10,000 Matching Annotations
  1. Feb 2024
    1. Reviewer #3 (Public Review):

      Summary:<br /> This is an interesting paper investigating fMRI changes during sensory (visual, tactile) stimulation and absence seizures in the GAERS model. The results are potentially important for the field and do suggest that sensory stimulation may not activate brain regions normally during absence seizures. But the findings are limited by substantial methodological issues that do not enable fMRI signals related to absence seizures to be fully disentangled from fMRI signals related to the sensory stimuli.

      Strengths:

      Investigating fMRI brain responses to sensory stimuli during absence seizures in an animal model is a novel approach with potential to yield important insights.

      Use of an awake, habituated model is a valid and potentially powerful approach.

      Weaknesses:

      The major difficulty with interpreting the results of this study is that the duration of the visual and tactile stimuli were 6 seconds, which is very close to the mean seizure duration per Table 1. Therefore the HRF model looking at fMRI responses to visual or auditory stimuli occurring during seizures was simultaneously weighting both seizure activity and the sensory (visual or auditory) stimuli over the same time intervals on average. The resulting maps and time courses claiming to show fMRI changes from visual or auditory stimulation during seizures will therefore in reality contain some mix of both sensory stimulation-related signals and seizure-related signals. The main claim that the sensory stimuli do not elicit the same activations during seizures as they do in the interictal period may still be true. But the attempts to localize these differences in space or time will be contaminated by the seizure related signals.

      In their response to this comment the authors state that some seizures had longer than average duration, and that they attempted to model the effects of both seizures and sensory stimulation. However these factors do not mitigate the concern because the mean duration of seizures and sensory stimulation remain nearly identical, and the models used therefore will not be able to effectively separate signals related to seizures and related to sensory stimulation.

      The claims that differences were observed for example between visual cortex and superior colliculus signals with visual stim during seizures vs interictal remain unconvincing due to above.

      Maps shown in Figure 3 do not show clear changes in the areas claimed to be involved.

      In their response the authors enlarged the cross sections. However there are still discrepancies between the images and the way they are described in the text. For example, in the Results text the authors say that comparing the interictal and ictal states revealed less activation in the somatosensory cortex during the ictal than during the interictal state, yet Figure 3 bottom row left shows greater activation in somatosensory cortex in this contrast.

    1. Reviewer #1 (Public Review):

      The goal of the current study was to evaluate the effect of neuronal activity on blood-brain barrier permeability in the healthy brain, and to determine whether changes in BBB dynamics play a role in cortical plasticity. The authors used a variety of well-validated approaches to first demonstrate that limb stimulation increases BBB permeability. Using in vivo-electrophysiology and pharmacological approaches, the authors demonstrate that albumin is sufficient to induce cortical potentiation and that BBB transporters are necessary for stimulus-induced potentiation. The authors include a transcriptional analysis and differential expression of genes associated with plasticity, TGF-beta signaling, and extracellular matrix were observed following stimulation. Overall, the results obtained in rodents are compelling and support the authors' conclusions that neuronal activity modulates the BBB in the healthy brain and that mechanisms downstream of BBB permeability changes play a role in stimulus-evoked plasticity. These findings were further supported with fMRI and BBB permeability measurements performed in healthy human subjects performing a simple sensorimotor task. There is literature to suggest that there are sex differences in BBB dysfunction in pathophysiological conditions and the authors have acknowledged the use of only males as a minor limitation of the study that should be addressed in the future. Future studies should also test whether the upregulation of OAT3 plays a role in cortical plasticity observed following stimulation. Overall, this study provides novel insights into how neurovascular coupling, BBB permeability, and plasticity interact in the healthy brain.

    2. Reviewer #2 (Public Review):

      Summary:<br /> This study builds upon previous work that demonstrated that brain injury results in leakage of albumin across the blood brain barrier, resulting in activation of TGF-beta in astrocytes. Consequently, this leads to decreased glutamate uptake, reduced buffering of extracellular potassium and hyperexcitability. This study asks whether such a process can play a physiological role in cortical plasticity. They first show that stimulation of a forelimb for 30 minutes in a rat results in leakage of the blood brain barrier and extravasation of albumin on the contralateral but not ipsilateral cortex. The authors propose that the leakage is dependent upon neuronal excitability and is associated with an enhancement of excitatory transmission. Inhibiting the transport of albumin or the activation of TGF-beta prevents the enhancement of excitatory transmission. In addition, gene expression associated with TGF-beta activation, synaptic plasticity and extracellular matrix are enhanced on the "stimulated" hemisphere. That this may translate to humans is demonstrated by a break down in the blood brain barrier following activation of brain areas through a motor task.

      Strengths:<br /> This study is novel and the results are potentially important as they demonstrate an unexpected break down of the blood brain barrier with physiological activity and this may serve a physiological purpose, affecting synaptic plasticity.

      The strengths of the study are:<br /> 1) The use of an in vivo model with multiple methods to investigate the blood brain barrier response to a forelimb stimulation.<br /> 2) The determination of a potential functional role for the observed leakage of the blood brain barrier from both a genetic and electrophysiological view point<br /> 3) The demonstration that inhibiting different points in the putative pathway from activation of the cortex to transport of albumin and activation of the TGF-beta pathway, the effect on synaptic enhancement could be prevented.<br /> 4) Preliminary experiments demonstrating a similar observation of activity dependent break down of the blood brain barrier in humans.

      Weaknesses:<br /> The authors adequately addressed most of my points. A few remain:<br /> 1) Although the reviewers have addressed the possible effects of anaesthesia on neuro-vascular coupling. They have not mentioned or addressed the possible effects of ketamine (an NMDA receptor antagonist) on synaptic plasticity. Indeed, the low percentage of SEP increase following potentiation (10-20%) could perhaps be explained by partial block of NMDA receptors by ketamine.<br /> 2) The experimental paradigms remain unclear to me. Now, it appears that drugs are applied for 50 minutes and that the stimulation occurs during the "washout period". The more conventional approach would be to have the drug application during the stimulation period to determine if the drugs occlude or enhance the effects of stimulation and then washout the drugs. The problem is that drugs variably washout at different rates depending upon their lipid solubility.<br /> 3) It is still not clear to what extent the experimenters and those doing the analysis were blinded to group. If one or both were blind to group, then please put this in the methods.

    3. Reviewer #3 (Public Review):

      Summary:

      This study used prolonged stimulation of a limb to examine possible plasticity in somatosensory evoked potentials induced by the stimulation. They also studied the extent that the blood brain barrier (BBB) was opened by the prolonged stimulation and whether that played a role in the plasticity. They found that there was potentiation of the amplitude and area under the curve of the evoked potential after prolonged stimulation and this was long-lasting (>5 hrs). They also implicated extravasation of serum albumin, caveolae-mediated transcytosis, and TGFb signalling, as well as neuronal activity and upregulation of PSD95. Transcriptomics was done and implicated plasticity related genes in the changes after prolonged stimulation, but not proteins associated with the BBB or inflammation. Next, they address the application to humans using a squeeze ball task. They imaged the brain and suggest that the hand activity led to an increased permeability of the vessels, suggesting modulation of the BBB.

      Strengths:

      The strengths of the paper are the novelty of the idea that stimulation of the limb can induce cortical plasticity in a normal condition, and it involves opening of the BBB with albumin entry. In addition, there are many datasets and both rat and human data.

      Weaknesses:

      The conclusions are not compelling however because of a lack of explanation of methods. The explanation of why prolonged stimulation in the rat was considered relevant to normal conditions should be as clear in the paper as it is in the rebuttal. The authors need to ensure other aspects of the rebuttal are as clear in the paper as in the rebuttal too. The only remaining concern that is significant is that it is hard to understand the figures.

    1. Reviewer #1 (Public Review):

      Wang et al., present a paper aiming to identify NALCN and TRPC6 channels as key mechanisms regulating VTA dopaminergic neuron spontaneous firing and investigating whether these mechanisms are disrupted in a chronic unpredictable stress model mouse.

      Major strengths:

      This paper uses multiple approaches to investigate the role of NALCN and TRPC6 channels in VTA dopaminergic neurons.

      Major weaknesses:<br /> In this revision, the authors have addressed the concerns about non-selective pharmacological tools.

      Are the author's claims supported by the data?

      The multimodal approach including shRNA knockdown experiments alleviates much of the concern about the non-specific pharmacological agents. Therefore, the author's claim that NALCN is involved in VTA dopaminergic neuron pacemaking is well-supported.

      The claim that TRPC6 channels in the VTA are involved in the depressive-like symptoms of CMUS is supported.

      Impact:

      It is important to compare pacemaking mechanisms in VTA and SNc neurons and this paper convincingly shows that NALCN contributes to VTA pacemaking, as it is known to contribute to SNc pacemaking. It also shows that TRPC6 channels in VTA dopamine neurons contribute to the depressive-like symptoms associated with CMUS.

      Additional context:

      One of the only demonstrations of the expression and physiological significance of TRPCs in VTA DA neurons was published by (Rasmus et al., 2011; Klipec et al., 2016) which are not cited in this paper. In their study, TRPC4 expression was detected in a uniformly distributed subset of VTA DA neurons, and TRPC4 KO rats showed decreased VTA DA neuron tonic firing and deficits in cocaine reward and social behaviors.

      Update: The authors say they have added a discussion of these papers, but I do not see it in the updated manuscript.

    2. Reviewer #2 (Public Review):

      This paper describes the results of a set of complementary and convergent experiments aimed at describing roles for the non-selective cation channels NALCN and TRPC6 in mediating subthreshold inward depolarizing currents and action potential generation in VTA DA neurons under normal physiological conditions. In general, the authors have responded satisfactorily to reviewer comments, and the revised manuscript is improved. The manuscript could still benefit from additional revision, including the following:

      1. From the previous review, we mentioned that " 'The HCN' as written in line 69 is a bit misleading, as HCN channels in the heart and brain are different members of a family of channels, although as written in the text, it seems that they are identical." This is still the case (now line 73).

      2. The authors state in line 112 that "most of the experiments were also repeated in female mice" - this is true in the case of most electrophysiological experiments, although not behavioral experiments. Authors should amend the statement in line 112 and clarify in the Discussion section which findings are generalizable between sexes; e.g.:<br /> a. Discussion of HCN contribution to VTA DA activity (beginning line 453) should clarify male mice.<br /> b. Similarly, any discussion of behavioral findings should clarify male mice.

      3. The authors' statement in lines 179-183 ("In contrast, fewer GABAergic neuronal markers (Glutamic acid decarboxylase, GAD1/2 and vesicular GABA transporter, VGAT) co-expressed with the DA neurons, which is consistent with previous studies that VTA DA neurons co-expressing GABAergic neuronal markers mainly project to the lateral habenula") is a little confusing - as stated, it seems that the authors are confirming DA/GABA coexpression in VTA-LHb neurons, which is not the case.

      4. Additional information could be included in the Methods section description of Western Blotting procedures - e.g., what thickness of tissue and what size gauge were used to dissect VTA for these experiments?

    1. Reviewer #1 (Public Review):

      Midbrain dopamine neurons have attracted attention as a part of the brain's reward system. A different line of research, on the other hand, has shown that these neurons are also involved in higher cognitive functions such as short-term memory. However, these neurons are thought not to encode short-term memory itself because they just exhibit a phasic response in short-term memory tasks, which cannot seem to maintain information during the memory period. To understand the role of dopamine neurons in short-term memory, the present study investigated the electrophysiological property of these neurons in rodents performing a T-maze version of short-term memory task, in which a visual cue indicated which arm (left or right) of the T-maze was associated with a reward. The animal needed to maintain this information while they were located between the cue presentation position and the selection position of the T-maze. The authors found that the activity of some dopamine neurons changed depending on the information while the animals were located in the memory position. This dopamine neuron modulation was unable to explain the motivation or motor component of the task. The authors concluded that this modulation reflected the information stored as short-term memory.

      Comments on revised submission:

      The authors adequately responded to all my concerns in the revised manuscript.

    2. Reviewer #2 (Public Review):

      The authors phototag DA and GABA neurons in the VTA in mice performing a t-maze task, and report choice-specific responses in the delay period of a memory-guided task, more so that in a variant task w/o a memory component. Overall, I found the results convincing. While showing responses that are choice selective in DA neurons is not entirely novel (e.g. Morris et al NN 2006, Parker et al NN 2016), the fact that this feature is stronger when there is a memory requirement is an interesting and a novel observation.

    1. Reviewer #1 (Public Review):

      The paper submitted by Yogesh and Keller explores the role of cholinergic input from the basal forebrain (BF) in the mouse primary visual cortex (V1). The study aims to understand the signals conveyed by BF cholinergic axons in the visual cortex, their impact on neurons in different cortical layers, and their computational significance in cortical visual processing. The authors employed two-photon calcium imaging to directly monitor cholinergic input from BF axons expressing GCaMP6 in mice running through a virtual corridor, revealing a strong correlation between BF axonal activity and locomotion. This persistent activation during locomotion suggests that BF input provides a binary locomotion state signal. To elucidate the impact of cholinergic input on cortical activity, the authors conducted optogenetic and chemogenetic manipulations, with a specific focus on L2/3 and L5 neurons. They found that cholinergic input modulates the responses of L5 neurons to visual stimuli and visuomotor mismatch, while not significantly affecting L2/3 neurons. Moreover, the study demonstrates that BF cholinergic input leads to decorrelation in the activity patterns of L2/3 and L5 neurons.

      This topic has garnered significant attention in the field, drawing the interest of many researchers actively investigating the role of BF cholinergic input in cortical activity and sensory processing. The experiments and analyses were thoughtfully designed and conducted with rigorous standards, leading to convincing results which align well with findings in previous studies. In other words, some of the main findings, such as the correlation between cholinergic input and locomotor activity and the effects of cholinergic input on V1 cortical activity, have been previously demonstrated by other labs (Goard and Dan, 2009; Pinto et al., 2013; Reimer et al., 2016). However, the study by Yogesh and Keller stands out by combining cutting-edge calcium imaging and optogenetics to provide compelling evidence of layer-specific differences in the impact of cholinergic input on neuronal responses to bottom-up (visual stimuli) and top-down inputs (visuomotor mismatch).

    2. Reviewer #2 (Public Review):

      The manuscript investigates the function of basal forebrain cholinergic axons in mouse primary visual cortex (V1) during locomotion using two-photon calcium imaging in head-fixed mice. Cholinergic modulation has previously been proposed to mediate the effects of locomotion on V1 responses. The manuscript concludes that the activity of basal forebrain cholinergic axons in visual cortex provides a signal which is more correlated with binary locomotion state than locomotion velocity of the animal. Cholinergic axons did not seem to respond to grating stimuli or visuomotor prediction error. Optogenetic stimulation of these axons increased the amplitude of responses to visual stimuli and decreased the response latency of layer 5 excitatory neurons, but not layer 2/3 neurons. Moreover, optogenetic or chemogenetic stimulation of cholinergic inputs reduced pairwise correlation of neuronal responses. These results provide insight into the role of cholinergic modulation to visual cortex and demonstrate that it affects different layers of visual cortex in a distinct manner. The experiments are well executed and the data appear to be of high quality. However, further analyses are required to fully support some of the study's conclusions.

      The manuscript concludes that cholinergic axons convey a binary locomotion signal and are not tuned to running speed. Getting head-fixed animals to run at the speeds typical of freely moving animals can require training, which was not undertaken in this study. Consequently, the typically low running velocity of mice is a potential limitation of this study.

      The analyses of the effects of locomotion and stimulation of cholinergic inputs present grand averages of responses across all neurons, and therefore may mask heterogeneity across layer 2/3 and layer 5 neurons.

    1. Reviewer #1 (Public Review):

      In this manuscript, Yao et al. explored the transcriptomic characteristics of neural stem cells (NSCs) in the human hippocampus and their changes under different conditions using single-nucleus RNA sequencing (snRNA-seq). They generated single-nucleus transcriptomic profiles of human hippocampal cells from neonatal, adult, and aging individuals, as well as from stroke patients. They focused on the cell groups related to neurogenesis, such as neural stem cells and their progeny. They revealed genes enriched in different NSC states and performed trajectory analysis to trace the transitions among NSC states and towards astroglial and neuronal lineages in silico. They also examined how NSCs are affected by aging and injury using their datasets and found differences in NSC numbers and gene expression patterns across age groups and injury conditions. One major issue of the manuscript is questionable cell type identification. For example, more than 50% of the cells in the astroglial lineage clusters are NSCs, which is extremely high and inconsistent with classic histology studies.

      While the authors have made efforts to address previous critics, major concerns have not been adequately addressed, including a very limited sample size and with poor patient information. In addition, some analytical approaches are still questionable and the authors acknowledged that some they cannot address. Therefore, while the topic is interesting, some results are preliminary and some conclusions are not fully supported by the data presented.

    2. Reviewer #2 (Public Review):

      In this manuscript, Yao et al. present a series of experiments aiming at generating a cellular atlas of the human hippocampus across aging, and how it may be affected by injury, in particular, stroke. Although the aim of the study is interesting and relevant for a larger audience, due to the ongoing controversy around the existence of adult hippocampal neurogenesis in humans, a number or technical weaknesses result in a poor support for many of the conclusions made from the results of these experiments.<br /> In particular, a recent meta analysis of five previous studies applying similar techniques to human samples has identified different aspects of sample size as main determinants of the statistical power needed to make significant conclusions. Some of this aspects are the number of nuclei sequenced and subject stratification. These two aspects are of concern in Yao's study. First, the number of sequenced nuclei is lower than the calculated numbers of nuclei required for detecting rare cell types. However, Yao et al. report succeeding in detecting rare populations, including several types of neural stem cells in different proliferation states, which have been demonstrated to be extremely scarce by previous studies. It would be very interesting to read how the authors interpret these differences. Secondly, the number of donors included in some of the groups is extremely low (n=1) and the miscellaneous information provided about the donors is practically inexistent. As individual factors such as chronic conditions, medication, lifestyle parameters, etc... are considered determinant for the variability of adult hippocampal neurogenesis levels across individuals, this represents a series limitation of the current study. Overall, several technical weaknesses severely limit the relevance of this study and the ability of the authors to achieve their experimental aims.

      After a first review round, the manuscript is still lacking a clear discussion of its several technical limitations, which will help the audience to grasp the relevance of the findings. In particular, detailed information about individual patients health status and relevant lifestyle parameters that may have affected it is lacking. The authors make the point themselves that the discrepancies among studies might be caused by health state differences across hippocampi, which subsequently lead to different degrees of hippocampal neurogenesis.". So, even in the authors own interpretation this is a serious limitation to the manuscript, that however out of the authors control, impacts on the quality of their findings.

    1. Reviewer #1 (Public Review):

      Summary:

      Otarigho et al. presented a convincing study revealing that in C. elegans, the neuropeptide Y receptor GPCR/NPR-15 mediates both molecular and behavioral immune responses to pathogen attack. Previously, three npr genes were found to be involved in worm defense. In this study, the authors screened mutants in the remaining npr genes against P. aeruginosa-mediated killing and found that npr-15 loss-of-function improved worm survival. npr-15 mutants also exhibited enhanced resistance to other pathogenic bacteria but displayed significantly reduced avoidance to S. aureus, independent of aerotaxis, pathogen intake and defecation. The enhanced resistance in npr-15 mutant worms was attributed to upregulation of immune and neuropeptide genes, many of which were controlled by the transcription factors ELT-2 and HLH-30. The authors found that NPR-15 regulates avoidance behavior via the TRPM gene, GON-2, which has a known role in modulating avoidance behavior through the intestine. The authors further showed that both NPR-15-dependent immune and behavioral responses to pathogen attack were mediated by the NPR-15-expressing neurons ASJ. Overall, the authors discovered that the NPR-15/ASJ neural circuit may regulate distinct defense mechanisms against pathogens under different circumstances. This study provides novel and useful information to researchers in the fields of neuroimmunology and C. elegans research.

      Strengths:

      1. This study uncovered specific molecules and neuronal cells that regulate both molecular immune defense and behavior defense against pathogen attack and indicate that the same neural circuit may regulate distinct defense mechanisms under different circumstances. This discovery is significant because it not only reveals regulatory mechanisms of different defense strategies but also suggests how C. elegans utilize its limited neural resources to accomplish complex regulatory tasks.

      2. The conclusions in this study are supported by solid evidence, which are often derived from multiple approaches and/or experiments. Multiple pathogenic bacteria were tested to examine the effect of NPR-15 loss-of-function on immunity; the impacts of pharyngeal pumping and defecation on bacterial accumulation were ruled out when evaluating defense; RNA-seq and qPCR were used to measure gene expression; gene inactivation was done in multiple strains to assess gene function.

      3. Gene differential expression, gene ontology and pathway analyses were performed to demonstrate that NPR-15 controls immunity through regulating immune pathways.

      4. Elegant approaches were employed to examine avoidance behavior (partial lawn, full lawn, and lawn occupancy) and the involvement of neurons in regulating immunity and avoidance (the use of a diverse array of mutant strains).

      5. Statistical analyses were appropriate and adequate.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The authors are studying the behavioral response to pathogen exposure. They and others have previously describe the role that the G-protein coupled receptors in the nervous system plays in detecting pathogens, and initiating behavioral patterns (e.g. avoidance/learned avoidance) that minimize contact. The authors study this problem in C. elegans, which is amenable to genetic and cellular manipulations and allow the authors to define cellular and signaling mechanisms. This paper extends the original idea to now implicate signaling and transcriptional pathways within a particular neuron (ASJ) and the gut in mediating avoidance behaviour.

      Strengths:<br /> The work is rigorous and elegant and the data are convincing. The authors make superb use of mutant strains in C. elegans, as well tissue specific gene inactivation and expression and genetic methods of cell ablation. to demonstrate how a gene, NPR15 controls behavioral changes in pathogen infection. The results suggest that ASJ neurons and the gut mediate such effects. I expect the paper will constitute an important contribution to our understanding of how the nervous system coordinates immune and behavioral responses to infection.

    1. Reviewer #1 (Public Review):

      Summary: The authors have used transcranial magnetic stimulation (TMS) and motor evoked potentials (MEPs) to determine whether the peripheral auditory confound arising from TUS can drive motor inhibition on its own. They gathered data from three international centers in four experiments testing:

      - Experiment 1 (n = 11), two different TUS durations and intensities under sound masking or without.<br /> - Experiment 2 (n = 27) replicates Exp 1 with different intensities and a fixed TUS duration of 500ms.<br /> - Experiment 3 ( n = 16) studies the effect of various auditory stimuli testing different duration and pitches while applying TUS in an active site, on-target or no TUS.<br /> - Experiment 4 (n = 12) uses an inactive control site to reproduce the sound without effective neuromodulation, while manipulating the volume of the auditory confound at different US intensities with and without continuous sound masking.

      Strengths: This study comes from three very strong groups in noninvasive brain stimulation with long experience in neuromodulation, multimodal and electrophysiological recordings. Although complex to understand due to slightly different methodologies across centers, this study provides quantitative evidence relating to the potential auditory confound in online TUS. The results are in line with reductions seen in motor-evoked responses during online 1kHz TUS, and remarkable efforts were made to isolate peripheral confounds from actual neuromodulation factors, highlighting the confounding effect of sound itself.

      Weaknesses: However, there are some points that need attention. In my view, the most important are:

      1. Despite the main conclusion of the authors stating that there is no dose-response effect of TUS on corticospinal inhibition, the point estimates for change in MEP and Ipssa indicate a more complex picture. The present data and analyses cannot rule out that there is a dose-response function which cannot be fully attributed to difference in sound (since the relationship in inversed, lower intracranial Isppa leads to higher MEP decrease). These results suggest that dose-response function needs to be further studied in future studies.

      2. Other methods to test or mask the auditory confound are possible (e.g., smoothed ramped US wave) which could substantially solve part of the sound issue in future studies or experiments in deaf animals etc.

    2. Reviewer #2 (Public Review):

      Summary:

      This study aims to test auditory confounds during transcranial ultrasound stimulation (TUS) protocols that rely on audible frequencies. In several experiments, the authors show that a commonly observed suppression of motor-evoked potentials (MEP) during TUS can be explained by acoustic stimulation. For instance, not only target TUS, but also stimulation of a control site and acoustic stimulation led to suppressed MEP.

      The authors have convincingly addressed all of my comments and provided useful additional details. I believe that this is a strong study that will impact the field. Thanks also for making the sound stimuli open-source.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This important study investigated the role of the PHOX2B transcription factor in neurons in the key brainstem chemosensory structure, the retrotrapezoid nucleus (RTN), for maintaining proper CO2 chemoreflex responses of breathing in the adult rat in vivo. PHOX2B has an important transcriptional role in neuronal survival and/or function, and mutations of PHOX2B severely impair the development and function of the autonomic nervous system and RTN, resulting in the developmental genetic disease congenital central hypoventilation syndrome (CCHS) in neonates, where the RTN may not form and is functionally impaired. The function of the wild-type PHOX2B protein in adult RTN neurons that continue to express PHOX2B is not fully understood. By utilizing a viral PHOX2B-shRNA approach for knockdown of PHOX2B specifically in RTN neurons, the authors' solid results show impaired ventilatory responses to elevated inspired CO2, measured by whole-body plethysmography in freely behaving adult rats, that develop progressively over a four-week period in vivo, indicating effects on RTN neuron transcriptional activity and associated blunting of the CO2 ventilatory response. The RTN neuronal mRNA expression data presented suggests the impaired hypercapnic ventilatory response is possibly due to the decreased expression of key proton sensors in the RTN. This study will be of interest to neuroscientists studying respiratory neurobiology as well as the neurodevelopmental control of motor behavior.

      Strengths:<br /> 1. The authors used a shRNA viral approach to progressively knock down the PHOX2B protein, specifically in RTN neurons to determine whether PHOX2B is necessary for the survival and/or chemosensory function of adult RTN neurons in vivo.

      2. To determine the extent of PHOX2B knockdown in RTN neurons, the authors combined RNAScope® and immunohistochemistry assays to quantify the subpopulation of RTN neurons expressing PHOX2B and neuromedin B (Nmb), which has been proposed to be key chemosensory neurons in the RTN.

      3. The authors demonstrate that knockdown efficiency is time-dependent, with a progressive decrease in the number of Nmb-expressing RTN neurons that co-express PHOX2B over a four-week period.

      4. Their results convincingly show hypoventilation particularly in 7.2% CO2 only for PHOX2B-shRNA RTN-injected rats after four weeks as compared to naïve and non-PHOX2B-shRNA targeted (NT-shRNA) RTN injected rats, suggesting a specific impairment of chemosensitive properties in RTN neurons with PHOX2B knockdown.

      5. Analysis of the association between PHOX2B knockdown in RTN neurons and the attenuation of the hypercapnic ventilatory response (HCVR), by evaluating the correlation between the number of Nmb+/PHOX2B+ or Nmb+/PHOX2B- cells in the RTN and the resulting HCVR, showed a significant correlation between HCVR and number of Nmb+/PHOX2B+ and Nmb+/PHOX2B- cells, suggesting that the number of PHOX2B-expressing cells in the RTN is a predictor of the chemoreflex response and the reduction of PHOX2B protein impairs the CO2-chemoreflex.

      6. The data presented indicate that PHOX2B knockdown not only causes a reduction in the HCVR but also a reduction in the expression of Gpr4 and Task2 mRNAs, suggesting that PHOX2B knockdown affects RTN neurons transcriptional activity and decreases the CO2 response, possibly by reducing the expression of key proton sensors in the RTN.

      7. Results of this study show that independent of the role of PHOX2B during development, PHOX2B is still required to maintain proper CO2 chemoreflex responses in the adult brain, and its reduction in CCHS may contribute to the respiratory impairment in this disorder.

      Weaknesses:<br /> 1. The authors found a significant decrease in the total number of Nmb+ RTN neurons (i.e., Nmb+/PHOX2B+ plus Nmb+/ PHOX2B-) in NT-shRNA rats at two weeks post viral injection, and also at the four-week period where the impairment of the chemosensory function of the RTN became significant, suggesting some inherent cell death possibly due to off-target toxic effects associated with shRNA procedures that may affect the experimental results.

      2. The tissue sampling procedures for quantifying numbers of cells expressing proteins/mRNAs throughout the extended RTN region bilaterally have not been completely validated to accurately represent the full expression patterns in the RTN under experimental conditions.

      3. The inferences about RTN neuronal expression of NMB, GPR4, or TASK2 are based on changes in mRNA levels, so it remains speculation that the observed reduction in Gpr4 and Task2 mRNA translates to a reduction in the protein levels and associated reduction of RTN neuronal chemosensitive properties.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The authors used a short hairpin RNA technique strategy to elucidate the functional activity of neurons in the retrotrapezoid nucleus (RTN), a critical brainstem region for central chemoreception. Dysfunction in this area is associated with the neuropathology of congenital central hypoventilation syndrome (CCHS). The subsequent examination of these rats aimed to shed light on the intricate aspects of RTN and its implications for central chemoreception and disorders like CCHS in adults. They found that using the short hairpin RNA (shRNA) targeting Phox2b mRNA, a reduction of Phox2b expression was observed in Nmb neurons. In addition, Phox2b knockdown did not affect breathing in room air or under hypoxia, but the hypercapnia ventilatory response was significantly impaired. They concluded that Phox2b in the adult brain has an important role in CO2 chemoreception. They thought that their findings provided new evidence for mechanisms related to CCHS neuropathology. The conclusions of this paper are well supported by data, but careful discussion seems to be required for comparison with the results of various previous studies performed by different genetic strategies for the RTN neurons.

      Strengths:<br /> The most exciting aspect of this work is the modelling of the Phox2b knockdown in one element of the central neuronal circuit mediating respiratory reflexes, that is in the RTN. To date, mutations in the PHOX2B gene are commonly associated with most patients diagnosed with CCHS, a disease characterized by hypoventilation and absence of chemoreflexes, in the neonatal period, which in severe cases can lead to respiratory arrest during sleep. In the present study, the authors demonstrated that the role of Phox2b extends beyond the developmental period, and its reduction in CCHS may contribute to the respiratory impairment observed in this disorder.

      Weaknesses:<br /> Whereas the most exciting part of this work is the knockdown of the Phox2b in the RTN in adult rodents, the weakness of this study is the lack of a clear physiological, developmental, and anatomical distinction between this approach and similar studies already reported elsewhere (Ruffault et al., 2015, DOI: 10.7554/eLife.07051; Ramanantsoa et al., 2011, DOI: 10.1523/JNEUROSCI.1721-11.2011; Huang et al., 2017, DOI: 10.1016/j.neuron.2012.06.027; Hernandez-Miranda et al., 2018, DOI: 10.1073/pnas.1813520115; Ferreira et al., 2022 DOI: 10.7554/eLife.73130; Takakura et al., 2008 DOI: 10.1113/jphysiol.2008.153163; Basting et al., 2015 DOI: 10.1523/JNEUROSCI.2923-14.2015; Marina et al., 2010 DOI: 10.1523/JNEUROSCI.3141-10.2010). In addition, several conclusions presented in this work are not directly supported by the provided data.

    3. Reviewer #3 (Public Review):

      A brain region called the retrotrapezoid nucleus (RTN) regulates breathing in response to changes in CO2/H+, a process termed central chemoreception. A transcription factor called PHOX2B is important for RTN development and mutations in the PHOX2B gene result in a severe type of sleep apnea called Congenital Central Hypoventilation Syndrome. PHOX2B is also expressed throughout life, but its postmitotic functions remain unknown. This study shows that knockdown of PHOX2B in the RTN region in adult rats decreased expression of Task2 and Gpr4 in Nmb-expressing RTN chemoreceptors and this corresponded with a diminished ventilatory response to CO2 but did not impact baseline breathing or the hypoxic ventilatory response. These results provide novel insight regarding the postmitotic functions of PHOX2B in RTN neurons.

      Main issues:<br /> 1) The experimental approach was not targeted to Nmb+ neurons and since other cells in the area also express Phox2b, conclusions should be tempered to focus on Phox2b expressing parafacial neurons NOT specifically RTN neurons

      2) It is not clear whether PHOX2B is important for the transcription of pH sensing machinery, cell health, or both. If knockdown of PHOX2B knockdown results in loss of RTN neurons this is also expected to decrease Task2 and Gpr4 levels, albeit by a transcription-independent mechanism.

    1. Reviewer #1 (Public Review):

      Gazula and co-workers presented in this paper a software tool for 3D structural analysis of human brains, using slabs of fixed or fresh brains. This tool will be included in Freesurfer, a well-known neuroimaging processing software. It is possible to reconstruct a 3D surface from photographs of coronal sliced brains, optionally using a surface scan as model. A high-resolution segmentation of 11 brain regions is produced, independent of the thickness of the slices, interpolating information when needed. Using this method, the researcher can use the sliced brain to segment all regions, without the need of ex vivo MRI scanning.

      The software suite is freely available and includes 3 modules. The first accomplishes preprocessing steps, for correction of pixel sizes and perspective. The second module is a registration algorithm that registers a 3D surface scan obtained prior to sectioning (reference) to the multiple 2D slices. It is not mandatory to scan the surface, -a probabilistic atlas can also be used as reference- however the accuracy is lower. The third module uses machine learning to perform the segmentation of 11 brain structures in the 3D reconstructed volume. This module is robust, dealing with different illumination conditions, cameras, lens and camera settings. This algorithm ("Photo-SynthSeg") produces isotropic smooth reconstructions, even in high anisotropic datasets (when the in-plane resolution of the photograph is much higher than the thickness), interpolating the information between slices.

      To verify the accuracy and reliability of the toolbox, the authors reconstructed 3 datasets, using real and synthetic data. Real data of 21 postmortem confirmed Alzheimer's disease cases from the Massachusetts Alzheimer's Disease Research Center (MADRC)and 24 cases from the AD Research at the University of Washington(who were MRI scanned prior to processing)were employed for testing. These cases represent a challenging real-world scenario. Additionally, 500 subjects of the Human Connectome project were used for testing error as a continuous function of slice thickness. The segmentations were performed with the proposed deep-learning new algorithm ("Photo-SynthSeg") and compared against MRI segmentations performed to "SAMSEG" (an MRI segmentation algorithm, computing Dice scores for the segmentations. The methods are sound and statistically showed correlations above 0.8, which is good enough to allow volumetric analysis. The main strengths of the methods are the datasets used (real-world challenging and synthetic) and the statistical treatment, which showed that the pipeline is robust and can facilitate volumetric analysis derived from brain sections and conclude which factors can influence in the accuracy of the method (such as using or not 3D scan and using constant thickness).

      Although very robust and capable of handling several situations, the researcher has to keep in mind that processing has to follow some basic rules in order for this pipeline to work properly. For instance, fiducials and scales need to be included in the photograph, and the slabs should be photographed against a contrasting background. Also, only coronal slices can be used, which can be limiting for certain situations.

      The authors achieved their aims, and the statistical analysis confirms that the machine learning algorithm performs segmentations comparable to the state-of-the-art of automated MRI segmentations.<br /> Those methods will be particularly interesting to researchers who deal with post-mortem tissue analysis and do not have access to ex vivo MRI. Quantitative measurements of specific brain areas can be performed in different pathologies and even in the normal aging process. The method is highly reproducible, and cost-effective since allows the pipeline to be applied by any researcher with small pre-processing steps.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This fundamental study provides compelling neuroanatomical evidence underscoring the sensory function of the trunk in African and Asian elephants. Whereas myelinated tracts are classically appreciated as mediating neuronal connections, the authors speculate that myelinated bundles provide functional separation of trunk folds and display elaboration related to the "finger" projections. The authors avail themselves of many classical neuroanatomical techniques (including cytochrome oxidase stains, Golgi stains, and myelin stains) along with modern synchrotron X-ray tomography. This work will be of interest to evolutionary neurobiologists, comparative neuroscientists, and the general public, with its fascinating exploration of the brainstem of an icon sensory specialist.

      Strengths:<br /> - The authors made excellent use of the precious sample materials from 9 captive elephants.<br /> - The authors adopt a battery of neuroanatomical techniques to comprehensively characterize the structure of the trigeminal subnuclei and properly re-examine the "inferior olive".<br /> - Based on their exceptional histological preparation, the authors reveal broadly segregated patterns of metabolic activity, similar to the classical "barrel" organization related to rodent whiskers.

      Weaknesses:<br /> - As the authors acknowledge, somewhat limited functional description can be provided using histological analysis (compared to more invasive techniques).<br /> - The correlation between myelinated stripes and trunk fold patterns is intriguing, and Figure 4 presents this idea beautifully. I wonder - is the number of stripes consistent with the number of trunk folds? Does this hold for both species?

    2. Reviewer #2 (Public Review):

      The authors describe what they assert to be a very unusual trigeminal nuclear complex in the brainstem of elephants, and based on this, follow with many speculations about how the trigeminal nuclear complex, as identified by them, might be organized in terms of the sensory capacity of the elephant trunk.

      The identification of the trigeminal nuclear complex/inferior olivary nuclear complex in the elephant brainstem is the central pillar of this manuscript from which everything else follows, and if this is incorrect, then the entire manuscript fails, and all the associated speculations become completely unsupported.

      The authors note that what they identify as the trigeminal nuclear complex has been identified as the inferior olivary nuclear complex by other authors, citing Shoshani et al. (2006; 10.1016/j.brainresbull.2006.03.016) and Maseko et al (2013; 10.1159/000352004), but fail to cite either Verhaart and Kramer (1958; PMID 13841799) or Verhaart (1962; 10.1515/9783112519882-001). These four studies are in agreement, but the current study differs.

      Let's assume for the moment that the four previous studies are all incorrect and the current study is correct. This would mean that the entire architecture and organization of the elephant brainstem is significantly rearranged in comparison to ALL other mammals, including humans, previously studied (e.g. Kappers et al. 1965, The Comparative Anatomy of the Nervous System of Vertebrates, Including Man, Volume 1 pp. 668-695) and the closely related manatee (10.1002/ar.20573). This rearrangement necessitates that the trigeminal nuclei would have had to "migrate" and shorten rostrocaudally, specifically and only, from the lateral aspect of the brainstem where these nuclei extend from the pons through to the cervical spinal cord (e.g. the Paxinos and Watson rat brain atlases), the to the spatially restricted ventromedial region of specifically and only the rostral medulla oblongata. According to the current paper, the inferior olivary complex of the elephant is very small and located lateral to their trigeminal nuclear complex, and the region from where the trigeminal nuclei are located by others appears to be just "lateral nuclei" with no suggestion of what might be there instead.

      Such an extraordinary rearrangement of brainstem nuclei would require a major transformation in the manner in which the mutations, patterning, and expression of genes and associated molecules during development occur. Such a major change is likely to lead to lethal phenotypes, making such a transformation extremely unlikely. Variations in mammalian brainstem anatomy are most commonly associated with quantitative changes rather than qualitative changes (10.1016/B978-0-12-804042-3.00045-2).

      The impetus for the identification of the unusual brainstem trigeminal nuclei in the current study rests upon a previous study from the same laboratory (10.1016/j.cub.2021.12.051) that estimated that the number of axons contained in the infraorbital branch of the trigeminal nerve that innervate the sensory surfaces of the trunk is approximately 400 000. Is this number unusual? In a much smaller mammal with a highly specialized trigeminal system, the platypus, the number of axons innervating the sensory surface of the platypus bill skin comes to 1 344 000 (10.1159/000113185). Yet, there is no complex rearrangement of the brainstem trigeminal nuclei in the brain of the developing or adult platypus (Ashwell, 2013, Neurobiology of Monotremes), despite the brainstem trigeminal nuclei being very large in the platypus (10.1159/000067195). Even in other large-brained mammals, such as large whales that do not have a trunk, the number of axons in the trigeminal nerve ranges between 400,000 and 500,000 (10.1007/978-3-319-47829-6_988-1). The lack of comparative support for the argument forwarded in the previous and current study from this laboratory, and that the comparative data indicates that the brainstem nuclei do not change in the manner suggested in the elephant, argues against the identification of the trigeminal nuclei as outlined in the current study. Moreover, the comparative studies undermine the prior claim of the authors, informing the current study, that "the elephant trigeminal ganglion ... point to a high degree of tactile specialization in elephants" (10.1016/j.cub.2021.12.051). While clearly, the elephant has tactile sensitivity in the trunk, it is questionable as to whether what has been observed in elephants is indeed "truly extraordinary".

      But let's look more specifically at the justification outlined in the current study to support their identification of the unusually located trigeminal sensory nuclei of the brainstem.

      (1) Intense cytochrome oxidase reactivity.<br /> (2) Large size of the putative trunk module.<br /> (3) Elongation of the putative trunk module.<br /> (4) The arrangement of these putative modules corresponds to elephant head anatomy.<br /> (5) Myelin stripes within the putative trunk module that apparently match trunk folds.<br /> (6) Location apparently matches other mammals.<br /> (7) Repetitive modular organization apparently similar to other mammals.<br /> (8) The inferior olive described by other authors lacks the lamellated appearance of this structure in other mammals.

      Let's examine these justifications more closely.

      (1) Cytochrome oxidase histochemistry is typically used as an indicative marker of neuronal energy metabolism. The authors indicate, based on the "truly extraordinary" somatosensory capacities of the elephant trunk, that any nuclei processing this tactile information should be highly metabolically active, and thus should react intensely when stained for cytochrome oxidase. We are told in the methods section that the protocols used are described by Purkart et al (2022) and Kaufmann et al (2022). In neither of these cited papers is there any description, nor mention, of the cytochrome oxidase histochemistry methodology, thus we have no idea of how this histochemical staining was done. To obtain the best results for cytochrome oxidase histochemistry, the tissue is either processed very rapidly after buffer perfusion to remove blood or in recently perfusion-fixed tissue (e.g., 10.1016/0165-0270(93)90122-8). Given: (1) the presumably long post-mortem interval between death and fixation - "it often takes days to dissect elephants"; (2) subsequent fixation of the brains in 4% paraformaldehyde for "several weeks"; (3) The intense cytochrome oxidase reactivity in the inferior olivary complex of the laboratory rat (Gonzalez-Lima, 1998, Cytochrome oxidase in neuronal metabolism and Alzheimer's diseases); and (4) The lack of any comparative images from other stained portions of the elephant brainstem; it is difficult to support the justification as forwarded by the authors. The histochemical staining observed is likely background reactivity from the use of diaminobenzidine in the staining protocol. Thus, this first justification is unsupported.

      Justifications (2), (3), and (4) are sequelae from justification (1). In this sense, they do not count as justifications, but rather unsupported extensions.

      (4) and (5) These are interesting justifications, as the paper has clear internal contradictions, and (5) is a sequelae of (4). The reader is led to the concept that the myelin tracts divide the nuclei into sub-modules that match the folding of the skin on the elephant trunk. One would then readily presume that these myelin tracts are in the incoming sensory axons from the trigeminal nerve. However, the authors note that this is not the case: "Our observations on trunk module myelin stripes are at odds with this view of myelin. Specifically, myelin stripes show no tapering (which we would expect if axons divert off into the tissue). More than that, there is no correlation between myelin stripe thickness (which presumably correlates with axon numbers) and trigeminal module neuron numbers. Thus, there are numerous myelinated axons, where we observe few or no trigeminal neurons. These observations are incompatible with the idea that myelin stripes form an axonal 'supply' system or that their prime function is to connect neurons. What do myelin stripe axons do, if they do not connect neurons? We suggest that myelin stripes serve to separate rather than connect neurons." So, we are left with the observation that the myelin stripes do not pass afferent trigeminal sensory information from the "truly extraordinary" trunk skin somatic sensory system, and rather function as units that separate neurons - but to what end? It appears that the myelin stripes are more likely to be efferent axonal bundles leaving the nuclei (to form the olivocerebellar tract). This justification is unsupported.

      (6) The authors indicate that the location of these nuclei matches that of the trigeminal nuclei in other mammals. This is not supported in any way. In ALL other mammals in which the trigeminal nuclei of the brainstem have been reported they are found in the lateral aspect of the brainstem, bordered laterally by the spinal trigeminal tract. This is most readily seen and accessible in the Paxinos and Watson rat brain atlases. The authors indicate that the trigeminal nuclei are medial to the facial nerve nucleus, but in every other species, the trigeminal sensory nuclei are found lateral to the facial nerve nucleus. This is most salient when examining a close relative, the manatee (10.1002/ar.20573), where the location of the inferior olive and the trigeminal nuclei matches that described by Maseko et al (2013) for the African elephant. This justification is not supported.

      (7) The dual to quadruple repetition of rostrocaudal modules within the putative trigeminal nucleus as identified by the authors relies on the fact that in the neurotypical mammal, there are several trigeminal sensory nuclei arranged in a column running from the pons to the cervical spinal cord, these include (nomenclature from Paxinos and Watson in roughly rostral to caudal order) the Pr5VL, Pr5DM, Sp5O, Sp5I, and Sp5C. However, these nuclei are all located far from the midline and lateral to the facial nerve nucleus, unlike what the authors describe in the elephants. These rostrocaudal modules are expanded upon in Figure 2, and it is apparent from what is shown that the authors are attributing other brainstem nuclei to the putative trigeminal nuclei to confirm their conclusion. For example, what they identify as the inferior olive in Figure 2D is likely the lateral reticular nucleus as identified by Maseko et al (2013). This justification is not supported.

      (8) In primates and related species, there is a distinct banded appearance of the inferior olive, but what has been termed the inferior olive in the elephant by other authors does not have this appearance, rather, and specifically, the largest nuclear mass in the region (termed the principal nucleus of the inferior olive by Maseko et al, 2013, but Pr5, the principal trigeminal nucleus in the current paper) overshadows the partial banded appearance of the remaining nuclei in the region (but also drawn by the authors of the current paper). Thus, what is at debate here is whether the principal nucleus of the inferior olive can take on a nuclear shape rather than evince a banded appearance. The authors of this paper use this variance as justification that this cluster of nuclei could not possibly be the inferior olive. Such a "semi-nuclear/banded" arrangement of the inferior olive is seen in, for example, giraffe (10.1016/j.jchemneu.2007.05.003), domestic dog, polar bear, and most specifically the manatee (a close relative of the elephant) (brainmuseum.org; 10.1002/ar.20573). This justification is not supported.

      Thus, all the justifications forwarded by the authors are unsupported. Based on methodological concerns, prior comparative mammalian neuroanatomy, and prior studies in the elephant and closely related species, the authors fail to support their notion that what was previously termed the inferior olive in the elephant is actually the trigeminal sensory nuclei. Given this failure, the justifications provided above that are sequelae also fail. In this sense, the entire manuscript and all the sequelae are not supported.

      What the authors have not done is to trace the pathway of the large trigeminal nerve in the elephant brainstem, as was done by Maseko et al (2013), which clearly shows the internal pathways of this nerve, from the branch that leads to the fifth mesencephalic nucleus adjacent to the periventricular grey matter, through to the spinal trigeminal tract that extends from the pons to the spinal cord in a manner very similar to all other mammals. Nor have they shown how the supposed trigeminal information reaches the putative trigeminal nuclei in the ventromedial rostral medulla oblongata. These are but two examples of many specific lines of evidence that would be required to support their conclusions. Clearly, tract tracing methods, such as cholera toxin tracing of peripheral nerves cannot be done in elephants, thus the neuroanatomy must be done properly and with attention to detail to support the major changes indicated by the authors.

      So what are these "bumps" in the elephant brainstem?

      Four previous authors indicate that these bumps are the inferior olivary nuclear complex. Can this be supported?

      The inferior olivary nuclear complex acts "as a relay station between the spinal cord (n.b. trigeminal input does reach the spinal cord via the spinal trigeminal tract) and the cerebellum, integrating motor and sensory information to provide feedback and training to cerebellar neurons" (https://www.ncbi.nlm.nih.gov/books/NBK542242/). The inferior olivary nuclear complex is located dorsal and medial to the pyramidal tracts (which were not labelled in the current study by the authors but are clearly present in Fig. 1C and 2A) in the ventromedial aspect of the rostral medulla oblongata. This is precisely where previous authors have identified the inferior olivary nuclear complex and what the current authors assign to their putative trigeminal nuclei. The neurons of the inferior olivary nuclei project, via the olivocerebellar tract to the cerebellum to terminate in the climbing fibres of the cerebellar cortex.

      Elephants have the largest (relative and absolute) cerebellum of all mammals (10.1002/ar.22425), this cerebellum contains 257 x109 neurons (10.3389/fnana.2014.00046; three times more than the entire human brain, 10.3389/neuro.09.031.2009). Each of these neurons appears to be more structurally complex than the homologous neurons in other mammals (10.1159/000345565; 10.1007/s00429-010-0288-3). In the African elephant, the neurons of the inferior olivary nuclear complex are described by Maseko et al (2013) as being both calbindin and calretinin immunoreactive. Climbing fibres in the cerebellar cortex of the African elephant are clearly calretinin immunopositive and also are likely to contain calbindin (10.1159/000345565). Given this, would it be surprising that the inferior olivary nuclear complex of the elephant is enlarged enough to create a very distinct bump in exactly the same place where these nuclei are identified in other mammals?

      What about the myelin stripes? These are most likely to be the origin of the olivocerebellar tract and probably only have a coincidental relationship with the trunk. Thus, given what we know, the inferior olivary nuclear complex as described in other studies, and the putative trigeminal nuclear complex as described in the current study, is the elephant inferior olivary nuclear complex. It is not what the authors believe it to be, and they do not provide any evidence that discounts the previous studies. The authors are quite simply put, wrong. All the speculations that flow from this major neuroanatomical error are therefore science fiction rather than useful additions to the scientific literature.

      What do the authors actually have?<br /> The authors have interesting data, based on their Golgi staining and analysis, of the inferior olivary nuclear complex in the elephant.

    3. Reviewer #3 (Public Review):

      Summary:<br /> The study claims to investigate trunk representations in elephant trigeminal nuclei located in the brainstem. The researchers identified large protrusions visible from the ventral surface of the brainstem, which they examined using a range of histological methods. However, this ventral location is usually where the inferior olivary complex is found, which challenges the author's assertions about the nucleus under analysis. They find that this brainstem nucleus of elephants contains repeating modules, with a focus on the anterior and largest unit which they define as the putative nucleus principalis trunk module of the trigeminal. The nucleus exhibits low neuron density, with glia outnumbering neurons significantly. The study also utilizes synchrotron X-ray phase contrast tomography to suggest that myelin-stripe-axons traverse this module. The analysis maps myelin-rich stripes in several specimens and concludes that based on their number and patterning they likely correspond with trunk folds; however, this conclusion is not well supported if the nucleus has been misidentified.

      Strengths:<br /> The strength of this research lies in its comprehensive use of various anatomical methods, including Nissl staining, myelin staining, Golgi staining, cytochrome oxidase labeling, and synchrotron X-ray phase contrast tomography. The inclusion of quantitative data on cell numbers and sizes, dendritic orientation and morphology, and blood vessel density across the nucleus adds a quantitative dimension. Furthermore, the research is commendable for its high-quality and abundant images and figures, effectively illustrating the anatomy under investigation.

      Weaknesses:<br /> While the research provides potentially valuable insights if revised to focus on the structure that appears to be the inferior olivary nucleus, there are certain additional weaknesses that warrant further consideration. First, the suggestion that myelin stripes solely serve to separate sensory or motor modules rather than functioning as an "axonal supply system" lacks substantial support due to the absence of information about the neuronal origins and the termination targets of the axons. Postmortem fixed brain tissue limits the ability to trace full axon projections. While the study acknowledges these limitations, it is important to exercise caution in drawing conclusions about the precise role of myelin stripes without a more comprehensive understanding of their neural connections.

      Second, the quantification presented in the study lacks comparison to other species or other relevant variables within the elephant specimens (i.e., whole brain or brainstem volume). The absence of comparative data for different species limits the ability to fully evaluate the significance of the findings. Comparative analyses could provide a broader context for understanding whether the observed features are unique to elephants or more common across species. This limitation in comparative data hinders a more comprehensive assessment of the implications of the research within the broader field of neuroanatomy. Furthermore, the quantitative comparisons between African and Asian elephant specimens should include some measure of overall brain size as a covariate in the analyses. Addressing these weaknesses would enable a richer interpretation of the study's findings.

    1. Reviewer #1 (Public Review):

      The manuscript by Zhu and colleagues aimed to clarify the importance of isoform diversity of PCDHg in establishing cortical synapse specificity. The authors optimized 5' single-cell sequencing to detect cPCDHg isoforms and showed that the pyramidal cells express distinct combinations of PCDHg isoforms. Then, the authors conducted patch-clamp recordings from cortical neurons whose PCDHg diversity was disrupted. In the elegant experiment in Figure 3, the authors demonstrated that the neurons expressing the same sets of cPCDHg isoforms are less likely to form synapses with each other, suggesting that identical cPCDHg isoforms may have a repulsive effect on synapse formation. Importantly, this phenomenon was dependent on the similarity of the isoforms present in neurons but not on the amount of proteins expressed.

      The authors have addressed most criticisms raised in the initial review and the manuscript has improved significantly. One of the major concerns in the first review was whether PCDHg isoforms, which are expressed at a much lower level than C-type isoforms, have true physiological significance. The authors conducted additional experiments to address this point by using PCDHg cKO and provided convincing data supporting their conclusion. The results from PCDHg C4 overexpression, showing no impact on synaptic connectivity, further clarified the importance of isoforms. The limitation of the paper is that most experiments relied on overexpression of isoforms. Whether the isoform diversity is necessary for the synapse refinement in a physiological condition remains further clarification.

    2. Reviewer #2 (Public Review):

      This short manuscript by Zhu et al. describes an investigation into the role of gamma protocadherins in synaptic connectivity in the mouse cerebral cortex. First, the authors conduct a single-cell RNA-seq survey of postnatal day 11 mouse cortical neurons, using an adapted 10X Genomics method to capture the 5' sequences that are necessary to identify individual gamma protocadherin isoforms (all 22 transcripts share the same three 3' "constant" exons, so standard 3'-biased methods can't distinguish them). This method adaptation is an advance for examining individual clustered protocadherin transcripts, and it is helpful to publish the method in this manuscript. The results largely confirm what was known from other approaches, which is that a few of the 19 A and B subtype gamma protocadherins are expressed in an apparently stochastic and combinatorial fashion in each cortical neuron, while the 3 C subtype genes are expressed by most neurons. Second, using elegant paired electrophysiological recordings, the authors show that in gamma protocadherin knockout cortical slices, the likelihood of two neurons on layers 2/3 being synaptically connected is increased. That suggests that gamma protocadherins generally inhibit synaptic connectivity in the cortex; again, this has been reported previously using morphological assays, but it is helpful to see it confirmed here with physiology. Finally, the authors use an impressive sequential in utero electroporation method to provide evidence that the degree of isoform matching between two neurons negatively regulates their reciprocal synaptic connectivity. These are difficult experiments to do, and while some caveats remain (e.g., lack of demonstration of protein levels in electroporated neurons, lack of resolution of the differences between the present results and those of other papers, a focus on C4 rather than C3 or C5 when considering the highly expressed C-type isoforms), the main result is consistent. Strengths of this manuscript include the impressive methodology and improved demonstration of the previously-reported finding that gamma protocadherins work via homophilic matching to put a brake on synapse formation in the cortex. Because of the unique organization and expression pattern of the gamma protocadherins, it is not likely that these results will be broadly applicable to the general understanding of the role of cell adhesion molecules in synapse development. However, the methodology, which is now better described, should be applicable more broadly and the improved demonstration of the role of gamma protocadherin's negative role in cortical synaptogenesis is helpful in confirming earlier studies. There are several differences between the results here and those of other papers on the cortex, as well as those examining other neuronal populations such as spinal cord. The present findings do not resolve them, but adopting genetic approaches rather than overexpression in the future should help.

