Reviewer #3 (Public Review):
Summary:
This work investigates the computational consequences of assemblies containing both excitatory and inhibitory neurons (E/I assembly) in a model with parameters constrained by experimental data from the telencephalic area Dp of zebrafish. The authors show how this precise E/I balance shapes the geometry of neuronal dynamics in comparison to unstructured networks and networks with more global inhibitory balance. Specifically, E/I assemblies lead to the activity being locally restricted onto manifolds - a dynamical structure in between high-dimensional representations in unstructured networks and discrete attractors in networks with global inhibitory balance. Furthermore, E/I assemblies lead to smoother representations of mixtures of stimuli while those stimuli can still be reliably classified, and allow for more robust learning of additional stimuli.
Strengths:
Since experimental studies do suggest that E/I balance is very precise and E/I assemblies exist, it is important to study the consequences of those connectivity structures on network dynamics. The authors convincingly show that E/I assemblies lead to different geometries of stimulus representation compared to unstructured networks and networks with global inhibition. This finding might open the door for future studies for exploring the functional advantage of these locally defined manifolds, and how other network properties allow to shape those manifolds.
The authors also make sure that their spiking model is well-constrained by experimental data from the zebrafish pDp. Both spontaneous and odor stimulus triggered spiking activity is within the range of experimental measurements. But the model is also general enough to be potentially applied to findings in other animal models and brain regions.
Weaknesses:
I find the point about pattern completion a bit confusing. In Fig. 3 the authors argue that only the Scaled I network can lead to pattern completion for morphed inputs since the output correlations are higher than the input correlations. For me, this sounds less like the network can perform pattern completion but it can nonlinearly increase the output correlations. Furthermore, in Suppl. Fig. 3 the authors show that activating half the assembly does lead to pattern completion in the sense that also non-activated assembly cells become highly active and that this pattern completion can be seen for Scaled I, Tuned E+I, and Tuned I networks. These two results seem a bit contradictory to me and require further clarification, and the authors might want to clarify how exactly they define pattern completion.
The authors argue that Tuned E+I networks have several advantages over Scaled I networks. While I agree with the authors that in some cases adding this localized E/I balance is beneficial, I believe that a more rigorous comparison between Tuned E+I networks and Scaled I networks is needed: quantification of variance (Fig. 4G) and angle distributions (Fig. 4H) should also be shown for the Scaled I network. Similarly in Fig. 5, what is the Mahalanobis distance for Scaled I networks and how well can the Scaled I network be classified compared to the Tuned E+I network? I suspect that the Scaled I network will actually be better at classifying odors compared to the E+I network. The authors might want to speculate about the benefit of having networks with both sources of inhibition (local and global) and hence being able to switch between locally defined manifolds and discrete attractor states.
At a few points in the manuscript, the authors use statements without actually providing evidence in terms of a Figure. Often the authors themselves acknowledge this, by adding the term "not shown" to the end of the sentence. I believe it will be helpful to the reader to be provided with figures or panels in support of the statements.