion, the mechanism underlying the threshold shift in the Kif1a mutant is unclear and may not be solely attributed to the reduction of the ribbon volume.

      Impact

      The synaptogenesis in the auditory sensory cell remains still elusive. Here, this study shows a high plasticity in the synaptogenesis. Indeed, the formation of the synaptic organelle is a dynamic process consisting of several rounds of fusion-fission of presynaptic elements. This study will undoubtedly boost a new line of research aimed at identifying the specific molecular determinants that target ribbon precursors to the synapse and govern the fusion-fission process.

    1. Reviewer #1 (Public Review):

      Summary:

      The researchers examined how individuals who were born blind or lost their vision early in life process information, specifically focusing on the decoding of Braille characters. They explored the transition of Braille character information from tactile sensory inputs, based on which hand was used for reading, to perceptual representations that are not dependent on the reading hand.

      They identified tactile sensory representations in areas responsible for touch processing and perceptual representations in brain regions typically involved in visual reading, with the lateral occipital complex serving as a pivotal "hinge" region between them.

      In terms of temporal information processing, they discovered that tactile sensory representations occur prior to cognitive-perceptual representations. The researchers suggest that this pattern indicates that even in situations of significant brain adaptability, there is a consistent chronological progression from sensory to cognitive processing.

      Strengths:

      By combining fMRI and EEG, and focusing on the diagnostic case of Braille reading, the paper provides an integrated view of the transformation processing from sensation to perception in the visually deprived brain. Such a multimodal approach is still rare in the study of human brain plasticity and allows us to discern the nature of information processing in blind people's early visual cortex, as well as the time course of information processing in a situation of significant brain adaptability.

      Weaknesses:

      The lack of a sighted control group limits the interpretations of the results in terms of profound cortical reorganization, or simple unmasking of the architectural potentials already present in the normally developing brain. Moreover, the conclusions regarding the behavioral relevance of the sensory and perceptual representations in the putatively reorganized brain are limited due to the behavioral measurements adopted.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors tested whether learning to suppress (ignore) salient distractors (e.g., a lone colored nontarget item) via statistical regularities (e.g., the distractor is more likely to appear in one location than any other) was proactive (prior to paying attention to the distractor) or reactive (only after first attending the distractor) in nature. To test between proactive and reactive suppression the authors relied on a recently developed and novel technique designed to "ping" the brain's hidden priority map using EEG inverted encoding models. Essentially, a neutral stimulus is presented to stimulate the brain, resulting in activity on a priority map which can be decoded and used to argue when this stimulation occurred (prior to or after attending to a distracting item). The authors found evidence that despite learning to suppress the high probability distractor location, the suppression was reactive, not proactive in nature.

      Overall, the manuscript is well-written, tests a timely question, and provides novel insight into a long-standing debate concerning distractor suppression.

      Strengths (in no particular order):

      (1) The manuscript is well-written, clear, and concise (especially given the complexities of the method and analyses).

      (2) The presentation of the logic and results is mostly clear and relatively easy to digest.

      (3) This question concerning whether location-based distractor suppression is proactive or reactive in nature is a timely question.

      (4) The use of the novel "pinging" technique is interesting and provides new insight into this particularly thorny debate over the mechanisms of distractor suppression.

      Weaknesses (in no particular order):

      (1) The authors tend to make overly bold claims without either A) mentioning the opposing claim(s) or B) citing the opposing theoretical positions. Further, the authors have neglected relevant findings regarding this specific debate between proactive and reactive suppression.

      (2) The authors should be more careful in setting up the debate by clearly defining the terms, especially proactive and reactive suppression which have recently been defined and were more ambiguously defined here.

      (3) There were some methodological choices that should be further justified, such as the choice of stimuli (e.g., sizes, colors, etc.).

      (4) The figures are often difficult to process. For example, the time courses are so far zoomed out (i.e., 0, 500, 100 ms with no other tick marks) that it makes it difficult to assess the timing of many of the patterns of data. Also, there is a lot of baseline period noise which complicates the interpretations of the data of interest.

      (5) Sometimes the authors fail to connect to the extant literature (e.g., by connecting to the ERP components, such as the N2pc and PD components, used to argue for or against proactive suppression) or when they do, overreach with claims (e.g., arguing suppression is reactive or feature-blind more generally).

    1. Reviewer #1 (Public Review):

      Summary:

      This paper investigates the relationship between ocular drift - eye movements long thought to be random - and visual acuity. This is a fundamental issue for how vision works. The work uses adaptive optics retinal imaging to monitor eye movements and where a target object is in the cone photoreceptor array. The surprising result is that ocular drift is systematic - causing the object to move to the center of the cone mosaic over the course of each perceptual trial. The tools used to reach this conclusion are state-of-the-art and the evidence presented is convincing.

      Strengths

      The central question of the paper is interesting, as far as I know, it has not been answered in past work, and the approaches employed in this work are appropriate and provide clear answers.

      The central finding - that ocular drift is not a completely random process - is important and has a broad impact on how we think about the relationship between eye movements and visual perception.

      The presentation is quite nice: the figures clearly illustrate key points and have a nice mix of primary and analyzed data, and the writing (with one important exception) is generally clear.

      Weaknesses

      The handling of the Nyquist limit is confusing throughout the paper and could be improved. It is not clear (at least to me) how the Nyquist limit applies to the specific task considered. I think of the Nyquist limit as saying that spatial frequencies above a certain cutoff set by the cone spacing are being aliased and cannot be disambiguated from the structure at a lower spatial frequency. In other words, there is a limit to the spatial frequency content that can be uniquely represented by discrete cone sampling locations. Acuity beyond that limit is certainly possible with a stationary image - e.g. a line will set up a distribution of responses in the cones that it covers, and without noise, an arbitrarily small displacement of the line would change the distribution of cone responses in a way that could be resolved. This is an important point because it relates to whether some kind of active sampling or movement of the detectors is needed to explain the spatial resolution results in the paper. This issue comes up in the introduction, results, and discussion. It arises in particular in the two Discussion paragraphs starting on line 343.

      One question that came up as I read the paper was whether the eye movement parameters depend on the size of the E. In other words, to what extent is ocular drift tuned to specific behavioral tasks?

    1. Reviewer #1 (Public Review):

      O'Neill et al. have developed a software analysis application, miniML, that enables the quantification of electrophysiological events. They utilize a supervised deep learned-based method to optimize the software. miniML is able to quantify and standardize the analyses of miniature events, using both voltage and current clamp electrophysiology, as well as optically driven events using iGluSnFR3, in a variety of preparations, including in the cerebellum, calyx of held, Golgi cell, human iPSC cultures, zebrafish, and Drosophila. The software appears to be flexible, in that users are able to hone and adapt the software to new preparations and events. Importantly, miniML is an open-source software free for researchers to use and enables users to adapt new features using Python.

      Overall this new software has the potential to become widely used in the field and an asset to researchers. However, the authors fail to discuss or even cite a similar analysis tool recently developed (SimplyFire), and determine how miniML performs relative to this platform. There are a handful of additional suggestions to make miniML more user-friendly, and of broad utility to a variety of researchers, as well as some suggestions to further validate and strengthen areas of the manuscript:

      (1) miniML relative to existing analysis methods: There is a major omission in this study, in that a similar open source, Python-based software package for event detection of synaptic events appears to be completely ignored. Earlier this year, another group published SimplyFire in eNeuro (Mori et al., 2024; doi: 10.1523/eneuro.0326-23.2023). Obviously, this previous study needs to be discussed and ideally compared to miniML to determine if SimplyFire is superior or similar in utility, and to underscore differences in approach and accuracy.

      (2) The manuscript should comment on whether miniML works equally well to quantify current clamp events (voltage; e.g. EPSP/mEPSPs) compared to voltage clamp (currents, EPSC/mEPSCs), which the manuscript highlights. Are rise and decay time constants calculated for each event similarly?

      (3) The interface and capabilities of miniML appear quite similar to Mini Analysis, the free software that many in the field currently use. While the ability and flexibility for users to adapt and adjust miniML for their own uses/needs using Python programming is a clear potential advantage, can the authors comment, or better yet, demonstrate, whether there is any advantage for researchers to use miniML over Mini Analysis or SimplyFire if they just need the standard analyses?

      (4) Additional utilities for miniML: The authors show miniML can quantify miniature electrophysiological events both current and voltage clamp, as well as optical glutamate transients using iGluSnFR. As the authors mention in the discussion, the same approach could, in principle, be used to quantify evoked (EPSC/EPSP) events using electrophysiology, Ca2+ events (using GCaMP), and AP waveforms using voltage indicators like ASAP4. While I don't think it is reasonable to ask the authors to generate any new experimental data, it would be great to see how miniML performs when analysing data from these approaches, particularly to quantify evoked synaptic events and/or Ca2+ (ideally postsynaptic Ca2+ signals from miniature events, as the Drosophila NMJ have developed nice approaches).

    1. Reviewer #1 (Public Review):

      Aquaporin-0 forms 2D crystals in the lens of the eye. This propensity to form 2D crystals was originally exploited to solve the structure of aquaporin-0 reconstituted in membranes. Existing structures do not explain why the proteins spontaneously form these arrays, however. In this work the authors investigate the hypothesis that the main lipids in the native membranes, sphingomyelin and cholesterol, contribute to lattice formation. By titrating the cholesterol: sphingomyelin ratio, the authors identify cholesterol binding sites of increasing stability. The authors identify a cholesterol that interacts with adjacent tetramers and is bound at an unusual membrane depth. Computational simulations suggest that this cholesterol is only stable in the context of adjacent tetramers (ie lattice formation) and that the presence of the cholesterol increases the stability of that interface. The exact mechanism is not clear, but the authors propose that the so-called "deep cholesterol" improves shape complementarity between adjacent tetramers and modulates the kinetics of protein-protein interactions. Finally, the authors provide a reasonable model for the role of cholesterol in

      Strengths of this manuscript include the analysis of multiple structures determined with different lipid compositions and lipid:cholesterol ratios. For each of these, multiple lipids can be modelled, giving a good sense of the lipid specificity at various favorable lipid binding positions. In addition, multiple hypotheses are tested in a very thorough computational analysis that provides the framework for interpreting the structural observations. The authors also provide a thorough scholarly discussion that connects their work with other studies of membrane protein-cholesterol interactions.

      The model presented by the authors is consistent with the data described.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors describe a deep mutational scanning (DMS) study of the kinase domain of the c-MET receptor tyrosine kinase. The screen is conducted with a highly activated fusion oncoprotein - Tpr-MET - in which the MET kinase domain is fused to the Tpr dimerization element. The mutagenized region includes the entire kinase domain and an alpha-helix in the juxtamembrane region that is essentially part of the MET kinase domain. The DMS screen is carried out in two contexts, one containing the entire cytoplasmic region of MET, and the other with an "exon 14 deletion" which removes a large portion of the juxtamembrane region (but retains the aforementioned alpha-helix). The work provides a robust and essentially exhaustive catalog of the effect of mutations (within the kinase domain) on the ability the Tpr-MET fusion oncoproteins to drive IL3-independent growth of Ba/F3 cells. Every residue in the kinase is mutated to every natural amino acid. Given the design of the screen, one would expect it to be a powerful tool for identifying mutations that impair catalytic activity and therefore impair IL3-independent proliferation. This is borne out by the data, which reveal many many deleterious mutations. The study reveals relatively few "gain-of-fitness" mutations, but this is not unexpected because it is carried out with an already-activated form of the MET kinase (the oncogenic Tpr-met fusion).

      Strengths:

      The authors take a very scholarly and thorough approach in interpreting the effect of mutations in light of available information for the structure and regulation of MET and other kinases. They examine the effect of mutations in the so-called catalytic (C) and regulatory (R) spines, the interface between the JM alpha-helix and the C-helix, the glycine-rich loop and other key elements of the kinase, providing a structural rationale for the deleterious effect of mutations. Comparison of the panoply of deleterious mutations in the TPR-met versus TPR- exon14del-MET DMS screens reveals an interesting difference - the exon14 deletion MET is much more tolerant of mutations in the JM alpha-helix/C-helix interface. The reason for this is unclear, however.

      An important qualification of the study is that it was carried out with the already highly activated Tpr-Met fusion. As a consequence, it is not expected to reveal mutations that activate the kinase -- activate in the sense of promoting a switch between physiologically-relevant inactive and active states. Consistent with this, the authors note that gain-of-fitness mutations are rare in their screen, and those that are identified induce modest but significant increases in fitness.

    1. Reviewer #1 (Public Review):

      Devakinandan and colleagues present a manuscript analyzing single-cell RNA-sequencing data from the mouse vomeronasal organ. The main advances in this manuscript are to identify and verify the differential expression of genes that distinguish apical and basal vomeronasal neurons. The authors also identify the enriched expression of ER-related genes in Gnao1 neurons, which they verify with in situ hybridizations and immunostaining, and also explore via electron microscopy. Finally, the results of this manuscript are presented in an online R shiny app. Overall, these data are a useful resource to the community. I have a few concerns about the manuscript, which I've listed below.

      General Concerns:

      (1) The authors mention that they were unable to identify the cells in cluster 13. This cluster looks similar to the "secretory VSN" subtype described in a recent preprint from C. Ron Yu's lab (10.1101/2024.02.22.581574). The authors could try comparing or integrating their data with this dataset (or that in Katreddi et al. 2022) to see if this is a common cell type across datasets (or arises from a specific type of cell doublets). In situ hybridizations for some of the marker genes for this cluster could also highlight where in the VNO these cells reside.

      (2) I found the UMAPs for the neurons somewhat difficult to interpret. Unlike Katreddi et al. 2022 or Hills et al. 2024, it's tricky to follow the developmental trajectories of the cells in the UMAP space. Perhaps the authors could try re-embedding the data using gene sets that don't include the receptors? It would also be interesting to see if the neuron clusters still cluster by receptor-type even when the receptors are excluded from the gene sets used for clustering. Plots relating the original clusters to the neuronal clusters, or dot plots showing marker gene expression for the neuronal clusters might both be useful. For example, right now it's difficult to interpret clusters like n8-13.

    1. Reviewer #1 (Public Review):

      Summary:

      The paper by Shelton et al investigates some of the anatomical and physiological properties of the mouse claustrum. First, they characterize the intrinsic properties of claustrum excitatory and inhibitory neurons and determine how these different claustrum neurons receive input from different cortical regions. Next, they perform in vitro patch clamp recordings to determine the extent of intraclaustrum connectivity between excitatory neurons. Following these experiments, in vivo axon imaging was performed to determine how claustrum-retrosplenial cortex neurons are modulated by different combinations of auditory, visual, and somatosensory input. Finally, the authors perform claustrum lesions to determine if claustrum neurons are required for performance on a multisensory discrimination task

      Strengths:

      An important potential contribution the authors provide is the demonstration of intra-claustrum excitation. In addition, this paper provides the first experimental data where two cortical inputs are independently stimulated in the same experiment (using 2 different opsins). Overall, the in vitro patch clamp experiments and anatomical data provide confirmation that claustrum neurons receive convergent inputs from areas of the frontal cortex. These experiments were conducted with rigor and are of high quality.

      Weaknesses:

      The title of the paper states that claustrum neurons integrate information from different cortical sources. However, the authors did not actually test or measure integration in the manuscript. They do show physiological convergence of inputs on claustrum neurons in the slice work. Testing integration through simultaneous activation of inputs was not performed. The convergence of cortical input has been recently shown by several other papers (Chia et al), and the current paper largely supports these previous conclusions. The in vivo work did test for integration because simultaneous sensory stimulations were performed. However, integration was not measured at the single cell (axon) level because it was unclear how activity in a single claustrum ROI changes in response to (for example) visual, tactile, and visual-tactile stimulations. Reading the discussion, I also see the authors speculate that the sensory responses in the claustrum could arise from attentional or salience-related inputs from an upstream source such as the PFC. In this case, claustrum cells would not integrate anything (but instead respond to PFC inputs).

      The different experiments in different figures often do not inform each other. For example, the authors show in Figure 3 that claustrum-RSP cells (CTB cells) do not receive input from the auditory cortex. But then, in Figure 6 auditory stimuli are used. Not surprisingly, claustrum ROIs respond very little to auditory stimuli (the weakest of all sensory modalities). Then, in Figure 7 the authors use auditory stimuli in the multisensory task. It seems that these experiments were done independently and were not used to inform each other.

      One novel aspect of the manuscript is the focus on intraclaustrum connectivity between excitatory cells (Figure 2). The authors used wide-field optogenetics to investigate connectivity. However, the use of paired patch-clamp recordings remains the ground truth technique for determining the rate of connectivity between cell types, and paired recordings were not performed here. It is difficult to understand and gain appreciation for intraclaustrum connectivity when only wide-field optogenetics is used.

      In Figure 2, CLA-rsp cells express Chrimson, and the authors removed cells from the analysis with short latency responses (which reflect opsin expression). But wouldn't this also remove cells that express opsin and receive monosynaptic inputs from other opsin-expressing cells, therefore underestimating the connectivity between these CLA-rsp neurons? I think this needs to be addressed.

      In Figure 5J the lack of difference in the EPSC-IPSC timing in the RSP is likely due to 1 outlier EPSC at 30ms which is most likely reflecting polysynaptic communication. Therefore, I do not feel the argument being made here with differences in physiology is particularly striking.

      In the text describing Figure 5, the authors state "These experiments point to a complex interaction ....likely influenced by cell type of CLA projection and intraclaustral modules in which they participate". How does this slice experiment stimulating axons from one input relate to different CLA cell types or intra-claustrum circuits? I don't follow this argument.

      In Figure 6G and H, the blank condition yields a result similar to many of the sensory stimulus conditions. This blank condition (when no stimulus was presented) serves as a nice reference to compare the rest of the conditions. However, the remainder of the stimulation conditions were not adjusted relative to what would be expected by chance. For example, the response of each cell could be compared to a distribution of shuffled data, where time-series data are shuffled in time by randomly assigned intervals and a surrogate distribution of responses generated. This procedure is repeated 200-1000x to generate a distribution of shuffled responses. Then the original stimulus-triggered response (1s post) could be compared to shuffled data. Currently, the authors just compare pre/post-mean data using a Mann-Whitney test from the mean overall response, which could be biased by a small number of trials. Therefore, I think a more conservative and statistically rigorous approach is warranted here, before making the claim of a 20% response probability or 50% overall response rate.

      Regarding Figure 6, a more conventional way to show sensory responses is to display a heatmap of the z-scored responses across all ROIs, sorted by their post-stimulus response. This enables the reader to better visualize and understand the claims being made here, rather than relying on the overall mean which could be influenced by a few highly responsive ROIs.

      For Figure 6, it would also help to display some raw data showing responses at the single ROI level and the population level. If these sensory stimulations are modulating claustrum neurons, then this will be observable on the mean population vector (averaged df/f across all ROIs as a function of time) within a given experiment and would add support to the conclusions being made.

      As noted by the authors, there is substantial evidence in the literature showing that motor activity arises in mice during these types of sensory stimulation experiments. It is foreseeable that at least some of the responses measured here arise from motor activity. It would be important to identify to what extent this is the case.

      All claims in the results for Figure 6 such as "the proportion of responsive axons tended to be highest when stimuli were combined" should be supported by statistics.

      In Figure 7, the authors state that mice learned the structure of the task. How is this the case, when the number of misses is 5-6x greater than the number of hits on audiovisual trials (S Figure 19). I don't get the impression that mice perform this task correctly. As shown in Figure 7I, the hit rate is exceptionally low on the audiovisual port in controls. I just can't see how control and lesion mice can have the same hit rate and false alarm rate yet have different d'. Indeed, I might be missing something in the analysis. However, given that both groups of mice are not performing the task as designed, I fail to see how the authors' claim regarding multisensory integration by the claustrum is supported. Even if there is some difference in the d' measure, what does that matter when the hits are the least likely trial outcome here for both groups.

      In the discussion, it is stated that "While axons responded inconsistently to individual stimulus presentations, their responsivity remained consistent between stimuli and through time on average...". I do not understand this part of the sentence. Does this mean axons are consistently inconsistent?

      In the discussion, the authors state their axon imaging results contrast with recent studies in mice. Why not actually do the same analysis that Ollerenshaw did, so this statement is supported by fact? As pointed out above, the criteria used to classify an axon as responsive to stimuli were very liberal in this current manuscript.

      I find the discussion wildly speculative and broad. For example, "the integrative properties of the CLA could act as a substrate for transforming the information content of its inputs (e.g. reducing trial-to-trial variability of responses to conjunctive stimuli...)". How would a claustrum neuron responding with a 10% reliability to a stimuli (or set of stimuli) provide any role in reducing trial-to-trial variability of sensory activity in the cortex?

    1. Reviewer #1 (Public Review):

      Summary

      The author studied metabolic networks for central metabolism, focusing on how system trajectories returned to their steady state. To quantify the response, systematic perturbation was performed in simulation and the maximal destabilization away from the steady state (compared with the initial perturbation distance) was characterized. The author analyzed the perturbation response and found that sparse networks and networks with more cofactors are more "stable", in the sense that the perturbed trajectories have smaller deviations along the path back to the steady state.

      Strengths and major contributions

      The author compared three metabolic models and performed systematic perturbation analysis in simulation. This is the first work to characterize how perturbed trajectories deviate from equilibrium in large biochemical systems and illustrated interesting findings about the difference between sparse biological systems and randomly simulated reaction networks.

      Weaknesses

      There are two main weaknesses in this study:

      First, the metabolic network in this study is incomplete. For example, amino acid synthesis and lipid synthesis are important for biomass and growth, but they are not included in the three models used in this study. NADH and NADPH are as important as ATP/ADP/AMP, but they are not included in the models. In the future, a more comprehensive metabolic and biosynthesis model is required.

      Second, this work does not provide a mathematical explanation of the perturbation response χ. Since the perturbation analysis is performed close to the steady state (or at least belongs to the attractor of single-steady-state), local linear analysis would provide useful information. By complementing with other analysis in dynamical systems (described below) we can gain more logical insights about perturbation response.

      Discussion and impact for the field

      Metabolic perturbation is an important topic in cell biology and has important clinical implications in pharmacodynamics. The computational analysis in this study provides an initiative for future quantitative analysis on metabolism and homeostasis.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors comprehensively present data from single-cell RNA sequencing and spatial transcriptomics experiments of the juvenile male and female mouse vomeronasal organ, with a particular emphasis on the neuronal populations found in this sensory tissue. The use of these two methods effectively maps the locations of relevant cell types in the vomeronasal organ at a level of depth beyond what is currently known. Targeted analysis of the neurons in the vomeronasal organ produced several important findings, notably the common co-expression of multiple vomeronasal type 1 receptors (V1Rs), vomeronasal type 2 receptors (V2Rs), and both V1R+V2Rs by individual neurons, as well as the presence of a small but noteworthy population of neurons expressing olfactory receptors (ORs) and associated signal transduction molecules. Additionally, the authors identify transcriptional patterns associated with neuronal development/maturation, producing lists of genes that can be used and/or further investigated by the field. Finally, the authors report the presence of coordinated combinatorial expression of transcription factors and axon guidance molecules associated with multiple neuronal types, providing the framework for future studies aimed at understanding how these patterns relate to the complex glomerular organization in the accessory olfactory bulb. Several of these conclusions have been reached by previous studies, partially limiting the overall impact of the current work. However, when combined, these results provide important insights into the cellular diversity in the vomeronasal organ that are likely to support multiple future studies of the vomeronasal system.

      Strengths:

      The comprehensive analysis of the data provides a wealth of information for future research into vomeronasal organ function. The targeted analysis of neuronal gene transcription demonstrates the co-expression of multiple receptors by individual neurons and confirms the presence of a population of OR-expressing neurons in the vomeronasal organ. Although many of these findings have been noted by others, the depth of analysis here validates and extends prior findings in an effective manner. The use of spatial transcriptomics to identify the locations of specific cell types is especially useful and produces a template for the field's continued research into the various cell types present in this complex sensory tissue. Overall, the manuscript's biggest strength is found in the richness of the data presented, which will not only support future work in the broader field of vomeronasal system function but also provide insights into others studying complex sensory tissues.

      Weaknesses:

      As noted above, several previous studies have identified co-expression of vomeronasal receptors by vomeronasal sensory neurons, and the expression of non-vomeronasal receptors, and this was not adequately addressed in the manuscript as presented. The inherent weaknesses of single-cell RNA sequencing studies based on the 10x Genomics platforms (need to dissociate tissues, limited depth of sequencing, etc.) are acknowledged. However, the authors document their extensive attempts to avoid making false positive conclusions through the use of software tools designed for this purpose. Because of its complexity, there are some portions of the manuscript where the data are difficult to interpret as presented, but this is a relatively minor weakness. The data resulting from the use of the Resolve Biosciences spatial transcriptomics platform are somewhat difficult to interpret, and the methods are somewhat opaque. That said, the resulting data provide useful links between transcriptional identities and cellular locations, which is not possible without the use of such tools.

    1. Reviewer #1 (Public Review):

      Summary:

      Matsui et al. present an experimental pipeline for visualizing the molecular machinery of synapses in the brain, which includes numerous techniques, starting with generating labeled antibodies and recombinant mice, continuing with HPF and FIB milling, and finishing with tilt series collection and 3D image processing. This pipeline represents a breakthrough in the preparation of brain tissue for high-resolution imaging and can be used in future tomographic research to reconstruct molecular details of synaptic complexes as well as pre- and post-synaptic assemblies. This methodology can also be adapted for a broader range of tissue preparations and signifies the next step towards a better structural understanding of how molecular machineries operate in natural conditions.

      Strengths:

      The manuscript is very well written, contains a detailed description of methodology, provides nice illustrations, and will be an outstanding guide for future research.

      Weaknesses:

      None noted.

    1. Reviewer #2 (Public Review):

      Summary:

      Cheng et al. explore the development of the arteries that form the circle of Willis and investigate how blood flow pulsatility influences vascular smooth muscle cell (VSMC) differentiation. Using live confocal imaging of the developing zebrafish, the authors show that endothelial cells in circle of Willis arteries transition from venous to arterial identity between 54 hours post-fertilization (hpf) and 3 days post-fertilization (dpf), and that this coincides with pdgfrb+ mural cell progenitor differentiation into acta2+ arterial VSMCs. They find that the anterior portions of the circle of Willis, including the internal carotid arteries (CaDI), establish acta2 expression earlier than posterior aspects, likely due to faster flow rate and increased pulsatility through the CaDI. Then, using computational fluid dynamics, an in vitro co-culture assay, and genetic and drug manipulations of blood flow, the authors provide evidence that pdgfrb+ differentiation is dependent upon pulsatile blood flow and klf2a activation. The results add to our understanding of vascular development and suggest that deficits in pulsatile flow could be potential drivers of arteriopathies.

      Strengths:

      (1) Longitudinal confocal imaging of live developing zebrafish makes the timeline of arterial development in the circle of Willis easy to understand. This is a strong approach to studying how vascular networks are altered with genetic and pharmacological manipulations.<br /> (2) Rigorous use of multiple techniques to test the hypothesis that pulsatile blood flow is required for smooth muscle cell differentiation. The microangiography experiment, in vitro co-culture assay, and genetic and drug manipulations of heart rate at various developmental timepoints yield outcomes that are consistent with the hypothesis.

      Weaknesses:

      (1) The authors should provide more information on how blood flow velocity and wall shear stress are calculated from circle of Willis vascular structure. It is presumed that these values are dependent upon the 3-D morphology of the vessel network, as labeled by intravenous dextran dye, but this is not clear. Small local differences in vessel diameter and shape will influence blood flow velocity, but these morphological changes are not clearly articulated. Further, it is unclear how flow input levels to the CaDI and basilar arteries are decided across time-points. In general, descriptions of the blood flow modeling are very sparse.<br /> (2) Is it possible to measure the blood flow speed empirically with line-scanning or high-speed tracking of labeled blood cells? This would provide some validation of the modeling results.<br /> (3) Does the cardiac injection of dextran itself affect the diameter or flow of the arteries, given the invasiveness of the procedure? This could be examined in fish with a transgenic endothelial label and with vs. without dextran.<br /> (4) The data from the microangiography experiment in Figure 3 does not fully support the stated results. The authors report that the CaDI had the highest blood flow speed starting from 54 hfp, but it does not appear to be higher than the other arteries at this time point. Additionally, there is not sufficient evidence that wall shear stress coincides with smooth muscle cell differentiation in the CaDI. Wall shear stress appears to be similar between 54 hpf and 3 dpf in the CaDI, only increasing between 3 dpf and 4 dpf, while differentiation is shown to begin at 3 dpf.<br /> (5) The genetic and drug manipulations of heart rate are important experiments, but more detail is required to understand the effects of the manipulations. At least, a discussion on the limitations of these manipulations is needed. For example, how does one separate the pulsatile versus nutritive effects of blood flow/heart rate reduction? It is possible that off-target or indirect effects of Nifedipine decrease smooth muscle cell proliferation, or that altered cardiac contractility fundamentally alters many aspects of vascular development other than blood flow. Nifedipine is also likely to act upon VSMC calcium handling in the circle of Willis, which may in turn affect cell maturation.<br /> (6) It is unclear if acta2 expression is conferring vascular tone, as would be expected if the cells are behaving as mature VSMCs. Does arterial diameter decrease with an increase in acta2 expression? Are acta2 positive mural cells associated with more dynamic changes in arteriole diameter under basal or stimulated conditions?

    1. Reviewer #1 (Public Review):

      The development of effective computational methods for protein-ligand binding remains an outstanding challenge to the field of drug design. This impressive computational study combines a variety of structure prediction (AlphaFold2) and sampling (RAVE) tools to generate holo-like protein structures of three kinases (DDR1, Abl1, and Src kinases) for binding to type I and type II inhibitors. Of central importance to the work is the conformational state of the Asp-Phy-Gly "DFG motif" where the Asp points inward (DFG-in) in the active state and outward (DFG-out) in the inactive state. The kinases bind to type I or type II inhibitors when in the DFG-in or DFG-out states, respectively.

      It is noted that while AlphaFold2 can be effective in generating ligand-free apo protein structures, it is ineffective at generating holo-structures appropriate for ligand binding. Starting from the native apo structure, structural fluctuations are necessary to access holo-like structures appropriate for ligand binding. A variety of methods, including reduced multiple sequence alignment (rMSA), AF2-cluster, and AlphaFlow may be used to create decoy structures. However, those methods can be limited in the diversity of structures generated and lack a physics-based analysis of Boltzmann weight critical to their relative evaluation.

      To address this need, the authors combine AlphaFold2 with the Reweighted Autoencoded Variational Bayes for Enhanced Sampling (RAVE) method, to explore metastable states and create a Boltzmann ranking. With that variety of structures in hand, grid-based docking methods Glide and Induced-Fit Docking (IFD) were used to generate protein-ligand (kinase-inhibitor) complexes.

      The authors demonstrate that using AlphaFold2 alone, there is a failure to generate DFG-out structures needed for binding to type II inhibitors. By applying the AlphaFold2 with rMSA followed by RAVE (using short MD trajectories, SPIB-based collective variable analysis, and enhanced sampling using umbrella sampling), metastable DFG-out structures with Boltzmann weighting are generated enabling protein-ligand binding. Moreover, the authors found that the successful sampling of DFG-out states for one kinase (DDR1) could be used to model similar states for other proteins (Abl1 and Src kinase). The AF2RAVE approach is shown to result in a set of holo-like protein structures with a 50% rate of docking type II inhibitors.

      Overall, this is excellent work and a valuable contribution to the field that demonstrates the strengths and weaknesses of state-of-the-art computational methods for protein-ligand binding. The authors also suggest promising directions for future study, noting that potential enhancements in the workflow may result from the use of binding site prediction models and free energy perturbation calculations.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript addresses two main issues:<br /> (i) do MAPKs play an important role in SAC regulation in single-cell organism such as S pombe?<br /> (ii) what is the nature of their involvement and what are their molecular targets?

      The authors have extensively used the cold-sensitive β-tubulin mutant to activate or inactivate SAC employing an arrest-release protocol. Localization of Cdc13 (cyclin B) to the SPBs is used as a readout for the SAC activation or inactivation. The roles of two major MAPK pathways i.e. stress-activated pathway (SAP) and cell integrity pathway (CIP), have been explored in this context (with CIP more extensively than SAP). Sty1Δ or pmk1Δ mutants were used to inactivate the SAP or CIP pathways and wis1DD or pek1DD expression was utilized to constitutively activate these pathways, respectively. Lowering of Slp1Cdc20 abundance (by phosphorylation of Slp1-Thr 480) is revealed as the main function of MAPK to augment the robustness of the spindle assembly checkpoint.

      Strengths:

      The experiments are generally well-conducted, and the results support the interpretations in various sections. The experimental data clearly supports some of the key conclusions:

      (1) While inactivation of SAP and CIP compromises SAC-imposed arrest, their constitutive activation delays the release from the SAC-imposed arrest.<br /> (2) CIP signaling, but not SAP signaling, attenuates Slp1Cdc20 levels.<br /> (3) Pmk1 and Cdc20 physically interact and Pmk1-docking sequences in Slp1 (PDSS) are identified and confirmed by mutational/substitution experiments.<br /> (4) Thr480 (and also S76) is identified as the residue phosphorylated by Pmk1. S28 and T31 are identified as Cdk1 phosphorylation sites. These are confirmed by mutational and other related analyses.<br /> (5) Functional aspects of the phosphorylation sites have been elucidated to some extent: (a) Phosphorylation of Slp1-T480 by Pmk1 reduces its abundance thereby augmenting the SAC-induced arrest (b) S28, T31 (also S59) are phosphorylated by Cdk1(c) K472 and K479 residues are involved in ubiquitylation of Slp.

      Weaknesses:

      (1) Cdc13 localization to SPBs has been used as a readout for SAC activation/inactivation throughout the manuscript. However, the only image showing such localization (Figure 1C) is of poor quality where the Cdc13 localization to SPBs is barely visible. This should be replaced by a better image.

      (2) The overlapping error bars in Cdc13-localization data in some figures (for instance Figure 3E and 4H) make the effect of various mutations on SAC activation/inactivation rather marginal. In some of these cases, Western-blotting data support the authors' conclusions better.

      (3) This specific point is not really a weakness but rather a loose end:<br /> One of the conclusions of this study is that MAPK (PMK1) contributes to the robustness of SAC-induced arrest by lowering the abundance of Slp1Cdc20. The authors have used pmk1Δ or constitutively activating the MAPK pathways (Pek1DD) and documented their effect on SAC activation/inactivation dynamics. It is not clear if SAC activation also leads to activation of MAPK pathways for them to contribute to the SAC robustness. To tie this loose end, the author could have checked if the MAPK pathway is also activated under the conditions when SAC is activated. Unless this is shown, one must assume that the authors are attributing the effect they observe to the basal activity of MAPKs.

      (4) This is also a loose end:<br /> The authors show that activation of stress pathways (by addition of KCl for instance) causes phosphorylation-dependent Slp1Cdc20 downregulation (Figure 6) under the SAC-activating condition. Does activation of the stress pathway cause phosphorylation-dependent Slp1Cdc20 downregulation under the non-SAC-activation condition or does it occur only under the SAC-activating condition?

      (5) Although the authors have gone to some length to identify S28 and T31 (also S59) as phosphorylation sites for Cdk1, their functional significance in the context of MAPK involvement is not yet clear. Perhaps it is outside the scope of this study to dig deeper into this aspect more than the authors have.

      (6) In its current state, the Discussion section is quite disjointed. The first section "Involvement of MAPKs in cell cycle regulation" should be in the Introduction section (very briefly, if at all). It certainly does not belong to the Discussion section. In any case, the Discussion section should be more organized with a better flow of arguments/interpretations.

