10,000 Matching Annotations
  1. Mar 2025
    1. Reviewer #1 (Public review):

      Summary:

      This study aims to uncover molecular and structural details underlying the broad substrate specificity of glycosaminoglycan lyases belonging to a specific family (PL35). They determined the crystal structures of two such enzymes, conducted in vitro enzyme activity assays, and a thorough structure-guided mutagenesis campaign to interrogate the role of specific residues. They made progress towards achieving their aims and I appreciate the attempt of the authors to address my initial comments on the paper.

      Impact on the field:

      I expect this work will have limited impact on the field, although it does stand on its own as a solid piece of structure-function analysis.

      Strengths:

      The major strengths of the study were the combination of structure and enzyme activity assays, comprehensive structural analysis, as well as a thorough structure-guided mutagenesis campaign.

      Weaknesses:

      (Before revision) -the authors claim to have done a ICP-MS experiment to show Mn2+ binds to their enzyme, but did not present the data. The authors could have used the anomalous scattering properties of Mn2+ at the synchrotron to determine the presence and location of this cation (i.e. fluorescence spectra, and/or anomalous data collection at the Mn2+ absorption peak).<br /> *comment after revision: I appreciate that the authors included this data now, and it looks fine.

      (Before revision) -the authors have an over-reliance on molecular docking for understanding the position of substrates bound to the enzyme. The docking analysis performed was cursory at best; Autodock Vina is a fine program but more rigorous software could have been chosen, as well we molecular dynamics simulations. As well the authors do not use any substrate/product-bound structures from the broader PL enzyme family to guide the placement of the substrates in the GAGases, and interpret the molecular docking models.<br /> *comment after revision: the authors used another docking program, which is fine, but did not do any MD analysis or comment on why not. Also maybe it is just me but I still do not see a figure explicitly showing an overlay/superposition of the docking results with crystal structures of similar enzymes with similar ligands. The authors do have a statement in this regard but I believe a figure (e.g. an additional panel on S2) would be very helpful to the reader.

      (Before revision)-the conclusion that the structures of GAGase II and VII are most similar to the structures of alginate lyases (Table 2 data), and the authors' reliance on DALI, are both questioned. DALI uses a global alignment algorithm, which when used for multi-domain enzymes such as these tends to result in sub-optimal alignment of active site residues, particularly if the active site is formed between the two domains as is the case here. The authors should evaluate local alignment methods focused on optimization of the superposition of a single domain; these methods may result in a more appropriate alignment of the active site residues, and different alignment statistics. This may influence the overall conclusion of the evolutionary history of these PL35 enzymes.<br /> *comment after revision: I'm not sure the authors understood my suggestion as the reply reiterates the original conclusions. I suggest local structural alignment of *only* the toroid and antiparallel β-sheet domains, not global alignment of both domains, as this would improve the accuracy of the structural similarity conclusions.

      (Before revision)-the data on the GAGase III residue His188 is not well interpreted; substitution of this residue clearly impacts HA and HS hydrolysis as well. The data on the impact on alginate hydrolysis is weak, which could be due to the fact that the WT enzyme has poor activity against alginate to start with.<br /> *comment after revision: I appreciate that the authors used higher amounts of H188A variants and still do not see activity on alginate, which strengthens the conclusions regarding this substrate. However this variant also has decreased activity against HS (Figure 5C) and thus H188 appears to be important for more substrates than just alginate. The discussion section should be updated accordingly.

      (Before revision)-the authors did not use the words "homology", "homologous", or "homolog" correctly (these terms mean the subjects have a known evolutionary relationship, which may or may not be known in the contexts the authors used these targets); the words "similarity" and "similar" are recommended to be used instead.<br /> *comment after revision: I thank the authors for addressing this.

      (Before revision)-the authors discuss a "shorter" cavity in GAGases, which does not make sense, and is not supported by any figure or analysis. I recommend a figure with a surface representation of the various enzymes of interest, with dimensions of the cavity labeled (as a supplemental figure). The authors also do not specifically define what subsites are in the context of this family of enzymes, nor do they specifically label or indicate the location of the subsites on the figures of the GAGase II and IV enzyme structures.<br /> *comment after revision: I thank the authors for improving their figures and text description on this point.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript under review investigates the role of periosteal stem cells (P-SSC) in bone marrow regeneration using a whole bone subcutaneous transplantation model. While the model is somewhat artificial, the findings were interesting, suggesting the migration of periosteal stem cells into the bone marrow and their potential to become bone marrow stromal cells. This indicates a significant plasticity of P-SSC consistent with previous reports using fracture models (Cell Stem Cell 29:1547, Dev Cell 59:1192).

      Major comments from previous round of review:

      (1) The authors assert that the periosteal layer was completely removed in their model, which is crucial for their conclusions. To substantiate this claim, it is recommended that the authors provide evidence of the successful removal of the entire periosteal stem cell (P-SSC) population. A colony-forming assay, with and without periosteal removal, could serve as a suitable method to demonstrate this.

      (2) The observation that P-SSCs do not express Kitl or Cxcl12, while their bone marrow stromal cell (BM-MSC) derivatives do, is a key finding. To strengthen this conclusion, the authors are encouraged to repeat the experiment using Cxcl12 or Scf reporter alleles. Immunofluorescence staining that confirms the migration of periosteal cells and their transformation into Cxcl12- or Scf-reporter-positive cells would significantly enhance the paper's key conclusion.

      (3) On page 8, line 20, the authors' statement regarding the detection of Periostin+ cells outside the periosteum layer could be misinterpreted due to the use of the periostin antibody. Given that periostin is an extracellular matrix protein, the staining may not accurately represent Periostin-expressing cells but rather the presence of periostin in the extracellular matrix. The authors should revise this section for greater precision.

      Comments on revised version:

      My comments from the previous round of review have mostly been addressed.

    1. Reviewer #1 (Public review):

      In this study, Tiang et al. explore the role of ubiquitination of non-structural protein 16 (nsp16) in the SARS-CoV-2 life cycle. nsp16, in conjunction with nsp10, performs the final step of viral mRNA capping through its 2'-O-methylase activity. This modification allows the virus to evade host immune responses and protects its mRNA from degradation. The authors demonstrate that nsp16 undergoes ubiquitination and subsequent degradation by the host E3 ubiquitin ligases UBR5 and MARCHF7 via the ubiquitin-proteasome system (UPS). Specifically, UBR5 and MARCHF7 mediate nsp16 degradation through K48- and K27-linked ubiquitination, respectively. Notably, degradation of nsp16 by either UBR5 or MARCHF7 operates independently, with both mechanisms effectively inhibiting SARS-CoV-2 replication in vitro and in vivo. Furthermore, UBR5 and MARCHF7 exhibit broad-spectrum antiviral activity by targeting nsp16 variants from various SARS-CoV-2 strains. This research advances our understanding of how nsp16 ubiquitination impacts viral replication and highlights potential targets for developing broadly effective antiviral therapies.

      Strengths:

      The proposed study is of significant interest to the virology community because it aims to elucidate the biological role of ubiquitination in coronavirus proteins and its impact on the viral life cycle. Understanding these mechanisms will address broadly applicable questions about coronavirus biology and enhance our overall knowledge of ubiquitination's diverse functions in cell biology. Employing in vivo studies is a strength.

      Weaknesses:

      Minor comments:<br /> Figure 5A- The authors should ensure that the figure is properly labeled to clearly distinguish between the IP (Immunoprecipitation) panel and the input panel.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigated causal inference in the visual domain through a set of carefully designed experiments, and sound statistical analysis. They suggest the early visual system has a crucial contribution to computations supporting causal inference.

      Strengths:

      (1) I believe the authors target an important problem (causal inference) with carefully chosen tools and methods. Their analysis rightly implies the specialization of visual routines for causal inference and the crucial contribution of early visual systems to perform this computation. I believe this is a novel contribution and their data and analysis are in the right direction.<br /> (2) Authors sufficiently discuss the alternative perspective to causal inference.<br /> (3) The authors also expand the discussions beyond pure psychophysics and also include neural aspects.

      Weaknesses:

      I would not call them weaknesses, perhaps a different perspective:

      (1) Authors arguing pro a mere bottom-up contribution of early sensory areas for causal inference. Certainly, as the authors suggested, early sensory areas have a crucial contribution, and the authors expand it to other possibilities in their discussion (but more for more complex scenario). It would say, even in simple cases, we can still consider the effect of top down processes. This particularly makes sense in light of recent studies. These studies progressively suggest perception as an active process that also weighs in strongly, the top-down cognitive contributions. For instance, the most simple cases of perception have been conceptualized along this line (Martin, Solms, and Sterzer 2021) and even some visual illusions (Safavi and Dayan 2022), and other extensions (Kay et al. 2023). Thus, I believe it would be helpful to extend the discussion on the top-down and cognitive contributions of causal inference (of course that can also be hinted at, based on recent developments). Even adaptation, which is central in this study, can be influenced by top-down factors (Keller et al. 2017).

      Lastly, I hope the authors find this review helpful. I generally want to try to end all of my reviews with areas of the paper I liked because I think this should be part of the feedback. Certainly, there were many in this manuscript as well (clever questions, experimental design and statistical analysis) that I had to highlight further. I congratulate the authors again on their manuscript and hope they will find it helpful.

      Bibliography

      Aller, Mate, and Uta Noppeney. 2018. "To Integrate or Not to Integrate: Temporal Dynamics of Bayesian Causal Inference." Biorxiv, December, 504118. .

      Cao, Yinan, Christopher Summerfield, Hame Park, Bruno Lucio Giordano, and Christoph Kayser. 2019. "Causal Inference in the Multisensory Brain." Neuron 102 (5): 1076-87.e8. .

      Coen, Philip, Timothy P. H. Sit, Miles J. Wells, Matteo Carandini, and Kenneth D. Harris. 2021. "The Role of Frontal Cortex in Multisensory Decisions." Biorxiv, April. Cold Spring Harbor Laboratory, 2021.04.26.441250. .

      Kay, Kendrick, Kathryn Bonnen, Rachel N. Denison, Mike J. Arcaro, and David L. Barack. 2023. "Tasks and Their Role in Visual Neuroscience." Neuron 111 (11). Elsevier: 1697-1713. .

      Keller, Andreas J, Rachael Houlton, Björn M Kampa, Nicholas A Lesica, Thomas D Mrsic-Flogel, Georg B Keller, and Fritjof Helmchen. 2017. "Stimulus Relevance Modulates Contrast Adaptation in Visual Cortex." Elife 6. eLife Sciences Publications, Ltd: e21589.

      Kording, K. P., U. Beierholm, W. J. Ma, S. Quartz, J. B. Tenenbaum, and L. Shams. 2007. "Causal Inference in Multisensory Perception." PloS One 2: e943. .

      Martin, Joshua M., Mark Solms, and Philipp Sterzer. 2021. "Useful Misrepresentation: Perception as Embodied Proactive Inference." Trends Neurosci. 44 (8): 619-28. .

      Safavi, Shervin, and Peter Dayan. 2022. "Multistability, Perceptual Value, and Internal Foraging." Neuron, August. .

      Shams, L. 2012. "Early Integration and Bayesian Causal Inference in Multisensory Perception." In The Neural Bases of Multisensory Processes, edited by M. M. Murray and M. T. Wallace. Frontiers in Neuroscience. Boca Raton (FL).

      Shams, Ladan, and Ulrik Beierholm. 2022. "Bayesian Causal Inference: A Unifying Neuroscience Theory." Neuroscience & Biobehavioral Reviews 137 (June): 104619.

    1. Reviewer #1 (Public review):

      Summary:

      Machii et al. reported a possible molecular mechanism underlying the parallel evolution of lip hypertrophy in African cichlids. The multifaceted approach taken in this manuscript is highly valued, as it uses histology, proteomics, and transcriptomics to reveal how phylogenetically distinct thick-lips have evolved in parallel. Findings from histology and proteomics connected to wnt signaling through the transcriptome are very exciting.

      Strengths:

      There is consistency between the results and it is possible to make a strong argument from the results.

      Comments on revised version:

      The issues I pointed out in the previous review have been carefully answered, and all issues have been addressed. The main points of the manuscript are clear, and the conclusions are easy to understand. The enlarged lips are a notable example of convergent evolution in African cichlids.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript focuses on the olfactory system of Pieris brassicae larvae and the importance of olfactory information in their interactions with the host plant Brassica oleracea and the major parasitic wasp Cotesia glomerata. The authors used CRISPR/Cas9 to knockout odorant receptor co-receptors (Orco), and conducted a comparative study on the behavior and olfactory system of the mutant and wild-type larvae. The study found that Orco-expressing olfactory sensory neurons in antennae and maxillary palps of Orco knockout (KO) larvae disappeared, and the number of glomeruli in the brain decreased, which impairs the olfactory detection and primary processing in the brain. Orco KO caterpillars show weight loss and loss of preference for optimal food plants; KO larvae also lost weight when attacked by parasitoids with the ovipositor removed, and mortality increased when attacked by untreated parasitoids. On this basis, the authors further studied the responses of caterpillars to volatiles from plants attacked by the larvae of the same species and volatiles from plants on which the caterpillars were themselves attacked by parasitic wasps. Lack of OR-mediated olfactory inputs prevents caterpillars from finding suitable food sources and from choosing spaces free of enemies.

      Strengths:

      The findings help to understand the important role of olfaction in caterpillar feeding and predator avoidance, highlighting the importance of odorant receptor genes in shaping ecological interactions.

      Weaknesses:

      There are the following major concerns:

      (1) Possible non-targeted effects of Orco knockout using CRISPR/Cas9 should be analyzed and evaluated in Materials and Methods and Results.

      (2) Figure 1E: Only one olfactory receptor neuron was marked in WT. There are at least three olfactory sensilla at the top of the maxillary palp. Therefore, to explain the loss of Orco-expressing neurons in the mutant (Figure 1F), a more rigorous explanation of the photo is required.

      (3) In Figure 1G, H, the four glomeruli are circled by dotted lines: their corresponding relationship between the two figures needs to be further clarified.

      (4) Line 130: Since the main topic in this study is the olfactory system of larvae, the experimental results of this part are all about antennal electrophysiological responses, mating frequency, and egg production of female and male adults of wild type and Orco KO mutant, it may be considered to include this part in the supplementary files. It is better to include some data about the olfactory responses of larvae.

      (5) Line 166: The sentences in the text are about the choice test between " healthy plant vs. infested plant", while in Fig 3C, it is "infested plant vs. no plant". The content in the text does not match the figure.

      (6) Lines 174-178: Figure 3A showed that the body weight of Orco KO larvae in the absence of parasitic wasps also decreased compared with that of WT. Therefore, in the experiments of Figure 3A and E, the difference in the body weight of Orco KO larvae in the presence or absence of parasitic wasps without ovipositors should also be compared. The current data cannot determine the reduced weight of KO mutant is due to the Orco knockout or the presence of parasitic wasps.

      (7) Lines 179-181: Figure 3F shows that the survival rate of larvae of Orco KO mutant decreased in the presence of parasitic wasps, and the difference in survival rate of larvae of WT and Orco KO mutant in the absence of parasitic wasps should also be compared. The current data cannot determine whether the reduced survival of the KO mutant is due to the Orco knockout or the presence of parasitic wasps.

      (8) In Figure 4B, why do the compounds tested have no volatiles derived from plants? Cruciferous plants have the well-known mustard bomb. In the behavioral experiments, the larvae responses to ITC compounds were not included, which is suggested to be explained in the discussion section.

      (9) The custom-made setup and the relevant behavioral experiments in Figure 4C need to be described in detail (Line 545).

      (10) Materials and Methods Line 448: 10 μL paraffin oil should be used for negative control.

    1. Reviewer #1 (Public review):

      The study introduces an open-source, cost-effective method for automating the quantification of male social behaviors in Drosophila melanogaster. It combines machine-learning-based behavioral classifiers developed using JAABA (Janelia Automatic Animal Behavior Annotator) with inexpensive hardware constructed from off-the-shelf components. This approach addresses the limitations of existing methods, which often require expensive hardware and specialized setups. The authors demonstrate that their new "DANCE" classifiers accurately identify aggression (lunges) and courtship behaviors (wing extension, following, circling, attempted copulation, and copulation), closely matching manually annotated ground-truth data. Furthermore, DANCE classifiers outperform existing rule-based methods in accuracy. Finally, the study shows that DANCE classifiers perform as well when used with low-cost experimental hardware as with standard experimental setups across multiple paradigms, including RNAi knockdown of the neuropeptide Dsk and optogenetic silencing of dopaminergic neurons.

      The authors make creative use of existing resources and technology to develop an inexpensive, flexible, and robust experimental tool for the quantitative analysis of Drosophila behavior. A key strength of this work is the thorough benchmarking of both the behavioral classifiers and the experimental hardware against existing methods. In particular, the direct comparison of their low-cost experimental system with established systems across different experimental paradigms is compelling. While JAABA-based classifiers have been previously used to analyze aggression and courtship (Tao et al., J. Neurosci., 2024; Sten et al., Cell, 2023; Chiu et al., Cell, 2021; Isshi et al., eLife, 2020; Duistermars et al., Neuron, 2018), the demonstration that they work as well without expensive experimental hardware opens the door to more low-cost systems for quantitative behavior analysis.

      Although the study provides a detailed evaluation of DANCE classifier performance, its conclusions would be strengthened by a more comprehensive analysis. The authors assess classifier accuracy using a bout-level comparison rather than a frame-level analysis, as employed in previous studies (Kabra et al., Nat Methods, 2013). They define a true positive as any instance where a DANCE-detected bout overlaps with a manually annotated ground-truth bout by at least one frame. This criterion may inflate true positive rates and underestimate false positives, particularly for longer-duration courtship behaviors. For example, a 15-second DANCE-classified wing extension bout that overlaps with ground truth for only one frame would still be considered a true positive. A frame-level analysis performance would help address this possibility.

      In summary, this work provides a practical and accessible approach to quantifying Drosophila behavior, reducing the economic barriers to the study of the neural and molecular mechanisms underlying social behavior.

    1. Soil particles can be transferred from one location to anotherthrough various means, such as footwear, vehicles, or tools.

      "Soil transfers naturally from a person's clothing and shoes as they move between locations"

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Quach et al. report a detailed investigation into the defense mechanisms of Caenorhabditis elegans in response to predatory threats from Pristionchus pacificus. Based on principles from predatory imminence and prey refuge theories, the authors delineate three defense modes (pre-encounter, post-encounter, and circa-strike) corresponding to increasing levels of threat proximity. These modes are observed in a controlled but naturalistic setup and are quantified by multiple behavioral outputs defined in time and/or space domains allowing nuanced phenotypic assays. The authors demonstrate that C. elegans displays graded defense behavioral responses toward varied lethality of threats and that only life-threatening predators trigger all three defense modes. The study also offers a narrative on the behavioral strategies and underlying molecular regulation, focusing on the roles of SEB-3 receptors and NLP-49 peptides in mediating responses in these defense modes. They found that the interplay between SEB-3 and NLP-49 peptides appears complex, as evidenced by the diverse outcomes when either or both genes are manipulated in various behavioral modes.

      Strengths:

      The paper presents an interesting story, with carefully designed experiments and necessary controls, and novel findings and implications about predator-induced defensive behaviors and underlying molecular regulation in this important model organism. The design of experiments and description of findings are easy to follow and well-motivated. The findings contribute to our understanding of stress response systems and offer broader implications for neuroethological studies across species.

      Weaknesses:

      Although overall the study is well designed and movitated, the paper could benefit from further improvements on some of the methods descriptions and experiment interpretations.

    1. Reviewer #1 (Public review):

      Summary:

      This paper describes molecular dynamics simulations (MDS) of the dynamics of two T-cell receptors (TCRs) bound to the same major histocompatibility complex molecule loaded with the same peptide (pMHC). The two TCRs (A6 and B7) bind to the pMHC with similar affinity and kinetics, but employ different residue contacts. The main purpose of the study is to quantify via MDS the differences in the inter- and intra-molecular motions of these complexes, with a specific focus on what the authors describe as catch-bond behavior between the TCRs and pMHC, which could explain how T-cells can discriminate between different peptides in the presence of weak separating force.

      Strengths:

      The authors present extensive simulation data that indicates that, in both complexes, the number of high-occupancy inter-domain contacts initially increases with applied load, which is generally consistent with the authors' conclusion that both complexes exhibit catch-bond behavior, although to different extents. In this way, the paper expands our understanding of peptide discrimination by T-cells. The conclusions of the study are generally well supported by data. Further, the paper makes predictions about the relative strength of the catch-bond response of the two TCRs, which could be tested experimentally through protein mutagenesis and force application in Atomic Force Microscopy.

    1. Joint public review

      Summary:

      The authors examine the eigenvalue spectrum of the covariance matrix of neural recordings in the whole-brain larval zebrafish during hunting and spontaneous behavior. They find that the spectrum is approximately power law, and, more importantly, exhibits scale-invariance under random subsampling of neurons. This property is not exhibited by conventional models of covariance spectra, motivating the introduction of the Euclidean random matrix model. The authors show that this tractable model captures the scale invariance they observe. They also examine the effects of subsampling based on anatomical location or functional relationships. Finally, they discuss the benefit of neural codes which can be subsampled without significant loss of information.

      Strengths:

      With large-scale neural recordings becoming increasingly common, neuroscientists are faced with the question: how should we analyze them? To address that question, this paper proposes the Euclidean random matrix model, which embeds neurons randomly in an abstract feature space. This model is analytically tractable and matches two nontrivial features of the covariance matrix: approximate power law scaling, and invariance under subsampling. It thus introduces an important conceptual and technical advance for understanding large-scale simultaneously recorded neural activity.

      Comment:

      Are there quantitative comparisons of the collapse indices for the null models in Figure 2 and the data covariance in 2F? If so, this could be potentially useful to report.

    1. Reviewer #1 (Public review):

      Based on previous publications suggesting a potential role for miR-26b in the pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH), the researchers aim to clarify its function in hepatic health and explore the therapeutical potential of lipid nanoparticles (LNPs) to treat this condition. First, they employed both whole-body and myeloid cell-specific miR-26b KO mice and observed elevated hepatic steatosis features in these mice compared to WT controls when subjected to WTD. Moreover, livers from whole-body miR-26b KO mice also displayed increased levels of inflammation and fibrosis markers. Kinase activity profiling analyses revealed distinct alterations, particularly in kinases associated with inflammatory pathways, in these samples. Treatment with LNPs containing miR-26b mimics restored lipid metabolism and kinase activity in these animals. Finally, similar anti-inflammatory effects were observed in the livers of individuals with cirrhosis, whereas elevated miR-26b levels were found in the plasma of these patients in comparison with healthy control. Overall, the authors conclude that miR-26b plays a protective role in MASH and that its delivery via LNPs efficiently mitigates MASH development.

      The study has some strengths, most notably, its employ of a combination of animal models, analyses of potential underlying mechanisms, as well as innovative treatment delivery methods with significant promise. However, it also presents certain weaknesses that could be improved. The precise role of miR-26b in a human context remains elusive, hindering direct translation to clinical practice.

      Comments on revised version:

      Some of the recommendations provided by this Reviewer in the first version of the manuscript have been successfully addressed in the revision. However, others, particularly those related to human translation, remain unresolved due to the lack of additional samples for analysis. Since the revised title now indicates that the mechanisms described were primarily observed in mice, it seems reasonable to defer addressing this issue to future studies.

    1. Reviewer #1 (Public review):

      Summary:

      This paper explores how diverse forms of inhibition impact firing rates in models for cortical circuits. In particular, the paper studies how the network operating point affects the balance of direct inhibition from SOM inhibitory neurons to pyramidal cells, and disinhibition from SOM inhibitory input to PV inhibitory neurons. This is an important issue as these two inhibitory pathways have largely been studies in isolation. A combination of analytical calculations and direct numerical simulations provide convincing evidence that the interplay of these inhibitory circuits can separately control network gain and stability.

      Strengths

      The paper has improved in revision, and the intuitive summary statements added to the end of each results section are quite helpful. The addition of numerical simulations to extend the conclusions beyond the linear range of network behavior are also quite helpful.

      Weaknesses

      None

    1. Reviewer #1 (Public review):

      Summary:

      In this article, the authors set out to understand how people's food decisions change when they are hungry vs. sated. To do so, they used an eye-tracking experiment where participants chose between two food options, each presented as a picture of the food plus its "Nutri-Score". In both conditions, participants fasted overnight, but in the sated condition, participants received a protein shake before making their decisions. The authors find that participants in the hungry condition were more likely to choose the tastier option. Using variants of the attentional drift diffusion model, they further find that the best fitting model has different attentional discounts on the taste and health attributes, and that the attentional discount on the health information was larger for the hungry participants.

      Strengths:

      The article has many strengths. It uses a food-choice paradigm that is established in neuroeconomics. The experiment uses real foods, with accurate nutrition information, and incentivized choices. The experimental manipulation is elegant in its simplicity - administering a high-calorie protein shake. It is also commendable that the study was within-participant. The experiment also includes hunger and mood ratings to confirm the effectiveness of the manipulation. The modeling work is impressive in its rigor - the authors test 8 different variants of the DDM, including recent models like the maaDDM, as well as some completely new variants (maaDDM2phi and 2phisp). The model fits decisively favor the maaDDM2phi.

      Weaknesses:

      While I do appreciate the within-participant design, it does raise a small concern about potential demand effects. The authors' results would have been more compelling if they had replicated when only analyzing the first session from each participant. However, the authors did demonstrate that there was no effect of order on the results, which helps to alleviate this concern.

    1. Reviewer #1 (Public Review):

      The authors recorded from multiple mossy cells (MCs) of the dentate gyrus in slices or in vivo using anesthesia. They recorded MC spontaneous activity during spontaneous sharp waves (SWs) detected in area CA3 (in vitro) or in CA1 ( in vivo). They find variability of the depolarization of MCs in response to a SW. They then used deep learning to parse out more information. They conclude that CA3 sends different "information" to different MCs. However, this is not surprising because different CA3 neurons project to different MCs and it was not determined if every SW reflected the same or different subsets of CA3 activity.

      The strengths include recording up to 5 MCs at a time. The major concerns are in the finding that there is variability. This seems logical, not surprising. Also it is not clear how deep learning could lead to the conclusion that CA3 sends different "information" to different MCs. It seems already known from the anatomy because CA3 neurons have diverse axons so they do not converge on only one or a few MCs. Instead they project to different MCs. Even if they would, there are different numbers of boutons and different placement of boutons on the MC dendrites, leading to different effects on MCs. There also is a complex circuitry that is not taken into account in the discussion or in the model used for deep learning. CA3 does not only project to MCs. It also projects to hilar and other dentate gyrus GABAergic neurons which have complex connections to each other, MCs, and CA3. Furthermore, MCs project to MCs, the GABAergic neurons, and CA3. Therefore at any one time that a SW occurs, a very complex circuitry is affected and this could have very different effects on MCs so they would vary in response to the SW. This is further complicated by use of slices where different parts of the circuit are transected from slice to slice.

      It is also not discussed if SWs have a uniform frequency during the recording session. If they cluster, or if MC action potentials occur just before a SW, or other neurons discharge before, it will affect the response of the MC to the SW. If MC membrane potential varies, this will also effect the depolarization in response to the SW.

      In vivo, the SWs may be quite different than in vivo but this is not discussed. The circuitry is quite different from in vitro. The effects of urethane could have many confounding influences.

      Furthermore, how much the in vitro and in vivo SWs tell us about SWs in awake behaving mice is unclear.

      Also, methods and figures are hard to understand.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript described a structure-guided approach to graft important antigenic loops of the neuraminidase to a homotypic but heterologous NA. This approach allows the generation of well-expressed and thermostable recombinant proteins with antigenic epitopes of choice to some extent. The loop-grafted NA was designated hybrid.

      Strengths:

      The hybrid NA appeared to be more structurally stable than the loop-donor protein while acquiring its antigenicity. This approach is of value when developing a subunit NA vaccine which is difficult to express. So that antigenic loops could be potentially grafted to a stable NA scaffold to transfer strain-specific antigenicity.

      Weaknesses:

      However, major revisions to better organize the text, and figure and make clarifications on a number of points, are needed. There are a few cases in which a later figure was described first, data in the figures were not sufficiently described, or where there were mismatched references to figures.

      More importantly, the hybrid proteins did not show any of the advantages over the loop-donor protein in the format of VLP vaccine in mouse studies, so it's not clear why such an approach is needed to begin with if the original protein is doing fine.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Wu et al. introduce a novel approach to reactivate the Muller glia cell cycle in the mouse retina by simultaneously reducing p27Kip1 and increasing cyclin D1 using a single AAV vector. The approach effectively promotes Muller glia proliferation and reprogramming without disrupting retinal structure or function. Interestingly, reactivation of the Muller glia cell cycle downregulates IFN pathway, which may contribute to the induced retinal regeneration. The results presented in this manuscript may offer a promising approach for developing Müller glia cell-mediated regenerative therapies for retinal diseases.

      Comments on revisions:

      The authors have revised the manuscript and addressed my concerns.

    1. Reviewer #1 (Public review):

      Summary:

      Mehmet Mahsum Kaplan et al. demonstrate that Meis2 expression in neural crest-derived mesenchymal cells is crucial for whisker follicle (WF) development, as WF fails to develop in wnt1-Cre;Meis2 cKO mice. Advanced imaging techniques effectively support the idea that Meis2 is essential for proper WF development and that nerves, while affected in Meis2 cKO, are dispensable for WF development and not the primary cause of WF developmental failure. The study also reveals that although Meis2 significantly downregulates Foxd1 in the mesenchyme, this is not the main reason for WF development failure. The paper presents valuable data on the role of mesenchymal Meis2 in WF development. However, it is still not known what is the molecular mechanisms that link Meis2 to impact the epithelial compartment.

      Strengths:

      (1) The authors describe a novel molecular mechanism involving Mesenchymal Meis2 expression, which plays a crucial role in early WF development.<br /> (2) They employ multiple advanced imaging techniques to illustrate their findings beautifully.<br /> (3) The study clearly shows that nerves are not essential for WF development.

      Weaknesses:

      The paper lacks clarity on how Meis2 loss, along with the observed general reduction in proliferation and changes in extracellular matrix and cell adhesion, leads specifically to the loss of whisker follicles. Future studies addressing this gap, perhaps with methods enabling higher cell recovery or epithelial cell inclusion in the sequenced cells, could provide valuable insights into the specific roles of Meis2 in this context.

    1. Reviewer #1 (Public Review):

      Summary:

      In this work, the authors present a novel, multi-layer computational model of motor control to produce realistic walking behaviour of a Drosophila model in the presence of external perturbations and under sensory and motor delays. The novelty of their model of motor control is that it is modular, with divisions inspired by the fly nervous system, with one component based on deep learning while the rest are based on control theory. They show that their model can produce realistic walking trajectories. Given the mostly reasonable assumptions of their model, they convincingly show that the sensory and motor delays present in the fly nervous system are the maximum allowable for robustness to unexpected perturbations.

      Their fly model outputs torque at each joint in the leg, and their dynamics model translates these into movements, resulting in time-series trajectories of joint angles. Inspired by the anatomy of the fly nervous system, their fly model is a modular architecture that separates motor control at three levels of abstraction:<br /> (1) oscillator-based model of coupling of phase angles between legs,<br /> (2) generation of future joint-angle trajectories based on the current state and inputs for each leg (the trajectory generator), and<br /> (3) closed-loop control of the joint-angles using torques applied at every joint in the model (control and dynamics).

      These three levels of abstraction ensure coordination between the legs, future predictions of desired joint angles, and corrections to deviations from desired joint-angle trajectories. The parameters of the model are tuned in the absence of external perturbations using experimental data of joint angles of a tethered fly. A notable disconnect from reality is that the dynamics model used does not model the movement of the body and ground contacts as is the case in natural walking, nor the movement of a ball for a tethered fly, but instead something like legs moving in the air for a tethered fly.

      In order to validate the realism of the generated simulated walking trajectories, the authors compare various attributes of simulated to real tethered fly trajectories and show qualitative and quantitative similarities, including using a novel metric coined as Kinematic Similarity (KS). The KS score of a trajectory is a measure of the likelihood that the trajectory belongs to the distribution of real trajectories estimated from the experimental data. While such a metric is a useful tool to validate the quality of simulated data, there is some room for improvement in the actual computation of this score. For instance, the KS score is computed for any given time-window of walking simulation using a fraction of information from the joint-angle trajectories. It is unclear if the remaining information in joint-angle trajectories that are not used in the computation of the KS score can be ignored in the context of validating the realism of simulated walking trajectories.

      The authors validate simulated walking trajectories generated by the trained model under a range of sensorimotor delays and external perturbations. The trained model is shown to generate realistic joint-angle trajectories in the presence of external perturbations as long as the sensorimotor delays are constrained within a certain range. This range of sensorimotor delays is shown to be comparable to experimental measurements of sensorimotor delays, leading to the conclusion that the fly nervous system is just fast enough to be robust to perturbations.

      Strengths:

      This work presents a novel framework to simulate Drosophila walking in the presence of external perturbations and sensorimotor delay. Although the model makes some simplifying assumptions, it has sufficient complexity to generate new, testable hypotheses regarding motor control in Drosophila. The authors provide evidence for realistic simulated walking trajectories by comparing simulated trajectories generated by their trained model with experimental data using a novel metric proposed by the authors. The model proposes a crucial role in future predictions to ensure robust walking trajectories against external perturbations and motor delay. Realistic simulations under a range of prediction intervals, perturbations, and motor delays generating realistic walking trajectories support this claim. The modular architecture of the framework provides opportunities to make testable predictions regarding motor control in Drosophila. The work can be of interest to the Drosophila community interested in digitally simulating realistic models of Drosophila locomotion behaviors, as well as to experimentalists in generating testable hypotheses for novel discoveries regarding neural control of locomotion in Drosophila. Moreover, the work can be of broad interest to neuroethologists, serving as a benchmark in modelling animal locomotion in general.

      Weaknesses:

      As the authors acknowledge in their work, the control and dynamics model makes some simplifying assumptions about Drosophila physics/physiology in the context of walking. For instance, the model does not incorporate ground contact forces and inertial effects of the fly's body. It is not clear how these simplifying assumptions would affect some of the quantitative results derived by the authors. The range of tolerable values of sensorimotor delays that generate realistic walking trajectories is shown to be comparable with sensorimotor delays inferred from physiological measurements. It is unclear if this comparison is meaningful in the context of the model's simplifying assumptions. The authors propose a novel metric coined as Kinematic Similarity (KS) to distinguish realistic walking trajectories from unrealistic walking trajectories. Defining such an objective metric to evaluate the model's predictions is a useful exercise, and could potentially be applied to benchmark other computational animal models that are proposed in the future. However, the KS score proposed in this work is calculated using only the first two PCA modes that cumulatively account for less than 50% of the variance in the joint angles. It is not obvious that the information in the remaining PCA modes may not change the log-likelihood that occurs in the real walking data.

      Comments on revisions:

      The authors have addressed the concerns and questions raised in the original review.

    1. Reviewer #1 (Public review):

      The authors introduces DIPx, a deep learning framework for predicting synergistic drug combinations for cancer treatment using the AstraZeneca-Sanger (AZS) DREAM Challenge dataset. While the approach is innovative, I have following concerns and comments, and hopefully will improve the study's rigor and applicability, making it a more powerful tool in real clinical world.

      (1) In the abstract: "We trained and validated DIPx in the AstraZeneca-Sanger (AZS) DREAM Challenge dataset using two separate test sets: Test Set 1 comprised the combinations already present in the training set, while Test Set 2 contained combinations absent from the training set, thus indicating the model's ability to handle novel combinations". Test Set 1 comprises combinations already present in the training set, likely leading overfitting issue. The model might show inflated performance metrics on this test set due to prior exposure to these combinations, not accurately reflecting its true predictive power on unknown data, which is crucial for discovering new drug synergies. The testing approach reduces the generalizability of the model's findings to new, untested scenarios.

      (2) The model struggles with predicting synergies for drug combinations not included in its training data (showing only Spearman correlation 0.26 in Test Set 2). This limits its potential for discovering new therapeutic strategies. Utilizing techniques such as transfer learning or expanding the training dataset to encompass a wider range of drug pairs could help to address this issue.

      (3) The use of pan-cancer datasets, while offering broad applicability, may not be optimal for specific cancer subtypes with distinct biological mechanisms. Developing subtype-specific models or adjusting the current model to account for these differences could improve prediction accuracy for individual cancer types.

      (4) Line 127, "Since DIPx uses only molecular data, to make a fair comparison, we trained TAJI using only molecular features and referred to it as TAJI-M.". TAJI was designed to use both monotherapy drug-response and molecular data, and likely won't be able to reach maximum potential if removing monotherapy drug-response from the training model. It would be critical to use the same training datasets and then compare the performances. From the Figure 6 of TAJI's paper (Li et al., 2018, PMID: 30054332) , i.e., the mean Pearson correlation for breast cancer and lung cancer are around 0.5 - 0.6.

      The following 2 concerns had been include in the Discussion section which are great:

      (1) Training and validating the model using cell lines may not fully capture the heterogeneity and complexity of in vivo tumors. To increase clinical relevance, it would be beneficial to validate the model using primary tumor samples or patient-derived xenografts.

      (2) The Pathway Activation Score (PAS) is derived exclusively from primary target genes, potentially overlooking critical interactions involving non-primary targets. Including these secondary effects could enhance the model's predictive accuracy and comprehensiveness.

      Comments on revisions:

      The authors replied to my concerns but they did not address my comments/concerns. Especially for my concern #1: They trained and validated DIPx in the AstraZeneca-Sanger (AZS) DREAM Challenge dataset using two separate test sets: Test Set 1 comprised the combinations already present in the training set. Therefore, test Set 1 comprises combinations already present in the training set, likely leading overfitting issue but they claimed "There is no danger overfitting here" in their "Author Response" letter.

      All my other concerns are unchanged too.

    1. Reviewer #1 (Public review):

      Summary:

      Jocher, Janssen, et al examine the robustness of comparative functional genomics studies in primates that make use of induced pluripotent stem cell-derived cells. Comparative studies in primates, especially amongst the great apes, are generally hindered by the very limited availability of samples, and iPSCs, which can be maintained in the laboratory indefinitely and defined into other cell types, have emerged as promising model systems because they allow the generation of data from tissues and cells that would otherwise be unobservable.

      Undirected differentiation of iPSCs into many cell types at once, using a method known as embryoid body differentiation, requires researchers to manually assign all cell types in the dataset so they can be correctly analysed. Typically, this is done using marker genes associated with a specific cell type. These are defined a priori, and have historically tended to be characterised in mice and humans and then employed to annotate other species. Jocher, Janssen, et al ask if the marker genes and features used to define a given cell type in one species are suitable for use in a second species, and then quantify the degree of usefulness of these markers. They find that genes that are informative and cell type specific in a given species are less valuable for cell type identification in other species, and that this value, or transferability, drops off as the evolutionary distance between species increases.

      This paper will help guide future comparative studies of gene expression in primates (and more broadly) as well as add to the growing literature on the broader challenges of selecting powerful and reliable marker genes for use in single-cell transcriptomics.

      Strengths:

      Marker gene selection and cell type annotation is a challenging problem in scRNA studies, and successful classification of cells often requires manual expert input. This can be hard to reproduce across studies, as, despite general agreement on the identity of many cell types, different methods for identifying marker genes will return different sets of genes. The rise of comparative functional genomics complicates this even further, as a robust marker gene in one species need not always be as useful in a different taxon. The finding that so many marker genes have poor transferability is striking, and by interrogating the assumption of transferability in a thorough and systematic fashion, this paper reminds us of the importance of systematically validating analytical choices. The focus on identifying how transferability varies across different types of marker genes (especially when comparing TFs to lncRNAs), and on exploring different methods to identify marker genes, also suggests additional criteria by which future researchers could select robust marker genes in their own data.

      The paper is built on a substantial amount of clearly reported and thoroughly considered data, including EBs and cells from four different primate species - humans, orangutans, and two macaque species. The authors go to great lengths to ensure the EBs are as comparable as possible across species, and take similar care with their computational analyses, always erring on the side of drawing conservative conclusions that are robustly supported by their data over more tenuously supported ones that could be impacted by data processing artefacts such as differences in mappability, etc. For example, I like the approach of using liftoff to robustly identify genes in non-human species that can be mapped to and compared across species confidently, rather than relying on the likely incomplete annotation of the non-human primate genomes. The authors also provide an interactive data visualisation website that allows users to explore the dataset in depth, examine expression patterns of their own favourite marker genes and perform the same kinds of analyses on their own data if desired, facilitating consistency between comparative primate studies.

      Weaknesses and recommendations:

      (1) Embryoid body generation is known to be highly variable from one replicate to the next for both technical and biological reasons, and the authors do their best to account for this, both by their testing of different ways of generating EBs, and by including multiple technical replicates/clones per species. However, there is still some variability that could be worth exploring in more depth. For example, the orangutan seems to have differentiated preferentially towards cardiac mesoderm whereas the other species seemed to prefer ectoderm fates, as shown in Figure 2C. Likewise, Supplementary Figure 2C suggests a significant unbalance in the contributions across replicates within a species, which is not surprising given the nature of EBs, while Supplementary Figure 6 suggests that despite including three different clones from a single rhesus macaque, most of the data came from a single clone. The manuscript would be strengthened by a more thorough exploration of the intra-species patterns of variability, especially for the taxa with multiple biological replicates, and how they impact the number of cell types detected across taxa, etc.

      The same holds for the temporal aspect of the data, which is not really discussed in depth despite being a strength of the design. Instead, days 8 and 16 are analysed jointly, without much attention being paid to the possible differences between them. Are EBs at day 16 more variable between species than at day 8? Is day 8 too soon to do these kinds of analyses? Are markers for earlier developmental progenitors better/more transferable than those for more derived cell types?

      (2) Closely tied to the point above, by necessity the authors collapse their data into seven fairly coarse cell types and then examine the performance of canonical marker genes (as well as those discovered de novo) across the species. However some of the clusters they use are somewhat broad, and so it is worth asking whether the lack of specificity exhibited by some marker genes and driving their conclusions is driven by inter-species heterogeneity within a given cluster.

    1. Reviewer #1 (Public review):

      Summary:

      This is an important and very well-presented set of experiments following up on prior work from the lab investigating knock-down (KD) of EMC10 in restoration of neuronal and cognitive deficits in 22q11.2 Del models, including now both human iPSCs and a mouse model in vivo now with ASOs.

      The valuable progress in this current manuscript is the development of ASOs, and the proof of efficacy in vivo in mouse of the ASO in knock-down of EMC10 and amelioration of in vivo behavioral phenotypes.

      The experiments include: iPSC studies demonstrating elevations of EMC10 in a solid collection of paired iPSC lines. These studies also provide evidence of manipulation of EMC10 by overexpression and inhibition of miRNAs that exist in the 22q11 interval. The iPSC studies also nicely demonstrate rescue of impairments with KD of EMC10 in neuronal arborization as well as KCl induced neuronal activity. The major in vivo contributions reflect impressive demonstration of efficacy of two ASOs in vivo on both KD of EMC10 in vivo and through improvement in behavioral abnormalities in the 22q11 mouse in a range of different behaviors, including social behavior and learning behaviors.

      Overall, there are many strengths reflected in this study, including in particular the synergy between in vitro studies in human cell models and in vivo studies in the well characterized mouse model. The experiments are generally rigorously performed and well powered, and nicely presented. The claims with regard to the mechanisms of EMC10 elevations and the importance of restoration of EMC10 expression to neuronal morphology and behavior are well supported by the data. The work may be further supported in future studies, by investigation of rescue by ASOs of circuit dysfunction in vivo or ex vivo through electrophysiology in the mouse model. Also, in future studies, investigation of the mechanism by which EMC10, an ER protein involved in protein processing, may function in the observed neuronal abnormalities; however, these studies are clearly for future investigations.