    1. Reviewer #1 (Public Review):

      Hyperactivation of mTOR signaling causes epilepsy. It has long been assumed that this occurs through overactivation of mTORC1, since treatment with the mTORC1 inhibitor rapamycin suppresses seizures in multiple animal models. However, the recent finding that genetic inhibition of mTORC1 via Raptor deletion did not stop seizures while inhibition of mTORC2 did, challenged this view (Chen et al, Nat Med, 2019). In the present study, the authors tested whether mTORC1 or mTORC2 inhibition alone was sufficient to block the disease phenotypes in a model of somatic Pten loss-of-function (a negative regulator of mTOR). They found that inactivation of either mTORC1 or mTORC2 alone normalized brain pathology but did not prevent seizures, whereas dual inactivation of mTORC1 and mTORC2 prevented seizures. As the functions of mTORC1 versus mTORC2 in epilepsy remain unclear, this study provides important insight into the roles of mTORC1 and mTORC2 in epilepsy caused by Pten loss and adds to the emerging body of evidence supporting a role for both complexes in the disease development.

      Strengths:<br /> The animal models and the experimental design employed in this study allow for a direct comparison between the effects of mTORC1, mTORC2, and mTORC1/mTORC2 inactivation (i.e., same animal background, same strategy and timing of gene inactivation, same brain region, etc.). Additionally, the conclusions on brain epileptic activity are supported by analysis of multiple EEG parameters, including seizure frequencies, sharp wave discharges, interictal spiking, and total power analyses.

      Weaknesses:<br /> The original concerns regarding the hippocampal contribution to the seizure phenotypes in this Pten loss-of-function model have been addressed with the inclusion of new data in the revised manuscript.

      The issue of sample sizes being small and do not allow for the assessment of whether mTORC1 or mTORC2 inactivation reduces seizure frequency or incidence remains a limitation of the study. However, the study's main conclusion that spontaneous seizures and epileptiform activity persist following inactivation of mTORC1 or mTORC2 alone while it is rescued following inactivation of both mTORC1 and mTORC2 is supported by the provided data and remains valid.

    2. Reviewer #2 (Public Review):

      Summary: The study by Cullen et al presents intriguing data regarding the contribution of mTOR complex 1 (mTORC1) versus mTORC2 or both in Pten-null induced macrocephaly and epileptiform activity. The role of mTORC2 in mTORopathies, and in particular Pten loss-off-function (LOF)-induced pathology and seizures, is understudied and controversial. In addition, recent data provided evidence against the role of mTORC1 in PtenLOF-induced seizures. To address these controversies and the contribution off these mTOR complexes in PtenLOF-induced pathology and seizures, the authors injected a AAV9-Cre into the cortex of conditional single, double and triple transgenic mice at postnatal day 0 to remove Pten, Pten+Raptor or Rictor, and Pten+raptor+rictor. Raptor and Rictor are essentially binding partners of mTORC1 and mTORC2, respectively. One major finding is that despite preventing the mild macrocephaly and increased cell size, Raptor knockout (KO, decrease mTORC1 activity) did not prevent the occurrence of seizures and the rate of SWD event, and aggravated seizure duration. Similarly, Rictor KO (decreased mTORC2 activity) partially prevented the mild macrocephaly and increased cell size but did not prevent the occurrence of seizures and did not affect seizure duration. However, Rictor KO reduced the rate of SWD events. Finally, the pathology and seizure/SWD activity were fully prevented in the double KO. These data suggest the contribution of both increased mTORC1 and mTORC2 in the pathology and epileptic activity of Pten LOF mice, emphasizing the importance of blocking both complexes for seizure treatment. Whether these data apply to other mTORopathies due to Tsc1, Tsc2, mTOR, AKT or other gene variants remain to be examined.

      Strengths: The strengths are as follow: 1) they address an important and controversial question that has clinical application, 2) the study uses a reliable and relatively easy method to KO specific genes in cortical neurons, based on AAV9 injections in pups. 2) they perform careful video-EEG analyses correlated with some aspects of cellular pathology.

      Weaknesses: the study has nevertheless a few weaknesses: 1) the conclusions are perhaps a bit overstated. The data do not show that increased mTORC1 or mTORC2 are sufficient to cause epilepsy. But the data clearly show that both increased mTORC1 and mTORC2 activity contribute to the pathology and seizure activity and as such are necessary for seizures to occur. 2) the data related to the EEG would benefit from having more mice. Adding more mice would have help determine whether there is a decrease in seizure activity with the Rictor or Raptor KO. 3) it would have been interesting to examine the impact of mTORC2 and mTORC1 overexpression related to point #1 above.

      The authors properly addressed my comments. Number 3 above was only a suggestion that could be a follow-up in another study.

    3. Reviewer #3 (Public Review):

      Summary: This study investigated the role of mTORC1 and 2 in a mouse model of developmental epilepsy which simulates the epilepsy in cortical malformations. Given activation of genes such as PTEN activate TORC1, and this is considered to be excessive in cortical malformations, the authors asked whether inactivating mTORC1 and 2 would ameliorate the seizures and malformation in the mouse model. The work is highly significant because a new mouse model is used where Raptor and Rictor, which regulate mTORC1 and 2 respectively, were inactivated in one hemisphere of the cortex. The work is also significant because the deletion of both Raptor and Rictor improved the epilepsy and malformation. In the mouse model, the seizures were generalized or there were spike wave discharges (SWD). They also examined the interictal EEG. The malformation was manifested by increased cortical thickness and soma size.

      Strengths: The presentation and writing is strong. Quality of data are strong. The data support the conclusions for the most part. The results are significant: Generalized seizures and SWDs were reduced when both Torc1 and 2 were inactivated but not when one was inactivated.

      Weaknesses: One of the limitations is a somewhat small sample size. Another is that there was hippocampal expression. A third is that recordings of seizures were not continuous and different for each mouse. Another concern is they only measured layer II/III neurons.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This study examines a hypothesized link between autism symptomatology and efference copy mechanisms. This is an important question for several reasons. Efference copy is both a critical brain mechanism that is key to rapid sensorimotor behaviors, and one that has important implications for autism given recent empirical and theoretical work implicating atypical prediction mechanisms and atypical reliance on priors in ASD.

      The authors test this relationship in two different experiments, both of which show larger errors/biases in spatial updating for those with heightened autistic traits (as measured by AQ in neurotypical (NT) individuals).

      Strengths:<br /> The empirical results are convincing - effects are strong, sample sizes are sufficient, and the authors also rule out alternative explanations (ruling out differences in motor behavior or perceptual processing per se).

      Weaknesses:<br /> My main concern is that the paper should be more transparent about both (1) that this study does not include individuals with autism, and (2) acknowledging the limitations of the AQ.

      On the first point, and I don't think this is intentional, there are several instances where the line between heightened autistic traits in the NT population and ASD is blurred or absent. For example, in the second sentence of the abstract, the authors state "Here, we examine the idea that sensory overload in ASD may be linked to issues with efference copy mechanisms". I would say this is not correct because the authors did not test individuals with ASD. I don't see a problem with using ASD to motivate and discuss this work, but it should be clear in key places that this was done using AQ in NT individuals.

      For the second issue, the AQ measure itself has some problems. For example, reference 38 in the paper (a key paper on AQ) also shows that those with high AQ skew more male than modern estimates of ASD, suggesting that the AQ may not fully capture the full spectrum of ASD symptomatology. Of course, this does not mean that the AQ is not a useful measure (the present data clearly show that it captures something important about spatial updating during eye movements), but it should not be confused with ASD, and its limitations need to be acknowledged. My recommendation would be to do this in the title as well - e.g. note impaired visuomotor updating in individuals with "heightened autistic traits".

      Suggestions for improvement:<br /> - Figure 5 is really interesting. I think it should be highlighted a bit more, perhaps even with a model that uses the results of both tasks to predict AQ scores.<br /> - Some discussion of the memory demands of the tasks will be helpful. The authors argue that memory is not a factor, but some support for this is needed.<br /> - With 3 sessions for each experiment, the authors also have data to look at learning. Did people with high AQ get better over time, or did the observed errors/biases persist throughout the experiment?

    2. Reviewer #2 (Public Review):

      Summary:<br /> The idea that various clinical conditions may be associated, at least partially, with a disrupted corollary discharge mechanism has been present for a long time.

      In this paper, the authors draw a link between sensory overload, a characteristic of autism spectrum disorder, and a disturbance in the corollary discharge mechanism. The authors substantiate their hypothesis with strong evidence from both the motor and perceptual domains. As a result, they broaden the clinical relevance of the corollary discharge mechanism to encompass autism spectrum disorder.

      The authors write:<br /> "Imagine a scenario in which you're watching a video of a fast-moving car on a bumpy road. As the car hits a pothole, your eyes naturally make quick, involuntary saccades to keep the car in your visual field. Without a functional efference copy system, your brain would have difficulty accurately determining the current position of your eye in space, which in turn affects its ability to anticipate where the car should appear after each eye movement."

      I appreciate the use of examples to clarify the concept of efference copy. However, I believe this example is more related to a gain-field mechanism, informing the system about the position of the eye with respect to the head, rather than an example of efference copy per se.

      Without an efference copy mechanism, the brain would have trouble accurately determining where the eyes will be in space after an eye movement, and it will have trouble predicting the sensory consequences of the eye movement. However it can be argued that the gain-field mechanism would be sufficient to inform the brain about the current position of the eyes with respect to the head.

      The authors write:<br /> "In the double-step paradigm, two consecutive saccades are made to briefly displayed targets 21, 22. The first saccade occurs without visual references, relying on internal updating to determine the eye's position."

      Maybe I have missed something, but in the double-step paradigm the first saccade can occur without the help of visual references if no visual feedback is present, that is, when saccades are performed in total darkness. Was this the case for this experiment? I could not find details about room conditions in the methods. Please provide further details.

      In case saccades were not performed in total darkness, then the first saccade can be based on the remembered location of the first target presented, which can be derived from the retinotopic trace of the first stimuli, as well as the contribution from the surroundings, that is: the remembered relative location of the first target with respect to the screen border along the horizontal meridian (i.e. allocentric cues).

      A similar logic could be applied to the second saccade. If the second saccade were based only on the retinotopic trace, without updating, then it would go up and 45 deg to the right, based on the example shown in Figure 1. With appropriate updating, the second saccade would go straight up. However, if saccades were not performed in total darkness, then the location of the second target could also be derived from its relationship with the surroundings (for example, the remembered distance from screen borders, i.e. allocentric cues).

      If saccades were not performed in total darkness, the results shown in Figures 2 and 3 could then be related to i) differences in motor updating between AQ score groups; ii) differences in the use of allocentric cues between AQ score groups; iii) a combination of i) and ii). I believe this is a point worth mentioning in the discussion."

      The authors write:<br /> "According to theories of saccadic suppression, an efference copy is necessary to predict the occurrence of a saccade."

      I would also refer to alternative accounts, where saccadic suppression appears to arise as early as the retina, due to the interaction between the visual shift introduced by the eye movement, and the retinal signal associated with the probe used to measure saccadic suppression. This could potentially account for the scaling of saccadic suppression magnitude with saccade amplitude.

      Idrees, S., Baumann, M.P., Franke, F., Münch, T.A. and Hafed, Z.M., 2020. Perceptual saccadic suppression starts in the retina. Nature communications, 11(1), p.1977.

    3. Reviewer #3 (Public Review):

      Summary:<br /> This work examined efference copy related to eye movements in healthy adults who have high autistic traits. Efference copies allow the brain to make predictions about sensory outcomes of self-generated actions, and thus serve important roles in motor planning and maintaining visual stability. Consequently, disrupted efference copies have been posited as a potential mechanism underlying motor and sensory symptoms in psychopathology such as Autism Spectrum Disorder (ASD), but so far very few studies have directly investigated this theory. Therefore, this study makes an important contribution as an attempt to fill in this knowledge gap. The authors conducted two eye-tracking experiments examining the accuracy of motor planning and visual perception following a saccade and found that participants with high autistic traits exhibited worse task performance (i.e., less accurate second saccade and biased perception of object displacement), consistent with their hypothesis of less impact of efference copies on motor and visual updating. Moreover, the motor and visual biases are positively correlated, indicative of a common underlying mechanism. These findings are promising and can have important implications for clinical intervention if they can be replicated in a clinical sample.

      Strengths:<br /> The authors utilized well-established and rigorously designed experiments and sound analytic methods. This enables easy translations between similar work in non-human primates and humans and readily points to potential candidates for underlying neural circuits that could be further examined in follow-up studies (e.g., superior colliculus, frontal eye fields, mediodorsal thalamus). The finding of no association between initial saccade accuracy and level of autistic trait in both experiments also serves as an important control analysis and increases one's confidence in the conclusion that the observed differences in task performance were indeed due to disrupted efference copies, not confounding factors such as basic visual/motor deficits or issues with working memory. The strong correlation between the observed motor and visual biases further strengthens the claim that the findings from both experiments may be explained by the same underlying mechanism - disrupted efference copies. Lastly, the authors also presented a thoughtful and detailed mechanistic theory of how efference copy impairment may lead to ASD symptomatology, which can serve as a nice framework for more research into the role of efference copies in ASD.

      Weaknesses:<br /> Although the paper has a lot of strengths, the main weakness of the paper is that a direct link with ASD symptoms (i.e., sensory overload and motor inflexibility as the authors suggested) cannot be established. First of all, the participants are all healthy adults who do not meet the clinical criteria for an ASD diagnosis. Although they could be considered a part of the broader autism phenotype, the results cannot be easily generalized to the clinical population without further research. Secondly, the measure used to quantify the level of autistic traits, Autistic Quotient (AQ), does not actually capture any sensory or motor symptoms of ASD. Therefore, it is unknown whether those who scored high on AQ in this study experienced high, or even any, sensory or motor difficulties. In other words, more evidence is needed to demonstrate a direct link between disrupted efference copies and sensory/motor symptoms in ASD.

    1. Reviewer #2 (Public Review):

      The authors repeated a previous behavioural study on the effects of overnight fasting on avoidance and extinction learning in healthy female participants in the 3T MRI scanner. Previous behavioural findings were replicated only in part. Fasting related changes of fMRI signals were less than expected.

      This paper is not without interest. Anxiety disorders are very frequent, and there is still a need to better understand ways to improve extinction and reduced avoidance. The authors follow up on previous observations of their group using overnight fasting. The findings, however, were largely negative, and it is difficult to tell how robust the observed positive findings are. The paradigm did not work as well as expected in the MR scanner.

      Introduction/main hypothesis: The reviewer does not understand why a smaller reward prediction error should result in faster extinction learning? The opposite should be the case. Plus, how much of a reward prediction error is expected in the CS- condition in extinction training? Here the US omission is expected. The reviewer may miss a key concept of the study.

      Results: A major part of the behavioural data of a previous pure behavioural study was not reproduced (avoidance learning), plus many of the MRI findings did not show a difference between the fasting and re-feed groups. Given the large amount of comparisons it makes one wonder how robust the presented findings are. The advances to the field are therefore limited.

    1. Reviewer #1 (Public Review):

      Summary:

      Walsh and colleagues investigated how cued probabilistic expectations about future stimuli may influence different stages of decision-making as implemented in the human brain. In their study, participants were provided with cues that could correctly (or incorrectly) cue which visual stimulus would be presented. These cues also predicted the motor action that would likely produce a correct judgment for that trial. In addition a 'neutral' cue was included that did not predict any particular stimulus. They report that measures of steady-state visual evoked potentials (SSVEPs, proposed to index the magnitude of visual neural activity in favour of the correct response) were smaller when the cue incorrectly predicted the upcoming image, compared to when an accurate cue or a neutral cue was presented. Their primary finding adds to an ongoing debate in the field of decision-making research about how cued expectations may influence how we make decisions.

      Strengths:

      This study uses a carefully-constructed experiment design and decision-making task that allows separation of multiple electroencephalographic (EEG) signals thought to track different stages of decision-making. For example, the steady-state visual evoked potential measures can be cleanly dissociated from more anterior beta-band activity over motor cortex. They also allow evaluation of how cued expectancy effects may unfold over a number of testing sessions. This is important because the most consistent evidence of expectation-related modulations of electrophysiological measures (using EEG, local field potentials or single neuron firing rates) is from studies of non-human primates that involved many days of cue-stimulus contingency learning, and there is a lack of similar work using several testing sessions in humans. Although there were several experimental conditions included in the study, careful trial-balancing was conducted to minimise biases due to incidental differences in the numbers of trials included for analyses across each condition. Performance for each individual was also carefully calibrated to maximise the possibility of identifying subtle changes in task performance by expectation and avoid floor or ceiling effects.

      Weaknesses:

      Although the experiment and analysis methods are cohesive and well-designed, there are some shortcomings that limit the inferences that can be drawn from the presented findings.

      The first relates to the measures of SSVEPs and their relevance for decision-making in the task. In order to eliminate the influence of sporadic pulses of contrast changes that occurred during stimulus presentation, a time window of 680-975 ms post stimulus onset was used to measure the SSVEPs. As shown in the response time quantile plot in Supplementary Figure S1, a substantial portion of response times are earlier than all, or a portion of, the time period included in the SSVEP measurement window. It has also been estimated to require 70-100 ms to execute a motor action (e.g., a keypress response) following the commitment to a decision. This raises some concerns about the proportion of trials in which the contrast-dependent visual responses (indexed by the stimulus-locked SSVEPs) indexed visual input that was actually used to make the decision in a given trial. While response-locked SSVEP plots are provided, statistical analyses testing for differences during the pre-response period were not performed. Standard errors in Figure 4D (depicting differences in SSVEPs for validly and invalidly cued trials) partly overlap with zero during the pre-response time window. There is no strong evidence for clear SSVEP modulations in any specific time windows leading to the response.

      In addition, an argument is made for changes in the evidence accumulation rate (called the drift rate) by stimulus expectancy, corresponding to the observed changes in SSVEP measures and differences in the sensory encoding of the stimulus. As the authors acknowledge, this inference is limited by the fact that evidence accumulation models (such as the Diffusion Decision Model) were not used to test for drift rate changes as could be determined from the behavioural data (by modelling response time distributions). Plots of response quantiles in Supplementary Figure S1 also do not show a typical pattern that indicates changes in the drift rate (i.e., larger differences between validly and invalidly cued trials for relatively slower response time quantiles). There appear to be ample numbers of trials per participant to test for drift rate changes in addition to the starting point bias captured in earlier models. Due to the very high number of trials, models could potentially be evaluated for each single participant, although modelling would be substantively complicated by effects of the pulses of contrast changes, as noted by the authors. This could be done in future work (in experiments without contrast pulses) and would provide more direct evidence for drift rate changes than the findings based on the SSVEPs, particularly due to the issues with the measurement window relating to the response times as mentioned above.

      In addition, there is some uncertainty regarding how to interpret the SSVEP effects in relation to phenomena such as expectation suppression enabled via sharpening or dampening effects. The measure used in this study is marginal SSVEPs, indexing the difference in SSVEP amplitudes between relatively higher- and lower-contrast gratings (termed target and non-target gratings). The observed increase in marginal SSVEPs for validly as compared to invalidly cued trials could arise due to an increase in SSVEP amplitudes for target grating orientations, a decrease for non-target orientations, a combination of these two, or even an increase or decrease for both target and non-target SSVEPs (with a larger increase/decrease for the target or non-target orientation). Some analyses were performed to investigate predictive cueing effects on target as compared to non-target SSVEPs, but these did not provide clear evidence that favoured a specific interpretation. This should be considered when interpreting the SSVEP effects in relation to different variants of expectation suppression that have been proposed in the literature.

    2. Reviewer #2 (Public Review):

      Summary:

      We often have prior expectations about how the sensory world will change, but it remains an open question as to how these expectations are integrated into perceptual decisions. In particular, scientists have debated whether prior knowledge principally changes the decisions we make about the perceptual world, or directly alters our perceptual encoding of incoming sensory evidence.

      The authors aimed to shed light on this conundrum by using a novel psychophysical task while measuring EEG signals that have previously been linked to either the sensory encoding or response selection phase of perceptual choice. The results convincingly demonstrate that both features of perceptual decision making are modulated by prior expectations - but that these biases in neural process emerge over different time courses (i.e., decisional signals are shaped early in learning, but biases in sensory processing are slower to emerge).

      Another interesting observation unearthed in the study - though not strictly linked to this perceptual/decisional puzzle - is that neural signatures of focused attention are exaggerated on trials where participants are given neutral (i.e. uninformative) cues. This is consistent with the idea that observers are more attentive to incoming sensory evidence when they cannot rely on their expectations.

      In general, I think the study makes a strong contribution to the literature, and does an excellent job of separating 'perceiving' from 'responding'. More perhaps could have been done though to separate 'perceiving' and 'responding' from 'deciding' (see below).

      Strengths:

      The work is executed expertly and focuses cleverly on two features of the EEG signals that can be closely connected to specific loci of the perceptual decision making process - the SSVEP which connects closely to sensory (visual) encoding, and Mu-Beta lateralisation which connects closely to movement preparation. This is a very appropriate design choice given the authors' research question.

      Another advantage of the design is the use of an unusually long training regime (i.e., for humans) - which makes it possible to probe the emergence of different expectation biases in the brain over different timecourses, and in a way that may be more comparable to work with nonhuman animals (who are routinely trained for much longer than humans).

      Weaknesses:

      In my view, the principal shortcoming of this study is that the experimental task confounds expectations about stimulus identity with expectations about to-be-performed responses. That is, cues in the task don't just tell participants what they will (probably) see, but what they (probably) should do.

      In many respects, this feature of the paradigm might seem inevitable, as if specific stimuli are not connected to specific responses, it is not possible to observe motor preparation of this kind (e.g., de Lange, Rahnev, Donner & Lau, 2013 - JoN).

      However, the theoretical models that the authors focus on (e.g., drift diffusion models) are models of decision (i.e., commitment to a proposition about the world) as much as they are models of choice (i.e., commitment to action). Expectation researchers interested in these models are often interested in asking whether predictions influence perceptual processing, perceptual decision and/or response selection stages (e.g., Feuerriegel, Blom & Hoogendorn, 2021 - Cortex), and other researchers have shown that parameters like drift bias and start point bias can be shifted in paradigms where observers cannot possibly prepare a response (e.g., Thomas, Yon, de Lange & Press, 2020 - Psych Sci).

      The present paradigm used by Walsh et al makes it possible to disentangle sensory processing from later decisional processes, but it blurs together the processes of deciding about the stimulus and choosing/initiating the response. This ultimately limits the insights we can draw from this study - as it remains unclear whether rapid changes in motor preparation we see reflect rapid acquisition of new decision criterion or simple cue-action learning. I think this would be important for comprehensively testing the models the authors target - and a good avenue for future work.

      In revising the manuscript after an initial round of revisions, the authors have done a good job of acknowledging these complexities - and I don't think that any of these outstanding scientific puzzles detract from the value of the paper as a whole.

    3. Reviewer #3 (Public Review):

      Observers make judgements about expected stimuli faster and more accurately. How expectations facilitate such perceptual decisions remains an ongoing area of investigation, however, as expectations may exert their effects in multiple ways. Expectations may directly influence the encoding of sensory signals. Alternatively (or additionally), expectations may influence later stages of decision-making, such as motor preparation, when they bear on the appropriate behavioral response.

      In the present study, Walsh and colleagues directly measured the effect of expectations on sensory and motor signals by making clever use of the encephalogram (EEG) recorded from human observers performing a contrast discrimination task. On each trial, a predictive cue indicated which of two superimposed stimuli would likely be higher contrast and, therefore, whether a left or right button press was likely to yield a correct response. Deft design choices allowed the authors to extract both contrast-dependent sensory signals and motor preparation signals from the EEG. The authors provide compelling evidence that, when predictive cues provide information about both a forthcoming stimulus and the appropriate behavioral response, expectation effects are immediately manifest in motor preparation signals and only emerge in sensory signals after extensive training.

      Future work should attempt to reconcile these results with related investigations in the field. As the authors note, several groups have reported expectation-induced modulation of sensory signals (using both fMRI and EEG/MEG) on shorter timescales (e.g. just one or two sessions of a few hundred trials, versus the intensive multi-session study reported here). One interesting possibility is that perceptual expectations are not automatic but demand the deployment of feature-based attention, while motor preparation is comparatively less effortful and so dominates when both sources of information are available, as in the present study. This hypothesis is consistent with the authors' thoughtful analysis showing decreased neural signatures of attention over posterior electrodes following predictive cues. Therefore, observing the timescale of sensory effects using the same design and methods (facilitating direct comparison with the present work), but altering task demands slightly such that cues are no longer predictive of the appropriate behavioral response, could be illuminating.

    1. Reviewer #1 (Public Review):

      Summary:

      This study investigated behavioural performance on a competing speech task and neural attentional filtering over the course of two years in a group of middle-aged to older adults. Neural attentional filtering was quantified using EEG by comparing neural envelope tracking to an attended vs. an unattended sentence. This dataset was used to examine the stability of the link between behavior and neural filtering over time. They found that neural filtering and behavior were correlated during each measurement, but EEG measures at the first timepoint did not predict behavioural performance two years later. Further, while behavioural measures showed relatively high test-retest reliability, the neural filtering reliability was weak with an r value of 0.21. The authors conclude that neural tracking-based metrics have limited ability to predict longitudinal changes in listening behavior.

      Strengths:

      This study is novel in its tracking of behavioural performance and neural envelope tracking over time, and it includes an impressively large dataset of 105 participants. The manuscript is clearly written.

      Weaknesses:

      The weaknesses are minor, primarily concerning how the reviewers interpret their data. Specifically, the envelope tracking measure is often quite low, close to the noise floor, and this may affect test-retest reliability. Furthermore, the trajectories may be affected by accelerated age-related declines that are more apparent in neural tracking than in behaviour.

      Comments on revised version:

      The authors have satisfactorily addressed my previous comments and they present a strong case for the interpretation of their findings.

    2. Reviewer #2 (Public Review):

      Summary:<br /> This study examined the longitudinal brain-behaviour link between attentional neural filtering and listening behaviour among a sample of aging individuals. The results based on the latent change score modeling showed that neither attentional neural filtering at T1 nor its T1-T2 change predicted individual two-year listening performance change. The findings suggest that neural filtering and listening behaviour may follow independent developmental trajectories. This study focuses on an interesting topic and has the potential to contribute a better understanding of the neurobiological mechanisms of successful communication across the lifespan.

      Strengths:<br /> Although research suggests that speech comprehension is neurally supported by an attention-guided filter mechanism, the evidence on their causal association is limited. This study addresses this gap by testing longitudinal stability of neural filtering as a neural mechanism upholding listening performance, potentially shedding lights on translational efforts aiming at the preservation of speech comprehension abilities among aging individuals.

      The latent change score modeling approach is appropriately used as a tool to examine key developmental questions and distinguish the complex processes underlying lifespan development in brain and behaviour with longitudinal data.

      Weaknesses:<br /> Although the paper does have strengths in principle, the weaknesses of the paper are that the findings are merely based on a single listening task. Since both neural and behavioral indicators are derived from the same task, the results may be applicable only to this specific task, and it is difficult to extrapolate them to cognitive and listening abilities measured by the other tasks. Therefore, more listening tasks are required to comprehensively measure speech comprehension and neural markers.

      The age span of the sample is relatively large. Although no longitudinal change from T1 to T2 was found at the group-level, from the cross-sectional and longitudinal change results (see Figure 3), individuals of different age groups showed different development pattern. Particularly, individuals over the age of 70 show a clear downward trend in both neural filtering index and accuracy. Therefore, different results may be found based on different age groups, especially older groups. However, due to sample limitations, this study was unable to examine whether age has a moderating effect on this brain-behaviour link.

      In the Dichotic listening task, valid and invalid cues were manipulated. According to the task description, the former could invoke selective attention, whereas the latter could invoke divided attention. It is possible that under the two conditions, the neural filtering index may reflect different underlying cognitive processes, and thus may differ in its predictive effect on behavioral performance. The author could perform a more in-depth data analysis on indicators under different conditions.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The authors aimed to investigate the contribution of antigenic drift in the HA and NA genes of seasonal influenza A(H3N2) virus to their epidemic dynamics. Analyzing 22 influenza seasons before the COVID-19 pandemic, the study explored various antigenic and genetic markers, comparing them against indicators characterizing the epidemiology of annual outbreaks. The central findings highlight the significant influence of genetic distance on A(H3N2) virus epidemiology and emphasize the role of A(H1N1) virus incidence in shaping A(H3N2) epidemics, suggesting subtype interference as a key factor.

      Major Strengths:<br /> The paper is well-organized, written with clarity, and presents a comprehensive analysis. The study design, incorporating a span of 22 seasons, provides a robust foundation for understanding influenza dynamics. The inclusion of diverse antigenic and genetic markers enhances the depth of the investigation, and the exploration of subtype interference adds valuable insights.

      Major Weaknesses:<br /> While the analysis is thorough, some aspects require deeper interpretation, particularly in the discussion of certain results. Clarity and depth could be improved in the presentation of findings. Furthermore, the evolving dynamics of H3N2 predominance post-2009 need better elucidation.

    2. Reviewer #2 (Public Review):

      Summary: This paper aims to achieve a better understanding of how the antigenic or genetic compositions of the dominant influenza A viruses in circulation at a given time are related to key features of seasonal influenza epidemics in the US. To this end, the authors analyse an extensive dataset with a range of statistical, data science and machine learning methods. They find that the key drivers of influenza A epidemiological dynamics are interference between influenza A subtypes and genetic divergence, relative to the previous one or two seasons, in a broader range of antigenically related sites than previously thought.

      Strengths: A thorough investigation of a large and complex dataset.

      Weaknesses: The dataset covers a 21 year period which is substantial by epidemiological standards, but quite small from a statistical or machine learning perspective. In particular, it was not possible to follow the usual process and test predictive performance of the random forest model with an independent dataset.

    3. Reviewer #3 (Public Review):

      Summary:<br /> This paper explores the relationships among evolutionary and epidemiological quantities in influenza, using a wide range of datasets and features, and using both correlations and random forests to examine, primarily, what are the drivers of influenza epidemics. It's a strong paper representing a thorough and fascinating exploration of potential drivers, and it makes a trove of relevant data readily available to the community.

      Strengths:<br /> This paper makes links between epidemiological and evolutionary data for influenza. Placing each in the context of the other is crucial for understanding influenza dynamics and evolution and this paper does a thorough job of this, with many analyses and nuances. The results on the extent to which evolutionary factors relate to epidemic burden, and on interference among influenza types, are particularly interesting. The github repository associated with the paper is clear, comprehensive, and well-documented.

      Weaknesses:<br /> The format of the results section can be hard to follow, and we suggest improving readability by restructuring and simplifying in some areas. There are a range of choices made about data preparation and scaling; the authors could explore sensitivity of the results to some of these.

    1. Reviewer #2 (Public Review):

      Pheochromocytoma (PCC), a rare neuroendocrine tumor, is currently considered malignant, but non-surgical treatment options are very limited and there is an urgent need for more basic research to support the development of new therapeutic approaches. In the present work, the authors described the intra- and inter-tumor heterogeneity by performing scRNA-seq on tumor samples from five patients with PCC, and evaluated the corresponding PASS scores.

      Strengths: The tumor microenvironment of PCC was characterized and potential molecular classification criteria based on single-cell transcriptomics were proposed, offering new theoretical possibilities for the treatment of PCC. The article is logically written and the results are clearly presented.

      Weaknesses: I still have concerns about some of the article's content. My main concerns are: In this study, the authors seem to have demonstrated the inaccuracy of a subjective score (PASS) by another objective means (scRNA-seq). In fact, the multiparametric scoring systems such as PASS are no longer endorsed in the 2022 WHO guidelines. The PASS scoring system does not have a high positive predictive value for risk stratification of PCC metastasis, but "rule-out" of metastasis risk with a PASS score of <4 seems to be fairly reliable. Could the authors please explain why the PASS scores were chosen rather than the GAPP, m-GAPP, or COPPS scoring systems? If possible, please try to emphasize the importance and necessity of using the PASS scoring system, either by replacing it with a more acceptable scoring system or by deleting the relevant part, which does not seem to be very relevant to the subject of the article.

      Moreover, I noted the following statement in the text "There are no studies reporting the composition of immune cells in PCCs. The few published studies investigating the immune microenvironment of PCCs have been limited to the expression of PDL1 at the histological level and to assessment of the tumor mutation burden (TMB) at the genomic level, and these results only seem to suggest that PCCs are immune-cold (Bratslavsky et al, 2019; Guo et al, 2019; Pinato et al, 2017)." This statement is very wrong. The reason for this error may be that the authors did not adequately search and read the relevant literature. I noticed that almost all references in this paper are dated 2021 and earlier, which is surprising. Please update the references cited in this paper in a comprehensive and detailed manner; referring to literature published too early may lead to inadequate discussion or even one-sided or incorrect conclusions and conjectures.

      For example, the text statement "Combined with previously reported negative regulatory effects of kinases (such as RET, ALK, and MEK) on HLA-I expression on tumor cells (Brea et al., 2016; Oh et al., 2019), we speculate that the possible reason for inability in recruiting CD8+ T cells of kinase-type PCCs is the downregulation of HLA-I in tumor cells regulated by RET, while the mechanism of immune escape in metabolism-type PCCs (with antigen presentation ability) needs to be further explored. Our results also indicate that the application of immunotherapy to metabolism-type PCCs is likely unsuitable, while kinase-type PCCs may have the potential of combined therapy with kinase inhibitors and immunotherapy." is rather one-sided; in fact, the presence of immune escape in PCC, as the malignancy with the lowest tumor mutation compliance, has been well characterized, and the low number of infiltrating T cells in tumor tissue may be influenced by a variety of factors, such as the release of catecholamines, the expression of inhibitory receptors on the surface of T cells, and so on, although genetic mutation still plays the most crucial role. The Discussion section also has a lot of information that needs to be updated or corrected and expanded, so please rewrite the above section with sufficiently updated references.

      Below I have listed some references for the authors to read:

      Tufton N, Hearnden RJ, Berney DM, et al. The immune cell infiltrate in the tumour microenvironment of phaeochromocytomas and paragangliomas. Endocr Relat Cancer. 2022;29(11):589-598. Published 2022 Sep 19. doi:10.1530/ERC-22-0020<br /> Jin B, Han W, Guo J, et al. Initial characterization of immune microenvironment in pheochromocytoma and paraganglioma. Front Genet. 2022;13:1022131. Published 2022 Dec 7. doi:10.3389/fgene.2022.1022131<br /> Celada L, Cubiella T, San-Juan-Guardado J, et al. Pseudohypoxia in paraganglioma and pheochromocytoma is associated with an immunosuppressive phenotype. J Pathol. 2023;259(1):103-114. doi:10.1002/path.6026<br /> Calsina B, Piñeiro-Yáñez E, Martínez-Montes ÁM, et al. Genomic and immune landscape Of metastatic pheochromocytoma and paraganglioma. Nat Commun. 2023;14(1):1122. Published 2023 Feb 28. doi:10.1038/s41467-023-36769-6

    2. Reviewer #3 (Public Review):

      The main findings of this study are as follows: (1) The authors defined "metabolism-type" and "kinase-type" in unclassified sporadic PCC patients through the single-cell transcriptomics-based differentially expressed genes and functional enrichment analyses. (2) They identified the limitation of Pheochromocytoma of the Adrenal gland Scaled Score (PASS) system and suggested the combination of molecular diagnostic methods like scRNA-seq with pathological tools like PASS in aiding the clinical evaluation of PCCs. (3) Analysis of the PCC microenvironment revealed a lack of immune cell infiltration in both metabolism-type and kinase-type PCCs, while only the kinase-type PCC patient exhibited the low expression of HLA-Ⅰ that potentially regulated by RET, providing clues for the combined therapy with kinase inhibitors and immunotherapy in kinase-type PCC patients.

      The main strength of this manuscript is that it involves scRNA-seq analysis of an extremely rare tumor type-PCCs, which presents a single-cell transcriptomics-based molecular classification and microenvironment characterization of PCCs and further provides clues for potential therapeutic strategies to treat PCCs. The authors also validated the scRNA-seq analysis results (such as the expression levels of marker genes and the distribution of immune cells in the PCC microenvironment) with immunocytochemistry and multispectral immunofluorescent staining. In summary, the findings in this manuscript are quite interesting and significant, which will potentially be valuable for the molecular classification of PCCs.

    1. Reviewer #1 (Public Review):

      This work describes a new and powerful approach to a central question in ecology: what are the relative contributions of resource utilisation vs interactions between individuals in the shaping of an ecosystem? This approach relies on a very original quantitative experimental set-up whose power lies in its simplicity, allowing an exceptional level of control over ecological parameters and of measurement accuracy.

      In this experimental system, the shared resource corresponds to 10^12 copies of a fixed single stranded target DNA molecule to which 10^15 random single stranded DNA molecules (the individuals populating the ecosystem) can bind. The binding process is cycled, with a 1000x-PCR amplification step between successive binding steps. The composition of the population is monitored via high-throughput DNA sequencing. Sequence data analysis describes the change of population diversity over cycles. The results are interpreted using estimated binding interactions of individuals with the target resource, as well as estimated binding interactions between individuals and also self-interactions (that can all be directly predicted as they correspond to DNA-DNA interactions). A simple model provides a framework to account for ecosystem dynamics over cycles. Finally, the trajectory of some individuals with high frequency in late cycles is traced back to the earliest cycles at which they are detected by sequencing. Their propensities to bind the resource, to form hairpins or to form homodimers suggest how different interaction modes shape the composition of the population over cycles.

      The authors report a shift from selection for binding to the resource to interactions between individuals and self-interactions over the course of cycles as the main driver of their ecosystem. The outcome of the experiment is far from trivial as the individual-resource binding energy initially determines the relative enrichment of individuals, and then seems to saturate. The richness of the population dynamics observed with this simple system is thus comparable to that found in some natural ecosystems. The findings obtained with this new approach will likely guide the exploration of natural ecosystems in which parameters and observables are much less accessible.

      My review focuses mainly on experimental aspects of this work given my own expertise. The introduction exposes very convincingly the scientific context of this work, justifying the need for such an approach to address questions pertaining to ecology. The manuscript describes very clearly and rigorously the experimental set-up. The main strengths of this work are (i) the outstanding originality of the experimental approach and (ii) its simplicity. With this setup, central questions in ecology can be addressed in a quantitative manner, including the possibility to run trajectories in parallel to generalize the findings, as reported here. Technical aspects have been carefully implemented, from the design of random individuals bearing flanking regions for PCR amplification, binding selection and (low error) amplification protocols, and sequencing read-out whose depth is sufficient to capture the relevant dynamics. With this setup one can tune the relative contributions of binding selection vs amplification for instance (to disentangle forces that shape the ecosystem). One can also run cycles with new DNA individuals, designed with arbitrarily chosen resource binding vs self-binding, that are predicted to dominate depending on chosen ecological parameters. These exciting perspectives underlie the strong potential of the new approach described in the current study.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, the authors introduced ADSE, a SELEX-based protocol to explore the mechanism of emergency of species. They used DNA hybridization (to the bait pool, "resources") as the driving force for selection and quantitatively investigated the factors that may contribute to the survival during generation evolve (progress of SELEX cycle), revealing that besides individual-resource binding, the inter- and intra-individual interactions were also important features along with mutualism and parasitism.

      Strengths:<br /> The design of using pure biochemical affinity assay to study eco-evolution is interesting, providing an important viewpoint to partly explain the molecular mechanism of evolution.

    1. Reviewer #1 (Public Review):

      By identifying a loss of function mutant of IQCH in infertile patient, Ruan et al. shows that IQCH is essential for spermiogenesis by generating a knockout mouse model of IQCH. Similar to infertile patient with mutant of IQCH, Iqch knockout mice are characterized by a cracked flagellar axoneme and abnormal mitochondrial structure. Mechanistically, IQCH regulates the expression of RNA-binding proteins (especially HNRPAB), which are indispensable for spermatogenesis.

      Although this manuscript contains a potentially interesting piece of work that delineates a mechanism of IQCH that associates with spermatogenesis, this reviewer feels that a number of issues require clarification and re-evaluation for a better understanding of the role of IQCH in spermatogenesis. With the shortage of logics and supporting data, causal relationships are still not clear among IQCH, CaM, and HNRPAB. The most serious point in this manuscript could be that the authors try to generalize their interpretations with too simplified model from limited pieces of their data. The way the data and the logic are presented needs to be largely revised, and several interpretations should be supported by direct evidence.

    2. Reviewer #2 (Public Review):

      The manuscript of "IQCH regulates spermatogenesis by interacting with CaM to promote RNA-binding proteins' expression" from Ruan et al. identified a homozygous variant affect the splicing of IQCH in two infertile men from a Chinese family. The authors also generated a Iqch knockout mouse model to confirm the abnormal sperm phenotypes associated with IQCH deficiency. Further molecular biological assays supported the important role and mechanism of IQCH in spermatogenesis. This manuscript is informative for the clinical and basic research of male infertility.

    3. Reviewer #3 (Public Review):

      In this study, Ruan et al. investigate the role of the IQCH gene in spermatogenesis, focusing on its interaction with calmodulin and its regulation of RNA-binding proteins. The authors examined sperm from a male infertility patient with an inherited IQCH mutation as well as Iqch CRISPR knockout mice. The authors found that both human and mouse sperm exhibited structural and morphogenetic defects in multiple structures, leading to reduced fertility in Ichq-knockout male mice. Molecular analyses such as mass spectrometry and immunoprecipitation indicated that RNA-binding proteins are likely targets of IQCH, with the authors focusing on the RNA-binding protein HNRPAB as a critical regulator of testicular mRNAs. The authors used in vitro cell culture models to demonstrate an interaction between IQCH and calmodulin, in addition to showing that this interaction via the IQ motif of IQCH is required for IQCH's function in promoting HNRPAB expression. In sum, the authors concluded that IQCH promotes male fertility by binding to calmodulin and controlling HNRPAB expression to regulate the expression of essential mRNAs for spermatogenesis. These findings provide new insight into molecular mechanisms underlying spermatogenesis and how important factors for sperm morphogenesis and function are regulated.

      The strengths of the study include the use of mouse and human samples, which demonstrate a likely relevance of the mouse model to humans; the use of multiple biochemical techniques to address the molecular mechanisms involved; the development of a new CRISPR mouse model; ample controls; and clearly displayed results. There are some minor weaknesses in that more background details could be provided to the reader regarding the proteins involved; some assays could benefit from more rigorous quantification; some of the mouse testis images and analyses could be improved; and larger sample sizes, especially for the male mouse breeding tests, could be increased. Overall, the claims made the authors in this manuscript are well-supported by the data provided, but there some technical issues that, if addressed, could increase the robustness and rigor of the study.

      1. More background details are needed regarding the proteins involved, in particular IQ proteins and calmodulin. The authors state that IQ proteins are not well-represented in the literature, but do not state how many IQ proteins are encoded in the genome. They also do not provide specifics regarding which calmodulins are involved, since there are at least 5 family members in mice and humans. This information could help provide more granular details about the mechanism to the reader and help place the findings in context.

      2. The mouse fertility tests could be improved with more depth and rigor. There was no data regarding copulatory plug rate; data was unclear regarding how many WT females were used for the male breeding tests and how many litters were generated; the general methodology used for the breeding tests in the Methods section was not very explicitly or clearly described; the sample size of n=3 for the male breeding tests is rather small for that type of assay; and, given that ICHQ appears to be expressed in testicular interstitial cells (Fig. S10) and somewhat in other organs (Fig. S2), another important parameter of male fertility that should be addressed is reproductive hormone levels (e.g., LH, FSH, and testosterone). While normal epididymal size in Fig. S3 suggests that hormone (testosterone) levels are normal, epididymal size and/or weight were not rigorously quantified.

      3. The Western blots in Figure 6 should be rigorously quantified from multiple independent experiments so that there is stronger evidence supporting claims based on those assays.

      4. Some of the mouse testis images could be improved. For example, the PNA and PLCz images in Figure S7 are difficult to interpret in that the tubules do not appear to be stage-matched, and since the authors claimed that testicular histology is unaffected in knockout testes, it should be feasible to stage-match control and knockout samples. Also, the anti-ICHQ and CaM immunofluorescence in Figure S10 would benefit from some cell-type-specific co-stains to more rigorously define their expression patterns, and they should also be stage-matched.

    1. Reviewer #1 (Public Review):

      Kou and Kang et al. investigated the role of Notch-RBP-J signaling in regulating monocyte homeostasis. Specifically, they examined how a conditional knockout of Rbpj expression in monocytes though a Rbpjfl/fl Lyz2cre/cre mouse affects the homeostasis of Ly6Chi versus Ly6Clo monocytes. They discovered that Rbpj deficiency did not affect the percentage of Ly6Chi monocytes but instead, led to an accumulation of Ly6Clo monocytes in the peripheral blood. Using a comprehensive number of in vivo techniques to investigate the origin of this increase, the authors revealed that the accumulation of Rbpj deficient Ly6Clo monocytes was not due to an increase in bone marrow egress and homing and that this defect was cell intrinsic. However, EdU-labelling and apoptosis assays revealed that this defect was not due to an increase in proliferation nor conversion of Ly6Chi to Ly6Clo monocytes. Interestingly, it was revealed that Rbpj deficient Ly6Clo monocytes had increased expression of CCR2 and ablation of CCR2 expression reversed the accumulation of these cells in the periphery. Lastly, they discovered that Rbpj deficiency also led to downstream effects such as an accumulation of Ly6Clo monocytes in the lung tissue and increased CD16.2+ interstitial macrophages, presumably due to dysregulated monocyte differentiation and function.

      Their findings are interesting and highlight a previously unexplored association between Notch-RBP-J signaling and CCR2 expression in monocyte homeostasis, providing further insight into the distinct pathways that regulate Ly6Chi vs Ly6Clo monocyte subsets individually.

      The strengths of this paper include the use of multiple conditional genetic knock out mouse models to explore their hypothesis and the use of sophisticated in vivo techniques to study the major mechanisms involved in monocyte homeostasis. However, a major weakness of the paper is the exact role of how CCR2 compensates for the increase in Ly6Clo monocytes in the circulation in the RBP-J knockout mice as the authors showed no differences in their conversion, egress or homing back to the bone marrow. The authors were also unable to show that RBP-J knockout mice were functionally different in their response to CCL2 due to technical difficulties, which makes it challenging to conclude how CCR2 compensates for their trafficking patterns. Consequently the link between CCR2 and RBP-J remains correlative based on the data presented in the paper.

      The conclusions of this paper are mostly well substantiated from the experimental data but as mentioned above, the mechanism of how CCR2 relates to the increase in Ly6Clo monocytes in RBP-J knockout mice is still unclear. Nevertheless, this work will be of interest to immunologists and biologists working on Notch-signalling in diseases. In addition, the methods and data would be useful for researchers who are seeking to use the Rbpjfl/fl Lyz2cre/cre mouse model for their studies.

    2. Reviewer #2 (Public Review):

      The authors provide a compelling data to demonstrate that the Notch-related transcription factor RBP-J can influence the number of circulating and recruited monocytes. The authors first delete the Rbpj gene in the myeloid lineage (Lyz2) and show that, as a proportion, only Ly6Clo monocytes are increased in the blood. The authors then attempted to identify why these cells were increased in proportion but ruled out proliferation or reduced apoptosis. Next, they investigated the gene signature of Rbpj null monocytes using RNA-sequencing and identified elevated Ccr2 as a defining feature. Crossing the Rbpj null mice to Ccr2 null mice showed reduced numbers of Ly6Clo monocytes compared with Rbpj null alone. Finally, the authors identify that an increased burden of blood Ly6Clo monocytes is correlated with increased lung recruitment and expansion of lung interstitial macrophages.

      The main conclusion of the authors, that there is a 'cell intrinsic requirement of RBP-J for controlling blood Ly6CloCCR2hi monocytes' is strongly supported by the data. However, other claims and aspects of the study require clarification and further analysis of the data generated.

      Strengths<br /> The paper is well written and structured logically. The major strength of this study is the multiple technically challenging methods used to reinforce the main finding (e.g. parabiosis, adoptive transfer). The finding reinforces the fact that we still know little about how immune cell subsets are maintained in situ, and this study opens the way for novel future work. Importantly, the authors have generated an RNA-sequencing dataset that will prove invaluable for identifying the mechanism - they have promised public access to this data via GEO - it is expected this will be made accessible upon publication.

      Weaknesses - The main weakness of the study, is that although the main result is solidly supported, as written it is mostly descriptive in nature. For instance, there is no given mechanism by which RBP-J increases Ly6Clo monocytes. The authors conclude this is dependent on CCR2, however CCR2 deletion has a global effect on monocyte numbers and importantly in this study, it does not remove the Ly6Clo bias of cell proportions, if anything it seems to enhance the difference between the ly6C low and high populations in Rbpj null mice (figure 5C). This oversight in data interpretation likely occurred because: i) this experiment is missing a potentially important control (Lyz2cre/cre Ccr2RFP/RFP or RBP-J variations), and ii) lack of statistical comparisons between Ly6Clow and high subsets (e.g. two-way ANOVA design). In general, there seemed to be a focus on the Ly6C low cells, where the mechanism may be more identifiable in their precursors - likely the Ly6C high monocytes. Furthermore, the lack of this mechanism and data comparison may also be important, because it is possible that RBP-J signalling merely maintains the expression of Ly6C, rather than controls non-classical monocyte differentiation. In this case the comparison made for the sequencing data would be between Ly6C low non classical monocytes and 'artificially' Ly6C low classical monocytes. The basis of a population based on one marker is currently a widespread flaw in the field.

      Other specific weaknesses were identified (note these are in addition to the more important comments above):<br /> 1) The confirmation of knockout in supplemental figure 1A shows only a two third knockdown when this should be almost totally gone. The authors have confirmed this is perhaps poor primer design and cite a study which shows almost complete reduction in protein levels (though this could be made more clear).<br /> 2) Many figures (e.g. 1A) only show proportional data (%) when the addition of cell numbers would also be informative - for example, what if Ly6Chigh cells were decreasing, thus artificially increasing the proportion of Ly6Clo cells? Looking at figure 7B - where cell numbers are shown, it is clear that cell proportion differences often do not match number data - here RBP-J knockout also increases Ly6C high cells in number (but not %).<br /> 3) It was noted previously that many figures only have an n of 1 or 2 (e.g. 2B, 2C), the authors clarified that some of these displayed one dot to represent an experiment of multiple n.<br /> 4) There is incomplete analysis (e.g. Network analysis, comparison to subset-restricted gene expression) and interpretation of RNA-sequencing results (figure 4), additionally the difference between the genotypes in both monocyte subsets would provide a more complete picture and potentially reveal mechanisms<br /> 6) The experiments in figure 5 are missing a control (Lyz2cre/cre Ccr2RFP/RFP or the Rbpj+/+ versions) and may have been misinterpreted. For example if the control (RBP-J WT, CCR2 KO) was used then it would almost certainly show falling Ly6C low numbers compared to RBP-J WT CCR2 WT, but RBP-J KO CCR2 KO would still have more Ly6c low monocytes than RBP-J WT, CCR2 KO - meaning that the RBP-J function is independent of CCR2. I.e. Ly6c low numbers are mostly dependent on CCR2 but this is irrespective of RBP-J. Explained in another way, the normal ratio of Ly6C high to low is around 1.5 Ly6Chigh cells for every one Ly6Clow cell, this is flipped in the RBP-J knockout to 1 high to 1.25 low (the main finding of the paper), but when CCR2 is removed it actually becomes 1 high to 5 low (actual numbers 0.2% vs around 1%) - in which case all CCR2 removal is doing is lowering the number of monocytes and RBP-J's mechanism is independent of CCR2.<br /> 7) Figure 6 was difficult to interpret because of the lack of shown gating strategy. The authors state they copied the strategy from Schyns et al. however in order to review this correctly the authors should show a supplemental figure of their own gating.<br /> 8) Figure 7 has the same problem as figure 5, but this time has the correct control. CCR2 ablation has a global suppression of monocyte numbers however the increased ly6c low monocyte ratio is most likely still present in the DKO mice - the lower numbers reduce the clarity of the data. Additionally in Lung IM macrophages depletion of CCR2 in the DKO only had a partial effect in some cell types - so CCR2 is playing a role, but it is not fully dependent. A good comparison would be if they blocked PU.1 expression - the effect of RBP-J would also be muted but it doesn't mean anything in terms of mechanism. Statements about the origin of the cells may need to be removed due to lack of compelling evidence.<br /> 9) Even after being notified and acknowledging the study, the authors still have not referred to or cited a similar 2020 study in their manuscript. This study also investigated myeloid deletion of Rbpj (Zhang et al. 2020 - https://doi.org/10.1096/fj.201903086RR). Zhang et al identified that Ly6Clo alveolar macrophages were decreased in this model - it is intriguing to synthesise these two studies and hypothesise that the ly6c low monocytes steal the lung niche, but this was not discussed. The authors also indicated they looked at AM but saw no difference - perhaps they should look specifically at Ly6Clow AMs in their data to compare with this study?

    3. Reviewer #3 (Public Review):

      In this study, the authors investigate the role of the Notch signalling regulator RBP-J on Ly6Clow monocyte biology starting with the observation that RBP-J-deficient mice have increased circulating Ly6low monocytes. Using myeloid specific conditional mouse models, the authors investigate how RBP-J deficiency effects circulating monocytes and lung interstitial macrophages.<br /> A major strength of this study is that it provides compelling evidence that RBP-J is a novel, critical factor regulating Ly6Clow monocyte cell frequency in the blood. The authors demonstrate that RBP-J deficiency leads to increased Ly6Clow monocytes in the blood and lung and CD16.2+ interstitial macrophages in steady state. The authors use a number of different techniques to confirm this finding including bone marrow transplantation experiments and parabiosis.