    1. Reviewer #1 (Public Review):

      Summary:

      In this work, the authors investigate the functional difference between the most commonly expressed form of PTH, and a novel point mutation in PTH identified in a patient with chronic hypocalcemia and hyperphosphatemia. The value of this mutant form of PTH as a potential anabolic agent for bone is investigated alongside PTH(1-84), which is a previously used anabolic therapy. The authors have achieved the aims of the study. Their conclusion, however, that this suggests a "new path of therapeutic PTH analog development" seems unfounded; the benefit of this PTH variant is not clear, but the work is still interesting.

      The work does not identify why the patient with this mutation has hypocalcemia and hyperphosphatemia; this was not the goal of the study, but the data are useful for helping to understand that.

      Strengths:

      The work is novel, as it describes the function of a novel, naturally occurring, variant of PTH in terms of its ability to dimerise, to lead to cAMP activation, to increase serum calcium, and its pharmacological action compared to normal PTH.

      Weaknesses:

      (1) The use of very young, 8-10 week old, mice as a model of postmenopausal osteoporosis is a major limitation of this study. At 8 weeks, the effect of ovariectomy leads to lack of new trabecular bone formation, rather than trabecular bone loss due to a defect in bone remodelling. Although the findings here provide a comparison between two forms of PTH, it is unlikely to be of direct relevance to the patient population. For example, the authors find an inhibitory effect of PTH on osteoclast surface, which is very unusual. Adding to this concern is that the authors have not described the regions used for histomorphometry, and from their figures (particularly the TRAP stain), it seems that the primary spongiosa (which is a region of growth) has been used for histomorphometry, rather than the secondary spongiosa (which more accurately reflects bone remodelling). Much further detail is needed to justify the use of this very young model, and a section on the limitations of this model is needed. Please provide that section in the revised manuscript.

      (2) It is also somewhat concerning that the age range is from 8-10 weeks, increasing the variability within the model. Did the age of mice differ between the groups analysed?

      (3) Methods are not sufficiently detailed. For example, the regions used for histomorphometry are not described, there is no information on micro-CT thresholds, no detail on the force used for mechanical testing. Please address this request.

      (4) There are three things unclear about the calvarial injection mouse model. Firstly, were the mice injected over the calvariae or with a standard subcutaneous injection (e.g. at the back of the neck)? If they were injected over the calvaria, why were both surfaces measured? Secondly, why was the dose of the R25C-PTH double that of PTH(1-34)? Thirdly, there is no justification for the use of "more intense coloration" as a marker of new bone; this requires calcein labelling to prove it new bone. It would be more reliable to measure and report the thickness of the calvaria. Please address these technical questions.

      (5) The presentation of mechanical testing data is not sufficient. Example curves should be shown, and data corrected for bone size needs to be shown. The difference in mechanical behaviour is interesting, but does it stem from a difference in the amount of bone, or two a difference in the quality of the bone? Please explain this matter better in the manuscript.

      (6) The micro-CT analysis of the cortical bone in the OVX model is insufficient. Please indicate whether cross-sectional area has increased. Is there an increase in the size of the bones, or is the increase in cortical thickness due to a narrowing of the marrow space? This may help resolve the apparent contradiction between the cortical thickness data (where there is no difference between the two PTH formulations) and the mechanical testing data (where there is a difference). Please explain this matter better in the manuscript.

      (7) The evidence that dimeric PTH has a different effect to monomeric PTH is very slim; I am not sure this is a real effect. Such differences take a long time to sort out (e.g. the field is still trying to determine whether teriparatide and abaloparatide are different). I think the authors need to look more carefully at their data - almost all effects are the same. Ultimately, the statement that dimeric PTH may be a more effective anabolic therapy than monomeric PTH are not supported by the data, and this should be removed. There is little to no difference found between normal PTH and the variant in their effects on calcium and phosphate homeostasis or on bone mass. However, the analysis has been somewhat cursory, with insufficient mechanical testing or cortical data presented. Many of the effects seem to be the same (e.g. cortical thickness, P1NP, ALP, vertebral BV/TV and MAR), but the way it is written it sounds like there is a difference. Please remove some of the unfounded claims that you have made in this manuscript.

      (8) Statistical analysis used multiple t-tests. ANOVA would be more appropriate.

    1. Reviewer #1 (Public Review):

      This manuscript remains an intriguing investigation of the elephant brainstem, with particular attention drawn to possible sensory and motor representation of the renowned trunk of African and Asian elephants. As the authors note, this area has traditionally been identified as part of the superior olivary complex and associated with the fine motor control of the trunk; however, notable patterns within myelin stripes suggest that its parcellation may relate to specific regions/folds found along the long axis of the trunk, including elaborated regions for the trunk "finger" distal end.

      In this iteration of the manuscript, the researchers have provided peripherin antibody staining within the regions they have identified as the trigeminal nucleus and the superior olive. These data, with abundant peripherin expression within climbing fibers of the presumed superior olive and relatively lower expression within the trigeminal nucleus, bolster their interpretation of having comprehensively identified the trigeminal nucleus and trunk representation via a battery of neuroanatomical methods.

      All other conclusions remain the same, and these data have provoked intriguing and animated discussion on classification of neuroanatomical structure, particularly in species with relatively limited access to specimens. Most significantly, these discussions have underscored the fundamental nature of comparative methods (from protein to cellular to anatomical levels), including interpreting homologous structures among species of varying levels of relatedness.

    1. Joint Public Review:

      In this article, the authors employed modified CRISPR screens ["guide-only (GO)-CRISPR"] in the attempt to identify the genes which may mediate cancer cell dormancy in the high grade serous ovarian cancer (HGSOC) spheroid culture models. Using this approach, they observed that abrogation of several of the components of the netrin (e.g., DCC, UNC5Hs) and MAPK pathways compromise survival of non-proliferative ovarian cancer cells. This strategy was complemented by the RNAseq approach which revealed that number of the components of the netrin pathway are upregulated in non-proliferative ovarian cancer cells, and that their overexpression is lost upon disruption of DYRK1A kinase that has been previously demonstrated to play a major role in survival of these cells. Perampalam et al. then employed a battery of cell biology approaches to support the model whereby the Netrin signaling governs the MEK-ERK axis to support survival of non-proliferative ovarian cancer cells. Moreover, the authors show that overexpression of Netrins 1 and 3 bolsters dissemination of ovarian cancer cells in the xenograft mouse model, while also providing evidence that high levels of the aforementioned factors are associated with poor prognosis of HGSOC patients.

      Strengths:

      In this valuable study Perampalam et al. developed a CRISPR-based screening approach to identify key genes that are enriched in high grade serous ovarian cancer spheroids. This led to a discovery that Netrin signaling plays a prominent role in survival of ovarian cancer cells. During revision, the authors provide additional evidence to support their central claims and to this end, it was found that they now provide solid evidence to substantiate the proposed model. This work is anticipated to be of interest to cancer biologists specializing in ovarian cancer biology.

    1. Reviewer #1 (Public Review):

      In this manuscript, Roy et al. used the previously published deep transfer learning tool, DEGAS, to map disease associations onto single-cell RNA-seq data from bulk expression data. The authors performed independent runs of DEGAS using T2D or obesity status and identified distinct β-cell subpopulations. β-cells with high obese-DEGAS scores contained two subpopulations derived largely from either non-diabetic or T2D donors. Finally, immunostaining using human pancreas sections from healthy and T2D donors validated the heterogeneous expression and depletion of DLK1 in T2D islets.

      Strengths:

      (1) This meta-analysis of previously published scRNA-seq data using a deep transfer learning tool.

      (2) Identification of novel beta cell subclusters.

      (3) Identified a relatively innovative role of DLK1 in T2D disease progression.

      Weaknesses:

      (1) There is little overlap of the DE list of bulk RNA-seq analysis in Figure 1D and 1E overlap with the DE list of pseudo-bulk RNA-seq analysis of all cells in Figure S2C.

      (2) The biological meaning of "beta cells had the lowest scores compared to other cell types" is not clear.

      (3) The figures and supplemental figures were not cited following the sequence, which makes the manuscript very difficult to read. Some supplemental figures, such as Figures S1C-S1D, S2B-S2E, S3A-S3B, were not cited or mentioned in the text.

      (4) In Figure 7, the current resolution is too low to determine the localization of DLK1.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors introduce a denoising-style model that incorporates both structure and primary-sequence embeddings to generate richer embeddings of peptides. My understanding is that the authors use ESM for the primary sequence embeddings, take resolved structures (or use structural predictions from AlphaFold when they're not available), and then develop an architecture to combine these two with a loss that seems reminiscent of diffusion models or masked language model approaches. The embeddings can be viewed as ensemble-style embedding of the two levels of sequence information, or with AlphaFold, an ensemble of two methods (ESM+AlphaFold). The authors also gather external datasets to evaluate their approach and compare it to previous approaches. The approach seems promising and appears to out-compete previous methods at several tasks. Nonetheless, I have strong concerns about a lack of verbosity as well as the exclusion of relevant methods and references.

      Advances:

      I appreciate the breadth of the analysis and comparisons to other methods. The authors separate tasks, models, and sizes of models in an intuitive, easy-to-read fashion that I find valuable for selecting a method for embedding peptides. Moreover, the authors gather two datasets for evaluating embeddings' utility for predicting thermostability. Overall, the work should be helpful for the field as more groups choose methods/pretraining strategies amenable to their goals, and can do so in an evidence-guided manner.

      Considerations:

      Primarily, a majority of the results and conclusions (e.g., Table 3) are reached using data and methods from ProteinGym, yet the best-performing methods on ProteinGym are excluded from the paper (e.g., EVE-based models and GEMME). In the ProteinGym database, these methods outperform ProtSSN models. Moreover, these models were published over a year---or even 4 years in the case of GEMME---before ProtSSN, and I do not see justification for their exclusion in the text.

      Secondly, related to the comparison of other models, there is no section in the methods about how other models were used, or how their scores were computed. When comparing these models, I think it's crucial that there are explicit derivations or explanations for the exact task used for scoring each method. In other words, if the pre-training is indeed an important advance of the paper, the paper needs to show this more explicitly by explaining exactly which components of the model (and previous models) are used for evaluation. Are the authors extracting the final hidden layer representations of the model, treating these as features, and then using these features in a regression task to predict fitness/thermostability/DDG etc.? How are the model embeddings of other methods being used, since, for example, many of these methods output a k-dimensional embedding of a given sequence, rather than one single score that can be correlated with some fitness/functional metric? Summarily, I think the text lacks an explicit mention of how these embeddings are being summarized or used, as well as how this compares to the model presented.

      I think the above issues can mainly be addressed by considering and incorporating points from Li et al. 2024[1] and potentially Tang & Koo 2024[2]. Li et al.[1] make extremely explicit the use of pretraining for downstream prediction tasks. Moreover, they benchmark pretraining strategies explicitly on thermostability (one of the main considerations in the submitted manuscript), yet there is no mention of this work nor the dataset used (FLIP (Dallago et al., 2021)) in this current work. I think a reference and discussion of [1] is critical, and I would also like to see comparisons in line with [1], as [1] is very clear about what features from pretraining are used, and how. If the comparisons with previous methods were done in this fashion, this level of detail needs to be included in the text.

      To conclude, I think the manuscript would benefit substantially from a more thorough comparison of previous methods. Maybe one way of doing this is following [1] or [2], and using the final embeddings of each method for a variety of regression tasks---to really make clear where these methods are performing relative to one another. I think a more thorough methods section detailing how previous methods did their scoring is also important. Lastly, TranceptEVE (or a model comparable to it) and GEMME should also be mentioned in these results, or at the bare minimum, be given justification for their absence.

      [1] Feature Reuse and Scaling: Understanding Transfer Learning with Protein Language Models<br /> Francesca-Zhoufan Li, Ava P. Amini, Yisong Yue, Kevin K. Yang, Alex X. Lu<br /> bioRxiv 2024.02.05.578959; doi: https://doi.org/10.1101/2024.02.05.578959

      [2] Evaluating the representational power of pre-trained DNA language models for regulatory genomics<br /> Ziqi Tang, Peter K Koo<br /> bioRxiv 2024.02.29.582810; doi: https://doi.org/10.1101/2024.02.29.582810

    1. our failure today will be irreversible soon in the next 12 to 24 months we will leak key AGI breakthroughs to the CCP it will 00:38:56 be to the National security establishment the greatest regret before the decade is out

      for - AI - security risk - next 1 to 2 years is vulnerable time to keep AI secrets out of hands of authoritarian regimes

    1. Reviewer #1 (Public Review):

      Summary:

      The authors demonstrate that the immunosuppressive environment in pancreatic ductal adenocarcinoma (PDAC) can be mitigated by a combination of ionizing radiation (IR), CCR5 inhibition, and PD1 blockade. This combination therapy increases tissue-resident natural killer (trNK) cells that facilitate CD8 T cell activity, resulting in a reduction of E-cadherin positive tumor cells. They identify a specific "hypofunctional" NK cell population in both mouse and human PDAC that supports CD8 T cell involvement. A trNK signature is found to be associated with better survival outcomes in PDAC and other solid tumors.

      Overall, I think this is an interesting study that combines testing of therapeutic concepts in mice with bioinformatics analysis of single cell transcriptome data in primary tumors and exploration of clinical outcomes using signature genes in TCGA data. The key finding is that immunoregulatory properties of tumor infiltrating/resident CD56-bright NK cells (assumed to be non-cytotoxic) are beneficial for outcome through cross-talk with DC and recruitment of CD8 T cells. The latter is specifically induced by irradiation combined with CCR5i and PD1 blockade.

      These results support the notion that IR/CCR5i/αPD1 combination treatment alters immune infiltration by reducing Tregs and increasing NK and CD8 T cells, thereby resulting in greater local tumor control.

      Although the language was slightly modified in the revised version I think it is important to point out that transcripts (not protein expression) of KLRC2 is common in CD56bright NK cells and does not really reflect "adaptive-like" NK cells.

    1. Reviewer #1 (Public Review):

      He et al. investigate the requirement and function of Blimp1 (encoded by Prdm1) in murine NK cells and ILC1. Employing a conditional knockout mouse model (Prdm1flox x Ncr1cre), the authors describe impaired abundance and maturation of Prdm1-deficient NK cells and ILC1 in different tissues. Blimp1-deficient NK cells have reduced expression of cytotoxic molecules (Gzmb, Prf1) and, in some instances, Ifng production, and Prdm1flox x Ncr1cre mice show impaired tumor control in experimental metastasis models. Using single cell RNA sequencing analysis, the authors propose that Prdm1 regulates JunB expression and NK cell maturation. Based on in silico analyses, the authors suggest manifold intercellular communication between NK/ILC1 and macrophages. Without following up on any of these potentially interesting suggestions, the authors conclude their study reiterating that Prdm1 regulates IFNg-production of tumor-infiltrating NK cells and ILC1.

      Many of the reported functions of Blimp1 in NK cells have previously been identified using a mixed-chimera strategy comparing Prdm1 WT and KO NK cells (Kallies et al., Blood 2011). Here, the authors expand on these findings using a conditional model to delete Prdm1 in NK/ILC1 and single cell sequencing, and provide a more refined analysis of the functions of Blimp1 in these cells. Cell-chat analysis suggests close interactions fo Blimp-dependent NK/ILC1 subsets with hepatic macrophages, but these suggestions are not followed up by experiments. Potentially interesting differences in the macrophage compartment of Ncr1-Cre x Prdm1-fl/fl mice are suggested by the scc-RNA-Seq data, but are not validated e.g. by FACS. The study falls short in providing new mechanistic insights. Nevertheless, it is an interesting confirmation of "old" suggestions in a more refined setting, and the provided single-cell mRNA-Seq data represents a potentially valuable resource for the community.

    1. Reviewer #1 (Public Review):

      In this study, Drougard et al. examined the consequences of an acute high fat diet (HFD) on microglia in mice. 3-day HFD influenced the regulation of systemic glucose homeostasis in a microglia-dependent and independent manner, as determined using microglial depletion with PLX5622. 3-day HFD increased microglial membrane potential and the levels of palmitate and stearate in cerebrospinal fluid in vivo. Using confocal imaging, respirometry and stable isotope-assisted tracing in primary microglial cultures, the authors suggest an increase in mitochondrial fission and metabolic remodelling occurs when exposed to palmitate, which increases the release of glutamate, succinate and itaconate that may alter neuronal metabolism. This acute microglial metabolic response following acute HFD is subsequently linked to improved higher cognitive function (learning and memory) in a microglia and DRP1-dependent manner.

      Strengths:

      Overall, this study is interesting and novel in linking acute high fat diet to changes in microglia and improved learning and memory in mice. The role for microglia and DRP1 in regulating glucose homeostasis and memory in vivo appears to be supported by the data. Palmitate (which is elevated in the CSF following acute HFD) is clearly used as a fuel by primary microglia ex vivo as determined using U-13C-plamitate tracing and metabolomics.

      Weaknesses:

      The authors suggest that utilisation of palmitate by microglia following HFD is the driver of the acute metabolic changes and that the release of microglial-derived lactate, succinate, glutamate and itaconate are causally linked to improvements in learning and memory. A weakness is that the authors provide no mechanistic link between beta-oxidation of palmitate (or other fatty acids) in microglia in vivo and the observed systemic metabolic and memory phenotypes. However, this reviewer acknowledges the technical difficulties of providing this evidence and approaches, such as microglia-specific deletion of CPT1a, will be an exciting avenue of research to explore for a subsequent study.

    1. Reviewer #1 (Public Review):

      Summary:

      Chang et al. provide glutamate co-expression profiles in the central noradrenergic system and test the requirement of Vglut2-based glutamatergic release in respiratory and metabolic activity under physiologically relevant gas challenges. Their experiments show that conditional deletion of Vglut2 in NA neurons does not impact steady-state breathing or metabolic activity in room air, hypercapnia, or hypoxia. Their observations challenge the importance of glutamatergic signaling from Vglut2 expressing NA neurons in normal respiratory homeostasis in conscious adult mice.

      Strengths:

      The comprehensive Vglut1, Vglut2, and Vglut3 co-expression profiles in the central noradrenergic system and the combined measurements of breathing and oxygen consumption are two major strengths of this study. Observations from these experiments provide previously undescribed insights into (1) expression patterns for subtypes of the vesicular glutamate transporter protein in the noradrenergic system and (2) the dispensable nature of Vglut2-dependent glutamate signaling from noradrenergic neurons to breathing responses to physiologically relevant gas challenges in adult conscious mice.

      Weaknesses:

      Although the cellular expression profiles for the vesicular glutamate transporters are provided, the study does not document that glutamatergic-based signaling originating from noradrenergic neurons is evident at the cellular level under normal, hypoxic, and/or hypercapnic conditions. The authors effectively recognize this issue and appropriately discuss their findings in this context.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors evaluated a novel eIF2B activator, DNL343, in two mouse models representing different integrated stress response (ISR) forms. They first assessed the pharmacokinetics of DNL343, demonstrating its ability to cross the blood-brain barrier and exhibit good bioavailability. In an acute ISR model induced by optic nerve crush (ONC) injury, DNL343 treatment reduced ISR-induced transcriptional changes and neuronal loss, demonstrating neuroprotective effects. Next, the authors generated an eIF2B loss-of-function mice model by knocking in disease-causing Eif2b5 variants. The model presents a chronic ISR and mimics vanishing white matter disease (VWMD). DNL343 treatment from the pre-symptomatic stage improved body weight and motor functions, corrected transcriptional changes, and reversed proteomic and metabolomic alterations in the brain and cerebrospinal fluid. DNL343 treatment initiated at an advanced disease stage also showed positive effects, restoring body weight gain, suppressing ISR, reducing neurodegeneration biomarkers, and extending lifespan. These findings highlight DNL343 as an effective ISR inhibitor with potential applications in treating VWMD and other neurodegenerative disorders involving ISR.

      Strengths:

      The study's findings regarding the novel compound DNL343 offer significant promise in addressing VWMD, a condition currently lacking disease-modifying treatment. DNL343 directly targets eIF2B, the disease-causing complex in VWMD, and demonstrates notable efficacy in reversing the integrated stress response (ISR) and mitigating neurodegeneration in a VWMD mouse model. These results raise hope for the potential application of DNL343 in VWMD treatment, a development eagerly anticipated by patients and the VWMD research community. Moreover, the study hints at the broader potential of DNL343 in treating other ISR-related neurodegenerative disorders, such as ALS, a prospect that holds broader interest. Additionally, the study's identification of potential biomarkers for VWMD represents a notable strength, potentially leading to improved disease progression assessment pending further confirmation in future research.

      Weaknesses:

      Direct biochemical evidence confirming DNL343's activity in eIF2B activation and its toxicity profile have been previously documented in a separate study. It would be beneficial to provide a more detailed introduction to this information, establishing a robust knowledge foundation for the in vivo study described in this work.

    1. Joint Public Review:

      In this work, the authors address a fundamental question in the biological physics of many marine organisms, across a range of sizes: what is the mechanism by which they measure and respond to pressure. Such responses are classed under the term "barotaxis", with a specific response termed "barokinesis", in which swimming speed increases with depth (hence with pressure). While macroscopic structures such as gas-filled bladders are known to be relevant in fish, the mechanism for smaller organisms has remained unclear. In this work, the authors use ciliated larvae of the marine annelid Platynereis dumerilii to investigate this question. This organism has previously been of great importance in unravelling the mechanism of multicellular phototaxis associated with a ciliated band of tissue directed by light falling on photoreceptors.

      In the present work, the authors use a bespoke system to apply controlled pressure changes to organisms in water and to monitor their transient response in terms of swimming speed and characteristics of swimming trajectories. They establish that those changes are based on relative pressure, and are reflected in changes in the ciliary beating. Significantly, by imaging neuronal activity during pressure stimulation, it was shown that ciliary photoreceptor cells are activated during the pressure response. That these photoreceptors are implicated in the response was verified by the reduced response of certain mutants, which appear to have defective cilia. Finally, serotinin was implicated in the synaptic response of those neurons.

      This work is an impressive and synergistic combination of a number of different biological and physical probes into this complex problem. The ultimate result, that ciliary photoreceptors are implicated, is fascinating and suggests and interesting interplay between photoreception and pressure detection.

      Future studies ought to address the following three questions opened by this work:

      (1) How the off response to decrease of pressure is mediated

      (2) Which receptor/channel mediates in photoreceptors the response to increased pressure,

      (3) How the integration of light and pressure information is integrated by photoreceptors in order to guide the behavior of the larvae.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors have previously studied the function of the lysine demethylase Kdm6b as a positive regulator of neurogenesis from subventricular zone neural precursors. Here they knockout Kdm6b in progenitors of the dentate gyrus and show convincingly that deletion causes precocious differentiation of these stem cells. These data are valuable and show that Kdm6b can have very different functions in distinct populations of neuronal progenitors.

      Strengths:

      Kdm6b has repeatedly been implicated as a positive regulator of differentiation in the cellular transitions where it has been studied before. By contrast, here the authors show convincingly that it is required for maintenance of the stem cell state in the hippocampus, and that Kdm6b deletion is associated with premature stem cell differentiation and a small dentate gyrus in the adult hippocampus. Inducible deletion of Kdm6b in adult hippocampal stem cells confirms the precocious differentiation and loss of this population in the absence of Kdm6b even when induced at this later age.

      Weaknesses:

      This is a surprising finding in light of many other papers that are well-cited by the authors, including their own studies of SVZ progenitors where Kdm6b promotes neuronal differentiation. However, the weakness of the study is that the authors shed very little light on why the effects of Kdm6b would be so different (in fact, largely opposite) in the two stem cell populations they have studied.

    1. Joint Public Review:

      The polarisation phenomenon describes how proteins within a signalling network segregate into different spatial domains. This phenomenon holds fundamental importance in biology, contributing to various cellular processes such as cell migration, cell division, and symmetry breaking in embryonic morphogenesis. In this manuscript, the authors assess the robustness of stable asymmetric patterns using both a previously proposed minimal model of a 2-node network and a more realistic 5-node network based on the C. elegans cell polarisation network, which exhibits anterior-posterior asymmetry. They introduce a computational pipeline for numerically exploring the dynamics of a given reaction-diffusion network and evaluate the stability of a polarisation pattern. Typically, the establishment of polarisation requires the mutual inhibition of two groups of proteins, forming a 2-node antagonistic network. Through a reaction-diffusion formulation, the authors initially demonstrate that the widely-used 2-node antagonistic network for creating polarised patterns fails to maintain the polarised pattern in the face of simple modifications. However, the collapsed polarisation can be restored by combining two or more opposing regulations. The position of the interface can be adjusted with spatially varied kinetic parameters. Furthermore, the authors show that the 5-node network utilised by C. elegans is the most stable for maintaining polarisation against parameter changes, identifying key parameters that impact the position of the interface. While the results offer novel and insightful perspectives on the network's robustness for cell polarisation, the manuscript lacks comprehensive validation against experimental data, justified node-node network interactions, and proper estimation of model parameters (based on quantitative measurements or molecular intensity distributions). These limitations significantly restrict the utility of the model in making meaningful predictions or advancing our understanding of cell polarisation and pattern formation in natural systems, such as the C. elegans embryo.<br /> In more detail, the authors demonstrate that the simplified 2-node model requires precise parameter fine-tuning to maintain stable polarisation. Any single modification to this 2-node network disrupts the polarisation pattern, highlighting the model's lack of robustness. However, stability is achieved when two opposite modifications are applied, which also increases the number of parameter sets that sustain the pattern. This robustness is contingent on monotonic correlations between all system parameters.

      The study extends its significance by examining how cells maintain pattern stability amid spatial parameter variations, which are common in natural systems due to extracellular and intracellular fluctuations. The authors found that in the 2-node network, varying individual parameters spatially disrupt the pattern, but stability is restored with compensatory variations. Additionally, the polarisation interface stabilises around the step transition between parameter values, making its localisation tunable. This suggests a potential biological mechanism where localisation might be regulated through signalling perception.

      Focusing on the C. elegans cell polarisation network, the authors propose a 5-node network based on an exhaustive literature review, summarised in a supplementary table. Using their computational pipeline, they identify several parameter sets capable of achieving stable polarisation and claim that their model replicates experimental behaviour, even when simulating mutants. They also found that among 34 possible network structures, the wild-type network with mutual inhibition is the only one that proves viable in the computational pipeline. Compared with previous studies, which typically considered only 2- or 3-node networks, this analysis provides a more complete and realistic picture of the signalling network behind polarisation in the C. elegans embryo. In particular, the model for C. elegans cell polarisation paves the way for further in silico experiments to investigate the role of the network structure over the polarisation dynamics. The authors suggest that the natural 5-node network of C. elegans is optimised for maintaining cell polarisation, demonstrating the elegance of evolution in finding the optimal network structure to achieve certain functions.

      Noteworthy limitations are also found in this work. To simplify the model for numerical exploration, the authors assume several reactions have equivalent dynamics, reducing the parameter space to three independent dimensions. While the authors briefly acknowledge this limitation in the "Discussion and Conclusion" section, further analysis might be required to understand the implications. For instance, it is not clear how the results depend on the particular choice of parameters. The authors showed that adding additional regulation might disrupt the polarised pattern, with the conclusion apparently depending on the strength of the regulation. Even for the 5-node wild-type network, which is the most robust, adding a strong enough self-activation of [A], as done in the 2-node network, will probably cause the polarised pattern to collapse as well.

      Additionally, the authors utilise parameter values that are unrealistic, fail to provide units for some of them, and assume unknown parameter values without justification. The model appears to have non-dimensionalised length but not time, resulting in a mix of dimensional and non-dimensional variables that can be confusing. Furthermore, they assume equal values for Hill coefficients and many parameters associated with activation and inhibition pathways, while setting inhibition intensity parameters to 1. These arbitrary choices raise concerns about the fidelity of the proposed model in representing the real system, as their selected values could potentially differ by many orders of magnitude from the actual parameters.

      The definition of stability and its evaluation in the proposed pipeline might also be too narrow. Throughout the paper, the authors discuss the stability of the polarised pattern, checked by an exhaustive search of the parameter space where the system reaches a steady state with a polarised pattern instead of a homogeneous pattern. It is not clear if the stability is related to the linear stability analysis of the reaction terms, as conducted in Goehring et al. (Science, 2011), which could indicate if a homogeneous state exists and whether it is stable or unstable. The stability test is performed through a pipeline procedure where they always start from a polarised pattern described by their model and observe how it evolves over time. It is unclear if the conclusions depend on the chosen initial conditions. Particularly, it is unclear what would happen if the initial distribution of posterior molecules is not exactly symmetric with respect to the anterior molecules, or if the initial polarisation is not strong.

      Regarding the biological interpretation and relevance of the model, it overlooks some important aspects of the C. elegans polarisation system. The authors focus solely on a reaction-diffusion formulation to reproduce the polarisation pattern. However, the polarisation of the C. elegans zygote consists of two distinct phases: establishment and maintenance, with actomyosin dynamics playing a crucial role in both phases (see Munro et al., Dev Cell 2004; Shivas & Skop, MBoC 2012; Liu et al., Dev Biol 2010; Wang et al., Nat Cell Biol 2017). Both myosin and actin are crucial to maintaining the localisation of PAR proteins during cell polarisation, yet the authors neglect cortical flows during the establishment phase and any effects driven by myosin and actin in their model, failing to capture the system's complexity. How this affects the proposed model and conclusions about the establishment of the polarisation pattern needs careful discussion. Additionally, they assume that diffusion in the cytoplasm is infinitely fast and that cytoplasmic flows do not play any role in cell polarity. Finite cytoplasmic diffusion combined with cytoplasmic flows could compromise the stability of the anterior-posterior molecular distributions. The authors claim that cytoplasmic diffusion coefficients are two orders of magnitude higher than membrane diffusion coefficients, but they seem to differ by only one order of magnitude (Petrášek et al., Biophys. J. 2008). The strength of cytoplasmic flows has been quantified by a few studies, including Cheeks et al., and Curr Biol 2004.

      Although the authors compare their model predictions to experimental observations, particularly in reproducing mutant behaviours, they do not explicitly show or discuss these comparisons in detail. Diffusion coefficients and off-rates for some PAR proteins have been measured (Goehring et al., JCB 2011), but the authors seem to use parameter values that differ by many orders of magnitude, perhaps due to applied scaling. To ensure meaningful predictions, whether their proposed model captures the extensive published data should be evaluated. Various cellular/genetic perturbations have been studied to understand their effects on anterior-posterior boundary positioning. Testing these perturbations' responses in the model would be important. For example, comparing the intensity distribution of PAR-6 and PAR-2 with measurements during the maintenance phase by Goehring et al., JCB 2011, or comparing the normalised intensity of PAR-3 and PKC-3 from the model with those measured by Wang et al., Nat Cell Biol 2017, during establishment and maintenance phases (in both wild-type and cdc-42 (RNAi) zygotes) could provide insightful validation. Additionally, in the presence of active CDC-42, it has been observed that PAR-6 extends further into the posterior side (Aceto et al., Dev Biol 2006). Conducting such validation tests is essential to convince readers that the model accurately represents the actual system and provides insights into pattern formation during cell polarisation.

      A clear justification, with references, for each network interaction between nodes in the five-node model is needed. Some of the activatory/inhibitory signals proposed by the authors have not been demonstrated (e.g. CDC-42 directly inhibiting CHIN-1). Table S2 provided by the authors is insufficient to justify each node-node interaction, requiring additional explanations. (See the review by Gubieda et al., Phil. Trans. R. Soc. B 2020, for a similar node network that differs from the authors' model.) Additionally, the intensity distributions of cortical PAR-3 and PKC-3 seem to vary significantly during both establishment and maintenance phases (Wang et al., Nat Cell Biol 2017), yet the authors consider the PAR-3/PAR-6/PKC-3 as a single complex. The choices in the model should be justified, as the presence or absence of clustering of these PAR proteins can be crucial during cell polarisation (Wang et al., Nat Cell Biol 2017; Dawes & Munro, Biophys J 2011).

      In summary, the authors successfully demonstrate the importance of compensatory actions in maintaining polarisation robustness. Their computational pipeline offers valuable insights into the dynamics of reaction-diffusion networks. However, the lack of detailed experimental validation and realistic parameter estimation limits the model's applicability to real biological systems. While the study provides a solid foundation, further work is needed to fully characterise and validate the model in natural contexts. This work has the potential to significantly impact the field by providing a new perspective on the robustness of cell polarisation networks.

      The computational pipeline developed could be a valuable tool for further in silico experiments, allowing researchers to explore the dynamics of more complex networks. To maximise its utility, the model needs comprehensive validation and refinement to ensure it accurately represents biological systems. Addressing these limitations, particularly the need for more detailed experimental validation and realistic parameter choices, will enhance the model's predictive power and its applicability to understanding cell polarisation in natural systems.

    1. Reviewer #1 (Public Review):

      This study tests whether Little Swifts exhibit optimal foraging, which the data seem to indicate is the case. This is unsurprising as most animals would be expected to optimize the energy income:expenditure ratio; however, it hasn't been explicitly quantified before the way it was in this manuscript.

      The major strength of this work is the sheer volume of tracking data and the accuracy of those data. The ATLAS tracking system really enhanced this study and allowed for pinpoint monitoring of the tracked birds. These data could be used to ask and answer many questions beyond just the one tested here.

      The major weakness of this work lies in the sampling of insect prey abundance at a single point on the landscape, 6.5 km from the colony. This sampling then requires the authors to work under the assumption that prey abundance is simultaneously even across the study region - an assumption that is certainly untrue. The authors recognize this problem and say that sampling in a spatially explicit way was beyond their scope, which I understand, but then at other times try to present this assumption as not being a problem, which it very much is. Further, it is uncertain whether other aspects of the prey data are problematic. For example, the radar only samples insects at 50 m or higher from the ground - how often do Little Swifts forage under 50 m high? Another example might be that the phrases "high abundance" and "low abundance" are often used in the manuscript, but never defined.

      It may be fair to say that prey populations might be correlated over space but are not equal. It is this unknown degree of spatial correlation that lends confidence to the findings in the Results. As such, the finding that Little Swifts forage optimally is indeed supported by the data, notwithstanding some of the shortcomings in the prey abundance data. The authors achieved their aims and the results support their conclusions.

      At its centre, this work adds to our understanding of Little Swift foraging and extends to a greater understanding of aerial insectivores in general. While unsurprising that Little Swifts act as optimal foragers, it is good to have quantified this and show that the population declines observed in so many aerial insectivores are not necessarily a function of inflexible foraging habits. Further, the methods used in this research have great potential for other work. For example, the ATLAS system poses some real advantages and an exciting challenge to existing systems, like MOTUS. The radar that was used to quantify prey abundance also presents exciting possibilities if multiple units could be deployed to get a more spatially-explicit view.

      To improve the context of this work, it is worth noting that the authors suggest that this work is important because it has never been done before for an aerial insectivore; however, that justification is untrue as it has been assessed in several flycatcher and swallow species. A further justification is that this research is needed due to dramatic insect population declines, but the magnitude and extent of such declines are fiercely debated in the literature. Perhaps these justifications are unnecessary, and the work can more simply be couched as just a test of optimality theory.

    1. Reviewer #1 (Public Review):

      Summary:

      This study aims to understand the malaria antigen-specific cTfh profile of children and adults living in a malaria holoendemic area. PBMC samples from children and adults were unstimulated or stimulated with PfSEA-1A or PfGARP in vitro for 6h and analysed by a cTfh-focused panel. Unsupervised clustering and analysis on cTfh were performed.

      The main conclusions are:<br /> (1) the cohort of children has more diverse (cTfh1/2/17) recall responses compared to the cohort of adults (mainly cTfh17) and<br /> (2) Pf-GARP stimulates better cTfh17 responses in adults, thus a promising vaccine candidate.

      Strengths:

      This study is in general well-designed and with excellent data analysis. The use of unsupervised clustering is a nice attempt to understand the heterogeneity of cTfh cells. Figure 9 is a beautiful summary of the findings.