      The potential impact of the work is found in the potential value of the ASO approach to the treatment of 22q11, or the pre-clinical evidence that knock-down of this protein may lead to some amelioration of cognitive symptoms. Overall, a very convincing and complementary set of experiments to support EMC10 KD as a therapeutic strategy.

      Review of revision: The authors have addressed the questions from the prior review.

    1. Reviewer #2 (Public review):

      This manuscript by Yu et al. demonstrates that activation of caspase-3 is essential for synapse elimination by microglia, but not by astrocytes. This study also reveals that caspase-3 activation-mediated synapse elimination is required for retinogeniculate circuit refinement and eye-specific territories segregation in dLGN in an activity-dependent manner. Inhibition of synaptic activity increases caspase-3 activation and microglial phagocytosis, while caspase-3 deficiency blocks microglia-mediated synapse elimination and circuit refinement in the dLGN. The authors further demonstrate that caspase-3 activation mediates synapse loss in AD, loss of caspase-3 prevented synapse loss in AD mice. Overall, this study reveals that caspase-3 activation is an important mechanism underlying the selectivity of microglia-mediated synapse elimination during brain development and in neurodegenerative diseases.

      A previous study (Gyorffy B. et al., PNSA 2018) has shown that caspase-3 signal correlates with C1q tagging of synapses (mostly using in vitro approaches), which suggests that caspase-3 would be an underlying mechanism of microglial selection of synapses for removal. The current study provides convincing in vivo evidence demonstrating that caspase-3 activation is essential for microglial elimination of synapses during both brain development and neurodegeneration.

    1. Reviewer #2 (Public review):

      The authors investigated the similarity (or lack thereof) of neural dynamics while monkeys reached to and manipulated one of 4 objects in each trial, compared to observing similar movements performed by experimenters. They focused on mirror neurons (MNs) and rather convincingly showed that MNs dynamics are dissimilar during executing vs. observing actions. The manuscript has improved quite significantly compared to the previous version and I congratulate the authors for that. However, there are still a few points I would like to raise that I think will improve the manuscript scientifically and make it more pleasant to read.

      - I appreciate the nicely compiled literature review which provides the context for the manuscript.<br /> - Message: The takeaway message of the paper is inconsistent and changes throughout the paper. To me, the main takeaway is that observation and execution subspaces progress during the trial (Fig 4), and that they are distinct processes and rather dissimilar, as stated in #440-441, #634-635, etc. But the title of the paper implies the opposite. Some of the interpretations of the results (e.g., Fig 8) also imply similarity of dynamics.<br /> - Readability: I have many issues with the readability/organisation of the paper. Unfortunately, I still find the quality of data presentation low. Below I list a few points:<br /> (1) In 5 sessions out of 9, there are fewer than 20 neurons categorised as AE. This means this population is under-sampled in the data which makes applying any neural population techniques questionable. Moreover, the relevance of the AE analysis is also sometimes unclear: In Fig 4, the AE-related panels are just referred to once in the paper. Yet AE results are presented right next to the main results throughout the paper.<br /> (2) Figures are low resolution and pixelated. There are some faded horizontal and vertical lines in Fig1B that are barely visible. Moreover, it may be my personal preference, but I think Fig1 is more confusing than helpful. Although panel A shows some planes rotating, indicating time-varying dynamics, I couldn't understand what more panel B is trying to convey. The arrow of time is counterclockwise, but the planes progress clockwise (i > ii > iii). Similarly, panel C just seems to show some points being projected to orthogonal subspaces (even though later in the paper we'll see that observation and execution subspaces are not orthogonal), and the CCA subspace illustrated in the same high-d space, which mathematically may be inaccurate, as CCA projects the data to a new space.<br /> In Fig 2A, the objects are too small and pixelated as well. I suggest an overhaul of the figures to make the paper more accessible.<br /> (3) Clarity of the text: The manuscript text could be more concise, to the point, avoiding repetitions, self-consistent, and simply readable. To name a few issues: Single letter acronyms were used to refer to trial epochs (I/G/M/H). M alone has been re-defined 13 different times in the text as in: ...Movement (M)..., excluding every related figure. The acronym (I) refers to the instruction epoch, the high-d space in Fig 1, and panel I of some figures. The acronym MN for Mirror Neurons was defined 4 separate times in the text yet spelled out as Mirror Neuron more than 2 dozen times. CD is defined in the caption of Fig 3 and never used, despite condition-dependent being a common term in the text. Many sentences, e.g., "In contrast, throughout..." in #265-#269, and "To summarize,..." in #270-#275, are too long with difficult wording. To get the point from these sentences, I had to read them many times, and go back and forth between them and the figure. Rewriting such sentences makes the manuscript much more accessible.<br /> - Figure 3: It appears that the condition independent signal has been calculated by subtracting the average of the 4 neural trajectories in Fig 3A, corresponding to different objects. Whereas #133 suggests that it should be calculated by subtracting the average firing rate of different conditions. Assuming I got the methods right, dynamics being "knotted" (#234) after removing the condition independent signal could be because they are similar, so subtracting the condition independent signal leaves us with the noise component. This matters for the manuscript especially since this is the reason for performing the more sensitive instantaneous subspaces.<br /> - Decoding results: I appreciate that the authors improved the decoding results in this version of the manuscript. Now it is much more interesting. However oddly, it appears that only data from 1 monkey is shown. #370 says the results from the other 2 are similar. The decoding data from every monkey must be shown. If the results are similar, they must be at least in Supplements. Currently, only 1 session (out of 3) in the Observation condition seems to decode the object type. This effect, if consistent across animals and session, is very interesting on its own and challenges other claims in the paper.<br /> - Figure8: I reiterate the issue #7 in my previous review. I appreciate the authors clearing some methods, but my concern persists. As per line #839, spiking activity has been smoothed with a 50ms kernel. Thus, unless trial data is concatenated, I suspect the 100ms window used for this analysis is too short (small sample size), thus the correlation values (CCs) might be spurious. References cited in this section use a smaller smoothing kernel (30ms) and a much longer window (~450ms).<br /> Moreover, I don't know why the authors chose to show correlation values in 3D space! Values of Fig8C-red are impossible to know. Furthermore, the manuscript insists on CC values of the Hold period being high, which is probably correct. But I wonder why the focus on the Hold period? I think the most relevant epoch for analysing the MNs is the Movement where the actual action happens. Interestingly, in the movement epoch, the CC values are visibly low. The reason why Hold results are more important and why the CCs in Movement are so low should be clarified in the text. Especially, statements like that in #661 seem particularly unjustified.

    1. Reviewer #1 (Public review):

      Summary:

      From a forward genetic mosaic mutant screen using EMS, the authors identify mutations in glucosylceramide synthase (GlcT), a rate-limiting enzyme for glycosphingolipid (GSL) production, that result in EE tumors. Multiple genetic experiments strongly support the model that the mutant phenotype caused by GlcT loss is due to by failure of conversion of ceramide into glucosylceramide. Further genetic evidence suggests that Notch signaling is comprised in the ISC lineage and may affect the endocytosis of Delta. Loss of GlcT does not affect wing development or oogenesis, suggesting tissue-specific roles for GlcT. Finally, an increase in goblet cells in UGCG knockout mice, not previously reported, suggests a conserved role for GlcT in Notch signaling in intestinal cell lineage specification.

      Strengths:

      Overall, this is a well-written paper with multiple well-designed and executed genetic experiments that support a role for GlcT in Notch signaling in the fly and mammalian intestine. I do, however, have a few comments below.

      Weaknesses:

      (1) The authors bring up the intriguing idea that GlcT could be a way to link diet to cell fate choice. Unfortunately, there are no experiments to test this hypothesis.

      (2) Why do the authors think that UCCG knockout results in goblet cell excess and not in the other secretory cell types?

      (3) The authors should cite other EMS mutagenesis screens done in the fly intestine.

      (4) The absence of a phenotype using NRE-Gal4 is not convincing. This is because the delay in its expression could be after the requirement for the affected gene in the process being studied. In other words, sufficient knockdown of GlcT by RNA would not be achieved until after the relevant signaling between the EB and the ISC occurred. Dl-Gal4 is problematic as an ISC driver because Dl is expressed in the EEP.

      (5) The difference in Rab5 between control and GlcT-IR was not that significant. Furthermore, any changes could be secondary to increases in proliferation.

    1. Reviewer #1 (Public review):

      Summary:

      The authors propose a transformer-based model for the prediction of condition - or tissue-specific alternative splicing and demonstrate its utility in the design of RNAs with desired splicing outcomes, which is a novel application. The model is compared to relevant existing approaches (Pangolin and SpliceAI) and the authors clearly demonstrate its advantage. Overall, a compelling method that is well thought out and evaluated.

      Strengths:

      (1) The model is well thought out: rather than modeling a cassette exon using a single generic deep learning model as has been done e.g. in SpliceAI and related work, the authors propose a modular architecture that focuses on different regions around a potential exon skipping event, which enables the model to learn representations that are specific to those regions. Because each component in the model focuses on a fixed length short sequence segment, the model can learn position-specific features. Another difference compared to Pangolin and SpliceAI which are focused on modeling individual splice junctions is the focus on modeling a complete alternative splicing event.

      (2) The model is evaluated in a rigorous way - it is compared to the most relevant state-of-the-art models, uses machine learning best practices, and an ablation study demonstrates the contribution of each component of the architecture.

      (3) Experimental work supports the computational predictions.

      (4) The authors use their model for sequence design to optimize splicing outcomes, which is a novel application.

      Weaknesses:

      No weaknesses were identified by this reviewer, but I have the following comments:

      (1) I would be curious to see evidence that the model is learning position-specific representations.

      (2) The transformer encoders in TrASPr model sequences with a rather limited sequence size of 200 bp; therefore, for long introns, the model will not have good coverage of the intronic sequence. This is not expected to be an issue for exons.

      (3) In the context of sequence design, creating a desired tissue- or condition-specific effect would likely require disrupting or creating motifs for splicing regulatory proteins. In your experiments for neuronal-specific Daam1 exon 16, have you seen evidence for that? Most of the edits are close to splice junctions, but a few are further away.

      (4) For sequence design, of tissue- or condition-specific effect in neuronal-specific Daam1 exon 16 the upstream exonic splice junction had the most sequence edits. Is that a general observation? How about the relative importance of the four transformer regions in TrASPr prediction performance?

      (5) The idea of lightweight transformer models is compelling, and is widely applicable. It has been used elsewhere. One paper that came to mind in the protein realm:<br /> Singh, Rohit, et al. "Learning the language of antibody hypervariability." Proceedings of the National Academy of Sciences 122.1 (2025): e2418918121.

    1. Reviewer #1 (Public review):

      Summary

      Fleming et al. present the first, proteomics-based attempt to identify the possible mechanism of action of ALS-linked DNAJC7 molecular chaperone in pathology. Impressively, it is the first report of DNAJC7 interactome studies, using a suitable iPSC-derived lower motor neuron model. Using a co-immunoprecipitation approach the authors identified that the interactome of DNAJC7 is predominantly composed of proteins engaged in response to stress, but also that this interactome is enriched in RNA-binding proteins. The authors also created a DNAJC7 haploinsufficiency cellular model and show the resulting increased insolubility of HNRNPU protein which causes disruptions in its functionality as shown by analysis of its transcriptional targets. Finally, this study uses pharmacological agents to test the effect of decreased DNAJC7 expression on cell response to proteotoxic stress and finds evidence that DNAJC7 regulates the activation of Heat shock factor 1 (HSF1) protein upon stress conditions.

      Strengths

      (1)This study uses the best so far model to study the interactome and possible mechanism of action of DNAJC7 molecular chaperone in an iPSC-derived cellular model of motor neurons. Furthermore, the authors also looked into available transcriptome databases of ALS patient samples to further test whether their findings may yield relevance to pathology.

      (2) The extent to which the authors are explicit about the sample sizes, protocols, and statistical tests used throughout this manuscript, should be applauded. This will help the whole field in their efforts to reliably replicate the results in this study.

      Weaknesses

      (1) The most significant caveat of interactome experiments inherently comes from the method of choice. It is possible that by using the co-purification approach of DNAJC7 IP the resulting pool of binding partners is depleted in proteins that interact with DNAJC7 weakly or transiently. An alternative approach presumably more sensitive towards weaker binders could use the TurboID-based proximity-labeling method.

      (2) The authors mention in Results (and Figure 2D) that HNRNPA1 was identified as DNAJC7-interacting protein in their co-IP experiments, however, an identifier for this protein cannot be found in Figure 1C and Table S1 listing the proteomics results. Could the authors appropriately update Figure 1C and Table S1, or if HNRNPA1 wasn't really a hit then remove it from listed HNRNPs?

      (3) No further validation of DNAJC7-interacting proteins from the heat-shock protein (HSP) family. Current validation of mass spectrometry-identified proteins comes from IP-western blots with antibodies against HSPs. It would be interesting to further inspect possible interactions of these proteins by inspecting co-localization with immunocytochemistry.

      (4) Similarly, the observation of DNAJC7 haploinsufficiency causing an increase in HNRNPU insolubility could be also easily further confirmed by checking for the emergence of "puncta" under a fluorescence microscope, in addition to provided WB experiments from MN lysates.

      (5) I would like to recommend the authors to also provide with this manuscript a complete dataset (possibly in the form of a table, presented similarly as Table S1) resulting from experiments presented in Figures 2F and S2D. The information on upregulated and downregulated targets in their DNAJC7 haploinsufficiency model would be a valuable resource for the field and enable further investigations.

    1. Reviewer #1 (Public review):

      Summary:

      The study shows that Zizyphi spinosi semen (ZSS), particularly its non-extracted simple crush powder, has significant therapeutic effects on neurodegenerative diseases. It removes Aβ, tau, and α-synuclein oligomers, restores synaptophysin levels, enhances BDNF expression and neurogenesis, and improves cognitive and motor functions in mouse AD, FTD, DLB, and PD models. Additionally, ZSS powder reduces DNA oxidation and cellular senescence in normal-aged mice, increases synaptophysin, BDNF, and neurogenesis, and enhances cognition to levels comparable to young mice.

      Weaknesses:

      (1) While the study demonstrates that ZSS has protective effects across a wide range of animal models, including AD, FTD, DLB, PD, and both young and aged mice, it is broad and lacks a detailed investigation into the underlying mechanisms. This is the most significant concern.

      (2) The authors highlight that the non-extracted simple crush powder of ZSS shows more substantial effects than its hot water extract and extraction residue. However, the manuscript provides very limited data comparing the effects of these three extracts.

      (3) The authors have not provided a rationale for the dosing concentrations used, nor have they tested the effects of the treatment in normal mice to verify its impact under physiological conditions.

      (4) Regarding the assessment of cognitive function in mice, the authors only utilized the Morris Water Maze (MWM) test, which includes a five-day spatial learning training phase followed by a probe trial. The authors focused solely on the learning phase. However, it is relevant to note that data from the learning phase primarily reflects the learning ability of the mice, while the probe trial is more indicative of memory. Therefore, it is essential that probe trial data be included for a more comprehensive analysis. A justification should be included to explain why the latency of 1st is about 50s not 60s.

      (5) The BDNF immunohistochemical staining in the manuscript appears to be non-specific.

      (6) The central pathological regions in PD are the substantia nigra and striatum. Please replace the staining results from the cortex and hippocampus with those from these regions in the PD model.

    1. Reviewer #1 (Public review):

      Summary:

      This study aims to provide imaging methods for users of the field of human layer-fMRI. This is an emerging field with 240 papers published so far. Different than implied in the manuscript, 3T is well represented among those papers. E.g. see the papers below that are not cited in the manuscript. Thus, the claim on the impact of developing 3T methodology for wider dissemination is not justified. Specifically, because some of the previous papers perform whole brain layer-fMRI (also at 3T) in more efficient, and more established procedures.

      The authors implemented a sequence with lots of nice features. Including their own SMS EPI, diffusion bipolar pulses, eye-saturation bands, and they built their own reconstruction around it. This is not trivial. Only a few labs around the world have this level of engineering expertise. I applaud this technical achievement. However, I doubt that any of this is the right tool for layer-fMRI, nor does it represent an advancement for the field. In the thermal noise dominated regime of sub-millimeter fMRI (especially at 3T) it is established to use 3D readouts over 2D (SMS) readouts. While it is not trivial to implement SMS, the vendor implementations (as well as the CMRR and MGH implementations) are most widely applied across the majority of current fMRI studies already. The author's work on this does not serve any previous shortcomings in the field.

      The mechanism to use bi-polar gradients to increase the localization specificity is doubtful to me. In my understanding, killing the intra-vascular BOLD should make it less specific. Also, the empirical data do not suggest a higher localization specificity to me.

      Embedding this work in the literature of previous methods is incomplete. Recent trends of vessel signal manipulation with ABC or VAPER are not mentioned. Comparisons with VASO are outdated and incorrect.

      The reproducibility of the methods and the result is doubtful (see below).

      I don't think that this manuscript is in the top 50% of the 240 layer-fmri papers out there.

      3T layer-fMRI papers that are not cited:

      Taso, M., Munsch, F., Zhao, L., Alsop, D.C., 2021. Regional and depth-dependence of cortical blood-flow assessed with high-resolution Arterial Spin Labeling (ASL). Journal of Cerebral Blood Flow and Metabolism. https://doi.org/10.1177/0271678X20982382

      Wu, P.Y., Chu, Y.H., Lin, J.F.L., Kuo, W.J., Lin, F.H., 2018. Feature-dependent intrinsic functional connectivity across cortical depths in the human auditory cortex. Scientific Reports 8, 1-14. https://doi.org/10.1038/s41598-018-31292-x

      Lifshits, S., Tomer, O., Shamir, I., Barazany, D., Tsarfaty, G., Rosset, S., Assaf, Y., 2018. Resolution considerations in imaging of the cortical layers. NeuroImage 164, 112-120. https://doi.org/10.1016/j.neuroimage.2017.02.086

      Puckett, A.M., Aquino, K.M., Robinson, P.A., Breakspear, M., Schira, M.M., 2016. The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex. NeuroImage 139, 240-248. https://doi.org/10.1016/j.neuroimage.2016.06.019

      Olman, C.A., Inati, S., Heeger, D.J., 2007. The effect of large veins on spatial localization with GE BOLD at 3 T: Displacement, not blurring. NeuroImage 34, 1126-1135. https://doi.org/10.1016/j.neuroimage.2006.08.045

      Ress, D., Glover, G.H., Liu, J., Wandell, B., 2007. Laminar profiles of functional activity in the human brain. NeuroImage 34, 74-84. https://doi.org/10.1016/j.neuroimage.2006.08.020

      Huber, L., Kronbichler, L., Stirnberg, R., Ehses, P., Stocker, T., Fernández-Cabello, S., Poser, B.A., Kronbichler, M., 2023. Evaluating the capabilities and challenges of layer-fMRI VASO at 3T. Aperture Neuro 3. https://doi.org/10.52294/001c.85117

      Scheeringa, R., Bonnefond, M., van Mourik, T., Jensen, O., Norris, D.G., Koopmans, P.J., 2022. Relating neural oscillations to laminar fMRI connectivity in visual cortex. Cerebral Cortex. https://doi.org/10.1093/cercor/bhac154

      Strengths:

      See above. The authors developed their own SMS sequence with many features. This is important to the field. And does not leave sequence development work to view isolated monopoly labs. This work democratises SMS.<br /> The questions addressed here are of high relevance to the field: getting tools with good sensitivity, user-friendly applicability, and locally specific brain activity mapping is an important topic in the field of layer-fMRI.

      Weaknesses:

      (1) I feel the authors need to justify why flow-crushing helps localization specificity. There is an entire family of recent papers that aims to achieve higher localization specificity by doing the exact opposite. Namely, MT or ABC fRMRI aims to increase the localization specificity by highlighting the intravascular BOLD by means of suppressing non-flowing tissue. To name a few:

      Priovoulos, N., de Oliveira, I.A.F., Poser, B.A., Norris, D.G., van der Zwaag, W., 2023. Combining arterial blood contrast with BOLD increases fMRI intracortical contrast. Human Brain Mapping hbm.26227. https://doi.org/10.1002/hbm.26227.

      Pfaffenrot, V., Koopmans, P.J., 2022. Magnetization Transfer weighted laminar fMRI with multi-echo FLASH. NeuroImage 119725. https://doi.org/10.1016/j.neuroimage.2022.119725

      Schulz, J., Fazal, Z., Metere, R., Marques, J.P., Norris, D.G., 2020. Arterial blood contrast ( ABC ) enabled by magnetization transfer ( MT ): a novel MRI technique for enhancing the measurement of brain activation changes. bioRxiv. https://doi.org/10.1101/2020.05.20.106666

      Based on this literature, it seems that the proposed method will make the vein problem worse, not better. The authors could make it clearer how they reason that making GE-BOLD signals more extra-vascular weighted should help to reduce large vein effects.

      The empirical evidence for the claim that flow crushing helps with the localization specificity should be made clearer. The response magnitude with and without flow crushing looks pretty much identical to me (see Fig, 6d).<br /> It's unclear to me what to look for in Fig. 5. I cannot discern any layer patterns in these maps. It's too noisy. The two maps of TE=43ms look like identical copies from each other. Maybe an editorial error?

      The authors discuss bipolar crushing with respect to SE-BOLD where it has been previously applied. For SE-BOLD at UHF, a substantial portion of the vein signal comes from the intravascular compartment. So I agree that for SE-BOLD, it makes sense to crush the intravascular signal. For GE-BOLD however, this reasoning does not hold. For GE-BOLD (even at 3T), most of the vein signal comes from extravascular dephasing around large unspecific veins and the bipolar crushing is not expected to help with this.

      (2) The bipolar crushing is limited to one single direction of flow. This introduces a lot of artificial variance across the cortical folding pattern. This is not mentioned in the manuscript. There is an entire family of papers that perform layer-fmri with black-blood imaging that solves this with a 3D contrast preparation (VAPER) that is applied across a longer time period, thus killing the blood signal while it flows across all directions of the vascular tree. Here, the signal cruising is happening with a 2D readout as a "snap-shot" crushing. This does not allow the blood to flow in multiple directions.<br /> VAPER also accounts for BOLD contaminations of larger draining veins by means of a tag-control sampling. The proposed approach here does not account for this contamination.

      Chai, Y., Li, L., Huber, L., Poser, B.A., Bandettini, P.A., 2020. Integrated VASO and perfusion contrast: A new tool for laminar functional MRI. NeuroImage 207, 116358. https://doi.org/10.1016/j.neuroimage.2019.116358

      Chai, Y., Liu, T.T., Marrett, S., Li, L., Khojandi, A., Handwerker, D.A., Alink, A., Muckli, L., Bandettini, P.A., 2021. Topographical and laminar distribution of audiovisual processing within human planum temporale. Progress in Neurobiology 102121. https://doi.org/10.1016/j.pneurobio.2021.102121

      If I would recommend anyone to perform layer-fMRI with blood crushing, it seems that VAPER is the superior approach. The authors could make it clearer why users might want to use the unidirectional crushing instead.

      (3) The comparison with VASO is misleading.<br /> The authors claim that previous VASO approaches were limited by TRs of 8.2s. The authors might be advised to check the latest literature of the last years.<br /> Koiso et al. has performed whole brain layer-fMRI VASO at 0.8mm at 3.9 seconds (with reliable activation) and 2.7 seconds (with unconvincing activation pattern, though), and 2.3 (without activation).<br /> Also, whole brain layer-fMRI BOLD at 0.5mm and 0.7mm has been previously performed by the Juelich group at TRs of 3.5s (their TR definition is 'fishy' though).

      Koiso, K., Müller, A.K., Akamatsu, K., Dresbach, S., Gulban, O.F., Goebel, R., Miyawaki, Y., Poser, B.A., Huber, L., 2023. Acquisition and processing methods of whole-brain layer-fMRI VASO and BOLD: The Kenshu dataset. Aperture Neuro 34. https://doi.org/10.1101/2022.08.19.504502

      Yun, S.D., Pais‐Roldán, P., Palomero‐Gallagher, N., Shah, N.J., 2022. Mapping of whole‐cerebrum resting‐state networks using ultra‐high resolution acquisition protocols. Human Brain Mapping. https://doi.org/10.1002/hbm.25855

      Pais-Roldan, P., Yun, S.D., Palomero-Gallagher, N., Shah, N.J., 2023. Cortical depth-dependent human fMRI of resting-state networks using EPIK. Front. Neurosci. 17, 1151544. https://doi.org/10.3389/fnins.2023.1151544

      The authors are correct that VASO is not advised as a turn-key method for lower brain areas, incl. Hippocampus and subcortex. However, the authors use this word of caution that is intended for inexperienced "users" as a statement that this cannot be performed. This statement is taken out of context. This statement is not from the academic literature. It's advice for the 40+ user base that want to perform layer-fMRI as a plug-and-play routine tool in neuroscience usage. In fact, sub-millimeter VASO is routinely being performed by MRI-physicists across all brain areas (including deep brain structures, hippocampus etc). E.g. see Koiso et al. and an overview lecture from a layer-fMRI workshop that I had recently attended: https://youtu.be/kzh-nWXd54s?si=hoIJjLLIxFUJ4g20&t=2401

      Thus, the authors could embed this phrasing into the context of their own method that they are proposing in the manuscript. E.g. the authors could state whether they think that their sequence has the potential to be disseminated across sites, considering that it requires slow offline reconstruction in Matlab?<br /> Do the authors think that the results shown in Fig. 6c are suggesting turn-key acquisition of a routine mapping tool? In my humble opinion it looks like random noise, with most of the activation outside the ROI (in white matter).

      (4) The repeatability of the results is questionable.<br /> The authors perform experiments about the robustness of the method (line 620). The corresponding results are not suggesting any robustness to me. In fact the layer profiles in Fig. 4c vs. Fig 4d are completely opposite. Location of peaks turn into locations of dips and vice versa.<br /> The methods are not described in enough detail to reproduce these results.<br /> The authors mention that their image reconstruction is done "using in-house MATLAB code" (line 634). They do not post a link to github, nor do they say if they share this code.

      It is not trivial to get good phase data for fMRI. The authors do not mention how they perform the respective coil-combination.<br /> No data are shared for reproduction of the analysis.

      (5) The application of NODRIC is not validated.<br /> Previous applications of NORDIC at 3T layer-fMRI have resulted in mixed success. When not adjusted for the right SNR regime it can result in artifactual reductions of beta scores, depending on the SNR across layers. The authors could validate their application of NORDIC and confirm that the average layer-profiles are unaffected by the application of NORDIC. Also, the NORDIC version should be explicitly mentioned in the manuscript.

      Akbari, A., Gati, J.S., Zeman, P., Liem, B., Menon, R.S., 2023. Layer Dependence of Monocular and Binocular Responses in Human Ocular Dominance Columns at 7T using VASO and BOLD (preprint). Neuroscience. https://doi.org/10.1101/2023.04.06.535924

      Knudsen, L., Guo, F., Huang, J., Blicher, J.U., Lund, T.E., Zhou, Y., Zhang, P., Yang, Y., 2023. The laminar pattern of proprioceptive activation in human primary motor cortex. bioRxiv. https://doi.org/10.1101/2023.10.29.564658

      Comments on revisions:

      Among all the concerns mentioned above, I think there is only one of the specific issues that was sufficiently addressed.<br /> The authors implemented a combination of three consecutive-dimensional flow crushers. Other concerns were not sufficiently addressed to change my confidence level of the study.<br /> - While the abstract is still focusing on the utility of using 3T, they do not give credit to early 3T layer-fMRI papers leading the way to larger coverage and connectivity applications.<br /> - While the author's choice of using custom SMS 2D readout is justified for them. I do not think that this very method will utilize widespread 3T whole brain connectivity experiments across the global 3T community. This lowers the impact of the paper.<br /> - The images in Fig. 5 are still suspiciously similar. To the level that the noise pattern outside the brain is identical across large parts of the maps with and without PR.<br /> - Maybe it's my ignorance, but I still do not agree why flow crushing focuses the local BOLD responses to small vessels.<br /> - While my feel of a misleading representation of the literature had been accompanied by explicit references, the authors claim that they cannot find them?!? Or claim that they are about something else (which they are not, in my viewpoint).<br /> Data and software are still not shared (not even example data, or nii data).

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Millard and colleagues investigated if the analgesic effect of nicotine on pain sensitivity, assessed with two pain models, is mediated by Peak Alpha Frequency (PAF) recorded with resting state EEG. The authors found indeed that nicotine (4 mg, gum) reduced pain ratings during phasic heat pain but not cuff pressor algometry compared to placebo conditions. Nicotine also increased PAF (globally). However, mediation analysis revealed that the reduction in pain ratings elicited by the phasic heat pain after taking nicotine was not mediated by the changes in PAF. Also, the authors only partially replicated the correlation between PAF and pain sensitivity at baseline (before nicotine treatment). At the group-level no correlation was found, but an exploratory analysis showed that the negative correlation (lower PAF, higher pain sensitivity) was present in males but not in females. The authors discuss the lack of correlation.<br /> In general, the study is rigorous, methodology is sound and the paper is well written. Results are compelling and sufficiently discussed.

      Strengths:

      Strengths of this study are the pre-registration, proper sample size calculation and data analysis. But also the presence of the analgesic effect of nicotine and the change in PAF.

      Weaknesses:

      It would even be more convincing if they had manipulated PAF directly.

    1. Reviewer #1 (Public review):

      Summary:

      This work investigated the role of CXXC-finger protein 1 (CXXC1) in regulatory T cells. CXXC1-bound genomic regions largely overlap with Foxp3-bound regions and regions with H3K4me3 histone modifications in Treg cells. CXXC1 and Foxp3 interact with each other, as shown by co-immunoprecipitation. Mice with Treg-specific CXXC1 knockout (KO) succumb to lymphoproliferative diseases between 3 to 4 weeks of age, similar to Foxp3 KO mice. Although the immune suppression function of CXXC1 KO Treg is comparable to WT Treg in an in vitro assay, these KO Tregs failed to suppress autoimmune diseases such as EAE and colitis in Treg transfer models in vivo. This is partly due to the diminished survival of the KO Tregs after transfer. CXXC1 KO Tregs do not have an altered DNA methylation pattern; instead, they display weakened H3K4me3 modifications within the broad H3K4me3 domains, which contain a set of Treg signature genes. These results suggest that CXXC1 and Foxp3 collaborate to regulate Treg homeostasis and function by promoting Treg signature gene expression through maintaining H3K4me3 modification.

      Strengths:

      Epigenetic regulation of Treg cells has been a constantly evolving area of research. The current study revealed CXXC1 as a previously unidentified epigenetic regulator of Tregs. The strong phenotype of the knockout mouse supports the critical role CXXC1 plays in Treg cells. Mechanistically, the link between CXXC1 and the maintenance of broad H3K4me3 domains is also a novel finding.

      Weaknesses:

      The authors addressed the reviewer's critiques fully in the revised manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Bohra et al. describes the indirect effects of ligand-dependent gene activation on neighboring non-target genes. The authors utilized single-molecule RNA-FISH (targeting both mature and intronic regions), 4C-seq, and enhancer deletions to demonstrate that the non-enhancer-targeted gene TFF3, located in the same TAD as the target gene TFF1, alters its expression when TFF1 expression declines at the end of the estrogen signaling peak. Since the enhancer does not loop with TFF3, the authors conclude that mechanisms other than estrogen receptor or enhancer-driven induction are responsible for TFF3 expression. Moreover, ERα intensity correlations show that both high and low levels of ERα are unfavorable for TFF1 expression. The ERa level correlations are further supported by overexpression of GFP-ERa. The authors conclude that transcriptional machinery used by TFF1 for its acute activation can negatively impact the TFF3 at peak of signaling but once, the condensate dissolves, TFF3 benefits from it for its low expression.

      Strengths:

      The findings are indeed intriguing. The authors have maintained appropriate experimental controls, and their conclusions are well-supported by the data.

      Weaknesses:

      There are some major and minor concerns that related to approach, data presentation and discussion. But the authors have greatly improved the manuscript during the revision work.

      Comments on latest version:

      The authors have done a lot of work for the revision. The manuscript has been greatly improved.

    1. Reviewer #1 (Public review):

      In this study, the authors developed a mathematical model to predict human biological ages using physiological traits. This model provides a way to identify environmental and genetic factors that impact aging and lifespan.

      Strength:

      (1) The topic addressed by the authors - human age predication using physiological traits - is an extremely interesting, important, and challenging question in the aging field. One of the biggest challenges is the lack of well-controlled data from a large number of humans. However, the authors took this challenge and tried their best to extract useful information from available data.<br /> (2) Some of the findings can provide valuable guidelines for future experimental design for human and animal studies. For example, it was found that this mathematical model can best predict age when all different organ and physiological systems are sampled. This finding makes scenes in general, but can be, and have been, neglected when people use molecular markers to predict age. Most of those studies have used only one molecular trait or different traits from one tissue.

      Weakness:

      (1) As I mentioned above, the Biobank data used here are not designed for this current study, so there are many limitations for model development using these data, e.g., missing data points and irrelevant measurements for aging. This is a common caveat for human studies and has been discussed by the authors.<br /> (2) There is no validation dataset to verify the proposed model. The authors suggested that human biological age can be predicted with a high accuracy using 12 simple physiological measurements. It will be super useful and convincing if another biobank dataset containing those 12 traits can be applied to the current model.

      Comments on revisions:

      In this revision, the authors improved the manuscript by adding discussion of two main weaknesses about human data limitation and model validation. My several other specific concerns and suggestions are all properly resolved.

    1. Reviewer #2 (Public review):

      The fledgling field of epitranscriptomics has encountered various technical roadblocks with implications as to the validity of early epitranscriptomics mapping data. As a prime example, the low specificity of (supposedly) modification-specific antibodies for the enrichment of modified RNAs, has been ignored for quite some time and is only now recognized for its dismal reproducibility (between different labs), which necessitates the development of alternative methods for modification detection. Furthermore, early attempts to map individual epitranscriptomes using sequencing-based techniques are largely characterized by the deliberate avoidance of orthogonal approaches aimed at confirming the existence of RNA modifications that have been originally identified.

      Improved methodology, the inclusion of various controls, and better mapping algorithms as well as the application of robust statistics for the identification of false-positive RNA modification calls have allowed revisiting original (seminal) publications whose early mapping data allowed making hyperbolic claims about the number, localization and importance of RNA modifications, especially in mRNA. Besides the existence of m6A in mRNA, the detectable incidence of RNA modifications in mRNAs has drastically dropped.

      As for m5C, the subject of the manuscript submitted by Zhou et al., its identification in mRNA goes back to Squires et al., 2012 reporting on >10.000 sites in mRNA of a human cancer cell line, followed by intermittent findings reporting on pretty much every number between 0 to > 100.000 m5C sites in different human cell-derived mRNA transcriptomes. The reason for such discrepancy is most likely of a technical nature. Importantly, all studies reporting on actual transcript numbers that were m5C-modified relied on RNA bisulfite sequencing, an NGS-based method, that can discriminate between methylated and non-methylated Cs after chemical deamination of C but not m5C. RNA bisulfite sequencing has a notoriously high background due to deamination artifacts, which occur largely due to incomplete denaturation of double-stranded regions (denaturing-resistant) of RNA molecules. Furthermore, m5C sites in mRNAs have now been mapped to regions that have not only sequence identity but also structural features of tRNAs. Various studies revealed that the highly conserved m5C RNA methyltransferases NSUN2 and NSUN6 do not only accept tRNAs but also other RNAs (including mRNAs) as methylation substrates, which in combination account for most of the RNA bisulfite-mapped m5C sites in human mRNA transcriptomes. Is m5C in mRNA only a result of the Star activity of tRNA or rRNA modification enzymes, or is their low stoichiometry biologically relevant?

      In light of the short-comings of existing tools to robustly determine m5C in transcriptomes, other methods, like DRAM-seq, aiming to map m5C independently of ex situ RNA treatment with chemicals, are needed to arrive at a more solid "ground state", from which it will be possible to state and test various hypotheses as to the biological function of m5C, especially in lowly abundant RNAs such as mRNA.

      Importantly, the identification of >10.000 sites containing m5C increases through DRAM-Seq, increases the number of potential m5C marks in human cancer cells from a couple of 100 (after rigorous post-hoc analysis of RNA bisulfite sequencing data) by orders of magnitude. This begs the question, whether or not the application of these editing tools results in editing artefacts overstating the number of actual m5C sites in the human cancer transcriptome.

      [Editors' note: earlier reviews have been provided here: https://doi.org/10.7554/eLife.98166.3.sa1; https://doi.org/10.7554/eLife.98166.2.sa1; https://doi.org/10.7554/eLife.98166.1.sa1]

    1. Reviewer #1 (Public review):

      Summary:

      Tamoxifen resistance is a common problem in partially ER-positive patients undergoing endocrine therapy, and this manuscript has important research significance as it is based on clinical practical issues. The manuscript discovered that the absence of FRMD8 in breast epithelial cells can promote the progression of breast cancer, thus proposing the hypothesis that FRMD8 affects tamoxifen resistance and validated this hypothesis through a series of experiments. The manuscript has certain theoretical reference value.

      Strengths:

      At present, research on the role of FRMD8 in breast cancer is very limited. This manuscript leverages the MMTV-Cre+;Frmd8fl/fl;PyMT mouse model to study the role of FRMD8 in tamoxifen resistance, and single-cell sequencing technology discovered the interaction between FRMD8 and ESR1. At the mechanistic level, this manuscript has demonstrated two ways in which FRMD8 affects ERα, providing some new insights into the development of ER-positive breast cancer in patients who are resistant to tamoxifen.

      Limitations:

      Whether FRMD8 can become a biomarker should be verified in large clinical samples or clinical data.

    1. Reviewer #1 (Public review):

      Summary:

      The article entitled "Pu.1/Spi1 dosage controls the turnover and maintenance of microglia in zebrafish and mammals" by Wu et al., identifies a role for the master myeloid developmental regulator Pu.1 in the maintenance of microglial populations in the adult. Using a non-homologous end joining knock-in strategy, the authors generated a pu.1 conditional allele in zebrafish, which reports wildtype expression of pu.1 with EGFP and truncated expression of pu.1 with DsRed after Cre-mediated recombination. When crossed to existing pu.1 and spi-b mutants, this approach allowed the authors to target a single allele for recombination and induce homozygous loss-of-function microglia in adults. This identified that although there is no short-term consequence to loss of pu.1, microglia lacking any functional copy of pu.1 are depleted over the course of months, even when spi-b is fully functional. The authors go on to identify reduced proliferation, increased cell death, and higher expression of tp53 in the pu.1 deficient microglia, as compared to the wild-type EGFP+ microglia. To extend these findings to mammals, the authors generated a conditional Pu.1 allele in mice and performed similar analyses, finding that loss of a single copy of Pu.1 resulted in similar long-term loss of Pu.1-deficient microglia. The conclusions of this paper are overall well supported by the data.

      Strengths:

      The genetic approaches here for visualizing the recombination status of an endogenous allele are very clever, and by comparing the turnover of wildtype and mutant cells in the same animal the authors can make very convincing arguments about the effect of chronic loss of pu.1. Likely this phenotype would be either very subtle or nonexistent without the point of comparison and competition with the wildtype cells.

      Using multiple species allows for more generalizable results, and shows conservation of the phenomena at play.

      The demonstration of changes to proliferation and cell death in concert with higher expression of tp53 is compelling evidence for the authors' argument.

      Weaknesses:

      This paper is very strong. It would benefit from further investigating the specific relationship between pu.1 and tp53 specifically. Does pu.1 interact with the tp53 locus? Specific molecular analysis of this interaction would strengthen the mechanistic findings.

    1. Reviewer #1 (Public review):

      Summary:

      It is well known that neurons in the medial prefrontal cortex (mPFC) are involved in higher cognitive functions such as executive planning, motivational processing, and internal state-mediated decision-making. These internal states often correlate with the emotional states of the brain. While several studies point to the role of mPFC in regulating behavior based on such emotional states, the diversity of information processing in its sub-populations remains a less explored territory. In this study, the authors try to address this gap by identifying and characterizing some of these sub-populations in mice using a combination of projection-specific imaging, function-based tagging of neurons, multiple behavioral assays, and ex-vivo patch clamp recordings.

      Strengths:

      The authors targeted mPFC projections to the nucleus accumbens (NAc) and basolateral amygdala (BLA). Using the open field task (OFT), the authors identified four relevant behavioral states as well as neurons active while the animal was in the center region ("center-ON neurons"). By characterizing single-unit activity and using dimensionality reduction, the authors show differentiated coding of behavioral events at both the projection and functional levels. They further substantiate this effect by showing higher sensitivity of mPFC-BLA center-ON neurons during time spent in the open arms of the elevated plus maze (EPM). The authors then pivoted to the three-chamber social interaction (SI) assay to show the different subsets of neurons encode preference for social stimulus over non-social. This reveals an interesting diversity in the function of these sub-populations on multiple levels. Lastly, the authors used the tube test as a manipulation of the anxiety state of mice and compared behavioral differences before/after the OFT and social interaction tasks. This experiment revealed that "losers" of the tube test spend less time in the center of the open field while "winners" show a stronger preference for the familiar mouse over the object. Using patch-clamp experiments, the authors also found that "winners" exhibit stronger synaptic transmission in the mPFC-NAc projection while "losers" exhibit stronger synaptic transmission in the mPFC-BLA projection. Given the popularity of the tube test assay in rank determination, this provides useful insights into possible effects on anxiety levels and synaptic plasticity. Overall, the many experiments performed by the authors reveal interesting differences in mPFC neurons relative to their involvement in high or low anxiety behaviors, social preference, and social rank.

      Weaknesses:

      The authors focused primarily on female mice without commenting on the effect that sex differences would have on their results. While the authors have identified relevant behavioral states across the various behavioral tasks, there is still a missing link between them and "emotional states" - the phrase used by them emphatically throughout the manuscript. The authors have neither provided adequate references to satisfy this gap nor shared any data pertaining to relevant readouts such as cortisol levels. Both the projection-specific recordings and patch-clamp experiments, including histology reports in the manuscript, would provide essential information for anyone trying to replicate the results, especially since it's known that sub-populations in the BLA and NAc can have vastly different functions. The population-level analysis in the manuscript requires more rigor to reduce bias and statistical controls for establishing the significance of their results. Lastly, the tube test is used as a manipulation of the "emotional state" in several of the experiments. While the tube test can cause a temporary spike in anxiety of the participating mice, it is not known to produce a sustained effect - unless there are additional interventions such as forced social defeat. Thus, additional controls for these experiments are essential to support claims based on changes in the emotional state of mice. Apart from the methodology, the manuscript could also be improved with the addition of clear scatter points in all the plots along with detailed measures of the statistical tests such as exact p values and size of groups being compared.

    1. Reviewer #1 (Public review):

      Summary:

      The authors in this study extensively investigate how telomere length (TL) regulates hTERT expression via non-telomeric binding of the telomere-associated protein TRF2. They conclusively show that TRF2 binding to long telomeres results in a reduction in its binding to the hTERT promoter. In contrast, short telomeres restore TRF2 binding in the hTERT promoter, recruiting repressor complexes like PRC2, and suppressing hTERT expression. The study presents several significant findings revealing a previously unknown mechanism of hTERT regulation by TRF2 in a TL-dependent manner

      Strengths:

      (1) A previously unknown mechanism linking telomere length and hTERT regulation through the non-telomeric TRF2 protein has been established strengthening the telomere biology understanding.