      The main conclusion of the paper is that RBP-J controls the fate of Ly6ClowCCR2hi monocytes in a cell-intrinsic manner. This conclusion is strongly supported by the data provided. However, this paper is predominantly descriptive and further research is required to fully uncover the mechanisms by which RBP-J deficiency leads to Ly6Clo monocyte numbers increasing specifically in the blood and lungs and the consequence of RBP-J deficiency on Ly6C-low monocyte functionality.

      The authors have performed RNA-seq and more in-depth analysis of this sequencing may provide clues for uncovering the thus far elusive mechanism.

    1. Joint Public Review:

      TGN46 is a prominent TGN protein that cycles to the plasma membrane. It has been used as a TGN marker for many years, but its function has been unknown. This manuscript provides evidence that the luminal domain of TGN46 serves as a cargo receptor for incorporation of the soluble secretory protein PAUF into a class of TGN-derived carriers called CARTS. Interestingly, the luminal domain also plays an important role in the intracellular and intra-Golgi localization of TGN46, and it contains a positive signal for Golgi export in CARTS. They demonstrate that TGN46 loading into CARTS is not dependent on its cytosolic terminus using a deltaCT mutant. A speculative part of the manuscript proposes that the luminal domain of TGN46 might form biomolecular condensates that help to capture cargo proteins for export.

      This is a very nice study that makes a significant contribution to the field. New insights are obtained regarding the function of TGN46 and the role of its various domains. Various potential interpretations of the data are presented in a balanced and constructive way.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The present study addresses how the local abundance of metabolites impacts the biology of the tumor microenvironment. The authors enroll patients harboring kidney tumors and use freshly resected tumor material for metabolic studies. Specifically, the authors separate the adjacent normal kidney tissue from the tumor material and then harvest the interstitial fluid from the normal kidney (KIF) or the tumor (TIF) for quantitative metabolomics. The plasma samples from the patient are used for comparison. Additionally, the authors also compare metabolite levels in the plasma of patients with kidney versus lung cancer (or healthy donors) to address how specific tumor types might contribute to circulating levels of metabolites. Altogether, the authors find that the metabolite levels in the KIF and TIF, although vastly different than plasma, are largely overlapping. These findings indicate that tissue of origin appears to have a stronger role in determining the local metabolic environment of tumors than the genetics or biochemistry of the tumor itself.

      Strengths:<br /> The biggest strength of the current study is the use of human patient-derived samples. The cohort size (~50 patients) is relatively large, which adds to the rigor of the work. The work also relies on a small pool of metabolites that can be quantitatively measured using methods developed by the authors. Focusing on a smaller metabolic pool also likely increases the signal-to-noise ratio and enables the more rigorous determination of any underlying differences. The manuscript is well-written and highlights both the significance of the findings and also acknowledges many of the caveats. The recognition of the metabolic contributions of surrounding normal tissue as the primary driver of local nutrient abundance is a novel finding in the work, which can be leveraged in future studies.

      Weaknesses:<br /> The work has certain caveats, some of which have been already recognized by the authors. These include the use of steady-state metabolites and the possibility of cross-contamination of some TIF into the adjacent KIF. This study is also unable to distinguish the mechanisms driving the metabolic changes in KIF/TIF relative to circulating levels in plasma.

      The relative similarity of KIF and TIF is quite surprising. However, this interpretation is presently based on a sampling of only ~100 polar metabolites and ~200 lipid molecules. It is, perhaps, possible that future technological developments that enable more comprehensive quantitative metabolic profiling might distinguish between KIF and TIF composition.

      In vitro, tissue culture is recognized to suffer from 'non-physiological' nutrient dependencies, which are impacted by the composition of culture media. Thus, in vivo studies remain our current gold-standard in mechanistic studies of tumor metabolism. It is presently unclear whether the findings of this work will be recapitulated in any of the kidney cancer in vivo models and thus be functionally testable.

    2. Reviewer #2 (Public Review):

      The study employs quantitative metabolomic and lipidomic analyses to scrutinize tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples from renal cell carcinoma (RCC) patients. The authors delve into the intricate world of renal cell carcinoma and its tumor microenvironment, shedding light on the factors that shape nutrient availability in both cancerous and adjacent normal tissues. The authors prove that non-cancer-driven tissue factors play a dominant role in shaping nutrient availability in RCC. This finding opens up new avenues for research, suggesting that the tumor microenvironment is profoundly influenced by factors beyond the presence of cancer cells. This study not only contributes valuable insights into RCC metabolism but also prompts a reevaluation of the factors governing nutrient availability in tumor microenvironments more broadly. Overall, it represents a significant step forward in our understanding of the intricate interplay between cancer and its surrounding milieu.

      The study is overall well-constructed, including appropriate analysis. Likewise, the manuscript is written clearly and supported by high-quality figures. Since the authors exclusively employed samples from RCC patients and did not include kidney interstitial fluid and plasma samples from healthy individuals, we cannot accurately assess the true significance and applicability of the results until the role of cancer cells in reshaping KIF is understood. In essence, some metabolite levels in the tumor interstitial fluid did not show an increase or decrease compared to the adjacent normal kidney interstitial fluid. However, the levels of these metabolites in both TIF and KIF might be higher or lower than those in kidney interstitial fluid from healthy individuals, and the roles of these metabolites should not be overlooked. Similar concerns extend to plasma levels, emphasizing the importance of metabolites that synchronously change in RCC TIF, KIF, and plasma-whether elevated or reduced.

    3. Reviewer #3 (Public Review):

      In this study, the authors utilized mass spectrometry-based quantification of polar metabolites and lipids in normal and cancerous tissue interstitial fluid and plasma. This showed that nutrient availability in tumor interstitial fluid was similar to that of interstitial fluid in adjacent normal kidney tissue, but that nutrients found in both interstitial fluid compartments were different from those found in plasma. This suggests that the nutrients in kidney tissue differ from those found in blood and that nutrients found in kidney tumors are largely dictated by factors shared with normal kidney tissue. Those data could be useful as a resource to support further study and modeling of the local environment of RCC and normal kidney physiology.

      In Figures 1D and 1E, there were about 30% of polar metabolites and 25% of lipids significantly different between TIF and KIF, which could be key factors for RCC tumors. This reviewer considers that the authors should make comments on this.

    1. Reviewer #2 (Public Review):

      In this manuscript, the authors uncover a variety of macromolecular Drosha complexes in NSCs and propose that they might exert specific functions in adult neurogenesis. This is an interesting and important area of research, the proteomics data are very useful, and the manuscript is well written and easy to understand. Overall, this manuscript has many strengths. The authors identify 165 proteins, several of them enriched in NSCs, and potentially specific for miRNA dependent or independent Drosha macromolecular complexes. Moreover, the authors convincingly show that Safb1 binds and post-transcriptionally destabilizes NFIB transcript in complex with Drosha, in vitro. With that said, most of the functional evidence are based on Safb1 overexpression in vitro, and in some cases with immortalized cell lines. This is a major limitation of the study. Further experiments should be done to convincingly demonstrate that Safb1 regulates cell fate determination in adult neural stem cells by enhancing Drosha cleavage of NFIB mRNA.

    2. Reviewer #1 (Public Review):

      The manuscript entitled 'Safb1 regulates cell fate determination in adult neural stem cells by enhancing Drosha cleavage of NFIB mRNA' by Iffländer et al, represents a solid piece of work addressing a non-canonical function of Drosha on NFIB mRNA processing via a newly identified Drosha partner, Safb1. The authors provide particularly systematic and convincing evidence on the biochemical interactions among the key players in this cascade. However, the significance of these interactions for NSC fate determination is not adequately supported by the data, hence, I have some remarks that would need to be addressed in order to clarify the impact of these events on NSC biology.

      1. One of my main concerns is related to the nature of the DG NSCs used in all in vitro assays. The authors refer to their previous work on how these cells are isolated using a Hes5 mouse reporter line. However, both recent scRNAseq data (http://linnarssonlab.org/dentate/ from Hochgerner et al) and the authors' own immunostainings (Fig. 7A), clearly show that Hes5 does not label only adult NSCs in the DG, but also (if not primarily) astrocytes. Considering that the initial cultures could contain a high proportion of mature astrocytes, most of the major conclusions and hypotheses should be reformulated.

      2. Along these lines, Safb1 expression is quite widespread in the mouse DG (Fig. 7A) and does not display any specificity towards any type of progenitor cells compared to its expression in DGCs within the GCL. The authors should discuss this and integrate this expression information into their conclusions and interpretations, highlighting all pertinent limitations.

    1. Reviewer #1 (Public Review):

      The authors are presenting a new algorithm applying machine learning to determine the presence or absence of KEGG metabolic modules in microbial genomes. Specifically, they aim to make these predictions in incomplete genomes, like those you will see from assembly and binning of metagenomic reads. This is a significant problem and challenge in the bioinformatics and computational biology community, and as such, this work is a substantial step forward. A key aspect of this, which the authors themselves aptly demonstrate in their results is the ability of machine learning to judge the likelihood of a KEGG module being present based on all gene annotations and not just those genes in the module. The yields significantly greater results compared with approaches that rely solely on genes within the pathway.

    2. Reviewer #2 (Public Review):

      The authors introduce MetaPathPredict, a method that infers the presence of functional units of gene sets, such as a set of genes coding enzymes for a common metabolic pathway, from a pool of genes or genetic sequences. MetaPathPredict employs a stacked ensemble of neural networks, each trained for a specific pathway, to consider mutual information between pathways.

      In predicting the presence of metabolic pathways in incomplete genomes, MetaPathPredict outperforms alternative naive classifiers and single neural network methods. These results demonstrate the effectiveness of a stacked ensemble of neural networks in exploiting mutual information between metabolic pathways.

    1. Reviewer #1 (Public Review):

      This study is founded on the idea that 5HT promotes waiting, and tests a clear, and I think novel, hypothesis that input from cortical and particularly prefrontal areas is key to promoting this and that the increase in this relates to declines in impulsive behavior during adolescence. It also nicely tests that hypothesis with integrated behavioral, electrophysiological, and tracing approaches. Overall it makes a compelling argument in favor of the authors ideas. The independent findings also build upon or at least are well supported by prior work, which I think is excellent and increases confidence in the conclusions.

    2. Reviewer #3 (Public Review):

      Studying the late development of neural circuits in relation to developmental changes in behaviour is clearly of great interest, particularly during the period of adolescence when a number of developmental abnormalities can be revealed. This is however not an easy task, since there are many concurrent changes that occur simultaneously during this developmental making it difficult to establish causality rather than correlation.

      The study focuses on behavioural and circuit changes that occur between juvenile and adulthood focusing in the prefrontal cortex and on its descending projections to the brainstem raphe nuclei. Because the pathway from the frontal cortex to serotonin raphe neurons has been involved in behavioural and stress control, exerting a top-down control on impulsive behavior, there is a good justification to focus on the development of this pathway during a period that is thought to correspond to adolescence.

      The authors identified a behavioral change in foraging strategy, which they term persistence. They find that adults tend to be more persistent than juveniles in an exploration for reward. To analyse the maturation of the prefrontal to raphe circuit they use a genetic approach (the Rbp4 promoter which drives expression in layer 5 cortical neurons) recording the synaptic drive elicited by stimulation of the axons arriving into the raphe area. They find that this maturation starts very late in the late adolescent period. They then study the effects of ablation of the layer 5 Rbp4 neurons in adults and find that adult animals have a behavior that is more similar to that of the juveniles. They then conclude that cortical prefrontal projections to the raphe are involved in the control of this behavior.

      The study is interesting in showing this new behavioural test quantifying developmental changes in exploratory behavior and indicating that some pathways derived mainly from the frontal cortex continue to mature late. However, there are a number of issues regarding the specificity of the genetic approach used. This makes it difficult to be convinced that the behaviour is related to changes in the cortico-raphe circuit.

    1. Reviewer #1 (Public Review):

      This manuscript from Kavanjoo et al examines the role of macrophages within the fetal liver beyond erythrocyte maturation. Using single-cell sequencing, high-resolution imaging, and inducible genetic deletion of yolk-sac (YS) derived macrophages, the authors demonstrate that heterogeneous fetal liver macrophages regulate erythrocyte enucleation, interact physically with fetal HSCs, and may regulate neutrophil accumulation in the fetal liver. The data as presented do not strongly support the authors' conclusion that fetal macrophages in the liver regulate the HSC niche or granulopoiesis from HSCs.

      Fetal-derived resident tissue macrophages are increasingly implicated in regulation of adult tissue function and homeostasis, but considerably less is known regarding the function of fetal macrophages during development. Macrophages in the fetal liver have been shown to form erythroblastic islands, where they regulate erythrocyte maturation. Here, the authors performed single-cell sequencing on fetal liver macrophages (Cd11b-lo) to gain insight into heterogeneity and utilized previously published pre-Mac signatures from the YS to focus on YS-derived macrophages. These clusters were then further cross-referenced with surface protein expression as determined by multidimensional flow cytometry to hone in on a very specific subset of three groups of F4/80hi macrophages defined by multiple surface markers. Fate-mapping with three models (Tnfrsf11a-Cre - YS pMAC derived; Ms4a3Cre - FL monocyte derived; CXCR4-Cre-ERT2 - definitive HSC derived) revealed that three major subsets are all derived from YS pMACs. However, the relative frequencies of these specific populations are not shown, and because the single sequencing analysis goes through so many iterations of re-clustering that initiates by focusing specifically on pMAC signatures, this result is not surprising.

      Probing gene expression within each of the three clusters revealed ligand expression suggesting cell-cell interactions, and cross-referencing with a fetal LT-HSC gene expression dataset revealed potential receptor-ligand interactions. Microscopic investigation of physical interactions between specific macrophage subsets and HSCs was not particularly convincing. In Figure 3C, for example, Cluster C is very difficult to visualize. It would again be helpful to know what the ratios are within the FL for each cluster. Data in Figure 3F are not well represented by Data in Figure 3E.

      Furthermore, deletion of YS pMAC-derived macrophages the Tnfrsf11a-Cre X Spi1fl/fl resulted in broad macrophage depletion - although the authors did not demonstrate this using the carefully refined phenotypes they had defined earlier in the manuscript. Nonetheless, the authors demonstrate that macrophage depletion did affect erythroid enucleation, as expected, and the authors also showed some effect of macrophage deletion on LT-HSC gene expression by bulk transcription analysis. These effects were relatively small, however, and this was clear in the absence of effects on hematopoiesis in vivo or HSC proliferation ex vivo. To further investigate the effects of macrophage deletion on downstream hematopoieisis, the authors re-assessed the myeloid compartment following macrophage deletion, and identified and specifically focused on an observed increase in neutrophils in response to macrophage depletion. Based on this increase, they tested HSC differentiation using a colony-forming assay, which shows a slight increase in GM colonies that is also reflective of a slight but insignificant increase in total colony forming capability. The authors concluded that loss of fetal macrophages causes a reprogramming of HSCs to the granulocytic lineage. However, the colony-forming assay and subtle differences in gene expression are not sufficient to conclude that fetal HSCs have been reprogrammed towards granulocytic lineage by macrophage deletion.

      Overall, there are some interesting pieces of data in this manuscript, including the classification of new subsets of macrophages in the liver, their fate-mapping to the YS, and gene expression analysis. However, the data as presented do not strongly support a role for these particular macrophage subsets in regulating HSCs or fetal hematopoiesis within the fetal liver niche. Although there may be specific subsets of fetal liver macrophages that more closely physically interact with HSCs, deletion of what appeared to be a vast majority of macrophages in the FL did not appear to affect cellularity of hematopoietic stem and progenitor cells in vivo, and was not shown to convincingly affect HSC function. The mechanism by which macrophage deletion affected granulopoiesis could be independent from HSCs, and would be interesting to further explore.

    2. Reviewer #2 (Public Review):

      Using a single-cell omics approach combined with spatial proteomics and genetic fate mapping, Kayvanjoo et al found that fetal liver (FL) macrophages cluster into distinct yolk sac-derived subpopulations and that some of the HSCs in FL preferentially associate with one of the identified macrophage subpopulations. FLs lacking macrophages show a delay in erythropoiesis. The authors also try to identify a role of macrophages for HSCs function in FL, and claim that macrophages affect myeloid differentiation of HSCs. Experimental support for the function of macrophages on HSCs remains weak. Taken together, their data provide a precise map of FL macrophage subpopulations, which is novel and will serve the field well.

    1. Reviewer #1 (Public Review):

      In this analysis derived from the BLADE study, a Phase IV investigation using the LHRH antagonist Degarelix, the authors revealed additional insights into the relationship between FSH and body composition.

      The primary strength of the study lies in its prospective nature and the utilization of human subjects

      However, some weaknesses exist in the study.

      First, the authors presented results from a simple correlation study without accounting for potential confounding factors in fat metabolism. Particularly, readers may be intrigued to understand how testosterone or estradiol interact with FSH in relation to fat mass.

      The inverse relationship between ALBI/FBM was previously documented in a paper by the same group (Palumbo et al, Prostate Cancer Prostatic Dis 2021). In that earlier publication, the authors reported no correlation between FSH and lean mass or ALBI, suggesting the significance of the correlation between FSH and ALBI/FBM arising from changes in fat body mass-a factor somehow not included in the prior paper, not necessarily from sarcopenia.

    2. Reviewer #2 (Public Review):

      This manuscript reports the results of an ancillary study of a prospective trial assessing the effects of androgen deprivation therapy (ADT) with Dagarelix (a GnRH antagonist) on body composition in patients with prostate cancer. An interesting relationship between FSH levels, that were suppressed by Dagarelix treatment, and body composition parameters (particularly fat body mass) was described after 12 months of therapy. Therefore, the authors conclude that FSH could be a promising marker to monitor the risk of sarcopenic obesity and cardiovascular complications in prostate cancer patients undergoing ADT. As acknowledged by the Authors the main limitation of the study is the limited sample of patients. However, since testosterone levels were not assessed it is not possible to firmly establish whether the changes in fat mass observed with treatment are directly or indirectly associated with a reduction in FSH (and therefore in the latter case mediated by testosterone). Moreover, it is not clear whether the effect of the change in FSH levels during the study and the body composition parameters achieved at 12 months was evaluated (instead of assessing the relationship between FSH changes and changes in body composition parameters). Finally, tests on bone muscle mass and strength were not performed, so the hypothesis that variation of FSH levels in prostate cancer patients in ADT may affect sarcopenia remains speculative.

    1. Reviewer #1 (Public Review):

      The authors begin by showing the association between rs6740960 and facial shape, specifically that protrusion of the lower jaw and zygomatic regions, and retrusion of the entire central midface, are associated with the 'T' allele. Next they show that the enhancer harboring the SNP is active in the midface of mouse embryos with lacz transgenic reporter assays. Then they show that, interestingly, while the enhancer harboring the SNP has comparable levels of H3K27Ac in hESC derived CNCC (eCNCC) and cranial chondrocytes (eCC), only in the latter there is significant level of contact between the enhancer and the promoter of PKDCC. Next, they delete the rs6740960 cognate enhancer in two heterozygous clones and demonstrate 60% decrease in PKDCC expression at the allele bearing the enhancer deletion. This is an elegant and satisfying experiment. Next, they use ChIP-qPCR to H3K27Ac in eCNCC and eCC that are heterozygous for the SNP and show an elevated level of H3K27Ac the enhancer haplotype bearing the derived "A" allele in CNCCs and even greater in CC. This is also a clear result, although because of co-operativity among enhancers, there could be another SNP in the haplotype that leads to the difference. Finally they use micro-CT and high end morphometric analysis on mice with two, one, or zero functional Pkdcc alleles, and see correlated quantitative changes in maxilla, mandible, and palatine bone shape. Strengths of the study include analysis of allele specific expression using digital PCR, quantitative H3K27Ac-HiC, showing the SNP allele correlates with the activity of the enhancer harboring it, and a deep morphometric analysis to show the subtle effect of loss of one allele of Pkdcc on craniofacial structures in mouse model. However, no experiments incisively rule out the possibility that another SNP in the haplotype cause the effects attributed to the SNP, slightly diminishing the impact of the study.

    2. Reviewer #2 (Public Review):

      The Authors demonstrate compelling genetic evidence that the region that harbors rs6740960 plays a role in both normal craniofacial development risk for craniofacial disease. They show strong evidence that the conserved element harboring this variant is tested for LacZ reporter activity in the developing mouse that is has activity in relevant tissues. They perform several assays to demonstrate a physical link between this enhancer region to a specific target gene, PKDCC, in both cranial neural crest cells and differentiated chondrocytes. Removal of a single copy of the enhancer has little effect on PKDCC expression in CNCCs but strong impacts in chondryocytes. H1 derived cells that are heterozygous at the variant above show strong bias in H3K27ac signals in chondrocytes. The researchers then go on to recharacterize a PKDCC knockout mouse to show that it has craniofacial defects. They use modern micro-CT and analysis techniques to demonstrate subtle changes in jaw and skull structure in PKDCC heterozygous mice and confirm many of the phenotypes that were described by Kinoshita et al 2009. Overall these results point to dosage of PKDCC in craniofacial development with changes in skull shape and susceptibility to orofacial clefting. However the epigenomic differences presented in Figure 2B that serve as the foundation for the rest of the work do not agree with previously published work by this group (Prescot et al 2015). The researchers claim "enrichment of the coactivator p300 and of the active chromatin mark H3K27ac at this region is higher in the chimpanzee CNCCs as compared to human, suggesting that this non-coding element may have higher regulatory activity in the chimp. However this region was not identified in the top 1000 biased enhancer regions provided in the supplement of the Prescott et al 2015 paper. The authors do not indicate any statistical significance and largely rely on signal tracks that have not been corrected for input controls to make this conclusion. The in vivo assay for enhancer activity while excellent at demonstrating where an enhancer can be active is not well suited to quantitative comparisons. Furthermore the researchers claim that the mouse orthologous sequence is not active in the assay despite strong H3K27ac and other enhancer related signals in developing mouse craniofacial tissues as available from the Mouse Encode Project. This calls into questions whether this assay is informative at all if the native sequence which shows functionally conserved activity is not active in the mouse embryo. Lastly the authors only consider this region as a potential enhancer and not any other type of regulatory sequence. GENCODE gene annotations demonstrate a potential lncRNA (LINC02898 /ENST00000378711.2) that is directly adjacent to the region marked by this variant. This could be a promoter for an RNA that regulates PKDCC in cis. Inspection of gene expression data from a recent preprint Yankee et al 2022 as well as Prescot et al data available from the recount3 database indeed indicate RNA signal from both CNCCs and primary human tissue consistent with this annotation. The Mundlos lab has demonstrated similar regulatory mechanisms through lncRNA Maenli at the En1 locus that result in limb abnormalities.

    3. Reviewer #3 (Public Review):

      Mohammed et al perform functional follow-up studies on the single nucleotide polymorphism rs6740960 located on chromosome 2p21 that was previously linked to lower jaw and chin shape variation and an increased risk of non-syndromic orofacial clefting. Through a combination of in silico multi-species alignment, in vitro enhancer marks, and finally in vivo data the team could confirm that the SNP is located in an active enhancer element driving transgene expression in the upper and lower jaw. The team tested the human and chimp orthologs in transgenic mice. Interestingly the mouse ought to look did not show any active enhancer activity in the LacZ reporter assay. Next, the authors could show a selective interaction of the enhancer element with the neighboring gene PKDCC in chondrocytes using H3K27ac HiChIP. Deletion of this enhancer in vitro led to an allele specific reduction of PKC expression. Finally, the authors aimed at evaluating the effect of rs6740960 in vivo using a mouse model. Since the enhancer sequence of the mouse did not show any positive reporter activity, the authors decided to use previously described Pkdcc full knockout mouse model (Kinoshita et al. 2009). Using sophisticated imaging technologies the authors were able to show that in mice several facial bones are Pkdcc dose sensitive.

      Overall this is an extremely exciting manuscript that addresses one of the key challenges in the post GWAS time: the functional connection of lead SNPs to their target genes and a detailed evaluation of the biological and morphological consequences.<br /> The manuscript is well written, and the conclusions are completely supported by the evidence provided. I really think this is a great paper, however I have several major concerns with the manuscript and its current format.

      Major comments:

      1: My main concern about the manuscript in its current format is the disconnection between the beautiful work of linking rs6740960 to Pkdcc in the first part of the manuscript and the investigation of dose sensitivity of Pkdcc itself in end of the manuscript. While I realized that this is because the enhancer itself is not conserved between humans and mice, in my opinion it still weakens the novelty of the finding of the second part of the manuscript quite significantly. The Pkdcc knockout has been well described and that the authors now present evidence that also heterozygous knockouts show a minimal phenotype in the facial bones is really not surprising. More importantly it doesn't show how the rs6740960 influences Pkdcc expression in vivo.

      A rather straightforward and very interesting experimental approach would be to replace the mouse enhancer sequence with the human or chimp enhancer carrying the risk allele or the wild type. In the last figure the authors have nicely shown that the entire experimental setup for the functional analysis of even minor changes to the facial bones caused by the SNP are available to the team. Even if the result was negative this experiment would significantly enhance the scientific impact of the paper.

      2: Another option would be to repeat the LacZ reporter essay with the human wild type and the risk allele in direct comparison. A beautiful example of such an experiment was recently shown by Yanchuset et al (A noncoding single-nucleotide polymorphism at 8q24 drives IDH1-mutant glioma formation, Yanchuset al.,Science378,68-78 2022)

      3: It is unclear how the H3K27ac HiChIP signal looks like at the Pkdcc locus in H9 ESC. What is the naïve interaction profile?

    1. Reviewer #1 (Public Review):

      Using a HFD mouse model, the authors examined the H3K4me3 mark in sperm and placental tissues followed by correlation to the transcriptomic changes in the placental tissues of the male and female offspring. The hypothesis that the authors tried to test was that sperm histone epimutations affect placental function, thereby leading to metabolic disorders in offspring. The strength of this work includes the interesting idea and the initial data generated. However, the entire study remains purely correlative without any validation experiment to support the correlation. The conclusion needs to be further supported by bigger sample size and more functional analyses demonstrating the causal relationship among the histone epimutations detected, the dysregulated mRNA expression in the placenta, and the phenotypes in offspring.

    2. Reviewer #2 (Public Review):

      This study follows up on previous work from this group, and others, relating paternal diet to changes in sperm epigenetics, and offspring phenotypes. The authors focus on paternal diet (high-fat diet versus a control chow), sperm chromatin, and molecular changes in the placenta associated with offspring development.

      The text is well written and the figures are generally well presented and clear. The sperm epigenetic analyses and analysis of the placenta epigenetics and gene expression are generally well performed. The study provides new insight into how paternally mediated intergenerational epigenetic inheritance could involve placenta-embryo signaling.

      A major weakness is that the high-fat diet used was from a different manufacturer than the control (lower fat) diet. Therefore, it is difficult to judge whether the effects are due to a change in fat levels, or the many other molecules that are likely to differ in chow between different manufacturers. Other weaknesses include lack of methodological detail in parts, low n values for some experiments, and the need for more mechanistic data.

      Whilst the authors may have achieved their aims, more data is needed to inform a potential mechanism.

      This study adds to our understanding of how changes in paternal diet may alter sperm epigenetics and offspring development. The novelty is in the link to gene expression in the placenta associated with offspring development in utero.

    3. Reviewer #3 (Public Review):

      This study represents a useful addition to the authors' previous study examining the effects of paternal high-fat diet on offspring metabolism and gene expression in offspring (PMID: 35183795). It differs from the previous study in some of the details of the experimental model (age of sire when exposed to the diet manipulation, mouse substrain, and the nature of the control diet) and the results are largely in line with previous findings. The major finding is that many genes at which sperm H3K4me3 signal is altered also have altered expression in the placenta; some of these genes are paternally imprinted, providing a paternal-specific epigenetic signature. Strengths of the study include establishment of an important dataset correlating the sperm epigenome with gene expression in placental tissue, leading to an interesting and provocative conclusion. Weaknesses include a relatively superficial analysis of the dataset, revealing broad patterns but few specific conclusions, reliance on correlative analysis to draw conclusions, and absence of validation studies. Deconvolution analysis of bulk RNA-seq data helps to account for differences in cell composition between placental datasets, but does not add additional insight toward the central question of how sperm epigenetic state contributes to offspring gene expression. Overall the advance over previous work is relatively small.

      Specific points:

      1) The analysis as it stands is limited. To compare sperm H3K4me3 and placental expression, numbers of overlapping genes are provided, but no statistical analysis is done to indicate the significance of the overlap.

      2) There is little direct connection to biological systems or validation of differential enrichment/expression analysis. Gene ontology enrichments for genes differentially enriched for H3K4me3 in sperm or differentially expressed in placenta (broken up by sex) are performed, but the biological significance of these categories is not clear.

      3) The overall effect size is small. In most cases the magnitude of differences is minor, and it is not clear which of these changes are significant over noise. For example, the y-axis for the metagene plots in Figure 2B does not start at zero, so the total range of the difference in H3K4me3 is small. In Figure 6C, DEGs detected in hypoxic placenta after deconvolution analysis do not look very different compared to control.

      4) Deconvolution analysis was done on bulk RNA-seq data from placenta, and the numbers of DEGs identified with this analysis compared to the original analysis are shown, but is not clear how the deconvolution analysis changes the specific biological conclusions. In addition, the reference dataset for deconvolution is a published dataset generated in another lab, and it is unclear how comparable the reference sample is to the samples analyzed in this study, or how robust this analysis is when using a dataset generated under different conditions.

    4. Reviewer #4 (Public Review):

      The members of the Kimmins lab perform a dietary study in mice to investigate the impact of obesity of fathers on the development of their offspring. To do so, they expose male mice to a high fat diet and determine the distribution and occupancy levels of the histone H3 lysine 4 trimethylation (H3K4me3) mark in spermatozoa and perform gene expression studies on placenta tissue obtained from mouse embryos during mid-gestation development. The authors report changes in H3K4me3 occupancy in sperm as well as in transcriptomes of placentas of male and female embryonic offspring. While the authors perform extensive computational analysis of the transcriptomic and chromatin immunoprecipitation data, the authors do not go much beyond making correlative statements at mainly the genome wide level between changes for H3K4me3 in sperm and transcriptional changes in placenta, the latter of which are in part related to changes in cellular composition (as deduced from transcriptional data). Given that both parental mice had the same genetic background, it was not possible to deduce parental specific contributions to transcriptional changes as observed in placentas of offspring. In all, the study falls short in increasing mechanistic insights into this important biological phenomenon.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Verma et al. provide a short technical report showing that endogenously tagged dynein and dynactin molecules localize to growing microtubule plus-ends and also move processively along microtubules in cells. The data are convincing, and the imaging and movies very nicely demonstrate their claims. I don't have any large technical concerns about the work. It is perhaps not surprising that dynein-dynactin complexes behave this way in cells due to other reports on the topic, but the current data are among some of the nicest direct demonstrations of this phenomenon. It may be somewhat controversial since a separate group has reported that dynein does not move processively in mammalian cells (https://www.biorxiv.org/content/10.1101/2021.04.05.438428v3). Because of this, it might be nice for the authors to comment on this discrepancy in the field, although the aforementioned work is still in pre-print form.

      Strengths:<br /> Using state-of-the-art methods to endogenously tag dynein/dynactin subunits and performing live-cell imaging is convincing and useful for the field.

      Weaknesses:<br /> The claims are perhaps not surprising or novel given the extensive data already published in the field. However, there aren't many similar studies using endogenously tagged subunits to date.

    2. Reviewer #1 (Public Review):

      Summary:<br /> The manuscript by Verma et al. is a simple and concise assessment of the in-cell motility parameters of cytoplasmic dynein. Although numerous studies have focused on understanding the mechanism by which dynein is activated using a complement of in vitro methodologies, an assessment of dynein motility in cells has been lacking. It has been unclear whether dynein exhibits high processivity within the crowded and complicated environment of the cell. For example, does cargo-bound dynein exhibit short, non-processive motility (as has been recently suggested; Tirumala et al., 2022 bioRxiv)? Does cargo-bound dynein move against opposing forces generated by cargo-bound kinesins? Do cargoes exhibit bidirectional switching due to stochastic activation of kinesins and dyneins? The current work addresses these questions quite simply by observing and quantitating the motility of natively tagged dynein in HeLa cells.

      Strengths:<br /> The work uses a simple and straightforward approach to address the question at hand: is dynein a processive motor in cells? Using a combination of TIRF and spinning disc confocal microscopy, the authors provide a clear and unambiguous answer to this question.

      Weaknesses:<br /> My only significant concern (which is quite minor) is that the authors focus their analysis on dynein movement in cells treated with docetaxol, which could potentially affect the observed behavior. However, this is likely necessary, as without it, motility would not have been observed due to the 'messiness' of dynein localization in a typical cell (e.g., plus end-tracking in addition to cargo transport).

    3. Reviewer #3 (Public Review):

      Summary:<br /> In this manuscript, Verma et al. set out to visualize cytoplasmic dynein in living cells and describe their behaviour. They first generated heterozygous CRISPR-Cas9 knock-ins of DHC1 and p50 subunit of dynactin and used spinning disk confocal microscopy and TIRF microscopy to visualize these EGFP-tagged molecules. They describe robust localization and movement of DHC and p50 at the plus tips of MTs, which was abrogated using SiR tubulin to visualize the pool of DHC and p50 on the MTs. These DHC and p50 punctae on the MTs showed similar, highly processive movement on MTs. Based on comparison to inducible EGFP-tagged kinesin-1 intensity in Drosophila S2 cells, the authors concluded that the DHC and p50 punctae visualized represented 1 DHC-EGFP dimer+1 untagged DHC dimer and 1 p50-EGFP+3 untagged p50 molecules.

      Strengths:<br /> The idea and motivation behind this work are commendable.

      Weaknesses:<br /> There are several major issues with the characterization of the knock-in lines generated, the choice of imaging and analysis methods, and inadequate discussion of prior findings.

      The specific points are below:

      1. CRISPR-edited HeLa clones:<br /> (i) The authors indicate that both the DHC-EGFP and p50-EGFP lines are heterozygous and that the level of DHC-EGFP was not measured due to technical difficulties. However, quantification of the relative amounts of untagged and tagged DHC needs to be performed - either using Western blot, immunofluorescence or qPCR comparing the parent cell line and the cell lines used in this work.<br /> (ii) The localization of DHC predominantly at the plus tips (Fig. 1A) is at odds with other work where endogenous or close-to-endogenous levels of DHC were visualized in HeLa cells and other non-polarized cells like HEK293, A-431 and U-251MG (e.g.: OpenCell (https://opencell.czbiohub.org/target/CID001880), Human Protein Atlas (https://www.proteinatlas.org/ENSG00000197102-DYNC1H1/subcellular#human), https://www.biorxiv.org/content/10.1101/2021.04.05.438428v3). The authors should perform immunofluorescence of DHC in the parental cells and DHC-EGFP cells to confirm there are no expression artifacts in the latter. Additionally, a comparison of the colocalization of DHC with EB1 in the parental and DHC-EGFP and p50-EGFP lines would be good to confirm MT plus-tip localisation of DHC in both lines.<br /> (iii) It would also be useful to see entire fields of view of cells expressing DHC-EGFP and p50-EGFP (e.g. in Spinning Disk microscopy) to understand if there is heterogeneity in expression. Similarly, it would be useful to report the relative levels of expression of EGFP (by measuring the total intensity of EGFP fluorescence per cell) in those cells employed for the analysis in the manuscript.<br /> (iv) Given that the authors suspect there is differential gene regulation in their CRISPR-edited lines, it cannot be concluded that the DHC-EGFP and p50-EGFP punctae tracked are functional and not piggybacking on untagged proteins. The authors could use the FKBP part of the FKBP-EGFP tag to perform knock-sideways of the DHC and p50 to the plasma membrane and confirm abrogation of dynein activity by visualizing known dynein targets such as the Golgi (Golgi should disperse following recruitment of EGFP-tagged DHC-EGFP or p50-EGFP to the PM), or EGF (movement towards the cell center should cease).

      2. TIFRM and analysis:<br /> (i) What was the rationale for using TIRFM given its limitation of visualization at/near the plasma membrane? Are the authors confident they are in TIRF mode and not HILO, which would fit with the representative images shown in the manuscript?<br /> (ii) At what depth are the authors imaging DHC-EGFP and p50-EGFP?<br /> (iii) The authors rely on manual inspection of tracks before analyzing them in kymographs - this is not rigorous and is prone to bias. They should instead track the molecules using single particle tracking tools (eg. TrackMate/uTrack), and use these traces to then quantify the displacement, velocity, and run-time.<br /> (iv) It is unclear how the tracks that were eventually used in the quantification were chosen. Are they representative of the kind of movements seen? Kymographs of dynein movement along an entire MT/cell needs to be shown and all punctae that appear on MTs need to be tracked, and their movement quantified.<br /> (v) What is the directionality of the moving punctae?<br /> (vi) Since all the quantification was performed on SiR tubulin-treated cells, it is unclear if the behavior of dynein observed here reflects the behavior of dynein in untreated cells. Analysis of untreated cells is required.

      3. Estimation of stoichiometry of DHC and p50<br /> Given that the punctae of DHC-EGFP and p50 seemingly bleach on MT before the end of the movie, the authors should use photobleaching to estimate the number of molecules in their punctae, either by simple counting the number of bleaching steps or by measuring single-step sizes and estimating the number of molecules from the intensity of punctae in the first frame.

      4. Discussion of prior literature<br /> Recent work visualizing the behavior of dyneins in HeLa cells (DOI: 10.1101/2021.04.05.438428), which shows results that do not align with observations in this manuscript, has not been discussed. These contradictory findings need to be discussed, and a more objective assessment of the literature in general needs to be undertaken.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this manuscript, Eaton et al. examine the regulation of transcription directionality using a powerful genomic approach (more about the methodology below). Their data challenge the notion that the polyadenylation signal-reading Cleavage and Polyadenylation (CPA) complex is responsible for controlling promoter directionality by terminating antisense transcription. Namely, depletion of the required CPA factor RBBP6 has little effect on antisense transcription measured by POINT. They find instead that initiation is intrinsically preferential in the sense direction and additionally maintained by the activities of an alternative processing complex called Integrator, together with the kinase CDK9. In the presence of CDK9 activity, depletion of Integrator endoribonuclease INTS11 leads to globally increased transcription in the antisense direction, and minor effects in the sense direction. However, CDK9 inhibition reveals that sense transcription is also sensitive to INS11 depletion. The authors suggest that CDK9 activity is stronger in the sense direction, preventing INTS11-mediated premature termination of sense transcrpts.

      Strengths:<br /> The combination of acute depletion of the studied factors using degron approaches (important to limit possible secondary effects), together with novel and very sensitive nascent transcriptomics methods POINT and sPOINT is very powerful. The applied spike-in normalization means the analysis is more rigorous than most. Using this methodology allowed the authors to revisit the interesting question of how promoter/transcription directionality is determined.

      The data quality appears very good and the fact that both global analysis as well as numerous gene-specific examples are shown makes it convincing.

      The manuscript is well written and hence a pleasure to read.

      Weaknesses:<br /> I am slightly worried about the reproducibility of the data - it is unclear to me from the manuscript if and which experiments were performed in replicate (lack of table with genomic experiments and GEO access, mentioned in more detail in below recommendations to authors), and the methods could be more detailed.

      A separate discussion section would be useful, particularly since the data provided challenge some concepts in the field. How do the authors interpret U1 data from the Dreyfuss lab in light of their results? How about the known PAS-density directionality bias (more PAS present in antisense direction than in sense) - could the differential PAS density be still relevant to transcription directionality?

      I find that the provided evidence for promoter directionality to be for the most part due to preferential initiation in the sense direction should be stressed more. This is in my eyes the strongest effect and is somehow brushed under the rug.

      References 12-17 report an effect of Integrator on 5' of protein-coding genes, while data in Figure 2 appears contradictory. Then, experiments in Figure 4 show a global effect of INST11 depletion on promoter-proximal sense transcription. In my opinion, data from the 2.5h time-point of depletion should be shown alongside 1.5h in Figure 2 so that it is clear that the authors found an effect similar to the above references. I find the current presentation somehow misleading.

      Conclusion/assessment:<br /> This important work substantially advances our understanding of the mechanisms governing the directionality of human promoters. The evidence supporting the claims of the authors is compelling, with among others the use of advanced nascent transcriptomics including spike-in normalization controls and acute protein depletion using degron approaches.

      In my opinion, the authors' conclusions are in general well supported.

      Not only the manuscript but also the data generated will be useful to the wide community of researchers studying transcriptional regulation. Also, the POINT-derived novel sPOINT method described here is very valuable and can positively impact work in the field.

    2. Reviewer #2 (Public Review):

      Summary:<br /> Eaton and colleagues use targeted protein degradation coupled with nascent transcription mapping to highlight a role for the integrator component INST11 in terminating antisense transcription. They find that upon inhibition of CDK9, INST11 can terminate both antisense and sense transcription - leading to a model whereby INST11 can terminate antisense transcription and the activity of CDK9 protects sense transcription from INST11-mediated termination. They further develop a new method called sPOINT which selectively amplifies nascent 5' capped RNAs and find that transcription initiation is more efficient in the sense direction than in the antisense direction. This is an excellent paper that uses elegant experimental design and innovative technologies to uncover a novel regulatory step in the control of transcriptional directionality.

      Strengths:<br /> One of the major strengths of this work is that the authors endogenously tag two of their proteins of interest - RBBP6 and INST11. This tag allows them to rapidly degrade these proteins - increasing the likelihood that any effects they see are primary effects of protein depletion rather than secondary effects. Another strength of this work is that the authors immunoprecipitate RNAPII and sequence extracted full-length RNA (POINT-seq) allowing them to map nascent transcription. A technical advance from this work is the development of sPOINT which allows the selective amplification of 5' capped RNAs < 150 nucleotides, allowing the direction of transcription initiation to be resolved.

      Weaknesses:<br /> While the authors provide strong evidence that INST11 and CDK9 play important roles in determining promoter directionality, their data suggests that when INST11 is degraded and CDK9 is inhibited there remains a bias in favour of sense transcription (Figures 4B and C). This suggests that there are other unknown factors that promote sense transcription over antisense transcription and future work could look to identify these.

    3. Reviewer #3 (Public Review):

      Summary:<br /> Using a protein degradation approach, Eaton et al show that INST11 can terminate the sense and anti-sense transcription but higher activity of CDK9 in the sense direction protects it from INS11-dependent termination. They developed sPOINT-seq that detects nascent 5'-capped RNA. The technique allowed them to reveal robust transcription initiation of sense-RNA as compared to anti-sense.

      Strengths:<br /> The strength of the paper is the acute degradation of proteins, eliminating the off-target effects. Further, the paper uses elegant approaches such as POINT and sPOINT-seq to measure nascent RNA and 5'-capped short RNA. Together, the combination of these three allowed the authors to make clean interpretations of data.

      Weaknesses:<br /> While the manuscript is well written, the details on the panel are not sufficient. The methods could be elaborated to aid understanding. Additional discussion on howthe authors' findings contradict the existing model of anti-sense transcription termination should be added.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Benner et al. identify OVO as a transcriptional factor instrumental in promoting the expression of hundreds of genes essential for female germline identity and early embryo development. Prior data had identified both ovo and otu as genes activated by OVO binding to the promoters. By combining ChIP-seq, RNA-seq, and analysis of prior datasets, the authors extend these data to hundreds of genes and therefore propose that OVO is a master transcriptional regulator of oocyte development. They further speculate that OVO may function to promote chromatin accessibility to facilitate germline gene expression. Overall, the data compellingly demonstrate a much broader role for OVO in the activation of genes in the female germline than previously recognized. By contrast, the relationship between OVO, chromatin accessibility, and the timing of gene expression is only correlative, and more work will be needed to determine the mechanisms by which OVO promotes transcription.

      Strengths:

      Here Benner et al. convincingly show that OVO is a transcriptional activator that promotes expression of hundreds of genes in the female germline. The ChIP-seq and RNA-seq data included in the manuscript are robust and the analysis is compelling.

      Importantly, the set of genes identified is essential for maternal processes, including egg production and patterning of the early embryo. Together, these data identify OVO as a major transcriptional activator of the numerous genes expressed in the female germline, deposited into the oocyte and required for early gene expression. This is an important finding as this is an essential process for development and prior to this study, the major drivers of this gene expression program were unknown.

      Weaknesses:

      The novelty of the manuscript is somewhat limited as the authors show that, like two prior, well-studied OVO target genes, OVO binds to promoters of germline genes and activates transcription. The fact that OVO performs this function more broadly is not particularly surprising.

      A major challenge to understanding the impact of this manuscript is the fact that the experimental system for the RNA-seq, the tagged constructs, and the expression analysis that provides the rationale for the proposed pioneering function of OVO are all included in a separate manuscript.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Benner et al. interrogate the transcriptional regulator OVO to identify its targets in the Drosophila germline. The authors perform ChIP-seq in the adult ovary and identify established as well as novel OVO binding motifs in potential transcriptional targets of OVO. Through additional bioinformatic analysis of existing ATAC-seq, CAGE-seq, and histone methylation data, the authors confirm previous reports that OVO is enriched at transcription start sites and suggest that OVO does not act as part of the core RNA polymerase complex. Benner et al. then perform bulk RNA-seq in OVO mutant and "wildtype" (GAL4 mediated expression of OVO under the control of the ovo promoter in OVO mutants) ovaries to identify genes that are differentially expressed in the presence of OVO. This analysis supports previous reports that OVO likely acts at transcription start sites as a transcriptional activator. While the authors propose that OVO activates the expression of genes that are important for egg integrity, maturation, and for embryonic development (nanos, gcl, pgc, bicoid), this hypothesis is based on correlation and is not supported by in vivo analysis of the respective OVO binding sites in some of the key genes. A temporal resolution for OVO's role during germline development and egg chamber maturation in the ovary is also missing. Together, this manuscript contains relevant ChIP-seq and RNA-seq datasets of OVO targets in the Drosophila ovary alongside thorough bioinformatic analysis but lacks important in vivo experimental evidence that would validate the high-quality datasets.

      Strengths:

      The manuscript contains relevant ChIP-seq and RNA-seq datasets of OVO targets in the Drosophila ovary alongside thorough bioinformatic analysis

      Weaknesses:

      1. The authors propose that OVO acts as a positive regulator of essential germline genes, such as those necessary for egg integrity/maturation and embryonic/germline development. Much of this hypothesis is based on GO term analysis (and supported by the authors' ChIP-seq data). However accurate interpretation of GO term enrichment is highly dependent on using the correct background gene set. What control gene set did the authors use to perform GO term analysis (the information was not in the materials and methods)? If a background gene set was not previously specified, it is essential to perform the analysis with the appropriate background gene set. For this analysis, the total set of genes that were identified in the authors' RNA-seq of OVO-positive ovaries would be an ideal control gene set for which to perform GO term analysis. Alternatively, the total set of genes identified in previous scRNA-seq analysis of ovaries (see Rust et al., 2020, Slaidina et al., 2021 among others) would also be an appropriate control gene set for which to perform GO term analysis. If indeed GO term analysis of the genes bound by OVO compared to all genes expressed in the ovary still produces an enrichment of genes essential for embryonic development and egg integrity, then this hypothesis can be considered.

      2. The authors provide important bioinformatic analysis of new and existing datasets that suggest OVO binds to specific motifs in the promoter regions of certain germline genes. While the bioinformatic analysis of these data is thorough and appropriate, the authors do not perform any in vivo validation of these datasets to support their hypotheses. The authors should choose a few important potential OVO targets based on their analysis, such as gcl, nanos, or bicoid (as these genes have well-studied phenotypes in embryogenesis), and perform functional analysis of the OVO binding site in their promoter regions. This may include creating CRISPR lines that do not contain the OVO binding site in the target gene promoter, or reporter lines with and without the OVO binding site, to test if OVO binding is essential for the transcription/function of the candidate genes.

      3. The authors perform de novo motif analysis to identify novel OVO binding motifs in their ChIP-seq dataset. Motif analysis can be significantly strengthened by comparing DNA sequences within peaks, to sequences that are just outside of peak regions, thereby generating motifs that are specific to peak regions compared to other regions of the promoter/genome. For example, taking the 200 nt sequence on either side of an OVO peak could be used as a negative control sequence set. What control sequence set did the authors use as for their de novo motif analysis? More detail on this is necessary in the materials and methods section. Re-analysis with an appropriate negative control sequence set is suggested if not previously performed.

      4. The authors mention that OVO binding (based on their ChIP-seq data) is highly associated with increased gene expression (lines 433-434). How many of the 3,094 peaks (conservative OVO binding sites), and what percentage of those peaks, are associated with a significant increase in gene expression from the RNA-seq data? How many are associated with a decrease in gene expression? This information should be added to the results section.

      5. The authors mention that a change in endogenous OVO expression cannot be determined from the RNA-seq data due to the expression of the OVO-B cDNA rescue construct. Can the authors see a change in endogenous OVO expression based on the presence/absence of OVO introns in their RNA-seq dataset? While intronic sequences are relatively rare in RNA-seq, even a 0.1% capture rate of intronic sequence is likely to be enough to determine the change in endogenous OVO expression in the rescue construct compared to the OVO null.

      6. The authors conclude with a model of how OVO may participate in the activation of transcription in embryonic pole cells. However, the authors did not carry out any experiments with pole cells that would support/test such a model. It may be more useful to end with a model that describes OVO's role in oogenesis, which is the experimental focus of themanuscript.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors of this manuscript are interested in discovering and functionally characterizing genes that might cause obesity. To find such genes, they conducted a forward genetic screen in mice, selecting strains which displayed increased body weight and adiposity. They found a strain, with germ-line deficiency in the gene Spag7, which displayed significantly increased body weight, fat mass, and adipose depot sizes manifesting after the onset of adulthood (20 weeks). The mice also display decreased organ sizes, leading to decreased lean body mass. The increased adiposity was traced to decreased energy expenditure at both room temperature and thermoneutrality, correlating with decreased locomotor activity and muscle atrophy. Major metabolic abnormalities such as impaired glucose tolerance and insulin sensitivity also accompanied the phenotype. Unexpectedly, when the authors generated an inducible, whole body knockout mouse using a globally expressed Cre-ERT2 along with a globally floxed Spag7, and induced Spag7 knockout before the onset of obesity, none of the phenotypes seen in the original strain were recapitulated. The authors trace this discrepancy to the major effect of Spag7 being on placental development.

      Strengths:

      Strengths of the manuscript are its inherently unbiased approach, using a forward genetic screen to discover previously unknown genes linked to obesity phenotypes. Another strong aspect of the work was the generation of an independent, complementary, strain consisting of an inducible knockout model, in which the deficiency of the gene could be assessed in a more granular form. This approach enabled the discovery of Spag7 as a gene involved in the establishment of the mature placenta, which determines the metabolic fate of the offspring. Additional strengths include the extensive array of physiological parameters measured, which provided a deep understanding of the whole-body metabolic phenotype and pinpointed its likely origin to muscle energetic dysfunction.

      Weaknesses:

      Weaknesses that can be raised are the lack of molecular mechanistic understanding of the numerous phenotypic observations. For example, the specific role of Spag7 to promote placental development remains unclear. Also, the reason why placental developmental abnormalities lead to muscle dysfunction, and whether indeed the entire metabolic phenotype of the offspring can be attributed solely to decreased muscle energetics is not fully explored.

      Overall, the authors achieved a remarkable success in identifying genes associated with development of obesity and metabolic disease, discovering the role of Spag7 in placental development, and highlighting the fundamental role of in-utero development in setting future metabolic state of the offspring.

      Comments on revised version:

      I have no further comments on my assessment of this interesting paper.

    2. Reviewer #3 (Public Review):

      Summary:

      The manuscript by Flaherty III S.E. et al identified SPAG7 gene in their forward mutagenetic screening and created the germline knockout and inducible knockout mice. The authors reported that the SPAG7 germline knockout mice had lower birth weight likely due to intrauterine growth restriction and placental insufficiency. The SPAG7 KO mice later developed obesity phenotype as result of reduced energy expenditure. However, the inducible SPAG7 knockout mice had normal body weight and composition.

      Strengths:

      In this reviewer's opinion, this study has high significance in the field of metabolic research for the following reasons.

      1) The authors' findings are significant in the field of obesity research, especially from the perspective of maternal-fetal medicine. The authors created and analyzed the SPAG7 KO mice and found that the KO mice had a "thrifty phenotype" and developed obesity.

      2) SPAG7 gene function hasn't been thoroughly studied. The reported phenotype will fill the gap of knowledge.

      Overall, the authors have presented their results in a clear and logically organized structure, clearly stated the key question to be addressed, used the appropriate methodology, produced significant and innovative main findings.

      Comments on revised version:

      The authors have satisfactorily addressed my previous concerns.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Using a state-of-the-art image analysis pipeline the authors report that muscle cell hypertrophy in mice and humans occurs primarily through an increase in the number of myofibrils (myofibrillogenesis) and not myofibril hypertrophy.

      Strengths:<br /> A strength of the study is the development and validation of an automated image analysis pipeline to quantify myofibril size and abundance in mouse and human muscle cells. In addition to the pipeline, which requires relatively readily available microscopy equipment (an additional strength) is the development of a methodology to optimally prepare muscle samples for high-resolution imaging.

      Weaknesses:<br /> A weakness of the study was that only one time-point was assessed during hypertrophy. As mentioned by the authors, this precluded an assessment of the myofibril splitting mechanism.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this work, the authors sought to 1) establish a method for measuring muscle fiber subcellular structure (myofibrils) using common, non-specialized laboratory techniques and equipment, and 2) use this method to provide evidence on whether loading-induced muscle fiber growth was the result of myofibril growth (of existing myofibrils) or myofbrillogenesis (creation of new myofibrils) in mice and humans. The latter is a fundamental question in the muscle field. The authors succeeded in their aims and provided useful methods for the muscle field and detailed insight into muscle fiber hypertrophy; specifically, that loading-induced muscle fiber hypertrophy may be driven mostly by myofibrillogenesis.

      Strengths:<br /> 1) The usage of murine and human samples to provide evidence on myofibril hypertrophy vs myofibrillogenesis.<br /> 2) A nice historical perspective on myofibrillogenesis in skeletal muscle.<br /> 3) The description of a useful and tractable IHC imaging method for the muscle biology field supported by extensive validation against electron microscopy.<br /> 4) Fundamental information on how myofiber hypertrophy ensues.

      Weaknesses:

      - The usage of young growing mice (8-10 weeks) versus adult mice (>4 months) in the murine mechanical overload experiments, as well as no consideration for biological sex. The former point is partly curtailed by the adult human data that is provided (male only). Still, the usage of adult mice would be preferable for these experiments given that maturational growth may somehow affect the outcomes. For the latter point, it is not clear whether male or female mice were used.