      Weaknesses:

      (1) Most of my concerns are related to using PfSEA-1A and PfGARP to analyse cTfh in vitro stimulation response. In vitro, stimulation on cTfh cells has been frequently used (e.g. Dan et al, PMID: 27342848), usually by antigen stimulation for 9h and analysed CD69/CD40L expression, or 18h and CD25/OX40. However, the authors use a different strategy that has not been validated to analyse in vitro stimulated cTfh. Also, they excluded CD25+ cells which might be activated cTfh. I am concerned about whether the conclusions based on these results are reliable.

      It has been shown that cTfh cells can hardly produce cytokines by Dan et al. However, in this paper, the authors report the significant secretion of IL-4 and IFNg on some cTfh clusters after 6h stimulation. If the stimulation is antigen-specific through TCR, why cTfh1 cells upregulate IL-4 but not IFNg in Figure 6? I believe including the representative FACS plots of IL-4, IFNg, IL21 staining, and using %positive rather than MFI can make the conclusion more convincing. Similarly, the author should validate whether TCR stimulation under their system for 6h can induce robust BCL6/cMAF expression in cTfh cells. Moreover, there is no CD40L expression. Does this mean TCR stimulation mediated BCl6/cMAF upregulation and cytokine secretion precede CD40L expression?

      In summary, I am particularly concerned about the method used to analyse PfSEA-1A and PfGARP-specific cTfh responses because it lacks proper validation. I am unsure if the conclusions related to PfSEA-1A/PfGARP-specific responses are reliable.

      (2) The section between lines 246-269 is confusing. Line 249, comparing the abundance after antigen stimulation is improper because 6h stimulation (under Golgi stop) should not induce cell division. I think the major conclusions are contained in Figure 5e, that (A) antigen stimulation will not alter cell number in each cluster and (B) children have more MC03, 06 and fewer MC02, etc.). The authors should consider removing statements between lines 255-259 because the trends are the same regardless of stimulations.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors were seeking to define the roles of the Drosophila caspar gene in embryonic development and primordial germ cell (PGC) formation. They demonstrate that PGC number, and the distribution of the germ cell determinant Oskar, change as a result of changes in caspar expression; reduction of caspar reduces PGC number and the domain of Oskar protein expression, while overexpression of caspar does the reverse. They also observe defects in syncytial nuclear divisions in embryos produced from caspar mutant mothers. Previous work from the same group demonstrated that Caspar protein interacts with two partners, TER94 and Vap33. In this paper, they show that maternal knockdown of TER94 results in embryonic lethality and some overlap of phenotypes with reduction of caspar, supporting the idea may work together in their developmental roles. The authors propose models for how Caspar might carry out its developmental functions. The most specific of these is that Caspar and its partners might regulate oskar mRNA stability by recruiting ubiquitin to the translational regulator Smaug.

      Strengths:

      The work identifies a new factor that is involved in PGC specification and points toward an additional pathway that may be involved in establishing and maintaining an appropriate distribution of Oskar at the posterior pole of the embryo. It also ties together earlier observations about the presence of TER94 in the pole plasm that have not heretofore been linked to a function.

      Weaknesses:

      (1) A PiggyBac insertion allele casp[c04227] is used throughout the paper and referred to as a loss-of-function allele (casp[lof]). However, this allele does not appear to act strictly as a loss-of-function. Figure 1E shows that some residual Casp protein is present in early embryos produced by casp[lof]/Df females, and this protein is presumably functional as the PiggyBac insertion does not affect the coding region. Also, Figures 1B and 1C show that the phenotypes of casp[lof] homozygotes and casp[lof]/Df are not the same; surprisingly, the homozygous phenotypes are more severe. These observations are unexplained and inconsistent with the insertion being simply a loss-of-function allele. Might there be a second-site mutation in casp[c04227]?

      (2) TER94 knockdown phenotypes have been previously published (Zhang et al 2018 PMID 30012668), and their effects on embryonic viability and syncytial mitotic divisions were described there. This paper is inappropriately not cited, and the data in Figure 4 should be presented in the context of what has been published before.

      (3) The peptide counts in the mass spectrometry experiment aimed at finding protein partners for Casp are extremely low, except for Casp itself and TER94. Peptide counts of 1-2 seem to me to be of questionable significance.

      (4) The pole bud phenotypes from TER94 knockdown and casp mutant shown in Fig 5 appear to be quite different. These differences are unexplained and seem inconsistent with the model proposed that the two proteins work in a common pathway. Whole embryos should also be shown, as the TER94 KD phenotype could result from a more general dysmorphism.

      (5) Figure 6 is not quantitative, lacking even a second control staining to check for intensity variation artifacts. Therefore it shows that the distribution of Oskar protein changes in the various genotypes, but not convincingly that the level of Oskar changes as the paper claims.

      (6) The error bars are huge in the graphs in Figure 7H, I, and J, leading me to question whether these changes are statistically significant. Calculations of statistical significance are missing from these graphs and need to be added.

      (7) There are many instances of fuzzy and confusing language when describing casp phenotypes. For example, on lines 211-212 it is stated that 'casp[lof] adults are only partially homozygous viable as ~70% embryos laid by the homozygous mutant females failed to hatch into larvae'. Isn't this more accurately described as 'casp[c04227] is a maternal-effect lethal allele with incomplete penetrance'? Another example is on line 1165, what exactly is a 'semi-vital function'?

    1. Reviewer #1 (Public Review):

      Summary:

      This study seeks to quantify changes in vocal behavior during development in marmosets with bilateral anterior cingulate cortex (ACC) lesions. The ACC and its role in social vocal behaviors are of great interest given previous literature on its involvement in the initiation of vocalizations, processing emotional content, and its connectivity to two other critical nodes in the vocal network, the amygdala and the PAG. The authors seek to test the hypothesis that the ACC contributes to the development of mature vocal behaviors during the first few weeks of life by disrupting this process with neonatal ACC lesions. Imaging and histological analyses confirm the extent of the lesion and suggest downstream effects in connected regions. Analysis of call rates and call type proportions show no or slight differences between lesioned and controlled animals. Additional analyses on the proportion of grouped 'social' calls and certain acoustic features of a particular call, the phee, reveal more distinct differences between the groups.

      Strengths:

      The authors have identified that ACC lesions in early life have no or little influence on certain aspects of vocal behavior (e.g. call rate, call intervals) but larger impacts on other aspects (e.g. acoustic features of phee calls). This data is a valuable addition to the literature on the effects of the ACC on vocal production.

      The histological methods and resulting quantification of neural changes in the lesioned area and in downstream areas of interest are intriguing given the large time gap between the lesion and these analyses.

      Weaknesses:

      The article emphasizes vocal social behavior but none of the experiments involve a social element. Marmosets are recorded in isolation which could be sufficient for examining the development of vocal behavior in that particular context. However, the early-life maturation of vocal behavior is strongly influenced by social interactions with conspecifics. For example, the transition of cries and subharmonic phees which are high-entropy calls to more low-entropy mature phees is affected by social reinforcement from the parents. And this effect extends cross-context where differences in these interaction patterns extend to vocal behavior when the marmosets are alone. From the chord diagrams, cries still consist of a significant proportion of call types in lesioned animals. Additionally, though it is an intriguing finding that the infants' phee calls have acoustic differences being 'blunted of variation, less diverse and more regular,' the suggestion that the social message conveyed by these infants was 'deficient, limited, and/or indiscriminate' is not but can be tested with, for example, playback experiments.

      The manuscript would benefit from the addition of more details to be able to better determine if the conclusions are well supported by the data. Understanding that this is very difficult data to get, the number of marmosets and some variability in the collection of the data would allow for the plotting of each individual across figures. For example, in the behavioral figures, which is the marmoset that is in the behavioral data that has a sparing of the ACC lesion in one hemisphere? Certain figures, described below in the recommendations for the authors, could also do with additional description.

    1. Reviewer #1 (Public Review):

      Petty and Bruno investigate how response characteristics in the higher-order thalamic nuclei POm (typically somatosensory) and LP (typically visual) change when a stimulus (whisker air puff or visual drifting grating) of one or the other modality is conditioned to a reward. Using a two-step training procedure, they developed an elegant paradigm, where the distractor stimulus is completely uninformative about the reward, which is reflected in the licking behavior of trained mice. While the animals seem to take on to the tactile stimulus more readily, they can also associate the reward with the visual stimulus, ignoring tactile stimuli. In trained mice, the authors recorded single-unit responses in both POm and LP while presenting the same stimuli. The authors first focused on POm recordings, finding that in animals with tactile conditioning POm units specifically responded to the air puff stimulus but not the visual grating. Unexpectedly, in visually conditioned animals, POm units also responded to the visual grating, suggesting that the responses are not modality-specific but more related to behavioral relevance. These effects seem not not be homogeneously distributed across POm, whereas lateral units maintain tactile specificity and medial units respond more flexibly. The authors further ask if the unexpected cross-modal responses might result from behavioral activity signatures. By regressing behavior-coupled activity out of the responses, they show that late activity indeed can be related to whisking, licking, and pupil size measures. However, cross-modal short latency responses are not clearly related to animal behavior. Finally, LP neurons also seem to change their modality-specificity dependent on conditioning, whereas tactile responses are attenuated in LP if the animal is conditioned to visual stimuli.

      The authors make a compelling case that POm neurons are less modality-specific than typically assumed. The training paradigm, employed methods, and analyses are mostly to the point, well supporting the conclusions. The findings importantly widen our understanding of higher-order thalamus processing features with the flexibility to encode multiple modalities and behavioral relevance. The results raise many important questions on the brain-wide representation of conditioned stimuli. E.g. how specific are the responses to the conditioned stimuli? Are thalamic cross-modal neurons recruited for the specific conditioned stimulus or do their responses reflect a more global shift of attention from one modality to another?

      To elaborate on higher-order thalamic activity in relationship to conditioned behavior, a trial-by-trial analysis would be very useful. Is neuronal activity predictive of licking and at which relative timing? Furthermore, I wonder why the (in my mind) major and from the data obvious take-away, "POm neurons respond more strongly to visual stimuli if visually conditioned", is not directly tested in the summary statistics in Figure 3h.

      The remaining early visual responses in POm in visually conditioned mice after removing behavior-linked activity are very convincing (Figure 5d). It would help, however, to see a representation of this on a single-neuron basis side-by-side. Are individual neurons just coupled to behavior while others are independent, or is behaviorally coupled activity a homogeneous effect on all neurons on top of sensory activity?

      The conclusions on flexible response characteristics in LP in general are less strongly supported than those in POm. First, the differentiation between POm and LP relies heavily on the histological alignment of labeled probe depth and recording channel, possibly allowing for wrong assignment. furthermore, it seems surprising, but is not discussed, that putative LP neurons have such strong responses to the air puff stimuli, in both conditioning cases. In tactile conditioning, LP air puff responses seem to be even faster and stronger than POm. In visual conditioning, drifting grating responses paradoxically seem to be later than in tactile conditioning (Fig S2e). These differences in response changes between POm and LP should be discussed in more detail and statements of "similar phenomena" in POm and LP (abstract) should be qualified.

    1. Reviewer #1 (Public Review):

      Summary:

      The main goal of the paper was to identify signals that activate FLP-1 release from AIY neurons in response to H2O2, previously shown by the authors to be an important oxidative stress response in the worm.

      Strengths:

      This study builds upon the authors' previous work (Jia and Sieburth 2021) by further elucidating the gut-derived signaling mechanisms that coordinate the organism-wide antioxidant stress response in C. elegans.

      By detailing how environmental cues like oxidative stress are transduced into gut-derived peptidergic signals, this study represents a valuable advancement in understanding the integrated physiological responses governed by the gut-brain axis.

      This work provides valuable mechanistic insights into the gut-specific regulation of the FLP-2 peptide signal.

      Weaknesses:

      Although the authors identify intestinal FLP-2 as the endocrine signal important for regulating the secretion of the neuronal antioxidant neuropeptide, FLP-1, there is no effort made to identify how FLP-2 levels regulate FLP-1 secretion or identify whether this regulation is occurring directly through the AIY neuron or indirectly. This is brought up in the discussion, but identifying a target for FLP-2 in this pathway seems like a crucial missing piece of information in characterizing this pathway.

    1. Reviewer #1 (Public Review):

      This study uses a variety of approaches to explore the role of the cerebellum, and in particular Purkinje cells (PCs), in the development of postural control in larval zebrafish. A chemogenetic approach is used to either ablate PCs or disrupt their normal activity and a powerful, high-throughput behavioural tracking system then enables quantitative assessment of swim kinematics. Using this strategy, convincing evidence is presented that PCs are required for normal postural control in the pitch axis. Calcium imaging further shows that PCs encode tilt direction. Evidence is also presented that suggests the role of the cerebellum changes over the course of early development, although this claim is rather less robust in the current version of the paper. Finally, the authors build on their prior work showing that both axial muscles and pectoral fins contribute to "climbs" and show evidence that suggests PCs are required for correct engagement of the fins during this behaviour. Overall, establishing a role for the cerebellum in postural control is not very surprising. However, a clear motivation of this study was to establish a robust experimental platform to investigate the changing role of cerebellar circuits in the development of postural control in the highly experimentally accessible zebrafish larvae, and in this regard, the authors have certainly succeeded.

      Overall, I consider this an excellent paper, with some room for improvement in aspects of presentation, discussion, and some aspects of the data analysis..

    1. Reviewer #1 (Public Review):

      This study asks whether the phenomenon of crossmodal temporal recalibration, i.e. the adjustment of time perception by consistent temporal mismatches across the senses, can be explained by the concept of multisensory causal inference. In particular, they ask whether the explanation offered by causal inference better explains temporal recalibration better than a model assuming that crossmodal stimuli are always integrated, regardless of how discrepant they are.

      The study is motivated by previous work in the spatial domain, where it has been shown consistently across studies that the use of crossmodal spatial information is explained by the concept of multisensory causal inference. It is also motivated by the observation that the behavioral data showcasing temporal recalibration feature nonlinearities that, by their nature, cannot be explained by a fixed integration model (sometimes also called mandatory fusion).

      To probe this the authors implemented a sophisticated experiment that probed temporal recalibration in several sessions. They then fit the data using the two classes of candidate models and rely on model criteria to provide evidence for their conclusion. The study is sophisticated, conceptually and technically state-of-the-art, and theoretically grounded. The data clearly support the authors' conclusions.

      I find the conceptual advance somewhat limited. First, by design, the fixed integration model cannot explain data with a nonlinear dependency on multisensory discrepancy, as already explained in many studies on spatial multisensory perception. Hence, it is not surprising that the causal inference model better fits the data. Second, and again similar to studies on spatial paradigms, the causal inference model fails to predict the behavioral data for large discrepancies. The model predictions in Figure 5 show the (expected) vanishing recalibration for large delta, while the behavioral data don't' decay to zero. Either the range of tested SOAs is too small to show that both the model and data converge to the same vanishing effect at large SOAs, or the model's formula is not the best for explaining the data. Again, the studies using spatial paradigms have the same problem, but in my view, this poses the most interesting question here.

      In my view there is nothing generally wrong with the study, it does extend the 'known' to another type of paradigm. However, it covers little new ground on the conceptual side.

      On that note, the small sample size of n=10 is likely not an issue, but still, it is on the very low end for this type of study.

    1. Reviewer #1 (Public Review):

      Summary:

      In this paper, the authors' study aimed to test existing theories on the role of bursting in learning and attention. They find evidence for both. It is not clear how these two can be reconciled, but this is one of the first studies to explicitly test recent theories of spike multiplexing in the brain. This will pave the way for future investigations, both experimental and theoretical.

      Strengths:

      (1) A key strength of this study is the fact that it aims to test existing theories of spike multiplexing, finding support for both attention-like and learning-like signals.

      (2) The task setup is of particular interest to brain-machine interfaces, and how such setups trigger learning and attention mechanisms.

      Weaknesses:

      (1) The fact that the teaching signal is an (artificial) stimulation of the primary sensory cortex, makes it unclear how applicable are these results to a more general understanding of learning and attention in the brain.

      (2) It would have been useful to more directly compare the results obtained here with existing burst-dependent computational models of learning and attention. This is particularly important since there appears to be an interaction between learning and sharpening signals.

      (3) There are inherent limitations in our current ability to read out bursting and non-bursting signals, this is a brave first attempt, but at this point, it is unclear how can one robustly read out this information from noisy data.

    1. Reviewer #1 (Public Review):

      Summary:

      A subset of fibroblast growth factor (FGF) proteins (FGF11-FGF14; often referred to as fibroblast growth factor homologous factors because they are not thought to be secreted and do not seem to act as growth factors) have been implicated in modulating neuronal excitability, however, the exact mechanisms are unclear. In part, this is because it is unclear how different FGF isoforms alter ion channel activity in different neuronal populations. In this study, the authors explore the role of FGF 13 in epilepsy using a variety of FGF13 knock-out mouse models, including several targeted cell-type specific conditional knockout mouse lines. The study is intriguing as it indicates that FGF13 plays an especially important role in inhibitory neurons. Furthermore, although FGF13 has been studied as a regulator of neuronal voltage-gated sodium channels, the authors present data indicating that FGF13 knockout in inhibitory neurons induces seizures not by altering sodium current properties but by reducing voltage-gated potassium currents in inhibitory neurons. While intriguing, the data are incomplete in several aspects and thus the mechanisms by which various FGF13 variants induce Developmental and Epileptic Encephalopathies are not resolved by the data presented.

      Strengths:

      A major strength is the array of techniques used to assess the mice and the electrical activity of the neurons.

      The multiple mouse knock-out models utilized are a strength, clearly demonstrating that FGF13 expression in inhibitory neurons, and possibly specific sub-populations of inhibitory neurons, is critically important.

      The data on the increased sensitivity to febrile seizures in KO mice are very nice, provide clear evidence for regulation of excitability in inhibitory neurons by FGF13.

      The Gad2Fgf13-KO mice indicated that several Fgf13 splice variants may be expressed in inhibitory neurons and suggest that the Fgf13-VY splice variants may have previously unrecognized specific roles in regulating neuronal excitability.

      The data on males and females from the various KO mice lines indicates a clear gene dosage effect for this X-linked gene.

      The unbiased metabolomic analysis supports the assertion that Fgf13 expression in inhibitory neurons is important in regulating seizure susceptibility.

      Weaknesses:

      The knockout approach can be powerful but also has distinct limitations. Multiple missense mutations in FGF13-S have been identified. The knockout models employed here are not appropriate for understanding how these missense variants lead to altered neuronal excitability. While the data show that complete loss of Fgf13 from excitatory forebrain neurons is not sufficient to induce seizure susceptibility, it does not rule out that specific variants (e.g., R11C) might alter the excitability of forebrain neurons. The missense variants may alter excitatory and/or inhibitory neuron excitability in distinct ways from a full FGF13 knockout.

      The electrophysiological experiments are intriguing but not comprehensive enough to support all of the conclusions regarding how FGF13 modulates neuronal excitability.

      Another concern is the use of different ages of neurons for different experiments. For example, sodium currents in Figures 2 and 5 (and Supplemental Figures 2 and 7) are recorded from cultured neurons, which may have very different properties (including changes in sodium channel complexes) from neurons in vivo that drive the development of seizure activity.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors aimed to develop and validate an automated, deep learning-based system for scoring the Rey-Osterrieth Complex Figure Test (ROCF), a widely used tool in neuropsychology for assessing memory deficits. Their goal was to overcome the limitations of manual scoring, such as subjectivity and time consumption, by creating a model that provides automatic, accurate, objective, and efficient assessments of memory deterioration in individuals with various neurological and psychiatric conditions.

      Strengths:

      Comprehensive Data Collection:<br /> The authors collected over 20,000 hand-drawn ROCF images from a wide demographic and geographic range, ensuring a robust and diverse dataset. This extensive data collection is critical for training a generalizable and effective deep learning model.

      Advanced Deep Learning Approach:<br /> Utilizing a multi-head convolutional neural network to automate ROCF scoring represents a sophisticated application of current AI technologies. This approach allows for detailed analysis of individual figure elements, potentially increasing the accuracy and reliability of assessments.

      Validation and Performance Assessment:<br /> The model's performance was rigorously evaluated against crowdsourced human intelligence and professional clinician scores, demonstrating its ability to outperform both groups. The inclusion of an independent prospective validation study further strengthens the credibility of the results.

      Robustness Analysis Efficacy:<br /> The model underwent a thorough robustness analysis, testing its adaptability to variations in rotation, perspective, brightness, and contrast. Such meticulous examination ensures the model's consistent performance across different clinical imaging scenarios, significantly bolstering its utility for real-world applications.

      Weaknesses:

      Insufficient Network Analysis for Explainability:<br /> The paper does not sufficiently delve into network analysis to determine whether the model's predictions are based on accurately identifying and matching the 18 items of the ROCF or if they rely on global, item-irrelevant features. This gap in analysis limits our understanding of the model's decision-making process and its clinical relevance.

      Generative Model Consideration:<br /> The critique suggests exploring generative models to model the joint distribution of images and scores, which could offer deeper insights into the relationship between scores and specific visual-spatial disabilities. The absence of this consideration in the study is seen as a missed opportunity to enhance the model's explainability and clinical utility.

      Appraisal and discussion:<br /> By leveraging a comprehensive dataset and employing advanced deep learning techniques, they demonstrated the model's ability to outperform both crowdsourced raters and professional clinicians in scoring the ROCF. This achievement represents a significant step forward in automating neuropsychological assessments, potentially revolutionizing how memory deficits are evaluated in clinical settings. Furthermore, the application of deep learning to clinical neuropsychology opens avenues for future research, including the potential automation of other neuropsychological tests and the integration of AI tools into clinical practice. The success of this project may encourage further exploration into how AI can be leveraged to improve diagnostic accuracy and efficiency in healthcare.

      However, the critique regarding the lack of detailed analysis across different patient demographics, the inadequacy of network explainability, and concerns about the selection of median crowdsourced scores as ground truth raises questions about the completeness of their objectives. These aspects suggest that while the aims were achieved to a considerable extent, there are areas of improvement that could make the results more robust and the conclusions stronger.

    1. Reviewer #1 (Public Review):

      Summary:

      In this important work, the authors propose and test a model for the control of murine ultrasonic vocalizations (USV) in which two independent mechanisms involving changes in laryngeal opening or airflow control vocal tone. They present compelling experimental evidence for this dual control model by demonstrating the ability of freely behaving adult mice to generate vocalizations with various intonations by modulating both the breathing pattern and the laryngeal muscles. They also present novel evidence that these mechanisms are encoded in the brainstem vocalization central neural pattern generator, particularly in the component in the medulla called the intermediate reticular oscillator (iRO). The results presented clearly advance understanding of the developmental nature of the iRO, its ability to intrinsically generate and control many of the dynamic features of USV, including those related to intonation, and its coordination with/control of expiratory airflow patterns. This work will interest neuroscientists investigating the neural generation and control of vocalization, breathing, and more generally, neuromotor control mechanisms.

      Strengths:

      Important features and novelty of this work include:

      (1) The study employs an effective combination of anatomical, molecular, and functional/ behavioral approaches to examine the hypothesis and provide novel data indicating that expiratory airflow variations can change adult murine USV's pitch patterns.

      (2) The results significantly extend the authors' previous work that identified the iRO in neonatal mice by now presenting data that functionally demonstrates the existence of the critical Penk+Vglut2+ iRO neurons in adult mice, indicating that the iRO neurons maintain their function in generating vocalization throughout development.

      (3) The results convincingly demonstrate that the iRO neurons encode and can generate vocalizations by modulating both breathing and the laryngeal muscles.

      (4) The anatomical mapping and tracing results establish an important set of input and output circuit connections to the iRO, including input from the vocalization-promoting subregions of the midbrain periaqueductal gray (PAG), as well as output axonal projections to laryngeal motoneurons, and to the respiratory rhythm generator in the preBötzinger complex.

      (5) These studies advance the important concept that the brainstem vocalization pattern generator integrates with the medullary respiratory pattern generator to control expiratory airflow, a key mechanism for producing various USV types characterized by different pitch patterns.

      Weaknesses:

      A limitation is that the cellular and circuit mechanisms by which the vocalization pattern generator integrates with the respiratory pattern generator to control expiratory airflow has not been fully worked out, requiring future studies.

    1. Reviewer #1 (Public Review):

      In the paper, the authors illustrated a novel method for Electrolytic Lesioning through a microelectronics array. This novel lesioning technique is able to perform long-term micro-scale local lesions with a fine spatial resolution (mm). In addition, it allows a direct comparison of population neural activity patterns before and after the lesions using electrophysiology. This new technique addresses a recent challenge in the field and provides a precious opportunity to study the natural reorganization/recovery at the neuronal population level after long-term lesions. It will help discover new causal insights investigating the neural circuits controlling behavior.

      Comments on revised version:

      We appreciate the revisions made by the authors in response to our comments on the previous version of their manuscript. They carefully addressed the majority of the concerns and performed additional experiments. The new figure illustrating the lesion volume as a function of electrolytic lesioning parameters provides a valuable reference for future experiments. In addition, the latest results on different versions of passive multielectrode probes, U-probe, demonstrate that the technique is applicable beyond the specific technical setup they employ. Overall, we believe that the revised manuscript is significantly improved.

    1. Reviewer #1 (Public Review):

      This paper describes "Ais", a new software tool for machine-learning-based segmentation and particle picking of electron tomograms. The software can visualise tomograms as slices and allows manual annotation for the training of a provided set of various types of neural networks. New networks can be added, provided they adhere to a Python file with an (undescribed) format. Once networks have been trained on manually annotated tomograms, they can be used to segment new tomograms within the same software. The authors also set up an online repository to which users can upload their models, so they might be re-used by others with similar needs. By logically combining the results from different types of segmentations, they further improve the detection of distinct features. The authors demonstrate the usefulness of their software on various data sets. Thus, the software appears to be a valuable tool for the cryo-ET community that will lower the boundaries of using a variety of machine-learning methods to help interpret tomograms.

    1. Reviewer #1 (Public Review):

      Summary:

      This study examines the spatial and temporal patterns of occurrence and the interspecific associations within a terrestrial mammalian community along human disturbance gradients. They conclude that human activity leads to a higher incidence of positive associations.

      Strengths:

      The theoretical framework of the study is brilliantly introduced. Solid data and sound methodology. This study is based on an extensive series of camera trap data. Good review of the literature on this topic.

      Weaknesses:

      The authors do not delve into the different types of association found in the study. A more ecological perspective explaining why certain species tend to exhibit negative associations and why others show the opposite pattern (and thus, can be used as indicator species) is missing. Also, the authors do not clearly distinguish between significant (true) non-random associations and random associations.

      Anthropogenic pressures can shape species associations by increasing spatial and temporal co-occurrence, but above a certain threshold, the positive influence of human activity in terms of species associations could be reverted. This study can stimulate further work in this direction.

    1. Reviewer #1 (Public Review):

      Summary:

      In the manuscript titled "Benchmarking tRNA-Seq quantification approaches by realistic tRNA-Seq data simulation identifies two novel approaches with higher accuracy," Tom Smith and colleagues conducted a comparative evaluation of various sequencing-based tRNA quantification methods. The inherent challenges in accurately quantifying tRNA transcriptional levels, stemming from their short sequences (70-100nt), extensive redundancy (~600 copies in human genomes with numerous isoacceptors and isodecoders), and potential for over 100 post-transcriptional chemical modifications, necessitate sophisticated approaches. Several wet-experimental methods (QuantM-tRNA, mim-tRNA, YAMAT, DM-tRNA, and ALL-tRNA) combined with bioinformatics tools (bowtie2-based, SHRiMP, and mimseq) have been proposed for this purpose. However, their practical strengths and weaknesses have not been comprehensively explored to date. In this study, the authors systematically assessed and compared these methods, considering factors such as incorrect alignments, multiple alignments, misincorporated bases (experimental errors), truncated reads, and correct assignments. Additionally, the authors introduced their own bioinformatic approaches (referred to as Decision and Salmon), which, while not without flaws (as perfection is unattainable), exhibit significant improvements over existing methods.

      Strengths:

      The manuscript meticulously compares tRNA quantification methods, offering a comprehensive exploration of each method's relative performance using standardized evaluation criteria. Recognizing the absence of "ground-truth" data, the authors generated in silico datasets mirroring common error profiles observed in real tRNA-seq data. Through the utilization of these datasets, the authors gained insights into prevalent sources of tRNA read misalignment and their implications for accurate quantification. Lastly, the authors proposed their downstream analysis pipelines (Salmon and Decision), enhancing the manuscript's utility.

      Weaknesses:

      As discussed in the manuscript, the error profiles derived from real-world tRNA-seq datasets may still harbor biases, as reads that failed to "align" in the analysis pipelines were not considered. Additionally, the authors did not validate the efficacy of their "best practice" pipelines on new real-world datasets, preferably those generated by the authors themselves. Such validation would not only confirm the improvements but also demonstrate how these pipelines could alter biological interpretations.<br /> Because tRNA-sequencing methods have not been widely used (compared to mRNA-seq), many readers would not be familiar with the characteristics of different methods introduced in this study (QuantM-tRNA, mim-tRNA, YAMAT, DM-tRNA, and ALL-tRNA; bowtie2-based, SHRiMP, and mimseq; what are the main features of "Salmon?"). The manuscript will read better when the basic features of these methods are described in the manuscript, however brief.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Eaton et al. examine the regulation of transcription directionality using a powerful genomic approach (more about the methodology below).<br /> Their data challenge the notion that the polyadenylation signal-reading Cleavage and Polyadenylation (CPA) complex is responsible for controlling promoter directionality by terminating antisense transcription. Namely, depletion of the required CPA factor RBBP6 has little effect on antisense transcription measured by POINT. They find instead that initiation is intrinsically preferential in the sense direction and additionally maintained by the activities of an alternative processing complex called Integrator, together with the kinase CDK9. In the presence of CDK9 activity, depletion of Integrator endoribonuclease INTS11 leads to globally increased transcription in the antisense direction, and minor effects in the sense direction. However, CDK9 inhibition reveals that sense transcription is also sensitive to INS11 depletion. The authors suggest that CDK9 activity is stronger in the sense direction, preventing INTS11-mediated premature termination of sense transcripts.

      Strengths:

      The combination of acute depletion of the studied factors using degron approaches (important to limit possible secondary effects), together with novel and very sensitive nascent transcriptomics methods POINT and sPOINT is very powerful. The applied spike-in normalization means the analysis is more rigorous than most. Using this methodology allowed the authors to revisit the interesting question of how promoter/transcription directionality is determined.

      The data quality appears very good and the fact that both global analysis as well as numerous gene-specific examples are shown makes it convincing.

      The manuscript is well written and hence a pleasure to read.

      Weaknesses:

      The bias in transcriptional initiation directionality remains to be elucidated.

      Conclusion/assessment:

      This important work substantially advances our understanding of the mechanisms governing the directionality of human promoters. The evidence supporting the claims of the authors is compelling, with a.o. the use of advanced nascent transcriptomics including spike-in normalization controls and acute protein depletion using degron approaches.

      In my opinion the authors' conclusions are well supported.

      Not only the manuscript but also the data generated will be useful to the wide community of researchers studying transcriptional regulation. Also, the POINT-derived novel sPOINT method described here is very valuable and can positively impact work in the field.

    1. Reviewer #1 (Public Review):

      Summary:

      This study investigated the mechanism by which PGE2 inhibits the release of insulin from pancreatic beta cells in response to glucose. The researchers used a combination of cell line experiments and studies in mice with genetic ablation of the Kv2.2 channel. Their findings suggest a novel pathway where PGE2 acts through EP2/EP4 receptors to activate PKA, which directly phosphorylates a specific site (S448) on the Kv2.2 channel, inhibiting its activity and reducing GSIS.

      Strengths:

      - The study elegantly demonstrates a potential pathway connecting PGE2, EP2/EP4 receptors, PKA, and Kv2.2 channel activity, using embryonic cell line.<br /> - Additional experiments in INS1 and primary mouse beta cells with altered Kv2.2 function partially support the inhibitory role of PGE2 on GSIS through Kv2.2 inhibition.

      Weaknesses:

      - A critical limitation is the use of HEK293T cells, which are not pancreatic beta cells. Functional aspects can differ significantly between these cell types.<br /> - The study needs to address the apparent contradiction of PKA activating insulin secretion in beta cells, while also inhibiting GSIS through the proposed mechanism.<br /> - A more thorough explanation is needed for the discrepancies observed between the effects of PGE2 versus Kv2.2 knockdown/mutation on the electrical activity of beta cells and GSIS.

    1. Reviewer #1 (Public Review):

      Summary:

      In this paper, Zambo and coworkers use a powerful technique, called native holdup, to measure the affinity of the SH3 domain of BIN1 for cellular partners. Using this assay, they combine data using cellular proteins and proline-containing fragments in these proteins to identify 97 distinct direct binding partners of BIN1. They also compare the binding interactome of the BIN1 SH3 domain to the interactome of several other SH3 domains, showing varying levels of promiscuity among SH3 domains. The authors then use pathway analysis of BIN1 binding partners to show that BIN1 may be involved in mitosis. Finally, the authors examine the impact of clinically relevant mutations of the BIN1 SH3 domain on the cellular interactome. The authors were able to compare the interactome of several different SH3 domains and provide novel insight into the cellular function of BIN1. Generally, the data supports the conclusions, although the reliance on one technique and the low number of replicates in each experiment is a weakness of the study.

      Strengths:

      The major strength of this paper is the use of holdup and native holdup assays to measure the affinity of SH3 domains to cellular partners. The use of both assays using cell-derived proteins and peptides derived from identified binding partners allows the authors to better identify direct binding partners. This assay has some complexity but does hold the possibility of being used to measure the affinity of the cellular interactome of other proteins and protein domains. Beyond the utility of the technique, this study also provides significant insight into the cellular function of BIN1. The authors have strong evidence that BIN1 might have an undiscovered function in cellular mitosis, which potentially highlights BIN1 as a drug target. Finally, the study provides outstanding data on the cellular binding properties and partners of seven distinct SH3 domains, showing surprising differences in the promiscuity of these proteins.

      Weaknesses:

      There are several weaknesses of the study. First, the authors rely completely on a single technique to measure the affinity of the cellular interactome. The native holdup is a relatively new technique that is powerful yet relatively unproven. However, it appears to have the capacity to measure the relative affinity of proteins and the authors describe the usefulness of the technique. Second, and most important, the authors use a relatively small number of replicates for the holdup assays. The holdup technique will have biological variation in the cellular lysate or purified protein that could impact the results, so more replicates would enhance the reliability of the results.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Benner et al. identify OVO as a transcriptional factor instrumental in promoting expression of hundreds of genes essential for female germline identity and early embryo development. Prior data had identified both ovo and otu as genes activated by OVO binding to the promoters. By combining ChIP-seq, RNA-seq and analysis of prior datasets, the authors extend these data to hundreds of genes and therefore propose that OVO is a master transcriptional regulator of oocyte development. They further speculate that OVO may function to promote chromatin accessibility to facilitate germline gene expression. Overall, the data compellingly demonstrate a much broader role for OVO in activation of genes in the female germline than previously recognized. By contrast, the relationship between OVO, chromatin accessibility and the timing of gene expression is only correlative, and more work will be needed to determine the mechanisms by which OVO promotes transcription.

      Strengths

      Here Benner at al. convincingly show that OVO is a transcriptional activator that promotes expression of hundreds of genes in the female germline. The ChIP-seq and RNA-seq data included in the manuscript are robust and the analysis is compelling.

      Importantly, the set of genes identified are essential for maternal processes, including egg production and patterning of the early embryo. Together, these data identify OVO as a major transcriptional activator of the numerous genes expressed in the female germline, deposited into the oocyte and required for early gene expression. This is an important finding as this is an essential process for development and prior to this study the major drivers of this gene expression program were unknown.