      (2) The authors used both cancer cell lines and iPSCs to showcase their hypothesis and multiple parameters to validate the role of TRF2 in hTERT regulation.

      (3) Comprehensive integration of the recent literature findings and implementation in the current study.

      (4) In vivo validation of the findings.

      (5) Rigorous controls and well-designed assays have been use.

      Weaknesses:

      (1) The authors should comment on the cell proliferation and morphology of the engineered cell lines with ST or LT.

      (2) Also, the entire study uses engineered cell lines, with artificially elongated or shortened telomeres that conclusively demonstrate the role of hTERT regulation by TRF2 in telomere-length dependent manner, but using ALT negative cell lines with naturally short telomere length vs those with long telomeres will give better perspective. Primary cells can also be used in this context.

      (3) The authors set up time-dependent telomere length changes by dox induction, which may differ from the gradual telomere attrition or elongation that occurs naturally during aging, disease progression, or therapy. This aspect should be explored.

      (4) How does the hTERT regulation by TRF2 in a TL-dependent manner affect the ETS binding on hTERT mutant promoter sites?

      (5) Stabilization of the G-quadruplex structures in ST and LT conditions along with the G4 disruption experimentation (demonstrated by the authors) will strengthen the hypothesis.

      (6) The telomere length and the telomerase activity are not very consistent (Figure 2A, and S1A, Figure 4B and S3). Please comment.

      (7) Please comment on the other telomere-associated proteins or regulatory pathways that might contribute to hTERT expression based on telomere length.

    1. for - Christine Wamsler - Lund University - homepage - from - youtube - Mindfulness World Community - Awareness, Care and Sustainability for Our Earth - https://hyp.is/GCUJ1APHEfCcr_vvv3lAFw/www.youtube.com/watch?v=CTUc_0GroGM

      research areas - sustainable cities - collaborative governance - city-citizen collaboration - citizen participation - sustainability and wellbeing - sustainability transformation - inner development goals - inner transformation - inner transition - existential sustainability

    1. Reviewer #1 (Public review):

      Summary:

      This paper introduces a new class of machine learning models for capturing how likely a specific nucleotide in a rearranged IG gene is to undergo somatic hypermutation. These models modestly outperform existing state-of-the-art efforts, despite having fewer free parameters. A surprising finding is that models trained on all mutations from non-functional rearrangements give divergent results from those trained on only silent mutations from functional rearrangements.

      Strengths:

      (1) The new model structure is quite clever and will provide a powerful way to explore larger models.

      (2) Careful attention is paid to curating and processing large existing data sets.

      (3) The authors are to be commended for their efforts to communicate with the developers of previous models and use the strongest possible versions of those in their current evaluation.

      Weaknesses:

      (1) 10x/single cell data has a fairly different error profile compared to bulk data. A synonymous model should be built from the same `briney` dataset as the base model to validate the difference between the two types of training data.

      (3) The decision to test only kernels of 7, 9, and 11 is not described. The selection/optimization of embedding size is not explained. The filters listed in Table 1 are not defined.

    1. Reviewer #1 (Public review):

      In this manuscript, Purzner and colleagues examine the role of Ezh2 in cerebellar development and tumorigenesis using animal models of SHH medulloblastoma (MB). While Ezh2 plays a relatively minor role in granule neuron development and SHH MB, the authors demonstrate that Ezh2 inhibition, when combined with enforced cell cycle exit, promotes MB cell differentiation and potentially reduces malignancy. Overall, this study is solid and provides valuable insights into Ezh2 regulation in cerebellar development and SHH-MB tumorigenesis.

      Strengths:

      The authors investigate the role of Ezh2 in granule neuronal differentiation during cerebellar development and medulloblastoma (MB) progression, integrating multi-omics for a comprehensive epigenetic analysis. The use of Ezh2 conditional knockout (cKO) mice and combination therapy with Ezh2 and CDK4/6 inhibitors shows a promising strategy to induce terminal differentiation in MB cells, with potential therapeutic implications. Additionally, analysis of human SHH-MB samples reveals that higher EZH2 expression correlates with worse survival, indicating the clinical relevance.

      Weaknesses:

      The study does not fully explore compensatory mechanisms of PRC2 given that the phenotype of Ezh2 conditional knockout (cKO) in GNP development and MB tumor formation is relatively mild.

    1. Reviewer #1 (Public review):

      Summary:

      This study provides valuable and comprehensive information about the SARS-CoV-2 seroprevalence during 2021 and 2022 in different regions of Bolivia. Moreover, data on immune responses against the SARS-CoV-2 variants based on neutralization tests denotes the presence of several virus variants circulating in the Bolivian population. Evidence for seroprevalence data provided by the authors is solid, across the study period, while data regarding variant circulation is limited to the early stages of the pandemic.

      Strengths:

      The major strength of this study is that it provided nationwide seroprevalence estimates from infection and/or vaccination based on antibodies against both spike and the nucleocapsid protein in a large representative sample of sera collected at two time points from all departments of Bolivia, gaining insight into COVID-19 epidemiology. On the other hand, data from virus neutralization assays inferred the circulation during the study period of four SARS-CoV-2 variants in the population. Overall, the study results provide an overview of the level of viral transmission and vaccination and insights into the spread across the country of SARS-CoV-2 variants.

      Weaknesses:

      The assessment of a Lambda variant that circulated in several neighboring countries (Peru, Chile, and Argentina), which had a significant impact on the COVID-19 pandemic in the region, may have strengthened the study to contrast Gamma spread. In addition, even though neutralizing antibodies can certainly reveal previous infections of SARSCOV2 variants in the population, it is of limited value to infer from this information some potential timing estimates of specific variant circulation, considering the heterogeneous effects that past infections, vaccinations, or a combination of both could have on the level of variant-specific neutralizing antibodies and/or their cross-neutralization capacity.

      An appraisal of whether the authors achieved their aims, and whether the results support their conclusions.

      The conclusions of this paper are well supported by data, particularly regarding seroprevalence that reliably reflects the epidemiology of COVID-19 in Bolivia, and seroprevalence trends in other low- and middle-income countries.

      A discussion of the likely impact of the work on the field, and the utility of the methods and data to the community.

      Since this is the first study that has been conducted to assess indicators of immunity against SARS-CoV-2 in the population of Bolivia at a nationwide scale, seroprevalence data provided by geographic regions at two time points can be useful as a reference for potential retrospective global meta-analysis and to further explore and compare the risk factors for infection, variant distribution, and the impact on infection and vaccination, gaining deeper insights into understanding the evolution of the COVID-19 pandemic in Bolivia and in the region.

    1. Reviewer #1 (Public review):

      Summary:

      This study demonstrates the significant role of secretory leukocyte protease inhibitor (SLPI) in regulating B. burgdorferi-induced periarticular inflammation in mice. They found that SLPI-deficient mice showed significantly higher B. burgdorferi infection burden in ankle joints compared to wild-type controls. This increased infection was accompanied by infiltration of neutrophils and macrophages in periarticular tissues, suggesting SLPI's role in immune regulation. The authors strengthened their findings by demonstrating a direct interaction between SLPI and B. burgdorferi through BASEHIT library screening and FACS analysis. Further investigation of SLPI as a target could lead to valuable clinical applications.

      The conclusions of this paper are mostly well supported by data. And the authors were responsive to the reviewers' comments.

      Comments on revised version:

      The authors have thoroughly addressed the previous concerns and improved the manuscript. The revisions have strengthened both the conclusions. I have no additional suggestions for improvement and recommend this manuscript for publication.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, authors have tried to repurpose cipargamin (CIP), a known drug against Plasmodium and Toxoplasma against Babesia. They proved the efficacy of CIP on Babesia in nanomolar range. In silico analyses revealed the drug resistance mechanism through a single amino acid mutation at amino acid position 921 on the ATP4 gene of Babesia. Overall, the conclusions drawn by the authors are well justified by their data. I believe this study opens up a novel therapeutic strategy against babesiosis.

      Strengths:

      Authors have carried out a comprehensive study. All the experiments performed were carried out methodically and logically.

    1. Reviewer #1 (Public review):

      Summary:

      As our understanding of the immune system increases it becomes clear that murine models of Immunity cannot always prove an accurate model system for human immunity. However, mechanistic studies in humans are necessarily limited. To bridge this gap many groups have worked on developing humanised mouse models in which human immune cells are introduced into mice allowing their fine manipulation. However, since human immune cells will attack murine tissues, it has proven complex to establish a human-like immune system in mice. To help address this Vecchione et al, have previously developed several models using human cell transfer into mice with or without human thymic fragments that allow negative selection of autoreactive cells. In this report they focus on the examination of the function of the B-helper CD4 T-cell subsets T-follicular helper (Tfh) and T-peripheral helper (Tph) cells. They demonstrate that these cells are able to drive both autoantibody production and can also induce B-cell independent autoimmunity.

      Strengths:

      A strength of this paper is that currently there is no well-established model for Tfh or Tph in HIS mice and that currently there is no clear murine Tph equivalent making new models for the study of this cell type of value. Equally, since many HIS mice struggle to maintain effective follicular structures Tfh models in HIS mice are not well established giving additional value to this model.

      Weaknesses:

      A weakness of the paper is that the models seem to lack a clear ability to generate germinal centres in which Tfh may exert some of their key functions. In some cases, the definition of Tph-like does not seem to differentiate well between Tph and highly activated CD4 T-cells in general, partly since the literature around these cells has not fully resolved this point.

    1. Reviewer #1 (Public review):

      This paper by Ionescu et al. applies novel brain connectivity measures based on fMRI and serotonin PET both at baseline and following ecstasy use in rats. There are multiple strengths to this manuscript. First, the use of connectivity measures using temporal correlations of 11C-DASB PET, especially when combined with resting state fMRI, is highly novel and powerful. The effects of ecstasy on molecular connectivity of the serotonin network and salience network are also quite intriguing.

      The authors discussed their use of high-dose (1.3%) isolfurane in the context of a recent consensus paper on rat fMRI (Grandjean et al., "A Consensus Protocol for Functional Connectivity Analysis in the Rat Brain.") which found that medetomidine combined with low dose isoflurane provided optimal control of physiology and fMRI signal. The authors acknowledge their suboptimal anaesthetic regimen, which was chosen before the publication of the consensus paper. This likely explains, in part, why fMRI ICs in figure 2A appear fairly restricted.

      The PET ICs appear less bilateral than the fMRI ICs, which the authors attribute to lower SNR.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript aimed to study the role of Rudhira (also known as Breast Carcinoma Amplified Sequence 3), an endothelium-restricted microtubules-associated protein, in regulating of TGFβ signaling. The authors demonstrate that Rudhira is a critical signaling modulator for TGFβ signaling by releasing Smad2/3 from cytoskeletal microtubules and how that Rudhira is a Smad2/3 target gene. Taken together, the authors provide a model of how Rudhira contributes to TGFβ signaling activity to stabilize the microtubules, which is essential for vascular development.

      Strengths:

      The study used different methods and techniques to achieve aims and support conclusions, such as Gene Ontology analysis, functional analysis in culture, immunostaining analysis, and proximity ligation assay. This study provides unappreciated additional layer of TGFβ signaling activity regulation after ligand-receptor interaction.

      Weaknesses:

      (1) It is unclear how current findings provide a better understanding of Rudhira KO mice, which the authors published some years ago.

      (2) Why do they use HEK cells instead of SVEC cells in Fig 2 and 4 experiments?

      (3) A model shown in Fig 5E needs improvement to grasp their findings easily.

    1. Reviewer #2 (Public review):

      Summary:

      The authors provide a compelling method for characterizing communication within brain networks. The study engages important, biologically pertinent, concerns related to the balance of dynamics and structure in assessing the focal points of brain communication. The methods are clear, and seem broadly applicable, although they require some forethought about data and modeling choices.

      Strengths:

      The study is well-developed, providing overall clear exposition of relevant methods, as well as in-depth validation of the key network structural and dynamical assumptions. The questions and concerns raised in reading the text were always answered in time, with straightforward figures and supplemental materials.

      Weaknesses:

      In earlier drafts of the work, the narrative structure at times conflicts with the interpretability, however, this was greatly improved during revisions. The only remaining limitation for broad applicability lies in the full observability required in the current paradigm, however, the authors point at avenues for relaxing this assumption, which could be fruitful next steps for researchers aiming to deploy this work to EM or two-photon based datasets.

    1. Reviewer #1 (Public review):

      Summary:

      The paper addresses the problem of optimising the mapping of serum antibody responses against a known antigen. It uses the croEM analysis of polyclonal Fabs to antibody genes, with the ultimate aim of getting complete and accurate antibody sequences. The method, commonly termed EMPEM, is becoming increasingly used to understand responses in convalescent sera and optimisation of the workflows and provision of openly available tools is of genuine value to a growing number of people.

      The authors do not address the experimental aspects of the methods and do not present novel computational tools, rather they use a series of established computational methods to provide workflows that simplify the interpretation of the EM map in terms of the sequences of dominant antibodies.

      Strengths:

      The paper is well-written and clearly argued. The tests constructed seem appropriate and fair and demonstrate that the workflow works pretty well. For a small subset (~17%) of the EMPEM maps analysed the workflow was able to get convincing assignments of the V-genes.

    1. Reviewer #2 (Public review):

      Summary:

      Mehta et al., in constructing E. coli strains unable to synthesize polyamines, noted that strains deficient in putrescine synthesis showed decreased movement on semisolid agar. They show that strains incapable of synthesizing putrescine have decreased expression of Type I pilin and, hence, decreased ability to perform pilin-dependent surface motility.

      Strengths:

      The authors characterize the specific polyamine pathways that are important for this phenomenon. RNAseq provides a detailed overview of gene expression in the strain lacking putrescine. They rule out potential effects of pilin phase variation on the phenotype. The data suggest homeostatic control of polyamine synthesis and metabolic changes in response to putrescine.

      Weaknesses:

      The authors do not, in the end, uncover the molecular details of pilin expression per se, but that would require significantly more analyses and data; the mechanisms of pilin regulation are complicated and still not completely understood.

    1. Reviewer #1 (Public review):

      Summary:

      In this interesting and original paper, the authors examine the effect that heat stress can have on the ability of bacterial cells to evade infection by lytic bacteriophages. Briefly, the authors show that heat stress increases the tolerance of Klebsiella pneumoniae to infection by the lytic phage Kp11. They also argue that this increased tolerance facilitates the evolution of genetically encoded resistance to the phage. In addition, they show that heat can reduce the efficacy of phage therapy. Moreover, they define a likely mechanistic reason for both tolerance and genetically encoded resistance. Both lead to a reorganization of the bacterial cell envelope, which reduces the likelihood that phage can successfully inject their DNA.

      Strengths:

      I found large parts of this paper well-written and clearly presented. I also found many of the experiments simple yet compelling. For example, the experiments described in Figure 3 clearly show that prior heat exposure can affect the efficacy of phage therapy. In addition, the experiments shown in Figures 4 and 6 clearly demonstrate the likely mechanistic cause of this effect. The conceptual Figure 7 is clear and illustrates the main ideas well. I think this paper would work even without its central claim, namely that tolerance facilitates the evolution of resistance. The reason is that the effect of environmental stressors on stress tolerance has to my knowledge so far only been shown for drug tolerance, not for tolerance to an antagonistic species.

      Weaknesses:

      I did not detect any weaknesses that would require a major reorganization of the paper, or that may require crucial new experiments. However, the paper needs some work in clarifying specific and central conclusions that the authors draw. More specifically, it needs to improve the connection between what is shown in some figures, how these figures are described in the caption, and how they are discussed in the main text. This is especially glaring with respect to the central claim of the paper from the title, namely that tolerance facilitates the evolution of resistance. I am sympathetic to that claim, especially because this has been shown elsewhere, not for phage resistance but for antibiotic resistance. However, in the description of the results, this is perhaps the weakest aspect of the paper, so I'm a bit mystified as to why the authors focus on this claim. As I mentioned above, the paper could stand on its own even without this claim.

      More specific examples where clarification is needed:

      (1) A key figure of the paper seems to be Figure 2D, yet it was one of the most confusing figures. This results from a mismatch between the accompanying text starting on line 92 and the figure itself. The first thing that the reader notices in the figure itself is the huge discrepancy between the number of viable colonies in the absence of phage infection at the two-hour time point. Yet this observation is not even mentioned in the main text. The exclusive focus of the main text seems to be on the right-hand side of the figure, labeled "+Phage". It is from this right-hand panel that the authors seem to conclude that heat stress facilitates the evolution of resistance. I find this confusing, because there is no difference between the heat-treated and non-treated cells in survivorship, and it is not clear from this data that survivorship is caused by resistance, not by tolerance/persistence. (The difference between tolerance and resistance has only been shown in the independent experiments of Figure 1B.) Figure 2F supports the resistance claim, but it is not one of the strongest experiments of the paper, because the author simply only used "turbidity" as an indicator of resistance. In addition, the authors performed the experiments described therein at small population sizes to avoid the presence of resistance mutations. But how do we know that the turbidity they describe does not result from persisters?

      I see three possibilities to address these issues. First, perhaps this is all a matter of explaining and motivating this particular experiment better. Second, the central claim of the paper may require additional experiments. For example, is it possible to block heat induced tolerance through specific mutations, and show that phage resistance does not evolve as rapidly if tolerance is blocked? A third possibility is to tone down the claim of the paper, and make it about heat tolerance rather than the evolution of heat resistance.

      A minor but general point here is that in Figure 2D and in other figures, the labels "-phage" and "+phage" do not facilitate understanding, because they suggest that cells in the "-phage" treatment have not been exposed to phage at all, but that is not the case. They have survived previous phage treatment and are then replated on media lacking phage.

      (2) Another figure with a mismatch between text and visual materials is Figure 5, specifically Figures 5B-F. The figure is about two different mutants, and it is not even mentioned in the text how these mutants were identified, for example in different or the same replicate populations. What is more, the two mutants are not discussed at all in the main text. That is, the text, starting on line 221 discusses these experiments as if there was only one mutant. This is especially striking as the two mutants behave very differently, as, for example, in Figure 5C. Implicitly, the text talks about the mutant ending in "...C2", and not the one ending in "...C1". To add to the confusion, the text states that the (C2) mutant shows a change in the pspA gene, but in Figure 5f, it is the other (undiscussed) mutant that has a mutation in this gene. Only pspA is discussed further, so what about the other mutants? More generally, it is hard to believe that these were the only mutants that occurred in the genome during experimental evolution. It would be useful to give the reader a 2-3 sentence summary of the genetic diversity that experimental evolution generated.

    1. Reviewer #1 (Public review):

      This manuscript presents an interesting exploration of the potential activation mechanisms of DLK following axonal injury. While the experiments are beautifully conducted and the data are solid, I feel that there is insufficient evidence to fully support the conclusions made by the authors.

      In this manuscript, the authors exclusively use the puc-lacZ reporter to determine the activation of DLK. This reporter has been shown to be induced when DLK is activated. However, there is insufficient evidence to confirm that the absence of reporter activation necessarily indicates that DLK is inactive. As with many MAP kinase pathways, the DLK pathway can be locally or globally activated in neurons, and the level of DLK activation may depend on the strength of the stimulation. This reporter might only reflect strong DLK activation and may not be turned on if DLK is weakly activated.

      As noted by the authors, DLK has been implicated in both axon regeneration and degeneration. Following axotomy, DLK activation can lead to the degeneration of distal axons, where synapses are located. This raises an important question: how is DLK activated in distal axons? The authors might consider discussing the significance of this "synapse connection-dependent" DLK activation in the broader context of DLK function and activation mechanisms.

    1. Reviewer #1 (Public review):

      Summary:

      The authors of this study set out to find RNA binding proteins in the CNS in cell-type specific sequencing data and discover that the cardiomyopathy-associated protein RBM20 is selectively expressed in olfactory bulb glutamatergic neurons and PV+ GABAergic neurons. They make an HA-tagged RBM20 allele to perform CLIP-seq to identify RBM20 binding sites and find direct targets of RBM20 in olfactory bulb glutmatergic neurons. In these neurons, RBM20 binds intronic regions. RBM20 has previously been implicated in splicing, but when they selectively knockout RBM20 in glutamatergic neurons they do not see changes in splicing, but they do see changes in RNA abundance, especially of long genes with many introns, which are enriched for synapse-associated functions. These data show that RBM20 has important functions in gene regulation in neurons, which was previously unknown, and they suggest it acts through a mechanism distinct from what has been studied before in cardiomyocytes.

      Strengths:

      The study finds expression of the cardiomyopathy-associated RNA binding protein RBM20 in specific neurons in the brain, opening new windows into its potential functions there.

      The study uses CLIP-seq to identify RBM20 binding RNAs in olfactory bulb neurons.

      Conditional knockout of RBM20 in glutamatergic or PV neurons allows the authors to detect mRNA expression that is regulated by RBM20.

      The data include substantial controls and quality control information to support the rigor of the findings.

      Weaknesses:

      The authors do not fully identify the mechanism by which RBM20 acts to regulate RNA expression in neurons, though they do provide data suggesting that neuronal RBM20 does not regulate alternate splicing in neurons, which is an interesting contrast to its proposed mechanism of function in cardiomyocytes. Discovery of the RNA regulatory functions of RBM20 in neurons is left as a question for future studies.

      The study does not identify functional consequences of the RNA changes in the conditional knockout cells, so this is also a question for the future.

    1. Reviewer #1 (Public review):

      Summary:

      The aim of this paper is to develop a simple method to quantify fluctuations in the partitioning of cellular elements. In particular, they propose a flow-cytometry-based method coupled with a simple mathematical theory as an alternative to conventional imaging-based approaches.

      Strengths:

      The approach they develop is simple to understand and its use with flow-cytometry measurements is clearly explained. Understanding how the fluctuations in the cytoplasm partition vary for different kinds of cells is particularly interesting.

      Weaknesses:

      The theory only considers fluctuations due to cellular division events. This seems a large weakness because it is well known that fluctuations in cellular components are largely affected by various intrinsic and extrinsic sources of noise and only under particular conditions does partitioning noise become the dominant source of noise.

    1. Reviewer #1 (Public review):

      Summary:

      This study was motivated by the general claim that delayed development of cognitive control can be beneficial for learning, and investigated this claim in the specific domain of conceptual development. A comprehensive set of computational model simulations showed that delaying the onset of semantic control produces faster learning with only minimal effects on conceptual abstraction. The simulations also showed that control was most effective at intermediate levels between modality-specific "spokes" and the multimodal "hub". A meta-analysis of developmental data was consistent with the claim of delayed onset of semantic control: young children show substantially better semantic knowledge than the ability to constrain that knowledge to a specific task at hand.

      Strengths:

      The computational modelling is based on a very well-established model of semantic cognition, which means that the simulations allow exploring the specific issues under investigation here in the context of a model that accounts for a very large set of semantic cognition phenomena. The simulations are comprehensive - manipulating different parameters of the model provides important insights into how (and why) it works.

      In addition to simulations exploring delayed maturation, there is an exploration of where semantic control is most effective, yielding the interesting result that control is most effective when it targets intermediate levels of semantic processing. To my knowledge, this is a novel finding and a concrete prediction for future testing.

      The meta-analysis is designed in a very clever way that allows extracting evidence of semantic control from a large body of prior work. The results are quite clear and compelling in showing that semantic knowledge is acquired before children are able to use task demands to constrain the use of that knowledge.

      Weaknesses:

      Computational models of cognition inherently require simplification in order to focus on the mechanisms under investigation. However, it is also important to keep these simplifications in mind because they limit the generality of the inferences that can be made from the simulation results. Two aspects are important in this context:

      (1) The multimodal structure was orthogonal to the surface similarity structure of the concepts to be learned. It is certainly true that multimodal structure does not perfectly mirror surface similarity, but closely related things tend to be perceptually similar. There are exceptions (whales, penguins, etc.), but they are *exceptional*, not typical. It may be that the somewhat extreme dissociation of multimodal and surface similarity structures creates demands that are not faced in natural conceptual development.

      (2) Much of the benefit of delayed semantic control seems to be because the model is not penalised for activating task-irrelevant features. This blurs the distinction between being aware of a feature and making a response based on that feature. A full model that also includes a response layer could become a lot more complicated and more difficult to understand, so maybe there is an advantage to using a simpler architecture.

      In addition, there is a bit of a misalignment between the model simulations and the meta-analysis. In the model, there are distinct modality-specific "spokes" and control is required in order to focus on modality/spoke in a task-appropriate way. The meta-analysis does not compare a task-defined selection of a modality; it compares the selection of taxonomic vs thematic relations, both of which are multimodal. One way to resolve this is to say that taxonomic and thematic relations are also represented in distinct sub-systems of semantic knowledge and semantic control is needed to select between them in a task-appropriate way.

      This is particularly relevant to the inference at the bottom of p. 38: "taxonomic and thematic relationships ...[are]... both being encoded within the same system of representation", which seems in direct contradiction to the present results, or at least to the logic of combining these simulations with this meta-analysis. The simulations are based on semantic control being used to select/constrain the correct distinct sub-system (modality-specific spoke); the meta-analysis is based on semantic control being used to select/constrain the correct relationship type. If these two things are analogous in some way, then the relationship type has to be something like a distinct sub-system.

    1. Reviewer #1 (Public review):

      Summary:

      Pavel et al. analyzed a cohort of atrial fibrillation (AF) patients from the University of Illinois at Chicago, identifying TTN truncating variants (TTNtvs) and TTN missense variants (TTNmvs). They reported a rare TTN missense variant (T32756I) associated with adverse clinical outcomes in AF patients. To investigate its functional significance, the authors modeled the TTN-T32756I variant using human induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs). They demonstrated that mutant cells exhibit aberrant contractility, increased activity of the cardiac potassium channel KCNQ1 (Kv7.1), and dysregulated calcium homeostasis. Interestingly, these effects occurred without compromising sarcomeric integrity. The study further identified increased binding of the titin-binding protein Four-and-a-Half Lim domains 2 (FHL2) with KCNQ1 and its modulatory subunit KCNE1 in the TTN-T32756I iPSC-aCMs.

      Strengths:

      This work has translational potential, suggesting that targeting KCNQ1 or FHL2 could represent a novel therapeutic strategy for improving cardiac function. The findings may also have broader implications for treating patients with rare, disease-causing variants in sarcomeric proteins and underscore the importance of integrating genomic analysis with experimental evidence to advance AF research and precision medicine.

      Weaknesses:

      (1) Variant Identification: It is unclear how the TTN missense variant (T32756I) was identified using REVEL, as none of the patients' parents reportedly carried the mutation or exhibited AF symptoms. Are there other TTN variants identified in the three patients carrying TTN-T32756I? Clarification on this point is necessary.

      (2) Patient-Specific iPSC Lines: Since the TTN-T32756I variant was modeled using only one healthy iPSC line, it is unclear whether patient-specific iPSC-derived atrial cardiomyocytes would exhibit similar AF-related phenotypes. This limitation should be addressed.

      (3) Hypertension as a Confounding Factor: The three patients carrying TTN-T32756I also have hypertension. Could the hypertension associated with this variant contribute secondarily to AF? The authors should discuss or rule out this possibility.

      (4) FHL2 and KCNQ1-KCNE1 Interaction: Immunostaining data demonstrating the colocalization of FHL2 with the KCNQ1-KCNE1 (MinK) complex in TTN-T32756I iPSC-aCMs are needed to strengthen the mechanistic findings.

      (5) Functional Characterization of FHL2-KCNQ1-KCNE1 Interaction: Additional functional assays are necessary to characterize the interaction between FHL2 and the KCNQ1-KCNE1 complex in TTN-T32756I iPSC-aCMs to further validate the proposed mechanism.

    1. Reviewer #1 (Public review):

      Polymers of orthophosphate of varying lengths are abundant in prokaryotes and some eukaryotes where they regulate many cellular functions. Though they exist in metazoans, few tools exist to study their function. This study documents the development of tools to extract, measure, and deplete inorganic polyphosphates in *Drosophila*. Using these tools, the authors show:

      (1) that polyP levels are negligible in embryos and larvae of all stages while they are feeding. They remain high in pupae but their levels drop in adults.

      (2) that many cells in tissues such as the salivary glands, oocytes, haemocytes, imaginal discs, optic lobe, muscle, and crop, have polyP that is either cytoplasmic or nuclear (within the nucleolus).

      (3) that polyP is necessary in plasmatocytes for blood clotting in Drosophila.

      (4) that ployP controls the timing of eclosion.

      The tools developed in the study are innovative, well-designed, tested, and well-documented. I enjoyed reading about them and I appreciate that the authors have gone looking for the functional role of polyP in flies, which hasn't been demonstrated before. The documentation of polyP in cells is convincing as its role in plasmatocytes in clotting. Its control of eclosion timing, however, could result from non-specific effects of expressing an exogenous protein in all cells of an animal. The RNAseq experiments and their associated analyses on polyP-depleted animals and controls have not been discussed in sufficient detail. In its current form, the data look to be extremely variable between replicates and I'm therefore unsure of how the differentially regulated genes were identified.

      It is interesting that no kinases and phosphatases have been identified in flies. Is it possible that flies are utilising the polyP from their gut microbiota? It would be interesting to see if these signatures go away in axenic animals.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript uses a diverse isolate collection of Streptococcus pneumoniae from hospital patients in the Netherlands to understand the population-level genetic basis of growth rate variation in this pathogen, which is a key determinant of S. pneumoniae within-host fitness. Previous efforts have studied this phenomenon in strain-specific comparisons, which can lack the statistical power and scope of population-level studies. The authors collected a rigorous set of in vitro growth data for each S. pneumoniae isolate and subsequently paired growth curve analysis with whole-genome analyses to identify how phylogenetics, serotype, and specific genetic loci influence in vitro growth. While there were noticeable correlations between capsular serotype and phylogeny with growth metrics, they did not identify specific loci associated with altered in vitro growth, suggesting that these phenotypes are controlled by the collective effect of the entire genetic background of a strain. This is an important finding that lays the foundation for additional, more highly-powered studies that capture more S. pneumoniae genetic diversity to identify these genetic contributions.

      Strengths:

      (1) The authors were able to completely control the experimental and genetic analyses to ensure all isolates underwent the same analysis pipeline to enhance the rigor of their findings.

      (2) The isolate collection captures an appreciable amount of S. pneumoniae diversity and, importantly, enables disentangling the contributions of the capsule and phylogenetic background to growth rates.

      (3) This study provides a population-level, rather than strain-specific, view of how genetic background influences the growth rate in S. pneumoniae. This is an advance over previous studies that have only looked at smaller sets of strains.

      (4) The methods used are well-detailed and robust to allow replication and extension of these analyses. Moreover, the manuscript is very well written and includes a thoughtful and thorough discussion of the strengths and limitations of the current study.

      Weaknesses:

      (1) As acknowledged by the authors, the genetic diversity and sample size of this newly collected isolate set are still limited relative to the known global diversity of S. pneumoniae, which evidently limits the power to detect loci with smaller/combinatorial contributions to growth rate (and ultimately infection).

      (2) The in vitro growth data is limited to a single type of rich growth medium, which may not fully reflect the nutritional and/or selective pressures present in the host.

      (3) The current study does not use genetic manipulation or in vitro/in vivo infection models to experimentally test whether alteration of growth rates as observed in this study is linked to virulence or successful infection. The availability of a naturally diverse collection with phylogenetic and serotype combinations already identified as interesting by the authors provides a strong rationale for wet-lab studies of these phenotypes.

    1. Reviewer #1 (Public review):

      Summary:

      This work integrates two timepoints from the Adolescent Brain Cognitive Development (ABCD) Study to understand how neuroimaging, genetic, and environmental data contribute to the predictive power of mental health variables in predicting cognition in a large early adolescent sample. Their multimodal and multivariate prediction framework involves a novel opportunistic stacking model to handle complex types of information to predict variables that are important in understanding mental health-cognitive performance associations.

      Strengths:

      The authors are commended for incorporating and directly comparing the contribution of multiple imaging modalities (task fMRI, resting state fMRI, diffusion MRI, structural MRI), neurodevelopmental markers, environmental factors, and polygenic risk scores in a novel multivariate framework (via opportunistic stacking), as well as interpreting mental health-cognition associations with latent factors derived from partial least squares. The authors also use a large well-characterized and diverse cohort of adolescents from the ABCD Study. The paper is also strengthened by commonality analyses to understand the shared and unique contribution of different categories of factors (e.g., neuroimaging vs mental health vs polygenic scores vs sociodemographic and adverse developmental events) in explaining variance in cognitive performance

      Weaknesses:

      The paper is framed with an over-reliance on the RDoC framework in the introduction, despite deviations from the RDoC framework in the methods. The field is also learning more about RDoC's limitations when mapping cognitive performance to biology. The authors also focus on a single general factor of cognition as the core outcome of interest as opposed to different domains of cognition. The authors could consider predicting mental health rather than cognition. Using mental health as a predictor could be limited by the included 9-11 year age range at baseline (where many mental health concerns are likely to be low or not well captured), as well as the nature of how the data was collected, i.e., either by self-report or from parent/caregiver report.

    1. Reviewer #1 (Public review):

      Summary:

      The current study by Xing et al. establishes the methodology (machine vision and gaze pose estimation) and behavioral apparatus for examining social interactions between pairs of marmoset monkeys. Their results enable unrestrained social interactions under more rigorous conditions with detailed quantification of position and gaze. It has been difficult to study social interactions using artificial stimuli, as opposed to genuine interactions between unrestrained animals. This study makes an important contribution for studying social neuroscience within a laboratory setting that will be valuable to the field.

      Strengths:

      Marmosets are an ideal species for studying primate social interactions due to their prosocial behavior and the ease of group housing within laboratory environments. They also predominantly orient their gaze through head movements during social monitoring. Recent advances in machine vision pose estimation set the stage for estimating 3D gaze position in marmosets but require additional innovation beyond DeepLabCut or equivalent methods. A six-point facial frame is designed to accurately fit marmoset head gaze. A key assumption in the study is that head gaze is a reliable indicator of the marmoset's gaze direction, which will also depend on the eye position. Overall, this assumption has been well supported by recent studies in head-free marmosets. Thus the current work introduces an important methodology for leveraging machine vision to track head gaze and demonstrates its utility for use with interacting marmoset dyads as a first step in that study.

      Weaknesses:

      One weakness that should be easily addressed is that no data is provided to directly assess how accurate the estimated head gaze is based on calibrations of the animals, for example, when they are looking at discrete locations like faces or video on a monitor. This would be useful to get an upper bound on how accurate the 3D gaze vector is estimated to be, for planned use in other studies. Although the accuracy appears sufficient for the current results, it would be difficult to know if it could be applied in other contexts where more precision might be necessary.

    1. Reviewer #1 (Public review):

      The current manuscript by Bendeker et al. (2024) presents a new platform, MorphoCellSorter, for performing population wide microglial morphological analyses. This method adds to the many programs/platforms available to determine characteristics of microglial morphology; however, MorphoCellSorter is unique in that it uses Andrew's plotting to rank populations of cells together (in control and experimental groups) and present "big picture" views of how entire populations of microglia alter under different conditions. In their ranking system, Bendeker et al. (2024) use PCA to determine which of the morphological characteristics most define microglial populations, avoiding user subjective biases to determine these parameters. Compared to "expert" evaluators, MorphoCellSorter appears to perform consistently and accurately, including in different types of tissue preservation methods and in live cells, a key feature of the program. In addition, the researchers point out that this platform can be used across a wide array of imaging techniques and most microscopes that are available in a basic research lab. There are minor concerns about the platform's utility in analyzing embryonic microglia and primary microglial cultures, but overall, this platform will be another useful tool for microglial researchers to consider using in future studies. Furthermore, the method of morphological assessment aligns with the current direction of the field in identifying microglial cells in more nuanced ways.

      In their current revision, the authors have done an excellent job responding to concerns and have updated the manuscript accordingly.

    1. Reviewer #1 (Public review):

      Summary:

      This paper shows that the synthetic opioid fentanyl induces respiratory depression in rodents. This effect is revised by the opioid receptor antagonist naloxone, as expected. Unexpectedly, the peripherally restricted opioid receptor antagonist naloxone methiodide also blocks fentanyl-induced respiratory depression.

      Strengths:

      The paper reports compelling physiology data supporting the induction of respiratory distress in fentanyl-treated animals. Evidence suggesting that naloxone methiodide reverses this respiratory depression is compelling. This is further supported by pharmacokinetic data suggesting that naloxone methiodide does not penetrate into the brain, nor is it metabolized into brain-penetrant naloxone.

      Weaknesses:

      The paper would be further strengthened by establishing the functional significance of the altered neural activity detected in the nTS (as measured by cFos and GcAMP/photometry) in the context of opioid-induced respiratory depression.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript co-authored by Pál Barzó et al is very clear and very well written, demonstrating the electrophysiological and morphological properties of the human cortical layer 2/3 pyramidal cells across a wide age range, from age 1 month to 85 years using whole-cell patch clamp. To my knowledge, this is the first study that look at the cross-age differences biophysical and morphological properties of human cortical pyramidal cells. The community will also appreciate the significant effort involved in recording data from 485 cells, given the challenges associated with collecting data from human tissue. Understanding the electrophysiological properties of individual cells, which are essential for brain function, is crucial for comprehending human cortical circuits. I think this research enhances our knowledge of how biophysical properties change over time in the human cortex. I also think that by building models of human single cells at different ages using these data, we can develop more accurate representations of brain function. This, in turn, provides valuable insights into human cortical circuits and function and helps in predicting changes in biophysical properties in both health and disease.

      Strengths:

      The strength of this work lies in demonstrating how the electrophysiological and morphological features of human cortical layer 2/3 pyramidal cells change with age, offering crucial insights into brain function throughout life.

      Comments on revisions:

      Thanks to the authors for addressing my comments and providing greater clarity in the methodology. The analysis is much clearer now. I also appreciate their additional data analysis, particularly on morphology, which strengthens the paper.

    1. Reviewer #1 (Public Review):

      Summary:

      Shi and colleagues report the use of modified Cre lines in which the coding region of Cre is disrupted by rox-STOP-rox or lox-STOP-lox sequences to prevent the expression of functional protein in the absence of Dre or Cre activity, respectively. The main purpose of these tools is to enable intersectional or tamoxifen-induced Cre activity with minimal or no leaky activity from the second, Cre-expressing allele. It is a nice study but lacks some functional data required to determine how useful these alleles will be in practice, especially in comparison with the figure line that stimulated their creation.

      Strengths:

      The new tools can reduce Cre leak in vivo.

      Weaknesses:

      (1) Activity of R26-loxCre line. As the authors point out, the greatest value of this approach is to accomplish a more complete Cre-mediated gene deletion using CreER transgenes that are combined with low-efficiency floxed alleles using their R26-loxCre line that is similar to the iSure Cre reported by Benedito and colleagues. The data in Figure 5 show strong activity at the Confetti locus, but the design of the newly reported R26-loxCre line lacks a WPRE sequence that was included in the iSure-Cre line to drive very robust protein expression. Thus while the line appears to have minimal leak, as the design would predict, the question of how much of a deletion increase is obtained over simple use of the CreER transgene alone is a key question for use by investigators. This is further addressed in Figure 6 where it is compared with Alb-CreER alone to recombine the Ctnnb1 floxed allele. They demonstrate that recombination frequency is clearly improved, but the western blot in Figure 6E does not look like there was a large amount of remaining b-catenin to remove. These data are certainly promising, but the most valuable experiment for such a new tool would be a head-to-head comparison with iSure (or the latest iSure version from the Benedito lab) using the same CreER and target floxed allele. At the very least a comparision of Cre protein expression between the two lines using identical CreER activators is needed.

      (2) In vivo analysis of mCre activities. Why did the authors not use the same driver to compare mCre 1, 4, 7, and 10? The study in Figure 2 uses Alb-roxCre for 1 and 7 and Cdh5-roxCre for 4 and 10, with clearly different levels of activity driven by the two alleles in vivo. Thus whether mCre1 is really better than mCre4 or 10 is not clear.

      (3) Technical details are lacking. The authors provide little specific information regarding the precise way that the new alleles were generated, i.e. exactly what nucleotide sites were used and what the sequence of the introduced transgenes is. Such valuable information must be gleaned from schematic diagrams that are insufficient to fully explain the approach.

    1. Reviewer #3 (Public review):

      Summary:

      The authors are interested in the relative importance of PRL versus GH and their interactive signaling in breast cancer. After examining GHR-PRLR interactions in response to ligands, they suggest that a reduction in cell surface GHR in response to PRL may be a mechanism whereby PRL can sometimes be protective against breast cancer.

      Strengths:

      The strengths of the study include the interesting question being addressed and the application of multiple complementary techniques, including dSTORM, which is technically very challenging, especially when using double labeling. Thus, dSTORM is used to analyze co-clustering of GHR and PRLR, and, in response to PRL, rapid internalization of GHR and increased cell surface PRLR. Conclusions from Proximity ligation assays are that some GHR and PRLR are within 40 nm (≈ 4 plasma membranes) of each other and that upon ligand stimulation, they move apart. Intact receptor knockin and knockout approaches and receptor constructs without the Jak2 binding domain demonstrate a) a requirement for the PRLR for there to be PRL- driven internalization of GHR, and b) that Jak2-PRLR interactions are necessary for stability of the GHR-PRLR colocalizations.

      Weaknesses:

      Although improved over the first version, the manuscript still suffers from a lack of detail, which in places makes it difficult to evaluate the data and would make it very difficult for the results to be replicated by others.

      Comments on revised version:

      Points for improvement of the manuscript:

      (1) There is still insufficient detail about the proximity ligation assay. For example, PLAs that use reagents from Sigma (as now reported) require primary antibodies from two different species and yet both the anti-PRLR and anti-GHR used for dSTORM were mouse monoclonals. On line 356 it says that the ECD antibodies were used for microscopy and the PLA is microscopy. Were instead the ICD antibodies used for the PLA? If so, how do we know that one or more of the proteins in the very strong "non-specific" bands seen on Figure 5A are not what is being localized? Could you do a Western blot of just cell membrane proteins? There needs to be further clarity/explanation.

      (2) Although the manuscript now shows a Western blot using the antibodies against intracellular regions of the receptor, a full Western blot is not provided for the antibodies against the S2 extracellular domain used for the dSTORM. While I haven't checked the papers showing characterization of the anti-GHR, I did re-check reference 70, which the authors say shows full characterization of the PRLR antibody, and this does not show a full Western (only portions of gels). How do we know that this antibody is not recognizing some other cell surface molecule, the surface expression of which increases upon stimulation of the cells with PRL? Is there only one band when blotting whole cell extracts with either the GHR or PRLR ECD antibodies so we can be sure of specificity? Figure S2 helps some, but these are different cells and the relative expression of the PRLR versus some other potential cell surface protein in these engineered cells may well be completely different.