    3. Reviewer #3 (Public Review):

      Summary:<br /> Radial muscle growth involves an increase in overall muscle cross-sectional area. For decades this process has been described as the splitting of myofibrils to produce more myofibrils during the growth process. However, a closer look at the original papers shows that the evidence underlying this description was incomplete. In this paper, the authors have developed a novel method using fluorescence microscopy to directly measure myofibril size and number. Using a mouse model of mechanical loading and a human model of resistance exercise they discovered that myofibrillogenesis is playing a key role in the radial growth of muscle fibers.

      Strengths:<br /> 1. Well-written and clear description of hypothesis, background, and experiments.<br /> 2. Compelling series of experiments.<br /> 3. Different approaches to test the hypothesis.<br /> 4. Rigorous study design.<br /> 5. Clear interpretation of results.<br /> 6. Novel findings that will be beneficial to the muscle biology field.<br /> 7. Innovative microscopy methods that should be widely available for use in other muscle biology labs.

    1. Reviewer #1 (Public Review):

      The authors have developed an open-source high-resolution microscope that is easily accessible to scientists, students, and the general public. The microscope is specifically designed to work with incubators and can image cells in culture over long periods. The authors provide detailed instructions for building the microscope and the necessary software to run it using off-the-shelf components. The system has great potential for studying cell biology and various biological processes.

      The authors' work will make scientific instruments more accessible and remove obstacles to the free diffusion of capabilities and know-how in science. This important contribution will enable more people to conduct scientific research.

    2. Reviewer #2 (Public Review):

      Making state-of-the-art (super-resolution) microscopy widely available has been the subject of many publications in recent years as correctly referenced in the manuscript. By advocating the ideas of open-microscopy and trying to replace expensive, scientific-grade components such as lasers, cameras, objectives, and stages with cost-effective alternatives, interested researchers nowadays have a number of different frameworks to choose from. In the iteration of the theme presented here, the authors used the existing modular UC2 framework, which consists of 3D printable building blocks, and combined a cheapish laser, detector and x,y,(z) stage with expensive filters/dichroics and an expensive high-end objective (>15k Euros).

      The choice of using the UC2 framework has the advantage, that the individual building blocks can be 3D printed, although it should be mentioned that the authors used injection-moulded blocks that will have a limited availability if not offered commercially by a third party. The strength of the manuscript is the tight integration of the hardware and the software (namely the implementations of imSwitch as a GUI to control data acquisition, OS SMLM algorithms for fast sub-pixel localisation and access to Napari).

      The presented experimental data is convincing, demonstrating (1) extended live cell imaging both using bright-field and fluorescence in the incubator, (2) single-particle tracking of quantum dots, and (3) and STORM measurements in cells stained against tubulin.

      For the revised (current) version of the manuscript, the authors further polished the manuscript and, more importantly, added plenty of information on the GitHub page that should make it significantly easier for interested researchers to replicate the instrument.

      Overall, this is compelling work that is helping to make super-resolved microscopy more accessible.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The emergence of Drosophila EM connectomes has revealed numerous neurons within the associative learning circuit. However, these neurons are inaccessible for functional assessment or genetic manipulation in the absence of cell-type-specific drivers. Addressing this knowledge gap, Shuai et al. have screened over 4000 split-GAL4 drivers and correlated them with identified neuron types from the "Hemibrain" EM connectome by matching light microscopy images to neuronal shapes defined by EM. They successfully generated over 800 split-GAL4 drivers and 22 split-LexA drivers covering a substantial number of neuron types across layers of the mushroom body associative learning circuit. They provide new labeling tools for olfactory and non-olfactory sensory inputs to the mushroom body; interneurons connected with dopaminergic neurons and/or mushroom body output neurons; potential reinforcement sensory neurons; and expanded coverage of intrinsic mushroom body neurons. Furthermore, the authors have optimized the GR64f-GAL4 driver into a sugar sensory neuron-specific split-GAL4 driver and functionally validated it as providing a robust optogenetic substitute for sugar reward. Additionally, a driver for putative nociceptive ascending neurons, potentially serving as optogenetic negative reinforcement, is characterized by optogenetic avoidance behavior. The authors also use their very large dataset of neuronal anatomies, covering many example neurons from many brains, to identify neuron instances with atypical morphology. They find many examples of mushroom body neurons with altered neuronal numbers or mistargeting of dendrites or axons and estimate that 1-3% of neurons in each brain may have anatomic peculiarities or malformations. Significantly, the study systematically assesses the individualized existence of MBON08 for the first time. This neuron is a variant shape that sometimes occurs instead of one of two copies of MBON09, and this variation is more common than that in other neuronal classes: 75% of hemispheres have two MBON09's, and 25% have one MBON09 and one MBON08. These newly developed drivers not only expand the repertoire for genetic manipulation of mushroom body-related neurons but also empower researchers to investigate the functions of circuit motifs identified from the connectomes. The authors generously make these flies available to the public. In the foreseeable future, the tools generated in this study will allow important advances in the understanding of learning and memory in Drosophila.

      Strengths:<br /> 1) After decades of dedicated research on the mushroom body, a consensus has been established that the release of dopamine from DANs modulates the weights of connections between KCs and MBONs. This process updates the association between sensory information and behavioral responses. However, understanding how the unconditioned stimulus is conveyed from sensory neurons to DANs, and the interactions of MBON outputs with innate responses to sensory context remains less clear due to the developmental and anatomic diversity of MBONs and DANs. Additionally, the recurrent connections between MBONs and DANs are reported to be critical for learning. The characterization of split-GAL4 drivers for 30 major interneurons connected with DANs and/or MBONs in this study will significantly contribute to our understanding of recurrent connections in mushroom body function.

      2) Optogenetic substitutes for real unconditioned stimuli (such as sugar taste or electric shock) are sometimes easier to implement in behavioral assays due to the spatial and temporal specificity with which optogenetic activation can be induced. GR64f-GAL4 has been widely used in the field to activate sugar sensory neurons and mimic sugar reward. However, the authors demonstrate that GR64f-GAL4 drives expression in other neurons not necessary for sugar reward, and the potential activation of these neurons could introduce confounds into training, impairing training efficiency. To address this issue, the authors have elaborated on a series of intersectional drivers with GR64f-GAL4 to dissect subsets of labeled neurons. This approach successfully identified a more specific sugar sensory neuron driver, SS87269, which consistently exhibited optimal training performance and triggered ethologically relevant local searching behaviors. This newly characterized line could serve as an optimized optogenetic tool for sugar reward in future studies.

      3) MBON08 was first reported by Aso et al. 2014, exhibiting dendritic arborization into both ipsilateral and contralateral γ3 compartments. However, this neuron could not be identified in the previously published Drosophila brain connectomes. In the present study, the existence of MBON08 is confirmed, occurring in one hemisphere of 35% of imaged flies. In brains where MBON08 is present, its dendrite arborization disjointly shares contralateral γ3 compartments with MBON09. This remarkable phenotype potentially serves as a valuable resource for understanding the stochasticity of neurodevelopment and the molecular mechanisms underlying mushroom body lobe compartment formation.

      Weaknesses:<br /> There are some minor weaknesses in the paper that can be clarified:

      1) In Figure 8, the authors trained flies with a 20s, weak optogenetic conditioning first, followed by a 60s, strong optogenetic conditioning. The rationale for using this training paradigm is not explicitly provided. In Figure 8E, if data for training with GR64f-GAL4 using the same paradigm is available, it would be beneficial for readers to compare the learning performance using newly generated split-GAL4 lines with the original GR64f-GAL4, which has been used in many previous research studies. It is noteworthy that in previously published work, repeating training test sessions typically leads to an increase in learning performance in discrimination assays. However, this augmentation is not observed in any of the split-GAL4 lines presented in Figure 8E. The authors may need to discuss possible reasons for this.

      2) In line 327, the authors state that in all samples, the β'1 compartment is arborized by MBON09. However, in Figure 11J, the probability of having at least one β'1 compartment not arborized is inferred to be 2%. The authors should address and clarify this conflict in the text to avoid misunderstanding.

      3) In general, are the samples presented male or female? This sample metadata will be shown when the images are deposited in FlyLight, but it would be useful in the context of this manuscript to describe in the methods whether animals are all one sex or mixed sex, and in some example images (e.g. mAL3A) to note whether the sample is male or female.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The article by Shuai et al. describes a comprehensive collection of over 800 split-GAL4 and split-LexA drivers, covering approximately 300 cell types in Drosophila, aimed at advancing the understanding of associative learning. The mushroom body (MB) in the insect brain is central to associative learning, with Kenyon cells (KCs) as primary intrinsic neurons and dopaminergic neurons (DANs) and MB output neurons (MBONs) forming compartmental zones for memory storage and behavior modulation. This study focuses on characterizing sensory input as well as direct upstream connections to the MB both anatomically and, to some extent, behaviorally. Genetic access to specific, sparsely expressed cell types is crucial for investigating the impact of single cells on computational and functional aspects within the circuitry. As such, this new and extensive collection significantly extends the range of targeted cell types related to the MB and will be an outstanding resource to elucidate MB-related processes in the future.

      Strengths:<br /> The work by Shuai et al. provides novel and essential resources to study MB-related processes and beyond. The resulting tools are publicly available and, together with the linked information, will be foundational for many future studies. The importance and impact of this tool development approach, along with previous ones, for the field cannot be overstated. One of many interesting aspects arises from the anatomical analysis of cell types that are less stereotypical across flies. These discoveries might open new avenues for future investigations into how such asymmetry and individuality arise from development and other factors, and how it impacts the computations performed by the circuitry that contains these elements.

      Weaknesses:<br /> Providing such an array of tools leaves little to complain about. However, despite the comprehensive genetic access to diverse sensory pathways and MB-connected cell types, the manuscript could be improved by discussing its limitations. For example, the projection neurons from the visual system seem to be underrepresented in the tools produced (or almost absent). A discussion of these omissions could help prevent misunderstandings. Additionally, more details on the screening process, particularly the selection of candidate split halves and stable split-GAL4 lines, would provide valuable insights into the methodology and the collection's completeness.

    3. Reviewer #3 (Public Review):

      Summary:<br /> Previous research on the Drosophila mushroom body (MB) has made this structure the best-understood example of an associative memory center in the animal kingdom. This is in no small part due to the generation of cell-type specific driver lines that have allowed consistent and reproducible genetic access to many of the MB's component neurons. The manuscript by Shuai et al. now vastly extends the number of driver lines available to researchers interested in studying learning and memory circuits in the fly. It is an 800-plus collection of new cell-type specific drivers target neurons that either provide input (direct or indirect) to MB neurons or that receive output from them. Many of the new drivers target neurons in sensory pathways that convey conditioned and unconditioned stimuli to the MB. Most drivers are exquisitely selective, and researchers will benefit from the fact that whenever possible, the authors have identified the targeted cell types within the Drosophila connectome. Driver expression patterns are beautifully documented and are publicly available through the Janelia Research Campus's Flylight database where full imaging results can be accessed. Overall, the manuscript significantly augments the number of cell type-specific driver lines available to the Drosophila research community for investigating the cellular mechanisms underlying learning and memory in the fly. Many of the lines will also be useful in dissecting the function of the neural circuits that mediate sensorimotor circuits.

      Strengths:<br /> The manuscript represents a huge amount of careful work and leverages numerous important developments from the last several years. These include the thousands of recently generated split-Gal4 lines at Janelia and the computational tools for pairing them to make exquisitely specific targeting reagents. In addition, the manuscript takes full advantage of the recently released Drosophila connectomes. Driver expression patterns are beautifully illustrated side-by-side with corresponding skeletonized neurons reconstructed by EM. A comprehensive table of the new lines, their split-Gal4 components, their neuronal targets, and other valuable information will make this collection eminently useful to end-users. In addition to the anatomical characterization, the manuscript also illustrates the functional utility of the new lines in optogenetic experiments. In one example, the authors identify a specific subset of sugar reward neurons that robustly promotes associative learning.

      Weaknesses:<br /> While the manuscript succeeds in making a mass of descriptive detail quite accessible to the reader, the way the collection is initially described - and the new lines categorized - in the text is sometimes confusing. Most of the details can be found elsewhere, but it would be useful to know how many of the lines are being presented for the first time and have not been previously introduced in other publications/contexts. And where can the lines be found at Flylight? Are they listed as one collection or as many? Also, the authors say that some of the lines were included in the collection despite not necessarily targeting the intended type of neuron (presumably one that is involved in learning and memory). What percentage of the collection falls into this category? And what about the lines that the authors say they included in the collection despite a lack of specificity? How many lines does this represent?

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors examined the extent to which the processing of speech and music depends on neural networks that are either specific to a domain or general in nature. They conducted comprehensive intracranial EEG recordings on 18 epilepsy patients as they listened to natural, continuous forms of speech and music. This enabled an exploration of brain activity at both the frequency-specific and network levels across a broad spectrum. Utilizing statistical methods, the researchers classified neural responses to auditory stimuli into categories of shared, preferred, and domain-selective types. It was observed that a significant portion of both focal and network-level brain activity is commonly shared between the processing of speech and music. However, neural responses that are selectively responsive to speech or music are confined to distributed, frequency-specific areas. The authors highlight the crucial role of using natural auditory stimuli in research and the need to explore the extensive spectral characteristics inherent in the processing of speech and music.

      Strengths:

      The study's strengths include its high-quality sEEG data from a substantial number of patients, covering a majority of brain regions. This extensive cortical coverage grants the authors the ability to address their research questions with high spatial resolution, marking an advantage over previous studies. They performed thorough analyses across the entire cortical coverage and a wide frequency range of neural signals. The primary analyses, including spectral analysis, temporal response function calculation, and connectivity analysis, are presented straightforwardly. These analyses, as well as figures, innovatively display how neural responses, in each frequency band and region/electrode, are 'selective' (according to the authors' definition) to speech or music stimuli. The findings are summarized in a manner that efficiently communicates information to readers. This research offers valuable insights into the cortical selectivity of speech and music processing, making it a noteworthy reference for those interested in this field. Overall, this research offers a valuable dataset and carries out extensive yet clear analyses, amounting to an impressive empirical investigation into the cortical selectivity of speech and music. It is recommended for readers who are keen on understanding the nuances of selectivity and generality in the processing of speech and music to refer to this study's data and its summarized findings.

      Weaknesses:

      The weakness of this study, in my view, lies in its experimental design and reasoning:<br /> 1. Despite using longer stimuli, the study does not significantly enhance ecological validity compared to previous research. The analyses treat these long speech and music stimuli as stationary signals, overlooking their intricate musical or linguistic structural details and temporal variation across local structures like sentences and phrases. In previous studies, short, less ecological segments of music were used, maintaining consistency in content and structure. However, this study, despite employing longer stimuli, does not distinguish between neural responses to the varied contents or structures within speech and music. Understanding the implications of long-term analyses, such as spectral and connectivity analyses over extended periods of around 10 minutes, becomes challenging when they do not account for the variable, sometimes quasi-periodical or even non-periodical, elements present in natural speech and music. When contrasting this study with prior research and highlighting its advantages, a more balanced perspective would have been beneficial in the manuscript.

      2. In contrast to previous studies that employed short stimulus segments along with various control stimuli to ensure that observed selectivity for speech or music was not merely due to low-level acoustic properties, this study used longer, ecological stimuli. However, the control stimuli used in this study, such as tone or syllable sequences, do not align with the low-level acoustic properties of the speech and music stimuli. This mismatch raises concerns that the differences or selectivity between speech and music observed in this study might be attributable to these basic acoustic characteristics rather than to more complex processing factors specific to speech or music.

      3. The concept of selectivity - shared, preferred, and domain-selective - increases the risks of potentially overgeneralized interpretations and theoretical inaccuracies. The authors' categorization of neural sites/regions as shared, preferred, or domain-selective regarding speech and music processing essentially resembles a traditional ANOVA test with post hoc analysis. While this categorization gives meaningful context to the results, the mere presence of significant differences among control stimuli, a segment of speech, and a piece of music does not necessarily imply that a region is specifically selective to a type of stimulus like speech. The manuscript's narrative might lead to an overgeneralized interpretation that their findings apply broadly to speech or music. However, identifying differences in neural responses to a few sets of specific stimuli in one brain region does not robustly support such a generalization. This is because speech and music are inherently diverse, and specificity often relates more to the underlying functions than to observed neural responses to a limited number of examples of a stimulus type. See the next point.

      4. The authors' approach, akin to mapping a 'receptive field' by correlating stimulus properties with neural responses to ascertain functional selectivity for speech and music, presents issues. For instance, in the cochlea, different stimuli activate different parts of the basilar membrane due to the distinct spectral contents of speech and music, with each part being selective to certain frequencies. However, this phenomenon reflects the frequency selectivity of the basilar membrane - an important function, not an inherent selectivity for speech or music. Similarly, if cortical regions exhibit heightened responses to one type of stimulus over another, it doesn't automatically imply selectivity or preference for that stimulus. The explanation could lie in functional aspects, such as a region's sensitivity to temporal units of a specific duration, be it music, speech, or even movie segments, and its role in chunking such units (e.g., around 500 ms), which might be more prevalent in music than in speech, or vice versa in the current study. This study does not delve into the functional mechanisms of how speech and music are processed across different musical or linguistic hierarchical levels but merely demonstrates differences in neural responses to various stimuli over a 10-minute span.

    2. Reviewer #2 (Public Review):

      Summary:

      The study investigates whether speech and music processing involve specific or shared brain networks. Using intracranial EEG recordings from 18 epilepsy patients, it examines neural responses to speech and music. The authors found that most neural activity is shared between speech and music processing, without specific regional brain selectivity. Furthermore, domain-selective responses to speech or music are limited to frequency-specific coherent oscillations. The findings challenge the notion of anatomically distinct regions for different cognitive functions in the auditory process.

      Strengths:

      1. This study uses a relatively large corpus of intracranial EEG data, which provides high spatiotemporal resolution neural recordings, allowing for more precise and dynamic analysis of brain responses. The use of continuous speech and music enhances ecological validity compared to artificial or segmented stimuli.

      2. This study uses multiple frequency bands in addition to just high-frequency activity (HFA), which has been the focus of many existing studies in the literature. This allows for a more comprehensive analysis of neural processing across the entire spectrum. The heterogeneity across different frequency bands also indicates that different frequency components of the neural activity may reflect different underlying neural computations.

      3. This study also adds empirical evidence towards distributed representation versus domain-specificity. It challenges the traditional view of highly specialized, anatomically distinct regions for different cognitive functions. Instead, the study suggests a more integrated and overlapping neural network for processing complex stimuli like speech and music.

      Weaknesses:

      While this study is overall convincing, there are still some weaknesses in the methods and analyses that limit the implication of the work.

      The study's main approach, focusing primarily on the grand comparison of response amplitudes between speech and music, may overlook intricate details in neural coding. Speech and music are not entirely orthogonal with each other at different levels of analysis: at the high-level abstraction, these are two different categories of cognitive processes; at the low-level acoustics, they overlap a lot; at intermediate levels, they may also share similar features. The selected musical stimuli, incorporating both vocals and multiple instrumental sounds, raise questions about the specificity of neural activation. For instance, it's unclear if the vocal elements in music and speech engage identical neural circuits. Additionally, the study doesn't adequately address whether purely melodic elements in music correlate with intonations in speech at a neural level. A more granular analysis, dissecting stimuli into distinct features like pitch, phonetics, timbre, and linguistic elements, could unveil more nuanced shared, and unique neural processes between speech and music. Prior research indicates potential overlap in neural coding for certain intermediate features in speech and music (Sankaran et al. 2023), suggesting that a simple averaged response comparison might not fully capture the complexity of neural encoding. Further delineation of phonetic, melodic, linguistic, and other coding, along with an analysis of how different informational aspects (phonetic, linguistic, melodic, etc) are represented in shared neural activities, could enhance our understanding of these processes and strengthen the study's conclusions.

      The paper's emphasis on shared and overlapping neural activity, as observed through sEEG electrodes, provides valuable insights. It is probably true that domain-specificity for speech and music does not exist at such a macro scale. However, it's important to consider that each electrode records from a large neuronal population, encompassing thousands of neurons. This broad recording scope might mask more granular, non-overlapping feature representations at the single neuron level. Thus, while the study suggests shared neural underpinnings for speech and music perception at a macroscopic level, it cannot definitively rule out the possibility of distinct, non-overlapping neural representations at the microscale of local neuronal circuits for features that are distinctly associated with speech and music. This distinction is crucial for fully understanding the neural mechanisms underlying speech and music perception that merit future endeavors with more advanced large-scale neuronal recordings.

      While classifying electrodes into 3 categories provides valuable insights, it may not fully capture the complexity of the neural response distribution to speech and music. A more nuanced and continuous approach could reveal subtler gradations in neural response, rather than imposing categorical boundaries. This could be done by computing continuous metrics, like unique variances explained by each category, or ratio-based statistics, etc. Incorporating such a continuum could enhance our understanding of the neural representation of speech and music, providing a more detailed and comprehensive picture of cortical processing.

    3. Reviewer #3 (Public Review):

      Summary:

      Te Rietmolen et al., investigated the selectivity of cortical responses to speech and music stimuli using neurosurgical stereo EEG in humans. The authors address two basic questions: 1. Are speech and music responses localized in the brain or distributed; 2. Are these responses selective and domain-specific or rather domain-general and shared? To investigate this, the study proposes a nomenclature of shared responses (speech and music responses are not significantly different), domain selective (one domain is significant from baseline and the other is not), domain preferred (both are significant from baseline but one is larger than the other and significantly different from each other). The authors employ this framework using neural responses across the spectrum (rather than focusing on high gamma), providing evidence for a low level of selectivity across spectral signatures. To investigate the nature of the underlying representations they use encoding models to predict neural responses (low and high frequency) given a feature space of the stimulus envelope or peak rate (by time delay) and find stronger encoding for both in the low-frequency neural responses. The top encoding electrodes are used as seeds for a pair-wise connectivity (coherence) in order to repeat the shared/selective/preferred analysis across the spectra, suggesting low selectivity. Spectral power and connectivity are also analyzed on the level of the regional patient population to rule out (and depict) any effects driven by a select few patients. Across analyses the authors consistently show a paucity of domain selective responses and when evident these selective responses were not represented across the entire cortical region. The authors argue that speech and music mostly rely on shared neural resources.

      Strengths:

      I found this manuscript to be rigorous providing compelling and clear evidence of shared neural signatures for speech and music. The use of intracranial recordings provides an important spatial and temporal resolution that lends itself to the power, connectivity, and encoding analyses. The statistics and methods employed are rigorous and reliable, estimated based on permutation approaches, and cross-validation/regularization was employed and reported properly. The analysis of measures across the entire spectra in both power, coherence, and encoding models provides a comprehensive view of responses that no doubt will benefit the community as an invaluable resource. Analysis of the level of patient population (feasible with their high N) per region also supports the generalizability of the conclusions across a relatively large cohort of patients. Last but not least, I believe the framework of selective, preferred, and shared is a welcome lens through which to investigate cortical function.

      Weaknesses:

      I did not find methodological weaknesses in the current version of the manuscript. I do believe that it is important to highlight that the data is limited to passively listening to naturalistic speech and music. The speech and music stimuli are not completely controlled with varying key acoustic features (inherent to the different domains). Overall, I found the differences in stimulus and lack of attentional controls (passive listening) to be minor weaknesses that would not dramatically change the results or conclusions.

    1. Joint Public Review:

      In this manuscript the authors performed experiments and simulations which showed that substrate evaporation is the main driver of early construction in termites. Additionally, these experiments and simulations were designed taking into account several different works, so that the current results shine a light on how substrate evaporation is a sufficient descriptor of most of the results seen previously.

      Through simulations and ingenious experiments the authors have shown how curvature is extremely correlated with evaporation, and therefore, how results coming from these 2 environmental factors can be explained through evaporation alone. The authors have continued to use their expertise of numerical simulations and a previously developed model for termite construction, to highlight and verify their findings. On my first pass of the manuscript I felt the authors were missing an experiment: an array of humidity probes to measure evaporation in the three spatial dimensions and over time. Technologically such an experiment is not out of reach, but the author's alternative (a substrate made with a saline solution and later measuring the salt deposits on the surface) was a very ingenious low tech solution to the problem.

      The authors agree that future experiments should tackle finely controlled humidity levels and curvature in order to have a more quantitative measure termite behaviour, but the work done so far is more than sufficient to justify their current claims.

      In the revised text, the authors have added more clarity into different biological systems in which these results could be applied. Perhaps what it would have been beneficial to also add more information on how the resulting algorithms of constructions can be used in swarm robotics with collective construction, both macro and micro, but I acknowledge that the style of the paper does focus more on the biological aspects

      The results presented here are so far the best attempt on characterizing multiple cues that induce termite construction activity, and that possibly unifies the different hypothesis presented in the last 8 years into a single factor, resulting into a valuable addition to the field. More importantly, even if these results come from different species of termites than some of the previous works, they are relatable and seem to be mostly consistent, improving the strength of the author's claims.

    1. Reviewer #1 (Public Review):

      Summary:<br /> HP1 plays a pivotal role in orchestrating chromatin packaging through the creation of biomolecular condensates. The existence of distinct homologs offers an intriguing avenue for investigating the interplay between genetic sequence and condensate formation. In this study, the authors conducted extensive coarse-grained simulations to delve into the phase separation behavior of HP1 paralogs. Additionally, the researchers delved into the captivating possibility of various HP1 paralogs co-localizing within assemblies composed of multiple components. Importantly, the study also delved into the critical role of DNA in finely tuning this complex process.

      Strengths:

      I applaud the authors for their methodical approach in conducting simulations aimed at dissecting the contributions of hinges, CTE, NTE, and folded regions. The comprehensive insights unveiled in Figure 3 compellingly substantiate the significance of these protein components in facilitating the process of phase separation.

      This systematic exploration has yielded several innovative revelations. Notably, the authors uncovered a nuanced interplay between the folded and disordered domains. Although disordered regions have traditionally been linked to driving phase separation through their capacity for forming multivalent interactions, the authors have demonstrated that the contribution of the CD cannot be overlooked, as it significantly impacts the saturation concentration.

      The outcomes of this study serve to elucidate the intricate mechanisms and regulatory aspects governing HP1 LLPS.

    2. Reviewer #2 (Public Review):

      In this paper, Phan et al. investigate the properties of human HP1 paralogs, their interactions and abilities to undergo liquid-liquid phase separation. For this, they use a coarse-grained computational approach (validated with additional all-atom simulations) which allows to explore complex mixtures. Matching (wet-lab) experimental results, HP1 beta (HP1b) exhibits different properties from HP1 alpha and gamma (HP1a,g), in that it does not phase separate. Using domain switch experiments, the authors determine that the more negatively charged hinge in HP1b, compared to HP1a and HP1g, is mainly responsible for this effect. Exploring heterotypic complexes, mixtures between HP1 subtypes and DNA, the authors further show that HP1a can serve as a scaffold for HP1b to enter into condensed phases and that DNA can further stabilize phase separated compartments. Most interestingly, they show that a multicomponent mixture containing DNA, and HP1a and HP1b generates spatial separation between the HP1 paralogs: due to increased negative charge of DNA within the condensates, HP1b is pushed out and accumulates at the phase boundary. This represents an example how complex assemblies could form in the cell.

      Overall, this is purely computational work, which however builds on extensive experimental results (including from the authors). The methods showcase how coarse-grained models can be employed to generate and test hypotheses how proteins can condense. Applied to HP1 proteins, the results from this tour-de-force study are consistent and convincing, within the experimental constraints. Moreover, the authors generate further models to test experimentally, in particular in light of multicomponent mixtures. Finally, the authors clearly discuss the computational methods, assumptions and limits of the methodology, which makes this a strong contribution to our understanding of biophysical basis of condensate formation in gene regulation.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This study aimed to elucidate the intrinsic factors and potential mechanisms of BMSCs aging from the interactions among PCBP2, ROS, and FGF2. This study represents the first study to reveal PCBP2 as an intrinsic aging factor to regulate the replicative senescence of hBMSCs through ROS-FGF2 signaling. This study provides convincing evidence to support the above conclusion.

      Strengths:<br /> This study utilized multiple in vitro approaches, such as proteomics, siRNA, and overexpression, to demonstrate that PCBP2 is an intrinsic factor of BMSC aging.

      Weaknesses:<br /> This study did not perform in vivo experiments.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The authors were trying to identify and characterize the intrinsic factors that control the process of cell aging of bone marrow mesenchymal stromal cells (BMSCs), which is believed to be related to osteoporosis.

      Strengths:<br /> The method is reasonable. The concept and methods used in this work can be easily extended to other systems and cells to study their aging process. It is also interesting to further examine if PCBP2 functions as an intrinsic aging factor in these other cell types.

      The results are solid, supporting the claims and conclusions. The authors successfully identified and characterized PCBP2 as one of the intrinsic aging factors for BMSC cells.

      Weaknesses:<br /> It is unclear if PCBP2 can also function as an intrinsic factor for BMSC cells in female individuals. More work may be needed to further dissect the mechanism of how PCBP2 impacts FGF2 expression. Could PCBP2 impact the FGF2 expression independent of ROS?

      Additional context that would help readers interpret or understand the significance of the work:<br /> In the current work, the authors studied the aging process of BMSC cells, which are related to osteoporosis. Aging processes also impact many other cell types and their function, such as in muscle, skin, and the brain.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This is an analysis of the mutations of Nav1.4 that allow tetrodotoxin resistance in two snake species while reducing the functional capacity of sodium channels in skeletal muscle and thereby reducing muscle function compared to toxin-sensitive snakes.

      Strengths:<br /> This is a well-conceived, solid, and well-presented manuscript. Although the subject is not entirely new, the approach is original and the data obtained is solid. The analysis of the structural changes implications in the channel function is certainly an important contribution to the field.

      Weaknesses:<br /> A short discussion on nerve sodium channels would be useful.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The story of the co-evolution of TTX-bearing newts and their independently evolved TTX-resistant garter snake predators is a classic in evolutionary ecology/physiology. Over the years specific amino acid substitutions in the muscle-expressing (and other) sodium channels have been identified and the behavioral assays of snake crawling performance have indicated that the attainment of TTX-resistance comes at a cost in mobility. One previous study also examined how the amino acid mutations affected the biophysics of Nav channel properties. The present paper starts with this foundation and builds by adding in details and making causal connections across multiple snake populations with different degrees of resistance. The addition of muscle physiology bridges the gap between organismal performance and sodium channel biophysics. Moving in the other direction, examining molecular models of Nav channel structure and energetics allows a deep understanding of how amino acid substitutions affect channel properties. In the end, a clear picture is painted from molecular to organismal levels in two different parallel evolutions of TTX resistance.

      Strengths:<br /> This study is a tour de force. It is clearly written, and nicely illustrated, and the methods and procedures are meticulously documented.

      Weaknesses:<br /> One caveat is that the Nav channels used to test mutations in expression systems are rat channels engineered with TTX-resisting substitutions observed in snake populations. The ideal experiment would have been to use the snake channels. While the rat channels appear to be a good substitute for the snake channels and the authors have taken pains to show that the important amino acids are conserved between garter snakes and rats, the authors might explain why they did not use snake channels.

      The noise analysis seems like a reasonable way to get at the question of single-channel conductance. But why did the authors not just measure single channel conductance in patches as opposed to this much more complex and roundabout method? It is recommended that the authors discuss how noise analysis deals with the problem of having the number of open channels changing rapidly during activation and fast inactivation. Is this a potential problem for deriving the total number of channels?

    3. Reviewer #3 (Public Review):

      Summary:<br /> This paper explores the cost of toxin resistance in snakes that prey on newts defended by highly potent TTX. Two species of garter snakes, T. atratus and T. sirtalis, are examined. Both species have resistant and sensitive populations. Resistance is achieved by substitutions in the voltage-gated sodium channels, which block TTX binding. Resistant T. atratus carry the triple substitutions EPN while resistant T. sirtalis carry the quadruple LVNV. These substitutions occur on the third and fourth intracellular domains of the voltage-gated sodium-channel gene Nav1.4, which is the paralog found in skeletal muscle. EPN and LVNV have been previously attributed to conferring resistance to TXX through target-site insensitivity of the channel. Previous work has also shown that snakes from resistant populations have reduced locomotor capabilities compared to their non-resistant counterparts.

      The authors systematically test the hypothesis that the resistance-conferring substitutions affect other phenotypes related to the function of the voltage-gated sodium channel, which is, in turn, responsible for the reduced locomotor capabilities. First, they compare the effects of EPN and LVNV on recombinantly expressed rat Nav1.4 with and without EPN and LVNV (in vitro). They find that both EPN and LVNV significantly reduce the channel's conductance. On top of that, LVNV also causes premature deactivation of the channel, thus reducing the current passing through the membrane. Next, they compare muscle tissue function between resistant and non-resistant populations of T. atratus and T. sirtalis (ex vivo). They find that both resistant populations have reduced twitch force (with T. sirtalis, carrying LVNV, having an even stronger reduction), reduced peak rate of force development, and overall reduced force. In addition, T. sirtalis (LVNV) muscle also has reduced peak tetanic force. Finally, they compare the biophysical effects of EPN and LVNV through homology modeling of Nav1.4 to explain the in vitro and in vivo results (in silico). They found that E1248 (of EPN) has a counteracting effect on the destabilizing effect of N1539, shared by both species. T. sirtalis (LVNV) lacks such a counteracting mutation, which could explain the stronger negative effects observed in LVNV channels and muscles.

      Strengths:<br /> A particular strength of this paper is the multi-level approach used to tease apart the negative pleiotropic effects of resistance-conferring substitutions. Each level of experiments informed the next, creating a focused comprehensive analysis of the costs associated with this specialized dietary adaptation in snakes. The results make an important contribution to our understanding of the role of negative pleiotropy in adaptive evolution and would be of broad interest to readers. The paper is well-written, and the data and analyses are clearly presented.

      Weaknesses:<br /> The sheer size of the Nav1.4 gene makes it difficult to clone into an expression vector and that's probably why an already cloned rat Nav1.4 was selected for the in vitro experiments. It would be great if the authors could comment on how the level of resistance produced by mutations on the rat Nav1.4 compared to the garter snake Nav1.4s. Are there previous data on tissue-isolated T. sirtalis and T. atratus channels? Is it possible that the snake mutations have slightly different effects on the rat genetic background due to epistatic interactions with sites beyond the 3rd and 4th domains?

      Following up on the first comment, sometimes negative pleiotropic effects are mitigated by compensatory mutations in other regions of the protein. This reviewer would recommend that the authors comment on this possibility. Are there substitutions beyond the 3rd and 4th domains that could potentially play a role in this adaptation?

      Based on the results, it seems that resistant T. sirtalis got the shorter end of the stick concerning negative pleiotropic effects, despite having similar (the same?) levels of resistance to TTX. Does this difference/disadvantage scale up to locomotor performance as well?

      It would be great if the authors could comment on how these resistant populations have persisted despite the locomotor/muscular disadvantages. Are there known differences in predation rates between the populations? The benefit must have outweighed the cost in these cases.

    4. Reviewer #4 (Public Review):

      Summary:<br /> The authors set out to address whether TTX resistance in a subset of snakes is due to mutations near the selectivity filters of their Nav1.4 channels. They present an investigation of the properties of two heterologously expressed Nav1.4 channels, bearing the Nav1.4EPN and Nav1.4LVNV mutations found in TTX-resistant snakes. After assessing their sensitivity to TTX, they have studied the biophysical properties of these mutants by electrophysiological methods and discovered that the voltage dependence of their activation and inactivation remains unchanged compared to the TTX-sensitive Nav1.4. These experiments revealed some kinetic differences in Nav1.4LVNV and that both Nav1.4EPN and Nav1.4LVNV show a reduced unitary conductance. The authors also assessed muscle properties (resistance, force development, and contraction timing) of two groups of snakes (in vivo and in dissected muscles) with Nav1.4EPN and Nav1.4LVNV mutations. These experiments showed a reduced performance for the skeletal muscles of snakes bearing Nav1.4EPN and Nav1.4LVNV background. Finally, the authors have built homology models of Nav1.4EPN and Nav1.4LVNV channels to hypothesize a molecular explanation of the altered properties.

      Strengths:<br /> • Three levels of analysis are performed in this study: 1) functional characterization of mutated Nav1.4 channels through electrophysiology; 2) molecular level comparisons between human and snake Nav1.4 channels structures through homology modelling; 3) organismal performance/muscle strength experiments on snakes that carry Nav1.4 mutants that render them virtually TTX resistant.

      Weaknesses:<br /> • While there is reason to believe that there is a causal link between the observed changes in Nav1.4 and the changes on the organismal level, the evidence presented is not definitive. Specifically, the conclusions from the biophysical/electrophysiological experiments are extrapolated to be causal for the altered muscle performance in TTX-resistant snakes, although there might be alternative explanations. First, the reduction in muscle force could also originate from changes in the calcium release apparatus or other alterations in the electrical properties of the muscle (are there changes in length or duration of muscle action potentials? Is there a change in the fraction of muscle cells that fail action potentials, as would be expected for a significant reduction in conductance?). Second, it remains unclear if, among the different snake Nav channels (e.g. Nav1.6 in motor neurons), Nav1.4 is the only one to display side chain alterations in these TTX-resistant snakes.

      • Some of the data presented as part of the NSNA is not sufficiently convincing and should be supplemented with additional evidence or carefully discussed with regard to its limitations.

      • The mutations studied are located close to the selectivity filter of Nav1.4. This means that the most likely consequence of the mutations is altered sodium selectivity, possibly along with changes to block extracellular calcium. But these possibilities are not currently addressed.

      • The description and accuracy of the homology model remains somewhat unclear, as no validation of the modeled channel has been presented. Therefore, the accuracy of the homology model remains vague, which calls into question to what degree the molecular features of this model can be linked to the electrophysiological findings.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The authors wanted to use AlphaFold-multimer (AFm) predictions to reduce the challenge of physics-based protein-protein docking.

      Strengths:<br /> They found that two features of AFm predictions are very useful. 1) pLLDT is predictive of flexible residues, which they could target for conformational sampling during docking; 2) the interface-pLLDT score is predictive of the quality of AFm predictions, which allows the authors to decide whether to do local or global docking.

      Weaknesses:<br /> 1) As admitted by the authors, the AFm predictions for the main dataset are undoubtedly biased because these structures were used for AFm training. Could the authors find a way to assess the extent of this bias?<br /> 2) For the CASP15 targets where this bias is absent, the presentation was very brief. In particular, it would be interesting to see how AFm helped with the docking. The authors may even want to do a direct comparison with docking results without the help of AFm.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In short, this paper uses a previously published method, ReplicaDock, to improve predictions from AlphaFold-multimer. The method generated about 25% more acceptable predictions than AFm, but more important is improving an Antibody-antigen set, where more than 50% of the models become improved.

      When looking at the results in more detail, it is clear that for the models where the AFm models are good, the improvement is modest (or not at all). See, for instance, the blue dots in Figure 6. However, in the cases where AFm fails, the improvement is substantial (red dots in Figure 6), but no models reach a very high accuracy (Fnat ~0.5 compared to 0.8 for the good AFm models). So the paper could be summarized by claiming, "We apply ReplicaDock when AFm fails", instead of trying to sell the paper as an utterly novel pipeline. I must also say that I am surprised by the excellent performance of ReplicaDock - it seems to be a significant step ahead of other (not AlphaFold) docking methods, and from reading the original paper, that was unclear. Having a better benchmark of it alone (without AFm) would be very interesting.

      These results also highlight several questions I try to describe in the weakness section below. In short, they boil down to the fact that the authors must show how good/bad ReplicaDock is at all targets (not only the ones where AFm fails. In addition, I have several more technical comments.

      Strengths:<br /> Impressive increase in performance on AB-AG set (although a small set and no proteins).

      Weaknesses:<br /> The presentation is a bit hard to follow. The authors mix several measures (Fnat, iRMS, RMSDbound, etc). In addition, it is not always clear what is shown. For instance, in Figure 1, is the RMSD calculated for a single chain or the entire protein? I would suggest that the author replace all these measures with two: TM-score when evaluating the quality of a single chain and DockQ when evaluating the results for docking. This would provide a clearer picture of the performance. This applies to most figures and tables. For instance, Figure 9 could be shown as a distribution of DockQ scores.

      The improvements on the models where AFm is good are minimal (if at all), and it is unclear how global docking would perform on these targets, nor exactly why the plDDT<0.85 cutoff was chosen. To better understand the performance of ReplicaDock, the authors should therefore (i) run global and local docking on all targets and report the results, (ii) report the results if AlphaFold (not multimer) models of the chains were used as input to ReplicaDock (I would assume it is similar). These models can be downloaded from AlphaFoldDB.

      Further, it would be interesting to see if ReplicaDock could be combined with AFsample (or any other model to generate structural diversity) to improve performance further.

      The estimates of computing costs for the AFsample are incorrect (check what is presented in their paper). What are the computational costs for RepliaDock global docking?

      It is unclear strictly what sequences were used as input to the modelling. The authors should use full-length UniProt sequences if they were not done.

      The antibody-antigen dataset is small. It could easily be expanded to thousands of proteins. It would be interesting to know the performance of ReplicaDock on a more extensive set of Antibodies and nanobodies.

      Using pLDDT on the interface region to identify good/bas models is likely suboptimal. It was acceptable (as a part of the score) for AlphaFold-2.0 (monomer), but AFm behaves differently. Here, AFm provides a direct score to evaluate the quality of the interaction (ipTM or Ranking Confidence). The authors should use these to separate good/bad models (for global/local docking), or at least show that these scores are less good than the one they used.

    1. Reviewer #1 (Public Review):

      Strength:<br /> At first glance, I had a very positive impression of the overall manuscript. The experiments were well done, the data presentation looks very structured, and the text reads well in principle.

      Weakness:<br /> Having a closer look, the red line of the manuscript is somewhat blurry. Reading the abstract, the introduction, and parts of the discussion, it is not really clear what the authors exactly aim to target. Is it the regulation of fermentation in cyanobacteria because it is under-investigated? Is it to bring light to the transcriptional regulation of hydrogenase genes? The regulation by SigE? Or is it to get insight into the real function of cyAbrB2 in cyanobacteria? All of this would be good of course. But it appears that the authors try to integrate all these aspects, which in the end is a little bit counterintuitive and in some places even confusing. From my point of view, the major story is a functional investigation of the presumable transcriptional regulator cyAbrB2, which turned out to be a potential NAP. To demonstrate/prove this, the hox genes have been chosen as an example due to the fact that a regulatory role of cyAbrB2 has already been described. In my eyes, it would be good to restructure or streamline the introduction according to this major outcome.

      Points to consider:<br /> The authors suggest that the microoxic condition is the reason for the downregulation of e.g. photosynthesis (l.112-114). But of course, they also switched off the light to achieve a microoxic environment, which presumably is the trigger signal for photosynthesis-related genes. I suggest avoiding making causal conclusions exclusively related to oxygen and recommend rephrasing (for example, "were downregulated under the conditions applied").

      The authors hypothesized that cyAbrB2 modulates chromosomal conformation and conducted a 3C analysis. But if I read the data in Figure 5B & C correctly, there is a lot of interaction in a range of 1650 and 1700 kb, not only at marked positions c and j. Positions c and j have been picked because it appears that cyAbrB2 deletion impacts this particular interaction. But is it really significant? In the case of position j the variation between the replicates seems quite high, in the case of position c the mean difference is not that high. Moreover, does all this correlate with cyAbrB2 binding, i.e. with positions of gray bars in panel A? If this was the case, the data obtained for the cyabrB2 mutant should look totally different but they are quite similar to WT. That's why the sentence "By contrast, the interaction frequency in Δcyabrb2 mutant were low and unchanged in the aerobic and microoxic conditions" does not fit to the data shown. But I have to mention that I am not an expert in these kinds of assays. Nevertheless, if there is a biological function that shall be revealed by an experiment, the data must be crystal clear on that. At least the descriptions of the 3C data and the corresponding conclusions need to be improved. For me, it is hard to follow the authors' thoughts in this context.

      The figures are nicely prepared, albeit quite complex and in some cases not really supportive of the understanding of the results description. Moreover, they show a rather loose organization that sometimes does not fit the red line of the results section. For example, Figure 1D is not mentioned in the paragraph that refers to several other panels of the same figure (see lines110-128). Panel 1D is mentioned later in the discussion. Does 1D really fit into Figure 1 then? Are all the panels indeed required to be shown in the main document? As some elements are only briefly mentioned, the authors might also consider moving some into the supplement (e.g. left part of Figure 1C, Figure 2A, Figure 3B ...) or at least try to distribute some panels into more figures. This would reduce complexity and increase comprehensibility for future readers. Also, Figure 3 is a way too complex. Panel G could be an alone-standing figure. The latter would also allow for an increase in font sizes or to show ChIP data of both conditions (L+O2 and D-O2) separately. Moreover, a figure legend typically introduces the content as a whole by one phrase but here only the different panels are described, which fits to the impression that all the different panels are not well connected. Of course, it is the decision of the authors what to present and how but may they consider restructuring and simplifying.

      The authors assume a physiological significance of transient upregulation of e.g. hox genes under microoxic conditions. But does the hydrogenase indeed produce hydrogen under the conditions investigated and is this even required? Moreover, the authors use the term "fermentative gene". But is hydrogen indeed a fermentation product, i.e. are protons the terminal electron acceptor to achieve catabolic electron balance? Then huge amounts of hydrogen should be released. Comment should be made on this.

      The authors also mention a reverse TCA cycle. But is its existence an assumption or indeed active in cyanobacteria, i.e. is it experimentally proven? The authors are a little bit vague in this regard (see lines 241-246).

    2. Reviewer #2 (Public Review):

      This work probes the control of the hox operon in the cyanobacterium Synechocystis, where this operon directs the synthesis of a bidirectional hydrogenase that functions to produce hydrogen. In assessing the control of the hox system, the authors focused on the relative contributions of cyAbrB2, alongside SigE (and to a lesser extent, SigA and cyAbrB1) under both aerobic and microoxic conditions. In mapping the binding sites of these different proteins, they discovered that cyAbrB2 bound many sites throughout the chromosome repressed many of its target genes, and preferentially bound regions that were (relatively) rich in AT-residues. These characteristics led the authors to consider that cyAbrB2 may function as a nucleoid-associated protein (NAP) in Synechocystis, given its functional similarities with other NAPs like H-NS. They assessed the local chromosome conformation in both wild-type and cyabrB2 mutant strains at multiple sites within a 40 kb window on either side of the hox locus, using a region within the hox operon as bait. They concluded that cyAbrB2 functions as a nucleoid-associated protein that influences the activity of SigE through its modulation of chromosome architecture.

      The authors approached their experiments carefully, and the data were generally very clearly presented and described.

      Based on the data presented, the authors make a strong case for cyAbrB2 as a nucleoid-associated protein, given the multiple ways in which it seems to function similarly to the well-studied Escherichia coli H-NS protein. It would be helpful to provide some additional commentary within the discussion around the similarities and differences of cyAbrB2 to other nucleoid-associated proteins, and possible mechanisms of cyAbrB2 control (post-translational modification; protein-protein interactions; etc.). The manuscript would also be strengthened with the inclusion of biochemical experiments probing the binding of cyAbrB2, particularly focussing on its oligomerization and DNA polymerization/bridging potential.

      Previous work had revealed a role for SigE in the control of hox cluster expression, which nicely justified its inclusion (and focus) in this study. However, the results of the SigA studies here suggested that SigA both strongly associated with the hox promoter, and its binding sites were shared more frequently than SigE with cyAbrB2. The focus on cyAbrB2 is also well-justified, given previous reports of its control of hox expression; however, it shares binding sites with an essential homologue cyAbrB1. Interestingly, while the B1 protein appears to bind similar sites, instead of repressing hox expression, it is known as an activator of this operon. It seems important to consider how cyAbrB1 activity might influence the results described here.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors have previously described a way to boost WNT/CTNNB1 signaling in a tissue-specific manner, by directing an RSPO2 mutant protein (RSPO2RA) to a liver-specific receptor (ASGR1/2). This is done by fusing the RSPO2RA to an antibody that binds ASGR1/2.

      Here the authors describe two new antibodies, 8M24 and 8G8, with similar effects. 8M24 shows specificity for ASGR1, while 8G8 has broader affinity for mouse/human ASGR1/2.

      The authors resolve and describe the crystal structure of the hASGR1CRD:8M24 complex and the hASGR2CRD:8G8 complex in great detail, which helps explain the specificities of the 8M24 and 8G8 antibodies. Their epitopes are non-overlapping.<br /> Upon fusion of the antibodies to an RSPO2RA (an RSPO mutant), these antibodies are able to enhance WNT signaling by promoting the ASGR1-mediated clearance of ZNRF3/RNF43, thereby increasing cell surface expression of FZD. This has previously also been shown to be the case for RSPO2RA fused to an anti-ASGR1 antibody 4F3 - and the paper also tests how the antibodies compare to the 4F3 fusion.

      Strengths:<br /> One challenge in treating diseases is the fact that one would like therapeutics to be highly specific - not just in terms of their target (e.g. aimed at a specific protein of interest) but also in terms of tissue specificity (i.e. affecting only tissue X but leaving all others unaffected). This study broadens the collection of antibodies that can be used for this purpose and thus expands a potential future clinical toolbox.

      Weaknesses:<br /> 1. The authors demonstrate that ASGR1 is degraded in response to RSPO2RA-antibody treatment through both the proteasomal and the lysosomal pathway, suggesting that this is due to the RSPO2RA-mediated recruitment of ZNRF3/RNF43, which have E3 ubiquitin ligase activity. The paper doesn't show, however, if ASGR1 is indeed ubiquitinated.

      2. The authors conclude that the RSPO2A-Ab fusions can act as a targeted protein degredation platform, because they can degrade ASGR. While I agree with this statement, I would argue that the goal of these Abs would not be to degrade ASGR per se. The argumentation is a bit confusing here. This holds for both the results and the discussion section: The authors focus on the dual role of their agents, i.e. on promoting both WNT signaling AND on degrading ASGR1. They might want to reconsider how they present their data (e.g. it may be interesting to target ASGR1, but one would presumably then like to do this without also increasing WNT responsiveness?).

      3. Lines 326-331: The authors use a lot of abbreviations for all of the different protein targeting technologies, but since they are hinting at specific mechanisms, it would be better to actually describe the biological activity of LYTAC versus AbTAC/PROTAB/REULR so non-experts can follow.

      4. Can the authors comment on how 8M24 and 8G8 compare to 4F3? The latter seems a bit more specific (ie. lower background activity in the absence of ASGR1 in 5C)? Are there any differences/advances between 8M24 and 8G8 over 4F3? This remains unclear.

      5. Can the authors ensure that the axes are labelled/numbered similarly for Fig 5B-D? This will make it easier to compare 5C and 5D.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The authors have previously engineered an antibody fusion protein targeting ZNRF3/RNF43 ubiquitin ligases, which enhances Wnt signaling specifically in hepatocytes. This is achieved using RSPO2RA (ZNRF3/RNF43 ligand with F105R/F109A mutations which abolish its binding to LGRs) and ASGR1 (hepatocyte-specific cell surface molecule). In the current study, they have identified two new ASGR1 and ASGR1/2 antibodies (8M24 and 8G8), which also enhance Wnt signaling when fused to RSPO2RA antibody. These also lead to the degradation of ASGR1, demonstrating that protein degradation and signaling enhancement can be dually targeted with a single molecule.

      Strengths:<br /> The authors show crystal structures for binding of these antibodies to ASGR1/2, and hypothesize about why specificity is mediated through specific residues. They do not test these hypotheses.

      The authors demonstrate a sub-picomolar affinity of these antibodies for ASGR1/2, which should be powerful clinically.

      The authors demonstrate in hepatocyte cell lines that these function as mimetics, and that they do not function in HEK cells, which do not express ASGR1. They do not perform an exhaustive screen of all non-hepatocyte cells, nor do they test these molecules in vivo.

      Surprisingly, these molecules also induced loss of ASGR1, which the authors hypothesize is due to ubiquitination and degradation, initiated by the E3 ligases recruited to ASGR1. They demonstrate that inhibition of either the proteasome or lysosome abrogates this effect and that it is dependent on E1 ubiquitin ligases. They do not demonstrate direct ubiquitination of ASGR1 by ZNRF3/RNF43.

      Weaknesses:<br /> As co-listed with strengths above, the analysis is not always exhaustive but shows good preliminary findings for the field.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The manuscript by Lenz and colleagues describes a detailed examination of the epigenetic changes and alterations in subnuclear arrangement associated with the activation of a unique var gene associated with placental malaria in the human malaria parasite Plasmodium falciparum. The var gene family has been heavily studied over the last couple of decades due to its importance in the pathogenesis of malaria, its role in immune avoidance, and the unique transcriptional regulation that it displays. Aspects of how mutually exclusive expression is regulated have been described by several groups and are now known to include histone modifications, subnuclear chromosomal arrangement, and in the case of var2csa, regulation at the level of translation. Here the authors apply several methods to confirm previous observations and to consider a possible role for DNA methylation. They demonstrate that the histone mark H3K9me3 is found at the promoters of silent genes, var2csa moves away from other var gene clusters when activated, and while DNA methylation is detectable at var genes, it does not seem to correlate with transcriptional activation/silencing. Overall, the data and approach appear sound.

      Strengths:<br /> The authors employ the latest methods for epigenetic analysis of histone marks, transcriptomic analysis, DNA methylation, and chromosome conformation. They also use strong selection pressure to be able to examine the gene var2csa in its active and silent state. This is likely the only paper that has used all these methods in parallel to examine var gene regulation. Thus, the paper provides readers with confidence in the interpretation of independent methods that address a similar subject.

      Weaknesses:<br /> The primary weakness of the paper is that none of the conclusions are novel and the overall conclusions do not shed much new light on the topic of var gene regulation or antigenic variation in malaria parasites. The paper is largely confirmatory. The roles of H3K9me3 and subnuclear localization in var gene regulation are well established by many groups (including for var2csa), albeit in some cases using alternative methods. The only truly unique aspect of the manuscript is the description of 5mC at var2csa when the gene is transcriptionally active or silent. Here the authors demonstrate that the mark has no clear role in transcriptional activation or silencing, however, this will not be surprising to many in the field who have previously cast doubt on a regulatory role for this modification.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this paper, the authors develop a comprehensive program to investigate the organization of chromosome structures at 100 kb resolution. It is extremely well executed. The authors have thought through all aspects of the problem. The resulting software will be most useful to the community. Interestingly they capture many experimental observations accurately. I have very few complaints.

      Strengths:<br /> A lot of details are provided. The success of the method is well illustrated. Software is easily available,

      Weaknesses:<br /> The number of parameters in the energy function is very large. Is there any justification for this? Could they simplify the functions?

      What would the modification be if the resolution is increased?