      Weaknesses

      The novelty of the manuscript is somewhat limited as the authors show that, like two prior, well-studied OVO target genes, OVO binds to promoters of germline genes and activates transcription. The fact that OVO performs this function more broadly is not particularly surprising.

      A major challenge to understanding the impact of this manuscript is the fact that the experimental system for the RNA-seq, the tagged constructs, and the expression analysis that provides the rationale for the proposed pioneering function of OVO are all included in a separate manuscript.

    1. Reviewer #1 (Public Review):

      (1) Significance of findings and strength of evidence.

      (a) The work presented in this manuscript is intended to support the authors' novel idea that HIV DNA integration strongly favors "triple-stranded" R-loops in DNA formed either during transcription of many, but not all, genes or by strand invasion of silent DNA by transcripts made elsewhere, and that HIV infection promotes R-loop formation mediated by incoming virions in the absence of reverse transcription. The authors were able to demonstrate a reverse transcription-independent increase in R-loop formation early during HIV infection, while also demonstrating increased integration into sequences that contain R-loop structures. Furthermore, this manuscript also identifies that R-loops are present in both transcriptionally active and silent regions of the genome and that HIV integrase interacts with R-loops. Although the work presented supports a correlation between R-loop formation and HIV DNA integration, it does not prove the authors' hypothesis that R-loops are directly targeted for integration. Direct experimentation, such as in vitro integration into defined DNA targets, will be required. Further, the authors provide no explanation as to how current sophisticated structural models of concerted retroviral DNA integration into both strands of double-stranded DNA targets can accommodate triple-stranded structures. Finally, there are serious technical concerns with the interpretation of the integration site analyses.

      (2) Public review with guidance for readers around how to interpret the work, highlighting important findings but also mentioning caveats.

      (a) Introduction: The authors provide an excellent introduction to R-loops but they base the rationale for this study on mis-citation of earlier studies regarding integration in transcriptionally silent regions of the genome. E "most favored locus" cited in the very old reference 6 comprises only 5 events and has not been reproduced in more recent, much larger datasets. For example, see the study of over 300.000 sites in freshly infected PBMC cited in https://doi.org/10.1371/journal.ppat.1009141, which shows a 15-fold preference for integration in expressed genes and no evidence of clustering of sites (as seen in expressed genes) in non-expressed DNA. Further, as far as I can tell, they present no examples in the Results section of R-loops in non-expressed DNA serving as integration targets.

      (b) Figure 1: Demonstrates models for HIV infections in both cell lines and primary human CD4+ T cells. R-loop formation was determined through a method called DRIPc-seq which utilizes an antibody specific for DNA-RNA hybrid structures and sequences these regions of the genome using RNaseH treatment to show that when RNA-DNA hybrids are absent then no R-loops are detected. In these models of in vitro and ex vivo infection, the authors show that R-Loop formation increases following HIV infection between 6 hour post-infection and 12 hours post-infection, depending on the cell model. However, these figures lack a mock-infected control for each cell model to assess R-loop formation at the same time points. They would also benefit from a control showing that virus entry is necessary, such as omitting the VSV G protein donor.

      Additionally, they use intracellular staining to confirm DRIPc-Seq results, by demonstrating an increase in R-loop formation at 6 hours post-infection in HeLa cells. It would have been more relevant to use primary T cells for this assay, but HeLa cells probably provided easier and clearer imaging.

      (c) Figure 2: This figure shows that cells infected with HIV show more R-loops as well as longer sequences containing R-loop structures. Panel B shows that these R-loops were distributed throughout different genomic features, such as both genic and intergenic regions of the genome. However, the data are presented in such a way that it is impossible to determine the proportion of R-loops in each type of genomic feature. The reader has no way to tell, for example, the proportion of R-loops in genic vs intergenic DNA and how this value changes with time. Furthermore, increased R-loop formation due to HIV infection showed poor correlation with gene expression, suggesting that R-loops were not forming due to transcriptional activation, although the difference between 0 and the remaining time points is not apparent, nor is the meaning of the absurd p values.

      (d) Figure 3: This figure shows the use of cell lines carrying R-loop inducible (mAIRN) or non-inducible (ECFP) genes to model the association of HIV integration with R-loop structures. The authors demonstrate the functional validation of R-loop induction in the cell line model. Additionally, when R-loops are induced there is a significant increase in HIV integration in the R-loop forming vector sequence when R-loops are induced with doxycycline. This result shows a correlation between expression and integration that is much stronger in the R-loop forming gene than in the unreferenced ECFP gene but does not prove that integration directly targets R-loops. It is possible, for example, that some features of the DNA sequence, such as base composition affect both integration and R-loop formation independently. As described more fully below, there is also a serious concern regarding the method used to quantify the integration frequencies.

      (e) Figure 4: This figure shows evidence of increased HIV integration within regions of the genome containing R-loops with an additional preference for integration within the R-loop and a decrease in frequency of integration further from the R-loop. Identifying a preference for R-loops is very intriguing but the authors do also demonstrate that integration does occur when R-loops are not present. Also Panel A, which shows that regions of cell DNA that form R-loops have a higher frequency of Integration sites than those that do not, should also be controlled for the level of gene expression of the two types of region.

      (f) Figure 5: In this figure, the authors demonstrate that HIV integrase binds to R-loops through a number of protein assays, but does not show that this binding is associated with enzymatic activity. ESMA of integrase identified increased binding to DNA-RNA over dsDNA. Additionally, precipitation of RNA-DNA hybrids pulled down HIV integrase. A proximity ligation assay detecting R-loops and HIV-integrase showed co-localization within the nucleus of HeLa cells. HeLa cells were probably used due to their efficiency of transduction but are not physiologically relevant cell types.

      (g) Discussion: In the discussion, the authors address how their work relates to previous evidence of HIV integration by association of LEDGF/p75 and CPSF6. They also cite that LEDGF/p75 has possible R-loop binding capabilities. They also discuss what possible mechanisms are driving increases in R-loop formation during HIV infection, pointing to possible HIV accessory proteins. They also state that how HIV integrates in transcriptionally silent regions is still unknown but do point out that they were able to show R-loops appear in many different regions of the genome but did not show that R-loops in transcriptional inactive regions are integration targets. More seriously, they failed to make a connection between their work and the current understanding of the biochemical and structural mechanism of the integration reaction.

    1. Reviewer #1 (Public Review):

      In this study, the authors engineer the endogenous left boundary of the Drosophila eve TAD, replacing the endogenous Nhomie boundary by either a neutral DNA, a wildtype Nhomie boundary, an inverted Nhomie boundary, or a second copy of the Homie boundary. They perform Micro-C on young embryos and conclude that endogenous Nhomie and Homie boundaries flanking eve pair with head-to-tail directionality to form a chromosomal stem loop. Abrogating the Nhomie boundary leads to ectopic activation of genes in the former neighboring TAD by eve embryonic stripe enhancers. Replacing Nhomie by an inverted version or by Homie (which pairs with itself head-to-head) transformed the stem loop into a circle loop. An important finding was that stem and circle loops differentially impact endogenous gene regulation both within the eve TAD and in the TADs bracketing eve. Intriguingly, an eve TAD with a circle loop configuration leads to ectopic activation of flanking genes by eve enhancers - indicating compromised regulatory boundary activity despite the presence of an eve TAD with intact left and right boundaries.

      The results obtained are of high-quality and are meticulously discussed. This work advances our fundamental understanding of how 3D genome topologies affect enhancer-promoter communication.

      This study raises interesting questions to be addressed in future studies.

      First, given the unique specificity with which Nhomie and Homie pair (and exhibit "homing" activity), the generalizability of TAD formation by directional boundary pairing remains unclear. Testing whether boundary pairing is a phenomenon restricted to exceptional loci picked for study, rather than a broader rule of TAD formation, would best be done through the development of untargeted approaches to study boundary pairing.

      Second, boundary pairing is one of several mechanisms that may form chromosomal contact domains such as TADs. Other mechanisms include cohesin-mediated chromosomal loop extrusion and the inherent tendency of transcriptionally active and inactive chromatin to segregate (or compartmentalize). The functional interplay between these possible TAD-forming mechanisms remains to be further investigated.

    1. Reviewer #1 (Public Review):

      Summary:

      Frey et al. report the structures of aSyn fibrils that were obtained under a variety of conditions. These include generation of aSyn fibrils without seeds, but in different buffers and at different pH values. These also include the generation of aSyn fibrils in the presence of seeding fibrils, again performed in different buffers and at different pH values, while the seeds were generated at different conditions. The authors find that fibril polymorphs primarily correlate with fibril growth buffer conditions, and not such much with the type of seed. However, the presence of a seed is still required, likely because fibrils can also seed along their lateral surfaces, not only at the blunt ends.

      Strengths:

      The manuscript includes an excellent review of the numerous available structures of aSyn.<br /> The text is interesting to read, figures are clear and not redundant.

      Weaknesses:

      My earlier comments have all been addressed to my satisfaction.

    1. Reviewer #1 (Public Review):

      Tang et al present an important manuscript focused on endogenous virus-like particles (eVLP) for cancer vaccination with solid in vivo studies. The author designed eVLP with high protein loading and transfection efficiency by PEG10 self-assembling while packaging neoantigens inside for cancer immunotherapy. The eVLP was further modified with CpG-ODN for enhanced dendritic cell targeting. The final vaccine ePAC was proven to elicit strong immune stimulation with increased killing effect against tumor cells in 2 mouse models. Below are my specific comments:

      (1) The figures were well prepared with minor flaws, such as missed scale bars in Figures 4B, 4K, 5B, and 5C. The author should also add labels representing statistical analysis for Figures 3C, 3D, and 3E. In Figure 6G, the authors should label which cell type is the data for.

      (2) In Figure 3H, the antigen-presenting cells (APCs) increased significantly, but there was also a non-negligible 10% of APCs found in the control group, indicating some potential unwanted immune response; the authors need to explain this phenomenon or add a cytotoxic test on the normal liver or other cell lines for confirmation.

      (3) In Figure 3I, the ePAC seems to have a very similar effect on cytotoxic T-cell tumor killing compared to the peptides + CpG group. If the concentrations were also the same, based on that, questions will arise as to what is the benefit of using the compact vector other than just free peptide and CpG? Please explain and elaborate.

      (4) In the animal experiment in Figures 4F to L, the activation effect of APCs was similar between ePAC and CpG-only groups with no significance, but when it comes to the HCC mouse model in Figure 5, the anti-tumor effect was significantly increased between ePAC and CpG-only group. The authors should explain the difference between these two results.

    1. Reviewer #1 (Public Review):

      The model of phosphotransfer from Y169 IKK to S32 IkBa is compelling and an important new contribution to the field. In fact, this model will not be without controversy, and publishing the work will catalyze follow-up studies for this kinase and others as well. As such, I am supportive of this paper, though I do also suggest some shortening and modification.

      Generally, the paper is well written, but several figures should be quantified, and experimental reproducibility is not always clear. The first 4 figures are slow-going and could be condensed to show the key points, so that the reader gets to Figures 6 and 7 which contain the "meat" of the paper.

    1. Reviewer #1 (Public Review):

      Summary:

      The individual roles of both cosolvents and intrinsically disordered proteins (IDPs) in desiccation have been well established, but few studies have tried to elucidate how these two factors may contribute synergistically. The authors quantify the synergy for the model and true IDPs involved with desiccation and find that only the true IDPs have strong desiccation tolerance and synergy with cosolvents. Using these as model systems, they quantify the local (secondary structure vis-a-vi CD spectroscopy) and global dimensions (vis-a-vi the Rg of SAXS experiments) and find no obvious changes with the co-solvents. Instead, they focus on the gelation of one of the IDPs and, using theory and experiments, suggest that the co-solvents may enable desiccation tolerance, an interesting hypothesis to guide future in vivo desiccation studies. A few minor points that remain unclear to this reviewer are noted.

      Strengths:

      This paper is quite extensive and has significant strengths worth highlighting. Notably, the number and type of methods employed to study IDPs are quite unusual, employing CD spectroscopy, SAXS measurements, and DSC. The use of the TFE is an exciting integration of the physical chemistry of cosolvents into the desiccation field is a nice approach and a clever way of addressing the gap of the lack of conformational changes depending on the cosolvents. Furthermore, I think this is a major point and strength of the paper; the underlying synergy of cosolvents and IDPs may lie in the thermodynamics of the dehydration process.

      Figure S6A is very useful. I encourage readers who are confused about the DSC analysis, interpretation, and calculation to refer to it.

      Weaknesses:

      Overall, the paper is sound and employs strong experimental design and analysis. However, I wish to point out a few minor weaknesses.

      Perhaps the largest, in terms of reader comprehension, focuses on the transition between the model peptides and real IDPs in Figures 1 and 2. Notably, little is discussed with respect to the structure of the IDPs and what is known. Notably, I was confused to find out when looking at Table 1 that many of the IDPs are predicted to be largely unordered, which seemed to contrast with some of the CD spectroscopy data. I wonder if the disorder plots are misleading for readers. Can the authors comment more on this confusion? What are these IDPs structurally?

      Related to the above thoughts, the alpha fold structures for the LEA proteins are predicted (unconfidently) as being alpha-helical in contrast to the CD data. Does this complicate the TFE studies and eliminate the correlation for the LEA proteins? Additionally, the notation that the LEA and BSA proteins do not correlate is unclear to this reviewer, aren't many of the correlations significant, having both a large R^2 and significant p-value?

      The calculation of synergy seems too simplistic or even problematic to me. While I am not familiar with the standards in the desiccation field, I think the approach as presented may be problematic due to the potential for higher initial values of protection to have lower synergies (two 50%s for example, could not yield higher than 100%). Instead, I would think one would need to really think of it as an apparent equilibrium constant between functional and non-functional LDH (Kapp = [Func]/[Not Func] and frac = Kapp/(1+Kapp) or Kapp = frac/(1-frac) ) Then after getting the apparent equilibrium constants for the IDP and cosolvent (KappIDP and KappCS), the expected additive effect would be frac = (KappIDP+KappCS)/(1+KappIDP+KappCS). Consequently, the extent of synergy could be instead calculated as KappBOTH-KappIDP-KappCS. Maybe this reviewer is misunderstanding. It is recommended that the authors clarify why the synergy calculation in the manuscript is reasonable.

      Related to the above, the authors should discuss the utility of using molar concentration instead of volume fraction or mass concentration. Notably, when trehalose is used in concentration, the volume fraction of trehalose is much smaller compared to the IDPs used in Figure 2 or some in Figure 1. Would switching to a different weighted unit impact the results of the study, or is it robust to such (potentially) arbitrary units?

    1. Reviewer #1 (Public Review):

      Summary:

      The researchers demonstrated that when cytokine priming is combined with exposure to pathogens or pathogen-associated molecular patterns, human alveolar macrophages and monocyte-derived macrophages undergo metabolic adaptations, becoming more glycolytic while reducing oxidative phosphorylation. This metabolic plasticity is greater in monocyte-derived macrophages than in alveolar macrophages.

      Strengths:

      This study presents evidence of metabolic reprogramming in human macrophages, which significantly contributes to our existing understanding of this field primarily derived from murine models.

      Weaknesses:

      The study has limited conceptual novelty.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors have developed a zebrafish model of glioblastoma and characterized this, with a particular focus on the role of recruited myeloid cells in the tumours. Microglia/macrophages in the tumours are proposed to have an inflammatory phenotype and are engaged in phagocytosis. Knockout of Irf7 and Irf8 genes enhanced tumour initiation. Depleting mature myeloid cell types with chlodronate also enhanced tumour initiation. It is proposed that in early stage tumours, microglia/macrophages have tumour suppressive activity.

      Strengths:

      The authors have generated a novel glioblastoma model in zebrafish. Two key strengths of the zebrafish model are that early stage tumours can be studied and in vivo visualization can be readily performed. The authors show video of microglia/macrophages adopting the ameboid phenotype in tumours (as is observed in human tumours) and engaging in phagocytosis. Video 1 was very impressive in my opinion and shows the model is a very useful tool to study microglia/macrophage:glioblastoma cell interactions. The irf7/irf8 knockdown and the chlodronate experiments are consistent with a role for mature myeloid cells in suppressing tumour initiation, suggesting that the model may also be very valuable in understanding immune surveillance in glioblastoma initiation.

      Weaknesses:

      EGFRvIII is mainly associated with the classical subtype, so the mesenchymal subtype might be unexpected here. This could be commented on. Some more histologic characterization of the tumours would be helpful. Are they invasive, do larger tumours show necrosis and microvascular proliferation? This would help with understanding the full potential of the new model. Current thinking in established human glioblastoma is that the M1/M2 designations for macrophages are not relevant, with microglia macrophage populations showing a mixture of pre- and anti-inflammatory features. Ideally there would be a much more detailed characterization of the intratumoral microglia/macrophage population here, as single markers can't be relied upon. Phagocytosis could have antitumour effects through removal of live cancer cells, or could be cancer promoting if apoptotic cancer cells are being rapidly cleared with concomitant activation of an immunosuppressive phenotype in the phagocytes (i.e. efferocytosis). It may be possible to distinguish between these two types of phagocytosis experimentally. Do the irf7/8 and chlodronate experiments distinguish between effects on microglia/macrophages and dendritic cells?

      Update: The more detailed description of the tumour histology is very interesting and the authors have addressed my previous concerns nicely.

    1. Reviewer #1 (Public Review):

      Summary:

      This study demonstrated a novel exciting link between conserved miRNA-target axis of miR-182-Lrp6 in liver metabolism which causatively contributes to type 2 diabetes and NAFLD in mice and, potentially, humans.

      Strengths:

      The direct interaction and inhibition of Lrp6 by miR-182 is convincingly shown. The effects of miR-182-5p on insulin sensitivity are also credible for the in vivo and in vitro gain-of-function experiments.

      Weaknesses:

      However, the DIO cohorts lack key assays for insulin sensitivity such as ITT or insulin-stimulated pAKT, as well as histological evidence to support their claims and strengthen the link between miR-182-5p and T2D or NAFLD. Besides, the lack of loss-of-function experiments limits its aptitude as potential therapeutic target.

    1. Reviewer #1 (Public Review):

      Summary:

      Wang and co-workers characterise the fossil of Beretella spinosa from the early Cambrian, Yanjiahe Formation, South China. Combining morphological analyses with phylogenetic reconstructions, the authors conclude that B. spinosa is closely related to Saccorhytus, an enigmatic fossil recently ascribed to Ecdysozoa, or moulting animals, as an extinct "basal" lineage. Finding additional representatives of the clade Saccorhytida strengthens the idea that there existed a diversity of body plans previously underappreciated in Ecdysozoa, which may have implications for our understanding of the earliest steps in the evolution of this major animal group.

      Strengths:

      I'm not a paleobiologist; therefore, I cannot give an expert opinion on the descriptions of the fossils. However, the similarities with Saccorhytus seem evident, and the phylogenetic reconstructions are adequate. Evolutionary interpretations are generally justified, and the consolidation of Saccorhytida as the extinct sister lineage to extant Ecdysozoans will have significant implications for our understanding of this major animal clade.

      Weaknesses:

      While I generally agree with the author's interpretations, the idea of Saccorhytida as a divergent, simplified off-shot is slightly contradictory with a probably non-vermiform ecdysozoan ancestor. The author's analyses do not discard the possibility of a vermiform ecdysozoan ancestor (importantly, Supp Table 4 does not reconstruct that character), and outgroup comparison with Spiralia (and even Deuterostomia for Protostomia as a whole) indicates that a more or less anteroposteriorly elongated (i.e., vermiform) body is likely common and ancestral to all major bilaterian groups, including Ecdysozoa. Indeed, Figure 4 b depicts the potential ancestor as a "worm". The authors argue that the simplification of Saccorhytida from a vermiform ancestor is unlikely "because it would involve considerable anatomical transformations such as the loss of vermiform organization, introvert and pharynx in addition to that of the digestive system". However, their data support the introvert as a specialisation of Scalidophora (Fig. 4a and Supp Table 4), and a pharyngeal structure cannot be ruled out in Saccorhytida. Likewise, loss of an anus is not uncommon in Bilateria. Moreover, this can easily become a semantics discussion (to what extent can an animal be defined as "vermiform"? Where is the limit?). Therefore, I suggest to leave the evolutionary scenario more open. Supporting Saccorhytida as a true group at the early steps of Ecdysozoa evolution is important and demonstrates that animal body plans are more plastic than previously appreciated. However, with the current data, it is unlikely that Saccorhytida represents the ancestral state for Ecdysozoa (as the authors admit), and a vermiform nature is not ruled out (and even likely) in this animal group. Suggesting that the ancestral Ecdysozoan might have been small and meiobenthic is perhaps more interesting and supported by the current data (phylogeny and outgroup comparison with Spiralia).

    1. Joint Public Review:

      Summary:

      Bursicon is a key hormone regulating cuticle tanning in insects. While the molecular mechanisms of its function are rather well studied--especially in the model insect Drosophila melanogaster, its effects and functions in different tissues are less well understood. Here, the authors show that bursicon and its receptor play a role in regulating aspects of the seasonal polyphenism of Cacopsylla chinensis. They found that low temperature treatment activated the bursicon signaling pathway during the transition from summer form to winter form and affect cuticle pigment and chitin content, and cuticle thickness. In addition, the authors show that miR-6012 targets the bursicon receptor, CcBurs-R, thereby modulating the function of bursicon signaling pathway in the seasonal polyphenism of C. chinensis. This discovery expands our knowledge of the roles of neuropeptide bursicon action in arthropod biology.

      However, the study falls short of its claim that it reveals the molecular mechanisms of a seasonal polyphenism. While cuticle tanning is an important part of the pear psyllid polyphenism, it is not the equivalent of it. First, there are other traits that distinguish between the two morphs, such as ovarian diapause (Oldfield, 1970), and the role of bursicon signaling in regulating these aspects of polyphenism were not measured. Thus, the phenotype in pear psyllids, whereby knockdown bursicon reduces cuticle tanning seems to simply demonstrate the phenotypes of Drosophila mutants for bursicon receptor (Loveall and Deitcher, 2010, BMC Dev Biol) in another species (Fig. 2I, 4H). Second, the study fails to address the threshold nature of cuticular tanning in this species, although it is the threshold response (specifically, to temperature and photoperiod) that distinguishes this trait as a part of a polyphenism. Whereas miR-6012 was found to regulate bursicon expression, there no evidence is provided that this microRNA either responds to or initiates a threshold response to temperature. In principle, miR-6012 could regulate bursicon whether or not it is part of a polyphenism. Thus, the impact of this work would be significantly increased if it could distinguish between seasonal changes of the cuticle and a bona fide reflection of polyphenism.

      Strengths:

      This study convincingly identifies homologs of the genes encoding the bursicon subunits and its receptor, showing an alignment with those of another psyllid as well as more distant species. It also demonstrates that the stage- and tissue-specific levels of bursicon follow the expected patterns, as informed by other insect models, thus validating the identity of these genes in this species. They provide strong evidence that the expression of bursicon and its receptor depend on temperature, thereby showing that this trait is regulated through both parts of the signaling mechanism.

      Several parallel measurements of the phenotype were performed to show the effects of this hormone, its receptor, and an upstream regulator (miR-6012), on cuticle deposition and pigmentation (if not polyphenism per se, as claimed). Specifically, chitin staining and TEM of the cuticle qualitatively show difference between controls and knockdowns, and this is supported by some statistical tests of quantitative measurements (although see comments below). Thus, this study provides strong evidence that bursicon and its receptor play an important role in cuticle deposition and pigmentation in this psyllid.

      The study identified four miRNAs which might affect bursicon due to sequence motifs. By manipulating levels of synthetic miRNA agonists, the study successfully identified one of them (miR-6012) to cause a cuticle phenotype. Moreover, this miRNA was localized (by FISH) to the cuticle, body-wide. To our knowledge, this is the first demonstrated function for this miRNA, and this study provides a good example of using a gene of known function as an entry point to discovering others influencing a trait. Thus, this finding reveals another level of regulation of cuticle formation in insects.

      Weaknesses:

      (1) The introduction to this manuscript does not accurately reflect progress in the field of mechanisms underlying polyphenism (e.g., line 60). There are several models for polyphenism that have been used to uncover molecular mechanisms in at least some detail, and this includes seasonal polyphenisms in Hemiptera. Therefore, the justification for this study cannot be predicated on a lack of knowledge, nor is the present study original or unique in this line of research (e.g., as reviewed by Zhang et al. 2019; DOI: 10.1146/annurev-ento-011118-112448). The authors are apparently aware of this, because they even provide other examples (lines 104-108); thus the introduction seems misleading as framed.

      (2) The data in Figure 2H show "percent of transition." However, the images in 2I show insects with tanned cuticle (control) vs. those without (knockdown). Yet, based on the description of the Methods provided, there appears to be no distinction between "percent of transition" and "percent with tanning defects". This an important distinction to make if the authors are going to interpret cuticle defects as a defect in the polyphenism. Furthermore, there is no mention of intermediate phenotypes. The data in 2H are binned as either present or absent, and these are the phenotypes shown in 2I. Was the phenotype really an all-or-nothing response? Instead of binning, which masks any quantitative differences in the tanning phenotypes, the authors should objectively quantify the degree of tanning and plot that. This would show if and to what degree intermediate tanning phenotypes occurred, which would test how bursicon affects the threshold response. This comment also applies to the data in Figures 4G and 6G. Since cuticle tanning is present in more insect than just those with seasonal polyphenism, showing how this responds as a threshold is needed to make claims about polyphenism.

      (3) This study also does not test the threshold response of cuticle phenotypes to levels of bursicon, its receptor, or miR-6012. Hormone thresholds are the most widespread and, in most systems where polyphenism has been studied, the defining characteristic of a polyphenism (e.g., Nijhout, 2003, Evol Dev). Quantitative (not binned) measurements of a polyphenism marker (e.g., chitin) should be demonstrated to result as a threshold titer (or in the case of the receptor, expression level) to distinguish defects in polyphenism from those of its component trait.

      (4) Cuticle issue:<br /> (a) Unlike Fig. 6D and F, Figs. 2D and F do not correspond to each other. Especially the lack and reduction of chitin in ds-a+b! By fluorescence microscopy there is hardly any signal, whereas by TEM there is a decent cuticle. Additionally, the dsGFP control cuticle in 2D is cut obliquely with a thick and a thin chitin layer. This is misleading.<br /> (b) In Figs. 2F and 3F, the endocuticle appears to be missing, a portion of the procuticle that is produced post-molting. As tanning is also occurring post-molting, there seems to be a general problem with cuticle differentiation at this time point. This may be a timing issue. Please clarify.<br /> (c) To provide background information, it would be useful analyze cuticle formation in the summer and winter morphs of controls separately by light and electron microscopy. More baseline data on these two morphs is needed.<br /> (d) For the TEM study, it is not clear whether the same part of the insect's thorax is being sectioned each time, or if that matters. There is not an obvious difference in the number of cuticular layers, but only the relative widths of those layers, so it is difficult to know how comparable those images are. This raises two questions that the authors should clarify. First, is it possible that certain parts of the thoracic cuticle, such as those closer to the intersegmental membrane, are naturally thinner than other parts of the body? Second, is the tanning phenotype based on the thickness or on the number of chitin layers, or both? The data shown later in Figure 4I, J convincingly shows that the biosynthesis pathway for chitin is repressed, but any clarification of what this might mean for deposition of chitin would help to understand the phenotypes reported. Also, more details on how the data in Fig. 2G were collected would be helpful. This also goes for the data in Fig. 4 (bursicon receptor knockdowns).

      (5) Tissue issue:<br /> The timed experiments shown in all figures were done in whole animals. However, we know from Drosophila that Bursicon activity is complex in different tissues. There is, thus, the possibility, that the effects detected on different days in whole animals are misleading because different tissues--especially the brain and the epidermis, may respond differentially to the challenge and mask each other's responses. The animal is small, so the extraction from single tissue may be difficult. However, this important issue needs to be addressed.

      (6) No specific information is provided regarding the procedure followed for the rescue experiments with burs-α and burs-β (How were they done? Which concentrations were applied? What were the effects?). These important details should appear in the Materials and Methods and the Results sections.

      (7) Pigmentation<br /> (a) The protocol used to assess pigmentation needs to be validated. In particular, the following details are needed: Were all pigments extracted? Were pigments modified during extraction? Were the values measured consistent with values obtained, for instance, by light microscopy (which should be done)?<br /> (b) In addition, pigmentation occurs post-molting; thus, the results could reflect indirect actions of bursicon signaling on pigmentation. The levels of expression of downstream pigmentation genes (ebony, lactase, etc) should be measured and compared in molting summer vs. winter morphs.

      (8) L236: "while the heterodimer protein of CcBurs α+β could fully rescue the effect of CcBurs-R knockdown on the transition percent (Figure 4G 4H)". This result seems contradictory. If CcBurs-R is the receptor of bursicon, the heterodimer protein of CcBurs α+β should not be able to rescue the effect of CcBurs-R knockdown insects. How can a neuropeptide protein rescue the effect when its receptor is not there! If these results are valid, then the CcBurs-R would not be the (sole) receptor for CcBurs α+β heterodimer. This is a critical issue for this manuscript and needs to be addressed (also in L337 in Discussion).

      (9) Fig. 5D needs improvement (the magnification is poor) and further explanation and discussion. mi6012 and CcBurs-R seem to be expressed in complementary tissues--do we see internal tissues also (see problem under point 2)? Again, the magnification is not high enough to understand and appreciate the relationships discussed.

      (10) The schematic in Fig. 7 is a useful summary, but there is a part of the logic that is unsupported by the data, specifically in terms of environmental influence on cuticle formation (i.e., plasticity). What is the evidence that lower temperatures influence expression of miR-6012? The study measures its expression over life stages, whether with an agonist or not, over a single temperature. Measuring levels of expression under summer form-inducing temperature is necessary to test the dependence of miR-6012 expression on temperature. Otherwise, this result cannot be interpreted as polyphenism control, but rather the control of a specific trait.

    1. Reviewer #1 (Public Review):

      Most human traits and common diseases are polygenic, influenced by numerous genetic variants across the genome. These variants are typically non-coding and likely function through gene regulatory mechanisms. To identify their target genes, one strategy is to examine if these variants are also found among genetic variants with detectable effects on gene expression levels, known as eQTLs. Surprisingly, this strategy has had limited success, and most disease variants are not identified as eQTLs, a puzzling observation recently referred to as "missing regulation".

      In this work, Jeong and Bulyk aimed to better understand the reasons behind the gap between disease-associated variants and eQTLs. They focused on immune-related diseases and used lymphoblastoid cell lines (LCLs) as a surrogate for the cell types mediating the genetic effects. Their main hypothesis is that some variants without eQTL evidence might be identifiable by studying other molecular intermediates along the path from genotype to phenotype. They specifically focused on variants that affect chromatin accessibility, known as caQTLs, as a potential marker of regulatory activity.

      The authors present data analyses supporting this hypothesis: several disease-associated variants are explained by caQTLs but not eQTLs. They further show that although caQTLs and eQTLs likely have largely overlapping underlying genetic variants, some variants are discovered only through one of these mapping strategies. Notably, they demonstrate that eQTL mapping is underpowered for gene-distal variants with small effects on gene expression, whereas caQTL mapping is not dependent on the distance to genes. Additionally, for some disease variants with caQTLs but no corresponding eQTLs in LCLs, they identify eQTLs in other cell types.

      Altogether, Jeong and Bulyk convincingly demonstrate that for immune-related diseases, discovering the missing disease-eQTLs requires both larger eQTL studies and a broader range of cell types in expression assays. It remains to be seen what fractions of the missing disease-eQTLs will be discovered with either strategy and whether these results can be extended to other diseases or traits.

      It should be noted that the problem of "missing regulation" has been investigated and discussed in several recent papers, notably Umans et al., Trends in Genetics 2021; Connally et al., eLife 2022; Mostafavi et al., Nat. Genet. 2023. The results reported by Jeong and Bulyk are not unexpected in light of this previous work (all of which they cite), but they add valuable empirical evidence that mostly aligns with the model and discussions presented in Mostafavi et al.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors addressed how long-range interactions between boundary elements are established and influence their function in enhancer specificity. Briefly, the authors placed two different reporters separated by a boundary element. They inserted this construct ectopically ~140 kb away from an endogenous locus that contains the same boundary element. The authors used expression patterns driven by nearby enhancers as an output to determine which enhancers the reporters interact with. They complemented this analysis with 3D DNA contact mapping. The authors found that the orientation of the boundary element determined which enhancers each reporter interacted with. They proposed that the 3D interaction topology, whether being circular or stem configuration, distinguished whether the interaction was cohesin mediated or through an independent mechanism termed pairing.

      Strengths:

      The transgene expression assays are built upon prior knowledge of the enhancer activities. The 3D DNA contacts confirm that transgene expression correlates with the contacts. Using 4 different orientations covers all combinations of the reporter genes and the boundary placement.

      Weaknesses:

      The interpretation of the data as a refusal of loop extrusion playing a role in TAD formation is not warranted, as the authors did not deplete the loop extruders to show that what they measure is independent. As the authors show, the single long DNA loop mediated by cohesin loop extrusion connecting the ectopic and endogenous boundary is clearly inconsistent with the results, therefore the main conclusion of the paper that the 3D topology of the boundary elements a consequence of pairing is strong. However, the loop extrusion and pairing are not mutually exclusive models for the formation of TADs. Loop-extruding cohesin complexes need not make a 140 kb loop, multiple smaller loops could bring together the two boundary elements, which are then held together by pairing proteins that can make circular topologies.

    1. Public Review:

      Summary:

      In this manuscript, Chen et al. investigate the statistical structure of social interactions among mice living together in the ECO-Hab. They use maximum entropy models (MEM) from statistical physics that include individual preferences and pair-wise interactions among mice to describe their collective behavior. They also use this model to track the evolution of these preferences and interactions across time and in one group of mice injected with TIMP-1, an enzyme regulating synaptic plasticity. The main result is that they can explain group behavior (the probability of being together in one compartment) by a MEM that only includes pair-wise interactions. Moreover, the impact of TIMP-1 is to increase the variance of the couplings J_ij, the preference for the compartment containing food, as well as the dissatisfaction triplet index (DTI).

      Strengths:

      The ECO-Hab is a really nice system to ask questions about the sociability of mice and to tease apart sociability from individual preference. Moreover, combining the ECO-Hab with the use of MEM is a powerful and elegant approach that can help statistically characterize complex interactions between groups of mice -- an important question that requires fine quantitative analysis.

      Weaknesses:

      However, there is a risk in interpreting these models. In my view, several of the comparisons established in the current study would require finer and more in-depth analysis to be able to establish firmer conclusions (see below). Also, the current study, which closely resembles previous work by Shemesh et al., finds a different result but does not provide the same quantitative model comparison included there, nor a conclusive explanation of why their results are different. In total, I felt that some of the results required more solid statistical testing and that some of the conclusions of the paper were not entirely justified. In particular, the results from TIMP-1 require proper interaction tests (group x drug) which I couldn't find. This is particularly important when the control group has a smaller N than the drug groups.

    1. Reviewer #2 (Public Review):

      Summary:

      The tubulin subunits that make up microtubules can be posttranslationally modified and these PTMs are proposed to regulate microtubule dynamics and the proteins that can interact with microtubules in many contexts. However, most studies investigating the roles of tubulin PTMs have been conducted in vitro either with purified components or in cultured cells. Lu et al. use CRISPR/Cas9 genome editing to mutate tubulin genes in C. elegans, testing the role of specific tubulin residues on neuronal development. This study is a real tour de force, tackling multiple proposed tubulin modifications and following the resulting phenotypes with respect to neurite outgrowth in vivo. There is a ton of data that experts in the field will likely reference for years to come as this is one of the most comprehensive in vivo analyses of tubulin PTMs in vivo.