    1. Joint Public Review:

      The Lee et al. study has been revised in response to reviewer comments. It presents a valuable investigation into the role of the Hippo signaling pathway (specifically wts-1/LATS and yap) in age-dependent neurodegeneration and microtubule dynamics in C. elegans TRNs. The authors convincingly demonstrated that disruption of wts-1/LATS leads to age-associated neuronal abnormalities and enhanced microtubule stabilization, with a genetic link to yap. While the study was praised for its well-conducted and well-controlled approaches, reviewers raised concerns about the specificity of the Hippo pathway's effects to TRNs, the correlation of Hpo signaling decline in TRNs with age, and the mechanistic link between Hpo-mediated gene expression and microtubule regulation. The authors addressed the TRN specificity by suggesting the unique microtubule structure of these neurons might contribute to their susceptibility. They acknowledged the difficulty in detecting Hpo signaling decline specifically in aged TRNs but noted increased YAP-1 nuclear localization in other tissues. Importantly, the authors provided evidence suggesting that YAP-TEAD-mediated transcriptional regulation is responsible for neuronal degeneration, as loss of yap-1 or egl-44 restored the wts-1 mutant phenotype. However, the specific transcriptional targets of YAP-1 regulating microtubule stability remain unidentified, representing a key limitation. The authors also discussed the possibility of non-cell-autonomous effects of YAP-1 and offered explanations for the seemingly moderate impairment of the touch response despite structural damage. Finally, they attributed the shorter lifespan of wts-1 and wts-1; yap-1 mutants to roles of wts-1 beyond TRNs and potential synergistic effects of yap-1. Overall, the study provides significant insights into the Hippo pathway's role in neuronal aging and microtubule dynamics, while acknowledging remaining mechanistic gaps.

    1. Reviewer #1 (Public review):

      Summary:

      Summary of what author's were trying to achieve: In the manuscript by Hoisington et al., the authors utilized a novel conditional neuronal prosap2-interacting protein 1 (Prosapip1) knockout mouse to delineate the effects of both neuronal and dorsal hippocampal (dHP)-specific knockout of Prosapip1 impacts biochemical and electrophysiological neuroadaptations within the dHP that may mediate behaviors associated with this brain region.

      Strengths:

      (1) Methodological Strengths

      a) The generation and use of a conditional neuronal knockout of Prosapip1 is a strength. These mice will be useful for anyone interested in studying or comparing and contrasting the effects of loss of Prosapip1 in different brain regions or in non-neuronal tissues.<br /> b) The use of biochemical, electrophysiological, and behavioral approaches are a strength. By providing data across multiple domains, a picture begins to emerge about the mechanistic role for Prosapip1. While questions still remain, the use of the 3 domains is a strength.<br /> c) The use of both global, constitutive neuronal loss of Prosapip1 and postnatal dHP-specific knockout of Prosapip1 help support and validate the behavioral conclusions.

      (2) Strengths of the results

      a) It is interesting that loss of Prosapip1 leads to specific alterations in the expression of GluN2B and PSD95 but not GluA1 or GluN2A in a post homogenization fraction that the author's term a "synaptic" fraction. Therefore, these results suggest protein-specific modulation of glutamatergic receptors within a "synaptic" fraction.<br /> b) The electrophysiological data demonstrate an NMDAR-dependent alteration in measures of hippocampal synaptic plasticity, including long-term potentiation (LTP) and NMDAR input/output. These data correspond with the biochemical data demonstrating a biochemical effect on GluN2B localization. Therefore, the conclusion that loss of Prosapip1 influences NMDAR function is well supported.<br /> c) The behavioral data suggest deficits in memory in particular novel object recognition and spatial memory, in the Prosapip1 knockout mice. These data are strongly bolstered by both the pan neuronal knockout and the dHP Cre transduction.

      The authors highlight potential future studies to further the understanding of Prosapip1.

    1. Reviewer #1 (Public review):

      Summary:

      This study addresses the issue of rapid skill learning and whether individual sequence elements (here: finger presses) are differentially represented in human MEG data. The authors use a decoding approach to classify individual finger elements, and accomplish an accuracy of around 94%. A relevant finding is that the neural representations of individual finger elements dynamically change over the course of learning. This would be highly relevant for any attempts to develop better brain machine interfaces - one now can decode individual elements within a sequence with high precision, but these representations are not static but develop over the course of learning.

      Strengths:

      The work follows a large body of work from the same group on the behavioural and neural foundations of sequence learning. The behavioural task is well established a neatly designed to allow for tracking learning and how individual sequence elements contribute. The inclusion of short offline rest periods between learning epochs has been influential because it has revealed that a lot, if not most of the gains in behaviour (ie speed of finger movements) occur in these so-called micro-offline rest periods.

      The authors use a range of new decoding techniques, and exhaustively interrogate their data in different ways, using different decoding approaches. Regardless of the approach, impressively high decoding accuracies are observed, but when using a hybrid approach that combines the MEG data in different ways, the authors observe decoding accuracies of individual sequence elements from the MEG data of up to 94%.

      Weaknesses:

      A formal analysis and quantification of how head movement may have contributed to the results should be included in the paper or supplemental material. The type of correlated head movements coming from vigorous key presses aren't necessarily visible to the naked eye, and even if arms etc are restricted, this will not preclude shoulder, neck or head movement necessarily; if ICA was conducted, for example, the authors are in the position to show the components that relate to such movement; but eye-balling the data would not seem sufficient. The related issue of eye movements is addressed via classifier analysis. A formal analysis which directly accounts for finger/eye movements in the same analysis as the main result (ie any variance related to these factors) should be presented.

      This reviewer recommends inclusion of a formal analysis that the intra-vs inter parcels are indeed completely independent. For example, the authors state that the inter-parcel features reflect "lower spatially resolved whole-brain activity patterns or global brain dynamics". A formal quantitative demonstration that the signals indeed show "complete independence" (as claimed by the authors) and are orthogonal would be helpful

    1. Reviewer #1 (Public review):

      Summary:

      In this work, the authors investigate the functional difference between the most commonly expressed form of PTH, and a novel point mutation in PTH identified in a patient with chronic hypocalcemia and hyperphosphatemia. The value of this mutant form of PTH as a potential anabolic agent for bone is investigated alongside PTH(1-84), which is a current anabolic therapy. The authors have achieved the aims of the study.

      Strengths:

      The work is novel, as it describes the function of a novel, naturally occurring, variant of PTH in terms of its ability to dimerise, to lead to cAMP activation, to increase serum calcium, and its pharmacological action compared to normal PTH.

      Comments on revisions: No further recommendations for revisions. Acceptable as the paper stands.

      [Editors' note: the original reviews are here, https://doi.org/10.7554/eLife.97579.1.sa1]

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, the authors have performed an antigenic assay for human seasonal N1 neuraminidase using antigens and mouse sera from 2009-2020 (with one avian N1 antigen). This shows two distinct antigen groups. There is poorer reactivity with sera from 2009-2012 against antigens from 2015-2019, and poorer reactivity with sera from 2015-2020 against antigens from 2009-2013. There is a long branch separating these two groups. However, 321 and 423 are the only two positions that are consistently different between the two groups. Therefore these are the most likely cause of these antigenic differences.

      Strengths:

      (1) A sensible rationale was given for the choice of sera, in terms of the genetic diversity.

      (2) There were two independent batches of one of the antigens used for generating sera, which demonstrated the level of heterogeneity in the experimental process.

      (3) Replicate of the Wisconsin/588/2019 antigen (as H1 and H6) is another useful measure of heterogeneity.

      (4) The presentation of the data, e.g. Figure 2, clearly shows two main antigenic groups.

      (5) The most modern sera are more recent than other related papers, which demonstrates that has been no major antigenic change.

      Weaknesses:

      (1) Issues with experimental methods<br /> As I am not an experimentalist, I cannot comment fully on the experimental methods. However, I note that BALB/c mice sera were used, whereas outbred ferret sera are typically used in influenza antigenic characterisation, so the antigenic difference observed may not be relevant in humans. Similarly, the mice were immunised with an artificial NA immunogen where the typical approach would be to infect the ferret with live virus intra-nasally.

      (2) Five mice sera were generated per immunogen and then pooled, but data was not presented that demonstrated these sera were sufficiently homogenous that this approach is valid.

      (3) There were no homologous antigens for most of the sera. This makes the responses difficult to interpret as the homologous titre is often used to assess the overall reactivity of a serum. The sequence of the antigens used is not described, which again makes it difficult to interpret the results.

      (4) To be able to untangle the effects of the individual substitutions at 321, 386, and 432, it would have been useful to have included the naturally occurring variants at these positions, or to have generated mutants at these positions. Gao et al clearly show an antigenic difference with ferret sera correlated separately with N386K and I321V/K432E.

      (5) The challenge experiments in Gao et al showed that NI titre was not a good correlate of protection, so that limits the interpretation of these results.

      Issues with the computational methods

      (6) The NAI titres were normalised using the ELISA results, and the motivation for this is not explained. It would be nice to see the raw values.

      (7) It is not clear what value the random forest analysis adds here, given that positions 321 and 432 are the only two that consistently differ between the two groups.

      (8) As with the previous N2 paper, the metric for antigenic distance (the root mean square of the difference between the titres for two sera) is not one that would be consistent when different sera are included. More usual metrics of distance are Archetti-Horsfall, fold down from homologous, or fold down from maximum.

      (9) Antigenic cartography of these data is fraught. I wonder whether 2 dimensions are required for what seems like a 1-dimensional antigenic difference - certainly, the antigens, excluding the H5N1, are in a line. The map may be skewed by the high reactivity Brisbane/18 antigen. It is not clear if the column bases (normalisation factors for calculating antigenic distance) have been adjusted to account for the lack of homologous antigens. It is typical to present antigenic maps with a 1:1 x:y ratio.

      Issues with interpretation

      (10) Figure 2 shows the NAI titres split into two groups for the antigens, however, A/Brisbane is an outlier in the second antigenic group with high reactivity.

      (11) Following Gao et al, I think you can claim that it is more likely that the antigenic change is due to K432E than I321V, based on a comparison of the amino acid change.

      Appraisal:

      Taking into account the limitations of the experimental techniques (which I appreciate are due to resource constraints), this paper meets its aim of measuring the antigenic relationships between 2009-2020 seasonal N1s, showing that there were two main groups. The authors discovered that the difference between the two antigenic groups was likely attributable to positions 321 and 432, as these were the only two positions that were consistently different between the two groups. They came to this finding by using a random forest model, but other simpler methods could have been used.

      Impact:

      This paper contributes to the growing literature on the potential benefit of NA in the influenza vaccine.

    1. Reviewer #1 (Public review):

      Summary:

      Shi and colleagues report the use of modified Cre lines in which the coding region of Cre is disrupted by rox-STOP-rox or lox-STOP-lox sequences to prevent the expression of functional protein in the absence of Dre or Cre activity, respectively. The main purpose of these tools is to enable intersectional or tamoxifen-induced Cre activity with minimal or no leaky activity from the second, Cre-expressing allele. It is a nice study but lacks some functional data required to determine how useful these alleles will be in practice, especially in comparison with the figure line that stimulated their creation.

      Strengths:

      The new tools can reduce Cre leak in vivo.

      Comments on revisions:

      The major improvement in my mind is the inclusion of Supp Fig 7 where the authors compare their loxCre to iSureCre. The discussion is somewhat improved, but still fails to discuss significant issues such as Cre toxicity in detail. As noted by most reviewers, without a biological question the paper is entirely a technical description of a a couple of new tools. However, I do feel that these tools will be of use to the field.

    1. Reviewer #1 (Public review):

      Summary:

      In this article, Chunharas and colleagues compared the representational differences of orientation information during a sensory task and a working memory task. By reanalyzing data from a previous fMRI study and applying representational similarity analysis (RSA), they observed that orientation information was represented differently in the two tasks: during visual perception, orientation representation resembled the veridical model, which captures the known naturalistic statistics of orientation information; whereas during visual working memory, a categorical model, which assumes different psychological distances between orientations, better explained the data, particularly in more anterior retinotopic regions. The authors suggest fundamental differences in the representational geometry of visual perception and working memory along the human retinotopic cortex.

      Strengths:

      Examining the differences in representational geometry between perception and working memory has important implications for the understanding of the nature of working memory. This study presents a carefully-executed reanalysis of previous data to address this question. The authors developed a novel method (model construction combined with RSA) to examine the representational geometry of orientation information under different tasks, and the control analyses provide rich, convincing support for their claims.

      Weaknesses:

      Although the control analyses are convincing, I still have alternative explanations for some of the results. I'm also concerned about the low sample size (n = 6 in the fMRI experiment). Overall, I think additional analyses may help to further clarify the issues and strengthen the claims.

      (1) The central claim of the current study is that orientation information is represented in a veridical manner during the sensory task, and in a categorical manner during working memory. However, In the sensory task, a third type of representational geometry was observed, especially in brain regions from V3AB and beyond. These regions showed a symmetric pattern in which oblique orientations (45 and 135 degrees) appeared more similar to each other. In fact, a similar pattern can even be found in V1-V3, although the effect looked weaker. The authors raised two possible explanations for this in the discussion, one being that participants might have used verbal labels (e.g., diagonal) for both orientations, and the other being a lack of attention to orientation. Either way, this suggests that a veridical model may not be the best fit for these ROIs. How would this symmetric model explain the sensory data, in comparison to the veridical model?

      (2) If the symmetric model also explains the sensory data well, I wonder whether this result challenges the authors' central claim, or instead suggests that the sensory task is not ideal for the purpose of the study. One way to address this issue might be to use the sample period of the working memory task as the perception task, as some other studies have been doing (e.g., Kwak & Curtis, 2022). This epoch of data might function as a stronger version of the attention task as the authors discussed in the discussion. What would the representational geometry look like in the sample period? I would also like to note that the current analyses used 5.6-13.6 s after stimulus onset for the memory task, which I think may reflect a mix of sample- and delay-related activity.

      (3) When comparing the veridical and categorical models, it is important to first show the significance of each model before making comparisons. For instance, was the veridical model significant in different ROIs in the memory task? And was either model significant in IPS1-3 in the two tasks? I'm asking about this because the two models appear to be both significant in the memory task, whereas only the veridical model was significant in the sensory task (with overall lower correlation coefficients than the categorical model in the memory task).

      (4) The current study has a low sample size of six participants. With such a small sample, it would be helpful to show results from individual participants. For example, I appreciate that Figures 2D and 3C showed individual data points, but additionally showing the representational geometry plot (i.e., Figure 1C) for each subject could better illustrate the robustness of the effect. Alternatively, the original paper from which the fMRI data were drawn actually had two fMRI experiments with similar task designs. I wonder if the authors could replicate these patterns using data from the second experiment with seven participants. This might provide even stronger support for the current findings with a more reasonable sample size.

    1. Reviewer #1 (Public review):

      Summary:

      This work tried to map the synaptic connectivity between the inputs and outputs of the song premotor nucleus, HVC in zebra finches to understand how sensory (auditory) to motor circuits interact to coordinate song production and learning. The authors optimized the optogenetic technique via AAV to manipulate auditory inputs from a specific auditory area one-by-one and recorded synaptic activity from a neuron with whole-cell recording from slice preparation with identification of the projection area by retrograde neuronal tracing. This thorough and detailed analysis provides compelling evidence of synaptic connections between 4 major auditory inputs (3 forebrain and 1 thalamic region) within three projection neurons in the HVC; all areas give monosynaptic excitatory inputs and polysynaptic inhibitory inputs, but proportions of projection to each projection neuron varied. They also find specific reciprocal connections between mMAN and Av. Taken together the authors provide the map of the synaptic connection between intercortical sensory to motor areas which is suggested to be involved in zebra finch song production and learning.

      Strengths:

      The authors optimized optogenetic tools with eGtACR1 by using AAV which allow them to manipulate synaptic inputs in a projection-specific manner in zebra finches. They also identify HVC cell types based on projection area. With their technical advance and thorough experiments, they provided detailed map synaptic connections.

      Weaknesses:

      As it is the study in brain slice, the functional implication of synaptic connectivity is limited. Especially as all the experiments were done in the adult preparation, there could be a gap in discussing the functions of developmental song learning.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Shao et al. investigate the contribution of different cortical areas to working memory maintenance and control processes, an important topic involving different ideas about how the human brain represents and uses information when no longer available to sensory systems. In two fMRI experiments, they demonstrate that human frontal cortex (area sPCS) represents stimulus (orientation) information both during typical maintenance, but even more so when a categorical response demand is present. That is, when participants have to apply an added level of decision control to the WM stimulus, sPCS areas encode stimulus information more than conditions without this added demand. These effects are then expanded upon using multi-area neural network models, recapitulating the empirical gradient of memory vs control effects from visual to parietal and frontal cortices. Multiple experiments and analysis frameworks provide support for the authors' conclusions, and control experiments and analysis are provided to help interpret and isolate the frontal cortex effect of interest. While some alternative explanations/theories may explain the roles of frontal cortex in this study and experiments, important additional analyses have been added that help ensure a strong level of support for these results and interpretations.

      Strengths:

      - The authors use an interesting and clever task design across two fMRI experiments that is able to parse out contributions of WM maintenance alone along with categorical, rule-based decisions. Importantly, the second experiments only uses one fixed rule, providing both an internal replication of Experiment 1's effects and extending them to a different situation when rule switching effects are not involved across mini-blocks.

      - The reported analyses using both inverted encoding models (IEM) and decoders (SVM) demonstrate the stimulus reconstruction effects across different methods, which may be sensitive to different aspects of the relationship between patterns of brain activity and the experimental stimuli.

      - Linking the multivariate activity patterns to memory behavior is critical in thinking about the potential differential roles of cortical areas in sub-serving successful working memory. Figure 3's nicely shows a similar interaction to that of Figure 2 in the role of sPCS in the categorization vs. maintenance tasks. This is an important contribution to the field when we consider how a distributed set of interacting cortical areas support successful working memory behavior.

      - The cross-decoding analysis in Figure 4 is a clever and interesting way to parse out how stimulus and rule/category information may be intertwined, which would have been one of the foremost potential questions or analyses requested by careful readers.

      - Additional ROI analyses in more anterior regions of the PFC help to contextualize the main effects of interest in the sPCS (and no effect in the inferior frontal areas, which are also retinotopic, adds specificity). And, more explanation for how motor areas or preparation are likely not involved strengthens the takeaways of the study (M1 control analysis).

      - Quantitative link via RDM-style analyses between the RNNs constructed and fMRI data.

      Weaknesses:

      - In the given tasks, multiple types of information codes may be present, and more detail on this possibility could always be added analytically or in discussion. However, the authors have added beneficial support to this comparison in this version of the manuscript.

      - The space of possible RNN architectures and their biological feasibility could always be explored more, but links between the fMRI and RNN data provide a good foundation for this work moving forward.

    1. Reviewer #1 (Public review):

      Here, the authors propose that changes in m6A levels may be predictable via a simple model that is based exclusively on mRNA metabolic events. Under this model, m6A mRNAs are "passive" victims of RNA metabolic events with no "active" regulatory events needed to modulate their levels by m6A writers, readers, or erasers; looking at changes in RNA transcription, RNA export, and RNA degradation dynamics is enough to explain how m6A levels change over time.

      The relevance of this study is extremely high at this stage of the epitranscriptome field. This compelling paper is in line with more and more recent studies showing how m6A is a constitutive mark reflecting overall RNA redistribution events. At the same time, it reminds every reader to carefully evaluate changes in m6A levels if observed in their experimental setup. It highlights the importance of performing extensive evaluations on how much RNA metabolic events could explain an observed m6A change.

    1. Reviewer #1 (Public review):

      Summary:

      Sattin, Nardin, and colleagues designed and evaluated corrective microlenses that increase the useable field of view of two long (>6mm) thin (500 um diameter) GRIN lenses used in deep-tissue two-photon imaging. This paper closely follows the thread of earlier work from the same group (esp. Antonini et al, 2020; eLife), filling out the quiver of available extended-field-of-view 2P endoscopes with these longer lenses. The lenses are made by a molding process that appears practical and easy to adopt with conventional two-photon microscopes.

      Simulations are used to motivate the benefits of extended field of view, demonstrating that more cells can be recorded, with less mixing of signals in extracted traces, when recorded with higher optical resolution. In vivo tests were performed in piriform cortex, which is difficult to access, especially in chronic preparations.

      The design, characterization, and simulations are clear and thorough, but they do not break new ground in optical design or biological application. However, the approach shows much promise, including for applications such as miniaturized GRIN-based microscopes. Readers will largely be interested in this work for practical reasons: to apply the authors' corrected endoscopes to their own research.

      Strengths:

      The text is clearly written, the ex vivo analysis is thorough and well supported, and the figures are clear. The authors achieved their aims, as evidenced by the images presented, and were able to make measurements from large numbers of cells simultaneously in vivo in a difficult preparation.

      The authors did a good job of addressing issues I raised in initial review, including analyses of chromaticity and the axial field of view, descriptions of manufacturing and assembly yield, explanations in the text of differences between ex vivo and in vivo imaging conditions, and basic analysis of the in vivo recordings relative to odor presentations. They have also shortened the text, reduced repetition, and better motivated their approach in the introduction.

      Weaknesses:

      As discussed in review and nicely simulated by the authors, the large figure error indicated by profilometry (~10 um in some cases on average) is inconsistent with the optical performance improvements observed, suggesting that those measurements are inaccurate. I see no reason to include these inaccurate measurements.

    1. Reviewer #1 (Public review):

      The IBL here presents an important paper that aims to assess potential reproducibility issues in rodent electrophysiological recordings across labs and suggests solutions to these. The authors carried out a series of analyses on data collected across 10 laboratories while mice performed the same decision-making task, and provided convincing evidence that basic electrophysiology features, single-neuron functional properties, and population-level decoding were fairly reproducible across labs with proper preprocessing. This well-motivated large-scale collaboration allowed systematic assessment of lab-to-lab reproducibility of electrophysiological data, and the suggestions outlined in the paper for streamlining preprocessing pipelines and quality metrics will provide general guidance for the field, especially with continued effort to benchmark against standard practices (such as manual curation).

      The authors have carefully incorporated our suggestions. As a result, the paper now better reflects where reproducibility is affected when using common, simple, and more complex analyses and preprocessing methods, and it is more informative-and more reflective of the field overall. We thank the reviewers for this thorough revision. We have 2 remaining suggestions on text clarification:

      (1) Regarding benchmarking the automated metrics to manual curation of units: although we appreciate that a proper comparison may require a lot of effort potentially beyond the scope of the current paper; we do think that explicit discussion regarding this point is needed in the text, to remind the readers (and indeed future generations of electrophysiologists) the pros and cons of different approaches.

      In addition to what the authors have currently stated (line 469-470):<br /> "Another significant limitation of the analysis presented here is that we have not been able to assess the extent to which other choices of quality metrics and inclusion criteria might have led to greater or lesser reproducibility."

      Maybe also add:<br /> "In particular, a thorough comparison of automated metrics against a careful, large, manually-curated dataset, is an important benchmarking step for future studies.

      (2) The authors now include in Figure 3-Figure Supplement 1 that highlight how much probe depth is adjusted by using electrophysiological features such as LFP power to estimate probe and channel depth. This plot is immensely informative for the field, as it implies that there can be substantial variability-sometimes up to 1 mm discrepancy between insertions-in depth estimation based on anatomical DiI track tips alone. Using electrophysiological features in this way for probe depth estimation is currently not standard in the field and has only been made possible with Neuropixels, which span several millimeters. These figures highlight that this should be a critical step in preprocessing pipelines, and the paper provides solid evidence for this.

      Currently, this part of the figure is only subtly referenced to in the text. We think it would be helpful to explicitly reference this particular panel with discussions of its implication in the text.

    1. Reviewer #1 (Public review):

      The manuscript consists of two separate but interlinked investigations: genomic epidemiology and virulence assessment of Salmonella Dublin. ST10 dominates the epidemiological landscape of S. Dublin, while ST74 was uncommonly isolated. Detailed genomic epidemiology of ST10 unfolded the evolutionary history of this common genotype, highlighting clonal expansions linked to each distinct geography. Notably, North American ST10 was associated with more antimicrobial resistance compared to others. The authors also performed long read sequencing on a subset of isolates (ST10 and ST74), and uncovered a novel recombinant virulence plasmid in ST10 (IncX1/IncFII/IncN). Separately, the authors performed cell invasion and cytotoxicity assays on the two S. Dublin genotypes, showing differential responses between the two STs. ST74 replicates better intracellularly in macrophage compared to ST10, but both STs induced comparable cytotoxicity levels. Comparative genomic analyses between the two genotypes showed certain genetic content unique to each genotype, but no further analyses were conducted to investigate which genetic factors likely associated with the observed differences. The study provides a comprehensive and novel understanding on the evolution and adaptation of two S. Dublin genotypes, which can inform public health measures. The methodology included in both approaches were sound and written in sufficient detail, and data analysis were performed with rigour. Source data were fully presented and accessible to readers.

      Comments on revised version:

      The authors have addressed all the points raised by the reviewer. The manuscript is now much enhanced in clarity and accuracy. The re-written Discussion is more relevant and brings in comparison with other invasive Salmonella serotypes.

      Comments:

      In light of the metadata supplied in this revision, for Australian isolates, all human cases of ST74 (n=7) were from faeces (assuming from gastroenteritis) while 18/40 of ST10 were from invasive specimen (blood and abscess). This may contradict with the manuscript's finding and discussion on different experiment phenotypes of the two STs, with ST74 showing more replication in macrophages and potentially more invasive. Thus, the reviewer suggests the authors to mention this disparity in the Discussion, and discuss possible reasons underlying this disparity. This can strengthen the author's rationale for further in vivo studies.

    1. Reviewer #1 (Public review):

      Summary:

      The main observation that the sperm from CRISP proteins 1 and 3 KO lines are post-fertilization less developmentally competent is convincing. The data showing progressive acquisition of the sperm defects during epididymal transport and the exchange fluid studies showing the altered epididymal environment are important. However, the molecular characterization of the mechanism(s) that leads to these defects requires additional studies.

      Strengths:

      The generation of these double mutant mice is valuable for the field. Moreover, the fact that the double mutant line of Crisp 1 and 3 is phenotypically different from the Crisp 1 and 4 line suggests different functions of these epididymis proteins. The methods used to demonstrate that developmental defects are largely due to post-fertilization defects are also a considerable strength. The initial characterization that these sperm have altered intracellular Ca2+ levels, and increased rates of DNA fragmentation are valuable. The increase fragmentation of control sperm DNA when exposed to mutant epididymal fluid is significant and an excellent platform for future studies.

      Weaknesses:

      The study is mechanistically incomplete because evidence of how these proteins alter the environment is not shown. What are the target(s) of these proteins that result in increased Ca2+?

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors investigate the role of BEND2, a novel regulator of meiosis, in both male and female fertility. Huang et al have created a mouse model where the full-length BEND2 transcript is depleted but the truncated BEND2 version remains. This mouse model is fertile, and the authors used it to study the role of BEND2 on both male and female meiosis. Overall, the full-length BEND2 appears dispensable for male meiosis. The more interesting phenotype was observed in females. Females exhibit a lower ovarian reserve suggesting that full-length BEND2 is involved in the establishment of the primordial follicle pool.

      Strengths:

      The authors generated a mouse model that enabled them to study the role of BEND2 in meiosis. The role of BEND2 in female fertility is novel and enhances our knowledge of genes involved in the establishment of the primordial follicle pool.

      Weaknesses highlighted previously:

      The manuscript extensively explores the role of BEND2 in male meiosis; however, a more interesting result was obtained from the study of female mice.

    1. Reviewer #1 (Public review):

      Turi, Teng and the team used state of the art techniques to provide convincing evidence on the infraslow oscillation of DG cells during NREM sleep, and how serotonergic innervation modulates hippocampal activity pattern during sleep and memory. First, they showed that the glutamatergic DG cells become activated following an infraslow rhythm during NREM sleep. In addition, the infraslow oscillation in the DG is correlated with rhythmic serotonin release during sleep. Finally, they found that specific knockdown of 5-HT receptors in the DG impairs the infraslow rhythm and memory, suggesting that serotonergic signaling is crucial for regulating DG activity during sleep. Given that the functional role of infraslow rhythm still remains to be studied, their findings deepen our understanding on the role of DG cells and serotonergic signaling in regulating infraslow rhythm, sleep microarchitecture and memory.

    1. Reviewer #1 (Public review):

      Summary:

      Using sequences of short videos to elicit emotional changes in participants, Malamud & Huys demonstrate how a brief, controlled emotion regulation intervention (distancing) can effectively alter subsequent emotion ratings. The authors employ latent state-space models to capture the trajectories of emotion ratings, leveraging tools from control theory to quantify the intervention's impact on emotion dynamics.

      Strengths:

      The experiment is well-designed and tailored to the computational modeling approach advanced in the paper. It also relies on a selection of stimuli that were previously validated. Within the constraints of a controlled experiment, the intervention successfully implements a relatively common tool of psychotherapeutic treatment, ensuring its clinical relevance.

      The computational modeling is grounded in the well-established framework of dynamical systems and control theory. This foundation offers a conceptually clear formalization along with powerful quantification tools that go beyond previous more data-driven approaches.

      Overall, the study presents a coherent approach that bridges concepts from clinical psychology and computational theories, providing a timely stepping stone toward advancing quantified, evidence-based psychological interventions targetting emotion control.

      Weaknesses:

      A primary limitation of this study, acknowledged by the authors, is its reliance on self-reports of participants' emotional states. Although considerable effort was made to minimize expectation effects, further research is needed to confirm that the observed behavioral changes reflect genuine alterations in emotional states. Additionally, the generalizability of the findings to long-term remediation strategies remains an open question.

      Second, the statistical analysis, particularly the computational approach, sometimes lacks sufficient detail and refinement. While I will not elaborate on specific points here, one notable issue is the interpretation of the intrinsic matrix (A). The model-free analysis reveals correlations between emotions at a given time or within an emotional state across time points. However, it does not provide evidence to support lagged interactions across states that would justify non-diagonal elements in A. The other result concerning the dynamics matrix only highlights a trend in the dominant eigenvalue, which is difficult to interpret in isolation. The absence of a statistically significant group x intervention interaction furthermore makes this finding a little compelling. This weakens the study's conclusions about the importance of intrinsic dynamics, as claimed in the title.

      Finally, to avoid potential misunderstandings of their work, the authors should be more careful about their use of terms pertaining to the control theory and take the time to properly define them. For example, the "controllability" of emotional states can either denote that those states are more changeable (control theory definition), or, conversely, more tightly regulated (common interpretation, as used in the abstract). This is true for numerous terms (stability, sensitivity, Gramian, etc.) for which no clear definition nor references are provided. Readers unfamiliar with the framework of control theory will likely be at a loss without more guidance.

    1. Reviewer #1 (Public review):

      Summary:

      The nuclear protein SATB-1 was originally identified as a protein of the 'nuclear matrix', an aggregate of nuclear components that arose upon extracting nuclei with high salt. While the protein was assumed to have a global function in chromatin organization, it has subsequently been linked to a variety of pathological conditions, notably cancer. The mapping of the factor by conventional ChIP procedures showed strong enrichment in active, accessible chromatin, suggesting a direct role in gene regulation, perhaps in enhancer-promoter communication. These findings did not explain why SATB-1-chromatin interaction resisted the 2 M salt extraction during early biochemical fractionation of nuclei.

      The authors, who have studied SATB-1 for many years, now developed an unusual variation of the ChIP procedure, in which they purify crosslinked chromatin by centrifugation through 8 M urea. Remarkably, while they lose all previously mapped signals for SATB-1 in active chromatin, they now gain many binding events in silent regions of the genome, represented by lamin-associated domains (LADs).

      SATB-1 had previously been shown by the authors and others to bind to DNA with special properties, termed BUR (for 'base-unpairing regions'). BURs are AT-rich and apparently enriched in equally AT-rich LADs. The 'urea-ChIP' pattern is essentially complementary to the classical ChIP pattern. The authors now speculate that the previously known SATB-1 binding pattern, which does not overlap BURs particularly well, is due to indirect chromatin binding, whereas they consider the urea-ChIP profile that fits better to the BUR distribution on the chromosome to be due to direct binding.

      Building on the success with urea-ChIP the authors adapted the 4C-procedure of chromosome conformation mapping to work with urea-purified chromatin. The data suggest that BUR-bound SATB-1 in heterochromatin mediates long-distance interaction with loci in active chromatin. They close with a model, whereby SATB-1 tethers active chromatin to the nuclear lamina. Because cell type-specific differences are observed, they suggest that the SATB-1 interactions are functionally relevant.

      Strengths:

      Given the unusual finding of essentially mutually exclusive 'standard ChIP' and 'urea-ChIP' profiles for SATB-1, the authors conducted many appropriate controls. They showed that all SATB-1 peaks in urea-ChIP and 96% of peaks in standard-ChIP represent true signals, as they are not observed in a SATB-1 knockout cell line. They also show that urea-ChIP and standard ChIP yield similar profiles for CTCF. The data appear reproducible, judged by at least two replicates and triangulation. The SATB-1 KO cells provide a nice control for the specificity of signals, including those that arise from their elaborately modified 4C protocol.

      Weaknesses:

      The weaknesses mainly relate to missing qualifier statements and overinterpretations. I also found some aspects of the model not yet well supported by the data.

      (1) Under high urea conditions the BUR elements should be rendered single-stranded, and one wonders whether this has any effect on the procedure. The authors should alert the reader of these circumstances.

      (2) An important conclusion is that urea-ChIP reveals direct DNA binding events, whereas standard ChIP shows indirect binding (which is stripped off by urea). I do not yet see any evidence for direct binding. It cannot be excluded, for example, that the binding is RNA-mediated. The authors mention in passing that urea-ChIP material still contains (specific!) RNA. Given that this is a new procedure, the authors should document the RNA content of urea-ChIP and RNase-treat their samples prior to ChIP to monitor an RNA contribution.

      (3) An important aspect of the model is that SATB-1 tethers active genes to inactive LADs. However, in the 4C experiment the BUR elements used to anchor the looping are both in the accessible, active chromatin domain.

    1. Reviewer #1 (Public review):

      Summary:

      In the manuscript entitled 'A comparative analysis of planarian regeneration specificity reveals tissue polarity contributions of the axial cWnt signalling gradient.' Cleland et al. study the robustness of regenerating a head or a tail in the proper position in two different planarian species (S. mediterranea and G. sinensis). The authors find that the expression of notum, a Wnt inhibitor that is triggered after any cut, shows different dynamics of expression in both planarian species, being more symmetrical in the species that display a higher number of double-headed or Janus heads (G. sinenesis), which they refer to a less robust regeneration. The authors claim that the reduced robustness of G. sinensis regeneration is partially explained by this anterior-posterior symmetric expression of notum, since in S. mediterranea, which shows a 'robust regeneration' it appears asymmetric. So, the first claim of the manuscript is that the symmetry in notum expression could underlie the poor robustness of regenerating a head/tail in small bipolar regenerating planarian fragments.

      Then, they analyse the role of a proposed tail-to-head cWnt signalling gradient during the regeneration of heads and tails in the same planarian species. To do so they develop an antibody that allows the quantification of b-catenin activity along the AP axis, together with a pharmacological approach that reduces the pre-existent cWnt gradient without affecting the wound-induced. Through this strategy the authors can demonstrate the slope of the b-catenin activity, which is a very nice result, and that it changes according to the size of the animal. Furthermore, they are able to demonstrate that by reducing the cWnt signalling in the pre-existent tissue, there is an increase in the number of double-headed regenerates (Janus heads) and that it depends on the body size and on the decreasing steepness of the cWnt gradient. This result relies on G. sinensis species since the drug is not so effective in S. mediterranea. Thus, the authors' second claim is that the slope of the cWnt gradient may contribute to head-tail regeneration specificity in planarians.

      To conclude, it is proposed that regeneration of the correct identity in each wound depends on multiple cues acting in parallel and that their species-specificity provides variations in the regenerative capability of the different planarian species.

      The study has great potential to have a high impact on the regeneration community, since the opportunity to compare mechanisms between close species provides the framework for understanding the essential mechanism of regeneration.

      Strengths:

      The project has several strengths. The authors are able to reproduce the Janus heads phenotypes described by Morgan TH by analysing different planarian species. This is of great importance in the planarian field, because with the current model species, S. mediterranea, this could not be reproduced. So, these results demonstrate that small planarian fragments do make errors during regeneration, giving rise to double-headed animals, which supports the well-known hypothesis that it exists an anteroposterior gradient underlying anteroposterior identity during regeneration. However, and importantly, it does not occur in all planarian species. So, there are differences between planarian species in the robustness of regeneration and may be in the mechanisms that drive this regeneration. The finding of different behaviours and gene expressions in different planarian species is very interesting and promising in the field of regeneration.

      A second strength of the study is the demonstration of the b-catenin1 slope in planarians and how it changes with the animal size, and also the establishment of a method to decrease it in the pre-existent tissue but not in the wound. This strategy allows us to examine specifically the role of the pre-existent cWnt signal, demonstrating that it does have a role in the decision of making head or tail during regeneration, which was an essential question in the field of planarians and animal regeneration.

      Weaknesses:

      (1) The finding that notum, which is the main head determinant identified in planarians, has a different dynamic in both planarian species is very suggestive. However, the different dynamics of notum expression during regeneration, which is the basis of the subsequent rationale, is not properly demonstrated, nor is its correlation with the robustness in regenerating a proper head/tail identity. Main concerns regarding this point:

      a) The authors observe that 'In regenerating S. mediterranea 2 mm trunk pieces cut from 6 mm animals, notum expression was induced predominantly at anterior-facing wounds as early as 6 h post-amputation (Figure 2A), as previously reported (Petersen and Reddien 2011)'. However, in the graphics in Figures 2B and C, the expression of notum at 6h is shown as symmetric. It definitely does not agree with the in situ, with the text, or with the published data. How was it measured? It should be corrected and explained since it is the basis of the subsequent rationale.

      b) Then, when measuring notum in G. sinensis the authors conclude: 'Strikingly and in sharp contrast to S. mediterranea, the number of notum expressing cells was nearly identical between anterior and posterior wounds without any discernible A/P asymmetry at any of the examined time points (Figures 2E-F)'. However, in the in situ results of 12 h regenerating G. sinensis, there is a clear difference in notum expression between anterior and posterior wounds. Is it not representative of the image? Again, how exactly the measurements were performed? Are dots or pixels quantified? It is not explained in the text. This is a crucial result that has to be consistent.

      c) A more general weakness of this part of the manuscript is that even if the authors demonstrate that in G. sinensis the expression of notum is symmetrical in contrast to S. mediterranea, this is just an observation of 1 species that has symmetrical notum and regenerates less robustly than 1 species that has asymmetrical expression and regenerates more robustly. If they for instance look at the expression of wnt1, maybe they also see differences between both species that could be linked to their different regeneration properties (related to this, see below the comment on wnt1 expression). That is to say, comparing 1 to 1 species cannot give any cause-effect evidence.<br /> Furthermore, the authors rely on the fact that notum inhibition rescues the wild-type phenotype to conclude that is the symmetric expression of notum that underlies the appearance of Janus heads. This is what can be read in the results: 'Significantly, the rescue of wild-type regenerates by notum(RNAi) suggests that the symmetric G. sinensis notum expression contributes to the formation of double-heads and thus to reduced regeneration specificity'; and in the Summary: We found that the reduced regeneration robustness of G. sinensis was partially explained by wound site-symmetric expression of the head determinant notum, which is highly anterior-specific in S. mediterranea.' However, notum RNAi decreases notum in both wounds, so it does not produce an asymmetric expression (at least this is not shown). So, it does not link the symmetry or asymmetry of notum with the appearance of Janus heads.

      d) If the authors want to maintain the claim that the symmetry of notum is one of the reasons that explain the increase in Janus head phenotype in G. sinensis, there are several possibilities to test it. For instance:

      i) Analyse notum expression in different planarian species and relate its symmetry or asymmetry with the appearance of Janus heads. If the claim is true, the species that are more robust should show more asymmetric expression of notum. This would sustain strongly the first claim, and would really be a breakthrough in the field of regeneration.

      ii) Another possibility is a more in-depth analysis of notum expression in the species of the study. If the authors show that larger fragments show fewer Janus heads, and also that it depends on the anteroposterior level of the fragments, they could try to relate the rate of Janus heads with the degree of asymmetry in notum expression in both wounds. For instance, they could analyze notum expression in bipolar regenerating fragments along the anteroposterior axis in both species; it should be more symmetric in G sinenesis, in all fragments, according to Figure 2 L. Or they could analyze notum expression in bipolar regenerating fragments of different sizes, mainly in 1 or 2 mm fragments of big planarians, since they are the fragments analyzed that form or not the Janus heads. In G sinensis the expression of notum should be more symmetrical than in S. mediterranea in these fragments.

      iii) The authors could design an experiment to demonstrate that the symmetry in the expression of notum affects the rate of Janus heads. The experiment that the authors show is the rescue of the Janus heads in G. sinensis after notum RNAi. However, notum RNAi suppresses notum in both wounds, thus not making them asymmetric. Furthermore, the rescue could be explained by the posteriorizing effect that notum RNAi has in planarians, as reported by several authors. A possibility could be to inhibit APC, which increases notum expression in S. mediterranea (Petersen and Reddien 2011). If APC RNAi in G. sinenesis produces an increase in notum in both wounds and the rate of Janus heads is not rescued, then it would support the hypothesis that notum symmetry is the cause of the Janus heads. However, if it produces an increase of notum in an asymmetric manner, then the Janus phenotype should be rescued.

      (2) The second weakness of the study is related to the methodology used to support the second claim, that the slope of bcatenin1 activity has a role in the decision of regeneration - a head and a tail in the correct tip. The main concerns relate to the specificity of the anti-bcatenin1 antibody and to the broad effect of C59 in the secretion of all Wnts.

      a) Raising an antibody against beta-catenin1 that allows the quantification by western blot is a strength of the study, since beta-catenin1 is the key element of the cWnt pathway, and their levels are directly associated with the activation of the pathway. Since this is one of the tools that support the second claim of the study, a characterization of the antibody and additional tests to prove its specificity are required. The authors show a Western blot in which the band intensity decreases after beta-catenin1 inhibition in both species. Further analysis should be shown:<br /> i) Demonstration that the intensity of the band increases after APC or Axin inhibition.<br /> ii) Does the antibody work in immunohistochemistry? It would provide further evidence of the specificity of a nuclear signal could be demonstrated.<br /> iii) Explanation and discussion of the protocol used to analyse the levels of b-catenin1 activity along the anteroposterior axis is required. It has been reported that beta-catenin1 is highly expressed and required in the brain in planarians, and also in the pharynx, and in the sexual organs (Hill and Petersen 2015, Sureda-Gomez et al 2016). How is it then explained the anterior-to-posterior gradient of expression of beta-catenin1 seen in this study in both species? Has the pharynx been removed before the protein extraction? What about the beta-catenin1 activity demonstrated in the brain? Why is it not reflected in the western blot analysis using the antibody? This point should be clarified.

      b) The second tool used in the second part of the manuscript is the drug C59, which inhibits Porcupine, a protein required for palmitoylation and secretion of Wnts. Because Porcupine could be required for the secretion of all Wnts, the phenotype obtained with the drug could be the sum of the inhibition of cWNT signal (wnt1 for instances) and non-canonical WNT (as wnt5). This is in fact the phenotype resulting after the inhibition of Wntless in planarians (Adell et al. 2009), which is also required for the secretion of Wnts. Thus, in the phenotypes resulting from C59 treatment the analysis of the nervous system and posterior/anterior markers is required. Looking at the in vivo phenotype it appears that in fact the drug is affecting both canonical and no canonical pathways since the animal with protrusions in the lateral part (Figure 4B-double head, or Supplementary Figure 3A) is very similar to the one reported after Wntless inhibition. In case the phenotypes observed also show non-canonical Wnt inhibition, this should be clearly shown and discussed.

      The above-mentioned weaknesses are the most important concerns about the present manuscript. However, there are other concerns related to a further analysis of the phenotypes and the analysis of additional Wnt elements as wnt1, which are essential to complete the study and are directly discussed with the authors.