      They should state that the extracted physical values are scale-dependent. For example, viscosity.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this work, Lao et al. develop an open-source software (OpenNucleome) for GPU-accelerated molecular dynamics simulation of the human nucleus accounting for chromatin, nucleoli, nuclear speckles, etc. Using this, the authors investigate the steady-state organization and dynamics of many of the nuclear components.

      Strengths:<br /> This is a comprehensive open-source tool to study several aspects of the nucleus, including chromatin organization, interactions with lamins and organization, and interactions with nuclear speckles and nucleoli. The model is built carefully, accounting for several important factors and optimizing the parameters iteratively to achieve experimentally known results. The authors have simulated the entire genome at 100kb resolution (which is a very good resolution to simulate and study the entire diploid genome) and predict several static quantities such as the radius of gyration and radial positions of all chromosomes, and time-dependent quantities like the mean-square displacement of important genomic regions.

      Weaknesses:<br /> One weakness of the model is that it has several parameters. Some of them are constrained by the experiments. However, the role of every parameter is not clear in the manuscript.

    3. Reviewer #3 (Public Review):

      Summary:<br /> The authors of this study aim to develop OpenNucleome, a computational tool designed to simulate the structure and dynamics of the human nucleus. This software models nuclear components like chromosomes and nuclear bodies, leveraging GPU acceleration for improved performance. The key objective is to enhance our understanding of nuclear organization, providing a tool that aligns with experimental data and is accessible to the genome architecture scientific community.

      Strengths:<br /> OpenNucleome offers a detailed and dynamic model of the nucleus, a significant step forward in computational biology.

      The integration of GPU acceleration with the OpenMM package is a good technical advancement, potentially enhancing performance.

      The comparison with experimental data adds credibility to the tool's accuracy and relevance.

      Weaknesses:<br /> The lack of comprehensive tutorials and clear documentation on the OpenNucleome GitHub page is a considerable barrier to accessibility and user-friendliness.

      The process for generating necessary input files is not adequately explained, which could hinder the tool's practical application.

      The paper could benefit from more explicit explanations on the standardization of practices and cross-validation with existing tools like OpenMiChroM.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Pulfer A. et al. developed a deep learning-based apoptosis detection system named ADeS, which outperforms the currently available computational tools for in vitro automatic detection. Furthermore, ADeS can automatically identify apoptotic cells in vivo in intravital microscopy time-lapses, preventing manual labeling with potential biases. The authors trained and successfully evaluated ADeS in packed epithelial monolayers and T cells distributed in 3D collagen hydrogels. Moreover, in vivo, training and evaluation were performed on polymorphonucleated leukocytes in lymph nodes and spleen.

      Strengths:<br /> Pulfer A. et colleagues convincingly presented their results, thoroughly evaluated ADeS for potential toxicity assay, and compared its performance with available state-of-the-art tools.

      Weaknesses:<br /> The use of ADeS is still restricted to samples where cells are fluorescently labeled either in the cytoplasm or in the nucleus, which limits its use for in vitro toxicity assays that are performed on primary cells or organoids (e.g., iPSCs-derived systems) that are normally harder to transfect.

      In conclusion, ADeS will be a useful tool to improve output quality and accelerate the evaluation of assays in several research areas with basic and applied aims.

    2. Reviewer #1 (Public Review):

      Summary:<br /> Pulfer et al., describes the development and testing of a transformer based deep learning architecture called ADeS, which the authors use to identify apoptotic events in cultured cells and live animals. The classifier is trained on large datasets and provides robust classification accuracies in test sets that are comparable to and even outperform existing deep learning architectures for apoptosis detection. Following this validation, the authors also design use cases for their technique both in vitro and in vivo, demonstrating the value of ADeS to the apoptosis research space.

      Strengths:

      ADeS is a powerful tool in the arsenal of cell biologists interested in the spatio-temporal co-ordinates of apoptotic events in vitro, since live cell imaging typically generates densely packed fields of view that are challenging to parse by manual inspection. The authors also integrate ADeS into the analysis of data generated using different types of fluorescent markers in a variety of cell types and imaging modalities, which increases its adaptability by a larger number of researchers. ADeS is an example of successful deployment of activity recognition (AR) in the automated bioimage analysis space, highlighting the potential benefits of AR to quantifying other intra- and intercellular processes observable using live cell imaging.

      Weaknesses:

      A major drawback was the lack of access to the ADeS platform for the reviewers; the authors state that the code is available in the code availability section, which is missing from the current version of the manuscript. This prevented an evaluation of the usability of ADeS as a resource for other researchers. The authors also emphasize the need for label-free apoptotic cell detection in both their abstract and their introduction but have not demonstrated the performance of ADeS in a true label-free environment where the cells do not express any fluorescent markers. While Pulfer et al., provides a wealth of information about the generation and validation of their DL classifier for in vitro movies, and the utility of ADeS is obvious in identifying apoptotic events among FOVs containing ~1700 cells, the evidence is not as strong for in vivo use cases. They mention the technical challenges involved in identifying apoptotic events in vivo, and use 3D rotation to generate a larger dataset from their original acquisitions. However, it is not clear how this strategy would provide a suitable training dataset for understanding the duration of apoptotic events in vivo since the temporal information remains the same. The authors also provide examples of in vivo acquisitions in their paper, where the cell density appears to be quite low, questioning the need for automated apoptotic detection in those situations. In the use cases for in vivo apoptotic detection using ADeS (Fig 8), it appears that the location of the apoptotic event itself was obvious and did not need ADeS, as in the case of laser ablation in the spleen and the sparse distribution of GFP labeled neutrophils in the lymph nodes. Finally, the authors also mention that video quality altered the sensitivity of ADeS in vivo (Fig 6L) but fail to provide an example of ADeS implementation on a video of poor quality, which would be useful for end users to assess whether to adopt ADeS for their own live cell movies.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Cell metabolism exhibits a well-known behavior in fast-growing cells, which employ seemingly wasteful fermentation to generate energy even in the presence of sufficient environmental oxygen. This phenomenon is known as Overflow Metabolism or the Warburg effect in cancer. It is present in a wide range of organisms, from bacteria and fungi to mammalian cells.

      In this work, starting with a metabolic network for Escherichia coli based on sets of carbon sources, and using a corresponding coarse-grained model, the author applies some well-based approximations from the literature and algebraic manipulations. These are used to successfully explain the origins of Overflow Metabolism, both qualitatively and quantitatively, by comparing the results with E. coli experimental data.

      By modeling the proteome energy efficiencies for respiration and fermentation, the study shows that these parameters are dependent on the carbon source quality constants K_i (p.115 and 116). It is demonstrated that as the environment becomes richer, the optimal solution for proteome energy efficiency shifts from respiration to fermentation. This shift occurs at a critical parameter value K_A(C).

      This counterintuitive result qualitatively explains Overflow Metabolism.

      Quantitative agreement is achieved through the analysis of the heterogeneity of the metabolic status within a cell population. By introducing heterogeneity, the critical growth rate is assumed to follow a Gaussian distribution over the cell population, resulting in accordance with experimental data for E. coli. Overflow metabolism is explained by considering optimal protein allocation and cell heterogeneity.

      The obtained model is extensively tested through perturbations: 1) Introduction of overexpression of useless proteins; 2) Studying energy dissipation; 3) Analysis of the impact of translation inhibition with different sub-lethal doses of chloramphenicol on Escherichia coli; 4) Alteration of nutrient categories of carbon sources using pyruvate. All model perturbation results are corroborated by E. coli experimental results.

      Strengths:<br /> In this work, the author employs modeling methods typical of Physics to address a problem in Biology, standing at the interface between these two scientific fields. This interdisciplinary approach proves to be highly fruitful and should be further explored in the literature. The use of Escherichia coli as an example ensures that all hypotheses and approximations in this study are well-founded in the literature. Examples include the approximation for the Michaelis-Menten equation (line 82), Eq. S1, proteome partition in Appendix 1.1 (lines 68-69), and a stable nutrient environment in Appendix 1.1 (lines 83-84). The section "Testing the model through perturbation" heavily relies on bacterial data. The construction of the model and its agreement with experimental data are convincingly presented.

      Weaknesses:<br /> In Section Appendix 6.4, the author explores the generalization of results from bacteria to cancer cells, adapting the metabolic network and coarse-grained model accordingly. It is argued that as a consequence, all subsequent steps become immediately valid. However, I remain unconvinced, considering the numerous approximations used to derive the equations, which the literature demonstrates to be valid primarily for bacteria. A more detailed discussion about this generalization is recommended. Additionally, it is crucial to note that the experimental validation of model perturbations heavily relies on E. coli data.

    2. Reviewer #2 (Public Review):

      Summary<br /> This paper has three parts. The first part applied a coarse-grained model with proteome partition to calculate cell growth under respiration and fermentation modes. The second part considered single-cell variability and performed population average to acquire an ensemble metabolic profile for acetate fermentation. The third part used model and simulation to compare experimental data in literature and obtained substantial consistency.

      Strengths and major contributions<br /> (i) The coarse-grained model considered specific metabolite groups and their inter-relations and acquired an analytical solution for this scenario. The "resolution" of this model is in between the Flux Balanced Analysis/whole-cell simulation and proteome partition analysis.

      (ii) The author considered single-cell level metabolic heterogeneity and calculated the ensemble average with explicit calculation. The results are consistent with known fermentation and growth phenomena qualitatively and can be quantitatively compared to experimental results.

      Weaknesses<br /> (i) If I am reading this paper correctly, the author's model predicts binary (or "digital") outcomes of single-cell metabolism, that is, after growth rate optimization, each cell will adopt either "respiration mode" or "fermentation mode" (as illustrated in Figure Appendix - Figure 1 C, D). Due to variability enzyme activity k_i^{cat} and critical growth rate λ_C, each cell under the same nutrient condition could have either respiration or fermentation, but the choice is binary.

      The binary choice at the single-cell level is inconsistent with our current understanding of metabolism. If a cell only uses fermentation mode (as shown in Appendix - Figure 1C), it could generate enough energy but not be able to have enough metabolic fluxes to feed into the TCA cycle. That is, under pure fermentation mode, the cell cannot expand the pool of TCA cycle metabolites and hence cannot grow.

      This caveat also appears in the model in Appendix (S25) that assumes J_E = r_E*J_{BM} where r_E is a constant. From my understanding, r_E can be different between respiration and fermentation modes (at least for real cells) and hence it is inappropriate to conclude that cells using fermentation, which generates enough energy, can also generate a balanced biomass.

      (ii) The minor weakness of this model is that it assumes a priori that each cell chooses its metabolic strategy based on energy efficiency. This is an interesting assumption but there is no known biochemical pathway that directly executes this mechanism. In evolution, growth rate is more frequently considered for metabolic optimization. In Flux Balanced Analysis, one could have multiple objective functions including biomass synthesis, energy generation, entropy production, etc. Therefore, the author would need to justify this assumption and propose a reasonable biochemical mechanism for cells to sense and regulate their energy efficiency.

      My feeling is that the mathematical structure of this model could be correct, but the single-cell interpretation for the ensemble averaging has issues. Each cell could potentially adopt partial respiration and partial fermentation at the same time and have temporal variability in its metabolic mode as well. With the modification of the optimization scheme, the author could have a revised model that avoids the caveat mentioned above.

      Discussion and impact for the field<br /> Proteome partition models and Flux Balanced Analysis are both commonly used mathematical models that emphasize different parts of cellular physiology. This paper has ingredients for both, and I expect after revision it will bridge our understanding of the whole cell.

    3. Reviewer #3 (Public Review):

      Summary:<br /> In the manuscript "Overflow metabolism originates from growth optimization and cell heterogeneity" the author Xin Wang investigates the hypothesis that the transition into overflow metabolism at large growth rates actually results from an inhomogeneous cell population, in which every individual cell either performs respiration or fermentation.

      Weaknesses:<br /> The paper has several major flaws. First, and most importantly, it repeatedly and wrongly claims that the origins of overflow metabolism are not known. The paper is written as if it is the first to study overflow metabolism and provide a sound explanation for the experimental observations. This is obviously not true and the author actually cites many papers in which explanations of overflow metabolism are suggested (see e.g. Basan et al. 2015, which even has the title "Overflow metabolism in E. coli results from efficient proteome allocation"). The paper should be rewritten in a more modest and scientific style, not attempting to make claims of novelty that are not supported. In fact, all hypotheses in this paper are old. Also the possiblility that cell heterogeneity explains the observed 'smooth' transition into overflow metabolism has been extensively investigated previously (see de Groot et al. 2023, PNAS, "Effective bet-hedging through growth rate dependent stability") and the random drawing of kcat-values is an established technique (Beg et al., 2007, PNAS, "Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity"). Thus, in terms of novelty, this paper is very limited. It reinvents the wheel and it is written as if decades of literature debating overflow metabolism did not exist.

      Moreover, the manuscript is not clearly written and is hard to understand. Variables are not properly introduced (the M-pools need to be discussed, fluxes (J_E), "energy coefficients" (eta_E), etc. need to be more explicitly explained. What is "flux balance at each intermediate node"? How is the "proteome efficiency" of a pathway defined? The paper continues to speak of energy production. This should be avoided. Energy is conserved (1st law of thermodynamics) and can never be produced. A scientific paper should strive for scientific correctness, including precise choice of words.

      The statement that the "energy production rate ... is proportional to the growth rate" is, apart from being incorrect - it should be 'ATP consumption rate' or similar (see above), a non-trivial claim. Why should this be the case? Such statements must be supported by references. The observation that the catabolic power indeed appears to increase linearly with growth rate was made, based on chemostat data for E.coli and yeast, in a recent preprint (Ebenhöh et al, 2023, bioRxiv, "Microbial pathway thermodynamics: structural models unveil anabolic and catabolic processes").

      All this criticism does not preclude the possibility that cell heterogeneity plays a role in overflow metabolism. However, according to Occam's razor, first the simpler explanations should be explored and refuted before coming up with a more complex solution. Here, it means that the authors first should argue why simpler explanations (e.g. the 'Membrane Real Estate Hypothesis', Szenk et al., 2017, Cell Systems; maximal Gibbs free energy dissipation, Niebel et al., 2019, Nature Metabolism; Saadat et al., 2020, Entropy) are not considered, resp. in what way they are in disagreement with observations, and then provide some evidence of the proposed cell heterogeneity (are there single-cell transcriptomic data supporting the claim?).

    1. Reviewer #1 (Public Review):

      Summary:<br /> This an interesting and valuable study that uses multiple approaches to understand the role of bursting involving voltage-gated calcium channels within the mediodorsal thalamus in the sedative-hypnotic effects of alcohol. Given its unique functional roles and connectivity pattern, the idea that the mediodorsal thalamus may have a fundamental role in regulating alcohol-induced transitions in consciousness state would be both important for researchers investigating thalamocortical dynamics and more broadly interesting for understanding brain function. In addition, the author's examination of the role of the voltage-gated calcium channel Cav3.1 provides some evidence that burst-firing mediated by this channel in the thalamus is functionally important for behavioral-state transitions. While many previous studies have suggested an analogous role for sleep-state regulation, the evidence for an analogous role of this type of bursting in sedative-induced transitions is more limited. Despite the importance of these results, however, there is some concern that the manipulations and recording approaches employed by the authors may affect other thalamic nuclei adjacent to the MD, such as the central lateral nucleus, which has also been implicated in controlling state transitions. The evidence for a specific role of the mediodorsal thalamus is therefore somewhat incomplete, and so additional validation is needed.

      Strengths:<br /> This study employs multiple, complementary research approaches including behavioral assays, sh-RNA-based localized knockdown, single-unit recordings, and patterned optogenetic interventions to examine the role of activity in the mediodorsal thalamus in the sedative-hypnotic effects of alcohol. Experiments and analyses included in the manuscript generally appear well conceived and are also generally well executed. Sample sizes are sufficiently large and statistical analysis appears generally appropriate though in some cases additional quantification would be helpful. The findings presented are novel and provide some interesting insight into the role of the thalamus as well as voltage-gated calcium channels within this region in controlling behavioral state transitions induced by alcohol. In particular, the observed effects of selective knockout along with recordings in total knockout of the voltage-gated calcium channel, Cav3.1, which has previously been implicated in bursting dynamics as well as state transitions, particularly in sleep, together suggest that the transition of thalamic neurons to a bursting pattern of firing from a more constant firing is important for transition to the sedated state produced by ethanol intoxication. While previous studies have similarly implicated Cav3.1 bursting in behavioral state transitions, the direct optogenetic interventions and single-unit recordings provide valuable new insight. These findings may also have interesting implications for the relationship between sleep process disruption associated with ethanol dependence, although the authors do not appear to examine this directly or extensively discuss these implications of their findings.

      Weaknesses:<br /> A key claim of the study is that the mediodorsal thalamus is specifically important for the sedative-hypnotic effect of ethanol and that a transition to a bursting pattern of firing in this circuit facilitates these effects due to a loss of a more constant tonic firing pattern. Despite the generally clear observed effects across the included experiments, however, the evidence presented does not fully support that the mediodorsal thalamus, in particular, is involved. This distinction is important because some previous studies have suggested that another thalamic nucleus which is very close to the mediodorsal thalamus, the central-lateral thalamus, has previously been suggested to play a role in preventing sedative-induced transitions. Despite its proximity to the mediodorsal thalamus, the central-lateral thalamus has a substantially different pattern of connectivity so distinguishing which region is impacted is important for understanding the findings in the manuscript. While sh-RNA knockdown appears to be largely centered in the mediodorsal thalamus in the example shown, (Figure 2) this is rather minimal evidence and it is also not well explained (indeed, the relevant panels do not even appear to be referenced in the text of the manuscript) and the consistency of the knockdown targeting is not quantified. Additional evidence should be provided to validate this approach. Similarly, while an example is shown for the expression of ChR2 (Fig. 5) there seems to be some spread of expression outside of the mediodorsal thalamus even in his example raising a concern about how regionally specific this effect.

      The recordings targeting the mediodorsal thalamus could provide evidence of a direct association between changes in activity specifically in this part of the thalamus with the behavioral measures but there are currently some issues with making this link. One difficulty is that, although lesions are shown in Figure S5 to validate recording locations, this figure is relatively unclear and the examples appear to be taken from a different anterior/posterior location compared to the reference diagram. A larger image and improved visualization of the overall set of lesion locations that includes multiple anterior/posterior coronal sections would be helpful. Moreover, even for these example images, it is difficult to evaluate whether these are in the mediodorsal thalamus, particularly given the small size of the image shown. Ideally, an example image that is more obviously in the mediodorsal thalamus would also be included. Finally, an assessment of the relationship between the approximate locations of recorded neurons across the tetrode arrays and the behavioral measures would be very helpful in supporting the unique role of the mediodorsal thalamus. The lack of these direct links, in combination with the histological issues, reduces the insight that can be gained from this study.

      In addition to the key experimental issues mentioned above, there are often problems in the text of the manuscript with reasoning or at least explanation as well as numerous minor issues with editing. The most substantial such issue is the lack of clarity in discussing the mediodorsal thalamus and other adjacent thalamic nuclei, such as the central-lateral nucleus, in the author's discussion of previous findings. Given that at last one of the manuscripts cited by the authors (Saalman, Front. Sys. Neuro. 2014) has directly claimed that central-lateral, rather than the mediodorsal, thalamus is important for arousal regulation related to a conscious state, this distinction should be addressed clearly in the discussion rather than papered over by grouping multiple thalamic nuclei as being medial. As part of this discussion, it would be important to consider additional relevant literature including Bastos et al., eLife, 2021 and Redinbaugh et al., Neuron, 2020 which are quite critical but currently do not appear to be cited. Considering additional literature relevant to the function of the mediodorsal thalamus would also be beneficial.<br /> While the methods employed generally seem sound, the description in the methods section is lacking in detail and is often difficult to follow. Analysis methods such as the burst index appear to only be given a brief explanation in the text and appear not to be mentioned in the methods section. Similarly, the staining method used in Figure 2 does not appear to be described in the methods section. The most substantial case is for the UMAP approach used in Figure 4-E which does not appear to be described in the methods or even described in the main text. The lack of detailed descriptions makes it difficult to evaluate the applicability and quality of the experimental and analytical approaches. Citations justifying the use of methods such as the approach to separate regular spiking and narrow spiking neuron subtypes are also needed.

      Beyond the problems with content and reasoning discussed above, there are also some relatively minor issues with the clarity of writing throughout the paper (for example, in the abstract the authors refer to "the ethanol resistance behavior in WT mice" but it is difficult to parse what they mean by this statement. Similarly, the next sentence "These results support that the maintenance..." while clearer, is not well phrased. Though individually minor, issues like this re-occur throughout the manuscript and sometimes make it difficult to follow so the text should be revised to correct them. There are also some problems with labels such as the labels of A1/A2 in Figure 4, which appear to be incorrect. Also, S7 has no label on the B panels. Finally, some references are not included (only a label of [ref]).

    2. Reviewer #2 (Public Review):

      In the current study, Latchoumane and collaborators focus on the Cav3.1 calcium channels in the mediodorsal thalamic nucleus as critical players in the regulation of brain-states and ethanol resistance in mice. By combining behavioural, electrophysiological, and genetic techniques, they report three main findings. First, KO Cav3.1 mice exhibit resistance to ethanol-induced sedation and sustained tonic firing in thalamocortical units. Second, knocked-down Cav3.1 mice reproduce the same behaviour when the mediodorsal, but not the ventrobasal, thalamic nucleus is targeted. Third, either optogenetic or electric stimulation of the mediodorsal thalamus reduces ethanol-induced sedation in control animals.

      Overall, the study is well designed and performed, correctly controlled for confounds, and properly analysed. Nonetheless, it is important to address some aspects of the report. The results support the conclusions of the study. These results are likely to be relevant in the field of systems neuroscience, as they increase the molecular evidence showing how the thalamus regulates brain states.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this very interesting study, Agha and colleagues show that two types of Chx10-positive neurons (V2a neurons) have different anatomical and electrophysiological properties and receive distinct patterns of excitatory and inhibitory inputs as a function of speed during fictive swimming in the larval zebrafish. Using single-cell fills they show that one cell type has a descending axon ("descending V2as"), while the other cell type has both a descending axon and an ascending axon ("bifurcating V2as"). In the Chx10:GFP line, descending V2as display strong GFP labeling, while bifurcating V2as display weak GFP labeling. The bifurcating V2as are located more laterally in the spinal cord. These two cell types have different electrophysiological properties as revealed by patch-clamp recordings. Positive current steps indicated that descending V2as comprise tonic spiking or bursting neurons. Bifurcating V2as comprise chattering or bursting neurons. The two types of V2a neurons display different recruitment patterns as a function of speed. Descending tonic and bifurcating chattering neurons are recruited at the beginning of the swimming bout, at fast speeds (swimming frequency above 30 Hz). Descending bursting neurons were preferentially recruited at the end of swimming bouts, at low speeds (swimming frequency below 30 Hz), while bifurcating bursting neurons were recruited for a broader swimming frequency range. The two types of V2a neurons receive distinct patterns of excitatory and inhibitory inputs during fictive locomotion. In descending V2as, when speed increases: i) excitatory conductances increase in fast neurons and decrease in slow neurons; ii) inhibitory conductances increase in fast neurons and increase in slow neurons. In bifurcating V2as, when speed increases: i) excitatory conductances increase in fast neurons but do not change in slow neurons; ii) inhibitory conductances increase in fast neurons and do not change in slow neurons. The timing of excitatory and inhibitory inputs was then studied. In descending V2as, fast neurons receive excitatory and inhibitory inputs that are in anti-phase with low contrast in amplitude and are both broadly distributed over the phase. The slow neurons receive two peaks of inhibition, one in anti-phase with the excitatory inputs and another just after the excitation. In bifurcating V2as, fast neurons receive two peaks of inhibition, while slow ones receive anti-phase inhibition.

      Strengths:<br /> This study focuses on the diversity of V2a neurons in zebrafish, an interesting cell population playing important roles in locomotor control and beyond, from fish to mammals. The authors provide compelling evidence that two subtypes of V2as show distinct anatomical, electrophysiological, and speed-dependent spiking activity, and receive distinct synaptic inputs as a function of speed. This opens the door to future investigation of the inputs and outputs of these neurons. Finding ways to activate or inhibit specifically these cells would be very helpful in the years to come.

      Weaknesses:<br /> No major weakness was detected. The experiments were carefully done, and the data were of high quality.

    2. Reviewer #2 (Public Review):

      Summary:<br /> Animals exhibit different speeds of locomotion. In vertebrates, this is thought to be implemented by different groups of spinal interneurons and motor neurons. A fundamental assumption in the field has been that neural mechanisms that generate and sustain the rhythm at different locomotor speeds are the same. In this study, the authors challenge this view. Using rigorous in vivo electrophysiology during fictive locomotion combined with genetics, the authors provide a detailed analysis of cellular and synaptic properties of different subtypes of spinal V2a neurons that play a crucial role in rhythm generation. Importantly, they are able to show that speed-related subsets of V2a neurons have distinct cellular and synaptic properties and may utilize different mechanisms to implement different locomotor speeds.

      Strengths:<br /> The authors fully utilize the zebrafish model system and solid electrophysiological analyses to study the active and passive properties of speed-related V2a subsets. Identification of the V2a subtype is based directly on their recruitment at different locomotor speeds and not on indirect markers like soma size, D-V position etc. Throughout the article, the authors have cleverly used standard electrophysiological tests and analysis to tease out different neuronal properties and link it to natural activity. For example, in Figures 2 and 4, the authors make comparisons of V2a spiking with current steps and during fictive swims showing spike rates measured with current steps are physiologically relevant and observed during natural recruitment. The experiments done are rigorous and well-controlled.

      Weaknesses:<br /> The authors claim that a primary result of their study is that reciprocal inhibition is important for rhythmogenesis at fast speeds while recurrent inhibition is key at slow speeds. This is shown in Figure 6, however, the authors do not show any statistical tests for this claim. The authors also do not show any conclusive evidence that reciprocal inhibition is required for rhythmogenesis at fast speeds and vice versa for slow speeds. Additional experiments or modeling studies that conclusively show the necessity of these different inhibitory sources to the generation of different rhythms would be needed to strengthen this claim.

      The authors do a great job of teasing out cellular and synaptic properties in the different V2a subsets, however, it is not clear if or how these match the final output. For example, V2aD neurons are tonic or bursting for fast and slow speeds respectively but it is not intuitive how these cellular properties would influence phasic excitation and inhibition these neurons receive.

      It is not clear from the discussion why having different mechanisms of rhythm generation at different speeds could be an important circuit design. The authors use anguilliform and carangiform modes of swimming to denote fast and slow speeds but there are differences in these movements other than speed, like rostrocaudal coordination. The frequency and pattern of these movements are linked and warrant more discussion.

    3. Reviewer #3 (Public Review):

      The manuscript by Agha et al. explores mechanisms of rhythmicity in V2a neurons in larval zebrafish. Two subpopulations of V2a neurons are distinguishable by anatomy, connectivity, level of GFP, and speed-dependent recruitment properties consistent with V2a neurons involved in rhythm generation and pattern formation. The descending neurons proposed to be consistent with rhythm-generating neurons are active during either slow or fast locomotion, and their firing frequencies during current steps are well matched with the swim frequency they firing during. The bifurcating (patterning neurons) are active during a broader swim frequency range unrelated to their firing during current steps. All of the V2a neurons receive strong inhibitory input but the phasing of this input is based on neuronal type and swim speed when the neuron is active, with prominent in-phase inhibition in slow descending V2a neurons and bifurcating V2a neurons active during fast swimming. Antiphase inhibition is observed in all V2a neurons but it is the main source of rhythmic inhibition in fast descending V2a neurons and bifurcating neurons active during slow swimming. The authors suggest that properties supporting rhythmic bursting are not directly related to locomotor speed but rather to functional neuronal subtypes.

      This is a well-written paper with many strengths including the rigorous approach. Many parameters, including projection pattern, intracellular properties, inhibition received, and activity during slow/fast swimming were obtained from the same neuron. This links up very well with prior data from the lab on cell position, birth order, morphology/projections, and control of MN recruitment to provide a comprehensive overview of the functioning of V2a interneuronal populations in the larval zebrafish. The overall conclusions are well supported by the data. Weaknesses are relatively minor and were largely related to terminology for some of the secondary conclusions.

      1. The assumption is made that all in-phase inhibition is recurrent and out-of-phase inhibition is reciprocal. The latter is likely true but the definition of recurrent may be a bit loose as could be multisegmental feed-forward inhibition as well.

      2. In a few places, it is mentioned that the properties of the V2a-D neurons are consistent with pacemakers. This could be true of both the V2a-D and -B neurons that burst in response to depolarizing steps but the properties of the remaining (fast) V2a-D neurons do not seem to be consistent with pacemakers, based on the properties shown. Tonic firing at a frequency related to the locomotor speed the neuron is active during and strong antiphase inhibition may instead suggest a stronger network component driving the rhythmicity.

    1. Reviewer #1 (Public Review):

      Mehrdad Kashefi et al. investigated the availability of planning future reaches while simultaneously controlling the execution of the current reach. Through a series of experiments employing a novel sequential arm reaching paradigm they developed, the authors made several findings: 1) participants demonstrate the capability to plan future reaches in advance, thereby accelerating the execution of the reaching sequence, 2) planning processes for future movements are not independent one another, however, it's not a single chunk neither, 3) Interaction among these planning processes optimizes the current movement for the movement that comes after for it.

      The question of this paper is very interesting, and the conclusions of this paper are well supported by data. However, certain aspects require further clarification and expansion.

      1) The question of this study is whether future reach plans are available during an ongoing reach. In the abstract, the authors summarized that "participants plan at least two future reaches simultaneously with an ongoing reach and that the planning processes of the two future reaches are not independent of one another" and showed the evidence in the next sentences. However the evidence is about the relationship about ongoing reach and future plans but not about in between future plans (Line 52-55). But the last sentence (Line 55-58) mentioned about interactions between future plans only. There are some discrepancies between sentences. Could you make the abstract clear by mentioning interference between 1) ongoing movement and future plans and 2) in between future plans?<br /> 2) I understood the ongoing reach and future reaches are not independent from the results of first experiment (Figure 2). A target for the current reach is shown at Horizon 1, on the other hand, in Horizon 2, a current and a future target are shown on the screen. Inter-reach-interval was significantly reduced from H1 to H2 (Figure 2). The authors insist that "these results suggest that participants can plan two targets (I guess +1 and +2) ahead of the current reach (I guess +0)". But I think these results suggest that participants can plan a target (+1) ahead of the current reach (+0) because participants could see the current (+0) and a future target (+1) in H2. Could the authors please clarify this point?<br /> 3) Movement correction for jump of the +1 target takes longer time in H3 compared to H2 (Figure 4). Does this perturbation have any effect on reaching for +2 target? If the +1 jump doesn't affect reaching for +2 target, combined with the result that jump of the +2 target didn't affect the movement time of +1 target (Figure 3C), perturbation (target jump) only affects the movement directly perturbed. Is this implementation correct? If so, does these results support to decline future reaches are planned as motor chunk? I would like to know the author's thoughts about this.<br /> 4) Any discussion about Saccade position (Figure 7)?

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this work, Kashefi et al. investigate the planning of sequential reaching movements and how the additional information about future reaches affects planning and execution. This study, carried out with human subjects, extends a body of research in sequential movements to ask important questions: How many future reaches can you plan in advance? And how do those future plans interact with each other?

      The authors designed several experiments to address these questions, finding that information about future targets makes reaches more efficient in both timing and path curvature. Further, with some clever target jump manipulations, the authors show that plans for a distant future reach can influence plans for a near future reach, suggesting that the planning for multiple future reaches is not independent. Lastly, the authors show that information about future targets is acquired parafoveally--that is, subjects tend to fixate mainly on the target they are about to reach to, acquiring future target information by paying attention to targets outside the fixation point.

      The study opens up exciting questions about how this kind of multi-target planning is implemented in the brain. As the authors note in the manuscript, previous work in monkeys showed that preparatory neural activity for a future reaching movement can occur simultaneously with a current reaching movement, but that study was limited to the monkey only knowing about two future targets. It would be quite interesting to see how neural activity partitions preparatory activity for a third future target, given that this study shows that the third target's planning may interact with the second target's planning.

      Strengths:<br /> A major strength of this study is that the experiments and analyses are designed to answer complementary questions, which together form a relatively complete picture of how subjects act on future target information. This complete description of a complex behavior will be a boon to future work in understanding the neural control of sequential, compound movements.

      Weaknesses:<br /> I found no real glaring weaknesses with the paper, though I do wish that there had been some more discussion of what happens to planning with longer dwell times in target. In the later parts of the manuscript, the authors mention that the co-articulation result (where reaches are curved to make future target acquisition more efficient) was less evident for longer dwell times, likely because for longer dwell times, the subject needs to fully stop in target before moving to the next one. This result made me wonder if the future plan interaction effect (tested with the target jumps) would have been affected by dwell time. As far as I can tell, the target jump portion only dealt with the shorter dwell times, but if the authors had longer dwell time data for these experiments, I would appreciate seeing the results and interpretations.

      Beyond this, the authors also mentioned in the results and discussion the idea of "neural resources" being assigned to replan movements, but it's not clear to me what this might actually mean concretely. I wonder if the authors have a toy model in mind for what this kind of resource reassignment could mean. I realize it would likely be quite speculative, but I would greatly appreciate a description or some sort of intuition if possible.

    1. Reviewer #1 (Public Review):

      The revised manuscript by Jeong et al presents a thorough analysis of the prevalence and epigenetic causes of TAD conservation upon cohesin loss. The authors suggest that TAD preservation could be caused by an epigenetic switch at the TAD boundary, or by enhancer-promoter or promoter-promoter interactions between TAD boundaries. Simulations using the CCM model confirm that epigenetic switching can mechanistically explain TAD boundary preservation. The added analysis of the prevalence of enhancer and promoter interactions at TAD boundaries strengthens the authors' claim that these interactions could play an important role in TAD preservation.

    2. Reviewer #2 (Public Review):

      Summary:<br /> Here Jeong et al., use a combination of theoretical and experimental approaches to define molecular contexts that support specific chromatin conformations. They seek to define features that are associated with TADs that are retained after cohesin depletion (the authors refer to these TADs as P-TADs). They were motivated by differences between single cell data, which suggest that some TADs can be maintained in the absence of cohesin, whereas ensemble HiC data suggest complete loss of TADs. By reananalyzing a number of HiC datasets from different cell types, the authors observe that in ensemble methods, a significant subset of TADs are retained. They observe that P-TADs are associated with mismatches in epigenetic state across TAD boundaries. They further observe that "physical boundaries" are associated with P-TAD maintenance. Their structure/simulation based approach appears to be a powerful means to generate 3D structures from ensemble HiC data, and provide chromosome conformations that mimic the data from single-cell based experiments. Their results also challenge current dogma in the field about epigenetic state being more related to compartment formation rather than TAD boundaries. Their analysis is particularly important because limited amounts of imaging data are presently available for defining chromosome structure at the single-molecule level, however, vast amounts of HiC and ChIP-seq data are available. By using HiC data to generate high quality simulated structural data, they overcome this limitation. Overall, this manuscript is important for understanding chromosome organization, particularly for contacts that do not require cohesin for their maintenance, and for understanding how different levels of chromosome organization may be interconnected. I cannot comment on the validity of the provided simulation methods and hope that another reviewer is qualified to do this.

      Specific comments<br /> -It is unclear what defines a physical barrier. From reading the text and the methods, it is not entirely clear to me how the authors have designated sites of physical barriers. It may help to define this on pg 7, second to last paragraph, when the authors first describe instances of P-TAD maintenance in the absence of epigenetic mismatch.

      -Figure 7 adds an interesting take to their approach. Here the authors use microC data to analyze promoter-enhancer/promoter-promoter contacts. These data are included as part of the discussion. I think this data could be incorporated into the main text, particularly because it provides a biological context where P-TADs would have a rather critical role.

      -Figure 3a- the numbers here do not match the text (page 6, second to last paragraph). The numbers have been flipped for either chromosome 10 or chromosome 13 in the text or the figures.

      In the revision, the authors have sufficiently addressed my specific concerns from above.

    3. Reviewer #3 (Public Review):

      This manuscript presents a comprehensive investigation into the mechanisms that explain the presence of TADs (P-TADs) in cells where cohesin has been removed. In particular, to study TADs in wildtype and cohesin depleted cells, the authors use a combination of polymer simulations to predict whole chromosome structures de novo and from Hi-C data. Interestingly, they find that those TADs that survive cohesin removal contain a switch in epigenetic marks (from compartment A to B or B to A) at the boundary. Additionally, they find that the P-TADs are needed to retain enhancer-promoter and promoter-promoter interactions.

      Overall, the study is well-executed, and the evidence found provides interesting insights into genome folding and interpretations of conflicting results on the role of cohesin on TAD formation.

    1. Reviewer #1 (Public Review):

      Summary: The authors started by stimulating the PBMCs in bulk, then encapsulated single cells in droplets to monitor the secreted cytokines in each droplet for the next 4 hours. The secreted cytokines are bound by fluorescently labeled detection antibodies. At the same time, the cytokines can be captured by the capture antibodies that are immobilized to the magnetic beads. Under the magnetic field, the magnetic beads will line up in the middle of the droplet along with bound fluorescent antibodies. This effectively enriches the fluorescent antibody to the middle of the droplet, making it a higher fluorescent signal compared to the background signal that is in the rest of the droplet. They can parallel the measurement of three cytokines in each droplet.

      Strengths: Observed heterogeneous cytokine secretion dynamics, which they have reported in their previous paper as well.

      Weaknesses:<br /> Since they used PBMCs, without other assay to confirm the cell subtypes, I am not sure if any of the heterogeneity they detected in 6 cytokine secretion would be able to relate back to biology. In addition, the two panels were measured on separate cells, I am not sure it is meaningful to make any comparisons of the two panels as they are on different cells.

      Their revision failed to make much improvement.

    2. Reviewer #2 (Public Review):

      The responses to the comments and changes in the manuscript are convincing, especially the secretion patterns of high and low secreting cells are interesting and reassuring. The only criticism I still have is that most observations are already published in the previous paper by the same authors.

      Summary:<br /> In their manuscript titled "Stimulation-induced cytokine polyfunctionality as a dynamic concept," the authors investigate the dynamic nature of polyfunctional cytokine responses to established stimulants. The authors use their previously published single-cell encapsulation droplet-microfluidic platform to analyse the response of peripheral blood mononuclear cells (PBMCs) to different stimulants and measure the secretion dynamics of individual cytokines. This assay shows that polyfunctionality in cytokine responses is a complex but short-lived phenomenon that decreases with prolonged stimulation times. The study finds that polyfunctional cells predominantly display elevated cytokine concentrations with similar secretion patterns but higher secretion levels compared to their monocytokine-secreting counterparts. The method is promising to analyse the correlation between the secretion dynamics of different cytokines in primary samples and heterogeneous cell populations.

      Strengths:<br /> This method provides single-cell-resolved and dynamic cytokine concentration information, which might be used to identify "fingerprints" of secretion patterns for selected cytokines. When extending the available data to more than one donor, this might be the basis for a diagnostic tool. The combination of established droplet microfluidics with an epi-fluorescence microscope-based readout makes it convincing that the method is transferable to other labs. Specifically, the dynamic analysis of cytokine concentrations is interesting, and the differences or similarities in secretion timepoints might be missed with end-point methods. The authors convincingly show that they detect up to three different cytokines in single cells.

      Weaknesses:<br /> The conclusions of the study are based on samples from a single donor, which makes the conclusions on secretion patterns difficult to interpret. The choice of cytokines is explained, but the justification of the groupings of the antibodies into the two panels is missing. It would further be helpful to discuss how the single cell incubation might affect the secretion dynamics vs. the influence of co-culture of all cell types during the 24 h activation. The authors compare average secretion rates and levels. However, the right panel in Fig. 6 looks like there might be two different populations of mono- or polyfuntional cells that have two secretion rates. As the authors have single-cell data, I would find the separation into these populations more meaningful than comparing the mean values. In line with this comment, comparing the mean values for these cytokines instead of the mean of the populations with distinct secretion properties might actually show stronger differences than the authors report here.Is the plateau of the cytokine concentration caused by the fluorescence signal saturating the camera, saturation of the magnetic beads, exhaustion of the fluorescent antibodies, or constant cytokine concentrations? The high number of non-CSCs and the limited number of droplets decrease the statistical power of the method. The authors discuss their choice to use PBMCs and not solely T cells, but this aspect is missing in the discussion.

    1. Reviewer #1 (Public Review):

      Summary: Inflammatory T cells have been recognized to play an important role in human COPD lung tissue and animal models of emphysema. The authors have previously identified that Th17 cells regulate chronic inflammatory diseases, including in mice exposed to smoke or nanoparticulate carbon black (nCB). Here, the authors interrogate the role of Tc17 cells using similar mouse models. Investigating let-7 miRNA, which induces antigen-presenting cells activation and T cell mediated Th17a inflammation, they show that the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), is a direct target of let-7 miRNA in T cells. Because RORγt expression is elevated in COPD patients and in mouse models of COPD, the authors generate a Let-7 overexpressing mouse in T cells and reduce RORγt expression and Th17 and Tc17 cell recruitment in nCB-exposed mice.

      Strengths: The authors use previous a previously published RNA-seq dataset (GSE57148) from the lungs of control and COPD subjects to explore the involvement of Let-7 in emphysema. They further evaluate Let-7a expression by qPCR in lung tissue samples of smokers with emphysema and non-emphysema controls. Moreover, expression of Let-7a, Let-7b, Let-7d, and Let-7f in purified CD4+ T cells were inversely correlated with emphysema severity lungs. Similar findings were found in their mouse models (CS or nCB) in both lung tissue and isolated lung CD4+ and CD8+ T cells, with reduced let-7afd and let-7bc2 expression.

      Using mice harboring a conditional deletion of the let-7bc2 cluster in all T cells (let-7bc2LOF) derived from the CD4+CD8+ double-positive stage, the authors show enhanced emphysema in nCB- or CS-exposed mice with enhanced recruitment of macrophages and neutrophils to the lung. While CD8+IL17a+ Tc17 cells and CD4+ IL17a+ Th17 cells were increased in nCB-exposed control animals, only let-7bc2LOF mice showed an increase in CD8+IL17a+ Tc17 cells. Further, unexposed let-7bc2LOF and let-7afdLOF mice expressed greater RORγt expression in both CD8+ and CD4+ T cells.

      Generating a let-7 gain of function mouse with overexpression of let-7g in thymic double-positive-derived T cells, protein levels of RORγt were suppressed in CD8+ and CD4+ T cells of let-7GOF mice relative to controls. Let-7GOF mice treated with nCB showed similar lung alveolar distension as controls suggesting that increased let-7 expression does not protect the lung from emphysema. However, let-7GOF mice showed reduced lung Tc17 and Th17 cell populations and were resistant to the induction of RORγt after nCB exposure.

      Weaknesses: Limited data is shown on the let-7afdLOF mice. Does this mouse respond similarly to nCB as the let-7bc2LOF.<br /> Because the authors validate their findings from a previously published RNA-seq dataset in subjects with and without emphysema, the authors should include patient demographics from the data presented in Figure 1C-D.<br /> To validate their mouse models, the absence of Let-7 or enhanced Let-7 expression needs to be shown in isolated T cells from exposed mice.<br /> In Figure 3, the authors are missing the unexposed let-7bc2LOF group from all panels. This is again an issue in Figure 6 with the let-7GOF.<br /> Because the GOF mouse enhances Let-7g within T cells, the importance of Let-7g should be determined in human subjects. Why did the authors choose to overexpress Let-7g, the rational is not clear?<br /> The purity of the CD4+ and CD8+ T cells is not shown and the full gating strategy should be included.<br /> The authors indicate that Tc17 and Th17 T cells were reduced in the GOF mouse, it remains unclear if macrophage or neutrophil recruitment is altered in GOF mice.

    2. Reviewer #2 (Public Review):

      Summary:<br /> Let-7 family miRNAs are largely redundant in function, and originate from multiple genomic loci ("clusters"). Erice et al demonstrate that two individual clusters (let7afd and let7bc2) in mice regulate the generation of IL-17 producing CD8 T cells in vitro and in vivo in a model of emphysema. These cells also express higher levels of the IL-17-inducing transcription factor RORgt, encoded by Rorc, which the authors demonstrate to be a direct target of let-7. Since multiple let-7 family miRNAs are downregulated in T cells and lung tissue in emphysema, these data support a model in which reduced let-7 allows increased IL-17 production by T cells, contributing to disease pathogenesis.

      Strengths:<br /> The inclusion of miRNA and pri-miRNA expression data from sorted human lung T cells as well as mouse T cells from an emphysema model is a strength.

      The study includes complementary loss of function and gain of function experimental systems to test the effect of altered let-7 function, though it should be noted that these involved different let-7 family members and did not yield simple, complementary results for all experimental outcomes.

      The most important finding is that deletion of just one let-7 cluster ("Let7bc2") is sufficient to exacerbate emphysema in the nCB and CS models.

      Weaknesses:<br /> The functional analyses are unusually focused on IL-17 producing CD8 T cells, but it is not made clear whether these cells are an important player in emphysema pathogenesis in the nCB and CS models. The data shown reveal that they are far less numerous than IL-17-producing CD4 T cells. It is also notable that the Figure 1 expression data from human subjects used sorted CD4+ T cells. And as the author mentioned, prior work on let-7 showed that it regulated Th17 (CD4) responses.

      Compared with Let7bc2 deletion, Let7afd deletion had a much larger effect on IL17 production by CD8 T cells in vitro, and it also had a larger effect on RORgt expression in untreated mice in vivo, especially in the lung. It would be valuable to more thoroughly characterize the let7afd mice. RORgt expression should be shown in the in vitro assays. In the results, the authors state that let7afdLOF mice "did not exhibit lung histopathology nor inflammatory changes" up to 6 months of age. Similarly, it is stated in the conclusion that "the let-7afdLOF mice ... did not exhibit changes in Tc17/Th17 subpopulations" in vivo. All these data should be shown, and if no baseline changes are apparent, then I also recommend challenging these mice with nCB and/or cigarette smoke.

      This brings up the larger issue of redundancy among the let-7 family members and genomic clusters. This should be discussed, including some explanation of the relative expression of each mature family member in T cells, and how that maps to the clusters studied here (and those that were not investigated). It would also be helpful to explain the relationship between mouse Let7bc2 and human Let7a3b, since Let7bc2 is the primary focus of emphysema experiments in this manuscript.

      This is especially important because the study of individual let-7 clusters is the core novelty of this body of work, as described in the first paragraph of the discussion. The regulation of let-7 expression has been reported before and its functional role has been investigated with a variety of tools.

      Let7g overexpression caused a marked reduction in Rorgt expression in T cells at baseline and in the setting of nCB challenge, and it reduced the frequency of IL17+ producing CD8 T cells in the lung to baseline levels. Yet there was no change in the MLI measurement of histopathology. Is this a robust result? The responses in the experiment shown in Fig. 6C-D are quite muted compared to those shown in Figure 2. The latter also shows a larger number of replicates, and it is unclear whether the data in 6D include measurement from all of the mice tested (e.g. pooled from 2 small experiments) or only mice from one experiment.

      Although RORgt is a great candidate to have direct effects on IL-17 expression, the mechanistic understanding of let-7 action on T cell differentiation and cytokine production is limited to this single target. As noted in the discussion, others have identified cytokine receptor targets that may play a role, but it is also likely others among the many targets of let-7 also contribute.

    3. Reviewer #3 (Public Review):

      Summary: The manuscript by Erice et al describes let-7 miRNA promotes Tc17 differentiation and emphysema by repressing the transcription factor RORgt. The authors found that overall expression of the let-7 miRNA clusters, let-7b/let-7c2 and let-7a1/let-30 7f1/let-7d are reduced in the lungs and T cells of mice with cigarette smoke-induced emphysema. They also found that the loss of the let-7b/let-7c2-cluster in T cells exaggerated cigarette smoke-induced emphysema. It appears that deletion of the let-7b/let-7c2-cluster lead to enhancement of IL-17-secreting CD8+ T cells (Tc17) in mice with emphysema. The opposite phenotype was observed when let-7 was overexpressed in T cells. They found a potential let-7 binding site in the 3' UTR of RORgt. They demonstrated a direct effect of let-7 on RORgt expression using let-7 mimic in a RORgt luciferase reporter assay. They have done an outstanding job of translating the finding of reduced let-7 expression in emphysema patients to a thorough delineation of its mechanism in a mouse model. Together, this study suggests an important role for let-7 miRNA in Tc17 cells in emphysema which appears to be mediated via repression of RORgt.

      Strengths: This well written manuscript flows logically and the data supports the overall claim let-7 miRNA promotes Tc17 differentiation during emphysema. There are several strengths to this study including the use of conditional let-7 knock out animals to decipher the role of this miRNA in Tc17 cells in emphysema.

      Weaknesses: There are no major weaknesses in this study. It would be interesting to see if knockdown RORgt could rescue enhanced Tc17 differentiation seen in let-7b/let-7c2-cluster-deficient T cells. The authors show no change in frequencies of Treg cells in let-7bc2LOF mice exposed to nCB. Do these Treg cells also express higher levels of RORgt and IL-17? The major question that was not addressed in this study is how let-7 expression is regulated in emphysema. The other recommendation is that the authors include the sequences of the let-7 mimic oligos used in the luciferase assay.

    1. Reviewer #1 (Public Review):

      The authors analyse droplet size distributions of multiple protein condensates and fit to a scaling ansatz to highlight that they exhibit features of first-order and second-order phase transitions. While the experimental evidence is solid, the text lacks connection and contextualization to the well-understood expectations from the coupling of percolation and phase separation in protein condensates - a phenomenon that is increasingly gaining consensus amongst the community. The evidence supports the percolation and phase separation model rather than being close to a true critical point in the liquid-gas phase space. Overall, the work is useful to the community.

      Strengths:<br /> The experimental analysis of distinct protein condensates is very well done and the reported exponents/scaling framework provides a clear framework to help the community deconvolve signatures of percolation in condensates.

      Weaknesses:<br /> The principal concern this reviewer has is that the reviewers adopt a framing in this paper to present a discovery of second-order features and connections to criticality - however, they ignore/miss the connections to percolation (a well-understood second-order transition that is expected to play a major role in protein condensates). I believe this needs to be addressed and the paper suitably revised to help connect with these expectations.

      - Protein condensates have been increasingly understood to be described as fluids whose assembly is driven by a connection of density (phase separation, first-order) and connectivity (percolation, second-order) transitions. This has been long known in the polymer community (Flory, Stockmayer, Tanaka, Rubinstein, Semenov, and others) and recently repopularized in the condensate community (by Pappu and Mittag, in particular, amongst others). The authors make no connections to any of these frameworks - which actually seem to be the essence of what they are describing.

      - Percolation theory, which has been around for more than half a century, has clear-cut scaling laws that have essentially similar forms to the ansatz adopted by the authors, and the commonalities/differences are not discussed by the authors - this is essential since this provides a physical basis for their ansatz rather than an arbitrary mathematical formulation. In particular, percolation models connect size distribution exponents to factors like dimensionality, valence, etc. and if these connections can be made with this data, that would be very powerful.

      - The connections between spinodal decomposition and second-order phase transitions are very confusing. Spindal decomposition happens when the barriers for first-order phase transitions are zero and systems can phase separate without crossing nucleation barriers. Further, the "criticality" discussed in the paper is confusing since it more likely refers to a percolation threshold and much less likely to a "critical temperature" (Tc -where spinodal and binodals become identical). I would recommend reframing this argument.

      It's unlikely, in this reviewer's opinion, that the authors are actually discussing a "first-order" liquid-gas critical point - because saturation concentrations of these proteins can be much higher with temperature and the critical point would thus likely be at much higher concentrations (and ofc temperature). Further, the scaling exponents don't fall into that class naturally. However, if the authors disagree, I would appreciate clear quantitative reasons (including through the scaling exponents in that universality class) and be happy to be convinced to change my mind. As provided, the data does not support this model.

    2. Reviewer #2 (Public Review):

      This is a potentially interesting study addressing a possible scale-invariant log-normal characteristic of droplet size distribution in the phase separation behavior of biomolecular condensates. Some of the data presented are valuable and intriguing. However, as it stands, the validity and utility of this study are uncertain because there are serious deficiencies in the execution and presentation of the authors' results. Many of these shortcomings are fundamental, including a lack of clarity in the basic conceptual framework of the study, insufficient justification of the experimental setup, less-than-conclusive experimental evidence, and inadequate discussion of implications of the authors' findings to future experimental and theoretical studies of biomolecular condensates. Accordingly, this reviewer considers that the manuscript should undergo a major revision to address the following. In particular, the discussion should be significantly expanded by including references mentioned below as well as other references pertinent to the issues raised.

      1. The theoretical analysis in this study is based on experimental data on condensed droplet size distributions for FUS and α-synuclein. The size data for FUS droplet is indirect as it relies on the assumption that FUS droplet diameter is proportional to fluorescence intensity of labeled FUS (page 10 of manuscript), with fluorescence data adopted from a previously published work by another group (Kar et al. & Pappu, ref.27). Because fluorescence of a droplet is expected to be dependent upon the condensed-phase concentration of FUS, this proportional relationship, even if it holds, must also be modulated by FUS concentration in the droplet. Moreover, why should fluorescence be proportional to diameter but not the cross-sectional area or volume of the FUS droplet, which would be more intuitive? These issues should be clarified. A new measure by microscopy is used to determine the size distribution of condensed α-synuclein; but no microscopy image is shown. It is of critical importance that such raw data (for example microscopy images) be presented for the completeness and reproducibility of the experiment because the entire study relies on the soundness of these experimental measurements.

      2. Despite the authors' claim of a universal scaling relationship, the log-log scatter plots in Figure 1 (page 15 of the manuscript) exhibit significant deviations from linearity at low protein concentrations (ρ→0). Given this fact, is universal scaling really valid? Discussion of this behavior is conspicuously absent (except the statement that these data points are excluded in the fit). In any case, the possible origins of these deviations should be thoroughly discussed so that the regime of universal scaling can be properly delineated.

      3. Droplet size distribution most likely depends on the time duration after the preparation of the sample. For α-synuclein, "liquid droplet size characterisation images were captured 10 minutes post-liquid droplet formation" (page 9 of the manuscript). Why 10 minutes? Have the authors tried imaging at different time points and, if so, do the distributions at different time points remain essentially the same? If they are different, what is the criterion for focusing only on a particular time point? Information related to these questions should be provided.

      4. At least two well-known mechanisms can lead to the time-dependent distribution of liquid droplet sizes: (i) coalescence of droplets in spatial proximity to form a larger droplet, and (ii) Ostwald ripening, i.e., formation of larger droplets concomitant with the dissolution of smaller droplets without fusion of droplets. The implications of these mechanisms on the authors' droplet size distributions should be addressed. Indeed, maintaining a size distribution against these mechanisms in vivo often requires active suppression [Bressloff, Phys Rev E 101, 042804 (2020)] with possible involvement of chemical reactions [Kirschbaum & Zwicker, J R Soc Interface 18, 20210255 (2021)]. These considerations are central to the basic rationale of this study and therefore should be carefully tackled.