      This paper will be very important to the field, however, it would be strengthened if: 1) the authors demonstrated that the mutations they introduced had the intended consequences on microtubule PTMs, 2) the authors explored how the various tubulin mutations directly affect microtubules, and 3) the findings are made generally more accessible to non C. elegans neurobiologist.

      (1) The authors introduce several mutations to perturb tubulin PTMs, However, it is unclear to what extent the engineered mutations affecting tubulin in the intended way. i.e. are the authors sure that the PTMs they want to perturb are actually present in C. elegans. Many of the antibodies used did not appear to be specific and antibody staining was not always impacted in the mutant cases as expected. For example, is there any evidence that S172 is phosphorylated in C. elegans, e.g. from available phosphor-proteomic data? Given the significant amount of staining left in the S172A mutant, the antibody seems non-specific in this context and therefore not a reliable readout of whether MTs are actually phosphorylated at this residue. As another example, there is no evidence presented that K252 is acetylated in C. elegans. At the very least, the authors should consider demonstrating the conservation of these residues and the surrounding residues with other organisms where studies have demonstrated PTMs exist.

      (2) Given that the authors have the mutants in hand, it would be incredibly valuable to assess the impact of these mutations on microtubules directly in all cases. MT phenotypes are inferred from neurite outgrowth phenotypes in several cases, the authors should look directly at microtubules and/or microtubule dynamics via EBP-2 when possible OR show evidence that the only way to derive the neurite phenotypes shown is through the inferred microtubule phenotypes. For example, the effect of the acetylation or detyrosination mutants on MTs was not assessed.

      (3) There is a ton of data here that will be important for experts working in this field to dig into, however, for the more general cell biologist, some of the data are quite inaccessible. More cartoons and better labeling will be helpful as will consistent comparisons to control worms in each experiment. A good example of this issue is demonstrated in Figure 2 and Figure 4:

      - Fig. 2: Please label images with what is being probed in each panel<br /> - Fig 2G is very hard to interpret-cartoon diagramming what is being observed would be helpful.<br /> - Line 182-185: is this referring to your data or to Wu et al? It is not clear in this paragraph when the authors are describing published work versus their own data presented here.<br /> - Fig 2!-2K is not well described. What experiment is being done here? What is dlk-1 and why did you look at this mutant?<br /> - Figure 4C: this phenotype is hard to interpret. Where is the wt control? Where is the quantification?<br /> - There are no WT comparison images in Figure 4I, making the quantification difficult to interpret

      (4) In addition, I am left unconvinced of the negative data demonstrating that MBK does not phosphorylate tubulin. First, the data described in lines 207-211 does not appear to be presented anywhere. Second, RNAi is notoriously finicky in neurons, thus necessitating tissue specific degradation using either the ZF/ZIF-1 or AID/TIR1 systems which both work extremely well in C. elegans. Third, there appears to be increasing S172 phosphorylation in Figure 3 supplement 2 with added MBK-2, but there is no anti-tubulin blot to show equal loading, so this experiment is hard to interpret.

    1. Reviewer #1 (Public Review):

      Summary:

      The paper measures the prevalence and mortality of stroke and its comorbidities across geographic regions in order to find differences in risks that may lead to more effective guidance for these subpopulations. It also does a genetic analysis to look for variants that may drive these phenotypic variations.

      Strengths:

      The data provided here will provide a foundation for a lot of future research into the causes of the observed correlations as well as whether the observed differences in comorbidities across regions have clinically relevant effects on risk management.

      The use of data from before COVID-19 is both a strength and a weakness. Because COVID had effects on vascular health and had higher death rates for groups with the comorbidities of interest here, it has likely shifted the demographics in ways that would shift the results in unpredictable ways if the analysis were repeated with current data. This can be a strength in providing a reference point for studying those changes as well as allowing researchers to study differences between regions without the complication of different public health responses adding extra variation to the data. On the other hand, it limits the usefulness of the data in research concerned with the current status of the various populations.

    1. Reviewer #1 (Public Review):

      The study by Prieto et al. faces the increasingly serious problem of bacterial resistance to antimicrobial agents. This work has an important element of novelty proposing a new approach to control antibiotic resistance spread by plasmids. Instead of targeting the resistance determinant, plasmid-borne proteins are used as antigens to be bound by specific nanobodies (Nbs). Once bound plasmid transfer was inhibited and Salmonella infection blocked. This in-depth study is quite detailed and complex, with many experiments (9 figures with multiple panels), rigorously carried out. Results fully support the authors' conclusions. Specifically, the authors investigated the role of two large molecular weight proteins (RSP and RSP2) encoded by the IncHI1 derivative-plasmid R27 of Salmonella. These proteins have bacterial Ig-like (Big) domains and are expressed on the cell surface, creating the opportunity for them to serve as immunostimulatory antigens. Using a mouse infection model, the authors showed that RSP proteins can properly function as antigens, in Salmonella strains harboring the IncHI1 plasmid. The authors clearly showed increased levels of specific IgG and IgA antibodies against these RSP proteins proteins in different tissues of immunized animals. In addition, non-immunized mice exhibited Salmonella colonization in the spleen and much more severe disease than immunized ones.

      However, the strength of this work is the selection and production of nanobodies (Nbs) that specifically interact with the extracellular domain of RSP proteins. The procedure to obtain Nbs is lengthy and complicated and includes the immunization of dromedaries with purified RPS and the construction of a VHH (H-chain antibody variable region) library in E. coli. As RSP is expressed on the surface of E. coli, specific Nbs were able to agglutinate Salmonella strains harboring the p27 plasmid encoding the RSP proteins.

      The authors demonstrated that Nbs-RSP reduced the conjugation frequency of p27 thus limiting the diffusion of the amp resistance harbored by the plasmid. This represents an innovative and promising strategy to fight antibiotic resistance, as it is not blocked by the mechanism that determines, in the specific case, the amp resistance of p27 but it targets an antigen associated with HincHI- derivative plasmids. Thus, RPS vaccination could be effective not only against Salmonella but also against other enteric bacteria. A possible criticism could be that Nbs against RSP proteins reduce the severity of the disease but do not completely prevent the infection by Salmonella.

    1. Joint Public Review:

      Chemokines are known to create chemotactic gradients and it is generally recognized that in order to create these gradients they need to bind to glycosaminoglycans (GAGs) on cells and in tissues. However, how the triplicate interaction between chemokines with both GAGs and G protein-coupled receptors (GPCR) works and how gradients are created and potentially maintained in vivo is poorly understood. In their manuscript, Yu et al investigated and showed in detail the ability of soluble and cell-bound GAGs to create gradients of the chemokine CCL5. They show in vitro in a modified leukocyte migration assay that soluble GAGs and GAGs on the tumor cell line THP-1 affect leukocyte migration. This useful work contributes to our in-depth understanding of the role of GAGs in chemokine gradient creation which is important for site-directed leukocyte and potentially tumor cell migration and as such is of potential interest for scientists studying immune responses in infection, inflammation, autoimmunity and tumor biology. In their reply to the comments of both reviewers they indicate that liquid-liquid phase separation (LLPS) was not detected at lower CCL5 concentrations. This is important information since, together with the tendency of CCL5 to form oligomers, it may indicate that oligomerization is crucial for LLPS. This info should at least be added to the discussion of the manuscript.

    1. Reviewer #1 (Public Review):

      Summary:

      Huang and Luo investigated whether regularities between stimulus features can be exploited to facilitate the encoding of each set of stimuli in visual working memory, improving performance. They recorded both behavioural and neural (EEG) data from human participants during a sequential delayed response task involving three items with two properties: location and colour. In the key condition ('aligned trajectory'), the distance between locations of successively presented stimuli was identical to their 'distance' in colour space, permitting a compression strategy of encoding only the location and colour of the first stimulus and the relative distance of the second and third stimulus (as opposed to remembering 3 locations and 3 colours, this would only require remembering 1 location, 1 colour, and 2 distances). Participants recalled the location and colour of each item after a delay.

      Consistent with the compression account, participants' location and colour recall errors were correlated and overall lower compared to a non-compressible condition ('misaligned trajectory'). Multivariate analysis of the neural data permitted decoding of the locations and colours during encoding. Crucially, the relative distance could also be decoded - a necessary ingredient for the compression strategy.

      Strengths:

      The main strength of this study is a novel experimental design that elegantly demonstrates how we exploit stimulus structure to overcome working memory capacity limits. The behavioural results are robust and support the main hypothesis of compressed encoding across a number of analyses. The simple and well-controlled design is suited to neuroimaging studies and paves the way for investigating the neural basis of how environmental structure is detected and represented in memory. Prior studies on this topic have primarily studied behaviour only (e.g., Brady & Tenenbaum, 2013).

      Weaknesses:

      The main weakness of the study is that the EEG results could make a clearer case for compression. There is some evidence that distance decoding is present in alpha-band activity in the maintenance delay, but the strongest evidence for this occurs only briefly in the late encoding phase (the re-activation of decoding of the distance between items 1 and 2, Fig. 5A). The link to behaviour (Fig. 5D) seems fairly weak and based on a potentially circular analysis. During location recall, colour decoding re-emerges and is reactivated in sequence, but this finding is consistent both with compression-based and conventional rehearsal mechanisms. Nevertheless, the balance of evidence appears to favour the compression account.

      Impact:

      This important study elegantly demonstrates that the use of shared structure can improve capacity-limited visual working memory. The paradigm and approach explicitly link this field to recent findings on the role of replay in structure learning and will therefore be of interest to neuroscientists studying both topics.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors intended to prove that gut GLP-1 expression and secretion can be regulated by Piezo1, and hence by mechanistic/stretching regulation. For this purpose, they have assessed Piezo1 expression in STC-1 cell line (a mouse GLP-1 producing cell line) and mouse gut, showing the correlation between Piezo1 level and Gcg levels (Figure S1). They then aimed to generate gut L cell-specific Piezo1 KO mice, and claimed the mice show impaired glucose tolerance and GLP-1 production, which can be mitigated by Ex-4 treatment (Figures 1-2). Pharmacological agents (Yoda1 and GsMTx4) and mechanic activation (intestinal bead implantation) were then utilized to prove the existence of ileal Piezo1-regulated GLP-1 synthesis (Figure 3). This was followed by testing such mechanism in a limited amount of primary L cells and mainly in the STC-1 cell line (Figures 4-7).

      While the novelty of the study is somehow appreciable, the bio-medical significance is not well demonstrated in the manuscript. The authors stated (in lines between lines 78-83) a number of potential side effects of GLP-1 analogs, how can the mechanistic study of GLP-1 production on its own be essential for the development of new drug targets for the treatment of diabetes. Furthermore, the study does not provide a clear mechanistic insight on how the claimed CaMKKbeta/CaMKIV-mTORC1 signaling pathway upregulated both GLP-1 production and secretion. This reviewer also has concerns about the experimental design and data presented in the current manuscript, including the issue of how proglucagon expression can be assessed by Western blotting.

      Strengths:

      The novelty of the concept.

      Weaknesses:

      Experimental design and key experiment information.

    1. Reviewer #1 (Public Review):

      Summary<br /> This is an interesting paper that concludes that hiring more women will do more to improve the gender balance of (US) academia than improving the attrition rates of women (which are usually higher than men's). Other groups have reported similar findings, i.e. that improving hiring rates does more for women's representation than reducing attrition, but this study uses a larger than usual dataset that spans many fields and institutions so it is a good contribution to the field.

      The paper is much improved and far more convincing as a result of the revisions made by the authors.

      Strengths<br /> A large data set with many individuals, many institutions and fields of research.<br /> A good sensitivity analysis to test for potential model weaknesses.

      Weaknesses<br /> Only a single country with a very specific culture and academic system.<br /> Complex model fitting with many steps and possible places for model bias.

    1. Reviewer #3 (Public Review):

      In this study, Ruan et al. investigate the role of the IQCH gene in spermatogenesis, focusing on its interaction with calmodulin and its regulation of RNA-binding proteins. The authors examined sperm from a male infertility patient with an inherited IQCH mutation as well as Iqch CRISPR knockout mice. The authors found that both human and mouse sperm exhibited structural and morphogenetic defects in multiple structures, leading to reduced fertility in Ichq-knockout male mice. Molecular analyses such as mass spectrometry and immunoprecipitation indicated that RNA-binding proteins are likely targets of IQCH, with the authors focusing on the RNA-binding protein HNRPAB as a critical regulator of testicular mRNAs. The authors used in vitro cell culture models to demonstrate an interaction between IQCH and calmodulin, in addition to showing that this interaction via the IQ motif of IQCH is required for IQCH's function in promoting HNRPAB expression. In sum, the authors concluded that IQCH promotes male fertility by binding to calmodulin and controlling HNRPAB expression to regulate the expression of essential mRNAs for spermatogenesis. These findings provide new insight into molecular mechanisms underlying spermatogenesis and how important factors for sperm morphogenesis and function are regulated.

      The strengths of the study include the use of mouse and human samples, which demonstrate a likely relevance of the mouse model to humans; the use of multiple biochemical techniques to address the molecular mechanisms involved; the development of a new CRISPR mouse model; ample controls; and clearly displayed results. Assays are done rigorously and in a quantitative manner. Overall, the claims made by the authors in this manuscript are well-supported by the data provided.

    1. Reviewer #1 (Public Review):

      The role of enteric glial cells in regulating intestinal mucosal functions at a steady state has been a matter of debate in recent years. Enteric glial cell heterogeneity and related methodological differences likely underlie the contrasting findings obtained by different laboratories. Here, Prochera and colleagues used Plp1-CreERT2 driver mice to deplete the majority of enteric glia from the gut. They found that glial loss has very limited effects on the transcriptome of gut cells 11 days after tamoxifen treatment (used to induce DTA expression), and by extension - more specifically, has only minimal impact on cells of the intestinal mucosa. Interestingly, in the colon (where Paneth cells are not present) they did observe transcriptomic changes related to Paneth cell biology. Although no overt gene expression alterations were found in the small intestine - also not in Paneth cells - morphological, ultrastructural, and functional changes were detected in the Paneth cells of enteric glia-depleted mice. In addition, and possibly related to Paneth cell dysfunction, enteric glia-depleted mice also show alterations in intestinal microbiota composition.

      In their analyses of enteric glia from existing single-cell transcriptomic data sets, it is stated that these come from 'non-diseased' humans. However, the data on the small intestine is obtained from children with functional gastrointestinal disorders (Zheng 2023). Data on colonic enteric glia was obtained from colorectal cancer patients (Lee 2020). Although here the cells were isolated from non-malignant regions, saying that the large intestines of these patients are non-diseased is probably an overstatement. Another existing dataset including human mucosal enteric glia of healthy subjects is presented in Smillie et al (2019). It would be interesting to see how the current findings relate to the data from Smillie et al.

      The time between enteric glia depletion and analyses (mouse sacrifice) must be a crucial determinant of the type of effects, and the timing thereof. In the current study 11 days after tamoxifen treatment was chosen as the time point for analyses, which is consistent with earlier work by the lab using the same model (Rao et al 2017). What would happen when they wait longer than 11 days after tamoxifen treatment? Data, not necessarily for all parameters, on later time points would strengthen the manuscript significantly.

      The authors found transcriptional dysregulation related to Paneth cell biology in the colon, where Paneth cells are normally not present. Given the bulk RNA sequencing approach, the cellular identity in which this shift is taking place cannot be determined. However, it would be useful if the authors could speculate on which colonic cell type they reckon this is happening in. On the other hand, enteric glia depletion was found to affect Paneth cells structurally and functionally in the small intestine, where transcriptional changes were initially not identified. Only when performing GSEA with the in silico help of cell type-specific gene profiles, differences in Paneth cell transcriptional programs in the small intestine were uncovered. A comment on this discrepancy would be helpful, especially for the non-bioinformatician readers among us.

      From looking at Figure 3B it is clear that Paneth cells are not the only epithelial cell type affected (after less stringent in silico analyses) by enteric glial cell depletion. Although the authors show that this does not translate into ultrastructural or numerical changes of most of these cell types, this makes one wonder how specific the enteric glia - Paneth cell link is. Besides possible indirect crosstalk (via neurons), it is not clear if enteric glia more closely associate with Paneth cells as compared to these other cell types. Immunofluorescence stainings of some of these cells in the Plp1-GFP mice would be informative here. The authors mention IL-22 as a possible link, but do Paneth cells express receptors for transmitters commonly released by enteric glia? Maybe they can have a look at putative cell-cell interactions by mapping ligand-receptor pairs in the scRNAseq datasets they used.

      Previously the authors showed that enteric glia regulation of intestinal motility is sex-dependent (Rao et al 2017). While enteric glia depletion caused dysmotility in female mice, it did not affect motility in males. For this reason, most experiments in the current study were conducted in male mice only. However, for the experiments focusing on the effect of enteric glia depletion on host-microbiome interactions and intestinal microbiota composition both male and female mice were used. In Figure 8A male and female mice are distinctly depicted but this was not done for Figure 8C. Separate characterization of the microbiome of male and female mice would have helped to figure out how much intestinal dysmotility (in females) contributes to the effect on gut microbial composition. This is an important exercise to confirm that the effect on the microbiome is indeed a consequence of altered Paneth cell function, as suggested by the authors (in the results and discussion, and in the abstract). In this context, it would also be interesting to compare the bulk sequencing data after enteric glia depletion between female and male mice.

    1. Reviewer #1 (Public Review):

      Summary:

      This is a very nice paper in which the authors addressed the potential for NK cell cellular therapy to treat and potentially eliminate previously established metastases after surgical resections, which are a major cause of death in human cancer patients. To do so they developed a model using the EO771 breast cancer cell line, in which they establish and then resect tumors and the draining lymph node, after which the majority of mice eventually succumb to metastatic disease. They found that when the initiating tumors were resected when still relatively small, adoptive transfers of IL-15/12-conditioned NK cells substantially enhanced the survival of tumor-bearing animals. They then delved into the cellular mechanisms involved. Interestingly and somewhat unexpectedly, the therapeutic effect of the transferred NK cells was dependent on the host's CD8+ T cells. Accordingly, the NK cell therapy contributed to the formation of tumor-specific CD8+ T cells, which protected the recipient animals against tumor re-challenge and were effective in protecting mice from tumor formation when transferred to naive mice. Mechanistically, they used Ifng knockout NK cells to provide evidence that IFNgamma produced by the transferred NK cells was crucial for the accumulation and activation of DCs in the metastatic lung, including expression of CD86, CD40, and MHC genes. In turn, IFNgamma production by NK cells was essential for the induced accumulation of activated CD8 effector T cells and stem cell-like CD8 T cells in the metastatic lung. The authors then expanded their findings from the mouse model to a small clinical trial. They found that inoculations of IL-15/12-conditioned autologous NK cells in patients with various malignancies after resection were safe and showed signs of efficacy.

      Strengths:

      - Monitoring of long-term metastatic disease and survival after resection used in this paper is a physiological model that closely resembles clinical scenarios more than the animal models usually used, a great strength of the approach.

      - Previous literature focused on the notion that NK cells clear metastatic lesions directly, within a short period. The authors' use of a more relevant model and time frame revealed the previously unexplored T cell-dependent mechanism of action of infused NK cells for long-term control of metastatic diseases.

      - Also important, the paper provides solid evidence for the contribution of IFNgamma produced by NK cells for activation of dendritic cells and T cells. This is an interesting finding that provokes additional questions concerning the action of the interferon-gamma in this context.

      - The results from the clinical trial in cancer patients based on the same type of IL-15/12-conditioned NK cell infusions, were encouraging with respect to safety and showed signals of efficacy, which support the translatability of the author's findings.

      Weaknesses:

      - Having demonstrated that NK cell IFNgamma is important for recruiting and activating DCs and T cells in their model, one is left to wonder whether it is important for the therapeutic effect, which was not tested.

      - Relatedly, previous studies, cited by the authors, reported that NK cells promote T cell activation by producing the chemokines CCL5 and XCL1, and FLT3 ligand, which respectively recruit and activate dendritic cells that can subsequently mobilize a T cell response. The present study demonstrates an important role for NK cell-produced IFNgamma in these processes. One is left wondering whether the model used by the authors is also dependent on CCL5, XCL1, and FLT3 production by NK cells, and if so whether IFNgamma plays a role in that or acts in parallel. The issue could be discussed by the authors, even if they cannot easily resolve it.

      - The authors do not address whether the IL-12 in their cocktail is essential for the effects they see. Relatedly, it was of interest that despite the effectiveness of the transferred IL-15/IL-12 cultured NK cells, the cells failed to persist very long after transfer. Published studies have reported that so-called memory-like NK cells, which are pre-activated with a cocktail of IL-12, IL-18 and IL-15, persist much longer in lympho-depleted mice and patients than IL-2 cultured NK cells. It would be illuminating to compare these two types of NK cell products in the author's model system, and with, or without, lymphodepletion, to identify the critical parameters. If greater persistence occurred with the memory-like NK cell product, it is possible that the NK cells might provide greater benefit, including by directly targeting the tumor.

      - It was somewhat difficult to gauge the clinical trial results because the trial was early stage and therefore not controlled. Evaluation of the results therefore relies on historical comparisons. To evaluate how encouraging the results are, it would be valuable for the authors to provide some context on the prognoses and likely disease progression of these patients at the time of treatment.

    1. Reviewer #1 (Public Review):

      Summary:

      The use of a multi-omics approach to elucidate the regulatory mechanism underlying parturition and myometrial quiescence adds novelty to the study. The identification of myometrial cis-acting elements and their association with gene expression, particularly the regulation of the PLCL2 gene by PGR opens the door to further investigate the impact of PGR and other regulators.

      Strengths:

      (1) Multi-Omic Approach: The paper employs a comprehensive multi-omic approach, combining ChIP-Seq, RNA-Seq, and CRISPRa-based Perturb-Seq assays, which allow for a thorough investigation of the regulatory mechanisms underlying myometrial gene expression.

      (2) Clinical Relevance: Investigating human myometrial specimens provides direct clinical relevance, as understanding the molecular mechanisms governing parturition and myometrial quiescence can have significant implications for the management of pregnancy-related disorders.

      (3) Functional work: For functional screening, They have used CRISPRa-based screening of PLCL2 gene regulation using immortalized human cell-line hTERT-HM and T-hESC to add more dimension to the work which strengthens their finding of PGR-dependent regulation of the PLCL2 gene in the human myometrial cells.

      Weaknesses:<br /> (1) Variability in epigenomic mapping: The significant variations in the number and location of H3K27ac-positive intervals across different samples and studies suggest potential challenges in accurately mapping the myometrial epigenome. This variability may introduce uncertainty and complicate the interpretation of results.

      (2) Sample specificity: The study focuses on term pregnant nonlabor myometrial specimens, limiting the generalizability of the findings to other stages of pregnancy or labor.

      (3) Limited Understanding of Regulatory Mechanisms: While the study identifies potential regulatory programs within super-enhancers, the exact mechanisms by which these enhancers regulate gene expression and cellular functions in the myometrium remain unclear. Further mechanistic studies are needed to elucidate these processes.

      (4) Discordant analysis: Why are regular enhancers being understood in terms of motif enrichment of transcription factors and super-enhancers in terms of pathways enriched for active genes? This needs a clear reason.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors sought to investigate the associations of age at breast cancer onset with the incidence of myocardial infarction (MI) and heart failure (HF). They employed a secondary data analysis of the UK Biobank. They used descriptive and inferential analysis including Cox proportional hazards models to investigate the associations. Propensity score matching was also used. They found that Among participants with breast cancer, younger onset age was significantly associated with elevated risks of MI (HR=1.36, 95%CI: 1.19 to 1.56, P<0.001) and HF (HR=1.31, 95% CI: 1.18 to 1.46, P<0.001). the reported similar findings after propensity matching.

      Strengths:

      The use of a large dataset is a strength of the study as the study is well-powered to detect differences. Reporting both the unmatched and the propensity-matched estimates was also important for statistical inference.

      Weaknesses:

      Despite the merits of the paper, readers may get confused as to whether authors are referring to "age at breast cancer onset" or "age at breast cancer diagnosis". I suppose the title refers to the latter, in which case it will be best to be consistent in using "age at breast cancer diagnosis" throughout the manuscripts. I would recommend a revision to the title to make it explicit that the authors are referring to, "age at breast cancer diagnosis".

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript by Raices et al., provides novel insights into the role and interactions between SPO-11 accessory proteins in C. elegans. The authors propose a model of meiotic DSBs regulation, critical to our understanding of DSB formation and ultimately crossover regulation and accurate chromosome segregation. The work also emphasizes the commonalities and species-specific aspects of DSB regulation.

      Strengths:

      This study capitalizes on the strengths of the C. elegans system to uncover genetic interactions between a large number of SPO-11 accessory proteins. In combination with physical interactions, the authors synthesize their findings into a model, which will serve as the basis for future work, to determine mechanisms of DSB regulation.

      Weaknesses:

      The methodology, although standard, lacks quantification. This includes the mass spectrometry data, along with the cytology. The work would also benefit from clarifying the role of the DSB machinery on the X chromosome versus the autosomes.

    1. Reviewer #1 (Public Review):

      Summary and Strengths:

      The ability of Wolbachia to be transmitted horizontally during parasitoid wasp infections is supported by phylogenetic data here and elsewhere. Experimental analyses have shown evidence of wasp-to-wasp transmission during coinfection (eg Huigins et al), host to wasp transmission (eg Heath et al), and mechanical ('dirty needle') transmission from host to host (Ahmed et al). To my knowledge this manuscript provides the first experimental evidence of wasp to host transmission. Given the strong phylogenetic pattern of host-parasitoid Wolbachia sharing, this may be of general importance in explaining the distribution of Wolbachia across arthropods. This is of interest as Wolbachia is extremely common in the natural world and influences many aspects of host biology.

      Weaknesses:

      The first observation of the manuscript is that the Wolbachia strains in hosts are more closely related to those in their parasitoids. This has been reported on multiple occasions before, dating back to the late 1990s. The introduction cites five such papers (the observation is made in other studies too that could be cited) but then dismisses them by stating "However, without quantitative tests, this observation could simply reflect a bias in research focus." As these studies include carefully collected datasets that were analysed appropriately, I felt this claim of novelty was rather strong. It is unclear why downloading every sequence in GenBank avoids any perceived biases, when presumably the authors are reanalysing the data in these papers.

      I do not doubt the observation that host-parasitoid pairs tend to share related Wolbachia, as it is corroborated by other studies, the effect size is large, and the case study of whitefly is clearcut. It is also novel to do this analysis on such a large dataset. However, the statistical analysis used is incorrect as the observations are pseudo-replicated due to phylogenetic non-independence. When analysing comparative data like this it is essential to correct for the confounding effects of related species tending to be similar due to common ancestry. In this case, it is well-known that this is an issue as it is a repeated observation that related hosts are infected by related Wolbachia. However, the authors treat every pairwise combination of species (nearly a million pairs) as an independent observation. Addressing this issue is made more complex because there are both the host and symbiont trees to consider. The additional analysis in lines 123-124 (including shuffling species pairs) does not explicitly address this issue.

      The sharing of Wolbachia between whitefly and their parasitoids is very striking, although this has been reported before (eg the authors recently published a paper entitled "Diversity and Phylogenetic Analyses Reveal Horizontal Transmission of Endosymbionts Between Whiteflies and Their Parasitoids"). In Lines 154-164 it is suggested that from the tree the direction of transfer between host and parasitoid can be inferred from the data. This is not obvious to me given the poor resolution of the tree due to low sequence divergence. There are established statistical approaches to test the direction of trait changes on a tree that could have been used (a common approach is to use the software BEAST).

    1. Reviewer #1 (Public Review):

      Summary:

      In "Changes in wing morphology..." Roy et al investigate the potential allometric scaling in wing morphology and wing kinematics in 8 different hoverfly species. Their study nicely combines different new and classic techniques, investigating flight in an important, yet understudied alternative pollinator. I want to emphasize that I have been asked to review this from a hoverfly biology perspective, as I do not work on flight kinematics. I will thus not review that part of the work.

      Strengths:

      The paper is well-written and the figures are well laid out. The methods are easy to follow, and the rationale and logic for each experiment are easy to follow. The introduction sets the scene well, and the discussion is appropriate. The summary sentences throughout the text help the reader.

      Weaknesses:

      The ability to hover is described as useful for either feeding or mating. However, several of the North European species studied here would not use hovering for feeding, as they tend to land on the flowers that they feed from. I would therefore argue that the main selection pressure for hovering ability could be courtship and mating. If the authors disagree with this, they could back up their claims with the literature. On that note, a weakness of this paper is that the data for both sexes are merged. If we agree that hovering may be a sexually dimorphic behaviour, then merging flight dynamics from males and females could be an issue in the interpretation. I understand that separating males from females in the movies is difficult, but this could be addressed in the Discussion, to explain why you do not (or do) think that this could cause an issue in the interpretation.

      The flight arena is not very big. In my experience, it is very difficult to get hoverflies to fly properly in smaller spaces, and definitely almost impossible to get proper hovering. Do you have evidence that they were flying "normally" and not just bouncing between the walls? How long was each 'flight sequence'? You selected the parts with the slowest flight speed, presumably to get as close to hovering as possible, but how sure are you that this represented proper hovering and not a brief slowdown of thrust?

      Your 8 species are evolutionarily well-spaced, but as they were all selected from a similar habitat (your campus), their ecology is presumably very similar. Can this affect your interpretation of your data? I don't think all 6000 species of hoverflies could be said to have similar ecology - they live across too many different habitats. For example, on line 541 you say that wingbeat kinematics were stable across hoverfly species. Could this be caused by their similar habitat?

    1. Reviewer #1 (Public Review):

      Summary:

      This technical report by Kugler at al., expands the application of a fluorescence-based reporter to study the conformational state of various kinases. This reporter, named KinCon (Kinase Conformation), interrogates the conformational state of a kinase (i.e., active vs. inactive) based on engineering complementary fusion proteins that fluoresce upon interaction. This assay has several advantages as it allows studying full-length kinases, that is, the kinase domain and regulatory domains, inside the cell and under various experimental conditions such as the presence of inhibitors or activator proteins, and in wildtype and mutants involved in disease states.

      Strengths:

      One major strength of this study is that it is quite comprehensive. The authors use KinCon for four different kinases, BRAF, LKB1, RIP and CDK4/6. These kinases have very different regulatory elements and associated proteins, which the authors explore to study their conformational state. Moreover, they use small molecule inhibitors or mutations to further dissect how the conformational state of the kinase in disease states. The collective set of results strongly suggests that KinCon is a versatile tool that can be used to study many kinases of biomedical and fundamental importance. Given that kinases are extensively studied by researchers in academia or industry, KinCon could have a broad impact as well.

      Weaknesses:

      This manuscript, however, also has several weaknesses that I outline below. These weaknesses decrease the overall level of impact on the manuscript, as is.<br /> • The manuscript is exceedingly long. For instance, the introduction provides background information for each kinase that is further expanded in the results section. I think the background information for each kinase in the Introduction and Results sections can be significantly reduced to highlight the major points. Otherwise, not only does the manuscript become too long, but also the main points get diluted.

      • Similarly, the figure legends are very long, providing information that is already in the main text or in Methods. The authors should provide the essential information to understand the figure.

      • A major concern throughout the manuscript is the use of the word "dynamics," which is used in the text in various contexts. The authors should clarify what they understand for dynamics of conformation. Are they measuring how the time-dependent process by which the kinase is interconverting between active and inactive states? It seems to me that the assays in this report evaluate a population of kinases that are in an open or close conformation (i.e., a particular state in each experimental condition) but there is not direct information how the kinase goes from one state to the other. In that sense, the use of dynamics is unclear. Also, the use of dynamics in different sentences in ambiguous. Here are a few examples but this should be revised throughout the manuscript:<br /> - Line 27: dynamics of full-length protein kinases. Is this referred to dynamics of conformational interconversion between inactive and active states?<br /> - Line 138: dynamic functioning of kinases. No clear what that means.<br /> - Line 276: ... alters KinCon dynamics. Not clear if they are measuring time-dependent process or a single point.<br /> - Figure legend 4F: dynamics of CDK4/6 reporters. Again, not clear how the assay is measuring dynamics.<br /> Nonetheless, in my opinion the authors use proper terminology that describes their assay in which the term dynamics is not used: Title (... impact of protein and small molecule interactions on kinase conformations) and Line 89 (... reporter can be used to track conformational changes of kinases...)

      • The authors use the phrase that KinCon has predictive capabilities (abstract and line 142). What do the authors refer to this?

      • The authors indicate that KinCon is a highly sensitive assay. Can the authors elaborate on what high sensitivity means? For example, can they discuss how other fluorescence-based approaches that are less sensitive would not be able to accomplish the same type of results or derive similar conclusions? Can they provide a resolution metric both in space and time? Given that the authors state that this is a technical report, this information is of relevance.

      • The authors nicely describe how KinCon works in Figure 1B and part of 1C. I do think that the bottom of panel 1C needs to be revised, as well as the text describing the potential scenarios of potency, efficacy and synergism.<br /> - One issue with this part of Figure 1C is that it is not clear what the x-axis in the 3 plots refer to. Is this time? Is this concentration of a small molecule, inhibitor or binding partner? This was confusing also in the context of the term dynamics used throughout the text. The terms potency, efficacy and synergism should be subtitles or the panels and the x-axis should be better defined, especially for a non-specialized reader.<br /> - Related to this part of Figure 1C is the text. The authors mention potency, effectiveness and synergy (Line 195). Can the authors use more fundamental terminology related to these three scenarios, for example, changes in activation constant, percent of protein activates? Also, why synergy is only related to effectiveness? Can synergy also be associated to potency?<br /> - Lastly, the use of these three cartoons gives the impression that the experimental results to come will follow a similar representation. Instead, the results are presented in bar plots for many different conditions. I think this will lead to confusion for a broad audience.

      • For a non-expert reader, can the authors clarify the use of tracking basal conformations vs. transient over-expression of the various KinCon constructs? Moreover, the authors use the term transient over-expression for 10, 16, 24 and 48 h (Line 203). This, to a non-expert reader, seems not transient.

      • Regarding Figure 1E and similar graphical representations: Why is the signal (RLU) non-linear with time? If the fluorescence of the KinCon construct is linearly related with its expression or concentration inside the cell, one would expect a linear increase. Have the authors plotted RLU/Expression band intensity to account for changes in protein concentration? For instance, some of the results within Figure 3 are normalized to concentration on the reporter expression level.

      • For the results with LKB1, the authors claim that intermediate fold change in fluorescence (Figure 2E) is due to a partially closed intermediate state (Line 262). Can the authors discard the possibility by which there is a change in populations of active and inactive that on average give intermediate values?

      • The authors claim in Line 274 that mutations located at the interface of the LKB1/STRADalkpha complex affect interactions and hypothesize that allosteric communication between LKB1 and STRADalpha is essential for function. Given that this mutations are at the interaction interface, why would the authors postulate an allosteric mechanism that evokes an effect distant to the interaction/active site? Could it be that function requires surface contacts alone that are disrupted by the mutations?

      • I was unable to find text to explain the following: Figure 2I shows the mutation R74A as n.s., but in the text only W308C is mentioned to not change fluorescence. Could the authors clarify why R74A is not discussed in the text? Maybe this reviewer missed the text in which it was discussed. Similarly, the author states in line 326 that the study included an analysis of RIPK2. However, I was unable to find results, graphs or additional text discussing RIPK2.

      • Some figures of RLU use absolute values, percentages and fold change. Is there a reason why the authors use different Y-axis values? These should be explained and justified in Methods. Similarly, bars for wt in Figures 3D, G, or 4D, E,F show no errors. How are the authors normalizing the data and repeats so that there is no error, and are they treating the rest of the data (i.e., mutants and/or treated with small molecules) in the same way?