    1. City Tour Nha Trang do Nha Trang Travel tổ chức với lịch trình hợp lý trong 1 ngày giúp du khách khám phá các địa danh nổi bật như Bảo tàng Hải Dương Học, Hòn Chồng, Tháp Bà Ponagar và Nhà thờ Đá. Mỗi địa điểm mang nét đặc trưng riêng: Bảo tàng Hải Dương Học trưng bày hơn 20.000 mẫu vật từ năm 1922 với kiến trúc Pháp cổ; Hòn Chồng là bãi đá tự nhiên độc đáo; Tháp Bà Ponagar nằm trên đồi cao 10m mang đậm kiến trúc Chăm Pa và Nhà thờ Đá với phong cách Gothic nổi bật tại trung tâm thành phố.

      Tour city nha trang 1 ngày do Nha Trang Travel tổ chức với lịch trình hợp lý trong 1 ngày giúp du khách khám phá các địa danh nổi bật như Bảo tàng Hải Dương Học, Hòn Chồng, Tháp Bà Ponagar và Nhà thờ Đá. Mỗi địa điểm mang nét đặc trưng riêng: Bảo tàng Hải Dương Học trưng bày hơn 20.000 mẫu vật từ năm 1922 với kiến trúc Pháp cổ; Hòn Chồng là bãi đá tự nhiên độc đáo; Tháp Bà Ponagar nằm trên đồi cao 10m mang đậm kiến trúc Chăm Pa và Nhà thờ Đá với phong cách Gothic nổi bật tại trung tâm thành phố.

    1. Reviewer #1 (Public review):

      Summary:

      The authors analyzed the bacterial colonization of human sperm using 16S rRNA profiling. Patterns of microbiota colonization were subsequently correlated with clinical data, such as spermiogram analysis, presence of reactive oxygen species (ROS), and DNA fragmentation. The authors identified three main clusters dominated by Streptococcus, Prevotella, and Lactobacillus & Gardnerella, respectively, which aligns with previous observations. Specific associations were observed for certain bacterial genera, such as Flavobacterium and semen quality. Overall, it is a well-conducted study that further supports the importance of the seminal microbiota.

      Strengths:

      - The authors performed the analysis on 223 samples, which is the largest dataset in semen microbiota analysis so far

      - Inclusion of negative controls to control contaminations.

      - Inclusion of a positive control group consisting of men with proven fertility.

      [Editors' note: the authors addressed the concerns raised in the previous round of review.]

    1. Reviewer #1 (Public review):

      Summary:

      This work is a continuation of a previous paper from the Arnold group, where they engineered GFE3, which allows to specifically ablate inhibitory synapses. Here, the authors generate 3 different actuators:

      (1) An excitatory synapse ablator.<br /> (2) A photoactivatable inhibitory synapse ablator.<br /> (3) A chemically inhibitory synapse ablator.

      Following initial engineering, the authors present characterization and optimization data to showcase that these new tools allow one to specifically ablate synapses, without toxicity and with specificity. Furthermore, they showcase that these manipulations are reversible.

      Altogether, these new tools would be important for the neuroscience community.

      Strengths:

      The authors convincingly demonstrate the engineering, optimization and characterization of these new probes. The main novelty here is the new excitatory synapse ablator, which has not been shown yet and thus could be a valuable tool for neuroscientists.

      Weaknesses:

      The authors have convincingly demonstrated the use of these tools in cultured neurons. The biggest weakness is the limited information given for the use of these tools for in vivo studies. The authors provide one example of the use of these new tool to study retinal circuits, and show evidence that the excitatory synapse ablator reduces synaptic transmission in retinal slices. Still, more work will be required to use this tool in intact neuronal circuits. It remains unclear if it would be trivial to characterize how well these tools express and operate in vivo. This could be substantially different and present some limitations as to the utility of these tools.

    1. Reviewer #1 (Public review):

      Summary:

      The paper develops a phase method to obtain the excitatory and inhibitory afferents to certain neuron populations in the brainstem. The inferred contributions are then compared to the results of voltage clamp and current clamp experiments measuring the synaptic contributions to post-I, aug-E and ramp-I neurons.

      Strengths:

      The electrophysiology part of the paper is sound and reports novel features with respect to earlier work by JC Smith et al 2012, Paton et al 2022 (and others) who have mapped circuits of the respiratory central pattern generator. Measurements on ramp-I neurons, late-I neurons and two types of post-I neurons in Fig.2 besides measurements of synaptic inputs to these neurons in Fig.5 are to my knowledge new.

      Weaknesses:

      The phase method for inferring synaptic conductances fails to convince. The method rests on many layers of assumptions and the inferred connections in Fig.4 remain speculative. To be convincing, such method ought to be tested first on a model CPG with known connectivity to assess how good it is at inferring known connections back from the analysis of spatio-temporal oscillations. For biological data, once the network connectivity has been inferred as claimed, the straightforward validation is to reconstruct the experimental oscillations (Fig.2) noting that Rybak et al (Rybak, Paton Schwaber J. Neurophysiol. 77, 1994 (1997)) have already derived models for the respiratory neurons.

      The transformation from time to phase space, unlike in the Kuramoto model, is not justified here (L.94) and is wrong. The underpinning idea that "the synaptic conductances depend on the cycle phase and not on time explicitly" is flawed because synapses have characteristic decay times and delays to response which remain fixed when the period of network oscillations increases. Synaptic properties depend on time and not on phase in the network. One major consequence relevant to the present identification of excitatory or inhibitory behaviour, is that it cannot account for change in behaviour of inhibitory synapses - from inhibitory to excitatory action - when the inhibitory decay time becomes commensurable to the period of network oscillations (Wang & Buzsaki Journal of Neuroscience 16, 6402 (1996), van Vreeswijk et al. J. Comp. Neuroscience 1,313 (1994), Borgers and Kopell Neural Comput. 15, 2003). In addition, even small delays in the inhibitory synapse response relative to the pre-synaptic action potential also produce in-phase synchronization (Chauhan et al., Sci. Rep. 8, 11431 (2018); Borgers and Kopell, Neural Comput. 15, 509 (2003)). The present assumption are way too simplistic because you cannot account for these commensurability effects with a single parameter like the network phase. There is therefore little confidence that this model can reliably distinguish excitatory from inhibitory synapses when their dynamics properties are not properly taken into account.

      L..82, Eq.1 makes extremely crude assumptions that the displacement current (CdV/dt) is negligible and that the ion channel currents are all negligible. Vm(t) is also not defined. The assumption that the activation/inactivation times of all ion channels are small compared to the 10-20ms decay time of synaptic currents is not true in general. Same for the displacement current. The leak conductance is typically g~0.05-0.09ms/cm^2 while C~1uF/cm^2. Therefore the ratio C/g leak is in the 10-20ms range - the same as the typical docking neurotransmitter time in synapses.

      Models of brainstem CPG circuits have been known to exist for decades: JC Smith et al 2012, Paton et al 2022, Bellingham Clin. Exp. Pharm. And Physiol. 25, 847 (1998); Rubin et al., J. Neurophysiol. 101, 2146 (2009) among others. The present paper does not discuss existing knowledge on respiratory networks and gives the impression of reinventing the wheel from scratch. How will this paper add to existing knowledge?

      Comments on revisions:

      The authors have done a good job at revising the manuscript to put this work into the context of earlier work on brainstem central pattern generators.

      I still believe the case for the method is not as convincing as it would have been if the method had been validated first on oscillations produced by a known CPG model. Why would the inference of synaptic types from the model CPG voltage oscillations be predetermined? Such inverse problems are quite complicated and their solution is often not unique or sufficiently constrained. Recovering synaptic weights (or CPG parameters) from limited observations of a highly nonlinear system is not warranted (Gutenkunst et al., Universally sloppy parameter sensitivities in systems biology models, PLoS Comp. Biol. 2007; www.doi.org/10.1371/journal.pcbi.0030189) especially when using surrogate biological models like Hodgkin-Huxley models.

      In p.2, the edited section refers to the interspike interval being much smaller than the period of the network. More important is to mention the relationship between the decay time of inhibitory synapses and the period of the network.

    1. Reviewer #1 (Public review):

      Summary

      In this human neuroimaging and electrophysiology study, the authors aimed to characterise effects of a period of visual deprivation in the sensitive period on excitatory and inhibitory balance in the visual cortex. They attempted to do so by comparing neurochemistry conditions ('eyes open', 'eyes closed') and resting state, and visually evoked EEG activity between ten congenital cataract patients with recovered sight (CC), and ten age-matched control participants (SC) with normal sight. First, they used magnetic resonance spectroscopy to measure in vivo neurochemistry from two locations, the primary location of interest in the visual cortex, and a control location in the frontal cortex. Such voxels are used to provide a control for the spatial specificity of any effects because the single-voxel MRS method provides a single sampling location. Using MR-visible proxies of excitatory and inhibitory neurotransmission, Glx and GABA+ respectively, the authors report no group effects in GABA+ or Glx, no difference in the functional conditions 'eyes closed' and 'eyes open'. They found an effect of group in the ratio of Glx/GABA+ and no similar effect in the control voxel location. They then perform multiple exploratory correlations between MRS measures and visual acuity and report a weak positive correlation between the 'eyes open' condition and visual acuity in CC participants. The same participants then took part in an EEG experiment. The authors selected two electrodes placed in the visual cortex for analysis and report a group difference in an EEG index of neural activity, the aperiodic intercept, as well as the aperiodic slope, considered a proxy for cortical inhibition. Control electrodes in the frontal region did not present with the same pattern. They report an exploratory correlation between the aperiodic intercept and Glx in one out of three EEG conditions.

      The authors report the difference in E/I ratio and interpret the lower E/I ratio as representing an adaptation to visual deprivation, which would have initially caused a higher E/I ratio. Although intriguing, the strength of evidence in support of this view is not strong. Amongst the limitations are the low sample size, a critical control cohort that could provide evidence for higher E/I ratio in CC patients without recovered sight for example, and lower data quality in the control voxel. Nevertheless, the study provides a rare and valuable insight into experience-dependent plasticity in the human brain.

      Strengths of study

      How sensitive period experience shapes the developing brain is an enduring and important question in neuroscience. This question has been particularly difficult to investigate in humans. The authors recruited a small number of sight-recovered participants with bilateral congenital cataracts to investigate the effect of sensitive period deprivation on the balance of excitation and inhibition in the visual brain using measures of brain chemistry and brain electrophysiology. The research is novel, and the paper was interesting and well-written.

      Limitations

      Low sample size. Ten for CC and ten for SC, and further two SC participants were rejected due to lack of frontal control voxel data. The sample size limits the statistical power of the dataset and increases the likelihood of effect inflation.

      In the updated manuscript, the authors have provided justification for their sample size by pointing to prior studies and the inherent difficulties in recruiting individuals with bilateral congenital cataracts. Importantly, this highlights the value the study brings to the field while also acknowledging the need to replicate the effects in a larger cohort.

      Lack of specific control cohort. The control cohort has normal vision. The control cohort is not specific enough to distinguish between people with sight loss due to different causes and patients with congenital cataracts with co-morbidities. Further data from a more specific populations, such as patients whose cataracts have not been removed, with developmental cataracts, or congenitally blind participants, would greatly improve the interpretability of the main finding. The lack of a more specific control cohort is a major caveat that limits a conclusive interpretation of the results.

      In the updated version, the authors have indicated that future studies can pursue comparisons between congenital cataract participants and cohorts with later sight loss.

      MRS data quality differences. Data quality in the control voxel appears worse than in the visual cortex voxel. The frontal cortex MRS spectrum shows far broader linewidth than the visual cortex (Supplementary Figures). Compared to the visual voxel, the frontal cortex voxel has less defined Glx and GABA+ peaks; lower GABA+ and Glx concentrations, lower NAA SNR values; lower NAA concentrations. If the data quality is a lot worse in the FC, then small effects may not be detectable.

      In the updated version, the authors have added more information that informs the reader of the MRS quality differences between voxel locations. This increases the transparency of their reporting and enhances the assessment of the results.

      Because of the direction of the difference in E/I, the authors interpret their findings as representing signatures of sight improvement after surgery without further evidence, either within the study or from the literature. However, the literature suggests that plasticity and visual deprivation drives the E/I index up rather than down. Decreasing GABA+ is thought to facilitate experience dependent remodelling. What evidence is there that cortical inhibition increases in response to a visual cortex that is over-sensitised to due congenital cataracts? Without further experimental or literature support this interpretation remains very speculative.

      The updated manuscript contains key reference from non-human work to justify their interpretation.

      Heterogeneity in patient group. Congenital cataract (CC) patients experienced a variety of duration of visual impairment and were of different ages. They presented with co-morbidities (absorbed lens, strabismus, nystagmus). Strabismus has been associated with abnormalities in GABAergic inhibition in the visual cortex. The possible interactions with residual vision and confounds of co-morbidities are not experimentally controlled for in the correlations, and not discussed.

      The updated document has addressed this caveat.

      Multiple exploratory correlations were performed to relate MRS measures to visual acuity (shown in Supplementary Materials), and only specific ones shown in the main document. The authors describe the analysis as exploratory in the 'Methods' section. Furthermore, the correlation between visual acuity and E/I metric is weak, not corrected for multiple comparisons. The results should be presented as preliminary, as no strong conclusions can be made from them. They can provide a hypothesis to test in a future study.

      This has now been done throughout the document and increases the transparency of the reporting.

      P.16 Given the correlation of the aperiodic intercept with age ("Age negatively correlated with the aperiodic intercept across CC and SC individuals, that is, a flattening of the intercept was observed with age"), age needs to be controlled for in the correlation between neurochemistry and the aperiodic intercept. Glx has also been shown to negatively correlates with age.

      This caveat has been addressed in the revised manuscript.

      Multiple exploratory correlations were performed to relate MRS to EEG measures (shown in Supplementary Materials), and only specific ones shown in the main document. Given the multiple measures from the MRS, the correlations with the EEG measures were exploratory, as stated in the text, p.16, and in Fig.4. yet the introduction said that there was a prior hypothesis "We further hypothesized that neurotransmitter changes would relate to changes in the slope and intercept of the EEG aperiodic activity in the same subjects." It would be great if the text could be revised for consistency and the analysis described as exploratory.

      This has been done throughout the document and increases the transparency of the reporting.

      The analysis for the EEG needs to take more advantage of the available data. As far as I understand, only two electrodes were used, yet far more were available as seen in their previous study (Ossandon et al., 2023). The spatial specificity is not established. The authors could use the frontal cortex electrode (FP1, FP2) signals as a control for spatial specificity in the group effects, or even better, all available electrodes and correct for multiple comparisons. Furthermore, they could use the aperiodic intercept vs Glx in SC to evaluate the specificity of the correlation to CC.

      This caveat has been addressed. The authors have added frontal electrodes to their analysis, providing an essential regional control for the visual cortex location.

      Comments on revisions:

      In the first revision, the authors made reasonable adjustments to their manuscript that addressed most of my comments by adding further justification for their methodology, essential literature support, pointing out exploratory analyses, limitations and adding key control analyses. Their revised manuscript was overall improved, providing valuable information, though the evidence that supports their claims is still incomplete.

      In their second revision, the authors pointed to justifications for their analyses, careful interpretation and tempered claims to clarify their response to the initial feedback. However, my assessment of the first revision has not been changed after the second revision, because there were no further modifications of their responses to my feedback.

    1. Reviewer #2 (Public review):

      van Vliet and colleagues present results of a study correlating internal states of a convolutional neural network trained on visual word stimuli with evoked MEG potentials during reading.

      In this study, a standard deep learning image recognition model (VGG-11) trained on a large natural image set (ImageNet) that begins illiterate but is then further trained on visual word stimuli, is used on a set of predefined stimulus images to extract strings of characters from "noisy" words, pseudowords and real words. This methodology is used in hopes of creating a model which learns to apply the same nonlinear transforms that could be happening in different regions of the brain - which would be validated by studying the correlations between the weights of this model and neural responses. Specifically, the aim is that the model learns some vector embedding space, as quantified by the spread of activations across a layer's weights (L2 Norm prior to ReLu Activation Function), for the different kinds of stimuli, that creates a parameterized decision boundary that is similar to amplitude changes at different times for a MEG signal. More importantly, the way that the stimuli are ordered or ranked in that space should be separable to the degree we see separation in neural activity. This study does show that the layer weights corresponding to five different broad classes of stimuli do statistically correlate with three specific components in the ERP. However, I believe there are fundamental theoretical issues that limit the implications of the results of this study.

      As has been shown over many decades, there are many potential computational algorithms, with varied model architectures, that can perform the task of text recognition from an image. However, there is no evidence presented here that this particular algorithm has comparable performance to human behavior (i.e. similar accuracy with a comparable pattern of mistakes). This is a fundamental prerequisite before attempting to meaningfully correlate these layer activations to human neural activations. Therefore, it is unlikely that correlating these derived layer weights to neural activity provides meaningful novel insights into neural computation beyond what is seen using traditional experimental methods.

      One example of a substantial discrepancy between this model and neural activations is that, while incorporating frequency weighting into the training data is shown to slightly increase neural correlation with the model, Figure 7 shows that no layer of the model appears directly sensitive to word frequency. This is in stark contrast to the strong neural sensitivity to word frequency seen in EEG (e.g. Dambacher et al 2006 Brain Research), fMRI (e.g. Kronbichler et al 2004 NeuroImage), MEG (e.g. Huizeling et al 2021 Neurobio. Lang.), and intracranial (e.g. Woolnough et al 2022 J. Neurosci.) recordings. Figure 7 also demonstrates that late stages of the model show a strong negative correlation with font size, whereas later stages of neural visual word processing are typically insensitive to differences in visual features, instead showing sensitivity to lexical factors.

      Another example of the mismatch between this model and visual cortex is the lack of feedback connections in the model. Within visual cortex there are extensive feedback connections, with later processing stages providing recursive feedback to earlier stages. This is especially evident in reading, where feedback from lexical level processes feeds back to letter level processes (e.g. Heilbron et al 2020 Nature Comms.). This feedback is especially relevant for reading of words in noisy conditions, as tested in the current manuscript, as lexical knowledge enhances letter representation in visual cortex (the word superiority effect). This results in neural activity in multiple cortical areas varying over time, changing selectivity within a region at different measured time points (e.g. Woolnough et al 2021 Nature Human Behav.), which in the current study is simplified down to three discrete time windows, each attributed to different spatial locations.

      The presented model needs substantial further development to be able to replicate, both behaviorally and neurally, many of the well-characterized phenomena seen in human behavior and neural recordings that are fundamental hallmarks of human visual word processing. Until that point it is unclear what novel contributions can be gleaned from correlating low dimensional model weights from these computational models with human neural data.

      The revised version of this manuscript has not addressed these concerns.

    1. Reviewer #1 (Public review):

      Summary:

      Insects and their relatives are commonly infected with microbes that are transmitted from mothers to their offspring. A number of these microbes have independently evolved the ability to kill the sons of infected females very early in their development; this male killing strategy has evolved because males are transmission dead-ends for the microbe. A major question in the field has been to identify the genes that cause male killing and to understand how they work. This has been especially challenging because most male-killing microbes cannot be genetically manipulated. This study focuses on a male-killing bacterium called Wolbachia. Different Wolbachia strains kill male embryos in beetles, flies, moths, and other arthropods. This is remarkable because how sex is determined differs widely in these hosts. Two Wolbachia genes have been previously implicated in male-killing by Wolbachia: oscar (in moth male-killing) and wmk (in fly male-killing). The genomes of some male-killing Wolbachia contain both of these genes, so it is a challenge to disentangle the two.

      This paper provides strong evidence that oscar is responsible for male-killing in moths. Here, the authors study a strain of Wolbachia that kills males in a pest of tea, Homona magnanima. Overexpressing oscar, but not wmk, kills male moth embryos. This is because oscar interferes with masculinizer, the master gene that controls sex determination in moths and butterflies. Interfering with the masculinizer gene in this way leads the (male) embryo down a path of female development, which causes problems in regulating the expression of genes that are found on the sex chromosomes.

      Strengths:

      The authors use a broad number of approaches to implicate oscar, and to dissect its mechanism of male lethality. These approaches include: a) overexpressing oscar (and wmk) by injecting RNA into moth eggs, b) determining the sex of embryos by staining female sex chromosomes, c) determining the consequences of oscar expression by assaying sex-specific splice variants of doublesex, a key sex determination gene, and by quantifying gene expression and dosage of sex chromosomes, using RNASeq, and d) expressing oscar along with masculinizer from various moth and butterfly species, in a silkmoth cell line. This extends recently published studies implicating oscar in male-killing by Wolbachia in Ostrinia corn borer moths, although the Homona and Ostrinia oscar proteins are quite divergent. Combined with other studies, there is now broad support for oscar as the male-killing gene in moths and butterflies (i.e. order Lepidoptera).

    1. Joint Public Review:

      Summary:

      Jia and colleagues developed a fluorescence resonance energy transfer (FRET)-based biosensor to study programmed cell death in the zebrafish spinal cord. They applied this tool to study death of zebrafish spinal motor neurons.

      Strengths:

      Their analysis shows that the tool is a useful biosensor of motor neuron apoptosis in living zebrafish and can reveal which part of the neuron undergoes caspase activation first.

      Weaknesses:

      As far as it is possible to tell, the authors focus on death of motor neurons innervating axial muscles. Previous work from over 30 years ago revealed that only a small number of these motor neurons die early in development. So this is not new, although following the cells and learning details of their apoptosis is new. Most of the work on motor neuron death in tetrapods was carried out on limb innervating motor neurons. Zebrafish have paired pectoral and pelvic fins, homologs of tetrapod paired limbs. These fins are innervated by distinct sets of motor neurons in zebrafish, as they are in tetrapods. However, the authors have not focused on these particular motor neurons, and thus have not made a fair comparison with tetrapods. In fact, they do not tell us which spinal levels they observed or whether they have been consistent from animal to animal. Pelvic fins emerge much later than pectoral fins in zebrafish, so it is possible that the time frame during which the authors imaged motor neuron death does not include motor neurons innervating pelvic fins.

    1. Reviewer #1 (Public review):

      Experiments in model organisms have revealed that the effects of genes on heritable traits are often mediated by environmental factors -- so-called gene-by-environment (or GxE) interactions. In human genetics, however, where indirect statistical approaches must be taken to detect GxE, limited evidence has been found for pervasive GxE interactions. The present manuscript argues that the failure of statistical methods to detect GxE may be due to how GxE is modelled (or not modelled) by these methods.

      The authors show, via re-analysis of an existing dataset in Drosophila, that a polygenic 'amplification' model can parsimoniously explain patterns of differential genetic effects across environments. (Work from the same lab had previously shown that the amplification model is consistent with differential genetic effects across the sexes for a number of traits in humans.) The parsimony of the amplification model allows for powerful detection of GxE in scenarios in which it pertains, as the authors show via simulation.

      Before the authors consider polygenic models of GxE, however, they present a very clear analysis of a related question around GxE: When one wants to estimate the effect of an individual allele in a particular environment, when is it better to stratify one's sample by environment (reducing sample size, and therefore increasing the variance of the estimator) versus using the entire sample (including individuals not in the environment of interest, and therefore biasing the estimator away from the true effect specific to the environment of interest)? Intuitively, the sample-size cost of stratification is worth paying if true allelic effects differ substantially between the environment of interest and other environments (i.e., GxE interactions are large), but not worth paying if effects are similar across environments. The authors quantify this trade-off in a way that is both mathematically precise and conveys the above intuition very clearly. They argue on its basis that, when allelic effects are small (as in highly polygenic traits), single-locus tests for GxE may be substantially underpowered.

      The paper is an important further demonstration of the plausibility of the amplification model of GxE, which, given its parsimony, holds substantial promise for the detection and characterization of GxE in genomic datasets. However, the empirical and simulation examples considered in the paper (and previous work from the same lab) are somewhat "best-case" scenarios for the amplification model, with only two environments and with these environments amplifying equally the effects of only a single set of genes. It would be an important step forward to demonstrate the possibility of detecting amplification in more complex scenarios, with multiple environments each differentially modulating the effects of multiple sets of genes. This could be achieved via simulations similar to those presented in the current manuscript.

      Comments on revisions:

      The authors have (with reasonable justification) said that my main recommendations for strengthening the conclusions of the paper are beyond its scope, and they have thoughtfully responded to my (and the other reviewer's) other comments. The paper is now more clearly written---in particular, the connection between the single-locus bias-variance tradeoff calculations and the polygenic results is much more transparent than before. Given that the authors have (again, with fair justification) chosen not to address my major comment, my broad assessment of the paper is unchanged---I think it is an important contribution to a critical topic---and I have no further comments for its improvement (though I note an issue with figure referencing in the captions of Supplementary Figs S2 and S3).

    1. Reviewer #1 (Public review):

      Summary:

      The authors report an inability to reproduce a transgenerational memory of avoidance of the pathogen PA14 in C. elegans. Instead, the authors demonstrate intergenerational inheritance for a single F1 generation, in embryos of mothers exposed to OP50 and PA14, where embryos isolated from these mothers by bleaching are capable of remembering to avoid PA14 in a manner that is dependent on systemic RNAi proteins sid-1 and sid-2. This could reflect systemic sRNAs generated by neuronal daf-7 signaling that are transmitted to F1 embryos. The authors note that transgenerational memory of PA14 was reported by the Murphy group at Princeton, but that environmental or strain variation (worms or bacteria) might explain the single generation of inheritance observed at Harvard. The Hunter group tried different bacterial growth conditions and different worm growth temperatures for independent PA14 strains, which they show to be strongly pathogenic. However, the authors could not reproduce a transgenerational effect at Harvard. This paper honestly alters expectations and indicates that the model that avoidance of PA14 is remembered for multiple generations is not robust enough to be replicated in all laboratories.

      Overall, this paper that demonstrates that one model for transgenerational inheritance in C. elegans is not robust. The author do demonstrate an avoidance memory for F1 embryos that could be a maternal effect, and the authors confirm that this is mediated by a systemic small RNA response. There are several points in the manuscript where a more positive tone might be helpful.

      Strengths:

      The authors note that the high copy number daf-7::GFP transgene used by the Murphy group displayed variable expression and evidence for somatic silencing or transgene breakdown in the Hunter lab, as confirmed by the Murphy group. The authors nicely use single copy daf-7::GFP to show that neuronal daf-7::GFP is elevated in F1 but not F2 progeny with regards to memory of PA14 avoidance, speaking to an intergenerational phenotype.

      The authors nicely confirm that sid-1 and sid-2 are generally required for intergenerational avoidance of F1 embryos of moms exposed to PA14. However, these small RNA proteins did not affect daf-7::GFP elevation in the F1 progeny. This result is unexpected given previous reports that daf-7::GFP is not elevated in F1 progeny of sid mutants.

      The authors studied antisense small RNAs that change in Murphy data sets, identifying 116 mRNAs that might be regulated by sRNAs in response to PA14. The authors show that the maco-1 gene, putatively targeted by piRNAs according to the Kaletsky 2020 paper, displays few siRNAs that change in response to PA14. The authors conclude that the P11 ncRNA of PA14, which was proposed to promote interkingdom RNA communication by the Murphy group, may not affect maco-1 expression in C. elegans, although they did not formally demonstrate this. The authors define 8 genes based on their analysis of sRNAs and mRNAs that might promote resistance to PA14, but they do not further characterize these genes' role in pathogen avoidance. Others might wish to consider following up on these genes and their possible relationship with P11.

      Weaknesses:

      This very thorough and interesting manuscript is at times pugnacious.

      Please explain more clearly what is High Growth media for E. coli in the text and methods, conveying why it was used by the Murphy lab, and if Normal Growth or High Growth is better for intergenerational heritability assays.

      Comments on revisions:

      The authors have done a reasonable job cordially revising this manuscript, and the authors have addressed most reviewer concerns. It is likely that the P11 gene was in some of the PA14 Pseudomonas strains tested, as one was kindly provided by the Murphy group.

    1. Reviewer #2 (Public review):

      Summary:

      The authors reported that mutations were identified in the ZC3H11A gene in four adolescents from 1015 high myopia subjects in their myopia cohort. They further generated Zc3h11a knockout mice utilizing the CRISPR/Cas9 technology.

      Comments on revisions:

      Chong Chen and colleagues revised the manuscript; however, none of my suggestions from the initial review have been sufficiently addressed.

      (1) I indicated that the pathogenicity and novelty of the mutation need to be determined according to established guidelines and databases. However, the conclusion was still drawn without sufficient justification.<br /> (2) The phenotype of heterozygous mutant mice is too weak to support the gene's contribution to high myopia. The revised manuscript does not adequately address these discrepancies. Furthermore, no explanation was provided for why conditional gene deletion was not used to avoid embryonic lethality, nor was there any discussion on tissue- or cell-specific mechanistic investigations.<br /> (3) The title, abstract, and main text continue to misrepresent the role of the inflammatory intracellular PI3K-AKT and NF-κB signaling cascade in inducing high myopia. No specific cell types have been identified as contributors to the phenotype. The mice did not develop high myopia, and no relationship between intracellular signaling and myopia progression has been demonstrated in this study.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Arimura et al describe MagIC-Cryo-EM, an innovative method for immune-selective concentrating of native molecules and macromolecular complexes for Cryo-EM imaging and single-particle analysis. Typically, Cryo-EM imaging requires much larger concentrations of biomolecules than those that are feasible to achieve by conventional biochemical fractionation. This manuscript is meticulously and clearly written and the new technique is likely to become a great asset to other electron microscopists and chromatin researchers.

      Strengths:

      Previously, Arimura et al. (Mol. Cell 2021) isolated from Xenopus extract and resolved by Cryo-EM a sub-class of native nucleosomes conjugated containing histone H1.8 at the on-dyad position, similar to that previously observed by other researchers with reconstituted nucleosomes. Here they sought to analyze immuno-selected nucleosomes aiming to observe specific modes of H1.8 positioning (e.g. on-dyad and off-dyad) and potentially reveal structural motifs responsible for the decreased affinity of H1.8 for the interphase chromatin compared to metaphase chromosomes. The main strength of this work is a clever and novel methodological design, in particular the engineered protein spacers to separate captured nucleosomes from streptavidin beads for clear imaging. The authors provide a detailed step-by-step description of MagIC-Cryo-EM procedure including nucleosome isolation, preparation of GFP nanobody attached magnetic beads, optimization of the spacer length, concentration of the nucleosomes on graphene grids, data collection and analysis, including their new DUSTER method to filter-out low signal particles. This tour de force methodology should facilitate the consideration of MagIC-Cryo-EM by other electron microscopists, especially for analysis of native nucleosome complexes.<br /> In pursuit of biologically important new structures, the immune-selected H1.8-containing nucleosomes were solved at about 4A resolution; their structure appears to be very similar to the previously determined structure of H1.8-reconstituted nucleosomes. There were no apparent differences between the metaphase and interphase complexes suggesting that the on-dyad and off-dyad positioning does not explain the differences in H1.8 - nucleosome binding. However, they were able to identify and solve complexes of H1.8-GFP with histone chaperone NPM2 in a closed and open conformation providing mechanistic insights for H1-NPM2 binding and the reduced affinity of H1.8 to interphase chromatin as compared to metaphase chromosomes.

      MagIC technique still has certain limitations resulting from formaldehyde fixation, use of bacterial-expressed recombinant H1.8-GFP, and potential effects of magnetic beads and/or spacer on protein structure, which are explicitly discussed in the text. Notwithstanding these limitations, MagIC-Cryo-EM is expected to become a great asset to other electron microscopists and biochemists studying native macromolecular complexes.

      Comments on revisions:

      In the revision, Arimura et al. have constructively addressed the reviewer's concerns, by discussing possible limitations and including additional information on proteomic analysis and H1.8-NPM2 structures.<br /> The revised manuscript and rebuttal letter strengthen my initial opinion that this paper describes an innovative method for immune-selective concentrating of native molecules and macromolecular complexes thus enabling Cryo-EM imaging and structural analysis of native nucleosome complexes at low concentration. This manuscript is meticulously and clearly written and may become a great asset to other electron microscopists and chromatin researchers

    1. Reviewer #1 (Public review):

      Summary:

      The major result in the manuscript is the observation of the higher order structures in a cryoET reconstruction that could be used for understanding the assembly of toroid structures. The cross-linking ability of ZapD dimers result in bending of FtsZ filaments to a constant curvature. Many such short filaments are stitched together to form a toroid like structure. The geometry of assembly of filaments - whether they form straight bundles or toroid like structures - depends on the relative concentrations of FtsZ and ZapD.

      Strengths:

      In addition to a clear picture of the FtsZ assembly into ring-like structures, the authors have carried out basic biochemistry and biophysical techniques to assay the GTPase activity, the kinetics of assembly, and the ZapD to FtsZ ratio.

      Weaknesses:

      The discussion does not provide an overall perspective that correlates the cryoET structural organisation of filaments with the biophysical data. The current version has improved in terms of addressing this weakness and clearly states the lacuna in the model proposed based on the technical limitations.

      Future scope of work includes the molecular basis of curvature generation and how molecular features of FtsZ and ZapD affect the membrane binding of the higher order assembly.

    1. Reviewer #1 (Public review):

      Summary:

      In this study the authors use an elegant set of single-molecule experiments to assess the transcriptional and post-transcriptional regulation of RecB. The question stems from a previous observation from the same lab, that RecB protein levels are low and not induced under DNA damage. The authors first show that recB transcript levels are low and have a short half-live. They further show that RecB levels are likely regulated via translational control. They provide evidence for low noise in RecB protein levels across cells and show that the translation of the mRNA increases under double-strand break conditions. Authors identify Hfq binding sites in the recbcd operon and show that Hfq regulates the levels of RecB protein without changing the mRNA levels. They suggest that RecB translation is directly controlled by Hfq binding to mRNA, as mutating one of the binding sites has a direct effect on RecB protein levels.

      The implication of Hfq in regulation of RecB translation is important, and suggests mechanisms of cellular response to DNA damage that are beyond the canonically studied mechanisms (such as transcriptional regulation by LexA). Data are clearly presented and the writing is direct and easy to follow. Overall, the study is well-designed and provides novel insights into the regulation of RecB, that is part of the complex required to process break ends.

      Comments on revisions:

      All my comments are addressed - I congratulate the authors on this excellent work.

    1. Reviewer #1 (Public review):

      Summary:

      In this detailed study, Cohen and Ben-Shaul characterized the AOB cell responses to various conspecific urine samples in female mice across the estrous cycle. The authors found that AOB cell responses vary with the strains and sexes of the samples. Between estrous and non-estrous females, no clear or consistent difference in responses was found. The cell response patterns, as measured by the distance between pairs of stimuli, are largely stable. When some changes do occur, they are not consistent across strains or male status. The authors concluded that AOB detects the signals without interpreting them. Overall, this study will provide useful information for scientists in the field of olfaction.

      Strengths:

      The study uses electrophysiological recording to characterize the responses of AOB cells to various urines in female mice. AOB recording is not trivial as it requires activation of VNO pump. The team uses a unique preparation to activate the VNO pump with electric stimulation, allowing them to record AOB cell responses to urines in anesthetized animals. The study comprehensively described the AOB cell responses to social stimuli and how the responses vary (or not) with features of the urine source and the reproductive state of the recording females. The dataset could be a valuable resource for scientists in the field of olfaction.

      Weaknesses:

      (1) The figures could be better labeled.

      (2) For Figure 2E, please plot the error bar. Are there any statistics performed to compare the mean responses?

      (3) For Figure 2D, it will be more informative to plot the percentage of responsive units.

      (4) Could the similarity in response be explained by the similarity in urine composition? The study will be significantly strengthened by understanding the "distance" of chemical composition in different urine.

      (5) If it is not possible for the authors to obtain these data first-hand, published data on MUPs and chemicals found in these urines may provide some clues.

      (6) It is not very clear to me whether the female overrepresentation is because there are truly more AOB cells that respond to females than males or because there are only two female samples but 9 male samples.

      (7) If the authors only select two male samples, let's say ICR Naïve and ICR DOM, combine them with responses to two female samples, and do the same analysis as in Figure 3, will the female response still be overrepresented?

      (8) In Figure 4B and 4C, the pairwise distance during non-estrus is generally higher than that during estrus, although they are highly correlated. Does it mean that the cells respond to different urines more distinctively during diestrus than in estrus?

      (9) The correlation analysis is not entirely intuitive when just looking at the figures. Some sample heatmaps showing the response differences between estrous states will be helpful.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Pinho et al. presents a novel behavioral paradigm for investigating higher-order conditioning in mice. The authors developed a task that creates associations between light and tone sensory cues, driving mediated learning. They observed sex differences in task acquisition, with females demonstrating faster-mediated learning compared to males. Using fiber photometry and chemogenetic tools, the study reveals that the dorsal hippocampus (dHPC) plays a central role in encoding mediated learning. These findings are crucial for understanding how environmental cues, which are not directly linked to positive/negative outcomes, contribute to associative learning. Overall, the study is well-designed, with robust results, and the experimental approach aligns with the study's objectives.

      Strengths:

      (1) The authors develop a robust behavioral paradigm to examine higher-order associative learning in mice.

      (2) They discover a sex-specific component influencing mediated learning, with females exhibiting enhanced learning abilities.

      (3) Using fiber photometry and chemogenetic techniques, the authors identify the dorsal hippocampus but not the ventral hippocampus, which plays a crucial for encoding mediated learning.

      Weaknesses:

      (1) The study would be strengthened by further elaboration on the rationale for investigating specific cell types within the hippocampus.

      (2) The analysis of photometry data could be improved by distinguishing between early and late responses, as well as enhancing the overall presentation of the data.

      (3) The manuscript would benefit from revisions to improve clarity and readability.

    1. Reviewer #1 (Public review):

      Summary:

      Wojnowska et al. report structural and functional studies of the interaction of Streptococcus pyogenes M3 protein with collagen. They show through X-ray crystallographic studies that the N-terminal hypervariable region of M3 protein forms a T-like structure and that the T-like structure binds a three-stranded collagen-mimetic peptide. They indicate that the T-like structure is predicted by AlphaFold3 (with varying confidence level) in other M proteins that have sequence similarity to M3 protein and M-like proteins from group C and G streptococci. For some, but not all, of these related M and M-like proteins, AlphaFold3 predicts complexes similar to the one observed for M3-collagen. Functionally, the authors show that emm3 strains form biofilms with more mass when surfaces are coated with collagen, and this effect can be blocked by an M3 protein fragment that contains the T-structure. They also show the co-occurrence of emm3 strains and collagen in patient biopsies and a skin tissue organoid.

      Strengths:

      The paper is well-written and the data presented is mostly sound.

      Weaknesses:

      However, a major limitation of the paper is that it is almost entirely observational and fails to draw a causal relationship. This is mainly due to the near-total absence of mutational studies.

    1. Reviewer #1 (Public review):

      Summary:

      This work considers the biases introduced into pathogen surveillance due to congregation effects, and also models homophily and variants/clades. The results are primarily quantitative assessments of this bias but some qualitative insights are gained e.g. that initial variant transmission tends to be biased upwards due to this effect, which is closely related to classical founder effects.

      Strengths:

      The model considered involves a simplification of the process of congregation using multinomial sampling that allows for a simpler and more easily interpretable analysis.

      Weaknesses:

      This simplification removes some realism, for example, detailed temporal transmission dynamics of congregations.

    1. Reviewer #1 (Public review):

      This paper describes technically-impressive measurements of calcium signals near synaptic ribbons in goldfish bipolar cells. The data presented provides high spatial and temporal resolution information about calcium concentrations along the ribbon at various distances from the site of entry at the plasma membrane. This is important information. Important gaps in the data presented mean that the evidence for the main conclusions is currently inadequate.

      Strengths

      (1) The technical aspects of the measurements are impressive. The authors use calcium indicators bound to the ribbon and high-speed line scans to resolve changes with a spatial resolution of ~250 nm and a temporal resolution of less than 10 ms. These spatial and temporal scales are much closer to those relevant for vesicle release than previous measurements.

      (2) The use of calcium indicators with very different affinities and different intracellular calcium buffers helps provide confirmation of key results.

      Weaknesses

      (1) Multiple key points of the paper lack statistical tests or summary data from populations of cells. For example, the text states that the proximal and distal calcium kinetics in Figure 2A differ. This is not clear from the inset to Figure 2A - where the traces look like scaled versions of each other. Values for time to half-maximal peak fluorescence are given for one example cell but no statistics or summary are provided. Figure 8 shows examples from one cell with no summary data. This issue comes up in other places as well.

      (2) Figure 5 is confusing. The figure caption describes red, green, and blue traces, but the figure itself has only two traces in each panel and none are red, green, or blue. It's not possible currently to evaluate this figure.

      (3) The rise time measurements in Figure 2 are very different for low and high-affinity indicators, but no explanation is given for this difference. Similarly, the measurements of peak calcium concentration in Figure 4 are very different from the two indicators. That might suggest that the high-affinity indicator is strongly saturated, which raises concerns about whether that is impacting the kinetic measurements.

    1. Reviewer #1 (Public review):

      Summary:

      This retrospective study provides new data regarding the prevalence of pain in women with PCOS and its relationship with health outcomes. Using data from electronic health records (EHR), the authors found a significantly higher prevalence of pain among women with PCOS compared to those without the condition: 19.21% of women with PCOS versus 15.8% in non-PCOS women. The highest prevalence of pain was conducted among Black or African American (32.11%) and White (30.75%) populations. Besides, women with PCOS and pain have at least a 2-fold increased prevalence of obesity (34.68%) at baseline compared to women with PCOS in general (16.11%). Also, women with PCOS had the highest risk for infertility and T2D, but women with PCOS and pain had higher risks for ovarian cysts and liver disease. Regarding these results, the authors suggested the critical need to address pain in the diagnosis and management of PCOS due to its significant impact on patient health outcomes.

      Strengths:

      (1) The problem of pain assessment in PCOS patients is well described and the authors provided a clear rationale selection of the retrospective design to investigate this problem.

      (2) A large number of analyzed patient records (76,859,666 women) and their uniformity increases the power of the study. Using the Propensity Score Matching makes it possible to reduce the heterogeneity of the compared cohorts and the influence of comorbid conditions.

      (3) Analysis in different ethnic cohorts provides actual and necessary data regarding the prevalence of pain and its relationship with different health conditions that will be helpful for clinicians to make a diagnosis and manage PCOS in women of different ethnicities.

      (4) Assessment of the risk of different health conditions including PCOS-associated pathology as other common groups of diseases in PCOS women with or without pain allows to differentiate the risk of comorbid conditions depending on the presence of one symptom (pelvic or abdominal pain, dysmenorrhea).

      Weaknesses:

      (1) Although the paper has strengths in methodology and data analysis, it also has some weaknesses. The lack of a hypothesis doesn't allow us to evaluate the aim and significance of this study.

      (2) The exclusion criteria don't include conditions, that can lead to symptoms similar to PCOS: thyroid diseases, hyperprolactinemia, and congenital adrenal hyperplasia. Thyroid status is not being taken into account in the criteria for matching. All these conditions could occur as on prevalence results as on risk assessment.

      (3) The significant weakness of the study is the absence of a Latin American cohort. Probably the White cohort includes Latin Americans or others, but the results of the study cannot be extrapolated to particular White ethnicities.

      (4) The authors didn't provide sufficient rationale for future health outcomes and this list didn't include diseases of the digestive system or disorders of thyroid glands, which can also cause abdominal pain.