      5. If coalescence and/or Ostwald ripening do occur, given sufficient time after sample preparation, the condensed phase may become a single large "droplet" or a single liquid layer. Does this occur in the authors' experiments?

      6. It is unclear whether the authors aim to address the kinetic phenomenon of liquid droplet formation and evolution or equilibrium properties. The two types of phenomena appear to be conflated in the authors' narrative. Clarification is needed. If this work aims to address time-independent (or infinite-time) equilibrium properties, how are they expected to be related to droplet size distribution, which most likely is time-dependent?

      7. The relationship between the potentially time-dependent droplet size distribution and equilibrium properties of ρt and ρc (transition and critical concentrations, respectively) should be better spelled out. An added illustrative figure will be helpful.

      8. The authors comment that their findings appear to be inconsistent with Flory-Huggins theory because Flory-Huggins "characterizes droplet formation as a consequence of nucleation ..." (page 8 of the manuscript). Here, three issues need detailed clarification: (i) In what way does Flory-Huggins mandate nucleation? (ii) Why are the findings of apparent scale invariance inconsistent with nucleation? (iii) If liquid droplet formations do not arise from nucleation, what physical mechanism(s) is (are) envisioned by the authors to be underpinning the formation of condensed liquid droplets in protein phase separation?

      9. Are any of the authors' findings related to finite-system effects of phase separation [see, e.g., Nilsson & Irbäck, Phys Rev E 101, 022413 (2020)]?

      10. Since the authors are using their observation of an apparent scale-invariant droplet size distribution to evaluate phase separation theory, it is important to clarify whether their findings provide any constraint on the shape of coexistence curves (phase diagrams).

      11. More specifically, do the authors' findings suggest that the phase diagrams predicted by Flory-Huggins are invalid? Or, are they suggesting that even if the phase diagrams predicted by Flory-Huggins are empirically correct (if verified by experimental testing), they are underpinned by a free energy function different from that of Flory-Huggins? It is important to answer this question to clarify the implications of the authors' findings on equilibrium phase behaviors and the falsifiability of the implications.

      12. How about the implications of the authors' findings on other theories of protein phase separation that are based on interactions that are different from the short spatial range interactions treated by Flory-Huggins? For instance, it has been observed that whereas the Flory-Huggins-predicted phase diagrams always convex upward, phase diagrams for charged intrinsically disordered proteins with long spatial range Coulomb interactions exhibit a region that concave upward [Das et al., Phys Chem Chem Phys 20, 28558-28574 (2018)]. Can information be provided by the authors' findings regarding apparent scale-invariant droplet size distribution on the underlying interaction driving the protein molecules toward phase separation?

      13. Table S1 (page 4) and Table S2 (page 7) are mentioned in the text but these tables are not in the submitted files.

      14. The two systems studied (FUS and α-synuclein) have a single intrinsically disordered protein (IDP) component. It is not clear if the authors expect their claimed scaling relation to be applicable to systems with multiple IDP components and if so, why.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This study explores the relationship between guanine-quadruplex (G4) structures and pathogenicity islands (PAIs) in 89 pathogenic strains.

      Strengths:<br /> The findings of this study hold significant implications for our understanding of bacterial pathogenicity and the role of guanine-quadruplex (G4) structures:

      Molecular Mechanisms of Pathogenicity: The study highlights that G4 structures are not randomly distributed within pathogenicity islands (PAIs), suggesting a potential role in regulating pathogenicity. This insight into the uneven distribution of G4s within PAIs provides a basis for further research into the molecular mechanisms underlying bacterial pathogenicity.

      Conservation of G4 Structures: The consistent conservation of G4 structures within the same pathogenic strains suggests that these structures might play a vital and possibly conserved role in the pathogenicity of these bacteria. This finding opens doors for exploring how G4s influence virulence across different pathogens.

      Unique Nature of PAIs: The differences in GC content between PAIs and the core genome underscore the unique nature of PAIs. This distinction suggests that factors such as DNA topology and G4 structures might contribute to the specialized functions and characteristics of PAIs, which are often associated with virulence genes.

      Regulatory Role of G4s: The identification of high-confidence G4 structures within regulatory regions of Escherichia coli implies that these structures could influence the efficiency or specificity of DNA integration events within PAIs. This finding provides a potential mechanism by which G4s can impact the pathogenicity of bacteria.

      Weaknesses:<br /> None

      Overall, the study provides fundamental insights into the pathogenicity island and conservation of G4 motifs.

    2. Reviewer #2 (Public Review):

      Summary: In the mauscript entitled "The Intricate Relationship of G-Quadruplexes and Pathogenicity Islands: A Window into Bacterial Pathogenicity" Bo Lyu explored the interactions between guanine-quadruplex (G4) structures and pathogenicity islands (PAIs) in 89 bacterial genomes through rigorous computational approach. This paper handles an intriguing and complex topic in the field pathogenomics, it has the potential to contribute significantly to the understanding of G4-PAI interactions and bacterial pathogenicity.

      Strengths: Chosen research area and summarizing the results through neat illustrations

      Weaknesses: I did not find any significant ones.

    1. Reviewer #1 (Public Review):

      Smirnova et al. present a cryo-EM structure of a nucleosome-SIRT6 complex to understand how the histone deacetylase SIRT6 deacetylates the N-terminal tail of histone H3. The authors obtained the structure at sub-4 Å resolution and can visualize how interactions between the nucleosome and SIRT6 position SIRT6 to allow for H3 tail deacetylation. Through additional conformational analysis of their cryo-EM data, they reveal that SIRT6 positioning is flexible on the nucleosome surface, and this could accommodate the targeting of certain H3 tail residues. This work is significant as it represents the visualization of a histone deacetylase on its native nucleosomal target and reveals how substrate specificity is achieved. Importantly, it should be noted that recently two additional structures of the nucleosome-SIRT6 complex were already published. Therefore, Smirnova et al. confirm and complement these previous findings. Additionally, Smirnova et al. expand our understanding of the structural flexibility of SIRT6 on the nucleosome and clarify that SIRT6 also shows histone deacetylase activity on H3K27Ac.

    2. Reviewer #3 (Public Review):

      Smirnova et al. present a cryo-EM structure of human SIRT6 bound to a nucleosome as well as the results from molecular dynamics simulations. The results show that the combined conformational flexibilities of SIRT6 and the N-terminal tail of histone H3 limit the residues with access to the active site, partially explaining the substrate specificity of this sirtuin-class histone deacetylase. Two other groups have recently published cryo-EM structures of SIRT6:nucleosome complexes; this manuscript confirms and complements these previous findings, with the addition of some novel insights into the role of structural flexibility in substrate selection.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The aim of this study is to explore the neurocircuitry of top-down and bottom-up interception, and how this differs in psychiatric disorders. Using functional neuroimaging, the research focuses on individuals with anxiety, depression, and/or eating disorders compared to healthy individuals. The findings highlight the dysgranular mid-insula as a key cortical area where attention and real-time bodily inputs converge, potentially serving as a disruption point in psychiatric disorders.

      Strengths:<br /> The authors used robust and validated methods to answer their research question efficiently. They illustrate a complete picture of the theoretical impact of the study and their own strengths and weaknesses.

      Weaknesses:<br /> One concern is regarding the experimental task design. Currently, only subjective reports of interoceptive intensity are taken into account, the addition of objective behavioural measures would have given additional value to the study and its impact.

      This brings me to my second concern. The authors mostly refer to their own previous work, without highlighting other methods used in the field. Some tasks measure interoceptive accuracy or other behavioural outcomes, instead of merely subjective intensity. Expanding the scientific context would aid the understanding and integration of this study with the rest of the field.

      Lastly, the suggestions for future research lack substance compared to the richness of the discussion.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The authors have conducted an exceptionally informative series of studies investigating the neural basis of interoception in transdiagnostic psychiatric symptoms. By comparing differential and overlapping neural activation during 'top-down' and 'bottom-up' interoceptive tasks, they reveal convergent activation largely localised to the ventral dysgranular subregion ('mid-insula'), which differs in extent between patients and controls, replicating and extending previous suggestions of this region as a central locus of disruption in psychiatric disorders. Their work also reveals different extents of divergent activation in the anterior insula during anticipation of interoceptive disruption. This substantially advances our previous knowledge of the anatomy of interoception and confirms theoretical predictions of the roles of different cytoarchitectural subregions of the insula in interoceptive dysfunction in mental health conditions.

      Strengths:<br /> The work is exceptional in terms of breadth and depth, making use of multiple imaging and analysis techniques which are non-standard and go well beyond what is known today. The study is statistically well-powered and the tasks are well-validated in the literature. To my knowledge, these functions of the insula in interoception and mental health have never been compared directly before, so the results are novel and informative for both basic science and psychiatry. The work is strongly theory-driven, building on and directly testing results from influential theories and previous studies. It is likely that the results will strengthen our theoretical models of interoception and advance psychiatric studies of the insula.

      Weaknesses:<br /> The study has three current limitations. (1) The interpretation of the resting-state data is not quite as clear-cut as the task-based data - as presented currently, changes could potentially represent fluctuations over time rather than following interoception specifically. In contrast, much stronger conclusions can be drawn from the authors' task-based data. (2) The transdiagnostic sample could be better characterised in terms of diagnostic information, and was almost entirely female; it is also unclear what the effect of psychotropic medications may have been on the results given the effects of (e.g.) serotonergic medication on the BOLD signal. (3) As the authors point out, there may have been task-specific preprocessing/analysis differences that influenced results, for example, due to physiological correction in one but not both tasks.

    3. Reviewer #3 (Public Review):

      Summary:<br /> Adamic and colleagues present fMRI data from ADE patients and a healthy control group acquired during two interoceptive tasks (attention and perturbation) from the same session. They report convergent activity within the granular and dysgranular insular cortex during both tasks, with a patient group-specific lateralisation effect. Furthermore, insular functional connectivity was found to be linked to disease severity.

      Strengths:<br /> The study is well-designed and - despite some limitations noted by the authors - provides much-needed insight into the functional pathways of interoceptive processing in health and disease. The manuscript is clear, concise, and well-written so that I only have a few comments I would mostly regard as minor points.

      Weaknesses:<br /> There are a few instances where it is not entirely clear whether the authors' claims are fully supported by the underlying statistics.

    1. Reviewer #1 (Public Review):

      This manuscript presents the first evidence for a plastic enhancement in the response of pial cortical arterioles to external stimulation. Specifically, they show (p8; Figure 3A-C) that repeated application of a visual stimulus at 0.25 Hz, at the upper edge of the vasomotor response, leads to a greater change in the diameter of pial arterioles at that frequency. This adds to the earlier, referenced work of Mateo et al (2017) that showed locking - or entrainment of pial arteriole vasomotion - by stimuli at different (0.0 to 0.3 Hz) frequencies.

      The manuscript has a major flaw. Much as there is plasticity that leads to an increase in the amplitude of vasomotion at the drive frequency, the authors need to show reversibility. This could possibly be accomplished by driving the visual system at a different frequency, say 0.15 Hz, and observing if the 0.25 Hz response is then diminished. The authors could then test if their observation is repeatable by again driving at 0.25 Hz. Unless I missed the presentation on this point, there is no evidence for reversibility.

      Drew, P. J., A. Y. Shih, J. D. Driscoll, P. M. Knutsen, D. Davalos, P. Blinder, K. Akassoglou, P. S. Tsai, and D. Kleinfeld. 2010. 'Chronic optical access through a polished and reinforced thinned skull', Nature Methods, 7: 981-84.<br /> Morii, S., A. C. Ngai, and H. R. Winn. 1986. 'Reactivity of rat pial arterioles and venules to adenosine and carbon dioxide: With detailed description of the closed cranial window technique in rats', Journal of Cerebral Blood Flow & Metabolism, 6: 34-41.

    2. Reviewer #2 (Public Review):

      Sasaki et al. investigated methods to entrain vasomotion in awake wild-type mice across multiple regions of the brain using a horizontally oscillating visual pattern which induces an optokinetic response (HOKR) eye movement. They found that spontaneous vasomotion could be detected in individual vessels of their wild-type mice through either a thinned cranial window or intact skull preparation using a widefield macro-zoom microscope. They showed that low-resolution autofluorescence signals coming from the brain parenchyma could be used to capture vasomotion activity using a macro-zoom microscope or optical fibre, as this signal correlates well with the intensity profile of fluorescently-labelled single vessels. They show that vasomotion can also be entrained across the cortical surface using an oscillating visual stimulus with a range of parameters (with varying temporal frequencies, amplitudes, or spatial cycles), and that the amplitude spectrum of the detected vasomotion frequency increases with repeated training sessions. The authors include some control experiments to rule out fluorescence fluctuations being due to artifacts of eye movement or screen luminance and attempt to demonstrate some functional benefit of vasomotion entraining as HOKR performance improves after repeat training. These data add in an interesting way to the current knowledge base on vasomotion, as the authors demonstrate the ability to entrain vasomotion across multiple brain areas and show some functional significance to vasomotion with regards to information processing as HOKR task performance correlates well with vascular oscillation amplitudes.

      The aims of the paper are mostly well supported by the data, but some streamlining of the data presentation would improve overall clarity. The third aim to establish the functional significance of vasomotion in relation to plasticity in information processing could be better supported by the inclusion of some additional control experiments. Specifically:

      1) The clarity and comprehensibility of the paper could be significantly enhanced by incorporating additional details in both the introduction and discussion sections. In the introduction, a succinct definition of the frequency range of vasomotion should be provided, as well as a better description of the horizontal optokinetic response (i.e. as they have in the results section in the first paragraph below the 'Entrainment of vasomotion with visual stimuli presentation' sub-heading). The discussion would benefit from the inclusion of a clear summary of the results presented at the start, and the inclusion of stronger justification (i.e. more citations) with regards to the speculation about vasomotion and neuronal plasticity (e.g. paragraph 5 includes no citations).

      2) The novel methods for detecting vasomotion using low-resolution imaging techniques are discussed across the first four figures, but this gets a little bit confusing to follow as the authors jump back and forth between the different imaging and analysis techniques they have employed to capture vasomotion. The data presentation could be better streamlined - for instance by presenting only the methods most relevant for the functional dataset (in Figures 5-7), with the additional information regarding the various controls to establish the use of autofluorescence intensity imaging as a valid method for capturing vasomotion reduced to fewer figure panels, or moved to supplementary figures so as to not detract from the main novel findings contributed in this study.

      3) The authors heavily rely on representative traces from individual vessels to illustrate their findings, particularly evident in Figures 1-4. While these traces offer a valuable visualization, augmenting their approach by presenting individual data points across the entire dataset, encompassing all animals and vessels, would significantly enhance the robustness of their claims. For instance, in Figures 1 and 2, where average basal and dilated traces are depicted for a representative vessel, supplementing these with graphs showcasing peak values across all measured vessels would enable the authors to convey a more holistic representation of their data. Or in Figure 3, where the amplitude spectrum is presented for individual Texas red fluorescence intensity changes in V1 across novice, trained, and expert mice, incorporating a summary graph featuring the amplitude spectrum value at 0.25Hz for each individual trace (across animals/imaging sessions), followed by statistical analysis, would fortify the strength of their assertions. Moreover, providing explicit details on sample sizes for each individual figure panel (where not a representative trace), including the number of animals or vessels/imaging sessions, would contribute to transparency and aid readers in assessing the generalisability of the findings.

      4) In the experiments where mice are classed as "novice", "trained" or "expert", the inclusion of the specific range of the number of training sessions for each category would improve replicability.

      5) The authors don't state whether mice were habituated to the imaging set-up prior to the first data collection, as head-fixation and restraint can be stress-inducing for animals, especially upon first exposure, which could impact their neurovascular coupling responses differentially in "novice" versus "trained" imaging sessions (e.g. see Han et al., 2020, DOI: https://doi.org/10.1523/JNEUROSCI.1553-20.2020). The stress associated with a tail vein injection prior to imaging could also partially explain why mice didn't learn very well if Texas Red was injected before the training session. If no habituation was conducted in these experiments, the study would benefit from the inclusion of some control experiments where "novice" responses were compared between habituated and non-habituated animals.

      6) The experiments regarding the brain-wide vasomotion entrainment across the cortical surface would benefit from some additional information about how brain regions were identified (e.g. particularly how V1 and V2 were distinguished given how close together they are).

      7) Whilst the authors show that HOKR task performance and vasomotion amplitude are increased with repeated training to provide some support to their aim of investigating the functional significance of vasomotion with regards to information processing plasticity, the inclusion of some additional control experiments would provide stronger evidence to address this aim. For instance, if vasomotion signalling is blocked or reduced (e.g. using optogenetics or in an AD mouse model where arteriole amyloid load restricts vasomotion capacity), does flocculus-dependent task performance (e.g. HOKR eye movements) still improve with repeated exposure to the external stimulus.

    3. Reviewer #3 (Public Review):

      Summary:<br /> Here the authors show global synchronization of cerebral blood flow (CBF) induced by oscillating visual stimuli in the mouse brain. The study validates the use of endogenous autofluorescence to quantify the vessel "shadow" to assess the magnitude of frequency-locked cerebral blood flow changes. This approach enables straightforward estimation of artery diameter fluctuations in wild-type mice, employing either low magnification wide-field microscopy or deep-brain fibre photometry. For the visual stimuli, awake mice were exposed to vertically oscillating stripes at a low temporal frequency (0.25 Hz), resulting in oscillatory changes in artery diameter synchronized to the visual stimulation frequency. This phenomenon occurred not only in the primary visual cortex but also across a broad cortical and cerebellar surface. The induced CBF changes adapted to various stimulation parameters, and interestingly, repeated trials led to plastic entrainment. The authors control for different artefacts that may have confounded the measurements such as light contamination and eye movements but found no influence of these variables. The study also tested horizontally oscillating visual stimuli, which induce the horizontal optokinetic response (HOKR). The amplitude of eye movement, known to increase with repeated training sessions, showed a strong correlation with CBF entrainment magnitude in the cerebellar flocculus. The authors suggest that parallel plasticity in CBF and neuronal circuits is occurring. Overall, the study proposes that entrained "vasomotion" contributes to meeting the increased energy demand associated with coordinated neuronal activity and subsequent neuronal circuit reorganization.

      Strengths:<br /> -The paper describes a simple and useful method for tracking vasomotion in awake mice through an intact skull.<br /> -The work controls for artefacts in their primary measurements.<br /> -There are some interesting observations, including the nearly brain-wide synchronization of cerebral blood flow oscillations to visual stimuli and that this process only occurs after mice are trained in a visual task.<br /> -This topic is interesting to many in the CBF, functional imaging, and dementia fields.

      Weaknesses:<br /> -I have concerns with the main concepts put forward, regarding whether the authors are actually studying vasomotion as they state, as opposed to functional hyperemia which is sensory-induced changes in blood flow, which is what they are actually doing. I recommend several additional experiments/analyses for them to explore. This is mostly further characterizing their effect which will benefit the interpretations.

      -Neuronal calcium imaging would also benefit the study and improve the interpretations.

      -The plastic effects in vasomotion synchronization that occur with training are interesting but they could use an additional control for stress. Is this really a plastic effect, or is it caused by progressively decreasing stress as trials and progress? I recommend a habituation control experiment.

      Appraisal<br /> I think the authors have an interesting effect that requires further characterization and controls. Their interpretations are likely sound and additional experiments will continue to support the main hypothesis. If brain-wide synchrony of blood flow can be trained and entrained by external stimuli, this may have interesting therapeutic potential to help clear out toxic proteins from the brain as seen in several neurodegenerative diseases.

    1. Reviewer #1 (Public Review):

      This manuscript by Tyler and colleagues describes a thorough analysis of IR-induced changes in nascent RNA transcripts, and a genome-wide screening effort to identify the responsible proteins. The findings extend previous work describing DNA damage-induced transcriptional repression from DNA breaks in cis to bulk genomic DNA damage. A significant discovery is the inability of arrested cells to undergo DNA damage-induced gene silencing, which, at least at the rDNA locus, is attributed to an inability to mediate ATM-induced transcriptional repression. While the findings add to our knowledge of how DNA damage affects gene expression, there are several limitations to the current study that remain inadequately addressed. In addition, some of the proposed conclusions seem speculative and should be marked as such, omitted, or experimentally supported.

      Two major concerns are as follows:

      1) The CIRSPR screen designed to detect regulators of damage-induced transcriptional repression is based on EU incorporation following a 7-day selection of stable knockout cells. As the authors point out, cell cycle arrest reduces rDNA transcription on its own. The screen, which assesses changes in sgRNA distribution in EU high cells, is thus likely to be dominated by factors that affect cell cycle progression. This is exemplified in the analyses of top hits related to neddylation. The screen's limitations in terms of identifying DDR effectors of damage-induced silencing need to be clearly stated.

      2) The authors confirm previous findings of DNA damage-induced repression of rDNA and histone gene transcription. The authors propose that these highly transcribed genes are more susceptible to silencing than the bulk of protein-coding genes and propose a global damage-induced signaling event that is independent of DNA breaks in cis. While this is possible, it is not demonstrated in this manuscript, and the authors should acknowledge alternative explanations. For example, the loci found to be repressed by bulk IR are highly repetitive gene arrays that tend to form nuclear sub-compartments (nucleoli, histone bodies). As such, their likelihood of being in the vicinity of DNA damage is high, at least for a fraction of gene copies. The findings, therefore, remain consistent with cis-induced silencing. Moreover, silencing may spread through the relevant nuclear sub-compartments, consistent with the formation of DNA damage compartments described recently (PMID: 37853125).

      Other comments:<br /> 1) The statement that silencing is due to transcription initiation rather than elongation is not sufficiently supported by the data. Could equivalent nascent transcript reduction not be the result of the suppression of elongating RNA PolII? To draw the proposed conclusion, the authors would need to demonstrate that RNA PolII initiation is altered, using RNA PollII ChIP and/or analysis of relevant RNA PolII phosphorylation patterns.

      2) The lack of rDNA silencing in arrested cells is interesting, though the underlying mechanism remains unclear. To further corroborate the proposed defect in ATM-mediated signaling, the authors should look directly at ATM and Treacle phosphorylation upstream of TOPBP1.

      3) The "change in relative heights of the EU low (G1) and EU high (S/G2) peaks" in Figures 5D, 5E, and 6B is central to the proposed model of transcriptional changes being affected by cell cycle arrest. These differences should be visualized more clearly and quantified across independent experiments. Ideally, the cell cycle stage should be dissected as in Figure 2B. How do the authors envision cell cycle arrest triggers the defect in transcriptional silencing?

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, the authors attempted to study mechanisms of transcription inhibition in cells treated with IR. They observed that, unlike histone chaperone HIRA-dependent transcription inhibition during UV-induced damage, IR-induced transcription inhibition does not depend on HIRA. Through the CRISPR/Cas9 screen, they identified protein neddylation is important for transcription inhibition. By sequencing nascent RNA, they observed that down-regulated transcripts upon IR treatment are largely highly transcribed genes including histone genes and rDNA.

      Strengths:<br /> The authors utilized comprehensive approaches to fill in the knowledge gap of IR-induced transcription inhibition.

      Weaknesses:<br /> it is not clear that inhibition of histone genes by IR is due to a reduction of S phase progression.

    1. Reviewer #1 (Public Review):

      Summary:

      This valuable study by Gui Yu and colleagues aims to investigate the function of a subtype of hepatocyte, which expressed Twist2 at some point in its lineage. First, using reporter mice, they show that hepatocytes can be labelled using Twist2-cre mice. Importantly, Twist2-cre also labels liver mesenchymal cells. Using scRNA seq of P1 and P14 Twist2-Cre tomato-labelled cells, they identify both mesenchymal cells and hepatocytes, and (using trajectory analyses) propose that Twist-traced hepatocytes and mesenchymal cells are derived from Epcam+ progenitors. The authors propose that the Twist2-traced hepatocytes occupy the midzone, and are polyploid. Using partial hepatectomy and Ccl4 as models for regeneration, the authors show that, after insult, there is an increase in Twist2-Tomato+ cells, which are more proliferative. Next, the authors propose that Notch signaling is suppressed during regeneration (based on the downregulation of HES1 protein in midzone hepatocytes during regeneration). They therefore knock out Notch1 in Twist2-expressing cells and show that this leads to hepatocyte proliferation (but fewer liver lobes) in homeostatic conditions. Finally, the authors also interfere with mTor and VEGF signaling and show that both interventions suppresses the excess hepatocyte proliferation in Twist2-conditional Notch1-knockout mice.

      Strengths:

      Overall, the data show that Twist2 is expressed at some point during hepatocyte development or homeostasis, and that Notch1 in hepatocytes or mesenchymal cells plays a role in limiting homeostatic hepatocyte proliferation.

      Weaknesses:

      The study relies heavily on the use of Twist2-Cre mice, which labels both mesenchymal cells and hepatocytes. Several experiments on hepatocytes (such as scRNA seq or bulk RNA seq) could be confounded by doublets or contamination with mesenchymal cells.

    2. Reviewer #2 (Public Review):

      Summary:

      There are two potential contributions made by this study, both of which are not fully supported by the data presented. First, that Twist-positive hepatocytes in the midlobular zone are derived from Twist2-expressing cells in embryonic livers via intermediate EpCAM-expressing cells. Second, that there is a population of hepatocytes with mesenchymal features that drive regeneration after various injuries. The concept that mid-lobular hepatocytes are more regenerative in adult injury settings has already been established and this paper further supports that body of knowledge.

      Strengths:

      There are copious scRNA-seq data that are supportive of the claims, but these analyses were not definitive.

      Weaknesses:

      1. There is not sufficient evidence to support the following assertion: "markers identified a mesenchymal-hepatocyte hybrid population (13.7% of total hepatocytes) that express signature genes of both lineages." Twist-Cre reporter mice mark hepatocytes and mesenchymal populations, but it is not clear whether or not this means that the hepatocyte population labeled by Twist is mesenchymal. It is very possible for hepatocytes to express mesenchymal genes without being a true hybrid population. There is not much evidence that zone 2 cells are a mix of hepatocyte and mesenchymal. The idea of a hybrid population needs to be defined. The definition probably needs to involve the concept that hybrid cells must have morphologic or functional features of mesenchymal cells, rather than just expressing some genes from each cell type.

      Related to this, the authors claim that co-expression of Twist and EpCAM in E10.5 liver cells might support the existence of a hepatomesenchymal cell type. This is possible, but one should note that adult hepatocytes can express EpCAM, especially during ductular reactions, so it is not necessarily a mesenchymal marker per se.

      2. The authors assert several times that Twist-Cre mice appear to have no effect on overall liver regeneration phenotypes. They use this to suggest a lack of an effect for heterozygous deletion of Twist by the Cre allele. It is still possible for these mice to have altered lineage tracing results. It is very difficult to rule this out. For example, Axin2-CreER mice did not have any overt liver function or regeneration phenotypes, but the lineage tracing results from these mice differed from other CreER mice.

      3. The central problem with this study is that the authors use a Cre strain and not a CreER strain. With a Cre strain, there could be new labeling of Twist-positive cells at multiple later time points. Thus, it is very difficult to assert that the Tomato-positive population at later time points are really descendants of the originally labeled population. It is very difficult to interpret the results of Cre-based lineage tracing experiments.

      With this technical limitation in mind, I do not think that there is enough evidence to support the assertion made on page 6: "These findings suggest that EpCAMlow progenitor cells give rise to hepatocytes and MCs." The authors use scRNA-seq trajectory analysis to come to the conclusion that mesenchymal cells give rise to hepatocytes between p1 and p14. Much more evidence is needed before the authors can arrive at this conclusion. It is much more likely that midlobular hepatocytes arise from other hepatocytes. To support their arguments, the authors would have to use a CreER line that exclusively labels mesenchymal cells in the liver, then lineage traces them until p14 to determine if they become hepatocytes. Without such an experiment, I do not think the current experiments are interpretable.

      4. The injury experiments are again limited in their interpretability because they do not use CreER. It is very possible that Twist is turned on after CCl4 or surgical injury, and thus new hepatocytes might activate Tomato. It is unclear if previously Tomato-positive midzone hepatocytes were proliferating to increase the Tomato positive population. The authors use expression-based studies to argue against ectopic activation of Twist, but it is very difficult to exclude Cre activation using these types of studies.

    1. Reviewer #1 (Public Review):

      In this study, the authors investigate the role of triglycerides in spermatogenesis. This work is based on their previous study (PMID: 31961851) on triglyceride sex differences in which they showed that somatic testicular cells play a role in whole body triglyceride homeostasis. In the current study, they show that lipid droplets (LDs) are significantly higher in the stem and progenitor cell (pre-meiotic) zone of the adult testis than in the meiotic spermatocyte stages. The distribution of LDs anti-correlates with the expression of the triglyceride lipase Brummer (Bmm), which has higher expression in spermatocytes than early germline stages. Analysis of a bmm mutant (bmm[1]) - a P-element insertion that is likely a hypomorphic - and its revertant (bmm[rev]) as a control shows that bmm acts autonomously in the germline to regulate LDs. In particular, the number of LDs is significantly higher in spermatocytes from bmm[1] mutants than from bmm[rev] controls. Testes from males with global loss of bmm (bmm[1]) are shorter than controls and have fewer differentiated spermatids. The zone of bam expression, typically close to the niche/hub in WT, is now many cell diameters away from the hub in bmm[1] mutants. There is an increase in the number of GSCs in bmm[1] homozygotes, but this phenotype is probably due to the enlarged hub. However, clonal analyses of GSCs lacking bmm indicate that a greater percentage of the GSC pool is composed of bmm[1]-mutant clones than of bmm[rev]-clones. This suggests that loss of bmm could impart a competitive advantage to GSCs, but this is not explored in greater detail. Despite the increase in number of GSCs that are bmm[1]-mutant clones, there is a significant reduction in the number of bmm[1]-mutant spermatocyte and post-meiotic clones. This suggests that fewer bmm[1]-mutant germ cells differentiate than controls. To gain insights into triglyceride homeostasis in the absence of bmm, they perform mass spec-based lipidomic profiling. Analyses of these data support their model that triglycerides are the class of lipid most affected by loss of bmm, supporting their model that excess triglycerides are the cause of spermatogenetic defects in bmm[1]. Consistent with their model, a double mutant of bmm[1] and a diacylglycerol O-acyltransferase 1 called midway (mdy) reverts the bmm-mutant germline phenotypes.

      There are numerous strengths of this paper. First, the authors report rigorous measurements and statistical analyses throughout the study. Second, the authors utilize robust genetic analyses with loss-of-function mutants and lineage-specific knockdown. Third, they demonstrate the appropriate use of controls and markers. Fourth, they show rigorous lipidomic profiling. Lastly, their conclusions are appropriate for the results. In other words, they don't over-state the results. Overall, the rigorously quantified results support the major aim that appropriate regulation of triglycerides are needed in a germline cell-autonomous manner for spermatogenesis.

      This paper should have a positive impact on the field. First and foremost, there is limited knowledge about the role of lipid metabolism in spermatogenesis. The lipidomic data will be useful to researchers in the field who study various lipid species. Going forward, it will be very interesting to determine what triglycerides regulate in germline biology. In other words, what functions/pathways/processes in germ cells are negatively impacted by elevated triglycerides. And as the authors point out in the discussion, it will be important to determine what regulates bmm expression such that bmm is higher in later stages of germline differentiation.

    2. Reviewer #2 (Public Review):

      Summary:

      Here, the authors show that neutral lipids play a role in spermatogenesis. Neutral lipids are components of lipid droplets, which are known to maintain lipid homeostasis, and to be involved in non-gonadal differentiation, survival, and energy. Lipid droplets are present in the testis in mice and Drosophila, but not much is known about the role of lipid droplets during spermatogenesis. The authors show that lipid droplets are present in early differentiating germ cells, and absent in spermatocytes. They further show a cell autonomous role for the lipase brummer in regulating lipid droplets and, in turn, spermatogenesis in the Drosophila testis. The data presented show that a relationship between lipid metabolism and spermatogenesis is congruous in mammals and flies, supporting Drosophila spermatogenesis as an effective model to uncover the role lipid droplets play in the testis.

      Strengths and weaknesses:

      The authors do a commendably thorough characterization of where lipid droplets are detected in normal testes: located in young somatic cells, and early differentiating germ cells. They use multiple control backgrounds in their analysis, including w[1118], Canton S, and Oregon R, which adds rigor to their interpretations. The authors employ markers that identify which lipid droplets are in somatic cells, and which are in germ cells. The authors use these markers to present measured distances of somatic and germ cell-derived lipid droplets from the hub. Because they can also measure the distance of somatic and germ cells with age-specific markers from the hub, these results allow the authors to correlate position of lipid droplets with the age of cells in which they are present. This analysis is clearly shown and well quantified.

      The quantification of lipid droplet distance from the hub is applied well in comparing brummer mutant testes to wild type controls. The authors measure the number of lipid droplets of specific diameters, and the spatial distribution of lipid droplets as a function of distance from the hub. These measurements quantitatively support their findings that lipid droplets are present in an expanded population of cells further from the hub in brummer mutants. The authors further quantify lipid droplets in germline clones of specified ages; the quantitative analysis here is displayed clearly and supports a cell autonomous role for brummer in regulating lipid droplets in spermatocytes.

      Data examining testis size and number of spermatids in brummer mutants clearly indicates the importance of regulating lipid droplets to spermatogenesis. The authors show beautiful images supported by rigorous quantification supporting their findings that brummer mutants have both smaller testes with fewer spermatids at both 29 and 25C. There is also significant data supporting defects in testis size, but not spermatid number, in 14-day-old brummer mutant animals compared to controls. Their analysis clearly shows an expanded region beyond the testis apex that includes younger germ cells, supporting a role for lipid droplets influencing germ cell differentiation during spermatogenesis.

      The authors present a series of data exploring a cell autonomous role for brummer in the germline, including clonal analysis and tissue specific manipulations. The clonal data indicating increased lipid droplets in spermatocyte clones, and a higher proportion of brummer mutant GSCs at the hub are convincing and supported by quantitation. The authors also show a tissue specific rescue of the brummer testis size phenotype by knocking down mdy specifically in germ cells, which is also supported by statistically significant quantitation. The authors present data examining the number of spermatocyte and post-meiotic clones 14 days after clonal induction. Their finding is significant with a p-value of 0.0496, which they acknowledge is less robust than their other data reported in this study, and could be a result of a low sample size. They indicate that future studies might validate these results with additional samples.

      The authors do a beautiful job of validating where they detect brummer-GFP by presenting their own pseudotime analysis of publicly available single cell RNA sequencing data. Their data is presented very clearly, and supports expression of brummer in older somatic and germline cells of the age when lipid droplets are normally not detected. The authors also present a thorough lipidomic analysis of animals lacking brummer to identify triglycerides as an important lipid droplet component regulating spermatogenesis.

      Impact:

      The authors present data supporting the broad significance of their findings across phyla. This data represents a key strength of this manuscript. The authors show that loss of a conserved triglyceride lipase impacts testis development and spermatogenesis, and that these impacts can be rescued by supplementing diet with medium-chain triglycerides. The authors point out that these findings represent a biological similarity between Drosophila and mice, supporting the relevance of the Drosophila testis as a model for understanding the role of lipid droplets in spermatogenesis. The connection buttresses the relevance of these findings and this model to a broad scientific community.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Deletion of the hrp2 and hrp3 loci in P. falciparum poses an immediate public health threat. This manuscript provides a more complete understanding of the dynamic nature with which these deletions are generated. By delving into the likely mechanisms behind their generation, the authors also provide interesting insight into general Plasmodium biology that can inform our broader understanding of the parasite's genomic evolution.

      Strengths:<br /> The sub-telomeric regions of P. falciparum (where hrp2 and hrp3 are located) are notoriously difficult to study with short-read sequence data. The authors take an appropriate, targeted approach toward studying the loci of interest, which includes read-depth analysis and local haplotype reconstruction. They additionally use both long-read and short-read data to validate their major findings. There is an extensive set of supplementary plots, which helps clarify several aspects of the data.

      Weaknesses:<br /> In this first version, there are a few factors that hinder a full assessment of the robustness and replicability of the results. First, a number of the analyses lack basic details in the methods; for instance, one must visit the authors' personal website to find some of the tools used. Second, there are several tricky methodological points that are not fully documented. Read depths are treated (and plotted) discretely as 0/1/2 without any discussion of how thresholds were used and determined. For read mapping to standard vs hybrid chromosomes, there is no documentation on how assignments were made if partially ambiguous or how final sample calls were determined when some reads were discordant. There is no mention of how missing data were handled. Without this, it is difficult to know when conclusions were based on analyses that were more quantitative (for instance, using pre-determined read thresholds) or more subjective (with patterns being extracted visually). Third, while a new method is employed for local haplotype reconstruction (PathWeaver), the manuscript does not include details on this approach or benchmarking data with which to evaluate its performance and understand any potential artifacts.

    2. Reviewer #2 (Public Review):

      This work investigates the mechanisms, patterns, and geographical distribution of pfhrp2 and pfhrp3 deletions in Plasmodium falciparum. Rapid diagnostic tests (RDTs) detect P. falciparum histidine-rich protein 2 (PfHRP2) and its paralog PfHRP3 located in subtelomeric regions. However, laboratory and field isolates with deletions of pfhrp2 and pfhrp3 that can escape diagnosis by RDTs are spreading in some regions of Africa. They find that pfhrp2 deletions are less common and likely occur through chromosomal breakage with subsequent telomeric healing. Pfhrp3 deletions are more common and show three distinct patterns: loss of chromosome 13 from pfhrp3 to the telomere with evidence of telomere healing at breakpoint (Asia; Pattern 13-); duplication of a chromosome 5 segment containing pfhrp1 on chromosome 13 through non-allelic homologous recombination (NAHR) (Asia; Pattern 13-5++); and the most common pattern, duplication of a chromosome 11 segment on chromosome 13 through NAHR (Americas/Africa; Pattern 13-11++). The loss of these genes impacts the sensitivity of RDTs, and knowing these patterns and geographic distribution makes it possible to make better decisions for malaria control.

    3. Reviewer #3 (Public Review):

      Summary:<br /> The study provides a detailed analysis of the chromosomal rearrangements related to the deletions of histidine-rich protein 2 (pfhrp2) and pfhrp3 genes in P. falciparum that have clinical significance since malaria rapid diagnostic tests detect these parasite proteins. A large number of publicly available short sequence reads for the whole genome of the parasite were analyzed, and data on coverage and discordant mapping allowed the authors to identify deletions, duplications, and chromosomal rearrangements related to pfhrp3 deletions. Long-read sequences showed support for the presence of a normal chromosome 11 and a hybrid 13-11 chromosome lacking pfhrp3 in some of the pfhrp3-deleted parasites. The findings support that these translocations have repeatedly occurred in natural populations. The authors discuss the implications of these findings and how they do or do not support previous hypotheses on the emergence of these deletions and the possible selective pressures involved.

      Strengths:<br /> The genomic regions where these genes are located are challenging to study since they are highly repetitive and paralogous and the use of long-read sequencing allowed to span the duplicated regions, giving support to the identification of the hybrid 13-11 chromosome.

      All publicly available whole-genome sequences of the malaria parasite from around the world were analysed which allowed an overview of the worldwide variability, even though this analysis is biased by the availability of sequences, as the authors recognize.

      Despite the reduced sample size, the detailed analysis of haplotypes and identification of the location of breakpoints gives support to a single origin event for the 13-5++ parasites.

      The analysis of haplotype variation across the duplicated chromosome-11 segment identified breakpoints at varied locations that support multiple translocation events in natural populations. The authors suggest these translocations may be occurring at high frequency in meiosis in natural populations but are strongly selected against in most circumstances, which remains to be tested.

      Weaknesses:<br /> Relying on sequence data publicly available, that were collected based on diagnostic test positivity and that are limited by sequencing availability, limits the interpretation of the occurrence and relative frequency of the deletions. In the discussion, caution is needed when identifying the least common and most common mechanisms and their geographical associations. The identification of only one type of deletion pattern for Pfhrp2 may be related to these biases.

      The specific objectives of the study are not stated clearly, and it is sometimes difficult to know which findings are new to this study. Is it the first study analyzing all the worldwide available sequences? Is it the first one to do long-read sequencing to span the entire duplicated region?

      Another aspect that should be explained in the introduction is that there was previous information about the association of the deletions to patterns found in chromosomes 5 and 11. In the short-read sequences results, it is not clear if these chromosomes were analysed because of the associations found in this study (and no associations were found to putative duplications or deletions in other chromosomes), or if they were specifically included in the analysis because of the previous information (and the other chromosomes were not analysed).

      An interesting statement in the discussion is that existing pfhrp3 deletions in a low-transmission environment may provide a genetic background on which less frequent pfhrp2 deletion events can occur. Does it mean that the occurrence of pfhrp3 deletions would favor the pfhrp2 deletion events? How, and is there any evidence for that?

    1. Reviewer #1 (Public Review):

      The authors aim to develop an easy-to-use image analysis tool for the mother machine that is used for single-cell time-lapse imaging. Compared with related software, they tried to make this software more user-friendly for non-experts with a design of "What You Put Is What You Get". This software is implemented as a plugin of Napari, which is an emerging microscopy image analysis platform. The users can interactively adjust the parameters in the pipeline with good visualization and interaction interface.

      Strengths:<br /> - Updated platform with great 2D/3D visualization and annotation support.<br /> - Integrated one-stop pipeline for mather machine image processing.<br /> - Interactive user-friendly interface.<br /> - The users can have a visualization of intermediate results and adjust the parameters.

      Weaknesses:<br /> - Based on the presentation of the manuscript, it is not clear that the goals are fully achieved.<br /> - Although there is great potential, there is little evidence that this tool has been adopted by other labs.<br /> - the diversity of datasets used in this study is limited.<br /> - Some paragraphs in the Discussion section are like blogs with general recommendations. Although the suggestions look pretty useful, it is not the focus of this manuscript. It might be more appropriate to put it in the GitHub repo or a documentation page. The discussion should still focus on the software, such as features, software maintenance, software development roadmap, and community adoption.

      A discussion of the likely impact of the work on the field, and the utility of the methods and data to the community.<br /> - The impact of this work depends on the adoption of the software MM3. Napari is a promising platform with an expanding community. With good software user experience and long-term support, there is a good chance that this tool could be widely adopted in the mother machine image analysis community.<br /> - The data analysis in this manuscript is used as a demo of MM3 features, rather than scientific research.

    2. Reviewer #2 (Public Review):

      The authors present an image-analysis pipeline for mother-machine data, i.e., for time-lapses of single bacterial cells growing for many generations in one-dimensional microfluidic channels. The pipeline is available as a plugin of the python-based image-analysis platform Napari. The tool comes with two different previously published methods to segment cells (classical image transformation and thresholding as well as UNet-based analysis), which compare qualitatively and quantitatively well with the results of widely accessible tools developed by others (BACNET, DelTA, Omnipose). The tool comes with a graphical user interface and example scripts, which should make it valuable for other mother-machine users, even if this has not been demonstrated yet.

      The authors also add a practical overview of how to prepare and conduct mother-machine experiments, citing their previous work, referring to detailed instructions on their github page, and giving more advice on how to load cells using centrifugation.

      Finally, the authors emphasize that machine-learning methods for image segmentation reproduce average quantities of training datasets, such as the length at birth or division. Therefore, differences in training can propagate to differences in measured average quantities. This result is not surprising but good to remember before interpreting absolute measurements of cell shape.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This work addresses how to quantify functional compensation throughout the aging process and identifies brain regions that engage in compensatory mechanisms during the Cattell task, a measure of fluid cognition. The authors find that regions of the frontal cortex and cuneus showed unique effects of both age and performance. Interestingly, these two regions demonstrated differential activation patterns taking into account both age and performance. Specifically, the researchers found that the relationship between performance and activation in the cuneal ROI was strongest in older adults, however, this was not found in younger adults. These findings suggest that specifically within the cuneus, greater activation is needed by older adults to maintain performance, suggestive of functional compensation.

      Strengths:<br /> The conclusions derived from the study are well supported by the data. The authors validated the use of the in-scanner Cattell task by demonstrating high reliability in the same sample with the standard out-of-scanner version. Some strengths of the study include the large sample size and wide age range of participants. The authors use a stringent Bayes factor of 20 to assess the strength of evidence. The authors used a whole-brain approach to define regions of interest (ROIs) based on activation patterns that were jointly related to age and performance. Overall, the methods are technically sound and support the authors' conclusions.

      Weaknesses:<br /> While the manuscript is methodologically sound, the following aspects of image acquisition and data analysis need to be clarified to ensure replicability and reproducibility. The authors state that the sample is a "population-derived adult lifespan sample", the lack of demographic information makes it impossible to know if the sample is truly representative. Though this may seem inconsequential, education may impact both cognitive performance and functional activation patterns. Moreover, the authors do not report race/ethnicity in the manuscript. This information is essential to ensure representativeness in the sample. It is imperative that barriers to study participation within minoritized groups are addressed to ensure rigor and reproducibility of findings.

      For the whole-brain analysis in which the ROIs were derived, the authors used a threshold-free cluster enhancement (TFCE; Smith & Nichols 2009). The methodological paper cited suggests that individuals' TCFE image should still be corrected for multiple comparisons using the following: "to correct for multiple comparisons, one [...] has to build up the null distribution (across permutations of the input data) of the maximum (across voxels) TFCE score, and then test the actual TFCE image against that. Once the 95th percentile in the null distribution is found then the TFCE image is simply thresholded at this level to give inference at the p < 0.05 (corrected) level." (Smith & Nichols, 2009). Although the authors mention that clusters were estimated using 2000 permutations, there is no mention of the TFCE image itself being thresholded. While this would impact the overall size of the ROIs used in the study, the remaining analyses are methodologically sound.

    2. Reviewer #2 (Public Review):

      This work by Knights et al., makes use of the Cam-CAN dataset to investigate functional compensation during a fluid processing task in older adults, in a fairly large sample of approximately 200 healthy adults ranging from 19 to 87. Using univariate methods, the authors identify two brain regions in which activity increases as a function of both age and performance and conduct further investigations to assess whether the activity of these regions provides information regarding task difficulty. The authors conclude that the cuneal cortex - a region of the brain previously implicated in visual attention - shows evidence of compensation in older adults.

      The conclusions of the paper are well supported by the data, and the authors use appropriate statistical analyses. The use of multivariate methods over the last 20 years has demonstrated many effects that would have been missed using more traditional univariate analysis techniques. The data set is also of an appropriate size, and as the authors note, fluid processing is an extremely important domain in the field of cognition in aging, due to its steep decline over aging. However, it might have been nice to see an analysis of a more crystallised intelligence task included too, as a contrast since this is an area that does not demonstrate such a decline (and perhaps continues to improve over aging).

    3. Reviewer #3 (Public Review):

      This neuroimaging study investigated how brain activity related to visual pattern-based reasoning changes over the adult lifespan, addressing the topic of functional compensation in older age. To this end, the authors employed a version of the Cattell task, which probes visual pattern recognition for identifying commonalities and differences within sets of abstract objects in order to infer the odd object among a given set. Using a state-of-the-art univariate analysis approach on fMRI data from a large lifespan sample, the authors identified brain regions in which the activation contrast between hard and easy Cattell task conditions was modulated by both age and performance. Regions identified comprised prefrontal areas and bilateral cuneus. Applying a multivariate decoding approach to activity in these regions, the authors went on to show that only in older adults, the cuneus, but not the prefrontal regions, carried information about the task condition (hard vs. easy) beyond that already provided by activity patterns of voxels that showed a univariate main effect of task difficulty. This was taken as compelling evidence for task-specific compensatory activity in the cuneus in advanced age.

      The study is well-motivated and well-written. The authors used appropriate, rigorous methods that allowed them to control for a range of possible confounds or alternative explanations. Laudable aspects include the large sample with a wide and even age distribution, the validation of the in-scanner task performance against previous results obtained with a more standard version outside the scanner, and the control for vascular age-related differences in hemodynamic activity via a BOLD signal amplitude measure obtained from a separate resting-state fMRI scan. Overall, the conclusions are well-supported by the data.

      In the following, I list some points of discussion that I would like to see addressed by the authors in a revision:

      1) I don't quite follow the argumentation that compensatory recruitment would need to show via non-redundant information carried by any given non-MDN region (cf. p14). Wouldn't the fact that a non-MDN region carries task-related information be sufficient to infer that it is involved in the task and, if activated increasingly with increasing age, that its stronger recruitment reflects compensation, rather than inefficiency or dedifferentiation? Put differently, wouldn't "more of the same" in an additional region suffice to qualify as compensation, as compared to the "additional information in an additional region" requirement set by the authors? As a consequence, in my honest opinion, showing that decoding task difficulty from non-MDN ROIs works better with higher age would already count as evidence for compensation, rather than asking for age-related increases in decoding boosts obtained from adding such ROIs. It would be interesting to see whether the arguably redundant frontal ROI would satisfy this less demanding criterion. At any rate, it seems useful to show whether the difference in log evidence for the real vs. shuffled models is also related to age.

      2) Relatedly, does the observed boost in decoding by adding the cuneal ROI (in older adults) really reflect "additional, non-redundant" information carried by this ROI? Or could it be that this boost is just a statistical phenomenon that is obtained because the cuneus just happens to show a more clear-cut, less noisy difference in hard vs. easy task activation patterns than does the MDN (which itself may suffer from increased neural inefficiency in older age), and thus the cuneaus improves decoding performance without containing additional (novel) pieces of information (but just more reliable ones)? If so, the compensation account could still be maintained by reference to the less demanding rationale for what constitutes compensation laid out above.

      3) On page 21, the authors state that "...traditional univariate criteria alone are not sufficient for identifying functional compensation." To me, this conclusion is quite bold as I'd think that this depends on the unvariate criterion used. For instance, it could be argued that compensation should be more clearly indicated by an over additive interaction as observed for the relationship of cuneal activity with age and performance (i.e., the activity increase with better performance becomes stronger with age), rather than by an additive effect of age and performance as observed for the prefrontal ROI (see Fig. 2C). In any case, I'd appreciate it if the authors discussed this issue and the relationship between univariate and multivariate results in more detail (e.g. how many differences in sensitivity between the two approaches have contributed), in particular since the sophisticated multivariate approach used here is not widely established in the field yet.

      4) As to the exclusion of poorly performing participants (see p24): If only based on the absolute number of errors, wouldn't you miss those who worked (overly) slowly but made few errors (possibly because of adjusting their speed-accuracy tradeoff)? Wouldn't it be reasonable to define a criterion based on the same performance measure (correct - incorrect) as used in the main behavioural analyses?

      5) Did the authors consider testing for negative relationships between performance and brain activity, given that there is some literature arguing that neural efficiency (i.e. less activation) is the hallmark of high intelligence (i.e. high performance levels in the Cattell task)? If that were true, at least for some regions, the set of ROIs putatively carrying task-related information could be expanded beyond that examined here. If no such regions were found, it would provide some evidence bearing on the neural efficiency hypothesis.

    1. Reviewer #1 (Public Review):

      In this work, the authors address a fundamental question in the biological physics of many marine organisms, across a range of sizes: what is the mechanism by which they measure and respond to pressure. Such responses are classed under the term "barotaxis", with a specific response termed "barokinesis", in which swimming speed increases with depth (hence with pressure). While macroscopic structures such as gas-filled bladders are known to be relevant in fish, the mechanism for smaller organisms has remained unclear. In this work, the authors use ciliated larvae of the marine annelid Platynereis dumerilii to investigate this question. This organism has previously been of great importance in unravelling the mechanism of multicellular phototaxis associated with a ciliated band of tissue directed by light falling on photoreceptors.

      In the present work, the authors use a bespoke system to apply controlled pressure changes to organisms in water and to monitor their transient response in terms of swimming speed and characteristics of swimming trajectories. They establish that those changes are based on relative pressure, and are reflected in changes in the ciliary beating. Significantly, by imaging neuronal activity during pressure stimulation, it was shown that ciliary photoreceptor cells are activated during the pressure response. That these photoreceptors are implicated in the response was verified by the reduced response of certain mutants, which appear to have defective cilia. Finally, serotinin was implicated in the synaptic response of those neurons.

      This work is an impressive and synergistic combination of a number of different biological and physical probes into this complex problem. The ultimate result, that ciliary photoreceptors are implicated, is fascinating and suggests an interesting interplay between photoreception and pressure detection. I see no obvious weaknesses.

    2. Reviewer #2 (Public Review):

      Summary:

      Bezares Calderon et al demonstrate that the planktonic larva of marine annelid Platynereis dumerii responds to increased pressure in the water column by swimming upward. The authors show the larvae do so via their ciliated photoreceptors that recruit serotoninergic motor neurons to elicit swimming via an increased ciliary beat frequency of the multiciliary band of their head.

      Strengths:

      The authors built original setups to increase water pressure and monitor behavior or calcium activity in the cells. Using their original setups, they combined behavioral and imaging experiments on wild type and mutant larvae for an opsin to show how photoreceptors encode the response to pressure and recruit in response serotoninergic motor neurons that increase the ciliary beating frequency of the multiciliary band in the head.

      Weaknesses:

      Technical note:<br /> The authors should use DF/F to quantify over time the calcium response in photoreceptors. Furthermore, they should show that there is no concern of motion artifact when the pressure changes - as it could be a concern.

      The authors have not shown<br /> 1- how the off response to decrease of pressure is mediated<br /> 2- which receptor/channel mediates in photoreceptors the response to increased pressure,<br /> 3- nor how the integration of light and pressure information is integrated by photoreceptors in order to guide the behavior of the larvae.

      These points are beyond the scope of the study. However, if possible within a short time frame, it would be really interesting to find out whether conflicting stimuli or converging stimuli (light & pressure) can cancel each other out or synergize. In particular since the authors cite unpublished results in the discussion: "Our unpublished results indeed suggest that green light determines the direction of swimming and can override upward swimming induced by pressure, which only influences the speed of swimming (LABC and GJ, unpublished)." Showing in one panel this very cool phenomenon would be exciting & open tons of questions for the field.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this study of metabolism using Xenopus, explanted porcine hearts and limbs, and human organs-on-chips, Sperry et al studied the ability of WB3 to slow metabolism and mobility. The group developed WB3, an analog of SNC80, void of SNC80's delta-opioid receptor binding capacity, and studied its metabolic impact. The authors concluded that SNC80 and its analog WB3 can induce "biostasis" and produce a hypometabolic state which holds promise for prolonging organ viability in transplant surgery as well as other potential clinical benefits.