      • Lastly, the section starting in Line 472 reads more like a discussion of results from different type of inhibitors used in this study that results on its own. The authors should consider a new subtitle as results or make this section a discussion.

    1. Reviewer #2 (Public Review):

      In this study, Zhenbang Ye and colleagues investigate the links between microenvironment signatures, gene expression profiles, and prognosis in diffuse large B-cell lymphoma (DLBCL). They show that increased tumor purity (ie, a higher proportion of tumor cells relative to surrounding stromal components) is associated with worse prognosis. They then show that three genes associated with tumor purity (VCAN, CD3G, and C1QB) correlate with patterns of immune cell infiltration and can be used to create a risk scoring system that predicts prognosis, which can be replicated by immunohistochemistry (IHC), and response to some therapies.

      (1) The two strengths of the study are its relatively large sample size (n = 190) and the strong prognostic significance of the risk scoring system. It is worth noting that the validation of this scoring with IHC, a simple technique already routinely used for the diagnosis and classification of DLBCL, increases the potential for clinical translation. However, the correlative nature of the study limits the conclusions that can be drawn in regards to links between the risk scoring system, the tumor microenvironment, and the biology of DLBCL.

      (2) The tumor microenvironment has been extensively studied in DLBCL and a prognostic implication has already been established (for instance, Steen et al., Cancer Cell, 2021). In addition, associations have already been established in non-Hodgkin lymphoma between prognosis and expression of C1QB (Rapier-Sharman et al., Journal of Bioinformatics and Systems Biology, 2022), VCAN (S. Hu et al., Blood, 2013), and CD3G (Chen et al., Medical Oncology, 2022). Nevertheless, one of the strengths and novelty aspect of the study is the combination of these 3 genes into a risk score that is also valid by immunohistochemistry (IHC), which substantially facilitates a potential clinical translation.

      (3) Figures 1A-B: tumor purity is calculated using the ESTIMATE (Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data) algorithm (Yoshihara et al., Nature Communications, 2013). The ESTIMATE algorithm is based on two gene signatures ("stromal" and "immune"). It is therefore expected that tumor purity measured by the ESTIMATE algorithm will correlate with the expression of multiple genes. Importantly, C1QB is included in the stromal signature of the ESTIMATE algorithm meaning that, by definition, it will be correlated with tumor purity in that setting.

      (4) Figure 2A: as established in figure 1C, high tumor purity is associated with worse prognosis. Later in the manuscript, it is also shown that C1QB expression is associated with worse prognosis. However, figure 2A shows that C1QB is associated with decreased tumor purity. It therefore makes it less likely that the prognostic role of C1QB expression is related to its impact on tumor purity. The prognostic impact could be related to different patterns of immune cell infiltration, as shown later. However, the evidence presented in the study is correlative and nature and not sufficient to draw this conclusion.

      (5) Figure 3G: although there is a strong prognostic implication of the risk score on prognosis, the correlation between the risk score and tumor purity is significant but not very strong (R = 0.376). It is therefore likely that other important biological factors explain the correlation between the risk score and prognosis, as suggested in the gene set enrichment analysis that is later performed.

      (6) Figure 6: the drug sensitivity analysis includes a wide range of established and investigational drugs with varied mechanisms of action. Although the difference in sensitivity between tumors with low and high risk scores show statistical significance for certain drugs, the absolute difference appears small in most cases and is of unclear biological significance. In addition, even though the risk score is statistically related to drug sensitivity, there is no direct evidence that the differences in drug sensitivity are directly related to tumor purity.

    1. Reviewer #1 (Public Review):

      The authors describe a framework for working with genotype data and associated metadata, specifically geared towards ancient DNA. The Poseidon framework aims to address long-standing data coordination issues in ancient population genomics research. These issues can usefully be thought of as two primary, separate problems:

      (1) The genotype merging problem. Often, genotype calls made by a new study are not made publicly available, or they are only made available in an ad-hoc fashion without consistency in formatting between studies. Other users will typically want to combine genotypes from many previously published studies with their own newly produced genotypes, but a lack of coordination and standards means that this is challenging and time-consuming.

      (2) The metadata problem. All genomes need informative metadata to be usable in analyses, and this is even more true for ancient genomes which have temporal and often cultural dimensions to them. In the ancient DNA literature, metadata is often only made available in inconsistently formatted supplementary tables, such that reuse requires painstakingly digging through these to compile, curate and harmonise metadata across many studies.

      Poseidon aims to solve both of these problems at the same time, and additionally provide a bit of population genetics analysis functionality. The framework is a quite impressive effort, that clearly has taken a lot of work and thought. It displays a great deal of attention to important aspects of software engineering and reproducibility. How much usage it will receive beyond the authors themselves remains to be seen, as there is always a barrier to entry for any new sophisticated framework. But in any case, it clearly represents a useful contribution to the human ancient genomics community.

      The paper is quite straightforward in that it mainly describes the various features of the framework, both the way in which data and metadata are organised, and the various little software tools provided to interact with the data. This is all well-described and should serve as a useful introduction for any users of the framework, and I have no concerns with the presentation of the paper. Perhaps it gets a bit too detailed for my taste at times, but it's up to the authors how they want to write the paper.

      I thus have no serious concerns with the paper. I do have some thoughts and comments on the various choices made in the design of the framework, and how these fit into the broader ecosystem of genomics data. I wouldn't necessarily describe much of what follows as criticism of what the authors have done - the authors are of course free to design the framework and software that they want and think will be useful. And the authors clearly have done more than basically anyone else in the field to tackle these issues. But I still put forth the points below to provide some kind of wider discussion within the context of ancient genomics data management and its future.

      * * *

      The authors state that there is no existing archive for genotype data. This is not quite true. There is the European Variation Archive (EVA, https://www.ebi.ac.uk/eva/), which allows archiving of VCFs and is interlinked to raw data in the ENA/SRA/DDBJ. If appropriately used, the EVA and associated mainstream infrastructure could in principle be put to good use by the ancient genomics community. In practice, it's basically not used at all by the ancient genomics community, and partly this is because EVA doesn't quite provide exactly what's needed (in particular with regards to metadata fields). Poseidon aims to provide a much more custom-tailored solution for the most common use cases within the human ancient DNA field, but it could be argued that such a solution is only needed because the ancient genomics community has largely neglected the mainstream infrastructure. In some sense, by providing such a custom-tailored solution that is largely independent of the mainstream infrastructure, I feel like efforts such as Poseidon (and AADR) - while certainly very useful - might risk contributing to further misaligning the ancient genomics community from the rest of the genomics community, rather than bringing it closer. But the authors cannot really be blamed for that - they are simply providing a resource that will be useful to people given the current state of things.

      The BioSamples database (https://www.ebi.ac.uk/biosamples/) is an attempt to provide universal sample IDs across the life sciences and is used by the archives for sequence reads (ENA/SRA/DDBJ). Essentially every published ancient sample already has a BioSample accession, because this is required for the submission of sequence reads to ENA/SRA/DDBJ. It would thus have seemed natural to make BioSamples IDs a central component of Poseidon metadata, so as to anchor Poseidon to the mainstream infrastructure, but this is not really done. There are some links being made to ENA in the .ssf "sequence source" files used by the Poseidon package, including sample accessions, but this seems more ad-hoc.

      The package uses PLINK and EIGENSTRAT file formats to represent genotypes, which in my view are not particularly good formats for long-term and rigorous data management in genomics. These file formats cannot appropriately represent multiallelic loci, haplotype phase, or store information on genotype qualities, coverage, etc. The standard in the rest of genomics is VCF, a much more robust and flexible format with better software built around it. Insisting on keeping using these arguably outdated formats is one way in which the ancient genomics community risks disaligning itself from the mainstream.

      I could not find any discussion of reference genomes: knowing the reference genome coordinate system is essential to using any genotype file. For comparison, in the EVA archive, every VCF dataset has a "Genome Assembly" metadata field specifying the accession number of the reference genome used. It would seem to me like a reference genome field should be part of a Poseidon package too. In practice, the authors likely use some variant of the hg19 / GRCh37 human reference, which is still widely used in ancient genomics despite being over a decade out of date. Insisting on using an outdated reference genome is one way in which the ancient genomics community is disaligning itself from the mainstream, and it complicates comparisons to data from other sub-fields of genomics.

      A fundamental issue contributing to the genome merging problem, not unique to ancient DNA, is that genotype files are typically filtered to remove sites that are not polymorphic within the given study - this means that files from two different studies will often contain different and not fully overlapping sets of sites, greatly complicating systematic merging. I don't see any discussion of how Poseidon deals with this. In practice, it seems the authors are primarily concerned with data on the commonly used 1240k array set, such that the set of SNPs is always well-defined. But does Poseidon deal with the more general problem of non-overlapping sites between studies, or is this issue simply left to the user to worry about? This would be of relevance to whole-genome sequencing data, and there are certainly plenty of whole-genome datasets of great interest to the research community (including archaic human genomes, etc).

      In principle, it seems the framework could be species-agnostic and thus be useful more generally beyond humans (perhaps it would be enough to add just one more "species" metadata field?). It is of course up to the authors to decide how broadly they want to cater.

    1. Reviewer #1 (Public Review):

      This study presents an investigation into the physiological functions of RIPK1 within the context of liver physiology, particularly during short-term fasting. Through the use of hepatocyte-specific Ripk1-deficient mice (Ripk1Δhep), the authors embarked on an examination of the consequences of Ripk1 deficiency in hepatocytes under fasting conditions. They discovered that the absence of RIPK1 sensitized the liver to acute injury and hepatocyte apoptosis during fasting, a finding of significant interest given the crucial role of the liver in metabolic adaptation. Employing a combination of transcriptomic profiling and single-cell RNA sequencing techniques, the authors uncovered intricate molecular mechanisms underlying the exacerbated proinflammatory response observed in Ripk1Δhep mice during fasting. While the investigation offers valuable insights into the consequences of Ripk1 deficiency in hepatocytes during fasting conditions, there appears to be a primarily descriptive nature to the study with a lack of clear connection between the experiments. Thus, a stronger focus is warranted, particularly on understanding the dialogue between hepatocytes and macrophages. Moreover, the data would benefit from reinforcement through additional experiments such as Western blotting, flow cytometry, and rescue experiments, which would offer a more quantitative aspect to the findings. By incorporating these enhancements, the study could achieve a more comprehensive understanding of the underlying mechanisms and ultimately strengthen the overall impact of the research.

      Detailed major concerns:

      Related to Figure 1.<br /> It is imperative to ensure consistency in the number of animals analyzed across the different graphs. The current resolution of the images appears to be low, resulting in unsharp visuals that hinder the interpretation of data beyond the presence of "white dots". To address this issue, it is recommended to enhance the resolution of the images and consider incorporating zoom-in features to facilitate a clearer visualization of the observed differences. Moreover, it would be beneficial to include a complete WB analysis for the cell death pathways analyzed. These adjustments will significantly improve the clarity and interpretability of Figure 1.

      Related to Figure 2.<br /> It is essential to ensure consistency in the number of animals analyzed across the different graphs, as indicated by n=6 in the figure legend (similar to Figure 1). Additionally, it is crucial to distinguish between male and female subjects in the dot plots to assess any potential gender-based differences, which should be consistent throughout the paper. To achieve this, the dots plot should be harmonized to clearly differentiate between males and females and investigate if there are any disparities between the genders. Moreover, it is imperative to correlate hepatic inflammation with the activation of Kupffer cells, infiltrating monocytes, and/or hepatic stellate cells (HSCs). Therefore, conducting flow cytometry would be instrumental in achieving this correlation. Additionally, the staining for Ki67 appears to be non-specific, showing a granular pattern reminiscent of bile crystals rather than the expected nuclear staining of hepatocytes or immune cells. It is crucial to ensure specific staining for Ki67, and conducting in vitro experiments on primary hepatocytes could further elucidate the proliferation process. These experiments are relatively straightforward to implement and would provide valuable insights into the mechanisms underlying hepatic inflammation and proliferation.

      Related to Figure 3 & related to Figure 4.<br /> The immunofluorescence data presented are not entirely convincing and are insufficient to conclusively demonstrate the recruitment of monocytes. Previous suggestions for flow cytometry studies remain pertinent and are indeed necessary to bolster the robustness of the data and conclusions. Conducting flow cytometry analyses would provide more accurate and quantitative assessments of monocyte recruitment, ensuring the reliability of the findings and strengthening the overall conclusions of the study. Regarding the single-cell RNA sequencing analysis presented in the manuscript, it's worth questioning its relevance and depth of information provided. While it successfully identifies a quantitative difference in the cellular composition of the liver between control and knockout mice, it may fall short in elucidating the intricate interactions between different cell populations, which are crucial for understanding the underlying mechanisms of hepatic inflammation. Therefore, I propose considering alternative bioinformatic analyses, such as CellPhone-CellChat, which could potentially provide a more comprehensive understanding of the cellular dynamics and interactions within the liver microenvironment. By examining the dialogue between different cell clusters, these analyses could offer deeper insights into the functional consequences of Ripk1 deficiency in hepatocytes and its impact on hepatic inflammation during fasting.

      Related to Figure 5.<br /> What additional insights do the data from Figure 5 provide compared to the study published in Nat Comms, which demonstrated that RIPK1 regulates starvation resistance by modulating aspartate catabolism (PMID: 34686667)?

      Related to Figure 6.<br /> The data presented in Figure 7 are complementary and do not introduce new mechanistic insights.

      Related to Figure 7.<br /> The data from Figure 7 suggest that RIPK1 in hepatocytes is responsible for the observed damage. However, it has been previously demonstrated that inhibition of RIPK1 activity in macrophages protects against the development of MASLD (PMID: 33208891). One possible explanation for these findings could be that the overreaction of macrophages to fasting, coupled with the absence of RIPK1 in hepatocytes (an indirect effect), contributes to the observed damage. Considering this, complementing hepatocytes with a kinase-dead version of RIPK1 could be a valuable approach to further refine the molecular aspect of the study. This would allow for a more precise investigation into the specific role of RIPK1's scaffolding or kinase function in response to starvation in hepatocytes. Such experiments could provide additional insights into the mechanisms underlying the observed effects and help delineate the contributions of RIPK1 in different cell types to metabolic stress responses.

    1. Reviewer 1 (Public Review):

      Multiple sclerosis (MS) is a debilitating autoimmune disease that causes loss of myelin in neurons of the central nervous system. MS is characterized by the presence of inflammatory immune cells in several brain regions as well as the brain barriers (meninges). This study aims to understand the local immune hallmarks in regions of the brain parenchyma that are adjacent to the leptomeninges in a mouse model of MS. The leptomeninges are known to be a foci of inflammation in MS and perhaps "bleed" inflammatory cells and molecules to adjacent brain parenchyma regions. To do so, they use novel technology called spatial transcriptomics so that the spatial relationships between the two regions remain intact. The study identifies canonical inflammatory genes and gene sets such as complement and B cells enriched in the parenchyma in close proximity to the leptomeninges in the mouse model of MS but not control. The manuscript is very well written and easy to follow. The results will become a useful resource to others working in the field and can be followed by time series experiments where the same technology can be applied to the different stages of the disease.

      Comments on revised version:

      I agree that the authors successfully addressed most of my comments/critiques.<br /> However, the fact that the control mice were not injected with CFA is somewhat concerning, because it will be hard to interpret the cause of the transcriptomic readouts described in this study. Some of the described effects might be due to CFA (which was used in the EAE but not the "naive" group), and not necessarily to the relapsing-remitting EAE immune features recapitulated in this mouse model. Moreover, this caveat associated with the "naive" control group is not being clearly stated throughout the manuscript and might go unnoticed to readers.<br /> The authors should clearly state, in the methods section (in the section "Induction of SJL EAE"), that the naive control group was not injected with CFA.<br /> Additionally, this potential confounder, of not using a control group injected with the same CFA regimen of the EAE group, should be mentioned in paragraph two of the discussion alongside the other limitations of the study already highlighted by the authors (or in another section of the discussion).

    1. Reviewer #1 (Public Review):

      In the manuscript by Su et al., the authors present a massively parallel reporter assay (MPRA) measuring the stability of in vitro transcribed mRNAs carrying wild-type or mutant 5' or 3' UTRs transfected into two different human cell lines. The goal presented at the beginning of the manuscript was to screen for effects of disease-associated point mutations on the stability of the reporter RNAs carrying partial human 5' or 3' UTRs. However, the majority of the manuscript is dedicated to identifying sequence components underlying the differential stability of reporter constructs. This shows that TA dinucleotides are the most predictive feature of RNA stability in both cell lines and both UTRs.<br /> The effect of AU rich elements (AREs) on RNA stability is well established in multiple systems, and the present study confirms this general trend but points out variability in the consequence of seemingly similar motifs on RNA stability. For example, the authors report that a long stretch of Us has extreme opposite effects on RNA stability depending on whether it is preceded by an A (strongly destabilizing) or followed by an A (strongly stabilizing). While the authors interpretation of a context-dependence of the effect is certainly well-founded, it seems counterintuitive that the preceding or following A would be the (only) determining factor. This points to a generally reductionist approach taken by the authors in the analysis of the data and in their attempt to dissect the contribution of "AU rich sequences" to RNA stability, with a general tendency to reduce the size and complexity of the features (e.g. to dinucleotides). While this certainly increases the statistical power of the analysis due to the number of occurrences of these motifs, it limits the interpretability of the results. How do TA dinucleotides per se contribute to destabilizing the RNA, both in 5' and 3' UTRs, but (according to limited data presented) not in coding sequences? What is the mechanism? RBPs binding to TA dinucleotide containing sequences are suggested to "mask" the destabilizing effect, thereby leading to a more stable RNA. Gain of TA dinucleotides is reported to have a destabilizing effect, but again no hypothesis is provided as to the underlying molecular mechanism. In addition to reducing the motif length to dinucleotides, the notion of "context dependence" is used in a very narrow sense; especially when focusing on simple and short motifs, a more extensive analysis of the interdependence of these features (beyond the existing analysis of the relationship between TA-diNTs and GC content) could potentially reveal more of the context dependence underlying the seemingly opposite behavior of very similar motifs.

      The present MPRAs measures the effect of UTR sequences in one specific reporter context and using one experimental approach (following the decay of in vitro transcribed and transfected RNAs). While this approach certainly has its merits compared to other approaches, it also comes with some caveats: RNA is delivered naked, without bound RBPs and no nuclear history, e.g. of splicing (no EJCs), editing and modifications. One way to assess the generalizability of the results as well as the context dependence of the effects is to perform the same analysis on existing datasets of RNA stability measurements obtained through other methods (e.g. transcription inhibition). Are TA dinucleotides universally the most predictive feature of RNA half-lives?

      The authors conclude their study with a meta-analysis of genes with increased TA dinucleotides in 5' and 3'UTRs, showing that specific functional groups are overrepresented among these genes. In addition, they provide evidence for an effect of disease-associated UTR mutations on endogenous RNA stability. While these elements link back to the original motivation of the study (screening for effects of point mutations in 5' and 3' UTRs), they provide only a limited amount of additional insights.

      In summary, this manuscript presents an interesting addition to the long-standing attempts at dissecting the sequence basis of RNA stability in human cells. The analysis is in general very comprehensive and sound; however, at times the goal of the authors to find novelty and specificity in the data overshadows some analyses. One example is the case where the authors try to show that TA-dinucleotides and GC content are decoupled and not merely two sides of the same coin. They claim that the effect of TA dinucleotides is different between high- and low-GC content contexts but do not control for the fact that low GC-content regions naturally will contain more TA dinucleotides and therefore the effect sizes and the resulting correlation between TA-diNT rate and stability will be stronger (Fig. 5A). A more thorough analysis and greater caution in some of the claims could further improve the credibility of the conclusions.

    1. Reviewer #1 (Public Review):

      Summary:

      This study offers a new perspective. ACTL7A and ACTL7B play roles in epigenetic regulation in spermiogenesis. Actin-like 7 A (ACTL7A) is essential for acrosome formation, fertilization, and early embryo development. ACTL7A variants cause acrosome detachment responsible for male infertility and early embryonic arrest. It has been reported that ACTL7A is localized on the acrosome in mouse sperms (Boëda et al., 2011). Previous studies have identified ACTL7A mutations (c.1118G>A:p.R373H; c.1204G>A:p.G402S, c.1117C>T:p.R373C), All these variants were located in the actin domain and were predicted to be pathogenic, affecting the number of hydrogen bonds or the arrangement of nearby protein structures (Wang et al., 2023; Xin et al., 2020; Zhao et al., 2023; Zhou et al., 2023). This work used AI to model the role of ACTL7A/B in the nucleosome remodeling complex and proposed a testis-specific conformation of SCRAP complex. This is different from previous studies.

      Strengths:

      This study provides a new perspective to reveal the additional roles of these proteins.

      Weaknesses:

      The results section contains a substantial background description. However, the results and discussion sections require streamlining. There is a lack of mutual support for data between the sections, and direct data to support the authors' conclusions are missing.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript by Bimbard et al., a new method to perform stable recordings over long periods of time with neuropixels, as well as the technical details on how the electrodes can be explanted for follow-up reuse, is provided. I think the description of all parts of the method is very clear, and the validation analyses (n of units per day over time, RMS over recording days...) are very convincing. I however missed a stronger emphasis on why this could provide a big impact on the ephys community, by enabling new analyses, new behavior correlation studies, or neurophysiological mechanisms across temporal scales that were previously inaccessible with high temporal resolution (i.e. not with imaging).

      Strengths:

      Open source method. Validation across laboratories. Across species (mice and rats) demonstration of its use and in different behavioral conditions (head-fixed and freely moving).

      Weaknesses:

      Weak emphasis on what can be enabled with this new method that didn't exist before.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper presents a mechanistic study of rDNA origin regulation in yeast by SIR2. Each of the ~180 tandemly repeated rDNA gene copies contains a potential replication origin. Early-efficient initiation of these origins is suppressed by Sir2, reducing competition with origins distributed throughout the genome for rate-limiting initiation factors. Previous studies by these authors showed that SIR2 deletion advances replication timing of rDNA origins by a complex mechanism of transcriptional de-repression of a local PolII promoter causing licensed origin proteins (MCMcomplexes) to re-localize (slide along the DNA) to a different (and altered) chromatin environment. In this study, they identify a chromatin remodeler, FUN30, that suppresses the sir2∆ effect, and remarkably, results in a contraction of the rDNA to about one-quarter it's normal length/number of repeats, implicating replication defects of the rDNA. Through examination of replication timing, MCM occupancy and nucleosome occupancy on the chromatin in sir2, fun30, and double mutants, they propose a model where nucleosome position relative to the licensed origin (MCM complexes) intrinsically determines origin timing/efficiency. While their interpretations of the data are largely reasonable and can be interpreted to support their model, a key weakness is the connection between Mcm ChEC signal disappearance and origin firing. While the cyclical chromatin association-dissociation of MCM proteins with potential origin sequences may be generally interpreted as licensing followed by firing, dissociation may also result from passive replication and as shown here, displacement by transcription and/or chromatin remodeling. Moreover, linking its disappearance from chromatin in the ChEC method with such precise resolution needs to be validated against an independent method to determine the initiation site(s). Differences in rDNA copy number and relative transcription levels also are not directly accounted for, obscuring a clearer interpretation of the results. Nevertheless, this paper makes a valuable advance with the finding of Fun30 involvement, which substantially reduces rDNA repeat number in sir2∆ background. The model they develop is compelling and I am inclined to agree, but I think the evidence on this specific point is purely correlative and a better method is needed to address the initiation site question. The authors deserve credit for their efforts to elucidate our obscure understanding of the intricacies of chromatin regulation. At a minimum, I suggest their conclusions on these points of concern should be softened and caveats discussed. Statistical analysis is lacking for some claims.

      Strengths are the identification of FUN30 as suppressor, examination of specific mutants of FUN30 to distinguish likely functional involvement. Use of multiple methods to analyze replication and protein occupancies on chromatin. Development of a coherent model.

      Weaknesses are failure to address copy number as a variable; insufficient validation of ChEC method relationship to exact initiation locus; lack of statistical analysis in some cases.

      Additional background and discussion for public review:

      This paper broadly addresses the mechanism(s) that regulate replication origin firing in different chromatin contexts. The rDNA origin is present in each of ~180 tandem repeats of the rDNA sequence, representing a high potential origin density per length of DNA (9.1kb repeat unit). However, the average origin efficiency of rDNA origins is relatively low (~20% in wild-type cells), which reduces the replication load on the overall genome by reducing competition with origins throughout the genome for limiting replication initiation factors. Deletion of histone deacetylase SIR2, which silences PolII transcription within the rDNA, results in increased early activation or the rDNA origins (and reduced rate of overall genome replication). Previous work by the authors showed that MCM complexes loaded onto the rDNA origins (origin licensing) were laterally displaced (sliding) along the rDNA, away from a well-positioned nucleosome on one side. The authors' major hypothesis throughout this work is that the new MCM location(s) are intrinsically more efficient configurations for origin firing. The authors identify a chromatin remodeling enzyme, FUN30, whose deletion appears to suppress the earlier activation of rDNA origins in sir2∆ cells. Indeed, it appears that the reduction of rDNA origin activity in sir2∆ fun30∆ cells is severe enough to results in a substantial reduction in the rDNA array repeat length (number of repeats); the reduced rDNA length presumably facilitates it's more stable replication and maintenance.

      Analysis of replication by 2D gels is marginally convincing, using 2D gels for this purpose is very challenging and tricky to quantify. The more quantitative analysis by EdU incorporation is more convincing of the suppression of the earlier replication caused by SIR2 deletion.

      To address the mechanism of suppression, they analyze MCM positioning using ChEC, which in G1 cells shows partial displacement of MCM from normal position A to positions B and C in sir2∆ cells and similar but more complete displacement away from A to positions B and C in sir2fun30 cells. During S-phase in the presence of hydroxyurea, which slows replication progression considerably (and blocks later origin firing) MCM signals redistribute, which is interpreted to represent origin firing and bidirectional movement of MCMs (only one direction is shown), some of which accumulate near the replication fork barrier, consistent with their interpretation. They observe that MCMs displaced (in G1) to sites B or C in sir2∆ cells, disappear more rapidly during S-phase, whereas the similar dynamic is not observed in sir2∆fun30∆. This is the main basis for their conclusion that the B and C sites are more permissive than A. While this may be the simplest interpretation, there are limitations with this assay that undermine a rigorous conclusion (additional points below). The main problem is that we know the MCM complexes are mobile so disappearance may reflect displacement by other means including transcription which is high is the sir2∆ background. Indeed, the double mutant has greater level of transcription per repeat unit which might explain more displaced from A in G1. Thus, displacement might not always represent origin firing. Because the sir2 background profoundly changes transcription, and the double mutant has a much smaller array length associated with higher transcription, how can we rule out greater accessibility at site A, for example in sir2∆, leading to more firing, which is suppressed in sir2 fun30 due to greater MCM displacement away from A?

      I think the critical missing data to solidly support their conclusions is a definitive determination of the site(s) of initiation using a more direct method, such as strand specific sequencing of EdU or nascent strand analysis. More direct comparisons of the strains with lower copy number to rule out this facet. As discussed in detail below, copy number reduction is known to suppress at least part of the sir2∆ effect so this looms over the interpretations. I think they are probably correct in their overall model based on the simplest interpretation of the data but I think it remains to be rigorously established. I think they should soften their conclusions in this respect.

    1. Reviewer #2 (Public Review):

      The authors examine the impact of optogenetic inhibition of hippocampal axon terminals in the retrosplenial cortex (RSP) during the performance of a working memory T-maze task. Performance on a delayed non-match-to-place task was impaired by such inhibition. The authors also report that inhibition is associated with faster decision-making and that the effects of inhibition can be observed over several subsequent trials. The work seems reasonably well done and the role of hippocampal projections to retrosplenial cortex in memory and decision-making is very relevant to multiple fields. However, the work should be expanded in several ways before one can make firm conclusions on the role of this projection in memory and behavior.

      Comments on revised version:

      The authors have provided their comments on the concerns voiced in my first review. I remain of the opinion that the experiments do not extend beyond determining whether disruption of hippocampal to retrosplenial cortex connections impacts spatial working memory. Given the restricted level of inquiry and the very moderate effect of the manipulation on memory, the work, in my opinion, does not provide significant insight into the processes of spatial working memory nor the function of the hippocampal to retrosplenial cortex connection.

    1. Reviewer #1 (Public Review):

      Summary: In this study, the authors address whether the dorsal nucleus of the inferior colliculus (DCIC) in mice encodes sound source location within the front horizontal plane (i.e., azimuth). They do this using volumetric two-photon Ca2+ imaging and high-density silicon probes (Neuropixels) to collect single-unit data. Such recordings are beneficial because they allow large populations of simultaneous neural data to be collected. Their main results and the claims about those results are the following:

      1) DCIC single-unit responses have high trial-to-trial variability (i.e., neural noise);

      2) approximately 32% to 40% of DCIC single units have responses that are sensitive to sound source azimuth;

      3) single-trial population responses (i.e., the joint response across all sampled single units in an animal) encode sound source azimuth "effectively" (as stated in title) in that localization decoding error matches average mouse discrimination thresholds;

      4) DCIC can encode sound source azimuth in a similar format to that in the central nucleus of the inferior colliculus (as stated in Abstract);

      5) evidence of noise correlation between pairs of neurons exists;

      and 6) noise correlations between responses of neurons help reduce population decoding error.

      While simultaneous recordings are not necessary to demonstrate results #1, #2, and #4, they are necessary to demonstrate results #3, #5, and #6.

      Strengths:<br /> - Important research question to all researchers interested in sensory coding in the nervous system.<br /> - State-of-the-art data collection: volumetric two-photon Ca2+ imaging and extracellular recording using high-density probes. Large neuronal data sets.<br /> - Confirmation of imaging results (lower temporal resolution) with more traditional microelectrode results (higher temporal resolution).<br /> - Clear and appropriate explanation of surgical and electrophysiological methods. I cannot comment on the appropriateness of the imaging methods.

      Strength of evidence for claims of the study:

      1) DCIC single-unit responses have high trial-to-trial variability -<br /> The authors' data clearly shows this.

      2) Approximately 32% to 40% of DCIC single units have responses that are sensitive to sound source azimuth -<br /> The sensitivity of each neuron's response to sound source azimuth was tested with a Kruskal-Wallis test, which is appropriate since response distributions were not normal. Using this statistical test, only 8% of neurons (median for imaging data) were found to be sensitive to azimuth, and the authors noted this was not significantly different than the false positive rate. The Kruskal-Wallis test was not performed on electrophysiological data. The authors suggested that low numbers of azimuth-sensitive units resulting from the statistical analysis may be due to the combination of high neural noise and relatively low number of trials, which would reduce statistical power of the test. This may be true, but if single-unit responses were moderately or strongly sensitive to azimuth, one would expect them to pass the test even with relatively low statistical power. At best, if their statistical test missed some azimuth-sensitive units, they were likely only weakly sensitive to azimuth. The authors went on to perform a second test of azimuth sensitivity-a chi-squared test-and found 32% (imaging) and 40% (e-phys) of single units to have statistically significant sensitivity. This feels a bit like fishing for a lower p-value. The Kruskal-Wallis test should have been left as the only analysis. Moreover, the use of a chi-squared test is questionable because it is meant to be used between two categorical variables, and neural response had to be binned before applying the test.

      3) Single-trial population responses encode sound source azimuth "effectively" in that localization decoding error matches average mouse discrimination thresholds -<br /> If only one neuron in a population had responses that were sensitive to azimuth, we would expect that decoding azimuth from observation of that one neuron's response would perform better than chance. By observing the responses of more than one neuron (if more than one were sensitive to azimuth), we would expect performance to increase. The authors found that decoding from the whole population response was no better than chance. They argue (reasonably) that this is because of overfitting of the decoder model-too few trials used to fit too many parameters-and provide evidence from decoding combined with principal components analysis which suggests that overfitting is occurring. What is troubling is the performance of the decoder when using only a handful of "top-ranked" neurons (in terms of azimuth sensitivity) (Fig. 4F and G). Decoder performance seems to increase when going from one to two neurons, then decreases when going from two to three neurons, and doesn't get much better for more neurons than for one neuron alone. It seems likely there is more information about azimuth in the population response, but decoder performance is not able to capture it because spike count distributions in the decoder model are not being accurately estimated due to too few stimulus trials (14, on average). In other words, it seems likely that decoder performance is underestimating the ability of the DCIC population to encode sound source azimuth.<br /> To get a sense of how effective a neural population is at coding a particular stimulus parameter, it is useful to compare population decoder performance to psychophysical performance. Unfortunately, mouse behavioral localization data do not exist. Therefore, the authors compare decoder error to mouse left-right discrimination thresholds published previously by a different lab. However, this comparison is inappropriate because the decoder and the mice were performing different perceptual tasks. The decoder is classifying sound sources to 1 of 13 locations from left to right, whereas the mice were discriminating between left or right sources centered around zero degrees. The errors in these two tasks represent different things. The two data sets may potentially be more accurately compared by extracting information from the confusion matrices of population decoder performance. For example, when the stimulus was at -30 deg, how often did the decoder classify the stimulus to a lefthand azimuth? Likewise, when the stimulus was +30 deg, how often did the decoder classify the stimulus to a righthand azimuth?

      4) DCIC can encode sound source azimuth in a similar format to that in the central nucleus of the inferior colliculus -<br /> It is unclear what exactly the authors mean by this statement in the Abstract. There are major differences in the encoding of azimuth between the two neighboring brain areas: a large majority of neurons in the CNIC are sensitive to azimuth (and strongly so), whereas the present study shows a minority of azimuth-sensitive neurons in the DCIC. Furthermore, CNIC neurons fire reliably to sound stimuli (low neural noise), whereas the present study shows that DCIC neurons fire more erratically (high neural noise).

      5) Evidence of noise correlation between pairs of neurons exists -<br /> The authors' data and analyses seem appropriate and sufficient to justify this claim.

      6) Noise correlations between responses of neurons help reduce population decoding error -<br /> The authors show convincing analysis that performance of their decoder increased when simultaneously measured responses were tested (which include noise correlation) than when scrambled-trial responses were tested (eliminating noise correlation). This makes it seem likely that noise correlation in the responses improved decoder performance. The authors mention that the naïve Bayesian classifier was used as their decoder for computational efficiency, presumably because it assumes no noise correlation and, therefore, assumes responses of individual neurons are independent of each other across trials to the same stimulus. The use of decoder that assumes independence seems key here in testing the hypothesis that noise correlation contains information about sound source azimuth. The logic of using this decoder could be more clearly spelled out to the reader. For example, if the null hypothesis is that noise correlations do not carry azimuth information, then a decoder that assumes independence should perform the same whether population responses are simultaneous or scrambled. The authors' analysis showing a difference in performance between these two cases provides evidence against this null hypothesis.

      Minor weakness:<br /> - Most studies of neural encoding of sound source azimuth are done in a noise-free environment, but the experimental setup in the present study had substantial background noise. This complicates comparison of the azimuth tuning results in this study to those of other studies. One is left wondering if azimuth sensitivity would have been greater in the absence of background noise, particularly for the imaging data where the signal was only about 12 dB above the noise. The description of the noise level and signal + noise level in the Methods should be made clearer. Mice hear from about 2.5 - 80 kHz, so it is important to know the noise level within this band as well as specifically within the band overlapping with the signal.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors aim at dissecting the relationship between hair-cell directional mechanosensation and orientation-linked synaptic selectivity, using mice and the zebrafish. They find that Gpr156 mutant animals homogenize the orientation of hair cells without affecting the selectivity of afferent neurons, suggesting that hair-cell orientation is not the feature that determines synaptic selectivity. Therefore, the process of Emx2-dependent synaptic selectivity bifurcates downstream of Gpr156.