    1. Reviewer #1 (Public review):

      Summary:

      Here, the authors have addressed the recruitment and firing patterns of motor units (MUs) from the long and lateral heads of the triceps in the mouse. They used their newly developed Myomatrix arrays to record from these muscles during treadmill locomotion at different speeds, and they used template-based spike sorting (Kilosort) to extract units. Between MUs from the two heads, the authors observed differences in their firing rates, recruitment probability, phase of activation within the locomotor cycle, and interspike interval patterning. Examining different walking speeds, the authors find increases in both recruitment probability and firing rates as speed increases. The authors also observed differences in the relation between recruitment and the angle of elbow extension between motor units from each head. These differences indicate meaningful variation between motor units within and across motor pools and may reflect the somewhat distinct joint actions of the two heads of triceps.

      Strengths:

      The extraction of MU spike timing for many individual units is an exciting new method that has great promise for exposing the fine detail in muscle activation and its control by the motor system. In particular, the methods developed by the authors for this purpose seem to be the only way to reliably resolve single MUs in the mouse, as the methods used previously in humans and in monkeys (e.g. Marshall et al. Nature Neuroscience, 2022) do not seem readily adaptable for use in rodents.

      The paper provides a number of interesting observations. There are signs of interesting differences in MU activation profiles for individual muscles here, consistent with those shown by Marshall et al. It is also nice to see fine-scale differences in the activation of different muscle heads, which could relate to their partially distinct functions. The mouse offers greater opportunities for understanding the control of these distinct functions, compared to the other organisms in which functional differences between heads have previously been described.

      The Discussion is very thorough, providing a very nice recounting of a great deal of relevant previous results.

      Weaknesses:

      The findings are limited to one pair of muscle heads. While an important initial finding, the lack of confirmation from analysis of other muscles acting at other joints leaves the general relevance of these findings unclear.

      While differences between muscle heads with somewhat distinct functions are interesting and relevant to joint control, differences between MUs for individual muscles, like those in Marshall et al., are more striking because they cannot be attributed potentially to differences in each head's function. The present manuscript does show some signs of differences for MUs within individual heads: in Figure 2C, we see what looks like two clusters of motor units within the long head in terms of their recruitment probability. However, a statistical basis for the existence of two distinct subpopulations is not provided, and no subsequent analysis is done to explore the potential for differences among MUs for individual heads.

      The statistical foundation for some claims is lacking. In addition, the description of key statistical analysis in the Methods is too brief and very hard to understand. This leaves several claims hard to validate.

    1. Reviewer #1 (Public review):

      Summary

      In this article, Kawanabe-Kobayashi et al., aim to examine the mechanisms by which stress can modulate pain in mice. They focus on the contribution of noradrenergic neurons (NA) of the locus coeruleus (LC). The authors use acute restraint stress as a stress paradigm and found that following one hour of restraint stress mice display mechanical hypersensitivity. They show that restraint stress causes the activation of LC NA neurons and the release of NA in the spinal cord dorsal horn (SDH). They then examine the spinal mechanisms by which LC→SDH NA produces mechanical hypersensitivity. The authors provide evidence that NA can act on alphaA1Rs expressed by a class of astrocytes defined by the expression of Hes (Hes+). Furthermore, they found that NA, presumably through astrocytic release of ATP following NA action on alphaA1Rs Hes+ astrocytes, can cause an adenosine-mediated inhibition of SDH inhibitory interneurons. They propose that this disinhibition mechanism could explain how restraint stress can cause the mechanical hypersensitivity they measured in their behavioral experiments.

      Strengths:

      (1) Significance. Stress profoundly influences pain perception; resolving the mechanisms by which stress alters nociception in rodents may explain the well-known phenomenon of stress-induced analgesia and/or facilitate the development of therapies to mitigate the negative consequences of chronic stress on chronic pain.

      (2) Novelty. The authors' findings reveal a crucial contribution of Hes+ spinal astrocytes in the modulation of pain thresholds during stress.

      (3) Techniques. This study combines multiple approaches to dissect circuit, cellular, and molecular mechanisms including optical recordings of neural and astrocytic Ca2+ activity in behaving mice, intersectional genetic strategies, cell ablation, optogenetics, chemogenetics, CRISPR-based gene knockdown, slice electrophysiology, and behavior.

      Weaknesses:

      (1) Mouse model of stress. Although chronic stress can increase sensitivity to somatosensory stimuli and contribute to hyperalgesia and anhedonia, particularly in the context of chronic pain states, acute stress is well known to produce analgesia in humans and rodents. The experimental design used by the authors consists of a single one-hour session of restraint stress followed by 30 min to one hour of habituation and measurement of cutaneous mechanical sensitivity with von Frey filaments. This acute stress behavioral paradigm corresponds to the conditions in which the clinical phenomenon of stress-induced analgesia is observed in humans, as well as in animal models. Surprisingly, however, the authors measured that this acute stressor produced hypersensitivity rather than antinociception. This discrepancy is significant and requires further investigation.

      (2) Specifically, is the hypersensitivity to mechanical stimulation also observed in response to heat or cold on a hotplate or coldplate?

      (3) Using other stress models, such as a forced swim, do the authors also observe acute stress-induced hypersensitivity instead of stress-induced antinociception?

      (4) Measurement of stress hormones in blood would provide an objective measure of the stress of the animals.

      (5) Results:

      a) Optical recordings of Ca2+ activity in behaving rodents are particularly useful to investigate the relationship between Ca2+ dynamics and the behaviors displayed by rodents.

      b) The authors report an increase in Ca2+ events in LC NA neurons during restraint stress: Did mice display specific behaviors at the time these Ca2+ events were observed such as movements to escape or orofacial behaviors including head movements or whisking?

      c) Additionally, are similar increases in Ca2+ events in LC NA neurons observed during other stressful behavioral paradigms versus non-stressful paradigms?

      d) Neuronal ablation to reveal the function of a cell population.

      e) The proportion of LC NA neurons and LC→SDH NA neurons expressing DTR-GFP and ablated should be quantified (Figures 1G and J) to validate the methods and permit interpretation of the behavioral data (Figures 1H and K). Importantly, the nocifensive responses and behavior of these mice in other pain assays in the absence of stress (e.g., hotplate) and a few standard assays (open field, rotarod, elevated plus maze) would help determine the consequences of cell ablation on processing of nociceptive information and general behavior.

      f) Confirmation of LC NA neuron function with other methods that alter neuronal excitability or neurotransmission instead of destroying the circuit investigated, such as chemogenetics or chemogenetics, would greatly strengthen the findings. Optogenetics is used in Figure 1M, N but excitation of LC→SDH NA neuron terminals is tested instead of inhibition (to mimic ablation), and in naïve mice instead of stressed mice.

      g) Alpha1Ars. The authors noted that "Adra1a mRNA is also expressed in INs in the SDH".

      h) The authors should comprehensively indicate what other cell types present in the spinal cord and neurons projecting to the spinal cord express alpha1Ars and what is the relative expression level of alpha1Ars in these different cell types.

      i) The conditional KO of alpha1Ars specifically in Hes5+ astrocytes and not in other cell types expressing alpha1Ars should be quantified and validated (Figure 2H).

      j) Depolarization of SDH inhibitory interneurons by NA (Figure 3). The authors' bath applied NA, which presumably activates all NA receptors present in the preparation.

      k) The authors' model (Figure 4H) implies that NA released by LC→SDH NA neurons leads to the inhibition of SDH inhibitory interneurons by NA. In other experiments (Figure 1L, Figure 2A), the authors used optogenetics to promote the release of endogenous NA in SDH by LC→SDH NA neurons. This approach would investigate the function of NA endogenously released by LC NA neurons at presynaptic terminals in the SDH and at physiological concentrations and would test the model more convincingly compared to the bath application of NA.

      l) As for other experiments, the proportion of Hes+ astrocytes that express hM3Dq, and the absence of expression in other cells, should be quantified and validated to interpret behavioral data.

      m) Showing that the effect of CNO is dose-dependent would strengthen the authors' findings.

      n) The proportion of SG neurons for which CNO bath application resulted in a reduction in recorded sIPSCs is not clear.

      o) A1Rs. The specific expression of Cas9 and guide RNAs, and the specific KD of A1Rs, in inhibitory interneurons but not in other cell types expressing A1Rs should be quantified and validated.

      (6) Methods:

      It is unclear how fiber photometry is performed using "optic cannula" during restraint stress while mice are in a 50ml falcon tube (as shown in Figure 1A).

    1. Reviewer #1 (Public review):

      The structure of a heterohexameric 3:3 LGI1-ADAM22 complex is resolved by Yamaguchi et al. It reveals the intermolecular LGI1 interactions and their role in bringing three ADAM22 molecules together. This may be relevant for the clustering of axonal Kv1 channels and control over their density. While it is currently not clear if the heterohexameric 3:3 LGI1-ADAM22 complex has a physiological role, the detailed structural information, presented here, allows us to pinpoint mutations or other strategies to probe the relevance of the 3:3 complex in future work.

      The experimental work is done to a high standard, and I have no comments on that part. I do have several recommendations that I hope will be considered.

      (1) A previously determined 2:2 heterodimeric complex of LGI1-ADAM22 was suggested to play a role in trans interactions. Could the authors discuss if the heterohexameric 3:3 LGI1-ADAM22 is more likely to represent a cis complex or a trans complex, or if both are possible?

      (2) It is not entirely clear to me if the LGI1-ADAM22 complex is also crosslinked in the HS-AFM experiments. Could this be more clearly indicated? In addition, if this is the case, could an explanation be given about how the complex can still dissociate?

      (3) The LGI1 and ADAM22 are of similar size. To me, this complicates the interpretation of dissociation of the complex in the HS-AFM data. How is the overinterpretation of this data prevented? In other words, what confidence do the authors have in the dissociation steps in the HS-AFM data?

      (4) What is the "LGI1 collapse" mentioned in Figure 4c?

      (5) Am I correct that the structure indicates that the trimerization is entirely organized by LGI1? This would suggest LGI1 trimerizes on its own. Can this be discussed? Has this been observed?

      (6) C3 symmetry was not applied in the cryo-EM reconstruction of the heterohexameric 3:3 LGI1-ADAM22 complex. How much is the complex deviating from C3 symmetry? What interactions stabilize the specific trimeric conformation reconstructed here, compared to other trimeric conformations?

    1. Reviewer #1 (Public review):

      Summary:

      During early Drosophila pupal development, a subset of larval abdominal muscles (DIOMs) is remodelled using an autophagy-dependent mechanism.

      To better understand this not very well studied process, the authors have generated a transcriptomics time course using dissected abdominal muscles of various stages from wild-type and autophagy-deficient mutants. The authors have further identified a function for BNIP3 in muscle mitophagy using this system.

      Strengths:

      (1) The paper does provide a detailed mRNA time course resource for DIOM remodelling.

      (2) The paper does find an interesting BNIP3 loss of function phenotype, a block of mitophagy during muscle remodelling, and hence identifies a specific linker between mitochondria and the core autophagy machinery. This adds to the mechanism of how mitochondria are degraded.

      (3) Sophisticated fly genetics demonstrates that the larval muscle mitochondria are, to a large extent, degraded by autophagy during DIOM remodelling.

      Weaknesses:

      (1) Mitophagy during DIOM remodelling is not novel (earlier papers from Fujita et al.).

      (2) The transcriptomics time course data are not well connected to the autophagy part. Both could be separated into 2 independent manuscripts.

      (3) The muscle phenotypes need better quantifications, both for the EM and light microscopy data in various figures.

      (4)The transcriptomics data are hard to browse in the provided PDF format.

    1. Reviewer #1 (Public review):

      Summary:

      Compelling and clearly described work that combines two elegant cell fate reporter strains with mathematical modelling to describe the kinetics of CD4+ TRM in mice. The aim is to investigate the cell dynamics underlying the maintenance of CD4+TRM.

      The main conclusions are that:<br /> (1) CD4+ TRM are not intrinsically long-lived.<br /> (2) Even clonal half-lives are short: 1 month for TRM in skin, and even shorter (12 days) for TRM in lamina propria.<br /> (3) TRM are maintained by self-renewal and circulating precursors.

      Strengths:

      (1) Very clearly and succinctly written. Though in some places too succinctly! See suggestions below for areas I think could benefit from more detail.

      (2) Powerful combination of mouse strains and modelling to address questions that are hard to answer with other approaches.

      (3) The modelling of different modes of recruitment (quiescent, neutral, division linked) is extremely interesting and often neglected (for simpler neutral recruitment).

      Weaknesses/scope for improvement:

      (1) The authors use the same data set that they later fit for generating their priors. This double use of the same dataset always makes me a bit squeamish as I worry it could lead to an underestimate of errors on the parameters. Could the authors show plots of their priors and posteriors to check that the priors are not overly-influential? Also, how do differences in priors ultimately influence the degree of support a model gets (if at all)? Could differences in priors lead to one model gaining more support than another?

      (2) The authors state (line 81) that cells were "identified as tissue-localised by virtue of their protection from short-term in vivo labelling (Methods; Fig. S1B)". I would like to see more information on this. How short is short term? How long after labelling do cells need to remain unlabelled in order to be designated tissue-localised (presumably label will get to tissue pretty quickly -within hours?). Can the authors provide citations to defend the assumption that all label-negative cells are tissue-localised (no false negatives)? And conversely that no label-positive cells can be found in the tissue (no false positives)? I couldn't actually find the relevant section in the methods and Figure S1B didn't contain this information.

      (3) Are the target and precursor populations from the same mice? If so is there any way to reflect the between-individual variation in the precursor population (not captured by the simple empirical fit)? I am thinking particularly of the skin and LP CD4+CD69- populations where the fraction of cells that are mTOM+ (and to a lesser extent YFP+) spans virtually the whole range. Would it be nice to capture this information in downstream predictions if possible?

      (4) In Figure 3, estimates of kinetics for cells in LP appear to be more dependent on the input model (quiescent/neutral/division-linked) than the same parameters in the skin. Can the authors explain intuitively why this is the case?

      (5) Can the authors include plots of the model fits to data associated with the different strengths of support shown in Figure 4? That is, I would like to know what a difference in the strength of say 0.43 compared with 0.3 looks like in "real terms". I feel strongly that this is important. Are all the fits fantastic, and some marginally better than others? Are they all dreadful and some are just less dreadful? Or are there meaningful differences?

      (6) Figure 4 left me unclear about exactly which combinations of precursors and targets were considered. Figure 3 implies there are 5 precursors but in Figure 4A at most 4 are considered. Also, Figure 4B suggests skin CD69- were considered a target. This doesn't seem to be specified anywhere.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aim to use state-of-the art behaviour, imaging, and connectome techniques to identify the neural interaction between sleep and long-term memory consolidation in the PAM-DPM circuits, a well-known dopaminergic pathway within Drosophila Mushroom Body.

      Strengths:

      From a Drosophila sleep researcher's perspective, the investigation follows a clear and logical strategy to collect a huge dataset of sleep, appetitive memory, and live imaging. The authors clearly identified and showed that activation of a PAM subset: alpha-1 reduces sleep quality and memory consolidation in a starvation-dependent manner. The authors also convincingly demonstrated the corresponding neuronal responses of DPM neurons following PAM alpha-1 activation, and the positive role of DPM neural activity in sleep and memory consolidation. Moreover, the authors applied a new way of sleep statistics to demonstrate hour-by-hour changes between treatment and genotypes. Importantly, the authors demonstrated that memory loss derived from PAM alpha 1 activation can be partly restored by ectopic sleep enhancement via feeding THIP during the memory consolidation period after training.

      Weaknesses:

      Two investigatory gaps relate to the misalignment between circuital activity and behaviours, due to the nature of large circuital functional analysis like this. Firstly, the central observation of the study indicates that PAM alpha1 activation causes DPM inhibition which disrupts sleep and memory consolidation. Therefore one would expect a reduced PAMalpha1 and increased DPM activities after memory training, but the authors found that the endogenous CRTC::GFP reported neuronal activity for PAMalpha1 and DPM are both increased after memory training (Figure 9). This can be due to the difficult functional demarcation among the 14 PAMalpha1 projections. Secondly, the authors acknowledged the contradicting finding that memory defect is detected in PAMalpha1 inactivation (Figure 7C), yet suggested a tight link between sleep and memory consolidation; it is clear loss of PAM subset activity can disrupt memory consolidation without affecting sleep (cf Figure 7C and 7I).

    1. Reviewer #1 (Public review):

      Summary:

      The planarian flatworm Schmidtea mediterranea is widely used as a model system for regeneration because of its remarkable ability to regenerate its entire body plan from very small fragments of tissue, including the complete and rapid regeneration of the CNS. Prior to this study, analysis of CNS regeneration in planaria has mostly been performed on a gross anatomical level. Lu et al. describe a careful and detailed analysis of the planarian neuroanatomy and musculature in both the homeostatic and regenerating contexts. To improve the effective resolution of their imaging, the authors optimized a tissue expansion protocol for planaria. Imaging was performed by light sheet microscopy, and the resulting optical sections were tiled to reconstruct whole worms. Labelled tissues and cells were then segmented to allow quantification of neurons, muscle fibers, and all cells in individual worms.

      Strengths:

      The resulting workflow can produce highly detailed and quantifiable 3D reconstructions at a rate that is fast enough to allow the analysis of large numbers of whole animals.

      Weaknesses:

      While Lu et al. have shown how their methodology and workflow can be used to image and quantify features from whole animals, it is unclear how well their technique as described will perform at sub-cellular resolutions based upon the data that they show.

    1. Reviewer #1 (Public review):

      The chromophore molecule of animal and microbial rhodopsins is retinal which forms a Schiff base linkage with a lysine in the 7-th transmembrane helix. In most cases, the chromophore is positively charged by protonation of the Schiff base, which is stabilized by a negatively charged counterion. In animal opsins, three sites have been experimentally identified, Glu94 in helix 2, Glu113 in helix 3, and Glu181 in extracellular loop 2, where a glutamate acts as the counterion by deprotonation. In this paper, Sakai et al. investigated molecular properties of anthozoan-specific opsin II (ASO-II opsins), as they lack these glutamates. They found an alternative candidate, Glu292 in helix 7, from the sequences. Interestingly, the experimental data suggested that Glu292 is not the direct counterion in ASO-II opsins. Instead, they found that ASO-II opsins employ a chloride ion as the counterion. In the case of microbial rhodopsin, a chloride ion serves as the counterion of light-driven chloride pumps. This paper reports the first observation of a chloride ion as the counterion in animal rhodopsin. Theoretical calculation using a QM/MM method supports their experimental data. The authors also revealed the role of Glu292, which serves as the counterion in the photoproduct, and is involved in G protein activation.

      The conclusions of this paper are well supported by data, while the following aspects should be considered for the improvement of the manuscript.

      (1) Information on sequence alignment only appears in Figure S2, not in the main figures. Figure S2 is too complicated by so many opsins and residue positions. It will be difficult for general readers to follow the manuscript because of such an organization. I recommend the authors show key residues in Figure 1 by picking up from Figure S2.

      (2) Halide size dependence. The authors observed spectral red-shift for larger halides. Their observation is fully coincident with the chromophore molecule in solution (Blatz et al. Biochemistry 1972), though the isomeric states are different (11-cis vs all-trans). This suggests that a halide ion is the hydrogen-bonding acceptor of the Schiff base N-H group in solution and ASO-II opsins. A halide ion is not the hydrogen-bonding acceptor in the structure of halorhodopsin, whose halide size dependence is not clearly correlated with absorption maxima (Scharf and Engelhard, Biochemistry 1994). These results support their model structure (Figure 4), and help QM/MM calculations.

      (3) QM/MM calculations. According to Materials and Methods, the authors added water molecules to the structure and performed their calculations. However, Figure 4 does not include such water molecules, and no information was given in the manuscript. In addition, no information was given for the chloride binding site (contact residues) in Figure 4. More detailed information should be shown with additional figures in Figure SX.

      (4) Figure 5 clearly shows much lower activity of E292A than that of WT, whose expression levels are unclear. How did the authors normalize (or not normalize) expression levels in this experiment?

      (5) The authors propose the counterion switching from a chloride ion to E292 upon light activation. A schematic drawing on the chromophore, a chloride ion, and E292 (and possible surroundings) in Antho2a and the photoproduct will aid readers' understanding.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Torro et al. presented CellDetective, an open-source software designed for a user-friendly execution of single-cell segmentation, tracking, and analysis of time-lapse microscopy data. The authors demonstrated the applications of the software by measuring NK cell spreading events acquired with reflection interference contrast microscopy (RICM), as well as detecting target cell death events and their interaction with neighboring NK cells in a multichannel widefield microscopy dataset.

      Strengths:

      The segmentation (StarDist, Cellpose) and tracking (bTrack) modules implemented were based on existing and published software packages. The authors added the event detection, classification, and analysis modules to enable an end-to-end time-lapse microscopy data processing and analysis pipeline, complete with a graphical user interface (GUI). This minimizes the coding experience required from the user. The documentation that accompanies CellDetective is also adequate.

      Weaknesses:

      Given that the software was designed to improve user experience, such an approach also limits its scope and functionality and is currently capable of handling very specific types of experiments. Additionally, this reviewer has also encountered many technical difficulties (see documented bugs/crashes below) that have prevented an extensive exploration of all the functionality of CellDetective.

      Specifics:

      (1) The software can only handle 2D 'widefield' time-lapse imaging datasets. It should be noted that many studies that examine cell-cell interactions in vitro also used confocal microscopy and acquired the time-lapse images in 3D z-stacks to enable the reconstruction of entire cell volumes from multiple optical sections along the z-axis.

      Given that almost all of the implemented segmentation (StarDist, Cellpose) and tracking (bTrack) packages already support the handling of 3D datasets, it is unclear why CellDetective was designed to only work with 2D datasets.

      As noted above, extending the support for 3D images would allow the scope and utility of this software to be further extended for imaging studies acquired in z-stacks. As an example, the dense clustering of effector cells in Figure 4 had prevented accurate segmentation due to the 2D nature of the experimental dataset. More importantly, support for a 3D dataset could also allow for the tracking of fluorescent protein-based sub-cellular as well as membrane protein localization during cell-cell interactions.

      Furthermore, it also widens the potential applicability for analyzing datasets from 3D organoid imaging and perhaps even intravital two-photon microscopy.

      (2) The software in its current form only allows the broad demarcation of the cells examined into two populations: targets and effectors. This limits the number of cell populations that can be examined for their interactions. It might be more useful to just allow multiple user-defined populations instead of restricting the populations to target and effector cells only.

      (3) Similarly, subsetting of each of the populations could be made more intuitive. Although it is possible to define subsets of cells using the "Custom classification" function under the "Measure" module with user-defined parameters, visualization of multiple groups remains unintuitive and it appears that only one custom classified group can be selected and visualized at any given time in the Signal Annotator under Measurement instead of allowing visualization of multiple (custom defined) groups of cells in different colors. It is also unclear how, if possible at all, to visualize a custom group of cells in the Signal Annotator under the Detect Events module.

      Software issues:

      (4) When initially tested on v1.3.9, the Segment module could not be initiated (with the error message AttributeError: 'WindowsPath' object has no attribute 'endswith' when attempting to run segmentation).<br /> Update: this has been fixed in v1.3.9.post4 dated February 7th, 2025.

      (5) Further testing was then performed by downgrading the software to v1.3.1. While testing the ADCC demo experiment (https://celldetective.readthedocs.io/en/latest/adcc-example.html), the workflow was stuck at attempts to initiate the Detect Events step:

      AssertionError: No signal matches with the requirements of the model ['dead_nuclei_channel_mean', 'area']. Please pass the signals manually with the argument selected_signals or add measurements. Abort.

      (Update: fixed in the latest v1.3.9.post4 version dated February 7th, 2025)

      (6) Random bugs causing the software to crash. Example: switching characteristic to 'status_color' in the Signal Annotator under Measurement caused the software to crash (v1.3.9.post4):

      TypeError: ufunc 'isnan' is not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule 'safe'

      (7) Overall, when exploring the functionality of the software, there have been multiple instances of software crashes when clicking/switching around to show different parameters, etc.

      This reviewer understands the difficulties and time involved in bug fixing and hopes that the experience could have been much smoother and that the software behaves much more stably in order to maximize its useability.

    1. Joint Public Review:

      Summary

      This manuscript uses single-molecule fluorescence resonance energy transfer (smFRET) to identify differences in the molecular mechanisms of CXCR4 and ACKR3, two 7-transmembrane receptors that both respond to the chemokine CXCL12 but otherwise have very different signaling profiles. CXCR4 is highly selective for CXCL12 and activates heterotrimeric G proteins. In contrast, ACKR3 is quite promiscuous and does not couple to G proteins, but like most G protein-coupled receptors (GPCRs), it is phosphorylated by GPCR kinases and recruits arrestins. By monitoring FRET between two positions on the intracellular face of the receptor (which highlight the movement of transmembrane helix 6 [TM6], a key hallmark of GPCR activation), the authors show that CXCR4 remains mostly in an inactive-like state until CXCL12 binds and stabilizes a single active-like state. ACKR3 rapidly exchanges among four different conformations even in the absence of ligand, and agonists stabilize multiple activated states.

      Strengths

      The core method employed in this paper, smFRET, can reveal dynamic aspects of these receptors (the breadth of conformations explored and the rate of exchange among them) that are not evident from static structures or many other biophysical methods. smFRET has not been broadly employed in studies of GPCRs. Therefore, this manuscript makes important conceptual advances in our understanding of how related GPCRs can vary in their conformational dynamics.

      Weaknesses

      The probes used cannot reveal conformational changes in other positions besides transmembrane helix 6 (TM6). GPCRs are known to exhibit loose allosteric coupling, so the conformational distribution observed at TM6 may not fully reflect the global conformational distribution of receptors. This could mask important differences that determine the ability of intracellular transducers to couple to specific receptor conformations.

      While it is clear that CXCR4 and ACKR3 have very different conformational dynamics, the data do not definitely show that this is the main or only mechanism that contributes to their functional differences.

      The extent to which conformational heterogeneity is a characteristic feature of ACKRs that contributes to their promiscuity and arrestin bias is unclear. The key residue the authors find promotes ACKR3 conformational heterogeneity is not conserved in most other ACKRs, but alternative mechanisms could generate similar heterogeneity.

      An inherent limitation of the approach is that mutagenesis, purification, and labeling of the receptors could affect their conformational distributions. The cysteine mutations in ACKR3 required to site-specifically install fluorophores substantially increase its ligand-induced activity (Fig. S1D). There are no data to confirm that the two receptors retain the same functional profiles observed in cell-based systems following in vitro manipulations (purification, labeling, nanodisc reconstitution).

    1. Reviewer #1 (Public Review):

      Summary:

      The investigation delves into allosteric modulation within the glycosylated SARS-CoV-2 spike protein, focusing on the fatty acid binding site. This study uncovers intricate networks connecting the fatty acid site to crucial functional regions, potentially paving the way for developing innovative therapeutic strategies.

      Strengths:

      This article's key strength lies in its rigorous use of dynamic nonequilibrium molecular dynamics (D-NEMD) simulations. This approach provides a dynamic perspective on how the fatty acid binding site influences various functional regions of the spike. A comprehensive understanding of these interactions is crucial in deciphering the virus's behavior and identifying potential targets for therapeutic intervention.

    1. Reviewer #3 (Public review):

      A central question in the thermal system is which thermally responsive ion channels are responsible for warm evoked behaviors and DRG afferent neuron responses to warming. Recent work has shown evidence for TRPV1, TRPM2 and TRPM8. Here Abd El Hay and colleagues investigate the role of TRPM2 and TRPV1 in a novel warm preference behavior and in the thermal responses of cultured DRG neurons.

      They develop a new thermal preference task, where both the floor and air temperature are controlled, which shows differences to the classic two-plate preference task. This is a central strength of the paper, as it will allow a new method to investigate how animals integrating floor and air temperature. They go on to use knockout mice and confirm a clear role for TRPM2 in warm preference behavior.

      Using a new approach for culturing DRG neurons they investigate the involvement of both channels in warm responsiveness and dynamics. In apparent contrast to the role of TRPM2 on thermal behavior, it does not have a major effect on the responses of cultured DRG neurons to warm stimuli. Eliminating TRPV1 however has a stronger impact on DRG responses, particularly at low stimulus amplitudes. It will be important to discover how TRPM2 influences warm driven behaviors, if it is not via changes in afferent response properties.

      Thanks to the authors for addressing my remaining questions in this updated version of the manuscript.

      This is an interesting study with novel approaches that generates new information on the differing roles of TRPV1 and TRPM2 on thermal behavior.

    1. Reviewer #1 (Public review):

      Summary:

      Authors of this article have previously shown the involvement of the transcription factor Zinc finger homeobox-3 (ZFHX3) in the function of the circadian clock and the development/differentiation of the central circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus. Here, they show that ZFHX3 plays a critical role in the transcriptional regulation of numerous genes in the SCN. Using inducible knockout mice, they further demonstrate that the deletion Of Zfhx3 induces a phase advance of the circadian clock, both at the molecular and behavioral levels.

      Strengths:

      - Inducible deletion of Zfhx3 in adults<br /> - Behavioral analysis<br /> - Properly designed and analyzed ChIP-Seq and RNA-Seq supporting the conclusion of the behavioral analysis

      Comments on revisions:

      The authors have properly addressed reviewers' issues.

    1. Reviewer #1 (Public review):

      Summary:

      The authors conducted a spatial analysis of dysplastic colon tissue using the Slide-seq method. Their main objective is to build a detailed spatial atlas that identifies distinct cellular programs and microenvironments within dysplastic lesions. Next, they correlated this observation with clinical outcomes in human colorectal cancer.

      Strengths:

      The work is a good example of utilising spatial methods to study different tumour models. The authors identified a unique stem cell program to understand tumours gently and improve patient stratification strategies.

      Weaknesses:

      However, the study's predominantly descriptive nature is a significant limitation. Although the spatial maps and correlations between cell states are interesting observations, the lack of functional validation-primarily through experiments in mouse models-weakens the causal inferences regarding the roles these cellular programs play in tumour progression and therapy resistance.

      The authors also missed an opportunity to link the mutational status of malignant cells with the cellular neighbourhoods.

      Overall, the study contributes to profiling the dysplastic colon landscape. The methodologies and data will benefit the research community, but further functional validation is crucial to validate the biological and clinical implications of the described cellular interactions.

    1. Reviewer #1 (Public review):

      In this manuscript, Sterrett et al. assess whether and how the olfactory system may integrate odor-driven activity with contextual, egocentric variables such as instantaneous location in space and active odor sampling. To address this, they co-record respiration and the spiking activity of principal output neurons of the mouse olfactory bulb (OB), while mice explore a small arena in the absence of any explicit reward or task structure. The authors find that mice exploring the arena breathe in bouts, switching between discrete states of particular breathing rates that persist over varying time scales (seconds to minutes). This state-like activity is also apparent in the OB population activity. Zooming into the activity of individual OB neurons, the authors show that OB activity in this setting is primarily modulated by respiration. In general, while the response times of individual neurons remain tightly locked to the inhalation onset, the overall response amplitude is modulated by the instantaneous sniff frequency. The authors further suggest that a subset of OB neurons appear to show place-selectivity, in a manner that is not explained simply by respiratory or olfactory variables.

      Overall this work addresses an important question regarding the basic temporal structuring of odor sampling behavior and activity patterns in the mouse OB. A good understanding of these features is essential to further investigate how stimulus and/or task-driven activity may add on top of this already ongoing modulation. The authors do a commendable job of analyzing the behavior and neuronal activity using a variety of analysis methods. However, in its current form, the results presented are high-level summary figures that are largely comparative (role of parameter A vs B) and hard to assess quantitatively (how well does a given parameter/model explain the responses to begin with). This makes it hard to build a clear model of the underlying mechanisms and to evaluate alternative hypotheses. These concerns can largely be addressed by some additional analyses and by presenting more intermediate-stage output of their existing analyses. In addition, the authors report that a small fraction of OB neurons show spatially selective firing patterns, akin to those observed in the Hippocampus. While this is a very exciting possibility, in my opinion, the data and analysis presented currently are not sufficient to conclude this and additional experiments would be required to test this rigorously.

      Major concerns:

      A) Regarding the claim about Spatial selectivity in OB neuron responses:

      i) From the data presented, it is very hard to assess whether a simple modulation of sniff rate, selectively in some parts of the arena can explain apparent spatial selectivity. The authors attempt to address this concern with Figure 8 - Figure Supplement 1, but the presented combinatorial color maps are hard to interpret. A simpler format would be to show the sniff-aligned raster of the given unit in question along with a heatmap (location distribution) of the actual sniff rates in the arena (not the behavioral states).

      If the authors allow the mice to explore the arena over large periods, such that the sniff rates are relatively uniform in space, are the place fields still apparent? A complementary control is to compare responses in the 'place field' with other parts in the arena with comparable sniff rate distributions.

      ii) The analysis shown in Figure 8 suggests that sniff parameters are the main predictors of individual neuron responses. The authors point out that there is however a small, but significant fraction of cells that are better predicted by place than by the sniff parameters. It would be useful to provide more raw data to get a better sense of what distinguishes these cells from the rest. Are spatially selective cells typically less sniff-aligned on average? Do they tend to be less or more frequency-modulated?

      iii) The authors compare the decoding performance of OB and hippocampal neurons. While it appears space can indeed be decoded from OB neurons, it would be useful to know how the performance scales with the number of neurons and number of traversals in the arena in the two brain regions. Further, the authors should provide some analysis of the robustness of these apparent 'place fields' within a session.

      iv) The floor rotation control is underwhelming. First, the arena is quite small and one would generally expect this to impact much more so the 'place fields' that are biased towards the corners than in the center. Second, olfactory cues on the walls may be as important - why did the authors not rotate the entire arena?

      Considering the possibility that floor rotation rules out trivial olfactory explanations, what would happen if the authors rotated the entire arena? If these are truly place fields, then one should expect that while they are robust to floor rotation, they should reformat if the distal cues change. Without these additional analyses, I find it hard to conclude the presence of spatial selectivity in the OB.

      Moderate concerns:

      B) Regarding the lack of state-like structure during head-fixation:

      While it is clear that overall sniff rates are lower and that mice do not typically sniff at peak rates during head-fixation, it is unclear if the transitions in breathing rhythm are necessarily less structured, and further whether this can be attributed to head-fixation alone. For example, if the mice are head-fixed but in a floating-platform arena or VR that is non-static - the sniffing distributions may change dramatically.

      i) The breathing patterns shown in Figure 1E, in particular during the second head-fixation phase do not appear fundamentally different from the freely moving stretch (20-30 minute window). If one subsamples the free-moving data to match overall sniff distributions, will the long-timescale autocorrelation still be more apparent in freely moving stretches than in the head-fixation periods?

      ii) Are the mice on a running wheel? How does the overall distribution of sniff rates and temporal structure change if the mice are head-fixed but simply allowed to run?

      Minor concerns:

      C) Regarding the parsing of breathing and movement into 3 distinct behavioral states:<br /> The authors show breathing patterns of freely exploring mice are temporally structured with extended bouts of sniffing at select rates. They use a HMM model to show that this structure can be captured by a 3 state-model wherein each state can be thought of as a joint distribution of movement and sniff rate. While the approach is interesting and the data are well presented, I have some minor concerns regarding the exact interpretation.

      i) While the relationship between movement and sniffing is indeed non-trivial, it is unclear if the statelike partitioning requires the incorporation of the movement variable at all in the HMM model. The state-like patterns are also apparent if one focuses exclusively on the instantaneous sniff rate while ignoring movement velocities (Figure 1 - Figure Supplement 1) or the inferred HMM states (Figure 1E). Have the authors tried modeling the breathing activity alone using an HMM with each state just being a biased distribution of sniff rates, from which the instantaneous sniff rate is drawn? Will the authors' conclusions be fundamentally different from such a model?

      ii) While it is clear that there are at least 2 distinct states a) resting (mice are generally uninterested and sniff at 2-3 Hz) and b) exploration (mice are interested in their local environment and sniff rapidly). It is hard to assess whether there is indeed a third distinct and behaviorally interpretable state that the authors call grooming or are there simply intervening periods where it is unclear what's driving the variability in sniff rates - change in movement speed, moderate curiosity, boredom, etc. From the movement velocities shown in the supplement (Figure 1 - Figure Supplement 1), it appears that the movement speed during this 'grooming' state is significantly higher than at rest. It is not obvious why a mouse should move around more while grooming. It would help if the authors provide supporting data, perhaps from behavioral pose analysis to better justify the classification of this state as grooming or alternatively choose a different name to avoid confusion.

      iii) Insufficient analysis of state transition matrices: The authors do not show the transition matrices for individual sessions and/or mice. This limits what one can learn about the behavior from the 3 state modeling of breathing states. Do individual mice have stereotypical transition patterns across sessions? How well does the model perform: can one predict the expected sniff rate in one part of the session from knowing sniff patterns in another part of the session?

      D) Regarding the dependence of individual neuron responses on sniff and movement parameters:

      i) Could the authors report the relative proportions of sniff frequency insensitive vs. frequency sensitive neurons in their data?

      ii) Could some of the striking frequency modulation the authors show in Figure 3A result from the fact that mice selectively sniffed at high or low rates in different parts of the arena? While it is unlikely that all of the modulation the authors see results from the location/presence of trace odors in different parts of the arena, it would be informative to perform the same analysis on the data recorded during head-fixation where its external environment is less variable.

      iii) Comparison of SnF latency profiles between head-fixed and freely moving conditions:<br /> The SnF latency profiles of a given OB neuron appear strikingly similar during head-fixed and freely moving conditions. It would be useful if the authors could explicitly quantify this.

      iv) Comparison of SnF frequency profiles between head-fixed and freely moving conditions: The authors comment that SnF frequency profiles are different across the head-fixed versus freely moving conditions and that they do not observe the 3 distinct clusters present in the freely moving state in their head-fixed data. If true, this is an interesting observation. Together with the observation of relatively similar SnF latency profiles in both head-fixed and freely moving conditions, this implies that sniff frequency dependence is selectively enhanced during free-moving behavior perhaps through a top-down signal.

      However, this is hard to conclude from the current data as the overall distribution of sniff rates is very different in the two conditions, with a clear underrepresentation of high-frequency sniffs in the head-fixed periods. To enable a fair comparison, the authors should undersample the sniffs in the freely moving period and compare sniff fields constructed from frequency-matched distributions.

      v) The authors suggest that the 2 types of SnF latency profiles may putatively map onto tufted and mitral cells. While this is an interesting possibility, it would be nice to support the claim with auxiliary analysis of other features such as recording depth, baseline firing rates, spike shapes, etc that indicate that these are indeed two different cell types.

    1. Reviewer #1 (Public review):

      This manuscript by Yang et al. presents a potentially novel mechanism by which Plscr1 defends against influenza virus infection. Using a global knockout (KO) and a tissue-specific overexpression mouse model, the authors demonstrate that Plscr1-KO mice exhibit increased susceptibility and inflammation following IAV infection. In contrast, overexpression of Plscr1 in ciliated epithelial cells protects mice from infection. Through transcriptomic analysis in mice and mechanistic studies in cell culture models, the authors reveal that Plscr1 transcriptionally upregulates Ifnlr1 expression and physically interacts with this receptor on the plasma membrane, thereby enhancing IFN-λ-mediated viral clearance.

      Overall, it's a well-performed study, however, causality between Plscr1 and Ifnlr1 expression needs to be more firmly established. This is because two recent studies of PLSCR1 KO cells infected with different viruses found no major differences in gene expression levels compared with their WT controls (Xu et al. Nature, 2023; LePen et al. PLoS Biol, 2024). There were also defects in the expression of other cytokines (type I and II IFNs plus TNF-alpha) so a clear explanation of why Ifnlr1 was chosen should also be given.

      While Plscr1 has long been recognized as a cell-intrinsic antiviral restriction factor, few studies have explored its broader physiological role. This study thus provides interesting insights into a specific function of Plscr1 in IAV-permissive airway epithelial cells and its contribution to whole-body anti-viral immunity. There are three important issues that should be addressed, and several minor points should also be considered.

      (1) The authors propose that Plscr1 restricts IAV infection by regulating the type III IFN signaling pathway. While the data show a positive correlation between Ifnlr1 and Plscr1 levels in both mouse and cell culture models, additional evidence is needed to establish causality between the impaired type III IFN pathway, and the increased susceptibility observed in Plscr1-KO mice. To strengthen this conclusion, the following experiments could be undertaken: (i) Measure IAV titers in WT, Plscr1-KO, Ifnlr1-KO, and Plscr1/ Ifnlr1-double KO cells. If the antiviral activity of Plscr1 is highly dependent on Ifnlr1, there should be no further increase in IAV titers in double KO cells compared to single KO cells; (ii) over-express Plscr1 in Ifnlr1-KO cells to determine if it still inhibits IAV infection. If Plscr1's main action is to upregulate Ifnlr1, then it should not be able to rescue susceptibility since Ifnlr1 cannot be expressed in the KO background. If Plscr1 over-expression rescues viral susceptibility, then there are Ifnlr1-independent mechanisms involved. These experiments should help clarify the relative contribution of the type III IFN pathway to Plscr1-mediated antiviral immunity.

      (2) Transcriptional activation of IFNLR1 by Plscr1 is a central mechanistic conclusion of this manuscript. A ChIP assay was used to demonstrate direct binding between Plscr1 and the Ifnrl1 promoter region. This single evidence does not sufficiently prove the role of Plscr1 in transcriptional activation. Other forms of evidence would help make this mechanistic explanation more compelling. For example, nuclear un-on experiments would demonstrate Ifnrl1 mRNA synthesis in addition to promoter binding.

      (3) In Figure 4, the authors demonstrate the interaction between Plscr1 and Ifnlr1. They suggest that this interaction modulates IFN-λ signaling. However, Figures 5C-E show that the 5CA mutant, which lacks surface localization and the ability to bind Ifnlr1, exhibits similar anti-flu activity to WT Plscr1. Does this mean the interaction between Plscr1 and Ifnlr1 is dispensable for Plscr1-mediated antiviral function? Can the authors compare the activation of IFN-λ signaling pathway in Plscr1-KO cells expressing empty vector, WT Plscr1, and 5CA mutant? This could be done by measuring downstream ISG expression or using an ISRE-luciferase reporter assay upon IFN-λ treatment.

    1. Reviewer #1 (Public review):

      Summary:

      This paper investigates the effects of the explicit recognition of statistical structure and sleep consolidation on the transfer of learned structure to novel stimuli. The results show a striking dissociation in transfer ability between explicit and implicit learning of structure, finding that only explicit learners transfer structure immediately. Implicit learners, on the other hand, show an intriguing immediate structural interference effect (better learning of novel structure) followed by successful transfer only after a period of sleep.

      Strengths:

      This paper is very well written and motivated, and the data are presented clearly with a logical flow. There are several replications and control experiments and analyses that make the pattern of results very compelling. The results are novel and intriguing, providing important constraints on theories of consolidation. The discussion of relevant literature is thorough. In sum, this work makes an exciting and important contribution to the literature.

    1. Reviewer #1 (Public review):

      Summary:

      Multiple compounds that inhibit ATP-sensitive potassium (KATP) channels also chaperone channels to the surface membrane. The authors used an artificial intelligence (AI)-based virtual screening (AtomNet) to identify novel compounds that exhibit chaperoning effects on trafficking-deficient disease-causing mutant channels. One compound, which they named Aekatperone, acts as a low affinity, reversible inhibitor and effective chaperone. A cryoEM structure of KATP bound to Aekatperone showed that the molecule binds at the canonical inhibitory site.

      Strengths and weaknesses:

      The details of the AI screening itself are inevitably opaque, but appear to differ from classical virtual screening in not involving any physical docking of test compounds into the target site. The authors mention criteria that were used to limit the number of compounds, so that those with high similarity to known binders and 'sequence identity' (does this mean structural identity) were excluded. The identified molecules contain sulfonylurea-like moieties. How different are they from other sulfonylureas?