      Strengths:<br /> This study also opens new avenues for therapeutic possibilities in areas such as trauma, acute infection, and brain injuries. The overall methodology is acceptable, but certain concerns should be addressed.

      Weaknesses:<br /> 1. In cardiac and renal transplantation, cold preservation in ice remains a common practice for transporting explanted hearts to donors which remains a cheap and easily accessible way of preserving organs. While ex-vivo mechanical circulatory platforms have been developed and are increasingly being utilized to prolong organ viability, cold preservation remains widely used. The authors perfused explanted hearts with oxygenated perfusion preservation devices at subnormothermic temperatures (20-23C) which is even much lower than routinely used in clinical cardiopulmonary bypass scenarios (28-32C) (in the discussion, the authors allude to SNC80's possible "protective effect" in cardiac bypass). It is unclear how much of the hypometabolic state is related to WB3 administration versus hypothermia. The study will benefit from a comparison of WB3 administration and hypothermia in Xenopus, explanted porcine organs versus cold preservation alone to show distinction in biostasis parameters.

      2. The authors selected SNC80 based on a literature survey where it was identified based on its ability to induce hypothermia and protect against the effects of spinal cord ischemia in rodents. While this makes sense, were other drugs (eg. Puerarin) considered? The induction of hypothermia and spinal cord protective effect of SNC80 may be multifactorial and not necessarily related to its biostatic effects as the authors describe. Please provide some more context into the background of SNC80.

      3. In most of the models, the primary metric that the authors utilize to characterize metabolic activity is oxygen consumption, which is a somewhat limited indicator. For instance, this does not provide any information, however, on anaerobic metabolic activity. In addition, the ATP/ADP ratio was found to decrease in the organ chips where SNC80 was utilized, but similar findings were not presented for the other models.

      4. The authors should provide a more detailed explanation of SNC80's mechanisms of interaction with proteins related to transmembrane transport, mitochondrial activity, and metabolic processes. What is the impact of SNC80 on mitochondrial function, particularly ATP production and mitochondrial respiration? Are there changes in mitochondrial membrane potential, electron transport chain activity, or oxidative phosphorylation? In this context, the authors discuss the potential role of NCX1 as a binding target for SNC80 and its various mechanisms in slowing metabolism. However, no experiments have been done to confirm this binding in the present study. Co-immunoprecipitation studies using appropriate antibodies against SNC80 and NCX1 should be considered to demonstrate their direct binding. Additionally, surface plasmon resonance (SPR) or isothermal titration calorimetry (ITC) experiments could be employed to quantify the binding affinity between SNC80 and NCX1, providing further evidence of their interaction. These experiments would elucidate the binding mechanism between SNC80 and NCX1 and reveal more information on the mechanism of action for SNC80.

      5. The manuscript notes that histological analysis was conducted, but it seems that only example images are provided, such as Figure 4f. Quantified histological data would provide a more thorough understanding of tissue integrity.

      6. Some of the points mentioned in the discussion and conclusion are rather strong and based on possible associations such as SNC80's potential vasodilatory capacity conferring a cardioprotective effect, and ability to reversibly suppress metabolism across different temperatures and species. Please tone this down and stay limited to the organs studied. Further, the reversibility of the findings may be more objectively assessed by biomarkers with decreased immunofluorescence in response to ischemia such as troponin I for the heart and albumin for the liver. Additionally, an investigation of proteins involved in inflammation, hypoxia, and key cell death pathways using immunohistochemistry analysis can better describe the impact of treatment on apoptosis/necroptosis.

      7. What could be the underlying cause of the observed increase in intercellular spacing after SNC80 administration in porcine limbs which also seems to be evident in the heart histology samples? This seems to be more prominent in the SNC80 compared to the vehicle group.

      8. In the Discussion section, it would be valuable to provide a concise interpretation of the lipidomic data, particularly explaining how changes in acylcarnitine and cholesterol ester levels may relate to tadpole metabolism, hibernation, or other biological processes.

      9. What are the limitations or disadvantages of the study? Does SNC80 possess any immunomodulatory properties that might affect the outcomes of organ transplantation? Are there specific organs for which SNC80 may not be a suitable preservation agent, and if so, what are the reasons behind this?

    2. Reviewer #2 (Public Review):

      Summary:<br /> This manuscript titled "Identification of pharmacological inducers of a reversible hypometabolic state for whole organ preservation" reports the effects of delta opioid receptor activator SNC80 and its modified analog WB3 with ~1,000 times less delta opioid receptor binding activity on metabolic state.

      Strengths:<br /> This is an interesting study with potentially broad implications for organ preservation.

      Weaknesses:<br /> There are several limitations that raise concerns.

      1. The authors developed an analog of a known delta opioid receptor activator SNC80 with three orders of magnitude lesser binding with the delta opioid receptor WB3. This will likely reduce the undesirable effects of SNC80 while preserving the metabolic slowing needed for organ preservation. Yet, most experiments were done with SNC80, not the superior modification, WB3, shown in only a limited set of experiments, Figure 3.

      2. The heart is one of the most challenging organs to preserve, and some experiments are done to establish the metabolic effects of SNC80. However, the biodistribution study, shown in Figure 2, conspicuously omitted the heart.

      3. I do not understand the design of the electrophysiology and contractility experiments with the porcine hearts. How did you defibrillate the hearts after removal and establishing perfusion? Lines 173-175 on Page 7 state: "After defibrillation with epinephrine, the P and QRS waveforms were visible in ECGs from 3 of 4 SNC80-treated hearts (Table S1), suggesting that those hearts regain atrial and ventricular polarization." Please clarify. Defibrillation is done with an electric shock. Also, please show the ECG recordings to support your conclusions about "polarization." What did you mean by "polarization"? Depolarization? Repolarization? Or resting potential. To establish a normal physiological state, please show ECG waveforms and present data on basic ECG characteristics: heart rate, PQ and QT intervals, and P and QRS durations. I recommend perfusion of the porcine heart with WB3, not only SNC80.

      4. Pathology data also raises concerns. The histology images shown in Figure 4f are not quantified, and they show apparently higher levels of tissue disruption in SNC80-treated tissue vs vehicle-treated. The test (lines 169-171) confirms this concern: "In some hearts treated with SNC80, greater waviness of muscle fibers was observed, possibly indicating a state of muscle contraction." It will be helpful to measure markers of apoptosis and necrosis and to apply TTC viability staining.

      5. The apparent state of contracture suggests a higher degree of myocardial damage and a high intracellular calcium level in SNC80-treated hearts. The authors suggested that the sodium-calcium exchanger NCX is a possible target of SNC80 and could be responsible for the "hypometabolic state." However, NCX1 is critically important in the extrusion of cytosolic Ca2+ during the diastolic phase. Failure to remove excessive calcium and restore ionic homeostasis would lead to calcium overload and heart failure.

      6. I am surprised the authors did not consider using the gold standard assay for measuring mitochondrial function in cells by the Seahorse Cell Mito Stress Test.

    3. Reviewer #3 (Public Review):

      In this manuscript, Sperry and colleagues identify SNC80 as a compound that can slow metabolism and mimic hibernation, thereby prolonging tissue viability in organ transplantation and cardiovascular disease settings. Overall, the use of varied and relevant model systems is a strength of this study.

      The authors perform a literature search to identify SNC80 as a promising hit. However, the details of the literature search, a list of other potential hits, and the criteria for identification of SNC80 are not described. The hypometabolic effect of SNC80 exposure is well-characterized in the Xenopus model. Furthermore, the authors show that SNC80 localises to the brain, but do not discuss several studies that have pointed to convulsions induced by exposure to high doses of SCN80, and whether this would be apparent in the Xenopus studies. The authors have promising data on the WB3 morpholino that retains or even improves on the hypometabolism phenotype of SCN80 while likely not retaining delta opioid activity. However, this is not functionally demonstrated. Moreover, WB3 is not used in any of the other assays and models used in the study. In the setting of cardiac transplant surgery, co-administration of SNC80 reduces metabolic activity and inflammation, although it is unclear if there is an improvement in recovery of organ function due to SCN80. The reversible induction of hypometabolic status is also demonstrated in two different organ chips. These models could identify the differential response of epithelial cells and vascular cells to drug perfusion, but the authors have mostly focused on the former. Finally, the authors identify specific targets for the hypometabolic effect of SNC80, which is a valuable resource for other screening studies and can form the basis for future work.

    1. Reviewer #1 (Public Review):

      In this work, the authors have explored how treating C. albicans fungal cells with EDTA affects their growth and virulence potential. They then explore the use of EDTA-treated yeast as a whole-cell vaccine in a mouse model of systemic infection. In general, the results of the paper are unsurprising. Treating yeast cells with EDTA affects their growth and the addition of metals rescues the phenotype. Because of the significant growth defects of the cells, they don't infect mice and you see reduced virulence. Injection with these cells effectively immunises the mice, in the same way that heat-killed yeast cells would. The data is fairly sound and mostly well-presented, and the paper is easy to follow. However, I feel the data is an incremental advance at best, and the immune analysis in the paper is very basic and descriptive.

      Strengths:

      Detailed analysis of EDTA-treated yeast cells

      Weaknesses:

      - Basic immune data with little advance in knowledge.<br /> - No comparison between their whole-cell vaccine and others tried in the field.<br /> - The data is largely unsurprising and not novel.

    2. Reviewer #2 (Public Review):

      Summary:

      Invasive fungal infections are very difficult to treat with limited drug options. With the increasing concern of drug resistance, developing an antifungal vaccine is a high priority. In this study, the authors studied the metal metabolism in Candida albicans by testing some chelators, including EDTA, to block the metal acquisition and metabolism by the fungus. Interestingly, they found EDTA-treated yeast cells grew poorly in vitro and non-pathogenic in vivo in a murine model. Mice immunized by EDTA-treated Candida (CAET) were protected against challenge with wild-type Candida cells. RNA-Seq analysis to survey the gene expression profile in response to EDTA treatment in vitro revealed upregulation of genes in metal homeostasis and downregulation of ribosome biogenesis. They also revealed an induction of both pro- and anti-inflammatory cytokines involved in Th1, Th2 and Th17 host immune response in response to CAET immunization. Overall, this is an interesting study with translational potential.

      Strengths:

      The main strength of the report is that the authors identified a potential whole-cell live vaccine strain that can provide full protection against candidiasis. Abundant data both on in vitro phenotype, gene expression profile, and host immune response have been presented.

      Weaknesses:

      A weakness is that the immune mechanism of CAET-mediated host protection remains unclear. The immune data is somewhat confusing. The authors only checked cytokines and chemokines in blood. The immune response in infected tissues and antibody response may be investigated.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors are trying to find a vaccine solution for invasive candidiasis.

      Strengths:

      The testing of the antifungal activity of EDTA on Candida is not new as many other papers have examined this effect. The novelty here is the use of this EDTA-treated strain as a vaccine to protect against a secondary challenge with wild-type Candida.

      Weaknesses:

      However, data presented in Figure 5 and Figure 6 are not convincing and need further experimental controls and analysis as the authors do not show a time-dependent effect on the CFU of their vaccine formulation.

      The methodology used is also an issue. As it stands, the impact is minor.

    1. Reviewer #1 (Public Review):

      The paper by Perovic and colleagues describes how important blood vessels called collaterals form during development and remodel/expand upon injury to the brain. These vessels are conduits between arteries that do not have strong blood flow physiologically but upon injury can compensate for conduit loss. Published work by others is largely descriptive and does not address the cellular sources of collaterals over time. Here elegant lineage tracing is used to better understand the source of vascular endothelial cells during embryonic development, and how these lineages contribute to remodeling upon injury. The work is ambitious and important as collateral capacity can strongly influence the trajectory of outcomes with vascular blockage. The work reveals that proliferative arterial EC is the primary contributor to the collaterals developmentally, with a small contribution from capillary/venous EC, and that this shifts to almost completely arterial contribution from birth onward. There are several aspects of the work that, if addressed, would strengthen the study and better support the interesting and novel conclusions, including analysis of non-collateral lineage contributions, more careful interpretation of fixed image data, and more careful annotation of the image panels.

    2. Reviewer #2 (Public Review):

      Pial collateral vessels are anastomotic connections that cross-connect distal arterioles of the middle, anterior, and posterior cerebral arteries. With respect to ischemic stroke, good pial collateral flow positively correlates with decreased infarct volume and improved recovery; accordingly, optimizing collateral flow represents an important intervention for limiting stroke damage. The goal of this study was to determine the endothelial cell (EC) subtype(s) that contribute to the embryonic and neonatal development of pial collaterals and their expansion in response to stroke. To this end, the authors used lineage tracing methods in the mouse, labeling arterial endothelial cells (using Bmx-CreERT on switch line, R26mTmG) or venous and microvascular endothelial cells (using Vegfr3-CreERT on R26mTmG) and assessing pial collaterals via confocal microscopy. The authors convincingly demonstrate that arterial-lineage ECs comprise the majority of pial collateral ECs during development and in adulthood, with a minor contribution from pial plexus-derived microvascular ECs that decline over time. They also convincingly demonstrate that pial collateral outward remodeling after experimentally-induced stroke (distal middle cerebral artery occlusion, or dMCAO) involves, at least in part, local proliferation of arterial-lineage ECs. The latter is intriguing given that arterial ECs generally leave the cell cycle. While these conclusions are quite solid, some key details are missing that could improve analysis, and some important caveats are not addressed. Moreover, less convincing are mechanistic claims that pial collaterals form via a migratory process of "mosaic colonization" of a preexisting vessel.

      1. It is difficult to understand whether individual collaterals are truly mosaic vessels, or whether arterial or venous/microvascular lineage ECs predominate in any particular region of the pial collateral vasculature. This is due to a number of methodological reasons: arterial and venous/microvascular contributions to pial collaterals were assessed independently, only a few (and in some cases, just one) collaterals were analyzed in each mouse, and regionality/location of collaterals was not addressed. Additionally, the inefficiency and variability of EC labeling, especially with the Vegfr3-CreERT line (Fig. S1, ~6-30%), compounds this problem.

      2. The identification of "pre-collateral" vessels requires further support. The authors define these vessels by their connection to the feeding artery, their (often) larger diameter, and their more pronounced ICAM2 expression. While most of these criteria are demonstrated in Figure S3, it is not apparent how these vessels were defined in Figure 4, which lacks specific annotation of each of these identifying criteria. As the identification of these novel vessels is one of the key findings of this paper, a more robust method of unambiguously defining them is warranted.

      3. The conclusion that collateral-forming ECs migrate in the direction of flow into preexisting vessels is not well supported. The authors state that the presence of filopodial projections (Figure 4) supports this conclusion. However, filopodia number and directional polarization/orientation were not quantified, and "intercalation movements"/migration, per se, cannot be inferred from these static images.

      4. In Figure 5, the simplest explanation for relative Cx40 expression in different vessels is the absence (low expression) or presence (high expression) of flow. This figure provides little mechanistic insight beyond this already-known relationship, and it is unclear how many times this experiment was performed (there is no N, no quantification or correlation).

      5. There is no statistical analysis in this work. This is justified by the authors by their admission that the study is of a "descriptive nature and...exploratory design."

    3. Reviewer #3 (Public Review):

      Summary:<br /> These studies focus on a very interesting, understudied phenomenon in vascular development - the formation of pial collaterals between cerebral arteries. Understanding the mechanism(s) that regulates this process during normal development could provide important insights for the treatment of adult stroke patients, for which repair is highly dependent on collateral formation. Insights may also be relevant to other collateral-dependent diseases, such as heart disease and chronic peripheral ischemia.

      Strengths:<br /> The investigators use lineage tracing and 3D imaging to show that, in mouse embryos, endothelial cells (ECs) predominantly from Bmx+ arteries and some from the Vegfr3+ microvasculature, invade pre-existing pre-collateral vascular structures in a process they termed "mosaic colonization", and arterialization of the vessel segments is said to occur concurrently with colonization, although details about EC phenotypes are lacking. Growth of the collaterals in response to ischemic injury relies on local replication of the ECs within the collaterals and not further recruitment from veins and the microvasculature. Although detailed molecular mechanisms are not provided, demonstration of the "cellular mechanism" of pial collateral vascularization is novel.

      Weaknesses:<br /> Nonetheless, there are some issues that should be addressed, particularly to clarify the phenotype of the ECs forming the collaterals and expanding in response to injury; only their "origin" was traced and not their identity/growth after labeling in Bmx+ vessels.

    1. Reviewer #2 (Public Review):

      The authors present here a mathematical and computational study of the topological/graph theory requirements to obtain sustained oscillations in neural network models. A first approach mathematically demonstrates that, for a given network of interconnected neural populations (understood in the sense of dynamical systems) requires an odd number of inhibitory populations to sustain oscillations. The authors extend this result via numerical simulations of (i) a simplified set of Wilson-Cowan networks, (ii) a simplified circuit of the cortico-basal ganglia network, and (iii) a more complex, spike-based neural network of basal ganglia network, which provides insight on experimental findings regarding abnormal synchrony levels in Parkinson's Disease (PD).

      The work elegantly and effectively combines a solid mathematical proof with careful numerical simulations at different levels of description, which is uncommon and provides additional layers of confidence to the study. Furthermore, the authors included detailed sections to provide intuition about the mathematical proof, which will be helpful for readers less inclined to the perusal of mathematical derivations. Its insightful and well-informed connection with a practical neuroscience problem, the presence of strong beta rhythms in PD, elevates the potential influence of the study and provides testable predictions.

      In its updated form, the authors have solved the most pressing issues of the study, by acknowledging the limitations of their work regarding the effects of delays in oscillations, and addressing some of these effects in new simulations. Although some interesting simulations are still not presented in the revised version, they could constitute the focus of future work to complement the conclusions presented here. The absence of explanations for some of the figures and panels has been corrected, and the issues with grammar and lack of clarity have been improved. This important work is therefore now improved.

    2. Reviewer #1 (Public Review):

      Summary:

      Authors study appearance of oscillations in motifs of linear threshold systems, coupled in specific topologies. They derive analytically conditions for appearance of oscillations, in the context of excitatory and inhibitory links. They also emphasize the higher importance of the topology, compared to the strength of the links, though it is not straightforward to apply this for brain networks where the weights can be distributed several orders of magnitude. Finally the results are confirmed with WC oscillators. The findings are to some extent confirmed with spiking neurons, though here results are less clear.

      Overall, the results are sound from a theoretical perspective, but I still find hard to believe that they are of significant relevance for biological networks, or in particular for the oscillations of BG-thalamus-cortex loop in PD. I find motifs in general to be too simplistic for multiscale and generally large networks as it is the case in the brain. Moreover, the division on regions is more or less arbitrary by definition, and having such a strong dependence on odd/even number of inhibitory links is far from reality. Another limitation is the fact that the cortex is considered as a single node. Similarly, decomposing even such a coarse network in all possible (238 in this case) motifs doesn't seem of much relevance, when I'd assume that the emergence of pathological rhythms is more of an emergent phenomena.

      Strengths:

      From the point of nonlinear dynamics, the results are solid, and the intuition behind the proofs of the theorems is well explained.

      Weaknesses:

      As stated in the summary, I find the work to be too theoretical without a real application for the brain dynamics, where the networks are generally very large. The odd/even number rule is too strict, and talking about fixed and definite number of cycles in actual brain seems too simplistic. Moreover, the cortex is considered as a single node, and finally the impact of the delays is ignored even though they define the synchronizability of the brain network, and previous works on the amplitude reduction due to the time-delays in difference-coupled networks of oscillators is not mentioned.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors define a new metric for visual displays, derived from psychophysical response times, called visual homogeneity (VH). They attempt to show that VH is explanatory of response times across multiple visual tasks. They use fMRI to find visual cortex regions with VH-correlated activity. On this basis, they declare a new visual region in the human brain, area VH, whose purpose is to represent VH for the purpose of visual search and symmetry tasks.

      Strengths:

      The authors present carefully designed experiments, combining multiple types of visual judgments and multiple types of visual stimuli with concurrent fMRI measurements. This is a rich dataset with many possibilities for analysis and interpretation.

      Weaknesses:

      The datasets presented here should provide a rich basis for analysis. However, in this version of the manuscript, I believe that there are major problems with the logic underlying the authors' new theory of visual homogeneity (VH), with the specific methods they used to calculate VH, and with their interpretation of psychophysical results using these methods. These problems with the coherency of VH as a theoretical construct and metric value make it hard to interpret the fMRI results based on searchlight analysis of neural activity correlated with VH. In addition, the large regions of VH correlations identified in Experiments 1 and 2 vs. Experiments 3 and 4 are barely overlapping. This undermines the claim that VH is a universal quantity, represented in a newly discovered area of the visual cortex, that underlies a wide variety of visual tasks and functions.

      Maybe I have missed something, or there is some flaw in my logic. But, absent that, I think the authors should radically reconsider their theory, analyses, and interpretations, in light of the detailed comments below, to make the best use of their extensive and valuable datasets combining behavior and fMRI. I think doing so could lead to a much more coherent and convincing paper, albeit possibly supporting less novel conclusions.

      THEORY AND ANALYSIS OF VH

      1) VH is an unnecessary, complex proxy for response time and target-distractor similarity.

      VH is defined as a novel visual quality, calculable for both arrays of objects (as studied in Experiments 1-3) and individual objects (as studied in Experiment 4). It is derived from a center-to-distance calculation in a perceptual space. That space in turn is derived from the multi-dimensional scaling of response times for target-distractor pairs in an oddball detection task (Experiments 1 and 2) or in a same-different task (Experiments 3 and 4). Proximity of objects in the space is inversely proportional to response times for arrays in which they were paired. These response times are higher for more similar objects. Hence, proximity is proportional to similarity. This is visible in Fig. 2B as the close clustering of complex, confusable animal shapes.

      VH, i.e. distance-to-center, for target-present arrays, is calculated as shown in Fig. 1C, based on a point on the line connecting the target and distractors. The authors justify this idea with previous findings that responses to multiple stimuli are an average of responses to the constituent individual stimuli. The distance of the connecting line to the center is inversely proportional to the distance between the two stimuli in the pair, as shown in Fig. 2D. As a result, VH is inversely proportional to the distance between the stimuli and thus to stimulus similarity and response times. But this just makes VH a highly derived, unnecessarily complex proxy for target-distractor similarity and response time. The original response times on which the perceptual space is based are far more simple and direct measures of similarity for predicting response times.

      2) The use of VH derived from Experiment 1 to predict response times in Experiment 2 is circular and does not validate the VH theory.

      The use of VH, a response time proxy, to predict response times in other, similar tasks, using the same stimuli, is circular. In effect, response times are being used to predict response times across two similar experiments using the same stimuli. Experiment 1 and the target present condition of Experiment 2 involve the same essential task of oddball detection. The results of Experiment 1 are converted into VH values as described above, and these are used to predict response times in Experiment 2 (Fig. 2F). Since VH is a derived proxy for response values in Experiment 1, this prediction is circular, and the observed correlation shows only consistency between two oddball detection tasks in two experiments using the same stimuli.

      3) The negative correlation of target-absent response times with VH as it is defined for target-absent arrays, based on the distance of a single stimulus from the center, is uninterpretable without understanding the effects of center-fitting. Most likely, center-fitting and the different VH metrics for target-absent trials produce an inverse correlation of VH with target-distractor similarity.

      The construction of the VH perceptual space also involves fitting a "center" point such that distances to center predict response times as closely as possible. The effect of this fitting process on distance-to-center values for individual objects or clusters of objects is unknowable from what is presented here. These effects would depend on the residual errors after fitting response times with the connecting line distances. The center point location and its effects on the distance-to-center of single objects and object clusters are not discussed or reported here.

      Yet, this uninterpretable distance-to-center of single objects is chosen as the metric for VH of target-absent displays (VHabsent). This is justified by the idea that arrays of a single stimulus will produce an average response equal to one stimulus of the same kind. However, it is not logically clear why response strength to a stimulus should be a metric for homogeneity of arrays constructed from that stimulus, or even what homogeneity could mean for a single stimulus from this set. It is not clear how this VHabsent metric based on single stimuli can be equated to the connecting line VH metric for stimulus pairs, i.e. VHpresent, or how both could be plotted on a single continuum.

      It is clear, however, what *should* be correlated with difficulty and response time in the target-absent trials, and that is the complexity of the stimuli and the numerosity of similar distractors in the overall stimulus set. The complexity of the target, similarity with potential distractors, and the number of such similar distractors all make ruling out distractor presence more difficult. The correlation seen in Fig. 2G must reflect these kinds of effects, with higher response times for complex animal shapes with lots of similar distractors and lower response times for simpler round shapes with fewer similar distractors.

      The example points in Fig. 2G seem to bear this out, with higher response times for the deer stimulus (complex, many close distractors in the Fig. 2B perceptual space) and lower response times for the coffee cup (simple, few close distractors in the perceptual space). While the meaning of the VH scale in Fig. 2G, and its relationship to the scale in Fig. 2F, are unknown, it seems like the Fig. 2G scale has an inverse relationship to stimulus complexity, in contrast to the expected positive relationship for Fig. 2F. This is presumably what creates the observed negative correlation in Fig. 2G.

      Taken together, points 1-3 suggest that VHpresent and VHabsent are complex, unnecessary, and disconnected metrics for understanding target detection response times. The standard, simple explanation should stand. Task difficulty and response time in target detection tasks, in both present and absent trials, are positively correlated with target-distractor similarity.

      I think my interpretations apply to Experiments 3 and 4 as well, although I find the analysis in Fig. 4 especially hard to understand. The VH space in this case is based on Experiment 3 oddball detection in a stimulus set that included both symmetric and asymmetric objects. However, the response times for a very different task in Experiment 4, a symmetric/asymmetric judgment, are plotted against the axes derived from Experiment 3 (Fig. 4F and 4G). It is not clear to me why a measure based on oddball detection that requires no use of symmetry information should be predictive of within-stimulus symmetry detection response times. If it is, that requires a theoretical explanation not provided here.

      4) Contrary to the VH theory, same/different tasks are unlikely to depend on a decision boundary in the middle of a similarity or homogeneity continuum.

      The authors interpret the inverse relationship of response times with VHpresent and VHabsent, described above, as evidence for their theory. They hypothesize, in Fig. 1G, that VHpresent and VHabsent occupy a single scale, with maximum VHpresent falling at the same point as minimum VHabsent. This is not borne out by their analysis, since the VHpresent and VHabsent value scales are mainly overlapping, not only in Experiments 1 and 2 but also in Experiments 3 and 4. The authors dismiss this problem by saying that their analyses are a first pass that will require future refinement. Instead, the failure to conform to this basic part of the theory should be a red flag calling for revision of the theory.

      The reason for this single scale is that the authors think of target detection as a boundary decision task, along a single scale, with a decision boundary somewhere in the middle, separating present and absent. This model makes sense for decision dimensions or spaces where there are two categories (right/left motion; cats vs. dogs), separated by an inherent boundary (equal left/right motion; training-defined cat/dog boundary). In these cases, there is less information near the boundary, leading to reduced speed/accuracy and producing a pattern like that shown in Fig. 1G.

      This logic does not hold for target detection tasks. There is no inherent middle point boundary between target present and target absent. Instead, in both types of trials, maximum information is present when the target and distractors are most dissimilar, and minimum information is present when the target and distractors are most similar. The point of greatest similarity occurs at the limit of any metric for similarity. Correspondingly, there is no middle point dip in information that would produce greater difficulty and higher response times. Instead, task difficulty and response times increase monotonically with the similarity between targets and distractors, for both target present and target absent decisions. Thus, in Figs. 2F and 2G, response times appear to be highest for animals, which share the largest numbers of closely similar distractors.

      DEFINITION OF AREA VH USING fMRI

      1) The area VH boundaries from different experiments are nearly completely non-overlapping.

      In line with their theory that VH is a single continuum with a decision boundary somewhere in the middle, the authors use fMRI searchlight to find an area whose responses positively correlate with homogeneity, as calculated across all of their target present and target absent arrays. They report VH-correlated activity in regions anterior to LO. However, the VH defined by symmetry Experiments 3 and 4 (VHsymmetry) is substantially anterior to LO, while the VH defined by target detection Experiments 1 and 2 (VHdetection) is almost immediately adjacent to LO. Fig. S13 shows that VHsymmetry and VHdetection are nearly non-overlapping. This is a fundamental problem with the claim of discovering a new area that represents a new quantity that explains response times across multiple visual tasks. In addition, it is hard to understand why VHsymmetry does not show up in a straightforward subtraction between symmetric and asymmetric objects, which should show a clear difference in homogeneity.

      2) It is hard to understand how neural responses can be correlated with both VHpresent and VHabsent.

      The main paper results for VHdetection are based on both target-present and target-absent trials, considered together. It is hard to interpret the observed correlations, since the VHpresent and VHabsent metrics are calculated in such different ways and have opposite correlations with target similarity, task difficulty, and response times (see above). It may be that one or the other dominates the observed correlations. It would be clarifying to analyze correlations for target-present and target-absent trials separately, to see if they are both positive and correlated with each other.

      3) The definition of the boundaries and purpose of a new visual area in the brain requires circumspection, abundant and convergent evidence, and careful controls.

      Even if the VH metric, as defined and calculated by the authors here, is a meaningful quantity, it is a bold claim that a large cortical area just anterior to LO is devoted to calculating this metric as its major task. Vision involves much more than target detection and symmetry detection. The cortex anterior to LO is bound to perform a much wider range of visual functionalities. If the reported correlations can be clarified and supported, it would be more circumspect to treat them as one byproduct of unknown visual processing in the cortex anterior to LO, rather than treating them as the defining purpose for a large area of the visual cortex.

    2. Reviewer #2 (Public Review):

      Summary:

      This study proposes visual homogeneity as a novel visual property that enables observers perform to several seemingly disparate visual tasks, such as finding an odd item, deciding if two items are the same, or judging if an object is symmetric. In Experiment 1, the reaction times on several objects were measured in human subjects. In Experiment 2, the visual homogeneity of each object was calculated based on the reaction time data. The visual homogeneity scores predicted reaction times. This value was also correlated with the BOLD signals in a specific region anterior to LO. Similar methods were used to analyze reaction time and fMRI data in a symmetry detection task. It is concluded that visual homogeneity is an important feature that enables observers to solve these two tasks.

      Strengths:

      1) The writing is very clear. The presentation of the study is informative.<br /> 2) This study includes several behavioral and fMRI experiments. I appreciate the scientific rigor of the authors.

      Weaknesses:

      1) My main concern with this paper is the way visual homogeneity is computed. On page 10, lines 188-192, it says: "we then asked if there is any point in this multidimensional representation such that distances from this point to the target-present and target-absent response vectors can accurately predict the target-present and target-absent response times with a positive and negative correlation respectively (see Methods)". This is also true for the symmetry detection task. If I understand correctly, the reference point in this perceptual space was found by deliberating satisfying the negative and positive correlations in response times. And then on page 10, lines 200-205, it shows that the positive and negative correlations actually exist. This logic is confusing. The positive and negative correlations emerge only because this method is optimized to do so. It seems more reasonable to identify the reference point of this perceptual space independently, without using the reaction time data. Otherwise, the inference process sounds circular. A simple way is to just use the mean point of all objects in Exp 1, without any optimization towards reaction time data.

      2) On page 11, lines 214-221. It says: "these findings are non-trivial for several reasons". However, the first reason is confusing. It is unclear to me why "it suggests that there are highly specific computations that can be performed on perceptual space to solve oddball tasks". In fact, these two sentences provide no specific explanation for the results.

      3) The second reason is interesting. Reaction times in target-present trials can be easily explained by target-distractor similarity. But why does reaction time vary substantially across target-absent stimuli? One possible explanation is that the objects that are distant from the feature distribution elicit shorter reaction times. Here, all objects constitute a statistical distribution in the feature (perceptual) space. There is certainly a mean of this distribution. Some objects look like outliers and these outliers elicit shorter reaction times in the target-absent trials because outlier detection is very salient.

      One might argue that the above account is merely a rephrasing of the idea of visual homogeneity proposed in this study. If so, feature saliency is not a new account. In other words, the idea of visual homogeneity is another way of reiterating the old feature saliency theory.

      4) One way to reject the feature saliency theory is to compare the reaction times of the objects that are very different from other objects (i.e., no surrounding objects in the perceptual space, e.g., the wheel in the lower right corner of Fig. 2B) with the objects that are surrounded by several similar objects (e.g., the horse in the upper part of Fig. 2B). Also, please choose the two objects with similar distance from the reference point. I predict that the latter will elicit longer reaction times because they can be easily confounded by surrounding similar objects (i.e., four-legged horses can be easily confounded by four-legged dogs). If the density of object distribution per se influences the visual homogeneity score, I would say that the "visual homogeneity" is essentially another way of describing the distributional density of the perceptual space.

      5) The searchlight analysis looks strange to me. One can easily perform a parametric modulation by setting visual homogeneity as the trial-by-trial parametric modulator and reaction times as a covariate. This parametric modulation produces a brain map with the correlation of every voxel in the brain. On page 17 lines 340-343, it is unclear to me what the "mean activation" is.

      Minor points:

      1) In the intro, it says: "using simple neural rules..." actually it is very confusing what "neural rules" are here. Better to change it to "computational principles" or "neural network models"??

      2) In the intro, it says: "while machine vision algorithms are extremely successful in solving feature-based tasks like object categorization (Serre, 2019), they struggle to solve these generic tasks (Kim et al., 2018; Ricci et al. 2021). These are not generic tasks. They are just a specific type of visual task-judging relationship between multiple objects. Moreover, a large number of studies in machine vision have shown that DNNs are capable of solving these tasks and even more difficult tasks. Two survey papers are listed here.

      Wu, Q., Teney, D., Wang, P., Shen, C., Dick, A., & Van Den Hengel, A. (2017). Visual question answering: A survey of methods and datasets. Computer Vision and Image Understanding, 163, 21-40.

      Małkiński, M., & Mańdziuk, J. (2022). Deep Learning Methods for Abstract Visual Reasoning: A Survey on Raven's Progressive Matrices. arXiv preprint arXiv:2201.12382.

    1. Joint Public Review:

      This study describes a group of CRH-releasing neurons, located in the paraventricular nucleus of the hypothalamus, which, in mice, affects both the state of sevoflurane anesthesia and a grooming behavior observed after it. PVHCRH neurons showed elevated calcium activity during the post-anesthesia period. Optogenetic activation of these PVHCRH neurons during sevoflurane anesthesia shifts the EEG from burst-suppression to a seemingly activated state (an apparent arousal effect), although without a behavioral correlate. Chemogenetic activation of the PVHCRH neurons delays sevoflurane-induced loss of righting reflex (another apparent arousal effect). On the other hand, chemogenetic inhibition of PVHCRH neurons delays recovery of righting reflex and decreases sevoflurane-induced stress (an apparent decrease in the arousal effect). The authors conclude that PVHCRH neurons "integrate" sevoflurane-induced anesthesia and stress. The authors also claim that their findings show that sevoflurane itself produces a post-anesthesia stress response that is independent of any surgical trauma, such as an incision. In its revised form, the article does not achieve its intended goal and will not have impact on the clinical practice of anesthesiology nor on anesthesiology research.

      Strengths:

      The manuscript uses targeted manipulation of the PVHCRH neurons with state-of-the-art methods, and is technically sound. Also, the number of experiments is substantial.

      Weaknesses:

      The most significant weaknesses remain: a) overinterpretation of the significance of their findings b) the failure to use another anesthetic as a control, c) a failure to compellingly link their post-sevoflurane measures in mice to anything measured in humans, and d) limitations in the novelty of the findings. These weaknesses are related to the primary concerns described below:

      Concerns about the primary conclusion that PVHCRH neurons integrate the anesthetic effects and post-anesthesia stress response of sevoflurane GA:

      1) After revision, their remain multiple places where it is claimed that PVHCRH neurons mediate the anesthetic effects of sevoflurane (impact statement: we explain "how sevoflurane-induced general anesthesia works..."; introduction: "the neuronal mechanisms that mediate the anesthetic effects...of sevoflurane GA remain poorly understood" and "PVHCRH neurons may act as a crucial node integrating the anesthetic effect and stress response of sevoflurane"). The manuscript simply does not support these statements. The authors show that a short duration exposure to sevoflurane inhibits PVHCRH neurons, but this is followed by hyperexcitability of these neurons for a short period after anesthesia is terminated. They show that the induction and recovery from sevoflurane anesthesia can be modulated by PVHCRH neuronal activity, most likely through changes in brain state (measured by EEG). They also show that PVHCRH neuronal activity modulates corticosterone levels and grooming behavior observed post-anesthesia (which the authors argue are two stress responses). These two things (effects during anesthesia and effects post-anesthesia) may be mechanistically unrelated to each other. None of these observations relate to the primary mechanism of action for sevoflurane. All claims relating to "anesthetic effects" should be removed. Even the term "integration" seems wrong-it implies the PVH is combining information about the anesthetic effect and post-anesthesia stress responses.

      2) It is important to compare the effects of sevoflurane with at least one other inhaled ether anesthetic as one step towards elevating the impact of this paper. Isoflurane, desflurane, and enflurane are ether anesthetics that are very similar to each other, as well as being similar to sevoflurane. For example, one study cited by the authors (Marana et al. 2013) concludes that there is weak evidence for differences in stress-related hormones between sevoflurane and desflurane, with lower levels of cortisol and ACTH observed during the desflurane intraoperative period. It is important to determine whether desflurane activates PVHCRH neurons in the post-anesthesia period, and whether this is accompanied by excess grooming in the mice, because this will distinguish whether the effects of sevoflurane generalize to other inhaled anesthestics, or, alternatively, relate to unique idiosyncratic properties of this gas that may not be a part of its anesthetic properties.

      Concerns about the clinical relevance of the experiments:

      In anesthesiology practice, perioperative stress observed in patients is more commonly related to the trauma of the surgical intervention, with inadequate levels of antinociception or unconsciousness intraoperatively and/or poor post-operative pain control. The authors seem to be suggesting that the sevoflurane itself is causing stress because their mice receive sevoflurane but no invasive procedures, but there is no evidence of sevoflurane inducing stress in human patients. It is important to know whether sevoflurane effectively produces behavioral stress in the recovery room in patients that could be related to the putative stress response (excess grooming) observed in mice. For example, in surgeries or procedures which required only a brief period of unconsciousness that could be achieved by administering sevoflurane alone (comparable to the 30 min administered to the mice), is there clinical evidence of post-operative stress? It is also important to describe a rationale for using a 30 min sevoflurane exposure. What proportion of human surgeries using sevoflurane use exposure times that are comparable to this?

      It is the experience of one of the reviewers that human patients who receive sevoflurane as the primary anesthetic do not wake up more stressed than if they had had one of the other GABAergic anesthetics. If there were signs of stress upon emergence (increased heart rate, blood pressure, thrashing movements) from general anesthesia, this would be treated immediately. The most likely cause of post-operative stress behaviors in humans is probably inadequate anti-nociception during the procedure, which translates into inadequate post-op analgesia and likely delirium. It is the case that children receiving sevoflurane do have a higher likelihood of post-operative delirium. Perhaps the authors' studies address a mechanism for delirium associated with sevoflurane, but this is barely mentioned. Delirium seems likely to be the closest clinical phenomenon to what was studied. As noted by the Besnier et al (2017) article cited by the authors, surgery can elevate postoperative glucocorticoid stress hormones, but it generally correlates with the intensity of the surgical procedure. Besnier et al also note the elevation of glucocorticoids is generally considered to be adaptive. Thus, reducing glucocorticoids during surgery with sevoflurane may hamper recovery, especially as it relates to tissue damage, which was not measured or considered here. This paper only considers glucocorticoid release as a negative factor, which causes "immunosuppression", "proteolysis", and "delays postoperative recovery and...leads to increased morbidity".

      It is also the case that there are explicit published findings showing that mild and moderate surgical procedures in children receiving sevoflurane (which might be the closest human proxy to the brief 30 minute sevoflurane exposure used here) do not have elevated cortisol (Taylor et al, J Clin Endocrinol Metab, 2013). This again raises the question of whether the enhanced grooming or elevated corticosterone observed in the mice here has any relevance to humans.

      Concerns about the novelty of the findings:

      The key finding here is that CRH neurons mediate measures of arousal, and arousal modulates sevoflurane anesthesia induction and recovery. However, CRH is associated with arousal in numerous studies. In fact, the authors' own work, published in eLife in 2021, showed that stimulating the hypothalamic CRH cells lead to arousal and their inhibition promoted hypersomnia. In both papers the authors use fos expression in CRH cells during a specific event to implicate the cells, then manipulate them and measure EEG responses. In the previous work, the cells were active during wakefulness; here- they were active in the awake state the follows anesthesia (Figure 1). Thus, the findings in the current work are incremental and not particularly impactful. Claims like "Here, a core hypothalamic ensemble, corticotropin-releasing hormone neurons in the paraventricular nucleus of the hypothalamus, is discovered" are overstated. PVHCRH cell populations were discovered in the 1980s. Suggesting that it is novel to identify that hypothalamic CRH cells regulate post-anesthesia stress is unfounded as well: this PVH population has been shown over four decades to regulate a plethora of different responses to stress. Anesthesia stress is no different. Their role in arousal is not being discovered in this paper. Even their role in grooming is not discovered in this paper.

      The activation of CRH cells in PVH has already been shown to result in grooming by Jaideep Bains (a paper cited by the authors). Thus, the involvement of these cells in this behavior is not surprising. The authors perform elaborate manipulations of CRH cells and numerous analyses of grooming and related behaviors. For example, they compare grooming and paw licking after anesthesia with those after other stressors such as forced swim, spraying mice with water, physical attack and restraint. The authors have identified a behavioral phenomenon in a rodent model that does not have a clear correlation with a behavior state observed in humans during the use of sevoflurane as part of an anesthetic regimen. The grooming behaviors are not a model of the emergence delirium or the cognitive dysfunction observed commonly in patients receiving sevoflurane for general anesthesia. Emergence delirium is commonly seen in children after sevoflurane is used as part of general anesthesia and cognitive dysfunction is commonly observed in adults-particularly the elderly-- following general anesthesia. No features of delirium or cognitive dysfunction are measured here.

      Other concerns:

      In Figure 2, cFos was measured in the PVH at different points before, during and after sevoflurane. The greatest cFos expression was seen in Post 2, the latest time point after anesthesia. However, this may simply reflect the fact that there is a delay between activity levels and expression of cFos (as noted by the authors, 2-3 hours). Thus, sacrificing mice 30 minutes after the onset of sevoflurane application would be expected to drive minimal cFos expression, and the cFos observed at 30 minutes would not accurately reflect the activity levels during the sevoflurane. Also, the authors state that the hyperactivity, as measured by cFos, lasted "approximately 1 hours before returning to baseline", but there is no data to support this return to baseline.

      In Figure 7, the number of animals appears to change from panel to panel even though they are supposed to show animals from the same groups. For example, cort was measured in only 3 saline-treated O2 animals (Fig 7E), but cFos and CRH were assessed in 4 (Fig C,D). Similarly, grooming time and time spent in open arms was measured in 6 saline-treated O2 controls (Fig 7F,H) but central distance was measured in 8 (Fig 7G). There are other group number discrepancies in this figure-- the number of data points in the plots do not match what is reported in the legend for numerous groups. Similarly, Figure 4 has a mismatch between the Ns reported in the legend and the number of points plotted per bar. For example, there were 10 animals in the hM3Di group; all are shown for the LORR and time to emergence plots, but only 8 were used for time to induction. The legends reported N=7 for the mCherry group, yet 9 are shown for the time to emergence panel. No reason for exclusions is cited. These figures (and their statistics) should be corrected.

    1. Reviewer #1 (Public Review):

      Summary & Assessment:

      The catalytic core of the eukaryotic decapping complex consists of the decapping enzyme DCP2 and its key activator DCP1. In humans, there are two paralogs of DCP1, DCP1a, and DCP1b, that are known to interact with DCP2 and recruit additional cofactors or coactivators to the decapping complex; however, the mechanisms by which DCP1 activates decapping and the specific roles of DCP1a versus DCP1b, remain poorly defined. In this manuscript, the authors used CRISPR/Cas9-generated DCP1a/b knockout cells to begin to unravel some of the differential roles of human DCP1a and DCP1b in mRNA decapping, gene regulation, and cellular metabolism. While this manuscript presents some new and interesting observations on human DCP1 (e.g. human DCP1a/b KO cells are viable and can be used to investigate DCP1 function; only the EVH1 domain, and not its disordered C-terminal region which recruits many decapping cofactors, is apparently required for efficient decapping in cells; DCP1a and b target different subsets of mRNAs for decay and may regulate different aspects of metabolism), there are several major issues that undercut some of the main conclusions of the paper, and some key claims that are incompletely or inconsistently supported by the presented data.

      Strengths & well-supported claims:

      • Through in vivo tethering assays in CRISPR/Cas9-generated DCP1a/b knockout cells, the authors show that DCP1 depletion leads to significant defects in decapping and the accumulation of capped, deadenylated mRNA decay intermediates.

      • DCP1 truncation experiments reveal that only the EVH1 domain of DCP1 is necessary to rescue decapping defects in DCP1a/b KO cells.

      • RNA and protein immunoprecipitation experiments suggest that DCP1 acts as a scaffold to help recruit multiple decapping cofactors to the decapping complex (e.g. EDC3, DDX6, PATL1 PNRC1, and PNRC2), but that none of these cofactors are essential for DCP2-mediated decapping in cells.

      • The authors investigated the differential roles of DCP1a and DCP1b in gene regulation through transcriptomic and metabolomic analysis and found that these DCP1 paralogs target different mRNA transcripts for decapping and have different roles in cellular metabolism and their apparent links to human cancers. (Although I will note that I can't comment on the experimental details and/or rigor of the transcriptomic and metabolomic analyses, as these are outside my expertise.)

      Weaknesses & incompletely supported claims:

      1) A central mechanistic claim of the paper is that "DCP1a can regulate DCP2's cellular decapping activity by enhancing DCP2's affinity to RNA, in addition to bridging the interactions of DCP2 with other decapping factors. This represents a pivotal molecular mechanism by which DCP1a exerts its regulatory control over the mRNA decapping process." Similar versions of this claim are repeated in the abstract and discussion sections. However, this appears to be entirely at odds with the observation from in vitro decapping assays with immunoprecipitated DCP2 that showed DCP1 knockout does not significantly affect the enzymatic activity of DCP2 (Figures 2B-D; I note that there may be a very small change in DCP2 activity shown in panel C, but this may be due to slightly different amounts of immunoprecipitated DCP2 used in the assay, as suggested by panel D). If DCP1 pivotally regulates decapping activity by enhancing RNA binding to DCP2, why is no difference in decapping activity observed in the absence of DCP1? Furthermore, the authors show only weak changes in relative RNA levels immunoprecipitated by DCP2 with versus without DCP1 (~2-3 fold change; consistent with the Valkov 2016 NSMB paper, which shows what looks like only modest changes in RNA binding affinity for yeast Dcp2 +/- Dcp1). Is the argument that only a 2-3 fold change in RNA binding affinity is responsible for the sizable decapping defects and significant accumulation of deadenylated intermediates observed in cells upon Dcp1 depletion? (and if so, why is this the case for in-cell data, but not the immunoprecipitated in vitro data?)

      The authors acknowledge this apparent discrepancy between the in vitro DCP2 decapping assays and in-cell decapping data, writing: "this observation could be attributed to the inherent constraints of in vitro assays, which often fall short of faithfully replicating the complexity of the cellular environment where multiple factors and cofactors are at play. To determine the underlying cause, we postulated that the observed cellular decapping defect in DCP1a/b knockout cells might be attributed to DCP1 functioning as a scaffold." This is fair. They next show that DCP1 acts as a scaffold to recruit multiple factors to DCP2 in cells (EDC3, DDX6, PatL1, and PNRC1 and 2). However, while DCP1 is shown to recruit multiple cofactors to DCP2 (consistent with other studies in the decapping field, and primarily through motifs in the Dcp1 C-terminal tail), the authors ultimately show that *none* of these cofactors are actually essential for DCP2-mediated decapping in cells (Figures 3A-F). More specifically, the authors showed that the EVH1 domain was sufficient to rescue decapping defects in DCP1a/b knockout cells, that PNRC1 and PNRC2 were the only cofactors that interact with the EVH1 domain, and finally that shRNA-mediated PNRC1 or PNCR2 knockdown has no effect on in-cell decapping (Figures 3E and F). Therefore, based on the presented data, while DCP1 certainly does act as a scaffold, it doesn't seem to be the case that the major cellular decapping defect observed in DCP1a/b knockout is due to DCP1's ability to recruit specific cofactors to DCP2.

      So as far as I can tell, the discrepancy between the in vitro (DCP1 not required) and in-cell (DCP1 required) decapping data, remains entirely unresolved. Therefore, I don't think that the conclusions that DCP1 regulates decapping by (a) changing RNA binding affinity (authors show this doesn't matter in vitro, and that the change in RNA binding affinity is very small) or (b) by bridging interactions of cofactors with DCP2 (authors show all tested cofactors are dispensable for robust in-cell decapping activity), are supported by the evidence presented in the paper (or convincingly supported by previous structural and functional studies of the decapping complex).

      2) Related to the RNA binding claims mentioned above, are the differences shown in Figure 3H statistically significant? Why are there no error bars shown for the MBP control? (I understand this was normalized to 1, but presumably, there were 3 biological replicates here that have some spread of values?). The individual data points for each replicate should be displayed for each bar so that readers can better assess the spread of data and the significance of the observed differences. I've listed these points as major because of the key mechanistic claim that DCP1 enhances RNA binding to DCP2 hinges in large part on this data.

      3) Also related to point (1) above, the kinetic analysis presented in Figure 2C shows that the large majority of transcript is mostly decapped at the first 5-minute timepoint; it may be that DCP2-mediated decapping activity is actually different in vitro with or without DCP1, but that this is being missed because the reaction is basically done in less than 5 minutes under the conditions being assayed (i.e. these are basically endpoint assays under these conditions). It may be that if kinetics were done under conditions to slow down the reaction somewhat (e.g. lower Dcp2 concentration, lower temperatures), so that more of the kinetic behavior is captured, the apparent discrepancy between in vitro and in-cell data would be much less. Indeed, previous studies have shown that in yeast, Dcp1 strongly activates the catalytic step (kcat) of decapping by ~10-fold, and reduces the KM by only ~2 fold (Floor et al, NSMB 2010). It might be beneficial to use purified proteins here (only a Western blot is used in Figure 2D to show the presence of DCP2 and/or DCP1, but do these complexes have other, and different, components immunoprecipitated along with them?), if possible, to better control reaction conditions.

      This contradiction between the in vitro and in-cell decapping data undercuts one of the main mechanistic takeaways from the first half of the paper. This needs to be addressed/resolved with further experiments to better define the role of DCP1-mediated activation, or the mechanistic conclusions significantly changed or removed.

      4) The second half of the paper compares the transcriptomic and metabolic profiles of DCP1a versus DCP1b knockouts to reveal that these target a different subset of mRNAs for degradation and have different levels of cellular metabolites. This is a great application of the DCP1a/b KO cells developed in this paper and provides new information about DCP1a vs b function in metazoans, which to my knowledge has not really been explored at all. However, the analysis of DCP1 function/expression levels in human cancer seems superficial and inconclusive: for example, the authors conclude that "...these findings indicate that DCP1a and DCP1b likely have distinct and non-redundant roles in the development and progression of cancer", but what is the evidence for this? I see that DCP1a and b levels vary in different cancer cell types, but is there any evidence that these changes are actually linked to cancer development, progression, or tumorigenesis? If not, these broader conclusions should be removed.

      5) The authors used CRISPR-Cas9 to introduce frameshift mutations that result in premature termination codons in DCP1a/b knockout cells (verified by Sanger sequencing). They then use Western blotting with DCP1a or DCP1b antibodies to confirm the absence of DCP1 in the knockout cell lines. However, the DCP1a antibody used in this study (Sigma D5444) is targeted to the C-terminal end of DCP1a. Can the authors conclusively rule out that the CRISPR/Cas-generated mutations do not result in the production of truncated DCP1a that is just unable to be detected by the C-terminally targeted antibody? While it is likely the introduced premature termination codon in the DCP1a gene results in nonsense-mediated decay of the resulting transcript, this outcome is indeed supported by the knockout results showing large defects in cellular decapping which can be rescued by the addition of the EVH1 domain, it would be better to carefully validate the success of the DCP1a knockout and conclusively show no truncated DCP1a is produced by using N-terminally targeted DCP1a antibodies (as was the case for DCP1b).

      Some additional minor comments:

      • More information would be helpful on the choice of DCP1 truncation boundaries; why was 1-254 chosen as one of the truncations?<br /> • Figure S2D is a pretty important experiment because it suggests that the observed deadenylated intermediates are in fact still capped; can a positive control be added to these experiments to show that removal of cap results in rapid terminator-mediated degradation?

    2. Reviewer #2 (Public Review):

      Summary:

      Chen et al., investigate the role of DCP1 paralogs in regulating RNA decay in human tissue culture cells. They assess the impact of the absence of DCP1a and/or DCP1b on the interaction of DCP2 with mRNA and other members of the decapping complex. In vitro RNA decay assays were performed to demonstrate that DCP1a/b plays a minor role in DCP2-mediated decapping and decay. The impacts of DCP1a and/or DCP1b knockout on the transcriptome and metabolome were determined.

      Strengths:

      Analysis of RNA abundance and metabolite differences in human tissue culture cells lacking DCP1a and/or DCP1b was performed.

      The protein-protein interactions between DCP2 and other members of the decapping machinery mediated by DCP1a and/or DCP1b were assessed.

      The functional role of DCP1a and/or DCP1b in mediating mRNA decapping/decay in human tissue culture cell extracts was determined.

      Human tissue culture cells lacking DCP1a and/or DCP1b appear to have altered metabolomes, however, the significance and meaning of these differences are not clear.

      Weaknesses:

      The direct targets of DCP1a and/or DCP1b were not determined as the analysis was restricted to RNA-seq to assess RNA abundance, which can be a result of direct or indirect regulation by DCP1a/b.

      P-bodies appear to be larger in human cells lacking DCP1a and DCP1b but a lack of image quantification prevents this conclusion from being drawn.

      The lack of details in the methodology and figure legends limit reader understanding.

    1. Reviewer #3 (Public Review):

      Summary:

      Machhua et al. in their work focused on unravelling the molecular mechanism of daptomycin binding and interaction with bacterial cell membranes. Daptomycin (Dap) is an acidic, cyclic lipopeptide composed of 13 amino acids, known for preferential binding to anionic lipids, particularly phosphatidylglycerol (PG), which are prevalent components in the membranes of Gram-positive bacteria. The process of binding and antimicrobial efficacy of Dap is significantly influenced by the ionic composition of the surrounding environment, especially the presence of Ca2+ ions. The authors underscore the presence of significant knowledge gaps in our understanding of daptomycin's mode of action. Several critical questions remain unanswered, including the basis for selective recognition and accumulation in membranes of Gram-positive strains, the specific role of Ca2+ ions in this process, and the mechanisms by which daptomycin binds to and inserts into the cell membrane.