      Strengths:

      This is an interesting and solid paper. It solves an interesting problem and establishes a framework for the following studies. That is, to ask what are the putative targets of Emx2 that affect synaptic selectivity.<br /> The quality of the data is generally excellent.

      Weaknesses:

      The feeling is that the advance derived from the results is very limited.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript by Napoli et al, the authors study the intracellular function of Cytosolic S100A8/A9 a myeloid cell soluble protein that operates extracellularly as an alarmin, whose intracellular function is not well characterized. Here, the authors utilize state-of-the-art intravital microscopy to demonstrate that adhesion defects observed in cells lacking S100A8/A9 (Mrp14-/-) are not rescued by exogenous S100A8/A9, thus highlighting an intrinsic defect. Based on this result subsequent efforts were employed to characterize the nature of those adhesion defects.

      Strengths:

      The authors convincingly show that Mrp14-/- neutrophils have normal rolling but defective adhesion caused by impaired CD11b activation (deficient ICAM1 binding). Analysis of cellular spreading (defective in Mrp14-/- cells) is also sound. The manuscript then focuses on selective signaling pathways and calcium measurements. Overall, this is a straightforward study of biologically important proteins and mechanisms.

      Weaknesses:

      Some suggestions are included below to improve this manuscript.

    1. Reviewer #1 (Public Review):

      I appreciate the normative approach of the PEA model and am eager to examine this model in the future. However, two minor issues remain:

      (1) Clarification on the PReMo Model:

      The authors state, "The PReMo model proposes that this drift comprises two phases: initial proprioceptive recalibration and subsequent visual recalibration." This description could misinterpret the intent of PReMo. According to PReMo, the time course of the reported hand position is merely a read-out of the *perceived hand position* (x_hat in your paper). Early in adaptation, the perceived hand position is biased by the visual cursor (x_hat in the direction of the cursor); towards the end, due to implicit adaptation, x_hat reduces to zero. This is the same as PEA. I recommend that the authors clarify PReMo's intent to avoid confusion.

      Note, however, the observed overshoot of 1 degree in the reported hand position. In the PReMo paper, we hypothesized that this effect is due to the recalibration of the perceived visual target location (inspired by studies showing that vision is also recalibrated by proprioception, but in the opposite direction). If the goal of implicit adaptation is to align the perceived hand position (x_hat) with the perceived target position (t_hat), then there would be an overshoot of x_hat over the actual target position.

      PEA posits a different account for the overshoot. It currently suggests that the reported hand position combines x_hat (which takes x_p as input) with x_p itself. What is reasoning underlying the *double occurrence* of x_p?

      There seem to be three alternatives that seem more plausible (and could lead to the same overshooting): 1) increasing x_p's contribution (assuming visual uncertainty increases when the visual cursor is absent during the hand report phase), 2) decreasing sigma_p (assuming that participants pay more attention to the hand during the report phase), 3) it could be that the perceived target position undergoes recalibration in the opposite direction to proprioceptive recalibration. All these options, at least to me, seem equally plausible and testable in the future.

      (2) Effect of Visual Uncertainty on Error Size:

      I appreciate the authors' response about methodological differences between the cursor cloud used in previous studies and the Gaussian blob used in the current study. However, it is still not clear to me how the authors reconcile previous studies showing that visual uncertainty reduced implicit adaptation for small but not large errors (Tsay et al, 2021; Makino, et al 2023) with the current findings, where visual uncertainty reduced implicit adaptation for large but not small errors.

      Could the authors connect the dots here: I could see that the cursor cloud increases potential overlap with the visual target when the visual error is small, resulting in intrinsic reward-like mechanisms (Kim et al, 2019), which could potentially explain attenuated implicit adaptation for small visual errors. However, why would implicit adaptation in response to large visual errors remain unaffected by the cursor cloud? Note that we did verify that sigma_v is increased in (Tsay et al. 2021), so it is unlikely due to the cloud simply failing as a manipulation of visual uncertainty.

      In addition, we also reasoned that testing individuals with low vision could offer a different test of visual uncertainty (Tsay et al, 2023). The advantage here is that both control and patients with low vision are provided with the same visual input-a single cursor. Our findings suggest that uncertainty due to low vision also shows reduced implicit adaptation in response to small but not large errors, contrary to the findings in the current paper. Missing in the manuscript is a discussion related to why the authors' current findings contradict those of previous results.

    1. Reviewer #1 (Public Review):

      This is a very interesting paper which addresses how auditory cortex represents sound while an animal is performing an auditory task. The study involves psychometric and neurophysiological measurements from ferrets engaged in a challenging tone in noise discrimination task, and relates these measurements using neurometric analysis. A novel neural decoding technique (decoding-based dimensionality reduction or dDR, introduced in a previous paper by two of the authors) is used to reduce bias so that stimulus parameters can be read out from neuronal responses.

      The central finding of the study is that, when an animal is engaged in a task, non-primary auditory cortex represents task-relevant sound features in a categorical way. In primary cortex, task engagement also affects representations, but in a different way - the decoding is improved (suggesting that representations have been enhanced), but is not categorical in nature. The authors argue that these results are compatible with a model where early sensory representations form an overcomplete representation of the world, and downstream neurons flexibly read out behaviourally relevant information from these representations.

      I find the concept and execution of the study very interesting and elegant. The paper is also commendably clear and readable. The differences between primary and higher cortex are compelling and I am largely convinced by the authors' claim that they have found evidence that broadly supports a mixed selectivity model of neural disentanglement along the lines of Rigotti et al (2013). I think that the increasing body of evidence for these kinds of representations is a significant development in our understanding of higher sensory representations. I also think that the dDR method is likely to be useful to researchers in a variety of fields who are looking to perform similar types of neural decoding analysis.

    1. Reviewer #1 (Public Review):

      The main focus of the current study is to identify the anatomical core of an expiratory oscillator in the medulla using pharmacological disinhibition. Although expiration is passive in normal eupneic conditions, activation of the parafacial (pFL) region is believed to evoke active expiration in conditions of elevated ventilatory demands. The authors and others in the field have previously attempted to map this region using pharmacological, optogenetic and chemogenetic approaches, which present with their own challenges.

      In the present study, the authors take a systematic approach to determine the precise anatomical location within the ventral medulla's rostro-caudal axis where the expiratory oscillator is located. The authors used a bicuculline (a GABA-A receptor antagonist) and fluorobeads solution at 5 distinct anatomical locations to study the effects on neuronal excitability and functional circuitry in the pFL. The effects of bicuculline on different phases of the respiratory cycle were characterized using a multidimensional cycle-by-cycle analysis. This analysis involved measuring the differences in airflow, diaphragm electromyography (EMG), and abdominal EMG signals, as well as using a phase-plane analysis to analyze the combined differences of these respiratory signals. Anatomical immunostaining techniques were also used to complement the functional mapping of the pFL.

      Major strengths of this work include a robust study design, complementary neurophysiological and immunohistochemical methods and the use of a novel phase-plane analysis. The authors construct a comprehensive functional map revealing functional nuances in respiratory responses to bicuculline along the rostrocaudal axis of the parafacial region. They convincingly show that although bicuculline injections at all coordinates of the pFL generated an expiratory response, the most rostral locations in the lateral parafacial region play the strongest role in generating active expiration. These were characterized by a strong impact on the duration and strength of ABD activation, and a robust change in tidal volume and minute ventilation. The authors also confirmed histologically that none of the injection sites overlapped grossly with PHOX2B+ neurons, thus confirming the specificity of the injections in the pFL and not the neighboring RTN.

      Although a caveat of the approach is that bicuculine injections have indiscriminate effects on other neuronal populations in the region (GABAergic, glycinergic, and glutamatergic), the results can largely be interpreted as modulation of neuronal populations in different regions of the pFL have differential effects on expiratory output. This limitation of the pharmacological approach has also been aptly discussed by the authors.

      Collectively, these findings advance our understanding of the presumed expiratory oscillator, the pFL, and highlight the functional heterogeneity in the functional response of this anatomical structure.

    1. Reviewer #1 (Public Review):

      Summary :

      This study presents valuable data on diurnal patterns in aphid (Rhopalosiphum padi) feeding behavior and transcriptome profiles. The authors measured honeydew production by the aphids on plants and artificial diet during the day and night and conducted a comprehensive feeding behavior study using EPG with many biological replicates at 6 time-points in 24 hours. They also conducted transcriptome analyses of three samples of each 30 aphids at these time points. Differentially expressed transcripts were grouped into four clusters with distinct expression patterns. The expression of two genes found to be diurnally rhythmic was knocked down with RNAi and these aphids did less well, especially at night. They also analyzed the differential expression of candidate effector genes and found rhythmic ones to be enriched for more expression in aphid heads versus bodies - this pattern is expected given that effectors are most likely expressed in the salivary glands. Knockdown of a known effector (C002) that is diurnally rhythmic, and a novel effector gene, was found to alter aphid feeding dynamics and performance.

      Strengths:

      The manuscript was highly accessible, with clear writing, and the figures provided were both comprehensive and of good quality. The datasets generated from this research are valuable to the research field, especially the findings for honeydew secretion, EPG analysis, and transcriptome experiments.

      The datasets generated in this study will be useful to scientists working on aphids and aphid-plant interactions and will inform similar studies on other insect species.

      Weaknesses:

      The weaknesses mainly relate to the (depth of) analyses and interpretation of the data. Also, some methods require more explanation, as follows:

      In Figure 1, data show that aphids produce more honeydew at night than during the day. This suggests that the aphids ingest more phloem (E2 phase). However, in Figure 1d the duration of the E2 phase does not show obvious differences among the time points in the 24 hours. The authors contribute the explanation that the aphids may osmoregulate more during the night, leading to more honeydew secretion at night. This may be the case, but there could be other explanations. For example, the physiology, including regulation of water transport, of plants is known to change during night/day. The authors may focus this section more on the differences in the E1 phase, as this involves the delivery of aphid saliva and effectors into the plant phloem.

      Transcriptome data shown in Figure 2 (and the experimental procedure of Figure 5b) appears to be based on three biological replicates. However, these replicates appear to have been harvested at the same time in the experiment, and this makes them technical replicates, not biological replicates. The inclusion of true biological replicates that include samples from time series experiments done on different days should be considered.

      The authors conducted knockdown experiments targeting aquaporin 1 and gut sucrase 1 in aphids, resulting in reduced nymph production and decreased honeydew secretion. It is concluded that these results indicate significant roles of aquaporin 1 and gut sucrase 1 in diurnal regulation. However, it is essential to consider that these genes likely play crucial roles in aphid physiology beyond diurnal rhythms. Consequently, reduced expression would naturally impair aphid performance. The dsAQP1 and dsSUC1 aphids consistently produced less honeydew, regardless of the time of day, indicating a broader impact of gene knockdown. The observed increase of the phenotype at night may not be attributable to the specific roles of these genes in diurnal regulation but rather due to heightened aphid activity during that time (as evidenced by increased honeydew secretion) that could magnify the impact of the knockdown effect, making it easier to observe. Therefore, the knockdown of aquaporin 1 and gut sucrase 1 may exert a general negative influence on aphid fitness, independently of diurnal factors.

      To analyze the roles of genes in diurnal regulation, additional controls should be incorporated. This could involve the knockdown of genes with essential functions that are not influenced by diurnal rhythms, providing a baseline comparison. Furthermore, consider including genes known to be involved in diurnal regulation in other insects, as documented in the existing literature, in the experimental design.

      The same arguments as for aquaporin 1 and gut sucrase 1 above may be made for knockdown of effector genes (Figure 4). It has already been shown that knockdown of C002 impacts aphid performance, and the data herein may be explained by a general lower performance of aphids rather than a specific function of these effectors in diurnal regulation. It is also expected that knockdown of the effectors has less impact on aphids feeding from artificial diets. This does not necessarily indicate the role of the effectors in diurnal regulation.

      In the abstract and elsewhere, the authors assert priority by stating, "...the first evidence of...". However, it's important to note that priority claims are often challenging to verify across many fields. Instead of relying solely on claims of precedence, the evidence presented in the research could stand on its own merit.

      Conclusion:

      The study presents intriguing new findings, particularly in the realms of honeydew analysis, EPG, and transcriptome analysis. However, the interpretation of subsequent studies employing gene knockdowns needs further consideration.

    1. Reviewer #1 (Public Review):

      The authors perform RNA-seq on FACS isolated neurons from adult worms at days 1 and 8 of adulthood to profile the gene expression changes that occur with cognitive decline. Supporting data are included indicating that by day 7 of adulthood, learning and memory are reduced, indicating that this timepoint or after represents cognitively aged worms. Neuronal identity genes are reduced in expression within the cognitively aged worms, whereas genes involved in proteostasis, transcription/chromatin, and the stress response are elevated. A number of specific examples are provided, representing markers of specific neuronal subtypes, and correlating expression changes to the erosion of particular functions (e.g. motor neurons, chemosensory neurons, aversive learning neurons, etc).

      To investigate whether upregulation of genes in neurons with age is compensatory or deleterious, the authors reduced expression of a set of three significantly upregulated genes and performed behavioral assays in young adults. In each case, reduction of expression improved memory, consistent with a model in which age-associated increases impair neuronal function.

      The authors then characterize learning and memory in wild type, daf-2, and daf-2/daf-16 worms with age and find that daf-2 worms have an extended ability to learn for approximately 10 days longer that wild types. This was daf-16 dependent. Memory was extended in daf-2 as well, and strikingly, daf-2;daf-16 had no short term memory even at day 1. Transcriptomic analysis of FACS-sorted neurons was performed on the three groups at day 8. The authors focus their analysis on daf-2 vs. daf-2;daf-16 and present evidence that daf-2 neurons express a stress-resistance gene program. They also find small differences between the N2 and daf-2;daf-16 neurons, which correlate with the observed behavioral differences, though these differences are modest.

      The authors tested eight candidate genes that were more highly expressed in daf-2 neurons vs. daf-2;daf-16 and showed that reduction of 2 and 5 of these genes impaired learning and memory, respectively, in daf-2 worms. This finding implicates specific neuronal transcriptional targets of IIS in maintaining cognitive ability in daf-2 with age, which, importantly, are distinct from those in young wild type worms.

      Overall, this is a strong study with rigorously performed experiments. The authors achieved their aim of identifying transcriptional changes in neurons that underlie loss of learning and memory in C. elegans, and how cognition is maintained in insulin/IGF-1-like signaling mutants.

    1. Reviewer #1 (Public Review):

      Summary:

      This computational modeling study builds on multiple previous lines of experimental and theoretical research to investigate how a single neuron can solve a nonlinear pattern classification task. The authors construct a detailed biophysical and morphological model of a single striatal medium spiny neuron, and endow excitatory and inhibitory synapses with dynamic synaptic plasticity mechanisms that are sensitive to (1) the presence or absence of a dopamine reward signal, and (2) spatiotemporal coincidence of synaptic activity in single dendritic branches. The latter coincidence is detected by voltage-dependent NMDA-type glutamate receptors, which can generate a type of dendritic spike referred to as a "plateau potential." The proposed mechanisms result in moderate performance on a nonlinear classification task when specific input features are segregated and clustered onto individual branches, but reduced performance when input features are randomly distributed across branches. Given the high level of complexity of all components of the model, it is not clear which features of which components are most important for its performance. There is also room for improvement in the narrative structure of the manuscript and the organization of concepts and data.

      Strengths:

      The integrative aspect of this study is its major strength. It is challenging to relate low-level details such as electrical spine compartmentalization, extrasynaptic neurotransmitter concentrations, dendritic nonlinearities, spatial clustering of correlated inputs, and plasticity of excitatory and inhibitory synapses to high-level computations such as nonlinear feature classification. Due to high simulation costs, it is rare to see highly biophysical and morphological models used for learning studies that require repeated stimulus presentations over the course of a training procedure. The study aspires to prove the principle that experimentally-supported biological mechanisms can explain complex learning.

      Weaknesses:

      The high level of complexity of each component of the model makes it difficult to gain an intuition for which aspects of the model are essential for its performance, or responsible for its poor performance under certain conditions. Stripping down some of the biophysical detail and comparing it to a simpler model may help better understand each component in isolation. That said, the fundamental concepts behind nonlinear feature binding in neurons with compartmentalized dendrites have been explored in previous work, so it is not clear how this study represents a significant conceptual advance. Finally, the presentation of the model, the motivation and justification of each design choice, and the interpretation of each result could be restructured for clarity to be better received by a wider audience.

    1. Reviewer #1 (Public Review):

      Summary:

      Schweibenz et al are investigating how cells with lower levels of Tai are out-competed by neighboring wild-type (WT) cells. They show that clones homozygous for a tai hypomorphic mutation are disadvantaged and are killed by apoptosis. But tai-low clones are partially rescued when generated in a background that is heterozygous for mutations in apoptotic genes, in the Hippo pathway component warts, or for the Wg/Wnt pathway negative regulator Apc. They then follow up in the link between tai LOF and Wg. The story then shifts away from clones and into experiments that have Tai RNAi depletion or Tai over-expression in the posterior compartment of the wing disc, using the anterior compartment as a control. These non-clonal experiments show that depletion of Tai in the posterior compartment of wing discs results in less Wg in this compartment. This is shown to be due to a reduction in the glypican Dally-like protein (Dlp). The fact that long-range Wg is reduced in tai-depleted discs that also show a reduction in Dlp, suggests that Tai somehow positively promotes Wg distribution. There is some data in the supplementary materials suggesting that Tai promotes dlp mRNA expression but this was not compelling. In fact, the compelling data was that Dlp protein in tai mutant clones is not abundantly on the cell surface, but instead somehow retained in the mutant cell. The authors don't further examine Dlp protein in tai clones. The final figure (Figure 8) shows that there is less Wg at the DV margin in wing discs when tai is depleted from wg-producing cells. In sum, the authors have uncovered some interesting results, but the story has some unresolved issues that, if addressed, could boost its impact. Additionally, the preprint seems to have 2 stories, one about tai and cell competition and the other about tai and Wg distribution. It would be helpful to reorder the figures and improve the narrative so that these are better integrated with each other.

      Strengths:

      The authors are studying competition between tai-low clones and their fitter WT neighbors, and have uncovered an interesting connection to Wg.

      Weaknesses:

      (1) It would be good to know whether the authors can rescue tai-low clones by over-expression UAS-Dlp.

      (2) The data about tai-promoting dlp (Figure S4) is not compelling as there are no biological replicates and no statistical analyses.

      (3) The data on Wg distribution seems disjointed from the data about cell competition. The authors could refocus the paper to emphasize the cell competition story. The role of Dlp in Wg distribution is well established, so the authors could remove or condense these results. The story really could be Figsured 1, 2, 3 and 7 and keep the paper focused on cell competition. The authors could then discuss Dlp as needed for Wg signaling transduction, which is already established in the literature.

      (4) The model of tai controlling dlp mRNA and Dlp protein distribution is confusing. In fact, the data for the former is weak, while the data for the latter is strong. I suggest that the authors focus on the altered Dlp protein distribution on tai-low clones. It would also be helpful to prove the Wg signaling is impeded in tai clones (see #5 below).

      (5) I don't know if the Fz3-RFP reported for Wg signaling works in imaginal discs, but if it does then the authors could make clones in this background to prove that cell-autonomous Wg signaling is reduced in tai-low clones.

    1. Reviewer #1 (Public Review):

      In this revised manuscript, authors have conducted epigenetic and transcriptomic profiling to understand how environmental chemicals such as BPS can cause epimutations that can propagate to future generations. They used isolated somatic cells from mice (Sertoli, granulosa), pluripotent cells to model preimplantation embryos (iPSCs) and cells to model the germline (PGCLCs). This enabled them to model sequential steps in germline development, and when/how epimutations occur. The major findings were that BPS induced unique epimutations in each cell type, albeit with qualitative and quantitative cell-specific differences; that these epimutations are prevalent in regions associated with estrogen-response elements (EREs); and that epimutations induced in iPSCs are corrected as they differentiate into PGCLCs, concomitant with the emergence of de novo epimutations. This study will be useful in understanding multigenerational effects of EDCs, and underlying mechanisms.

      Strengths include:

      (1) Using different cell types representing life stages of epigenetic programming and during which exposures to EDCs have different effects. This progression revealed information both about correction of epimutations and the emergence of new ones in PGCLCs.<br /> (2) Work conducted by exposing iPSCs to BPS or vehicle, then differentiating to PGCLCs, revealed that novel epimutations emerged.<br /> (3) Relating epimutations to promoter and enhancer regions

      A few weaknesses remain: Authors need to discuss the limitations of the small sample size. The supplemental data, while extremely helpful, requires better organization.

    1. Reviewer #1 (Public Review):

      This manuscript by Bai et al concerns the expression of Scleraxis (Scx) by muscle satellite cells (SCs) and the role of that gene in regenerative myogenesis. The authors report the expression of this gene associated with tendon development in satellite cells. Genetic deletion of Scx in SCs impairs muscle regeneration, and the authors provide evidence that SCs deficient in Scx are impaired in terms of population growth and cellular differentiation. Overall, this report provides evidence of the role of this gene, unexpectedly, in SC function and adult regenerative myogenesis.

      There are a few minor points of concern.

      (1) From the data in Figure 1, it appears that all of the SCs, assessed both in vitro and in vivo, express Scx. The authors refer to a scRNA-seq dataset from their lab and one report from mdx mouse muscle that also reveals this unexpected gene expression pattern. Has this been observed in many other scRNA-seq datasets? If not, it would be important to discuss potential explanations as to why this has not been reported previously.

      (2) A major point of the paper, as illustrated in Fig. 3, is that Scx-neg SCs fail to produce normal myofibers and renewed SCs following injury/regeneration. They mention in the text that there was no increased PCD by Caspase staining at 5 DPI. A failure of cell survival during the process of SC activation, proliferation, and cell fate determination (differentiation versus self-renewal) would explain most of the in vivo data. As such, this conclusion would seem to warrant a more detailed analysis in terms of at least one or two other time points and an independent method for detecting dead/dying cells (the in vitro data in Fig. 4F is also based on an assessment of activated Caspase to assess cell death). The in vitro data presented later in Fig. S4G, H do suggest an increase in cell loss during proliferative expansion of Scx-neg SCs. To what extent does cell loss (by whatever mechanism of cell death) explain both the in vivo findings of impaired regeneration and even the in vitro studies showing slower population expansion in the absence of Scx?

      (3) I'm not sure I understand the description of the data or the conclusions in the section titled "Basement membrane-myofiber interaction in control and Scx cKO mice". Is there something specific to the regeneration from Scx-neg myogenic progenitors, or would these findings be expected in any experimental condition in which myogenesis was significantly delayed, with much smaller fibers in the experimental group at 5 DPI?

      (4) The data presented in Fig. 4B showing differences in the purity of SC populations isolated by FACS depending on the reporter used are interesting and important for the field. The authors offer the explanation of exosomal transfer of Tdt from SCs to non-SCs. The data are consistent with this explanation, but no data are presented to support this. Are there any other explanations that the authors have considered and that could be readily tested?

      (5) The Cut&Run data of Fig. 6 certainly provide evidence of direct Scx targets, especially since the authors used a novel knock-in strain for analyses. The enrichment of E-box motifs provides support for the 207 intersecting genes (scRNA-seq and Cut&Run) being direct targets. However, the rationale elaborated in the final paragraph of the Results section proposing how 4 of these genes account for the phenotypes on the Scx-neg cells and tissues is just speculation, however reasonable. These are not data, and these considerations would be more appropriate in the Discussion in the absence of any validation studies.

    1. Reviewer #1 (Public Review):

      Tleiss et al. demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. This effect induces muscular muscle contraction, which is marked by the formation of TARM structures (thoracic ary-related muscles). This muscle contraction-related blocking happens early after infection (15mins). On the other side, the clearance of bacteria is done by the IMD pathway possibly through antimicrobial peptide production while it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense.

      This important work substantially advances our understanding of the process of pathogen clearance by identifying a new mode of pathogen eradication from the insect gut. The evidence supporting the authors' claims is solid and would benefit from more rigorous experiments.

      (1) The authors performed the experiments on Drosophila larvae. I wonder whether this model could extend to adult flies since they have shown that the ROS/TRPA1/Dh31 axis is important for gut muscle contraction in adult flies. If not, how would the authors explain the discrepancy between larvae and adults?

      (2) The authors performed their experiments and proposed the models based on two pathogenic bacteria and one commensal bacterial at a relatively high bacterial dose. They showed that feeding Bt at 2X1010 or Ecc15 at 4X108 did not induce a blockage phenotype. I wonder whether larvae die under conditions of enteric infection with low concentrations of pathogenic bacteria. If larvae do not show mortality, what is the mechanism for resisting low concentrations of pathogenic bacteria? Why is this model only applied to high-dose infections?

      (3) The authors claim that the lock of bacteria happens at 15 minutes while killing by AMPs happens 6-8 hours later. What happened during this period? More importantly, is IMD activity induced in the anterior region of the larval gut in both Ecc15 and Bt infection at 6 hours after infection? Are they mostly expressed in the anterior midgut in both bacterial infections? Several papers have shown quite different IMD activity patterns in the Drosophila gut. Zhai et al. have shown that in adult Drosophila, IMD activity was mostly absent in the R2 region as indicated by dpt-lacZ. Vodovar et al. have shown that the expression of dpt-lacZ is observable in proventriculus while Pe is not in the same region. Tzou et al. showed that Ecc15 infection induced IMD activity in the anterior midgut 24 hours after infection. Using TrpA1 and Dh31 mutant, the authors found both Ecc15 and Bt in the posterior midgut. Why are they not evenly distributed along the gut? Last but not least, does the ROS/TrpA1/Dh31 axis affect AMP expression?

      (4) The TARM structure part is quite interesting. However, the authors did not show its relevance in their model. Is this structure the key-driven force for the blocking phenotype and killing phenotype? Is the ROS/TrpA1/Dh31 axis required to form this structure?

    1. Reviewer #1 (Public Review):

      Summary:

      Sammons, Masserini et al. examine the connectivity of different types of CA3 pyramidal cells ("thorny" and "athorny"), and how their connectivity putatively contributes to their relative timing in sharp-wave-like activity. First, using patch-clamp recordings, they characterize the degree of connectivity within and between athorny and thorny cells. Based upon these experimental results, they compute a synaptic product matrix, and use this to inform a computational model of CA3 activity. This model finds that this differential connectivity between these populations, augmented by two different types of inhibitory neurons, can account for the relative timing of activity observed in sharp waves in vivo.

      Strengths:

      The patch-clamp experiments are exceptionally thorough and well done. These are very challenging experiments and the authors should be commended for their in-depth characterization of CA3 connectivity.

      Weaknesses:

      (1) The computational elements of this study feel underdeveloped. Whereas the authors do a thorough job experimentally characterizing connections between excitatory neurons, the inhibitory neurons used in the model seem to be effectivity "fit neurons" and appear to have been tuned to produce the emergent properties of CA3 sharp wave-like activity. Although I appreciate the goal was to implicate CA3 connectivity contributions to activity timing, a stronger relationship seems like it could be examined. For example, did the authors try to "break" their model? It would be informative if they attempted different synaptic product matrices (say, the juxtaposition of their experimental product matrix) and see whether experimentally-derived sequential activity could not be elicited. It seems as though this spirit of analysis was examined in Figure 4C, but only insofar as individual connectivity parameters were changed in isolation.

      (2) Additional explanations of how parameters for interneurons were incorporated in the model would be very helpful. As it stands, it is difficult to understand the degree to which the parameters of these neurons are biologically constrained versus used as fit parameters to produce different time windows of activity in types of CA3 pyramidal cells.

    1. 44,576

      DOI: 10.1186/s13024-022-00585-1

      Resource: BDSC_44576

      Curator: @DavidDeutsch

      SciCrunch record: RRID:BDSC_44576


      What is this?

    2. 27,567

      DOI: 10.1186/s13024-022-00585-1

      Resource: (BDSC Cat# 27567,RRID:BDSC_27567)

      Curator: @DavidDeutsch

      SciCrunch record: RRID:BDSC_27567


      What is this?

    3. 41,845

      DOI: 10.1186/s13024-022-00585-1

      Resource: BDSC_41845

      Curator: @DavidDeutsch

      SciCrunch record: RRID:BDSC_41845


      What is this?

    4. BDSC:31242

      DOI: 10.1186/s13024-022-00585-1

      Resource: (BDSC Cat# 31242,RRID:BDSC_31242)

      Curator: @DavidDeutsch

      SciCrunch record: RRID:BDSC_31242


      What is this?

    5. Bloomington Drosophila Stock Center

      DOI: 10.1186/s13024-022-00585-1

      Resource: Bloomington Drosophila Stock Center (RRID:SCR_006457)

      Curator: @DavidDeutsch

      SciCrunch record: RRID:SCR_006457


      What is this?

    1. Reviewer #1 (Public Review):

      The authors have performed all-atom MD simulations to study the working mechanism of hsPepT2. It is widely accepted that conformational transitions of proton-coupled oligopeptide transporters (POTs) are linked with gating hydrogen bonds and salt bridges involving protonatable residues, whose protonation triggers gate openings. Through unbiased MD simulations, the authors identified extra-cellular (H87 and D342) and intra-cellular (E53 and E622) triggers. The authors then validated these triggers using free energy calculations (FECs) and assessed the engagement of the substrate (Ala-Phe dipeptide). The linkage of substrate release with the protonation of the ExxER motif (E53 and E56) was confirmed using constant-pH molecular dynamics (CpHMD) simulations and cell-based transport assays. An alternating-access mechanism was proposed. The study was largely conducted properly, and the paper was well-organized. However, I have a couple of concerns for the authors to consider addressing.

      (1) As a proton-coupled membrane protein, the conformational dynamics of hsPepT2 is closely coupled to protonation events of gating residues. Instead of using semi-reactive methods like CpHMD or reactive methods such as reactive MD, where the coupling is accounted for, the authors opted for extensive non-reactive regular MD simulations to explore this coupling. Note that I am not criticizing the choice of methods, and I think those regular MD simulations were well designed and conducted. But I do have two concerns.<br /> (a) Ideally, proton-coupled conformational transitions should be modelled using a free energy landscape with two or more reaction coordinates (or CVs), with one describing the protonation event and the others describing the conformational transitions. The minimum free energy path then illustrates the reaction progress, such as OCC/H87D342- ↔ OCC/H87HD342H ↔ OF/H87HD342H as displayed in Figure 3. Without including the protonation as a CV, the authors tried to model the free energy changes from multiple FECs using different charge states of H87 and D342. This is a practical workaround, and the conclusion drawn (the OCC↔OF transition is downhill with protonated H87 and D342) seems valid. However, I don't think the OF states with different charge states (OF/H87D342-, OF/H87HD342-, OF/H87D342H, and OF/H87HD342H) are equally stable, as plotted in Figure 3b. The concern extends to other cases like Figures 4b, S7, S10, S12, S15, and S16. While it may be appropriate to match all four OF states in the free energy plot for comparison purposes, the authors should clarify this to ensure readers are not misled.<br /> (b) Regarding the substrate impact, it appears that the authors assumed fixed protonation states. I am afraid this is not necessarily the case. Variations in PepT2 stoichiometry suggests that substrates likely participate in proton transport, like the Phe-Ala (2:1) and Phe-Gln (1:1) dipeptides mentioned in the introduction. And it is not rigorous to assume that the N- and C-termini of a peptide do not protonate/deprotonate when transported. I think the authors should explicitly state that the current work and the proposed mechanism (Figure 8) are based on the assumption that the substrates do not uptake/release proton(s).

      (2) I have more serious concerns about the CpHMD employed in the study.<br /> (a) The CpHMD in AMBER is not rigorous for membrane simulations. The underlying generalized Born model fails to consider the membrane environment when updating charge states. In other words, the CpHMD places a membrane protein in a water environment to judge if changes in charge states are energetically favorable. While this might not be a big issue for peripheral residues of membrane proteins, it is likely unphysical for internal residues like the ExxER motif. As I recall, the developers have never used the method to study membrane proteins themselves. The only CpHMD variant suitable for membrane proteins is the membrane-enabled hybrid-solvent CpHMD in CHARMM. While I do not expect the authors to redo their CpHMD simulations, I do hope the authors recognize the limitation of their method.<br /> (b) It appears that the authors did not make the substrate (Ala-Phe dipeptide) protonatable in holo-simulations. This oversight prevents a complete representation of ligand-induced protonation events, particularly given that the substrate ion-pairs with hsPepT2 through its N- & C-termini. I believe it would be valuable for the authors to acknowledge this potential limitation.

    1. Reviewer #1 (Public Review):

      Summary:

      TMC7 knockout mice were generated by the authors and the phenotype was analyzed. They found that Tmc7 is localized to Golgi and is needed for acrosome biogenesis.

      Strengths:

      The phenotype of infertility is clear, and the results of TMC7 localization and the failed acrosome formation are highly reliable. In this respect, they made a significant discovery regarding spermatogenesis.

      In the original version, I pointed out the gap between their pH/calcium imaging data and the hypothesis of ion channel function of TMC7 in the Golgi. Now the author agrees and has changed the description to be reasonable. Additional experiments were also performed, and I can say that they have answered my concern adequately.

      I would say it is good to add any presumed mechanism for the observed changes in pH and calcium concentration in the cytoplasm this time.

    1. Reviewer #1 (Public Review):

      Overall, the data presented in this manuscript is of good quality. Understanding how cells control RPA loading on ssDNA is crucial to understanding DNA damage responses and genome maintenance mechanisms. The authors used genetic approaches to show that disrupting PCNA binding and SUMOylation of Srs2 can rescue the CPT sensitivity of rfa1 mutants with reduced affinity for ssDNA. In addition, the authors find that SUMOylation of Srs2 depends on binding to PCNA and the presence of Mec1.

      Noted weaknesses include the lack of evidence supporting that Srs2 binding to PCNA and its SUMOylation occur at ssDNA gaps, as proposed by the authors. Also, the mutants of Srs2 with impaired binding to PCNA or impaired SUMOylation showed no clear defects in checkpoint dampening, and in some contexts, even resulted in decreased Rad53 activation. Therefore, key parts of the paper would benefit from further experimentation and/or clarification.

      Major Comments

      (1) The central model proposed by the authors relies on the loading of PCNA at the 3' junction of an ssDNA gap, which then mediates Srs2 recruitment and RPA removal. While several aspects of the model are consistent with the data, the evidence that it is occurring at ssDNA gaps is not strong. The experiments mainly used CPT, which generates mostly DSBs. The few experiments using MMS, which mostly generates ssDNA gaps, show that Srs2 mutants lead to weaker rescue in this context (Figure S1). How do the authors explain this discrepancy? In the context of DSBs, are the authors proposing that Srs2 is engaging at later steps of HR-driven DSB repair where PCNA gets loaded to promote fill-in synthesis? If so, is RPA removal at that step important for checkpoint dampening? These issues need to be addressed and the final model adjusted.

      (2) The data in Figure 3 showing that Srs2 mutants reduce Rad53 activation in the rfa1-zm2 mutant are confusing, especially given the claim of an anti-checkpoint function for Srs2 (in which case Srs2 mutants should result in increased Rad53 activation). The authors propose that Rad53 is hyperactivated in rfa1-zm2 mutant because of compromised ssDNA protection and consequential DNA lesions, however, the effects sharply contrast with the central model. Are the authors proposing that in the rfa1-zm2 mutant, the compromised protection of ssDNA supersedes the checkpoint-dampening effect? Perhaps a schematic should be included in Figure 3 to depict these complexities and help the reader. The schematic could also include the compensatory dampening mechanisms like Slx4 (on that note, why not move Figure S2 to a main figure?... and even expand experiments to better characterize the compensatory mechanisms, which seem important to help understand the lack of checkpoint dampening effect in the Srs2 mutants)

      (3) The authors should demarcate the region used for quantifying the G1 population in Figure 3B and explain the following discrepancy: By inspection of the cell cycle graph, all mutants have lower G1 peak height compared to WT (CPT 2h). However, in the quantification bar graph at the bottom, ΔPIM has higher G1 population than the WT.