      The experimental work confirming that Aekatperone acts to traffic mutant KATP channels to the surface and acts as a low affinity, reversible, inhibitor is comprehensive and clear, with very convincing cell biological and patch-clamp data, as is the cryoEM structural analysis, for which the group are leading experts. In addition to the three positive chaperone-effective molecules, the authors identified a large number of compounds that are predicted binders but apparently have no chaperoning effect.

      The authors suggest that the novel compound may be a promising therapeutic for treatment of congenital hyperinsulinism due to trafficking defective KATP mutations. Because they are low affinity, reversible, inhibitors. This is a very interesting concept, and perhaps a pulsed dosing regimen would allow trafficking without constant channel inhibition (which otherwise defeats the therapeutic purpose), although it is unclear whether the new compound will offer advantages over earlier low-affinity sulfonylurea inhibitor chaperones. These include tolbutamide which has very similar affinity and effect to Aekatperone. As the authors point out this (as well as other sulfonlyureas) are currently out of favor because of potential adverse cardiovascular effects, but again, it is unclear why Aekatperone should not have the same concerns.

      Comments on revised version:

      The authors have been very responsive to the first reviews. No further comments.

    1. Reviewer #1 (Public review):

      Summary:

      As reported above, this paper by Xu et al reports on a new method to combine the analysis of coevolutionary patterns with dynamic profiles to identify functionally important residues and reveal correlations between binding sites.

      Strengths:

      In general, coevolutionary analysis and MD analysis are carried out separately and while there have been attempts to compare the information provided by the two, no unified framework exists. Here, the authors convincingly demonstrate that integrating signals from Dynamics and coevolution gives information that substantially overcomes the one provided by either method in isolation. While other methods are useful, they do not capture how dynamics is fundamental to define function and thus sculpts coevolution, via the 3D structure of the protein. At the same time, the authors demonstrate how coevolution in turn also influences internal dynamics. The Networks they rebuild unveil information at an even higher level: the model starts pairwise but through network representation the authors arrive to community analysis, reporting on interaction patterns that are larger than simple couples.

      Comments on latest version:

      I have nothing to add to this revision. The paper looks excellent and very interesting.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Hammond et al. study robustness of the vertebrate segmentation clock against morphogenetic processes such as cell ingression, cell movement and cell division to ask whether the segmentation clock and morphogenesis are modular or not. The modularity of these two would be important for evolvability of the segmenting system. The authors adopt a previously proposed 3D model of the presomitic mesoderm (Uriu et al. 2021 eLife) and include new elements; different types of cell ingression, tissue compaction and cell cycles. Based on the results of numerical simulations that synchrony of the segmentation clock is robust, the authors conclude that there is a modularity in the segmentation clock and morphogenetic processes.

      The presented results support the conclusion. The manuscript is clearly written.

      Major comments from the original round of review:

      [Optional] In both the current model and Uriu et al. 2021, coupling delay in phase oscillator model is not considered. Given that several previous studies (e.g. Lewis 2003, Herrgen et al. 2010, Yoshioka-Kobayashi et al. 2020) suggested the presence of coupling delays in Delta-Notch signaling, could the authors analyze the effect of coupling delay on robustness of the segmentation clock against morphogenetic processes?

      Significance:

      Synchronization of the segmentation clock has been studied by mathematical modeling, but most previous studies considered cells in a static tissue without morphogenesis. In the previous study by Uriu et al. 2021, morphogenetic processes such as cell advection due to tissue elongation, tissue shortening, and cell mobility were considered in synchronization. The current manuscript provides methodological advances in this aspect by newly including cell ingression, tissue compaction and cell cycle. In addition, the authors bring a concept of modularity and evolvability to the field of the vertebrate segmentation clock, which is new. On the other hand, the manuscript confirms that the synchronization of the segmentation clock is robust by careful simulations, but it does not propose or reveal new mechanisms for making it robust or modular. The main targets of the manuscript will be researchers working on somitogenesis and evolutionary biologists who are interested in evolution of developmental systems. The manuscript will also be interested by broader audiences, like developmental biologists, biophysicists, and physicists and computer scientists who are working on dynamical systems.

    1. Reviewer #1 (Public review):

      Summary

      Farkas and colleagues conducted a comparative neuroimaging study with domestic dogs and humans to explore whether social perception in both species is underpinned by an analogous distinction between animate and inanimate entities an established functional organizing principle in the primate and human brain. Presenting domestic dogs and humans with clips of three animate classes (dogs, humans, cats) and one inanimate control (cars), the authors also set out to compare how dogs and humans perceive their own vs other species. Both research questions have been previously studied in dogs, but the authors used novel dynamic stimuli and added animate and inanimate classes, which have not been investigated before (i.e., cats and cars). Combining univariate and multivariate analysis approaches, they identified functionally analogous areas in the dog and human occipito-temporal cortex involved in the perception of animate entities, largely replicating previous observations. This further emphasizes a potentially shared functional organizing principle of social perception in the two species. The authors also describe between-species divergencies in the perception of the different animate classes, arguing for a less generalized perception of animate entities in dogs, but this conclusion is not convincingly supported by the applied analyses and reported findings.

      Strengths

      Domestic dogs represent a compelling model species to study the neural bases of social perception and potentially shared functional organizing principles with humans and primates. The field of comparative neuroimaging with dogs is still young, with a growing but still small number of studies, and the present study exemplifies the reproducibility of previous research. Using dynamic instead of static stimuli and adding new stimuli classes, Farkas and colleagues successfully replicated and expanded previous findings, adding to the growing body of evidence that social perception is underpinned by a shared functional organizing principle in the dog and human occipito-temporal cortex.

      Weaknesses

      The study design is imbalanced, with only one category of inanimate objects vs. three animate entities. Moreover, based on the example videos, it appears that the animate stimuli also differed in the complexity of the content from the car stimuli, with often multiple agents interacting or performing goal-directed actions. Moreover, while dogs are familiar with cars, they are definitely of lower relevance and interest to them than the animate stimuli. Thus, to a certain extent, the results might also reflect differences in attention towards/salience of the stimuli.

      The methods section and rationale behind the chosen approaches were often difficult to follow and lacked a lot of information, which makes it difficult to judge the evidence and the drawn conclusions, and it weakens the potential for reproducibility of this work. For example, for many preprocessing and analysis steps, parameters were missing or descriptions of the tools used, no information on anatomical masks and atlas used in humans was provided, and it is often not clear if the authors are referring to the univariate or multivariate analysis.

      In regard to the chosen approaches and rationale, the authors generally binarize a lot of rich information. Instead of directly testing potential differences in the neural representations of the different animate entities, they binarize dissimilarity maps for, e.g. animate entity > inanimate cars and then calculate the overlap between the maps. The comparison of the overlap of these three maps between species is also problematic, considering that the human RSA was constricted to the occipital and temporal cortex (there is now information on how they defined it) vs. whole-brain in dogs. Considering that the stimuli do differ based on low-level visual properties (just not significantly within a run), the RSA would also allow the authors to directly test if some of the (dis)similarities might be driven by low-level visual features like they, e.g. did with the early visual cortex model. I do think RSA is generally an excellent choice to investigate the neural representation of animate (and inanimate) stimuli, but the authors should apply it more appropriately and use its full potential.

      The authors localized some of the "animate areas" also with the early visual cortex model (e.g. ectomarginal gyrus, mid suprasylvian); in humans, it only included the known early visual cortex - what does this mean for the animate areas in dogs?

      The results section also lacks information and statistical evidence; for example, for the univariate region-of-interest (ROI) analysis (called response profiles) comparing activation strength towards each stimulus type, it is not reported if comparisons were significant or not, but the authors state they conducted t-tests. The authors describe that they created spheres on all peaks reported for the contrast animate > inanimate, but they only report results for the mid suprasylvian and occipital gyrus (e.g. caudal suprasylvian gyrus is missing). Furthermore, considering that the ROIs were chosen based on the contrast animate > inanimate stimuli, activation strength should only be compared between animate entities (i.e., dogs, humans, cats), while cars should not be reported (as this would be double dipping, after selecting voxels showing lower activation for that category). The descriptive data in Figure 3B (pending statistical evidence) suggests there were no strong differences in activation for the three species in dog and human animate areas. Thus, the ROI analysis appears to contradict findings from the binary analysis approach to investigate species preference, but the authors only discuss the results of the latter in support of their narrative for conspecific preference in dogs and do not discuss research from other labs investigating own-species preference.

      The authors also unnecessarily exaggerate novelty claims. Animate vs inanimate and own vs other species perceptions have both been investigated before in dogs (and humans), so any claims in that direction seem unsubstantiated - and also not needed, as novelty itself is not a sign of quality; what is novel, and a sign of theoretical advance besides the novelty, are as said the conceptual extension and replication of previous work.

      Overall, more analyses and appropriate tests are needed to support the conclusions drawn by the authors, as well as a more comprehensive discussion of all findings.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors analyze electrophysiological data recorded bilaterally from the rat hippocampus to investigate the coupling of ripple oscillations across the hemispheres. Commensurate with the majority of previous research, the authors report that ripples tend to co-occur across both hemispheres. Specifically, the amplitude of ripples across hemispheres is correlated but their phase is not. These data corroborate existing models of ripple generation suggesting that CA3 inputs (coordinated across hemispheres via the commisural fibers) drive the sharp-wave component while the individual ripple waves are the result of local interactions between pyramidal cells and interneurons in CA1.

      Strengths:

      The manuscript is well-written, the analyses well-executed and the claims are supported by the data.

      Weaknesses:

      One question left unanswered by this study is whether information encoded by the right and left hippocampi is correlated.

    1. Reviewer #1 (Public review):

      Summary:

      Chen and colleagues describe mechanisms by which UBA7 and UBE2L6 form disulfide bonds, disrupting the ISG15 transfer cascade. As other similar structures are currently available, the authors further note that the spontaneous formation of this disulfide suggests that it is a potential regulatory mechanism. Demonstrating that this mechanism occurs and is modulated in cells would greatly improve the impact of their work.

      Strengths:

      The various biochemical and structural experiments are largely convincing.

      Weaknesses:

      (1) The main point of the paper is that this covalent complex could occur and is potentially regulated in cells is limited. The authors even show an experiment in cells where this complex is formed by expressing UBE2L6-V5 and GFP-UBA7, awkwardly referenced in the discussion.

      The authors should consider attempting an experiment with endogenous proteins and either modulate the formation of this complex in different cellular conditions or downplay this part of their story. For example, this sentence, "This redox-sensitive complex implies a link between oxidative stress and regulation of the immune response, highlighting a potential therapeutic target for modulating immune reactions arising from infections and inflammatory conditions." is in the abstract and should be excluded or rephrased considering the lack of cellular data.

      Also, their one-cell-based experiment is shown in the discussion. This should be in the results as is standard practice but also repeated. It appears that the reduced lanes don't seem to have GFP or the GFP-UBA7. Without those controls, this experiment seems incomplete.

      (2) Their intro sets up the paper to explain the disulfide formation they see in Figure 1, but a more fitting experiment would be to look at the disulfide formation between UBA7 and UBE2L6 at different pHs. It would nicely supplement the biochemical pKa data as this reaction is their focal point.

      (3) While the biochemical data is extensive, it is not concise or easily accessible to a broad readership. The authors should try to clarify and simplify the text overall. Furthermore, many figure callouts are missing, interfering with the clarity of the text.

      Minor

      (1) Because the experiments are pKa dependent, knowing what buffers the proteins were finished in (final SEC purification step) is important. Similarly - for all assays, the buffers were not reported (SEC-MALS, biochemical assays).

      (2) While the CBB and fluorescent gel assays look convincing, more controls are needed for their SEC experiments (Figure 1d), particularly because the authors definitively say the binding is because of S-S bonds. Using a reducing buffer like TCEP or DTT or their catalytic mutants to show reduced co-migration would be helpful. This is even more important given the reported high affinities between UBA7/UBE2L6 in Figure 6.

      (3) Based on the data presented, it is unclear that the kinetic values are taken within initial velocity regimes. Some data in the supplement showing that the single time points represent initial velocities would be appreciated.

      (4) As stated, "Previous experiments reveal an intriguing anomaly during the UBA7-UBE2L6-ISG15 thioester transfer reaction. Despite adding more ISG15 and UBE2L6, the level of UBE2L6~ISG15 remained the same." This experiment should be shown or the statement removed.

      (5) Similarly, "Forty human E2 enzymes are classified in the InterProdatabase (https://www.ebi.ac.uk/interpro/), with the majority interacting with UBA1, whereas UBE2L6 and UBE2Z exclusively interact with UBA7 and UBA6, respectively." Is missing a reference.

    1. Reviewer #1 (Public review):

      Summary:

      The present work studies the coevolution of HIV-1 and the immune response in clinical patient data. Using the Marginal Path Likelihood (MPL) framework, they infer selection coefficients for HIV mutations from time-series data of virus sequences as they evolve in a given patient.

      Strengths:

      The authors analyze data from two human patients, consisting of HIV population sequence samples at various points in time during the infection. They infer selection coefficients from the observed changes in sequence abundance using MPL. Most beneficial mutations appear in viral envelop proteins. The authors also analyze SHIV samples in rhesus macaques, and find selection coefficients that are compatible with those found in the corresponding human samples.

      The manuscript is well-written and organized.

      Weaknesses:

      The MPL method used by the authors considers only additive effects of mutations, thus ignoring epistasis.

      Although the evolution of broadly neutralizing antibodies (bnAbs) is a motivating question in the introduction and discussion sections (and the title), the relevance of the analysis and results to better understanding how bnAbs arise is not clear. The only result presented in direct connection to bnAbs is Figure 6.

      Questions or suggestions for further discussion:

      I list here a number of points for which I believe the paper would benefit if additional discussion/results were included.

      The MPL method used by the authors considers only additive effects of mutations, thus ignoring epistasis. In Sohail et al (2022) MBE 39(10), p. msac199 (https://doi.org/10.1093/molbev/msac199) an extension of MPL is developed allowing one to infer epistasis. Can the authors comment on why this was not attempted here?

      I presume one possible reason is that epistasis inference requires considerably more computational effort (and more data). However, since the authors find most beneficial mutations occurring in Env, perhaps restricting the analysis to Env genes only (e.g. the trimer shown in Figure 2) can lead to tractable inference of epistasis within this segment (instead of the full genome).

      Do the authors find correlations in the inferred selection coefficients of the two samples CH505 and CH848? I could not find any discussion of this in the manuscript. Only correlations between Humans and RM are discussed.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Shi et al, has utilized multiple imaging datasets and one set of samples for analyzing serum EV-miRNAs & EV-RNAs to develop an EV miRNA signature associated with disease-relevant radiomics features for early diagnosis of pancreatic cancer. CT imaging features (in two datasets (UMMD & JHC and WUH) were derived from pancreatic benign disease patients vs pancreatic cancer cases), while circulating EV miRNAs were profiled from samples obtained from a different center (DUH). The EV RNA signature from external public datasets (GSE106817, GSE109319, GSE113486, GSE112264) were analyzed for differences in healthy controls vs pancreatic cancer cases. The miRNAs were also analyzed in the TCGA tissue miRNA data from normal adjacent tissue vs pancreatic cancer.

      Strengths:

      The concept of developing EV miRNA signatures associated with disease relevant radiomics features is a strength.

      Weaknesses:

      While the overall concept of developing EV miRNA signature associated with radiomics features is interesting, the findings reported are not convincing for the reasons outlined below:

      (1) Discrepant datasets for analyzing radiomic features with EV-miRNAs: It is not justified how CT images (UMMD & JHC and WUH) and EV-miRNAs (DUH) on different subjects and centers/cohorts shown in Figures 1 &2 were analyzed for association. It is stated that the samples were matched according to age but there is no information provided for the stages of pancreatic cancer and the kind of benign lesions analyzed in each instance.

      (2) The study is focused on low-abundance miRNAs with no adequate explanation of the selection criteria for the miRNAs analyzed.

      (3) While EV-miRNAs were profiled or sequenced (not well described in the Methods section) with two different EV isolation methods, the authors used four public datasets of serum circulating miRNAs to validate the findings. It would be better to show the expression of the three miRNAs in the additional dataset(s) of EV-miRNAs and compare the expressions of the three EV-miRNAs in pancreatic cancer with healthy and benign disease controls.

      (4) It is not clear how the 12 EV-miRNAs in Figure 4C were identified.

      (5) Box plots in Figures 4D-F and G-I of three miRNAs in serum and tissue should show all quantitative data points.

      (6) What is the GBM model in Figure 5?

      (7) What are the AUCs of individual EV-miRNAs integrated as a panel of three EV-miRNAs?

      (8) The authors could have compared the performance of CA19-9 with that of the three EV-miRNAs.

      (9) How was the diagnostic performance of the three EV-miRNAs in the two molecular subtypes identified in Figure 6&7? Do the C1 & C2 clusters correlate with the classical/basal subtypes, staging, and imaging features?

    1. Reviewer #1 (Public review):

      Summary:

      Dad et al. explored the roles of cytosolic carboxypeptidase 5(CCP5)in the development of ependymal multicilia in the brain. CCP family are erasers of polyglutamylation of ciliary-axoneme microtubules. The authors generated a new mutant mouse of Agbl5 gene, which encodes CCP5, with deletion of its N-terminus and partial carboxypeptidase (CP) domain (named AGBL5M1/M1).

      Strengths:

      The mutant mice revealed lethal hydrocephalus due to degeneration of ependymal multicilia. Interestingly, this is in contrast with the phenotype of Agbl5 mutants with disruption solely in the CP domain of CCP5 (named AGBL5M2/M2) that did not develop hydrocephalus despite increased glutamylation levels in ependymal cilia as observed for AGBL5M1/M1 mutants. The study has been well-performed and the findings suggest a unique function of the N-domain of CCP5 in ependymal multicilia stability.

      Weaknesses:

      The content of this article is relatively descriptive and lacks molecular insights.

  2. southtexascollege.blackboard.com southtexascollege.blackboard.com
    1. Reviewer #1 (Public review):

      Summary:

      This manuscript describes a series of lab and field experiments to understand the role of tadpole transport in shaping the microbiome of poison frogs in early life. The authors conducted a cross-foster experiment in which R. variabilis tadpoles were carried by adults of their own species, carried by adults of another frog species, or not carried at all. After being carried for 6 hours, tadpole microbiomes resembled those of their caregiving species. Next, the authors reported higher microbiome diversity in tadpoles of two species that engage in transport-based parental care compared to one species that does not. Finally, they collected tadpoles either from the backs of an adult (i.e., they had recently been transported) or from eggs (i.e., not transported) but did not find significant overlap in microbiome composition between transported tadpoles and their parents.

      Strengths:

      The cross-foster experiment and the field experiment that reared transported and non-transported tadpoles are creative ways to address an important question in animal microbiome research. Together, they imply a small role for parental care in the development of the tadpole microbiome. The manuscript is generally well-written and easy to understand.

      Weaknesses:

      (1) Developmental time series:

      It was not entirely clear how this experiment relates to the rest of the manuscript, as it does not compare any effects of transport within or across species.

      (2) Cross-foster experiment:

      The "heterospecific transport" tadpoles were manually brushed onto the back of the surrogate frog, while the "biological transport" tadpoles were picked up naturally by the parent. It is a little challenging to interpret the effect of caregiver species since it is conflated with the method of attachment to the parent. I noticed that the uptake of Os-associated microbes by Os-transported tadpoles seemed to be higher than the uptake of Rv-associated microbes by Rv-associated tadpoles (comparing the second box from the left to the rightmost boxplot in panel S2C). Perhaps this could be a technical artifact if manual attachment to Os frogs was more efficient than natural attachment to Rv frogs.

      I was also surprised to see so much of the tadpole microbiome attributed to Os in tadpoles that were not transported by Os frogs (25-50% in many cases). It suggests that SourceTracker may not be effectively classifying the taxa.

      (3) Cross-species analysis:

      Like the developmental time series, this analysis doesn't really address the central question of the manuscript. I don't think it is fair for the authors to attribute the difference in diversity to parental care behavior, since the comparison only includes n=2 transporting species and n=1 non-transporting species that differ in many other ways. I would also add that increased diversity is not necessarily an expectation of vertical transmission. The similarity between adults and tadpoles is likely a more relevant outcome for vertical transmission, but the authors did not find any evidence that tadpole-adult similarity was any higher in species with tadpole transport. In fact, tadpoles and adults were more similar in the non-transporting species than in one of the transporting species (lines 296-298), which seems to directly contradict the authors' hypothesis. I don't see this result explained or addressed in the Discussion.

      (4) Field experiment:

      The rationale and interpretation of the genus-level network are not clear, and the figure is not legible. What does it mean to "visualize the microbial interconnectedness" or to be a "central part of the community"? The previous sentences in this paragraph (lines 337-343) seem to imply that transfer is parent-specific, but the genus-level network is based on the current adult frogs, not the previous generation of parents that transported them. So it is not clear that the distribution or co-distribution of these taxa provides any insight into vertical transmission dynamics.

    1. Reviewer #1 (Public review):

      Summary:

      The novel advance by Wang et al is in the demonstration that, relative to a standard extinction procedure, the retrieval-extinction procedure more effectively suppresses responses to a conditioned threat stimulus when testing occurs just minutes after extinction. The authors provide some solid evidence to show that this "short-term" suppression of responding involves engagement of the dorsolateral prefrontal cortex.

      Strengths:

      Overall, the study is well-designed and the results are potentially interesting. There are, however, a few issues in the way that it is introduced and discussed. Some of the issues concern clarity of expression/communication. However, others relate to a theory that could be used to help the reader understand why the results should have come out the way that they did. More specific comments and questions are presented below.

      Weaknesses:

      INTRODUCTION & THEORY

      (1) It is difficult to appreciate why the first trial of extinction in a standard protocol does NOT produce the retrieval-extinction effect. This applies to the present study as well as others that have purported to show a retrieval-extinction effect. The importance of this point comes through at several places in the paper. E.g., the two groups in Study 1 experienced a different interval between the first and second CS extinction trials; and the results varied with this interval: a longer interval (10 min) ultimately resulted in less reinstatement of fear than a shorter interval. Even if the different pattern of results in these two groups was shown/known to imply two different processes, there is nothing in the present study that addresses what those processes might be. That is, while the authors talk about mechanisms of memory updating, there is little in the present study that permits any clear statement about mechanisms of memory. The references to a "short-term memory update" process do not help the reader to understand what is happening in the protocol.

      In reply to this point, the authors cite evidence to suggest that "an isolated presentation of the CS+ seems to be important in preventing the return of fear expression." They then note the following: "It has also been suggested that only when the old memory and new experience (through extinction) can be inferred to have been generated from the same underlying latent cause, the old memory can be successfully modified(Gershman et al., 2017). On the other hand, if the new experiences are believed to be generated by a different latent cause, then the old memory is less likely to be subject to modification. Therefore, the way the 1stand 2ndCS are temporally organized (retrieval-extinction or standard extinction) might affect how the latent cause is inferred and lead to different levels of fear expression from a theoretical perspective." This merely begs the question: why might an isolated presentation of the CS+ result in the subsequent extinction experiences being allocated to the same memory state as the initial conditioning experiences? This is not yet addressed in any way.

      (2) The discussion of memory suppression is potentially interesting but, in its present form, raises more questions than it answers. That is, memory suppression is invoked to explain a particular pattern of results but I, as the reader, have no sense of why a fear memory would be better suppressed shortly after the retrieval-extinction protocol compared to the standard extinction protocol; and why this suppression is NOT specific to the cue that had been subjected to the retrieval-extinction protocol.

      (3) Relatedly, how does the retrieval-induced forgetting (which is referred to at various points throughout the paper) relate to the retrieval-extinction effect? The appeal to retrieval-induced forgetting as an apparent justification for aspects of the present study reinforces points 2 and 3 above. It is not uninteresting but lacks clarification/elaboration and, therefore, its relevance appears superficial at best.

      (4) I am glad that the authors have acknowledged the papers by Chalkia, van Oudenhove & Beckers (2020) and Chalkia et al (2020), which failed to replicate the effects of retrieval-extinction reported by Schiller et al in Reference 6. The authors have inserted the following text in the revised manuscript: "It should be noted that while our long-term amnesia results were consistent with the fear memory reconsolidation literature, there were also studies that failed to observe fear prevention (Chalkia, Schroyens, et al., 2020; Chalkia, Van Oudenhove, et al., 2020; Schroyens et al., 2023). Although the memory reconsolidation framework provides a viable explanation for the long-term amnesia, more evidence is required to validate the presence of reconsolidation, especially at the neurobiological level (Elsey et al., 2018). While it is beyond the scope of the current study to discuss the discrepancies between these studies, one possibility to reconcile these results concerns the procedure for the retrieval-extinction training. It has been shown that the eligibility for old memory to be updated is contingent on whether the old memory and new observations can be inferred to have been generated by the same latent cause (Gershman et al., 2017; Gershman and Niv, 2012). For example, prevention of the return of fear memory can be achieved through gradual extinction paradigm, which is thought to reduce the size of prediction errors to inhibit the formation of new latent causes (Gershman, Jones, et al., 2013). Therefore, the effectiveness of the retrieval-extinction paradigm might depend on the reliability of such paradigm in inferring the same underlying latent cause." Firstly, if it is beyond the scope of the present study to discuss the discrepancies between the present and past results, it is surely beyond the scope of the study to make any sort of reference to clinical implications!!! Secondly, it is perfectly fine to state that "the effectiveness of the retrieval-extinction paradigm might depend on the reliability of such paradigm in inferring the same underlying latent cause..." This is not uninteresting, but it also isn't saying much. Minimally, I would expect some statement about factors that are likely to determine whether one is or isn't likely to see a retrieval-extinction effect, grounded in terms of this theory.

      CLARIFICATIONS, ELABORATIONS, EDITS

      (5) Some parts of the paper are not easy to follow. Here are a few examples (though there are others):

      (a) In the abstract, the authors ask "whether memory retrieval facilitates update mechanisms other than memory reconsolidation"... but it is never made clear how memory retrieval could or should "facilitate" a memory update mechanism.

      (b) The authors state the following: "Furthermore, memory reactivation also triggers fear memory reconsolidation and produces cue specific amnesia at a longer and separable timescale (Study 2, N = 79 adults)." Importantly, in study 2, the retrieval-extinction protocol produced a cue-specific disruption in responding when testing occurred 24 hours after the end of extinction. This result is interesting but cannot be easily inferred from the statement that begins "Furthermore..." That is, the results should be described in terms of the combined effects of retrieval and extinction, not in terms of memory reactivation alone; and the statement about memory reconsolidation is unnecessary. One can simply state that the retrieval-extinction protocol produced a cue-specific disruption in responding when testing occurred 24 hours after the end of extinction.

      (c) The authors also state that: "The temporal scale and cue-specificity results of the short-term fear amnesia are clearly dissociable from the amnesia related to memory reconsolidation, and suggest that memory retrieval and extinction training trigger distinct underlying memory update mechanisms." ***The pattern of results when testing occurred just minutes after the retrieval-extinction protocol was different to that obtained when testing occurred 24 hours after the protocol. Describing this in terms of temporal scale is unnecessary; and suggesting that memory retrieval and extinction trigger different memory update mechanisms is not obviously warranted. The results of interest are due to the combined effects of retrieval+extinction and there is no sense in which different memory update mechanisms should be identified with the different pattern of results obtained when testing occurred either 30 min or 24 hours after the retrieval-extinction protocol (at least, not the specific pattern of results obtained here).

      (d) The authors state that: "We hypothesize that the labile state triggered by the memory retrieval may facilitate different memory update mechanisms following extinction training, and these mechanisms can be further disentangled through the lens of temporal dynamics and cue-specificities." *** The first part of the sentence is confusing around usage of the term "facilitate"; and the second part of the sentence that references a "lens of temporal dynamics and cue-specificities" is mysterious. Indeed, as all rats received the same retrieval-extinction exposures in Study 2, it is not clear how or why any differences between the groups are attributed to "different memory update mechanisms following extinction".

      DATA

      (6A) The eight participants who were discontinued after Day 1 in Study 1 were all from the no reminder group. The authors should clarify how participants were allocated to the two groups in this experiment so that the reader can better understand why the distribution of non-responders was non-random (as it appears to be).

      (6B) Similarly, in study 2, of the 37 participants that were discontinued after Day 2, 19 were from Group 30 min and 5 were from Group 6 hours. The authors should comment on how likely these numbers are to have been by chance alone. I presume that they reflect something about the way that participants were allocated to groups: e.g., the different groups of participants in studies 1 and 2 could have been run at quite different times (as opposed to concurrently). If this was done, why was it done? I can't see why the study should have been conducted in this fashion - this is for myriad reasons, including the authors' concerns re SCRs and their seasonal variations.

      (6C) In study 2, why is responding to the CS- so high on the first test trial in Group 30 min? Is the change in responding to the CS- from the last extinction trial to the first test trial different across the three groups in this study? Inspection of the figure suggests that it is higher in Group 30 min relative to Groups 6 hours and 24 hours. If this is confirmed by the analysis, it has implications for the fear recovery index which is partly based on responses to the CS-. If not for differences in the CS- responses, Groups 30 min and 6 hours are otherwise identical. That is, the claim of differential recovery to the CS1 and CS2 across time may simply an artefact of the way that the recovery index was calculated. This is unfortunate but also an important feature of the data given the way in which the fear recovery index was calculated.

      (6D) The 6 hour group was clearly tested at a different time of day compared to the 30 min and 24 hour groups. This could have influenced the SCRs in this group and, thereby, contributed to the pattern of results obtained.

      (6E) The authors find different patterns of responses to CS1 and CS2 when they were tested 30 min after extinction versus 24 h after extinction. On this basis, they infer distinct memory update mechanisms. However, I still can't quite see why the different patterns of responses at these two time points after extinction need to be taken to infer different memory update mechanisms. That is, the different patterns of responses at the two time points could be indicative of the same "memory update mechanism" in the sense that the retrieval-extinction procedure induces a short-term memory suppression that serves as the basis for the longer-term memory suppression (i.e., the reconsolidation effect). My pushback on this point is based on the notion of what constitutes a memory update mechanism; and is motivated by what I take to be a rather loose use of language/terminology in the reconsolidation literature and this paper specifically (for examples, see the title of the paper and line 2 of the abstract).

    1. Joint Public Review:

      The central theme of the manuscript is the structure of SBPase - an enzyme central to the photosynthetic Calvin-Benson-Bassham cycle. The authors claim that the structure is first of its kind from a chlorophyte Chlamydomonas reinhardtii, a model unicellular green microalga. The authors use a number of methods like protein expression, purification, enzymatic assays, SAXS, molecular dynamics simulations and xray crystallography to resolve a 3.09 A crystal structure of the oxidized and partially reduced state. The results are supported by the claims made in the manuscript. While the structure is the first from a chlorophyte, it is not unique. Several structures of SBPase are available and a comparison has been made between the structure reported here and others that have been previously published.

    1. Reviewer #1 (Public review):

      First, the authors confirm the up-regulation of the main genes involved in the three branches of the Unfolded Protein Response (UPR) system in diet-induced obese mice in AT, observations that have been extensively reported before. Not surprisingly, IRE1a inhibition with STF led to an amelioration of the obesity and insulin resistance of the animals. Moreover, non-alcoholic fatty liver disease was also improved by the treatment. More novel are their results in terms of thermogenesis and energy expenditure, where IRE1a seems to act via activation of brown AT. Finally, mice treated with STF exhibited significantly fewer metabolically active and M1-like macrophages in the AT compared to those under vehicle conditions. Overall, the authors conclude that targeting IRE1a has therapeutical potential for treating obesity and insulin resistance.

      The study has some strengths, such as the detailed characterization of the effect of STF in different fat depots and a thorough analysis of macrophage populations. However, the lack of novelty in the findings somewhat limits the study´s impact on the field.

    1. Reviewer #1 (Public review):

      Bacterial effectors that interfere with the inner molecular workings of eukaryotic host cells are of great biological significance across disciplines. On the one hand they help us to understand the molecular strategies that bacteria use to manipulate host cells. On the other hand, they can be used as research tools to reveal molecular details of the intricate workings of the host machinery that is relevant for the interaction/defence/symbiosis with bacteria. The authors investigate the function and biological impact of a rhizobial effector that interacts with and modifies, and curiously is modified by, legume receptors essential for symbiosis. The molecular analysis revealed a bacterial effectorthat cleaves a plant symbiosis signaling receptor to inhibit signaling and the host counterplay by phosphorylation via a receptor kinase. These findings have potential implications beyond bacterial interactions with plants. Bao and colleagues investigated how rhizobial effector proteins can regulate the legume root nodule symbiosis.

      Bao and colleagues investigated how rhizobial effector proteins can regulate the legume root nodule symbiosis. A rhizobial effector is described to directly modify symbiosis-related signaling proteins, altering the outcome of the symbiosis. Overall, the paper presents findings that will have a wide appeal beyond its primary field.

      Out of 15 identified effectors from Sinorhizobium fredii, they focus on the effector NopT, which exhibits proteolytic activity and may therefore cleave specific target proteins of the host plant. They focus on two Nod factor receptors of the legume Lotus japonicus, NFR1 and NFR5, both of which were previously found to be essential for the perception of rhizobial nod factor, and the induction of symbiotic responses such as bacterial infection thread formation in root hairs and root nodule development (Madsen et al., 2003, Nature; Tirichine et al., 2003; Nature). The authors present evidence for an interaction of NopT with NFR1 and NFR5. The paper aims to characterize the biochemical and functional consequences of these interactions and the phenotype that arises when the effector is mutated.

      Evidence is presented that in vitro NopT can cleave NFR5 at its juxtamembrane region. NFR5 appears also to be cleaved in vivo, and NFR1 appears to inhibit the proteolytic activity of NopT by phosphorylating NopT. When NFR5 and NFR1 are ectopically over-expressed in leaves of the non-legume Nicotiana benthamiana, they induce cell death (Madsen et al., 2011, Plant Journal). Bao et al. found that this cell death response is inhibited by the coexpression of nopT. Mutation of nopT alters the outcome of rhizobial infection in L. japonicus. These conclusions are well supported by the data.

      The presented data support the interaction of NopT with NFR1 and NFR5. In particular, there is solid support for cleavage of NFR5 by NopT (Figure 3) and the identification of NopT phosphorylation sites that inhibit its proteolytic activity (Figure 4C). Cleavage of NFR5 upon expression in N. benthamiana (Figure 3A) requires appropriate controls (inactive mutant versions), since Agrobacterium as a closely rhizobia related bacterium might increase defense related proteolytic activity in the plant host cells, and these controls are provided.

      Key results from N. benthamiana appear consistent with data from recombinant protein expression in bacteria. For the analysis in the host legume L. japonicus transgenic hairy roots were included. To demonstrate that the cleavage of NFR5 occurs during the interaction in plant cells, the authors build largely on Western blots. Regardless of whether Nicotiana leaf cells or Lotus root cells are used as the test platform, the Western blots indicate that only a small proportion of NFR5 is cleaved when co-expressed with nopT, and most of the NFR5 persists in its full-length form (Figures 3A-D). The authors discuss how the loss of NFR5 function (loss of cell death, impact on symbiosis) can be explained despite this vast excess of intact NFR5, but do not further explore the impact of this ratio on downstream signaling.

    1. Reviewer #1 (Public review):

      Summary:

      The authors used a subset of a very large, previously generated 16S dataset to: 1) assess age-associated features; and 2) develop a fecal microbiome clock, based on extensive longitudinal sampling of wild baboons for which near-exact chronological age is known. They further seek to understand deviation from age-expected patterns and uncover if and why some individuals have an older or younger microbiome than expected, and the health and longevity implications of such variation. Overall, the authors compellingly achieved their goals to discover age-associated microbiome features and develop a fecal microbiome clock. They also showed clear and exciting evidence for sex and rank-associated variation in the pace of gut microbiome aging and impacts of seasonality on microbiome age in females. These data add to a growing understanding of modifiers of the pace of age in primates, and links among different biological indicators of age, with implications for understanding and contextualizing human variation. However, in the current version there are gaps in the analyses with respect to the social environment, and in comparisons with other biological indicators of age. Despite this, I anticipate this work will be impactful, generate new areas of inquiry and fuel additional comparative studies.

      Strengths:

      The major strengths of the paper are the size and sampling depth of the study population, including ability to characterize of the social and physical environments, and the application of recent and exciting methods to characterize the microbiome clock. An additional strength was the ability of the authors to compare and contrast the relative age-predictive power of the fecal microbiome clock to other biological methods of age estimation available for the study population (dental wear, blood cell parameters, methylation data). Furthermore, the writing and support materials are clear and informative and visually appealing.

      Revisions made following initial review have further improved the content and clarity.

      Weaknesses:

      Revisions to the manuscript clarified some of the analysis decisions and limitations regarding drawing comparisons between the microbiome clock and other metrics of biological age, and on the impact of sociality on microbiome metrics. Hopefully these interesting topics will be further addressed in forthcoming publications.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors sought to build upon their prior work, which suggested the presence of an outer retinal metabolic microenvironment using ex vivo and in vitro systems, by using in vivo methods and a multitude of genetic models. The authors convincingly demonstrate that the retina prefers circulating glucose to some other circulating fuel sources and that photoreceptors are the main consumers of glucose in the retina. However, the claims regarding the ability of photoreceptors to utilize lactate as a fuel source, that lactate exported specifically from photoreceptors is taken up by RPE and further utilized to support the TCA cycle in the RPE are incomplete or inadequate and would benefit from further experimentation to convince the reader of such biological processes. Considering alternative explanations and performing key experiments to confirm or refute these claims would substantially improve the impact of this study.

      Strengths:

      The major strengths of this study are its in vivo infusion methodologies and utilization of mouse models that are devoid of photoreceptors or are photoreceptor-specific conditional knockouts to provide convincing evidence that the retina utilizes circulating glucose to a significant degree and photoreceptors are the main consumers of glucose in the retina. These in vivo studies are complemented by ex vivo experiments in retinal explants.

      Weaknesses:

      While the in vivo infusion methodologies are a clear strength, not utilizing these techniques or other in vivo methodologies with the genetic models that lack photoreceptors or photoreceptor-specific proteins and not providing in vivo metabolomics data from these infusions in the RPE is a major weakness. Also, some circulating fuel sources may not get into the retina in appreciable amounts, impacting some of the authors' claims. Another major weakness is that for many of the claims noted by the authors, alternative explanations have not been considered nor have the proper experiments been conducted to fully support or refute these claims. For example, the authors claim it is photoreceptors that utilize lactate upon knockout of Glut1. However, other cells in the retina, such as Muller glia, may be the ones actually catabolizing lactate based on prior studies and enzyme expression patterns and their kinetics to support photoreceptors via the production of other metabolites from lactate. This alternative has not been considered nor have experiments been conducted to refute this possibility. Additionally, the authors claim lactate exported from photoreceptors is being taken up by RPE. The models used to support this claim lack photoreceptors, or their ability to take up glucose. None of the models specifically address lactate export from photoreceptors. Finally, the authors claim lactate exported from photoreceptors can be oxidized to TCA cycle intermediates in the RPE in vivo. No experiments specifically addressed the downstream path of lactate exported by photoreceptors in RPE TCA cycle metabolism in vivo, so this conclusion is also not well supported. Hence, the claims need to be significantly amended with an acknowledgment of potential alternatives or with some key experiments performed.

    1. Reviewer #1 (Public review):

      This paper presents a comprehensive study of how neural tracking of speech is affected by background noise. Using five EEG experiments and Temporal response function (TRF), it investigates how minimal background noise can enhance speech tracking even when speech intelligibility remains very high. The results suggest that this enhancement is not attention-driven but could be explained by stochastic resonance. These findings generalize across different background noise types, listening conditions, and speech features (envelope onset and envelope), offering insights into speech processing in real-world environments.

      I find this paper well-written, the experiments and results are clearly described.

      Comments on revisions:

      I thank the author for thoughtful revisions and for adequately addressing my comments. The new version is much clearer and improved. I have no further questions.

    1. Joint Public Review:

      This paper examines the role of MLCK (myosin light chain kinase) and MLCP (myosin light chain phosphatase) in axon regeneration. Using loss-of-function approaches based on small molecule inhibitors and siRNA knockdown, the authors explore axon regeneration in cell culture and in animal models from central and peripheral nervous systems. Their evidence shows that MLCK activity facilitates axon extension/regeneration, while MLCP prevents it. Additionally, they show that when the MLCK/MLCP pathway is experimentally intervened, F-actin is redistributed in the growth cone.

      Strengths:

      This manuscript presents a wide range of experimental models to address its hypothesis and biological question. Notably, the use of multiple in vivo models significantly enhances the overall validity of the study.

      What follows is a discussion of the merits and limitations of different claims of the manuscript in light of the evidence presented.

      (1) The authors combine MLCK inhibitors with Bleb (Figure 6), trying to verify if both pairs of inhibitors act on the same target/pathway. MLCK may regulate axon growth independent of NMII activity. However, this has very important implications for the understanding not only on how NMII works and affects axon extension but also in trying to understand what MLCP is doing. One wonders if MLCP actions, which are opposite of MLCK, also independent of NMII activity? The authors try to address this controversial issue in the discussion section. The reviewers consider that it is still an open question, and acknowledge that it would require a significant amount of experimental work to solve the issue, that goes well beyond the main goal of the present study.

      (2) Using western blot and immunohistochemical analyses, authors first show that MLCK expression is increased in DRG sensory neurons following peripheral axotomy, concomitant to an increase in MLC phosphorylation, suggesting a causal effect (Figure 1). The authors claim that it is common that axon growth-promoting genes are upregulated. It would have been interesting at<br /> this point to study in this scenario the regulation of MLCP.

      (3) Using DRG cultures and sciatic nerve crush in the context of MLCK inhibition (ML-7) and down-regulation, authors conclude that MLCK activity is required for mammalian peripheral axon regeneration both in vitro and in vivo (Figure 2). In parallel, the authors show that these treatments affect, as expected, the phosphorylation levels of MLC.

      (4) The authors then examined the role of the phosphatase MLCP in axon growth during regeneration. The authors first use a known MLCP blocker, phorbol 12,13-dibutyrate (PDBu), to show that is able to increase the levels of p-MLC, with a concomitant increase in the extent of axon regrowth of DRG neurons, both in permissive as well as non-permissive substrates. The authors repeat the experiments using the knockdown of MYPT1, a key component of the MLC-phosphatase, and again can observe a growth-promoting effect (Figure 3).

      (5) In the next set of experiments (presented in Figure 4) authors extend the previous observations in primary cultures from the CNS. For that, they use cortical and hippocampal cultures, and pharmacological and genetic loss-of-function using the above-mentioned strategies. The expected results were obtained in both CNS neurons: inhibition or knockdown of the kinase decreases axon growth, whereas inhibition or knockdown of the phosphatase increases growth. A main weakness in this set is that drugs were used from the beginning of the experiment, and hence, they would also affect axon specification. As pointed out in Materials and Method (lines 143-145) authors counted as "axons" neurites longer than twice the diameter of the cell soma, and hence would not affect the variable measured. In any case, to be sure one is only affecting axon extension in these cells, the drugs should have been used after axon specification and maturation, which occurs at least after 3 DIV. Taking this into account, the conclusions with this experimental design are limited.