      Dap is intrinsically fluorescent due to its kynurenine residue (Kyn-13) and this property allows direct imaging of Dap binding to model cell membranes without the need for additional labeling. Taking advantage of this Dap autofluorescence, authors monitored the emission intensity of micelles, composed of varying DMPG content upon their exposure to Dap and compared it with the kinetics of fluorescence observed for zwitterionic DMPC and other negatively charged lipids such as cardiolipin (CA), POPA and POPS. The authors noted that the linear relationship between DMPG content and Dap fluorescence is strongly lipid-specific, as it was not observed for other anionic lipids. The manuscript sheds light on the specificity of Dap's interaction with CA and DMPG lipids. Through Ca2+ sequestration with EGTA, the authors demonstrated that the binding of Dap with CA is reversible, while its interaction with DMPG results in the irreversible insertion of Dap into the lipid membrane structure, caused by the significant conformational change of this lipopeptide. The formation of a stable DMPG-Dap complex was also verified in bacterial cells isolated from Gram-positive bacteria B. subtilis, where Dap exhibited a permanent binding to PG lipids.

      Altogether, the authors endeavored to illuminate novel insights into the molecular basis of Dap binding, interaction, and the mechanism of insertion into bacterial cell membranes. Such understanding holds promise for the development of innovative strategies in combating drug resistance and the emergence of the so-called superbugs.

      Strengths:

      - The manuscript by Machhua et al. provides a comprehensive analysis of the Dap mechanism of binding and interaction with the membrane. It discusses various aspects of this, only apparently trivial interactions such as the importance of PG presence in the membrane, the impact of Ca2+ ions, and different mechanisms of Dap binding with other negatively charged lipids.

      - The authors focused not only on model membranes (micelles) but also extended their research to bacterial cell membranes obtained from B. subtilis.

      - The research is not only a report of the experimental findings but tries to give potential hypotheses explaining the molecular mechanisms behind the observed results.

      Weaknesses:

      - The authors overestimate their findings, stating that they propose a novel mechanism of Dap interaction with bacterial cell membranes. In fact, they rather extend the already reported hypotheses.

      - The literature study was not done as thoroughly as it should be. Many publications discussing the importance and mechanism of action of Ca2+ ions or conformational changes of daptomycin were not cited.

    2. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the molecular mechanism of interaction of daptomycin (DAP) with bacterial membrane phospholipids has been explored by fluorescence and CD spectroscopy, mass spectrometry, and RP-HPLC. The mechanism of binding was found to be a two-step process. A fast reversible step of binding to the surface and a slow irreversible step of membrane insertion. Fluorescence-based titrations were performed and analysed to infer that daptomycin bound simultaneously two molecules of PG with nanomolar affinity in the presence of calcium. Conformational change but not membrane insertion was observed for DAP in the presence of cardiolipin and calcium.

      Strengths:

      The strength of the study is the skillful execution of biophysical experiments, especially stopped-flow kinetics that capture the first surface binding event, and the careful delineation of the stoichiometry.

      Weaknesses:

      The weakness of the study is that it does not add substantially to the previously known information and fails to provide additional molecular details. The current study provides incremental information on DAP-PG-calcium association but fails to capture the complex in mass spectrometry. The ITC and NMR studies with G3P are inconclusive There are no structural models presented. Another aspect missing from the study is the reconciliation between PG in the monomer, micellar, and membrane forms.

    1. Reviewer #1 (Public Review):

      Summary:

      Axon growth is of course essential to the formation of neural connections. Adhesion is generally needed to anchor and rectify such motion, but whether the tenacity or forces of adhesion must be optimal for maximal axon extension is unknown. Measurements and contributing factors are generally lacking and are pursued here with a laser-induced shock wave approach near the axon growth cone. The authors claim to make measurements of the pressure required to detach axons from low to high matrix density. The results seem to support the authors' conclusions, and the work - with further support - is likely to impact the field of cell adhesion. In particular, there could be some utility of the methods for the adhesion and those interested in aspects of axon growth.

      Strengths:

      A potential ability to control the pressure simply via proximity of the laser spot is convenient and perhaps reasonable. The 0 to 1 scale for matrix density is a good and appropriate measure for comparing adhesion and other results. The attention to detachment speed, time, F-actin, and adhesion protein mutant provides key supporting evidence. Lastly, the final figure of traction force microscopy with matrix varied on a gel is reasonable and more physiological because neural tissue is soft (cite PMID: 16923388); an optimum in Fig.6 also perhaps aligns with axon length results in Fig.5.

      Weaknesses:

      The results seem incomplete and less than convincing. This is because the force calibration curve seems to be from a >10 yr old paper without any more recent checks or validating measurements. Secondly, the claimed effect of pressure on the detachment of the growth cone does not consider other effects such as cavitation or temperature, and certainly needs validation with additional methods that overcome such uncertainties. The authors need to check whether the laser perturbs the matrix, particularly local density. A relation between traction stresses of ~20-50 pN/um2 in Fig.6 and the adhesion pressure of 3-5 kPa of FIg.3 needs to be carefully explained; the former units equate to 0.02-0.05 kPa, and would perhaps suggest cells cannot detach themselves and move forward.

      The authors need to measure axon length on gels (Fig.6) as more physiological because neural tissue is soft. The studies are also limited to a rudimentary in vitro model without clear relevance to in vivo.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors measure axon outgrowth rate, laminin adhesion strength, and actin rearward flow rate. They find that the axon outgrowth rate has a biphasic dependence on adhesion strength. In interpreting the results, they suggest that the results "imply that adhesion modulation is key to the regulation of axon guidance"; however, they measure elongation rate, not guidance.

      Strengths:

      The measurements of adhesion strength by laser-induced shock waves are reasonable as is the measurement of actin flow rates by speckle microscopy.

      Weaknesses:

      They only measure the length of the axons after 3 days and have no measurements of the actual rate of growth cone movements when they are moving. They do not measure the rate of actin growth at the leading edge to know its contribution to the extension rate. This is inadequate.

      These studies are unlikely to have an impact on the field because the measurement of axon growth rate at short times is missing.

    3. Reviewer #3 (Public Review):

      Summary:

      Yamada et al. build on classic and more recent studies (Chen et al., 2023; Lemmon et al., 1992; Nichol et al., 2016; Zheng et al., 1994; Schense and Hubbell, 2000) to better understand the relationship between substrate adhesion and neurite outgrowth.

      Strengths:

      The primary strength of the manuscript lies in developing a method for investigating the role of adhesion in axon outgrowth and traction force generation using a femtosecond laser technique. The most exciting finding is that both outgrowth and traction force generation have a biphasic relationship with laminin concentration.

      Weaknesses:

      The primary weaknesses are a lack of discussion of prior studies that have directly measured the strength of growth cone adhesions to the substrate (Zheng et al., 1994) and traction forces (Koch et al., 2012), the inverse correlation between retrograde flow rate and outgrowth (Nichol et al., 2016), and prior studies noting a biphasic effect of substrate concentration of neurite outgrowth (Schense and Hubbell, 2000).

      Overall, the claims and conclusions are well justified by the data. The main exception is that the data is more relevant to how the rate of neurite outgrowth is controlled rather than axonal guidance.

      This manuscript will help foster interest in the interrelationship between neurite outgrowth, traction forces, and substrate adhesion, and the use of a novel method to study this problem.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This study provides an incremental advance to the scavenger receptor field by reporting the crystal structures of the domains of SCARF1 that bind modified LDL such as oxidized LDL and acylated LDL. The crystal packing reveals a new interface for the homodimerization of SCARF1. The authors characterize SCARF1 binding to modified LDL using flow cytometry, ELISA, and fluorescent microscopy. They identify a positively charged surface on the structure that they predict will bind the LDLs, and they support this hypothesis with a number of mutant constructs in binding experiments.

      Strengths:<br /> The authors have crystallized domains of an understudied scavenger receptor and used the structure to identify a putative binding site for modified LDL particles. An especially interesting set of experiments is the SCARF1 and SCARF2 chimeras, where they confer binding of modified LDLs to SCARF2, a related protein that does not bind modified LDLs, and use show that the key residues in SCARF1 are not conserved in SCARF2.

      Weaknesses:<br /> While the data largely support the conclusions, the figures describing the structure are cursory and do not provide enough detail to interpret the model or quality of the experimental X-ray structure data. Additionally, many of the flow cytometry experiments lack negative controls for non-specific LDL staining and controls for cell surface expression of the SCARF constructs. In several cases, the authors interpret single data points as increased or decreased affinity, but these statements need dose-response analysis to support them. These deficiencies should be readily addressable by the authors in the revision.

      The paper is a straightforward set of experiments that identify the likely binding site of modified LDL on SCARF1 but adds little in the way of explaining or predicting other binding interactions. That a positively charged surface on the protein could mediate binding to LDL particles is not particularly surprising. This paper would be of greater importance if the authors could explain the specificity of the binding of SCARF1 to the various lipoparticles that it does or does not bind. Incorporating these mutants into an assay for the biological role of SCARF1 would be powerful.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The manuscript by Wang and colleagues provided mechanistic insights into SCARF1 and its interactions with the lipoprotein ligands. The authors reported two crystal structures of the N-terminal fragments of SCARF1 ectodomain (ECD). On the basis of the structural analysis, the authors further investigated the interactions between SCARF1 and modified LDLs using cell-based assays and biochemical experiments. Together with the two structures and supporting data, this work provided new insights into the diverse mechanisms of scavenger receptors and especially the crucial role of SCARF1 in lipid metabolism.

      Strengths:<br /> The authors started by determining the crystal structures of two fragments of SCARF1 ECD. The superposition of the two high-resolution structures, together with the predicted model by AlphaFold, revealed that the ECD of SCARF1 adopts a long-curved conformation with multiple EGF-like domains arranged in tandem. Non-crystallographic and crystallographic two-fold symmetries were observed in crystals of f1 and f2 respectively, indicating the formation of SCARF1 homodimers. Structural analysis identified critical residues involved in dimerization, which were validated through mutational experiments. In addition, the authors conducted flow cytometry and confocal experiments to characterize cellular interactions of SCARF1 with lipoproteins. The results revealed the vital role of the 133-221aa region in the binding between SCARF1 and modified LDLs. Moreover, four arginine residues were identified as crucial for modified LDL recognition, highlighting the contribution of charge interactions in SCARF1-lipoprotein binding. The lipoprotein binding region is further validated by designing SCARF1/SCARF2 chimeric molecules. Interestingly, the interaction between SCARF1 and modified LDLs could be inhibited by teichoic acid, indicating potential overlap in or sharing of binding sites on SCARF1 ECD.

      The author employed a nice collection of techniques, namely crystallographic, SEC, DLS, flow cytometry, ELISA, and confocal imaging. The experiments are technically sound and the results are clearly written, with a few concerns as outlined below. Overall, this research represents an advancement in the mechanistic investigation of SCARF1 and its interaction with ligands. The role of scavenger receptors is critical in lipid homeostasis, making this work of interest.

    3. Reviewer #3 (Public Review):

      Summary:<br /> The manuscript by Wang et. al. described the crystal structures of the N-terminal fragments of Scavenger receptor class F member 1 (SCARF1) ectodomains. SCARF1 recognizes modified LDLs, including acetylated LDL and oxidized LDL, and it plays an important role in both innate and adaptive immune responses. They characterized the dimerization of SCARF1 and the interaction of SCARF1 with modified lipoproteins by mutational and biochemical studies. The authors identified the critical residues for dimerization and demonstrated that SCARF1 may function as homodimers. They further characterized the interaction between SCARF1 and LDLs and identified the lipoprotein ligand recognition sites, the highly positively charged areas. Their data suggested that the teichoic acid inhibitors may interact with SCARF1 in the same areas as LDLs.

      Strengths:<br /> The crystal structures of SCARF1 were high quality. The authors performed extensive site-specific mutagenesis studies using soluble proteins for ELISA assays and surface-expressed proteins for flow cytometry.

      Weaknesses:<br /> 1. The schematic drawing of human SCARF1 and SCARF2 in Fig 1A did not show the differences between them. It would be useful to have a sequence alignment showing the polymorphic regions.<br /> 2. The description of structure determination was confusing. The f1 crystal structure was determined by SAD with Pt derivatives. Why did they need molecular replacement with a native data set? The f2 crystal structure was solved by molecular replacement using the structure of the f1 fragment. Why did they need to use EGF-like fragments predicted by AlphaFold as search models?<br /> 3. It's interesting to observe that SCARA1 binds modified LDLs in a Ca2+-independent manner. The authors performed the binding assays between SCARF1 and modified LDLs in the presence of Ca2+ or EDTA on Page 9. However, EDTA is not an efficient Ca2+ chelator. The authors should have performed the binding assays in the presence of EGTA instead.<br /> 4. The authors claimed that SCARF1Δ353-415, the deletion of a C-terminal region of the ectodomain, might change the conformation of the molecule and generate hinderance for the C-terminal regions. Why didn't SCARF1Δ222-353 have a similar effect? Could the deletion change the interaction between SCARF1 and the membrane? Is SCARF1Δ353-415 region hydrophobic?<br /> 5. What was the point of having Figure 8? Showing the SCARF1 homodimers could form two types of dimers on the membrane surface proposed? The authors didn't have any data to support that.

    1. Reviewer #1 (Public Review):

      Summary:

      TOR complex 1 (TORC1) is a key regulator cell growth in response to nutrients, and it therefore integrates inputs from multiple nutrient-sensing regulators. However, we still do not understand how each upstream regulatory branch contributes to TORC1 activity under different nutrient conditions. The authors set out to answer this question using budding yeast (Saccharomyces cerevisiae) as a model eukaryote. Yeast TORC1 is activated by two upstream regulators: the highly conserved GTPases Gtr1/2 and the PI3P-binding protein Pib2. The cooperation of these regulators towards TORC1 activation has been unclear, with some studies suggesting that they act in parallel (i.e. redundantly), and others suggesting a more complex picture. By exploring the dependence of different TORC1 substrates on Gtr1/2 and Pib2 activity, the authors have discovered that Gtr1/2 and Pib2 do not act redundantly, but instead are part of a mechanism that drives the TORC1 pathways into three distinct activity levels: i) both Gtr1/2 and Pib2 ON in rich nutrients (leading to the highest TORC1 activity), ii) Gtr1/2 OFF and Pib2 ON in poor quality nitrogen sources (intermediate TORC1 activity), and iii) both Gtr1/2 and Pib2 OFF under starvation conditions (lowest TORC1 activity).

      Strengths:

      The relation between Gtr1/2 and Pib2 has remained a mystery for a long time, making it difficult to interpret the results of experiments in which one of the two regulators is inactive or missing. By employing a phosphoproteomics assay, the authors were able to monitor the phosphorylation of multiple TORC1 substrates in response to TORC1 inhibition (via rapamycin) and in mutants carrying deletions of Gtr1/2 or Pib2. In this way, they could identify two groups of substrates: those that require the activity of both regulators, and those that remain active when a single regulator is active. These data clearly demonstrate the non-redundancy of the Gtr1/2 and Pib2, especially since the different groups of substrates seem to correspond to groups of proteins with distinct functions.

      Weaknesses:

      - The first section of the Results contains an analysis of Gtr1/2- and Pib2-dependent signaling using Rps6 as a TORC1 reporter. I do not think that Rps6 is an appropriate readout for this type of work, as it is not a direct TORC1 substrate, and it also lies downstream of TORC2 [Yerlikaya et al. 2016]. The authors obtain several puzzling results with Rps6, and later on (pg. 8) remark that the level of Rps6 phosphorylation does not always correspond to TORC1 activity. While this is an interesting finding in its own right and will certainly be interesting for the yeast TOR community, I do not see why the Results need to open with such a confusing section, and why Rps6 features so prominently throughout the manuscript.<br /> - There is very large ambiguity regarding the types of media and strains that are used (prototrophic vs auxotrophic). The authors use SC medium which, if I understand correctly, contains ammonium and a supplement of amino acids. They then use single amino acid dropouts (e.g. SC -gln and SC -leu) to probe TORC1 activity under "partial starvation" conditions. However, the cells are anything but starved in these experiments, and I do not know how to interpret results obtained with such media. Even when amino acids are completely removed, the cells are still able to grow on ammonium. The matter gets further complicated because it appears that the authors use prototrophic strains with single nitrogen source media, but not with complete or "partial starvation" media. Since this study aims to elucidate the roles of nutrient-sensing regulators upstream of TORC1, I would expect that matters related to media composition and strain usage should be addressed more carefully and described more explicitly in the text, especially since nutritional complementation of auxotrophic strains is not always equivalent to genetic complementation [Pronk, 2002].<br /> - A recent publication (Zeng et al. 2023, doi: 10.1016/j.celrep.2023.113599) identified Ser33 and Ser3 as TORC1 substrates and examined their dependence on Pib2 activity. More importantly, the publication addressed a question that is very similar to the one addressed here (i.e. how different amino acids require Gtr1/2 or Pib2 to activate TORC1). I would recommend that the authors cite that publication and compare their findings with the results reported there.<br /> - The GO analysis of TORC1 substrates (from Fig.4) is mentioned in the text but is not shown. The authors should present the GO analysis more explicitly, e.g. in a supplementary table.<br /> - Similar to Rps6, it should be kept in mind that Par32 is not a TORC1 substrate. While I understand the rationale behind the choice of Par32 as a readout, this point needs to be emphasized more. Additionally, previous work [Brito et al. 2019, doi: 10.1016/j.isci.2019.09.025] has suggested that Npr1 and Par32 are implicated in a feedback loop with Pib2. The potential relevance of that work should be discussed more here.<br /> - Besides Sch9, Tod6 phosphorylation is also regulated by PKA [Huber et al. 2011, doi: 10.1038/emboj.2011.221]. This point should be discussed and taken into account in the interpretation of the Tod6 results. I also find it puzzling that Tod6 persists one hour after rapamycin treatment, because the protein seems to be unstable and gets quickly degraded when TORC1 activity is lost [Kusama 2022, doi: 10.1016/j.isci.2022.103986].<br /> - Given the points raised above, I remain skeptical about the three-state model proposed by the authors. On a conceptual level, the intermediate activity state of TORC1 proposed here seems to depend absolutely on Pib2 (since Gtr1/2 appear to be off in that state). The authors make a similar point in the Discussion, where they claim that yeast growth on poor nitrogen sources can be halted by deletion of Pib2. However, they do not test this conjecture experimentally.<br /> - Fig. 6F compares the growth of different strains on different media, but the doubling times are not quantified.<br /> - The Introduction describes regulatory pathways of mTORC1, several of which do not exist in budding yeast. The transition from the second to third paragraph is very abrupt and confusing.

    2. Reviewer #2 (Public Review):

      This work examines the roles of Gtr1/Gtr2 and Pib2 in activation of TORC1 in S cerevisiae and proposes they are non-redundant in activating TORC1. Previous work from many groups has suggested that the Gtr complex and Pib2 activate TORC1 in a parallel manner. One contribution of this study is the suggestion that using the standard readout(s) of TORC1 activation are not sufficient to assess the separate roles of these two components in the complex network of amino acid and starvation response signaling. The overall conclusion of the work, based on phosphoproteome analyses of deletion strains and comparison to rapamycin treatment, with some supporting experimentation, is that Pib2 signaling sustains the starvation response in poor amino acid/nitrogen sources, whereas the additional activation of the Gtr complex is required for the full spectrum of TORC1 effects on growth.

      At first, the authors recapitulate and extend studies on TORC1 inactivation using the Rps6 reporter. Here, Pib2 could inactivate TORC1 on glutamine starvation only if the Gtr complex is partially compromised. The authors speculated that Gtr and Pib2 do lead to different responses, but these cannot be detected by monitoring the phospho state of Rps6.

      The authors determined the phosphoproteome in wild type cells and a variety of knockout strains, in rich media and in the presence of rapamycin. The authors identified 175 phosphosites that are downregulated on rapamycin treatment, at least under these conditions. Many were dependent on both Pib2 and the Gtr complex but, of particular interest for this work , were the phosphosites on Ser33, that were dependent on the presence of Pib2 but not the Gtr complex. The authors noted that phosphosites not dependent on Pib2 or Gtr1/2 included Sch9 and other common readouts of TORC1 activation.

      Focusing on Ser33, the authors next show that rapamycin, amino acid and nitrogen starvation result in loss of Ser33 phosphorylation. Further analysis showed that the Ser33 phosphorylation status depends on the quality of the amino acid and nitrogen source.

      Then the authors use this to develop a model where TORC1 has three states depending on whether either Gtr1/2, or Pib2, or both are active in signaling to TORC1, depending on the nutrient state and quality of amino acids/nitrogen available. The new state is state III, where TORC1 is active to promote growth and the starvation response remains active, via the Npr1/Par32 branch. The remainder of the work involves developing tools to assess the growth (Sch9) and starvation (Par32) branches under various amino acid/nutrient states. While moving from media with an excess of all amino acids to glutamine or leucine led to only transient occupation of state III, the new state was already occupied when the cells were in a poor amino acid/nitrogen source and moved to a better one. In other words, the Pib2 signalling permitted aspects of a starvation response to be maintained in the background of a Sch9 growth signal.

      Finally, the authors address a puzzle: Sch9 phosphorylation does not have the dynamic range to account for the difference in growth rates of yeast cells in SC or proline medium. Tod6 was dephosphorylated in the absence of Gtr1/Gtr2 or Pib2 in the phosphoproteomics and is the likely connection, as it moves to the nucleus on growth on proline media (or on rapamycin), where it may control the chromatin accessibility of ribosome growth and biogenesis genes.

      Overall, the core of this work, the phosphoproteome analyses, convincingly demonstrates that activation of TORC1 relies on a nuanced interplay of signaling pathways and that to fully appreciate and dissect the consequences of the Gtr- and Pib2-responsive signaling pathways a more comprehensive range of readouts is required. The work elegantly shows a scenario where Pib2-based signaling is active, required to sustain some growth even when the amino acid/nitrogen mix is poor.

      There are some areas, however, where the work could be strengthened. The model proposed in this work is based on nuanced signaling responses to various states of nitrogen/amino acid starvation. However, the phosphoproteome was determined in a synthetic rich background, supplemented with rapamycin where relevant, and comparing the phosphoproteome of pib2 del and gtr1 del/gtr2 del to this. The phosphoproteome is by far the strongest data in this work suggesting multi-level regulation so an appropriately matched phosphoproteome condition screen would likely significantly substantiate the model: the conditions used might miss all the nuanced signaling responses the authors develop throughout the paper. Not unrelated, the authors show that Pib2 can transmit glutamine starvation signals to TORC1 in the presence of a partial Gtr1/2 complex (gtr1 del or gtr2 del) but not a complete deletion of the complex (Fig. 2). Similar to the above comment, the phosphoproteome was determined only with full loss of the gtr complex, and then only in a rich background, which may miss this entire branch of Pib2 signaling. Perhaps in support of this, Pib2Ser113 phosphorylation apparently decreased significantly on rapamycin treatment but not on loss of the Gtr complex (TableS1), whereas other Pib2 phospho sites were not similarly affected by rapamycin treatment. Adding to the notion of complexity, the other sites may themselves be subject to other signaling pathways that could regulate Pib2 - and these may change on nutrient starvation.

      The data showing the enrichment of Pib2 with Ser33 is weak (Fig. 5G, mostly because of the significant precipitation of Ser33 in the absence of Pib2), particularly without the contribution of the immunopurifications of Fig5S1. Assessing the binding of Ser3 may be a better candidate?

    3. Reviewer #3 (Public Review):

      Summary:<br /> This work addresses an important question of how Gtr1/2 small GTPases and Pib2, two major regulators of the TORC1 cell growth controller, differentially operate in yeast. They found not all the TORC1 downstream targets respond to Gtr1/2 and Pib2 equally. In fact, they demonstrate that TORC1-dependent phosphorylation of Ser33, a 3-phosphoglycerate dehydrogenase, is responsive to only Pib2. They attributed this specificity to the physical interaction between Ser33 and Pib2. This part is novel and important, revising the canonical view in the field that Gtr1/2 and Pib2 branches act towards the same TORC1 downstream targets. Of note, this claim largely agrees with a recent independent study (PMID: 38127619).

      Moving on, the authors describe different behaviors of TORC1 downstream readouts in intermediate nutrient conditions with a poor nitrogen source, with some readouts still active while others inactive. They argue that selective activation of certain TORC1 downstream targets reflects the "Gtr1/2 off, Pib2 on" state. However, this claim is not sufficiently supported by the presented data.

      Strengths:<br /> The data presented in this paper has high value to the TOR community. In particular, a rigorous and comprehensive phospho-proteomic dataset that compares the Gtr1/2- and Pib2-dependency of diverse TORC1 downstream targets is very informative, potentially stimulating follow-up studies on each target.

      Identification of Ser33 as a Pib2-specific TORC1 downstream is important and convincing (although whether Ser33 is a direct substrate of TORC1 was not addressed in this work). Physical interaction between Ser33 and Pib2 could represent a novel layer of TORC1 signaling regulation, in line with the mammalian Rag-TFEB interaction model, as discussed by the authors.

      Weaknesses:<br /> The authors' three-state model, particularly the claim that cells are in the "Gtr1/2 off, Pib2 on" state in a poor nitrogen condition (e.g., proline medium), is not convincing enough because of the following reasons.

      1) The "Pib2 on" claim contradicts with the observation that Ser33, Pib2-specific readout, is hypo-phosphorylated in proline medium (Fig 5F).

      2) In the genetic experiments (Figure 8), the authors compare pib2D with Gtr1/2OFF. This is not appropriate, because GTR1/2OFF (GTR1-GDP and Gtr2-GTP) actively inhibits TORC1, differing from the null nature of pib2D. pib2D should be compared with gtr1/2D instead.

      3) In general, diverse behaviors of TORC1 targets are not unexpected because their phosphorylation levels should have different dynamic ranges depending on how "good" they are as TORC1 substrates, with some requiring a higher TORC1 activity than others to be detectably phosphorylated. Although this aspect can be physiologically meaningful, and it is indeed important to look at multiple substrates as the authors suggest, this approach does not inform whether the signal is coming from Gtr1/2 or Pib2. An informative way in this context would be to look at the Gtr1/2- or Pib2-specific targets, but the former has not been identified, and observations on the latter, Ser33, do not support the "Pib2 on" claim as mentioned in the above 1).

      4) In addition, comparisons made between direct TORC1 substrates (e.g., Sch9) and indirect downstream targets (e.g., Rps6 and Par32) are not very informative, because indirect targets can be impacted by TORC1-independent regulation of the mediating factors (e.g., Ypk3 for Rps6 and Npr1 for Par32).

      In summary, the presented data do not tell us which of the two branches (Gtr1/2 or Pib2) is "more active" in the poor nitrogen condition. Their observations do not necessarily prefer their 3-state on/off model (Figure 8) over the more natural assumption that both branches have the gradation of activity depending on the nutrient status.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this study, the authors engineer the endogenous left boundary of the Drosophila eve TAD, replacing the endogenous Nhomie boundary by either a neutral DNA, a wildtype Nhomie boundary, an inverted Nhomie boundary, or a second copy of the Homie boundary. They perform Micro-C on young embryos and conclude that endogenous Nhomie and Homie boundaries flanking eve pair with head-to-tail directionality to form a chromosomal stem loop. Abrogating the Nhomie boundary leads to ectopic activation of genes in the former neighboring TAD by eve embryonic stripe enhancers. Replacing Nhomie by an inverted version or by Homie (which pairs with itself head-to-head) transformed the stem loop into a circle loop. An important finding was that stem and circle loops differentially impact endogenous gene regulation both within the eve TAD and in the TADs bracketing eve. Intriguingly, an eve TAD with a circle loop configuration leads to ectopic activation of flanking genes by eve enhancers - indicating compromised regulatory boundary activity despite the presence of an eve TAD with intact left and right boundaries.

      Strengths:<br /> Overall, the results obtained are of high-quality and are meticulously discussed. This work advances our fundamental understanding of how 3D genome topologies affect enhancer-promoter communication.

      Weaknesses:<br /> Though convincingly demonstrated at eve, the generalizability of TAD formation by directional boundary pairing remains unclear, though the authors propose this mechanism could underly the formation of all TADs in Drosophila and possibly even in mammals. Strong and ample evidence has been obtained to date that cohesin-mediated chromosomal loop extrusion explains the formation of a large fraction of TADs in mammals. Moreover, given the unique specificity with which Nhomie and Homie are known to pair (and exhibit "homing" activity), it is conceivable that formation of the eve TAD by boundary pairing represents a phenomenon observed at exceptional loci rather than a universal rule of TAD formation. Indeed, characteristic Micro-C features of the eve TAD are only observed at a restricted number of loci in the fly genome, and many TADs lack focal 3D interactions between their boundaries.

    2. Reviewer #2 (Public Review):

      "Chromatin Structure II: Stem-loops and circle-loops" by Ke*, Fujioka*, Schedl, and Jaynes reports a set of experiments and subsequent analyses focusing on the role of Drosophila boundary elements in shaping 3D genome structure and regulating gene expression. The authors primarily focus on the region of the fly genome containing the even skipped (eve) gene; eve is expressed in a canonical spatial pattern in fly embryos and its locus is flanked by the well-characterized neighbor of homie (nhomie) and homie boundary elements. The main focus of investigation is the orientation dependence of these boundary elements, which had been observed previously using reporter assays. In this study, the authors use Crispr/Cas9 editing followed by recombination-mediated cassette exchange to create a series of recombinant fly lines in which the nhomie boundary element is either replaced with exongenous sequence from phage 𝝀, an inversion of nhomie, or a copy of homie that has the same orientation as the endogenous homie sequence. The nhomie sequence is also regenerated in its native orientation to control for effects introduced by the transgenesis process.

      The authors then perform high-resolution Micro-C to analyze 3D structure and couple this with fluorescent and colorimetric RNA in situ hybridization experiments to measure the expression of eve and nearby genes during different stages of fly development. The major findings of these experiments are that total loss of boundary sequence (replacement with 𝝀 DNA) results in major 3D structure changes and the most prominent observed gene changes, while inversion of the nhomie boundary or replacement with homie resulted in more modest effects in terms of 3D structure and gene expression changes and a distinct pattern of gene expression change from the 𝝀 DNA replacement. As the samples in which the nhomie boundary is inverted or replaced with homie have similar Micro-C profiles at the eve locus and show similar patterns of a spurious gene activation relative to the control, the observed effects appear to be driven by the relative orientation of the nhomie and homie boundary elements to one another.

      Collectively, the findings reported in the manuscript are of broad interest to the 3D genome field. Although extensive work has gone into characterizing the patterns of 3D genome organization in a whole host of species, the underlying mechanisms that structure genomes and their functional consequences are still poorly understood. The perhaps best understood system, mechanistically, is the coordinated action of CTCF with the cohesin complex, which in vertebrates appears to shape 3D contact maps through a loop extrusion-pausing mechanism that relies on orientation-dependent sequence elements found at the boundaries of interacting chromatin loops. Despite having a CTCF paralog and cohesin, the Drosophila genome does not appear to be structure by loop extrusion-pausing. The identification of orientation-dependent elements with pronounced structural effects on genome folding thus may shed light on alternative mechanisms used to regulated genome structure, which in turn may yield insights into the significance of particular folding patterns.

      On the whole, this study is comprehensive and represents a useful contribution to the 3D genome field. The transgenic lines and Micro-C datasets generated in the course of the work will be valuable resources for the research community. Moreover, the manuscript, while dense in places, is generally clearly written and comprehensive in its description of the work. However, I have a number of comments and critiques of the manuscript, mainly centering on the framing of the experiments and presentation of the Micro-C results and on manner in which the data are analyzed and reported. They are as follows:

      Major Points:

      1. The authors motivate much of the introduction and results with hypothetical "stem loop" and "circle loop" models of chromosome confirmation, which they argue are reflected in the Micro-C data and help to explain the observed ISH patterns. While such structures may possibly form, the support for these specific models vs. the many alternatives is not in any way justified. For instance, no consideration is given to important biophysical properties such as persistence length, packing/scaling, and conformational entropy. As the biophysical properties of chromatin are a very trafficked topic both in terms of experimentation and computational modeling and generally considered in the analysis of chromosome conformation data, the study would be strengthened by acknowledgement of this body of work and more direct integration of its findings.

      2. Similar to Point 1, while there is a fair amount of discussion of how the observed results are or are not consistent with loop extrusion, there is no discussion of the biophysical forces that are thought to underly compartmentalization such as block-polymer co-segregation and their potential influence. I found this absence surprising, as it is generally accepted that A/B compartmentalization essentially can explain the contact maps observed in Drosophila and other non-vertebrate eukaryotes (Rowley, ..., Corces 2017; PMID 28826674). The manuscript would be strengthened by consideration of this phenomenon.

      3. The contact maps presented in the study represent many cells and distinct cell types. It is clear from single-cell Hi-C and multiplexed FISH experiments that chromosome conformation is highly variable even within populations of the same cell, let alone between cell types, with structures such as TADs being entirely absent at the single cell level and only appearing upon pseudobulking. It is difficult to square these observations with the models of relatively static structures depicted here. The authors should provide commentary on this point.

      4. The analysis of the Micro-C data appears to be largely qualitative. Key information about the number of reads sequenced, reaps mapped, and data quality are not presented. No quantitative framework for identifying features such as the "plumes" is described. The study and its findings would be strengthened by a more rigorous analysis of these rich datasets, including the use of systematic thresholds for calling patterns of organization in the data.

      5. Related to Point 4, the lack of quantitative details about the Micro-C data make it difficult to evaluate if the changes observed are due to biological or technical factors. It is essential that the authors provide quantitative means of controlling for factors like sampling depth, normalization, and data quality between the samples.

      6. The ISH effects reported are modest, especially in the case of the HCR. The details provided for how the imaging data were acquired and analyzed are minimal, which makes evaluating them challenging. It would strengthen the study to provide much more detail about the acquisition and analysis and to include depiction of intermediates in the analysis process, e.g. the showing segmentation of stripes.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The authors addressed how long-range interactions between boundary elements are established and influence their function in enhancer specificity. Briefly, the authors placed two different reporters separated by a boundary element. They inserted this construct ectopically ~140 kb away from an endogenous locus that contains the same boundary element. The authors used expression patterns driven by nearby enhancers as an output to determine which enhancers the reporters interact with. They complemented this analysis with 3D DNA contact mapping. The authors found that the orientation of the boundary element determined which enhancers each reporter interacted with. They proposed that the 3D interaction topology, whether being circular or stem configuration, distinguished whether the interaction was cohesin mediated or through an independent mechanism termed pairing.

      Strengths:<br /> The transgene expression assays are built upon prior knowledge of the enhancer activities. The 3D DNA contacts confirm that transgene expression correlates with the contacts. Using 4 different orientations covers all combinations of the reporter genes and the boundary placement.

      Weaknesses:<br /> The interpretation of the data as a refusal of loop extrusion playing a role in TAD formation is not warranted, as the authors did not deplete the loop extruders to show that what they measure is independent. As the authors show, the single long DNA loop mediated by cohesin loop extrusion connecting the ectopic and endogenous boundary is clearly inconsistent with the results, therefore the main conclusion of the paper that the 3D topology of the boundary elements a consequence of pairing is strong. However, the loop extrusion and pairing are not mutually exclusive models for the formation of TADs. Loop-extruding cohesin complexes need not make a 140 kb loop, multiple smaller loops could bring together the two boundary elements, which are then held together by pairing proteins that can make circular topologies.

    2. Reviewer #2 (Public Review):

      In Bing et al, the authors analyze micro-C data from NC14 fly embryos, focusing on the eve locus, to assess different models of chromatin looping. They conclude that fly TADs are less consistent with conventional cohesin-based loop extrusion models and instead rely more heavily on boundary-boundary pairings in an orientation-dependent manner.

      Overall, I found the manuscript to be interesting and thought-provoking. However, this paper reads much more like a perspective than a research article. I strongly suggest the authors spend some time editing their introduction to the most salient points as well as organizing their results section in a more conventional way with conclusion-based titles. It was very difficult to follow the authors' logic throughout the manuscript as written. It was also not clear as written which experiments were performed as part of this study and which were reanalyzed but published elsewhere. This should be made clearer throughout.

      It has been shown several times that Drosophila Hi-C maps do not contain all of the features (frequent corner peaks, stripes, etc.) observed when compared to mammalian cells. Considering these features are thought to be products of extrusion events, it is not an entirely new concept that Drosophila domains form via mechanisms other than extrusion. That being said, the authors' analyses do not distinguish between the formation and the maintenance of domains. It is not clear to this reviewer why a single mechanism should explain the formation of the complex structures observed in static Hi-C heatmaps from a population of cells at a single developmental time point. For example, how can the authors rule out that extrusion initially provides the necessary proximity and possibly the cis preference of contacts required for boundary-boundary pairing whereas the latter may more reflect the structures observed at maintenance? Future work aimed at analyzing micro-C data in cohesin-depleted cells might shed additional light on this.

      Additional mechanisms at play include compartment-level interactions driven by chromatin states. Indeed, in mammalian cells, these interactions often manifest as a "plume" on Hi-C maps similar to what the authors attribute to boundary interactions in this manuscript. How do the chromatin states in the neighboring domains of the eve locus impact the model if at all?

      How does intrachromosomal homolog pairing impact the models proposed in this manuscript (Abed et al. 2019; Erceg et al., 2019). Several papers recently have shown that somatic homolog pairing is not uniform and shows significant variation across the genome with evidence for both tight pairing regions and loose pairing regions. Might loose pairing interactions have the capacity to alter the cis configuration of the eve locus?<br /> In summary, the transgenic experiments are extensive and elegant and fully support the authors' models. However, in my opinion, they do not completely rule out additional models at play, including extrusion-based mechanisms. Indeed, my major issue is the limited conceptual advance in this manuscript. The authors essentially repeat many of their previous work and analyses. The authors make no attempt to dissect the mechanism of this process by modifying extrusion components directly. Some discussion of Rollins et al., 1999 on the discovery of Nipped-B and its role in enhancer-promoter communication should also be made to reconcile their conclusions in the proposed absence of extrusion events.

    3. Reviewer #3 (Public Review):

      Bing et al. attempt to address fundamental mechanisms of TAD formation in Drosophila by analyzing gene expression and 3D conformation within the vicinity of the eve TAD after insertion of a transgene harboring a Homie insulator sequence 142 kb away in different orientations. These transgenes along with spatial gene expression analysis were previously published in Fujioka et al. 2016, and the underlying interpretations regarding resulting DNA configuration in this genomic region were also previously published. This manuscript repeats the expression analysis using smFISH probes in order to achieve more quantitative analysis, but the main results are the same as previously published. The only new data are the Micro-C and an additional modeling/analysis of what they refer to as the 'Z3' orientation of the transgenes. The rest of the manuscript merely synthesizes further interpretation with the goal of addressing whether loop extrusion may be occurring or if boundary:boundary pairing without loop extrusion is responsible for TAD formation. The authors conclude that their results are more consistent with boundary:boundary pairing and not loop extrusion; however, most of this imaging data seems to support both loop extrusion and the boundary:boundary models. This manuscript lacks support, especially new data, for its conclusions. Furthermore, there are many parts of the manuscript that are difficult to follow. There are some minor errors in the labelling of the figures that if fixed would help elevate understanding. Lastly, there are several major points that if elaborated on, would potentially be helpful for the clarity of the manuscript.

      Major Points:<br /> 1. The authors suggest and attempt to visualize in the supplemental figures, that loop extrusion mechanisms would appear during crosslinking and show as vertical stripes in the micro-C data. In order to see stripes, a majority of the nuclei would need to undergo loop extrusion at the same rate, starting from exactly the same spots, and the loops would also have to be released and restarted at the same rate. If these patterns truly result from loop extrusion, the authors should provide experimental evidence from another organism undergoing loop extrusion.<br /> 2. On lines 311-314, the authors discuss that stem-loops generated by cohesin extrusion would possibly be expected to have more next-next-door neighbor contacts than next-door neighbor contacts and site their models in Figure 1. Based on the boundary:boundary pairing models in the same figure would the stem-loops created by head-to-tail pairing also have the same phenotype? Making possible enrichment of next-next-door neighbor contacts possible in both situations? The concepts in the text are not clear, and the diagrams are not well-labeled relative to the two models.<br /> 3. The authors appear to cite Chen et al., 2018 as a reference for the location of these transgenes being 700nM away in a majority of the nuclei. However, the exact transgenes in this manuscript do not appear to have been measured for distance. The authors could do this experiment and include expression measurements.<br /> 4. The authors discuss the possible importance of CTCF orientation in forming the roadblock to cohesin extrusion and discuss that Homie orientation in the transgene may impact Homie function as an effective roadblock. However, the Homie region inserted in the transgene does not contain the CTCF motif. Can the authors elaborate on why they feel the orientation of Homie is important in its ability to function as a roadblock if the CTCF motif is not present? Trans-acting factors responsible for Homie function have not been identified and this point is not discussed in the manuscript.<br /> 5. The imaging results seem to be consistent with both boundary:boundary interaction and loop extrusion stem looping.<br /> 6. The authors suggest that the eveMa TAD could only be formed by extrusion after the breakthrough of Nhomie and several other roadblocks. Additionally, the overall long-range interactions with Nhomie appear to be less than the interactions with endogenous Homie (Figures 7, 8, and supplemental 5). Is it possible that in some cases boundary:boundary pairing is occurring between only the transgenic Homie and endogenous Homie and not including Nhomie?<br /> 7. In Figure 4E, the GFP hebe expression shown in the LhomieG Z5 transgenic embryo does not appear in the same locations as the LlambdaG Z5 control. Is this actually hebe expression or just a background signal?<br /> 8. Figure 6- The LhomieG Z3 late-stage embryo appears to be showing the ventral orientation of the embryo rather than the lateral side of the embryo as was shown in the previous figure. Is this for a reason? Additionally, there are no statistics shown for the Z3 transgenic images. Were these images analyzed in the same way as the Z5 line images?<br /> 9. Do the Micro-C data align with the developmental time points used in the smFISH probe assays?

    1. Reviewer #1 (Public Review):

      Summary: This work is an extension of their earlier work published in Sci Adv in 2021, wherein they showed that DTD2 deacylates N-ethyl-D-aminoacyl-tRNAs arising from acetaldehyde toxicity. The authors (Kumar et al.) in this study, investigate the role of archaeal/plant DTD2 in the deacylation/detoxification of D-Tyr-tRNATyr modified by multiple other aldehydes and methylglyoxal (produced by plants). Importantly, the authors take their biochemical observations to plants, to show that deletion of DTD2 gene from a model plant (Arabidopsis thaliana) makes them sensitive to the aldehyde supplementation in the media especially in the presence of D-Tyr. These conclusions are further supported by the observation that the model plant shows increased tolerance to the aldehyde stress when DTD2 is overproduced from the CaMV 35S promoter. The authors propose a model for the role of DTD2 in the evolution of land plants. Finally, the authors suggest that the transgenic crops carrying DTD2 may offer a strategy for stress-tolerant crop development. Overall, the authors present a convincing story, and the data are supportive of the central theme of the story.

      Strengths: Data are novel and they provide a new perspective on the role of DTD2, and propose possible use of the DTD2 lines in crop improvement.

      Weaknesses: (a) Data obtained from a single aminoacyl-tRNA (D-Tyr-tRNATyr) have been generalized to imply that what is relevant to this model substrate is true for all other D-aa-tRNAs (term modified aa-tRNAs has been used synonymously with the modified Tyr-tRNATyr). This is not a risk-free extrapolation. For example, the authors see that DTD2 removes modified D-Tyr from tRNATyr in a chain-length dependent manner of the modifier. Why do the authors believe that the length of the amino acid side chain will not matter in the activity of DTD2? (b) While the use of EFTu supports that the ternary complex formation by the elongation factor can resist modifications of L-Tyr-tRNATyr by the aldehydes or other agents, in the context of the present work on the role of DTD2 in plants, one would want to see the data using eEF1alpha. This is particularly relevant because there are likely to be differences in the way EFTu and eEF1alpha may protect aminoacyl-tRNAs (for example see description in the latter half of the article by Wolfson and Knight 2005, FEBS Letters 579, 3467-3472).

      Note added after revision: The authors have addressed all my concerns by doing additional experiments and by providing convincing arguments. I am happy to conclude that all my concerns on the weaknesses of the work have been nicely addressed. The already convincing story is now stronger.

    2. Reviewer #2 (Public Review):

      In bacteria and mammals, metabolically generated aldehydes become toxic at high concentrations because they irreversibly modify the free amino group of various essential biological macromolecules. However, these aldehydes can be present in extremely high amounts in archaea and plants without causing major toxic side effects. This fact suggests that archaea and plants have evolved specialized mechanisms to prevent the harmful effects of aldehyde accumulation.

      In this manuscript, the authors show that the plant enzyme DTD2, originating from archaea, functions as a D-aminoacyl-tRNA deacylase. This enzyme effectively removes stable D-aminoacyl adducts from tRNAs, enabling these molecules to be recycled for translation. Furthermore, they demonstrate that DTD2 serves as a broad detoxifier for various aldehydes in vivo, extending its function beyond acetaldehyde, as previously believed. Finally, the authors suggest a potential application of their findings by showing that the absence of DTD2 renders plants more susceptible to reactive aldehydes, while its overexpression provides protection against them.

      Overall, this study provides a molecular explanation for the remarkable efficiency of plants in handling reactive aldehydes. However, direct evidence that translation is impaired in plants lacking DTD2 experience is currently lacking. Furthermore, because root morphology of DTD2-overexpressing plants appears to differ from that of WT, a thorough phenotypic analysis of DTD2-overexpressing plants will be essential to accurately assess the potential translational application of this enzyme for engineering stress-tolerant plants.

    1. Reviewer #1 (Public Review):

      1. I suggest that the author's choose a different term in their title, abstract and manuscript to describe the phenotypes associated with ufd-1 and npl-4 knockdown other than an "inflammation-like response." Inflammation is a pathological term with four cardinal signs: redness (rubor), swelling (tumor), warmth (calor) and pain (dolor). These are not symptoms know to occur in C. elegans. The authors could consider using "tolerance" instead, as this term may better describe their findings.

      2. It would help the reader to better understand the novelty of the findings in this study if the authors include a paragraph in their introduction to put their results in context of the published literature that has examined the relationship between immune activation and nematode health and survival. In particular, I suggest that the authors discuss doi:10.7554/eLife.74206 (2022), a study that charcterized a similar observation to what the authors are reporting. This study found that low cholesterol reduces pathogen tolerance and host survival during pathogen infection. Cholesterol scarcity increases p38 PMK-1 phosphorylation, priming immune effector induction in a manner that reduces pathogen accumulation in the intestine during a subsequent infection. I also suggest that the authors highlight in this introductory paragraph that the toxic effects of inappropriate immune activation in C. elegans has been widely catalogued. For example: doi.org/10.1371/journal.ppat.1011120 (2023); doi:10.1186/s12915-016-0320-z (2016).; doi:10.1126/science.1203411 (2011); doi:10.1534/g3.115.025650 (2016).

      In this context, the authors could consider re-wording their novelty claim in the abstract and introduction to take into account this previous body of work.

      3. The authors rely on the use of RNAi of ufd-1 and npl-4 to study their effect on P. aeruginosa colonization and pathogen resistance throughout the manuscript. To address the possibility of off-target effects of the RNAi, the authors should consider both (i) showing with qRT-PCR that these genes are indeed targeted during RNAi, and (ii) confirming their phenotypes with an orthologous technique, preferably by studying ufd-1 and npl-4 loss-of-function mutants [both in the wild-type and sek-1(km4) backgrounds]. If mutation of these genes is lethal, the authors could use Auxin Inducible Degron (AID) technology to induce the degradation of these proteins in post-developmental animals.

      4. I am confused about the authors explanation regarding their observation that inhibition of the UFD-1/ NPL-4 complex extends the lifespan of sek-1(km25) animals, but not pmk-1(km25) animals, as SEK-1 is the MAPKK that functions immediately upstream of the p38 MAPK PMK-1 to promote pathogen resistance.

      I am also confused why their RNA-seq experiment revealed a signature of intracellular pathogen response genes and not PMK-1 targets, which the authors propose is accounting for toxic immune activation. Activation of which immune response leads to toxicity?

      5. The authors did not test alternative explanations for why UFD-1/ NPL-4 complex inhibition compromises survival during pathogen infection, other than exuberant immune activation. For example, it is possible that inhibition of this proteosome complex shortens lifespan by compromising the general health/ normal physiology of nematodes. Immune responses could be activated as a secondary consequence of this stress, and not be a direct cause of early morality. Does sek-1(km4) mutant suppress the lifespan shortened lifespan of ufd-1 and npl-4 knockdown? This experiment should also be done with loss-of-function mutants, as noted in point 3.

      6. The conclusion of Figure 6 hinges on an experiments that uses double RNAi to knockdown two genes at the same time (Fig. 6D and 6G), an approach that is inherently fraught in C. elegans biology owing the likelihood that the efficiency of RNAi-mediated gene knockdown is compromised and may account for the observed phenotypes. The proper control for double RNAi is not empty vector + ufd-1(RNAi), but rather gfp(RNAi) + ufd-1(RNAi), as the introduction of a second hairpin RNA is what may compromise knockdown efficiency. In this context, it is important to confirm that knockdown of both genes occurs as expected (with qRT-PCR) and to confirm this phenotype using available elt-2 loss-of-function mutants.

      7. A supplementary table with the source data for at least three replications (mean lifespan, n, statistical comparison) for each pathogenesis assay should be included in this manuscript.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The authors aimed to uncover what role, if any, the UFD1/NPL4 complex might play in the innate immune responses of the nematode C. elegans. The authors find that loss of the complex renders animals more sensitive to both pathogenic and non-pathogenic bacteria. However, there appears to be a complex interplay with known innate immune pathways since the loss of UFD1/NPL4 actually results in increased survival of animals lacking the canonical innate immune pathways.

      Strengths:<br /> The authors perform robust genetic analysis to exclude and include possible mechanisms by which the UFD1/NPL4 pathway acts in the innate immune response.

      Weaknesses:<br /> The argument that the loss of the UFD1/NPL4 complex triggers a response that mimics that of an intracellular pathogen has not been thoroughly investigated. Additionally, the finding of a role of the GATA transcription factor, ELT-2, in this response is suggestive, but experiments showing sufficiency in the context of loss of the UFD1/NPL4 complex need to be explored.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The authors identify a mechanical model of activation of Abelson kinase involving the modification of stability of an alpha helix by mutations and different classes of inhibitors. They use NMR chemical shifts of mutant sequences of the alpha helix in a model of Abelson kinase including the regulatory and kinase domains.

      Strengths:<br /> The mechanism of inhibition of this important drug target is highly complex involving multiple domains' interactions, While crystal structures can establish end states well, the details of more dynamic interactions among the components can be assessed by NMR studies, The authors previously established {Sonti, 2018, PMID29319304} that different inhibitors and assembled states result from changes of stabilisation of the assembly involving the kinase and the SH3 domain. This is extended here to illuminate the role of the kinase C terminal alpha helic I' to the domains' interface, expanding the previous identification of this area of the protein as key to agonist/antagonist action at the allosteric myristlylation binding site.

    2. Reviewer #2 (Public Review):

      In this paper, Paladini and colleagues investigate the concerted motions within the Abl kinase that control its conformational transition between the active (disassembled) and inactive (assembled state). This work follows their previously published findings that binding of the type II inhibitor, imatinib to the active site of Abl, leads to kinase core disassembly via the force imposed by the P-loop and other regions of the N-lobe on the SH3 domain. Interestingly, imatinib-induced disassembly is prevented when an allosteric inhibitor, asciminib, binds to the myristate-binding pocket. Key to asciminib and myristate binding are motions of helix I, located in the C-lobe, and thus, helix I is hypothesized to be the sensor of the imatinib-induced changes. Specifically, bending of helix I upon engagement of myristate or asciminib was postulated to be important for re-assembly of the autoinhibited Abl core, and thus, reducing the "force" with which kinase N-lobe pushes against the SH2 domain upon binding imatinib.

      The authors use NMR to measure conformational transitions in the several 15N-labeled Abl kinase constructs that display different degrees of helix I truncations. This analysis is slightly limited by the instability of the constructs that carry truncations beyond the helix I "bend". Nevertheless, it is sufficient to establish that truncation of helix I that removes its fragment, which is in contact with myristate or asciminib ligands, results in loss of the ability of helix I to impose "force" on the SH2 domain that results in kinase core disassembly, even in the presence of imatinib binding. In the absence of this force, the allosteric coupling between the helix I/SH2 and KD/SH3 interfaces is compromised. Principle component analysis is used to analyze the NMR data, and it is very clear and convincing.

      A compelling evidence in support of the proposed allosteric mechanism comes from the analysis of the E528K disease mutation, identified in the Abl1 malformation syndrome. The authors show that this mutant, poised to break a salt bridge formed between E528 in the C-terminal portion of helix I and R479 on the kinase domain, increases helix I outward motions resulting in core disassembly and higher Abl kinase activity. Together, these results reinforce that helix I motions are central to the mechanism of kinase activation via core disassembly.

    1. Joint Public Review

      This paper shows that networks of binary neurons can exhibit power law behavior (including "crackling", which refers to a particular relationship among the power law exponents) without fine tuning. If, as is standard, we equate power law behavior to criticality, then criticality can arise in networks of neurons without fine tuning. The network model used to show this was extremely simple: a population of completely uncoupled neurons was driven by a small number of slowly varying "hidden" variables (either 1 or 5). This caused the firing rate of every neuron to change slowly over time, in a correlated fashion. Criticality was observed over a large range of couplings, time constants, and average firing rates.

      This paper is extremely important in light of the hypothesis that criticality in the brain is both special, in the sense that it requires fine tuning, and that it leads to optimal information processing. As mentioned above, this paper shows that fine tuning is not required. It also shows that criticality does not imply optimal information transmission. This does not, of course, rule out the above "critical brain" hypothesis. But it does show that simply observing power law behavior is not enough to draw conclusions about either fine tuning or function.

      These authors are not the first to show that slowly varying firing rates can give rise to power law behavior (see, for example, Touboul and Destexhe, 2017; Priesemann and Shriki, 2018). However, to our knowledge they are the first to show crackling, and to compute information transmission in, and out of, the critical state.

      References:

      Touboul and Destexhe, 2017: Touboul J, Destexhe A. Power-law statistics and universal scaling in the absence of criticality. Phys Rev E. 2017 95:012413, 2017.

      Priesemann and Shriki, 2018: Priesemann V, Shriki O. PLOS Comp. Bio. 14:1-29, 2018.