    1. Reviewer #2 (Public Review):

      Summary:

      Tian et al. aimed to assess differences in biological motion (BM) perception between children with and without ADHD, as well as relationships to indices of social functioning and possible predictors of BM perception (including demographics, reasoning ability and inattention). In their study, children with ADHD showed poorer performance relative to typically developing children in three tasks measuring local, global, and general BM perception. The authors further observed that across the whole sample, performance in all three BM tasks was negatively correlated with scores on the social responsiveness scale (SRS), whereas within groups a significant relationship to SRS scores was only observed in the ADHD group and for the local BM task. Local and global BM perception showed a dissociation in that global BM processing was predicted by age, while local BM perception was not. Finally, general (local & global combined) BM processing was predicted by age and global BM processing, while reasoning ability mediated the effect of inattention on BM processing.

      Strengths:

      Overall, the manuscript is presented in a clear fashion and methods and materials are presented with sufficient detail so the study could be reproduced by independent researchers. The study uses an innovative, albeit not novel, paradigm to investigate two independent processes underlying BM perception. The results are novel and have the potential to have wide-reaching impact on multiple fields.

      Weaknesses:

      The manuscript has improved in clarity and conceptual and methodological considerations in response to the last review. However, the reported results still provide incomplete support for the claims the authors make in the paper, due to differences between correlations not passing significance thresholds.

    1. Reviewer #1 (Public Review):

      This study seeks to understand how selective mRNA translation informs cellular identity using the Drosophila brain as a model. Using drivers specific for either neurons or glia, the authors express a tagged large ribosomal subunit protein, which they then use as a handle for isolating total mRNA and ribosome footprints. Throughout the study, they compare these data sets to transcriptional and ribosome profiles from the whole fly head, which contains multiple cell types including fat tissue, pigment cells and others, in addition to neurons and glia. Using GO term analyses, they demonstrate the specificity of their cell-type-based ribosome profiling: known glial mRNAs are efficiently translated in glia and likewise in neurons as well. In further examining their RNAseq data set, they find that "neuronal" mRNAs, such as ion channels, are expressed in both neurons and glia, but are translated at higher rates in neurons. Based on this, they hypothesize that neuronal mRNAs are actively suppressed in glia, and next seek to determine the underlying mechanism. By meta-analysis of all mapped ribosome footprints, they find that glia have higher ribosome occupancies in the 5' leader of neuronal mRNAs. This is corroborated by individual ribosome occupancy profiles for several neuronal mRNAs. In 5'leaders containing upstream AUG codons, they find that the glial data sets show an enrichment of ribosomes at these upstream start sites. They thus conclude that that 5' leaders containing upstream AUGs confer translational suppression in glia.

      Overall, the sequencing data sets generated in this study and their subsequent bioinformatic analyses seem robust and reliable. Their data echo the trends of cell-type specific translational profiles seen in previous studies (e.g. 27380875, 30650354), and making their data sets and analyses accessible to the broader scientific community would be quite helpful. The findings are presented in a logical and methodical manner, and the data are depicted clearly. The authors' results that 5' leaders facilitate translation suppression is well-supported in literature. However, they overinterpret their data by claiming that such suppression is key for maintaining glial/neuronal identity (it is even featured in their title), but do not present any evidence that loss of such regulation has any impact on cellular identity. In many places, the authors do not acknowledge possible biases in their analytical methods, or consider alternate explanations for their data. These weaken the manuscript in its current form, but many of these issues which I describe below, are rectifiable with modest effort.

      (1) The authors' data in Fig. 2-S1A-B shows substantial cell-to-cell variation in RpL3::FLAG expression. The authors do not consider that this variation may cause certain neuronal/glial types to be overrepresented in their datasets. In related, the authors do not discuss whether RpL3::FLAG only present in the cell body or if it is also trafficked to the neuronal/glial processes where localized translation is known to occur (reviewed in 31270476).

      (2) The RNA-seq data set that they use to calculate translation efficiency (TE) only represents mRNAs associated with RpL3::FLAG, which is part of the large ribosome subunit. As the authors are likely aware, there are mRNAs on which the full ribosome moiety does not assemble and these are effectively excluded from this data set. Ideally, a more complete picture of the mRNA landscape can be obtained by 40S subunit profiling but I appreciate that this is technically very challenging. At minimum, this caveat needs to be acknowledged.

      How does the TPM of differentially regulated transcripts (such as those in Fig. 2H) compare between whole heads, neurons and glia? Since the whole head RNA-seq data was not from an enriched sample, this might serve as a decent proxy for showing that the neuron/glia RNA-seq data sets are representative of RNA abundance.

      (3) The analysis in Fig. 2F shows that low abundance mRNAs in glia are further translationally suppressed, which the authors point out in lines 151-152. However, this data also shows that mRNAs with a 1:1 ration in neuron:glia (which fall in the 0.5-1 and 1-2 bin) have a TE-1; this suggests that on average, mRNAs that are equally abundant are translated equally efficiently. This is the opposite of the thesis presented in Fig. 2G-H where many mRNAs of equal abundance in neurons and glia are actually poorly translated in glia. How do the authors reconcile these observations?

      It is also unclear from the manuscript whether all mRNAs were considered for the analysis in Fig. 2F or if some cutoff was employed.

      (4) Throughout the manuscript the authors favor a "translation suppression" model wherein glia (for example) actively suppress neuronal mRNAs, and this is substantiated in Fig. 3C showing higher ribosome occupancy on 5' leaders than in coding regions. However, they show no evidence that glial mRNAs (such as those indicated in Fig. 2B and 2-S2B) present a different pattern, say that of higher ribosome occupancy in CDS vs. 5' leaders. This type of a positive control is a glaring omission from many of their analyses, including ribosome occupancy at upstream AUG codons (Fig. 4).

      In related, to make a broad case (as they do in the title) that differential translation regulation specifies multiple cell types, it is necessary to show the corollary: that glial mRNAs (repo, bnb, pnt, etc) are suppressed in neurons. There is an inkling of this evidence in Fig. 3-S1 where fat body mRNAs in neurons are shown to have low ribosome occupancy in the CDS regions and enhanced occupancy in the 5' leader region. This data is not quantified, nor is a control neuron mRNA shown as a reference for what the ribosome occupancy profile of an actively translated mRNA looks like in a neuron.

      (5) The cell-type specific ribosome profiling data sets in the manuscript are from mRNAs associated with 80s subunits that have been treated with cycloheximide during sample preparation. Cycloheximide, and many other translation inhibitors, are known to non-uniformly bias reads towards start codons (PMID: 22056041,22927429). This important caveat and its implications on the start-codon occupancy analysis in Fig. 4 are not acknowledged in the manuscript.<br /> Again, the ideal resolution would be ribosome profiling data set from 40S footprinting or harringtonine-treated samples (PMIDs: 32589966, 27487212, 32589964) to show true accumulation of ribosomes at AUG codons. In the absence of such a data set, a comparative meta-analysis of the ribosome distribution around upstream and initiation AUG codons of differentially translated transcripts from neurons would be a useful control.

      (6) The authors chose Rhodopsin 1 (Rh1) as a model mRNA which is translated efficiently in neurons but suppressed in glia. Though the data in Fig. 2-S3B shows higher TE for Rh1 in neurons, the data in 5A show lower ribosome occupancy in the Rh1 CDS in neuron samples (at least in the fragment of the CDS visible). These data are somewhat contradictory.<br /> Further, given that the neuron data are from all nsyb-positive cells but that Rh1 is expressed only in R1-R6 photoreceptors, it is unclear what motivated them to chose Rh1 as opposed to an mRNA that is more broadly expressed in neurons.

      (7) Similar to the heterogeneity in nsyb- and repo-GAL4 expression in Fig. 2-S1A-B, Fig. 5C shows substantial variation in the expression of the UAS-GFP reporter driven by tub-GAL4. This variable GAL4 activity makes the mRNA abundance data difficult to interpret. Also, since the authors presume that Rh1 mRNA is expressed in glia (it is not annotated in the RNA-seq analysis in Fig. 2-S2B), would Rh1-GAL4 not be a more apt driver?<br /> These issues are further compounded by the lack of a cellular compartment marker (repo marks glial nuclei) which makes it impossible to determine which cell the mRNA signal is in. There are also no negative controls are presented for the mRNA probes.

      Most confoundingly though, the control reporter itself seems to show variable translation efficiencies from one cell to another, with high-GFP protein cells showing lower GFP mRNA and vice versa.<br /> The mRNA:protein ratio may be easier to examine by using repo-GAL4 to specifically drive the Rh1-reporter expression in glia (such as in Fig. 5-S1A) rather than simultaneous expression in both neurons and glia using tub-GAL4.

      Comments post revision: The authors have satisfactorily addressed most of my concerns with the study. I appreciate their patient clarification of many of my points, and the revision to text+figures appending more controls. My only minor gripe remains that while their data beautifully show that there is differential regulation of transcripts across neurons and glia, they do not provide evidence that such regulation is required for cell identity. However, I appreciate this is a large experimental ask worthy of another study in and of itself. Overall, I peg this an excellent study that adds substantially to the field of cell-type specific mRNA translation regulation.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript focuses on the role of the deubiquitinating enzyme UPS-50/USP8 in endosome maturation. The authors aimed to clarify how this enzyme drives the conversion of early endosomes into late endosomes. Overall, they did achieve their aims in shedding light on the precise mechanisms by which UPS-50/USP8 regulates endosome maturation. The results support their conclusions that UPS-50 acts by disassociating RABX-5 from early endosomes to deactivate RAB-5 and by recruiting SAND-1/Mon1 to activate RAB-7. This work is commendable and will have a significant impact on the field. The methods and data presented here will be useful to the community in advancing our understanding of endosome maturation and identifying potential therapeutic targets for diseases related to endosomal dysfunction. It is worth noting that further investigation is required to fully understand the complexities of endosome maturation. However, the findings presented in this manuscript provide a solid foundation for future studies.

      Strengths:

      The major strengths of this work lie in the well-designed experiments used to examine the effects of UPS-50 loss. The authors employed confocal imaging to obtain a picture of the aftermath of USP-50 loss. Their findings indicated enlarged early endosomes and MVB-like structures in cells deficient in USP-50/USP8.

      Weaknesses:

      Specifically, there is a need for further investigation to accurately characterize the anomalous structures detected in the ups-50 mutant. Also, the correlation between the presence of these abnormal structures and ESCRT-0 is yet to be addressed, and the current working model needs to be revised to prevent any confusion between enlarged early endosomes and MVBs.

    1. Reviewer #1 (Public Review):

      This study makes an interesting finding: a polyunsaturated fatty acid, Lin-Glycine, increases the conductance of KCNQ1/KCNE1 channels by stabilizing a state of the selectivity filter that allows K+ conduction. The stabilization of a conducting state appears well supported by single channel analysis, though some technical details are missing and presentations confusing. The linkage to PUFA action through the selectivity filter is supported by disruption of PUFA effects by mutation of residues which change conformation in two KCNQ1 structures from the literature. A definitive functional experiment is conducted by single channel recordings with selectivity filter domain mutation Y315F which ablates the Lin-Glycine effect on Gmax. The computational exploration of two selectivity filter structures proposed to interact distinctly with Lin-Glycine is informative, however the relation of the closed selectivity filter structures to the [K+] concentration in which it was obtained and inactivation in other channels is ignored. Overall, the major claim of the abstract is well-supported: "... that the selectivity filter in KCNQ1 is normally unstable ... and that the PUFA-induced increase in Gmax is caused by a stabilization of the selectivity filter in an open-conductive state."

    1. Reviewer #1 (Public Review):

      Summary:

      The current manuscript provides strong evidence that the molecular function of SLC35G1, an orphan human SLC transporter, is citrate export at the basolateral membrane of intestinal epithelial cells. Multiple lines of evidence, including radioactive transport experiments, immunohistochemical staining, gene expression analysis, and siRNA knockdown are combined to deduce a model of the physiological role of this transporter.

      Strengths:

      The experimental approaches are comprehensive, and together establish a strong model for the role of SLC35G1 in citrate uptake. The observation that chloride inhibits uptake suggests an interesting mechanism that exploits the difference in chloride concentration across the basolateral membrane.

      Weaknesses:

      Some aspects of the results would benefit from a more thorough discussion of the conclusions and/or model.

      For example, the authors find that SLC35G1 prefers the dianionic (singly protonated) form of citrate, and rationalize this finding by comparison with the substrate selectivity of the citrate importer NaDC1. However, this comparison has weaknesses when considering the physiological pH for SLC35G1 and NaDC1. NaDC1 binds citrate at a pH of ~5.4 (the pKa of citrate is 5.4, so there is a lot of dianionic citrate present under physiological circumstances). SLC35G1 binds citrate under pH conditions of ~7.5, where a very small amount of dianionic citrate is present. The data clearly show a pH dependence of transport, and the authors rule out proton coupling, but the discrepancy between the pH dependence and the physiological expectations should be addressed/commented on.

      The rationale for the series of compounds tested in Figure 1F, which includes metabolites with carboxylate groups, a selection of drugs including anion channel inhibitors and statins, and bile acids, is not described. Moreover, the lessons drawn from this experiment are vague and should be expanded upon. It is not clear what, if anything, the compounds that reduce citrate uptake have in common.

      The transporter is described as a facilitative transporter, but this is not established definitively. For example, another possibility could involve coupling citrate transport to another substrate, possibly even chloride ion.

    1. Reviewer #1 (Public Review):

      The study identifies the epigenetic reader SntB as a crucial transcriptional regulator of growth, development, and secondary metabolite synthesis in Aspergillus flavus, although the precise molecular mechanisms remain elusive. Using homologous recombination, researchers constructed sntB gene deletion (ΔsntB), complementary (Com-sntB), and HA tag-fused sntB (sntB-HA) strains. Results indicated that deletion of the sntB gene impaired mycelial growth, conidial production, sclerotia formation, aflatoxin synthesis, and host colonization compared to the wild type (WT). The defects in the ΔsntB strain were reversible in the Com-sntB strain.

      Further experiments involving ChIP-seq and RNA-seq analyses of sntB-HA and WT, as well as ΔsntB and WT strains, highlighted SntB's significant role in the oxidative stress response. Analysis of the catalase-encoding catC gene, which was upregulated in the ΔsntB strain, and a secretory lipase gene, which was downregulated, underpinned the functional disruptions observed. Under oxidative stress induced by menadione sodium bisulfite (MSB), the deletion of sntB reduced catC expression significantly. Additionally, deleting the catC gene curtailed mycelial growth, conidial production, and sclerotia formation, but elevated reactive oxygen species (ROS) levels and aflatoxin production. The ΔcatC strain also showed reduced susceptibility to MSB and decreased aflatoxin production compared to the WT.

      This study outlines a pathway by which SntB regulates fungal morphogenesis, mycotoxin synthesis, and virulence through a sequence of H3K36me3 modification to peroxisomes and lipid hydrolysis, impacting fungal virulence and mycotoxin biosynthesis.

      The authors have achieved majority of their aims at the beginning of the study, finding target genes, which led to catC mediated regulation of development, growth and aflatoxin metabolism. Overall most parts of the study is solid and clear.

    1. Reviewer #1 (Public Review):

      By using a series of biochemical methods based on proteomic and metabolomic approaches, this study aims at: (1) validating the specific targeting of a biologically active molecule (MIPS2673) towards a defined (and unique?) protein target within a parasite, and (2) exploring whether it is possible to extrapolate which metabolic pathway has been disrupted.

      Strength/Weaknesses

      -The chemoproteomic approach, convincingly shows that MIPS2673 more significantly "protects" the putative target (PfA-M1) against thermal degradation or against enzymatic attack (by proteinase K). Proteomic studies are carried using parasite extracts enriched in late trophozoites (30-38 h pi), and are restricted to the soluble proteins fraction.<br /> -The metabolomic approach, documents the ability of MIPS2673 to selectively increase the number of non-hydrolyzed dipeptides in treated versus untreated parasites, further arguing for selective targeting of PfA-M1 and impairment of hemoglobin breakdown by the parasite.<br /> -The revised version now also considers and further studies the additional putative targets identified by one proteomic approach (but not the other one), which is both more critical of the results obtained and more realistic.<br /> The work as a whole is highly interesting, both for the specific topic of PfA-M1's role in parasite biology and for the method, applicable to other malarial drug contexts.

    1. Reviewer #1 (Public Review):

      Summary:

      Khan et. al., investigated the functional redundancy of the non-canonical L-cysteine synthases of M. tuberculosis, CysM and CysK2, focussing on their role in mitigating the effects of host-derived stress. They found that while deletion mutants of the two synthases (Rv∆cysM, Rv∆cysK2) have similar transcriptomes under standard conditions, their transcriptional response to oxidative stress is distinct. The impact of deleting the synthases also differentially affected the pools of L-cysteine-derived metabolites. They show that the mutants (Rv∆cysM, Rv∆cysK2) have impaired survival in peritoneal macrophages and in a mouse model of infection. Importantly, they show that the survival of the mutants increases when the host are defective in producing reactive oxygen and nitrogen species, linking the phenotype to a defect in combating host-derived stress. Finally, they show that compounds inhibiting L-cysteine synthases reduces intracellular survival of M. tuberculosis.

      Strengths:

      (1) The distinct transcriptome of the Rv∆cysM and Rv∆cysK2 mutants in the presence of oxidative stress provides solid evidence that these mutants are distinct in their response to oxidative stress, and suggests that they are not functionally redundant.<br /> (2) The use of macrophages from phox-/- and INF-/- mice and an iNOS inhibitor for the intracellular survival assays provides solid evidence that the survival defect seen for the Rv∆cysM and Rv∆cysK2 mutants is related to their reduced ability to combat host-derive oxidative and nitrosative stress. This is further supported by the infection studies in phox-/- and INF-/- mice.

      Weaknesses:

      Inclusion of the complemented strains in the metabolite study would strengthen the data. Furthermore, using an alternate method to quantify the MSH:MSSM ratio would provide insight into the redox homoeostasis in mutants in the presence and absence of CHP to support the statement that "deletion or inhibition of CysM or CysK2 perturbs redox homeostasis of Mtb".

      The authors sought to investigate the functional redundancy of the non-canonical L-cysteine synthases CysM and CysK2. While their distinct transcriptional response to oxidative stress suggests distinct physiological roles, the study did not explore these differences, and therefore provides only preliminary insight into the underlying reasons for this observation. In the context of drug development, this work suggests that while L-cysteine synthases inhibitors do not have high potency for killing intracellular M. tuberculosis, they have potential for decreasing the pathogen's survival in the presence of host-derive stress.

    1. Reviewer #3 (Public Review):

      The manuscript by Bimai et al describes a structural and functional characterization of an anaerobic ribonucleotide reductase (RNR) enzyme from the human microbe, P. copri. More specifically, the authors aimed to characterize the mechanism by how (d)ATP modulates nucleotide reduction in this anaerobic RNR, using a combination of enzyme kinetics, binding thermodynamics, and cryo-EM structural determination, complemented by hydrogen-deuterium exchange (HDX). One of the principal findings of this paper is the ordering of a NxN 'flap' in the presence of ATP that promotes RNR catalysis and the disordering (or increased protein dynamics) of both this flap and the glycyl radical domain (GRD) when the inhibitory effector, dATP, binds. The latter is correlated with a loss of substrate binding, which is the likely mechanism for dATP inhibition. It is important to note that the GRD is remote (>30 Ang) from the binding site of the dATP molecule, suggesting long-range communication of the structural (dis)ordering. The authors also present evidence for a shift in oligomerization in the presence of dATP. The work does provide evidence for new insights/views into the subtle differences of nucleotide modulation (allostery) of RNR, in a class III system, through long-range interactions.

      The strengths of the work are the impressive, in-depth structural analysis of the various regulated forms of PcRNR by (d)ATP using cryo-EM. The authors present seven different models in total, with striking differences in oligomerization and (dis)ordering of select structural features, including the GRD that is integral to catalysis. The authors present several, complementary biochemical experiments (ITC, MST, EPR, kinetics) aimed at resolving the binding and regulatory mechanism of the enzyme by various nucleotides. The authors present a good breadth of the literature in which the focus of allosteric regulation of RNRs has been on the aerobic orthologues.

      The addition of hydrogen-deuterium exchange mass spectrometry (HDX-MS) complements the results originating from cryo-EM data. Most notable, is the observation of the enhanced exchange (albeit quite subtle) of the GRD domain in the presence of dATP that matches the loss of structural information in this region in the cryo-EM data. The most pronounced and compelling HDX results are seen in the form of dATP-induced protection of peptides immediately adjacent to the b-hairpin at the s-site, where dATP is expected to bind based on cryo-EM. It is clear that the presence of dATP increases the rigidity of this region.

    1. Reviewer #1 (Public Review):

      Valk and Engert et al. examined the potential relations between three different mental training modules, hippocampal structure and functional connectivity, and cortisol levels (stress) over a 9-month period. They found that among the three types of mental training: Presence (attention and introspective awareness), Affect (socio-emotional - compassion and prosocial motivation), and Perspective (socio-cognitive - metacognition and perspective taking) modules; Affect training most robustly related to changes in hippocampal structure and function - specifically, CA1-3 subfields of the hippocampus. Moreover, change in intrinsic functional connectivity related to changes in diurnal cortisol release and long-term cortisol exposure. These changes are proposed to result from a combination of factors, which is supported by multivariate analyses showing changes across subfields and training content relate to cortisol changes.

      The authors demonstrate that mindfulness training programs are a potential avenue for stress interventions that impact hippocampal structure and cortisol, providing a promising approach to improve health. The data contribute to the literature on plasticity of hippocampal subfields during adulthood, the impact of mental training interventions on the brain, and the link between CA1-3 and both short- and long-term stress changes.

      The authors thoughtfully approached the study of hippocampal subfields, utilizing a method designed for T1w images that outperformed Freesurfer 5.3 and that produced comparable results to an earlier version of ASHS. The authors note the limitations of their approaches and provide detailed information on the data used and analyses conducted. The results provide a strong basis from which future studies can expand using computational approaches or more fine-grained investigations of the impact of mindfulness training on cortisol levels and the hippocampus.

    1. Reviewer #1 (Public Review):

      In this manuscript, Leikina et al. investigate the role of redox changes in the ubiquitous protein La in the promotion of osteoclast fusion. In a recently published manuscript, the investigators found that osteoclast multinucleation and resorptive activity are regulated by a de-phosphorylated and proteolytically cleaved form of the La protein that is present on the cell surface of differentiating osteoclasts. In the present work, the authors build upon these findings to determine the physiologic signals that regulate La trafficking to the cell membrane and ultimately, the ability of this protein to promote fusion. Building upon other published studies that show (1) that intracellular redox signaling can elicit changes in the confirmation and localization of La, and (2) that osteoclast formation is dependent on ROS signaling, the authors hypothesize that oxidation of La in response to intracellular ROS underlies the re-localization of La to the cell membrane and that this is necessary for its pro-fusion activity. The authors test this hypothesis in a rigorous manner using antioxidant treatments, recombinant La protein, and modification of cysteine residues predicted to be key sites of oxidation. Osteoclast fusion is then monitored in each condition using fluorescence microscopy. These data strongly support the conclusion that oxidized La is de-phosphorylated, increases in abundance at the cell surface of differentiating osteoclasts, and promotes cell-cell fusion. A strength of this manuscript is the use of multiple complementary approaches to test the hypothesis, especially the use of Cys mutant forms of La to directly tie the observed phenotypes to changes in residues that are key targets for oxidation. The manuscript is also well-written and describes a clearly articulated hypothesis based on a precise summation of the existing literature. The findings of this manuscript will be of interest to researchers in the field of bone biology, but also more generally to cell biologists. The data in this manuscript may also lead to future studies that target La for bone diseases in which there is increased osteoclast activity. The weaknesses of the manuscript are minor and predominantly relate to data presentation choices. These weaknesses do not detract from the overall conclusions of the study.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript by Beardslee and Schmitz, the authors undertook a screen for potential degrons - short peptide sequences at the C-terminus that would target the toxin VapC for degradation. The authors randomly mutagenized 5 amino acids appended to the C-terminus of VapC and transformed this library into E. coli to look for surviving cells when the VapC gene was expressed. The authors found an enrichment for tags ending Ala-Ala, and found that this enrichment was dependent on the presence of the ClpXP protease, since this sequence was not similarly enriched in a mutant lacking this protease. Moreover, the authors identify the sequence FKLVA as the tag with the highest fold enrichment in the screen and confirm that GFP tagged with this sequence is degraded by ClpXP with similar kinetics to GFP tagged with the ssrA-derived tag.

      Strengths:

      This study has two major implications for understanding the nature of degrons in E. coli. First, peptides ending Ala-Ala, and especially degrons resembling the ssrA degron are likely the most degradation-promoting sequences in E. coli. Second, these findings suggest that ClpXP is the most central protease, at least for this particular protein with a randomized C-terminus under the particular conditions of this screen. It is also notable that the ribosome quality control protein RqcH tags truncated proteins with an alanine tag in a template-free manner when the large ribosomal subunit is obstructed. Although E. coli doesn't encode RqcH, the utility of alanine-tagging for protein degradation likely extends to other organisms.

      Weaknesses:

      The authors remark and show that mutations that inactivate the VapC protein are enriched potentially more than the proteolysis tags. This is a limitation of the study and the authors have done well to describe this as it will inform future screens. Perhaps using a protein with more intermediate toxicity in future screens would help to prioritize C-terminal mutations instead of toxin-inactivating mutations.

      For clarity, the authors should explain why the NNK structure of the random codons was used. Why is it important that the codon end with a G or T?

      Authors state on page 7 that by determining enrichment of individual tags they can rank the relative Km for proteolysis of the individual tags. This statement is not accurate since the tag could variously impact its association with any of the proteases in the cell. Since Km is specific to each particular protease, these can't be ranked in vivo when all proteases are present.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript is dedicated heavily to cell type mapping and identification of sub-type markers in the human testis but does not present enough results from cross-investigation between NOA cases versus control. Their findings are mostly based on transcriptome and the authors do not make enough use of the scATAC-seq data in their analyses as they put forward in the title. Overall, the authors should do more to include the differential profile of NOA cases at the molecular level - specific gene expression, chromatin accessibility, TF binding, pathway, and signaling that are perturbed in NOA patients that may be associated with azoospermia.

      Strengths:

      (1) The establishment of single-cell data (both RNA and ATAC) from the human testicular tissues is noteworthy.

      (2) The manuscript includes extensive mapping of sub-cell populations with some claimed as novel, and reports marker gene expression.

      (3) The authors present inter-cellular cross-talks in human testicular tissues that may be important in adequate sperm cell differentiation.

      Weaknesses:

      (1) A low sample size (2 OA and 3 NOA cases). There are no control samples from healthy individuals.

      (2) Their argument about interactions between germ and Sertoli cells is not based on statistical testing.

      (3) Rationale/logic of the study. This study, in its present form, seems to be more about the role of sub-Sertoli population interactions in sperm cell development and does not provide enough insights about NOA.

      (4) The authors do not make full use of the scATAC-seq data.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript addresses the temporal patterns in how cholinergic signaling to the gut affects the lifespan of the worm C. elegans, which should make the manuscript of wide interest to those who study aging, as well as those who study the brain-gut axis in health and disease. The authors show that early acetylcholine (ACh) signaling to the intestine via the ACR-6 receptor shortens worm lifespan, which depends on the DAF-16/FOXO transcription factor. However, later ACh signaling to the intestine via the GAR-3 receptor extends lifespan, which in turn depends on the heat shock factor HSF-1. The authors also show a potential mechanism through which these two temporal patterns of ACh signaling might be coordinated to influence longevity in the worm, and possibly in other animals.

      Strengths:

      The authors observed that the functional ablation of acr-2-expressing cholinergic neurons in C. elegans (Pacr-2::TeTx) produced a lifespan curve that intersects the lifespan curve of a wild-type population. The first quartile of Pacr-2::TeTx worms shows a longer lifespan than the first quartile of wild-type worms, whereas the last quartile of Pacr-2::TeTx worms exhibits a shorter lifespan than wild-type. These observations raised the hypothesis that cholinergic neurons have two opposing effects on longevity: an early longevity-inhibiting effect and a later longevity-promoting effect. Much of the data supports the authors' conclusions.

      Weaknesses:

      While the authors have proved their hypothesis by temporally increasing the activity of cholinergic neurons at different life stages through the auxin-inducible degron system, their work raises two major concerns. First, they might want to discuss the conflicting data from Zullo et al (Nature 2019, vol 574, pp 359-364). For example, the authors show that increasing the activity of acr-2-expressing neurons after the 7th day of adulthood increases lifespan. However, Zullo et al (2019) show that the reciprocal experiment, inhibiting cholinergic neuron activity on the 1st day or the 8th day of adulthood, also increases lifespan. Is this because the two studies are using different promoters, that of the acr-2 ACh receptor (this work) versus that of the unc-17 vesicular ACh transporter (Zullo et al., 2019)? The two genes are expressed in different subsets of cells that do not completely overlap. CeNGEN shows that acr-2 is expressed in motor and non-motor neurons, but some of these neurons are also different from those that express unc-17. Is it possible that different cholinergic neurons also have opposite lifespan effects during adulthood? Or is it because both lack of signaling and hypersignaling can lead to a long-life phenotype? Leinwand et al (eLife 2015, vol 4, e10181) previously suggested that disturbing the balance in neurotransmission alone can extend lifespan. A simple discussion of these possibilities in the Discussion section is likely sufficient. Or can the auxin treatment and removal be confounding factors? Loose and Ghazi (Biol Open 2021, vol 10, bio058703) show that auxin IAA alone can affect lifespan and that this effect can depend on the time the animal is exposed to the auxin.

      Second, the daf-16-dependence of the early longevity-inhibiting effect of ACh signaling needs clarification and further experimentation. The authors present a model in Figure 6D, where DAF-16 inhibits longevity. This contradicts published literature. Libina et al (Cell 2003, vol 115, pp 489-502) have shown that intestinal DAF-16 increases lifespan. From the authors' data, it is possible that ACh signaling inhibits DAF-16, not promotes it as they have drawn in Figure 6D. In Figure 3F, the authors used Pacr-2::TeTx, which inhibits cholinergic neuron activity, to show an increase in the expression of DAF-16 targets. Why did the authors not use the worms that express the transgene Pacr-2::syntaxin(T254I), which increases cholinergic neuron activity? What happens to the expression of DAF-16 targets in these animals? Do their expression go down? What happens if intestinal daf-16 is knocked down in animals with increased cholinergic neuron activity, instead of reduced cholinergic neuron activity?

    1. Reviewer #1 (Public Review):

      Summary:

      The work provides more evidence of the importance of data quality and representation for ligand-based virtual screening approaches. The authors have applied different machine learning (ML) algorithms and data representation using a new dataset of BRAF ligands. First, the authors evaluate the ML algorithms and demonstrate that independently of the ML algorithm, predictive and robust models can be obtained in this BRAF dataset. Second, the authors investigate how the molecular representations can modify the prediction of the ML algorithm. They found that in this highly curated dataset the different molecule representations are adequate for the ML algorithms since almost all of them obtain high accuracy values, with Estate fingerprints obtaining the worst-performing predictive models and ECFP6 fingerprints producing the best classificatory models. Third, the authors evaluate the performance of the models on subsets of different composition and size of the BRAF dataset. They found that given a finite number of active compounds, increasing the number of inactive compounds worsens the recall and accuracy. Finally, the authors analyze if the use of "less active" molecules affect the model's predictive performance using "less active" molecules taken from ChEMBl Database or using decoys from DUD-E. As results, they found that the accuracy of the model falls as the number of "less active" examples in the training dataset increases while the implementation of decoys in the training set generates results as good as the original models or even better in some cases. However, the use of decoys in the training set worsens the predictive power in the test sets that contain active and inactive molecules.

      Strengths:

      It is a very interesting topic in medicinal chemistry and drug discovery. This work is very well written and contains up-to-date references. The general structure of the work is adequate, allowing easy reading. The hypotheses are clear and were explored correctly. This work provides new evidence about the importance of inferring models from high-quality data and that, if such a condition is met, it is not necessary to use complex computational methods to obtain predictive models. The generated BRAF dataset is also a valuable benchmark dataset for medicinal chemists working in ligand based virtual screening.

      Weaknesses:

      Leaving aside the new curated BRAF dataset, the work lacks novelty since it is a topic widely studied in chemoinformatics and medicinal chemistry. Furthermore, the conclusions drawn here correspond to the analysis of only one high-quality dataset where the similarity between the molecules is not quantitatively assessed (maybe active and inactive molecules are very dissimilar and any ML algorithm and fingerprint could obtain good results). To generalize the conclusions, it would be fundamental to repeat the analysis with other high-quality datasets.

      Some key tasks are not clearly described, for example, there is no information about the new BRAF dataset (e.g., where the molecules were obtained from or why the inactive molecules provide better results than the "less active" from ChEMBL... what differentiates them?). The defintion of an "inactive" compound is not clear. It is not described if global or balanced accuracy was used in the imbalanced datasets. When using decoys to evaluate the models it is important to consider that decoys were generated to be topologically different from active compounds by the comparison of the ECFP4 fingerprints using the Tanimoto coefficient. Therefore, it is quite obvious that when fingerprints are used to characterize molecules, the models will be able to easily discriminate them. It is important to note that this is not necessarily true for models based on other molecular descriptors, since they are not used in the generation of the decoys. In some cases, the differences between accuracies are very small and there are no statistical analyzes to demonstrate whether they are statistically different or not.

    1. Reviewer #1 (Public Review):

      Using a knock-out mutant strain, the authors tried to decipher the role of the last gene in the mycofactocin operon, mftG. They found that MftG was essential for growth in the presence of ethanol as the sole carbon source, but not for the metabolism of ethanol, evidenced by the equal production of acetaldehyde in the mutant and wild type strains when grown with ethanol (Fig 3). The phenotypic characterization of ΔmftG cells revealed a growth-arrest phenotype in ethanol, reminiscent of starvation conditions (Fig 4). Investigation of cofactor metabolism revealed that MftG was not required to maintain redox balance via NADH/NAD+, but was important for energy production (ATP) in ethanol. Since mycobacteria cannot grow via substrate-level phosphorylation alone, this pointed to a role of MftG in respiration during ethanol metabolism. The accumulation of reduced mycofactocin points to impaired cofactor cycling in the absence of MftG, which would impact the availability of reducing equivalents to feed into the electron transport chain for respiration (Fig 5). This was confirmed when looking at oxygen consumption in membrane preparations from the mutant and would type strains with reduced mycofactocin electron donors (Fig 7). The transcriptional analysis supported the starvation phenotype, as well as perturbations in energy metabolism, and may be beneficial if described prior to respiratory activity data.

      While the data and conclusions do support the role of MftG in ethanol metabolism, the title of the publication may be misleading as the mutant was able to grow in the presence of other alcohols (Supp Fig S2). Furthermore, the authors propose that MftG could not be involved in acetate assimilation based on the detection of acetate in the supernatant and the ability to grow in the presence of acetate. The minimal amount of acetate detected in the supernatant but a comparative amount of acetaldehyde could point to disruption of an aldehyde dehydrogenase.

      The link between mycofactocin oxidation and respiration is shown, however the mutant has an intact respiratory chain in the presence of ethanol (oxygen consumption with NADH and succinate in Fig 7C) and the NADH/NAD+ ratios are comparable to growth in glucose. Could the lack of growth of the mutant in ethanol be linked to factors other than respiration? To this end, bioinformatic investigation or other evidence to identify the membrane-bound respiratory partner would strengthen the conclusions.