    1. Reviewer #1 (Public review):

      Summary:

      Desveaux et al. describe human mAbs targeting protein from the Pseudomonas aeruginosa T3SS, discovered by employing single cell B cell sorting from cystic fibrosis patients. The mAbs were directed at the proteins PscF and PcrV. They particularly focused on two mAbs binding the T3SS with the potential of blocking activity. The supplemented biochemical analysis was crystal structures of P3D6 Fab complex. They also compared the blocking activity with mAbs that were described in previous studies, using an assay that evaluated the toxin injection. They conducted mechanistic structure analysis and found that these mAbs might act through different mechanisms by preventing PcrV oligomerization and disrupting PcrVs scaffolding function.

      Strengths:

      The antibiotic resistance crisis requires the development of new solutions to treat infections caused by MDR bacteria. The development of antibacterial mAbs holds great potential. In that context, this report is important as it paves the way for the development of additional mAbs targeting various pathogens that harbor the T3SS. In this report, the authors present a comparative study of their discovered mAbs vs. a commercial mAb currently in clinical testing resulting in valuable data with applicative implications. The authors investigated the mechanism of action of the mAbs using advanced methods and assays for the characterization of antibody and antigen interaction, underlining the effort to determine the discovered mAbs suitability for downstream application.

      Weaknesses:

      Although the information presented in this manuscript is important, previous reports regarding other T3SS structures complexed with antibodies, reduce the novelty of this report. Nevertheless, we provide several comments that may help to improve the report. The structural analysis of the presented mAbs is incomplete and unfortunately, the authors did not address any developability assessment. With such vital information missing, it is unclear if the proposed antibodies are suited for diagnostic or therapeutic usage. This vastly reduces the importance of the possibly great potential of the authors' findings. Moreover, the structural information does not include the interacting regions on the mAb which may impede the optimization of the mAb if it is required to improve its affinity.

    1. Reviewer #1 (Public review):

      Summary:

      Phytophathogens including fungal pathogens such as F. graminearum remain a major threat to agriculture and food security. Several agriculturally relevant fungicides including the potent Quinofumelin have been discovered to date, yet the mechanisms of their action and specific targets within the cell remain unclear. This paper sets out to contribute to addressing these outstanding questions.

      Strengths:

      The paper is generally well-written and provides convincing data to support their claims for the impact of Quinofumelin on fungal growth, the target of the drug, and the potential mechanism. Critically the authors identify an important pyrimidine pathway dihydroorotate dehydrogenase (DHODH) gene FgDHODHII in the pathway or mechanism of the drug from the prominent plant pathogen F. graminearum, confirming it as the target for Quinofumelin. The evidence is supported by transcriptomic, metabolomic as well as MST, SPR, molecular docking/structural biology analyses.

      Weaknesses:

      Whilst the study adds to our knowledge about this drug, it is, however, worth stating that previous reports (although in different organisms) by Higashimura et al., 2022 https://pmc.ncbi.nlm.nih.gov/articles/PMC9716045/ had already identified DHODH as the target for Quinofumelin and hence this knowledge is not new and hence the authors may want to tone down the claim that they discovered this mechanism and also give sufficient credit to the previous authors work at the start of the write-up in the introduction section rather than in passing as they did with reference 25? other specific recommendations to improve the text are provided in the recommendations for authors section below.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors examined the function of CLIP in exercise-mediate inhibition of osteoarthritis using an ACL transection rat model. The authors rely on rigorous experimental design and methods to demonstrate that CLIP is downregulated in osteoarthritic cartilage tissue and that CLIP expression can be rescued by moderate treadmill exercise. They further show that activation of Nrf2 signaling occurs through CLIP inhibition of Keap1-Nrf2. The results are novel as they suggest a new role for CLIP in OA pathogenesis. The following points need to be addressed in order to bring additional clarity to this work.

      Strengths:

      This is an interesting study that addresses an important global health issue. The significance is high and the work is novel and mechanistic.

      Weaknesses:

      A major concern is that a direct link between exercise and CLIP-mediated inhibition of ferroptosis via Keap1-Nrf2 pathway is not supported by the provided data. The ferroptosis studies were performed in vitro, whereas the effect of exercise was demonstrated in an OA animal model. Therefore, the data suggest a potential correlation between CLIP-Keap1-Nrf2 and exercise. This must be described as a limitation in the discussion section. Consequently, the title of the manuscript needs to better reflect the interpretation of these data.

      Figure 1: Radiomics data are not described in the text. OARSI scoring of damaged and undamaged sections is not presented in the figure.

      Figure 2: Data presentation is very dense in this figure. It is recommended that Figure 2 be split into two figures. Also, the histology and IHC images in Figure 2A are of poor resolution. These data do not sufficiently demonstrate early OA pathology. Clearer images to substantiate the authors' statement need to be provided.

      Figure 3: The superficial zone appears to be misrepresented; it should include only the top 2-3 layers of flat chondrocyte cells.

      Figure 4: This Figure should be listed as supplementary data. CTS is not spelled out in the legend. Also, a rationale for using low, medium, and high CTS needs to be provided.

      Figure 5: Please describe positive and negative controls. Please elaborate on the findings of the yeast hybrid experiment in the results. Please expand KD-02 experimental condition in the legend and results.

      Figure 6: Please move Figure S2 into the main Figures and describe the results in section 2.9 which describes ferroptosis.

      In the results section, it is recommended that the authors describe all panels of the figures appropriately in sequential order. The authors are advised to provide publication-quality figures and, in some cases, to split figure panels into new figures as well as to ensure that the fonts and data are legible. Finally, the use of non-conventional abbreviations (such as G3 for passage-3 chondrocytes, CG for the control condition, and OE for overexpression) may confuse the readership, and describing each abbreviation when used for the first time is required.

    1. Reviewer #2 (Public review):

      Summary:

      Liu et al investigated the performance of a novel imaging technique called RIM-Deep to enhance the imaging depth for cleared samples. Usually, the imaging depth using the classical confocal microscopy sample chamber is limited due to optical aberrations, resulting in loss of resolution and image quality. To overcome this limitation and increase depth, they generated a special imaging chamber, that is affixed to the objective and filled with a solution matching the refractive indices to reduce aberrations. Importantly, the study was conducted using a standard confocal microscope, that has not been modified apart from exchanging the standard sample chamber with the RIM-Deep sample holder. Upon analysing the imaging depth, the authors claim that the RIM-Deep method increased the depth from 2 mm to 5 mm. In summary, RIM-Deep has the potential to significantly enhance imaging quality of thick samples on a low budget, making in-depth measurements possible for a wide range of researchers that have access to an inverted confocal microscope.

      Strengths:

      The authors used different clearing methods to demonstrate the suitability of RIM-Deep for various sample preparation protocols with clearing solutions of different refractive indices. They clearly demonstrate that the RIM-Deep chamber is compatible with all 3 methods. Brain samples are characterized by complex networks of cells and are often hard to visualize. Despite the dense, complex structure of brain tissue, the RIM-Deep method generated high-quality images of all 3 samples given. As the authors already stated, increasing imaging depth often goes hand in hand with purchasing expensive new equipment, exchanging several microscopy parts or purchasing a new microscopy set-up. Innovations, such as the RIM-Deep chamber, hence, might pave the way for cost-effective imaging and expand the applicability of an inverted confocal microscope.

      Weaknesses:

      (1) However, since this study introduces a novel imaging technique, and therefore, aims to revolutionize the way of imaging large samples, additional control experiments would strengthen the data. From the 3 clearing protocol used (CUBIC, MACS and iDISCO), only the brain section from Macaca fascicularis cleared with iDISCO was imaged with the standard chamber and the RIM-Deep method. This comparison indeed shows that the imaging depth thereby increases more than 2-fold, which is a significant enhancement in terms of microscopy. However, it would have been important to evaluate and show the difference of the imaging depth also on the other two samples, since they were cleared with different protocols and, thus, treated with clearing solutions of different refractive indices compared to iDCISCO.

      (2) The description of the figures and figure panels should be improved for a better understanding of the experiments performed and the thus resulting images/data.

      (3) While the authors used a Nikon AX inverted laser scanning confocal microscope, the study would highly benefit from evaluating the performance of the RIM-Deep method using other inverted confocal microscopes or even wide-field microscopes.

      Comments on Revision:

      Regarding point 1)<br /> Within the revised manuscript, Liu et al focussed on a more detailed comparison of the standard vs the RIM-Deep method of samples cleared with the 3 different methods.

      Regarding point 2)<br /> The revised description of the figures results in a better understanding of the data.

      Regarding point 3)<br /> The authors tested their method on different microscopic setups to show the compatibility.

      Summary: the revised manuscript addressed all previously mentioned points.

    1. Reviewer #1 (Public review):

      This study by Popli et al. evaluated the function of Atg14, an autophagy protein, in reproductive function using a conditional knockout mouse model. The authors showed that female mice lacking Atg14 were infertile partly due to defective embryo transport function of the oviduct and faulty uterine receptivity and decidualization using PgrCre/+;Atg14f/f mice. The findings from this work are exciting and novel. The authors demonstrated that a loss of Atg14 led to an excessive pyroptosis in the oviductal epithelial cells that compromises cellular integrity and structure, impeding the transport function of the oviduct. In addition, the authors use both genetic and pharmacological approaches to test the hypothesis. Therefore, the findings from this study are high-impact and likely reproducible.

      Comments on revisions: Thank you for your time revising the manuscript. The authors have addressed all of my previous concerns.

    1. Reviewer #1 (Public review):

      Summary:

      Work by Brosseau et. al. combines NMR, biochemical assays, and MD simulations to characterize the influence of the C-terminal tail of EmrE, a model multi-drug efflux pump, on proton leak. The authors compare the WT pump to a C-terminal tail deletion, delta_107, finding that the mutant has increased proton leak in proteoliposome assays, shifted pH dependence with a new titratable residue, faster-alternating access at high pH values, and reduced growth, consistent with proton leak of the PMF.

      Strengths:

      The work combines thorough experimental analysis of structural, dynamic, and electrochemical properties of the mutant relative to WT proteins. The computational work is well aligned in vision and analysis. Although all questions are not answered, the authors lay out a logical exploration of the possible explanations.

      Weaknesses:

      There are a few analyses that are missing and important data left out. For example, the relative rate of drug efflux of the mutant should be reported to justify the focus on proton leak. Additionally, the correlation between structural interactions should be directly analyzed and the mutant PMF also analyzed to justify the claims based on hydration alone. Some aspects of the increased dynamics at high pH due to a potential salt bridge are not clear.

    1. Reviewer #1 (Public review):

      The origin recognition complex (ORC) is an essential loading factor for the replicative Mcm2-7 helicase complex. Despite ORC's critical role in DNA replication, there have been instances where the loss of specific ORC subunits has still seemingly supported DNA replication in cancer cells, endocycling hepatocytes, and Drosophila polyploid cells. Critically, all tested ORC subunits are essential for development and proliferation in normal cells. This presents a challenge, as conditional knockouts need to be generated, and a skeptic can always claim that there were limiting but sufficient ORC levels for helicase loading and replication in polyploid or transformed cells. That being said, the authors have consistently pushed the system to demonstrate replication in the absence or extreme depletion of ORC subunits.

      Here, the authors generate conditional ORC2 mutants to counter a potential argument with prior conditional ORC1 mutants that Cdc6 may substitute for ORC1 function based on homology. They also generate a double ORC1 and ORC2 mutant, which is still capable of DNA replication in polyploid hepatocytes. While this manuscript provides significantly more support for the ability of select cells to replicate in the absence or near absence of select ORC subunits, it does not shed light on a potential mechanism.

      The strengths of this manuscript are the mouse genetics and the generation of conditional alleles of ORC2 and the rigorous assessment of phenotypes resulting from limiting amounts of specific ORC subunits. It also builds on prior work with ORC1 to rule out Cdc6 complementing the loss of ORC1.

      The weakness is that it is a very hard task to resolve the fundamental question of how much ORC is enough for replication in cancer cells or hepatocytes. Clearly, there is a marked reduction in specific ORC subunits that is sufficient to impact replication during development and in fibroblasts, but the devil's advocate can always claim minimal levels of ORC remaining in these specialized cells.

      The significance of the work is that the authors keep improving their conditional alleles (and combining them), thus making it harder and harder (but not impossible) to invoke limiting but sufficient levels of ORC. This work lays the foundation for future functional screens to identify other factors that may modulate the response to the loss of ORC subunits.

      This work will be of interest to the DNA replication, polyploidy, and genome stability communities.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, Bruter and colleagues report effects of inducible deletion of the genes encoding the two paralogous kinases of the Mediator complex in adult mice. The physiological roles of these two kinases, CDK8 and CDK19, are currently rather poorly understood; although conserved in all eukaryotes, and among the most highly conserved kinases in vertebrates, individual knockouts of genes encoding CDK8 homologues in different species have revealed generally rather mild and specific effects, in contrast to Mediator itself. Here, the authors provide evidence that neither CDK8 nor CDK19 are required for adult homeostasis but they are functionally redundant for maintenance of reproductive tissue morphology and fertility in males.

      Strengths:

      The morphological data on atrophy of the male reproductive system and arrest of spermatocyte meiosis are solid and are reinforced by single cell transcriptomics data, which is a challenging technique to implement in vivo. The main findings are important and will be of interest to scientists in the fields of transcription and developmental biology.

      Weaknesses:

      There are several weaknesses.

      The first is that data comparing general health of mice with single and double knockouts is not shown, and data on effects in other tissues are sparse and very preliminary. The only strong phenotype of double knockouts that is described is in the male reproductive system. Furthermore, data for the genitourinary system in single knockouts are very sparse; data are described for fertility in figure 1E, ploidy and cell number in figure 3B and C, plasma testosterone and luteinizing hormone levels in figure 6C and 6D and morphology of testis and prostate tissue for single Cdk8 knockout in supplementary figure 1E (although in this case the images do not appear very comparable between control and CDK8 KO), but, for example, there is no analysis of different meiotic stages or of gene expression in single knockouts. Given that the authors have shown that CDK8 and CDK19 expression levels differ widely between different cell types, such an analysis would be interesting. This might have provided insight into the sterility of induced CDK8 knockout.

      The second weakness is that the correlation between double knockout and reduced expression of genes involved in steroid hormone biosynthesis is hypothesized to be a causal mechanism for the phenotypes observed. While this is a possibility, there are no experiments performed to provide evidence that this is the case. Furthermore, there is no evidence shown that CDK8 and/or CDK19 are directly responsible for transcription of the genes concerned.

      Finally, the authors propose that the phenotypes are independent of the kinase activity of CDK8 or CDK19 because treatment of mice for a month with an inhibitor does not recapitulate the effects of the knockout, and nor does expression of two steroidogenic genes change in cultured Leydig cells upon treatment with an inhibitor. However, there are no controls for effective target inhibition shown.

      Comments on revisions:

      This manuscript is slightly improved compared to the previous version, though it still does not address the weaknesses that were highlighted in the first version, which largely remain relevant. Please note the typo in the abstract (line 30) and the absence of response to the query of how many crypts and villi were counted in the experiment shown in Suppl Fig 1D.

    1. Reviewer #1 (Public review):

      Summary

      The manuscript by Chen et al. presents a detailed metabolic characterization of male and female WT and Ctrp10 knockout mice. The main finding is that female KO mice become obese on both low-fat and high-fat diets, but without evidence of marked insulin resistance, hepatic steatosis, dyslipidemia, or increased inflammatory markers. The authors performed a detailed transcriptomic analysis and identified differentially-expressed genes that distinguish high-fat diet -fed Ctrp10 KO from WT control mice. They further show that this set of genes exhibits cross correlation in human tissues, and that this is greater in females than in males. The data indicate that the Ctrp10 KO model may be useful to understand how obesity and metabolic dysfuction are coupled to each other, and how this occurs by a sex-biased mechanism.

      Strengths

      The work presents a large amount of data, which has been carefully acquired and is convincing. The transcriptomic analysis will further help to define what pathways are associated with obesity, but not necessarily with metabolic dysfunction. The manuscript will be of interest to investigators studying metabolic diseases, and to those studying sex-specific differences in metabolic physiology. The limitations of the study are acknowledged, including that a whole-body knockout was used. The cause of the increased body weight is not entirely clear, despite the careful and detailed analysis that was performed. Notwithstanding these limitations, the phenotype is interesting, and this work will establish basis for further work to understand the mechanisms that are involved.

      Weaknesses

      The main weaknesses are that no antibody is available to detect Ctrp10, and the knockout is a global knockout since no conditional allele is available. These limitations are discussed in the manuscript. Despite these weaknesses, the current work establishes the intriguing phenotype and its sex-specificity, and will provide a solid foundation for future studies.

    1. Reviewer #1 (Public review):

      Summary:

      In this article, Nedbalova et al. investigate the biochemical pathway that acts in circulating immune cells to generate adenosine, a systemic signal that directs nutrients toward the immune response, and S-adenosylmethionine (SAM), a methyl donor for lipid, DNA, RNA, and protein synthetic reactions. They find that SAM is largely generated through uptake of extracellular methionine, but that recycling of adenosine to form ATP contributes a small but important quantity of SAM in immune cells during the immune response. The authors propose that adenosine serves as a sensor of cell activity and nutrient supply, with adenosine secretion dominating in response to increased cellular activity. Their findings of impaired immune action but rescued larval developmental delay when the enzyme Ahcy is knocked down in hemocytes are interpreted as due to effects on methylation processes in hemocytes and reduced production of adenosine to regulate systemic metabolism and development, respectively. Overall this is a strong paper that uses sophisticated metabolic techniques to map the biochemical regulation of an important systemic mediator, highlighting the importance of maintaining appropriate metabolite levels in driving immune cell biology.

      Strengths:

      The authors deploy metabolic tracing - no easy feat in Drosophila hemocytes - to assess flux into pools of the SAM cycle. This is complemented by mass spectrometry analysis of total levels of SAM cycle metabolites to provide a clear picture of this metabolic pathway in resting and activated immune cells.

      The experiments show that recycling of adenosine to ATP, and ultimately SAM, contributes meaningfully to the ability of immune cells to control infection with wasp eggs.

      This is a well-written paper, with very nice figures showing metabolic pathways under investigation. In particular, the italicized annotations, for example "must be kept low", in Figure 1 illustrate a key point in metabolism - that cells must control levels of various intermediates to keep metabolic pathways moving in a beneficial direction.

      Experiments are conducted and controlled well, reagents are tested, and findings are robust and support most of the authors' claims.

      Weaknesses:

      The authors posit that adenosine acts a sensor of cellular activity, with increased release indicating active cellular metabolism and insufficient nutrient supply. The authors have provided a discussion of how generalizable they think this may be across different cell types or organs, but mechanisms for the role of adenosine in specific cell types, and whether cell autonomous or cell-nonautonomous mechanisms may be employed in sensing, are largely unknown.

    1. Reviewer #1 (Public review):

      Summary:

      Wang et al. created a series of specific FLIM-FRET sensors to measure the activity of different Rab proteins in small cellular compartments. They apply the new sensors to monitor Rab activity in dendritic spines during induction of LTP. They find sustained (30 min) inactivation of Rab10 and transient (5 min) activation of Rab4 after glutamate uncaging in zero Mg. NMDAR function and CaMKII activation are required for these effects. Knock-down of Rab4 reduced spine volume change while knock-down of Rab10 boosted it and enhanced functional LTP (in KO mice). To test Rab effects on AMPA receptor exocytosis, the authors performed FRAP of fluorescently labeled GluA1 subunits in the plasma membrane. Within 2-3 min, new AMPARs appear on the surface via exocytosis. This process is accelerated by Rab10 knock-down and slowed by Rab4 knock-down. The authors conclude that CaMKII promotes AMPAR exocytosis by i) activating Rab4, the exocytosis driver and ii) inhibiting Rab10, possibly involved in AMPAR degradation.

      Strengths:

      The work is a technical tour de force, adding fundamental insights to our understanding of the crucial functions of different Rab proteins in promoting/preventing synaptic plasticity. The complexity of compartmentalized Ras signaling is poorly understood and this study makes substantial inroads. The new sensors are thoroughly characterized, seem to work very well and will be quite useful for the neuroscience community and beyond (e.g. cancer research). The use of FLIM for read-out is compelling for precise activity measurements in rapidly expanding compartments (i.e., spines during LTP). In addition to structural changes, evidence for functional LTP is provided, too.

      Weaknesses:

      The interpretation of the FRAP experiments (Fig. 5, Ext. Data Fig. 13) is not straightforward as spine volume and surface area greatly expand during uncaging. I appreciate the correction for added spine membrane shown in Extended Data Fig. 14i.<br /> Pharmacological experiments were not conducted or analyzed blind, risking bias in the selection/exclusion of experiments for analysis.

    1. Reviewer #1 (Public review):

      SNeuronal activity spatiotemporal fine-tuning of cerebral blood flow balances metabolic demands of changing neuronal activity with blood supply. Several 'feed-forward' mechanisms have been described that contribute to activity-dependent vasodilation as well as vasoconstriction leading to a reduction in perfusion. Involved messengers are ionic (K+), gaseous (NO), peptides (e.g., NPY, VIP) and other messengers (PGE2, GABA, glutamate, norepinephrine) that target endothelial cells, smooth muscle cells, or pericytes. Contributions of the respective signaling pathways likely vary across brain regions or even within specific brain regions (e.g., across cortex) and are likely influenced by the brain's physiological state (resting, active, sleeping) or pathological departures from normal physiology.

      The manuscript "Elevated pyramidal cell firing orchestrates arteriolar vasoconstriction through COX-2-derived prostaglandin E2 signaling" by B. Le Gac, et al. investigates mechanisms leading to activity-dependent arteriole constriction. Here, mainly working in brain slices from mice expressing channelrhodopsin 2 (ChR2) in all excitatory neurons (Emx1-Cre; Ai32 mice), the authors show that strong optogenetic stimulation of cortical pyramidal neurons is leading to constriction that is mediated through the cyclooxygenase-2 / prostaglandin E2 / EP1 and EP3 receptor pathway with contribution of NPY-releasing interneurons and astrocytes releasing 20-HETE. Specifically, using patch clamp, the authors show that 10-s optogenetic stimulation at 10 and 20 Hz leads to vasoconstriction (Figure 1), in line with a stimulation frequency-dependent increase in somatic calcium (Figure 2). The vascular effects were abolished in presence in TTX and significantly reduced in presence of glutamate receptor antagonists (Figure 3). The authors further show with RT-PCR on RNA isolated from patched cells that ~50% of analyzed cells express COX-1 or -2 and other enzymes required to produce PGE2 or PGF2a (Figure 4). Further, blockade of COX-1 and -2 (indomethacin), or COX-2 (NS-398) abolishes constriction. In animals with chronic cranial window that were anesthetized with ketamine and medetomidine, 10-s long optogenetic stimulation at 10 Hz leads to considerable constriction, which is reduced in presence of indomethacin. Blockade of EP1 and EP3 receptors leads to significant reduction of the constriction in slices (Figure 5). Finally, the authors show that blockade of 20-HETE synthesis caused moderate and NPY Y1 receptor blockade a complete reduction of constriction.

      The mechanistic analysis of neurovascular coupling mechanisms as exemplified here will guide further in-vivo studies and has important implications for human neuroimaging in health and disease. Most of the data in this manuscript uses brain slices as experimental model which contrasts with neurovascular imaging studies performed in awake (headfixed) animals. However, the slice preparation allows for patch clamp as well as easy drug application and removal. Further, the authors discuss their results in view of differences between brain slices and in vivo observations experiments, including the absence of vascular tone as well as blood perfusion required for metabolite (e.g., PGE2) removal, and the presence of network effects in the intact brain. The manuscript and figures present the data clearly; regarding the presented mechanism, the data supports the authors conclusions. Some of the data was generated in vivo in head-fixed animals under anesthesia; in this regard, the authors should revise introduction and discussion to include the important distinction between studies performed in slices, or in acute or chronic in-vivo preparations under anesthesia (reduced network activity and reduced or blockade of neuromodulation, or in awake animals (virtually undisturbed network and neuromodulatory activity). Further, while discussed to some extent, the authors could improve their manuscript by more clearly stating if they expect the described mechanism to contribute to CBF regulation under 'resting state conditions' (i.e., in absence of any stimulus), during short or sustained (e.g., visual, tactile) stimulation, or if this mechanism is mainly relevant under pathological conditions; especially in context of the optogenetic stimulation paradigm being used (10-s long stimulation of many pyramidal neurons at moderate-high frequencies) and the fact that constriction leading to undersupply in response to strongly increased neuronal activity seems counterintuitive?

      The authors have addressed all comments, and I appreciate their insightful discussion and revision of the manuscript.

    1. Reviewer #1 (Public review):

      Summary of what the authors were trying to achieve:

      In this manuscript, the authors investigated the role of β-CTF on synaptic function and memory. They report that β-CTF can trigger the loss of synapses in neurons that were transiently transfected in cultured hippocampal slices and that this synapse loss occurs independently of Aβ. They confirmed previous research (Kim et al, Molecular Psychiatry, 2016) that β-CTF-induced cellular toxicity occurs through a mechanism involving a hexapeptide domain (YENPTY) in β-CTF that induces endosomal dysfunction. Although the current study also explores the role of β-CTF in synaptic and memory function in the brain using mice chronically expressing β-CTF, the studies are inconclusive because potential effects of Aβ generated by γ-secretase cleavage of β-CTF were not considered. Based on their findings, the authors suggest developing therapies to treat Alzheimer's disease by targeting β-CTF. While they acknowledge that clinical trials of potent BACE1 inhibitors - which also target β-CTF - have failed to show clinical improvement, their study lacks in vivo evidence directly linking β-CTF to brain function, which weakens its significance.

      Major strengths and weaknesses of the methods and results:

      The conclusions of the in vitro experiments using cultured hippocampal slices were well supported by the data, but aspects of the in vivo experiments need additional clarification.<br /> In contrast to the in vitro experiments in which a γ-secretase inhibitor was used to exclude possible effects of Aβ, this possibility was not examined in in vivo experiments assessing synapse loss and function (Fig. 3) and cognitive function (Fig. 4). The absence of plaque formation (Fig. 4C) is not sufficient to exclude the possibility that Aβ is involved. The potential involvement of Aβ is an important consideration given the 4-month duration of protein expression in the in vivo studies. This issue could be addressed using γ-secretase modulators to avoid the off-target effects of inhibitors. Evidence that the detrimental effects in mice are directly caused by β-CTF rather than indirectly via Aβ is critical to support the authors' conclusion.

      Appraisal of whether the authors achieved their aims, and whether the results support their conclusion:

      See above

      Discussion of likely impact of the work on the field, and the utility of the methods and data to the community:

      The authors' use of sparse expression to examine the role of β-CTF on spine loss could be a useful general tool for examining synapses in brain tissue.

      Any additional context that might help readers interpret or understand the significance of the work:

      The discovery of BACE1 stimulated an international effort to develop BACE1 inhibitors to treat Alzheimer's disease. BACE1 inhibitors block the formation of β-CTF which, in turn, prevents the formation of Aβ and other fragments. Unfortunately, BACE1 inhibitors not only did not improve cognition in patients with Alzheimer's disease, they appeared to worsen it, suggesting that β-CTF could facilitate learning and memory. Therefore, it seems unlikely that the disruptive effects of β-CTF on endosomes plays a significant role in the human disease.

      Comments on revisions:

      The authors may be interested in the study by Ma et al., PNAS 2007 titled "Involvement of β-site APP cleaving enzyme 1 (BACE1) in amyloid precursor protein-mediated enhancement of memory and activity-dependent synaptic plasticity," which provides significant insights into the physiological role of BACE1 in synaptic function. The researchers demonstrated that BACE1-mediated cleavage of amyloid precursor protein (APP) is essential for enhancing learning, memory, and synaptic plasticity in vivo. They observed that overexpression of APP in transgenic mice led to improved spatial memory retention and potentiation of synaptic plasticity, effects that were abolished when one or both copies of the BACE1 gene were eliminated. This suggests that BACE1's cleavage of APP facilitates activity-dependent synaptic modifications, potentially through the production of APP intracellular domain (AICD) via β-CTF, rather than amyloid-β (Aβ) or soluble APPα (sAPPα). These findings highlight a physiological mechanism where BACE1-mediated APP processing leading to β-CTF supports cognitive functions, potentially explaining the detrimental effects of BACE1 inhibitors on cognitive function in clinical trials.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigated the mechanism underlying Congenital NAD Deficiency Disorder (CNDD) using a mouse model with loss of function of the HAAO enzyme which mediates a key step in the NAD de novo synthesis pathway. This study builds on the observation that the kynurenine pathway is required in the conceptus, as HAAO null embryos are sensitive to maternal deficiency of NAD precursors (vitamin B3) and tryptophan, and narrows the window of sensitivity to a 3 day period.

      An important finding is that de novo NAD synthesis occurs in an extra-embryonic tissue, the visceral yolk sac, before the liver develops in the embryo. It is suggested that lack of this yolk sac activity leads to impaired NAD supply in the embryo leading to structural abnormalities found later in development.

      Strengths:

      Previous studies show a requirement for HAOO activity for normal development of the embryos develop abnormalities under conditions of maternal vitamin B3 deficiency, indicating a requirement for NAD synthesis in the conceptus. Analysis of scRNA-seq datasets combined with metabolite analysis of yolk sac tissue shows that the NAD synthesis pathway is expressed and functional in the yolk sac from E10.5 onwards (prior to liver development).

      HAOO enzyme assay enabled quantification of enzyme activity in relevant tissues including liver (from E12.5), embryo, placenta and yolk sac (from E11.5).<br /> Comprehensive metabolite analysis of the NAD synthesis pathway supports the predicted effects of HAOO knockout and provides analysis of yolk sac, placenta and embryo at a series of stages.

      The dietary study (with lower vitamin B3 in maternal diet from E7.5-10.5) is an incremental addition to previous studies which imposed similar restrictions from E7.5-12.5. Nevertheless, this emphasises the importance of the synthesis pathway on the conceptus at stages before liver activity is prominent.

      Weaknesses:

      The current dietary study narrows the period when deficiency can cause malformations (analysed at E18.5), and altered metabolite profiles (eg, increased 3HAA, lower NAD) are detected in yolk sac and embryo at E10.5.

      More importantly, there is still a question of whether in addition to the yolks sac, there is HAAO activity within the embryo itself has been assayed as early as E11.5, with minimal activity prior to E12.5 (when it is assayed in liver). These findings support the hypothesis that within the conceptus (embryo, chorioallantoic placenta and visceral yok sac) the embryo is unlikely to be the site of NAD synthesis prior to liver development.

      Evidence for lack of function of the NAD synthesis pathway in the embryos itself from kynurenine at E7.5-10.5 comes from reanalysis of scRNA-seq. This suggests low or absent expression of HAAO in the embryo prior to E10.5 (corresponding to the period when the authors have demonstrated that de novo NAD synthesis in the conceptus is needed). The caveat to this conclusion is that additional analysis of RNA and/or protein expression in the embryos at E7.5-10.5 has not been performed to validate the scRNA-seq data.

    1. Reviewer #1 (Public review):

      In this paper by Brickwedde et al., the authors observe an increase in posterior alpha when anticipating auditory as opposed to visual targets. The authors also observe an enhancement in both visual and auditory steady-state sensory evoked potentials in anticipation of auditory targets, in correlation with enhanced occipital alpha. The authors conclude that alpha does not reflect inhibition of early sensory processing, but rather orchestrates signal transmission to later stages of the sensory processing stream. However, there are several major concerns that need to be addressed in order to draw this conclusion.

      First, I am not convinced that the frequency tagging method and the associated analyses are adequate for dissociating visual vs auditory steady-state sensory evoked potentials.

      Second, if the authors want to propose a general revision for the function of alpha, it would be important to show that alpha effects in the visual cortex for visual perception are analogous to alpha effects in the auditory cortex for auditory perception.

      Third, the authors propose an alternative function for alpha - that alpha orchestrates signal transmission to later stages of the sensory processing stream. However, the supporting evidence for this alternative function is lacking. I will elaborate on these major concerns below.

      (1) Potential bleed-over across frequencies in the spectral domain is a major concern for all of the results in this paper. The fact that alpha power, 36Hz and 40Hz frequency-tagged amplitude and 4Hz intermodulation frequency power is generally correlated with one another amplifies this concern. The authors are attaching specific meaning to each of these frequencies, but perhaps there is simply a broadband increase in neural activity when anticipating an auditory target compared to a visual target?

      (2) Moreover, 36Hz visual and 40Hz auditory signals are expected to be filtered in the neocortex. Applying standard filters and Hilbert transform to estimate sensory evoked potentials appears to rely on huge assumptions that are not fully substantiated in this paper. In Figure 4, 36Hz "visual" and 40Hz "auditory" signals seem largely indistinguishable from one another, suggesting that the analysis failed to fully demix these signals.

      (3) The asymmetric results in the visual and auditory modalities preclude a modality-general conclusion about the function of alpha. However, much of the language seems to generalize across sensory modalities (e.g., use of the term 'sensory' rather than 'visual').

      (4) In this vein, some of the conclusions would be far more convincing if there was at least a trend towards symmetry in source-localized analyses of MEG signals. For example, how does alpha power in the primary auditory cortex (A1) compare when anticipating auditory vs visual target? What do the frequency-tagged visual and auditory responses look like when just looking at the primary visual cortex (V1) or A1?

      (5) Blinking would have a huge impact on the subject's ability to ignore the visual distractor. The best thing to do would be to exclude from analysis all trials where the subjects blinked during the cue-to-target interval. The authors mention that in the MEG experiment, "To remove blinks, trials with very large eye-movements (> 10 degrees of visual angle) were removed from the data (See supplement Fig. 5)." This sentence needs to be clarified since eye-movements cannot be measured during blinking. In addition, it seems possible to remove putative blink trials from EEG experiments as well, since blinks can be detected in the EEG signals.

      (6) It would be interesting to examine the neutral cue trials in this task. For example, comparing auditory vs visual vs neutral cue conditions would be indicative of whether alpha was actively recruited or actively suppressed. In addition, comparing spectral activity during cue-to-target period on neutral-cue auditory correct vs incorrect trials should mimic the comparison of auditory-cue vs visual-cue trials. Likewise, neutral-cue visual correct vs incorrect trials should mimic the attention-related differences in visual-cue vs auditory-cue trials.

      (7) In the abstract, the authors state that "This implies that alpha modulation does not solely regulate 'gain control' in early sensory areas but rather orchestrates signal transmission to later stages of the processing stream." However, I don't see any supporting evidence for the latter claim, that alpha orchestrates signal transmission to later stages of the processing stream. If the authors are claiming an alternative function to alpha, this claim should be strongly substantiated.

    1. Reviewer #1 (Public review):

      Summary:

      The authors explore associations between plasma metabolites and glaucoma, a primary cause of irreversible vision loss worldwide. The study relies on measurements of 168 plasma metabolites in 4,658 glaucoma patients and 113,040 controls from the UK Biobank. The authors show that metabolites improve the prediction of glaucoma risk based on polygenic risk score (PRS) alone, albeit weakly. The authors also report a "metabolomic signature" that is associated with a reduced risk (or "resilience") for developing glaucoma among individuals in the highest PRS decile (reduction of risk by an estimated 29%). The authors highlight the protective effect of pyruvate, a product of glycolysis, for glaucoma development and show that this molecule mitigates elevated intraocular pressure and optic nerve damage in a mouse model of this disease.

      Strengths:

      This work provides additional evidence that glycolysis may play a role in the pathophysiology of glaucoma. Previous studies have demonstrated the existence of an inverse relationship between intraocular pressure and retinal pyruvate levels in animal models (Hader et al. 2020, PNAS 117(52)) and pyruvate supplementation is currently being explored for neuro-enhancement in patients with glaucoma (De Moraes et al. 2022, JAMA Ophthalmology 140(1)). The study design is rigorous and relies on validated, standard methods. Additional insights gained from a mouse model are valuable.

      Weaknesses:

      Caution is warranted when examining and interpreting the results of this study. Among all participants (cases and controls) glaucoma status was self-reported, determined on the basis of ICD codes or previous glaucoma laser/surgical therapy. This is problematic as it is not uncommon for individuals in the highest PRS decile to have undiagnosed glaucoma (as shown in previous work by some of the authors of this article). The authors acknowledge a "relatively low glaucoma prevalence in the highest decile group" but do not explore how undiagnosed glaucoma may affect their results. This also applies to all controls selected for this study. The authors state that "50 to 70% of people affected [with glaucoma] remain undiagnosed". Therefore, the absence of self-reported glaucoma does not necessarily indicate that the disease is not present. Validation of the findings from this study in humans is, therefore, critical. This should ideally be performed in a well-characterized glaucoma cohort, in which case and control status has been assessed by qualified clinicians.

      The authors indicate that within the top decile of PRS participants with glaucoma are more likely to be of white ethnicity, while they are more likely to be of Black and Asian ethnicity if they are in the bottom half of PRS. Have the authors explored how sensitive their predictions are to ethnicity? Since their cohort is predominantly of European ancestry (85.8%), would it make sense to exclude other ethnicities to increase the homogeneity of the cohort and reduce the risk for confounders that may not be explicitly accounted for?

      The authors discuss the importance of pyruvate, and lactate for retinal ganglion cell survival, along with that of several lipoproteins for neuroprotection. However, there is a distinction to be made between locally produced/available glycolysis end products and lipoproteins and those circulating in the blood. It may be useful to discuss this in the manuscript, and for the authors to explore if plasma metabolites may be linked to metabolism that takes place past the blood-retinal barrier.

    1. Reviewer #1 (Public review):

      Summary:

      The study addresses how faces and bodies are integrated in two STS face areas revealed by fMRI in the primate brain. It builds upon recordings and analysis of the responses of large populations of neurons to three sets of images, that vary face and body positions. These sets allowed the authors to thoroughly investigate invariance to position on the screen (MC HC), to pose (P1 P2), to rotation (0 45 90 135 180 225 270 315), to inversion, to possible and impossible postures (all vs straight), to the presentation of head and body together or in isolation. By analyzing neuronal responses, they found that different neurons showed preferences for body orientation, head orientation, or the interaction between the two. By using a linear support vector machine classifier, they show that the neuronal population can decode head-body angle presented across orientations, in the anterior aSTS patch (but not middle mSTS patch), except for mirror orientation.

      Strengths:

      These results extend prior work on the role of Anterior STS fundus face area in face-body integration and its invariance to mirror symmetry, with a rigorous set of stimuli revealing the workings of these neuronal populations in processing individuals as a whole, in an important series of carefully designed conditions.

      Minor issues and questions that could be addressed by the authors:

      (1) Methods. While monkeys certainly infer/recognize that individual pictures refer to the same pose with varying orientations based on prior studies (Wang et al.), I am wondering whether in this study monkeys saw a full rotation of each of the monkey poses as a video before seeing the individual pictures of the different orientations, during recordings.

      (2) Experiment 1. The authors mention that neurons are preselected as face-selective, body-selective, or both-selective. Do the Monkey Sum Index and ANOVA main effects change per Neuron type?

      (3) I might have missed this information, but the correlation between P1 and P2 seems to not be tested although they carry similar behavioral relevance in terms of where attention is allocated and where the body is facing for each given head-body orientation.

      (4) Is the invariance for position HC-MC larger in aSTS neurons compared to mSTS neurons, as could be expected from their larger receptive fields?

      (5) L492 "The body-inversion effect likely results from greater exposure to upright than inverted bodies during development". Monkeys display more hanging upside-down behavior than humans, however, does the head appear more tilted in these natural configurations?

      (6) Methods in Experiment 1. SVM. How many neurons are sufficient to decode the orientation?

      (7) Figure 3D 3E. Could the authors please indicate for each of these neurons whether they show a main effect of face, body, or interaction, as well as their median corrected correlation to get a flavor of these numbers for these examples?

      (8) Methods and Figure 1A. It could be informative to precise whether the recordings are carried in the lateral part of the STS or in the fundus of the STS both for aSTS and mSTS for comparison to other studies that are using these distinctions (AF, AL, MF, ML).

      Wang, G., Obama, S., Yamashita, W. et al. Prior experience of rotation is not required for recognizing objects seen from different angles. Nat Neurosci 8, 1768-1775 (2005). https://doi-org.insb.bib.cnrs.fr/10.1038/nn1600

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors describe a new computational method (SegPore), which segments the raw signal from nanopore-direct RNA-Seq data to improve the identification of RNA modifications. In addition to signal segmentation, SegPore includes a Gaussian Mixture Model approach to differentiate modified and unmodified bases. SegPore uses Nanopolish to define a first segmentation, which is then refined into base and transition blocks. SegPore also includes a modification prediction model that is included in the output. The authors evaluate the segmentation in comparison to Nanopolish and Tombo, and they evaluate the impact on m6A RNA modification detection using data with known m6A sites. In comparison to existing methods, SegPore appears to improve the ability to detect m6A, suggesting that this approach could be used to improve the analysis of direct RNA-Seq data.

      Strengths:

      SegPore addresses an important problem (signal data segmentation). By refining the signal into transition and base blocks, noise appears to be reduced, leading to improved m6A identification at the site level as well as for single-read predictions. The authors provide a fully documented implementation, including a GPU version that reduces run time. The authors provide a detailed methods description, and the approach to refine segments appears to be new.

      Weaknesses:

      In addition to Nanopolish and Tombo, f5c and Uncalled4 can also be used for segmentation, however, the comparison to these methods is not shown. The overall improvement in accuracy appears to be relatively small. The run time and resources that are required to run SegPore are not shown, however, it appears that the GPU version is essential, which could limit the application of this method in practice. The method was only applied to data from the RNA002 direct RNA-Sequencing version, which is not available anymore, currently, it remains unclear if the methods still work on RNA004.

    1. Reviewer #1 (Public review):

      Summary:

      Insects inhabit diverse environments and have neuroanatomical structures appropriate to each habitat. Although the molecular mechanism of insect neural development has been mainly studied in Drosophila, the beetle, Tribolium castaneum has been introduced as another model to understand the differences and similarities in the process of insect neural development. In this manuscript, the authors focused on the origin of the central complex. In Drosophila, type II neuroblasts have been known as the origin of the central complex. Then, the authors tried to identify those cells in the beetle brain. They established a Tribolium fez enhancer trap line to visualize putative type II neuroblasts and successfully identified 9 of those cells. In addition, they also examined expression patterns of several genes that are known to be expressed in the type II neuroblasts or their lineage in Drosophila. They concluded that the putative type II neuroblasts they identified were type II neuroblasts because those cells showed characteristics of type II neuroblasts in terms of genetic codes, cell diameter, and cell lineage.

      Strengths:

      The authors established a useful enhancer trap line to visualize type II neuroblasts in Tribolium embryos. Using this tool, they have identified that there are 9 type II neuroblasts in the brain hemisphere during embryonic development. Since the enhancer trap line also visualized the lineage of those cells, the authors found that the lineage size of the type II neuroblasts in the beetle is larger than that in the fly. They also showed that several genetic markers are also expressed in the type II neuroblasts and their lineages as observed in Drosophila.

      Comments on revisions:

      The revisions have improved the manuscript greatly. However, I still have some concerns about the lack of examination of the expression of NB markers. Without examining the expression of at least one unequivocal neuroblast marker, no one can say confidently that it is a neuroblast. However, it is acknowledged that such a marker is currently not available for Tribolium.

    1. Reviewer #2 (Public review):

      Summary:

      In the work by Scerbo et al, the authors aim to better understand the open question of what factors constrain cells that are genetically predisposed to form cancer (e.g. those with a potentially cancer-causing mutation like activated Ras) to only infrequently undergo this malignant transformation, with a focus on the influence of embryonic or pluripotency factors (e.g. VENTX/NANOG). Using genetically defined zebrafish models, the authors can inducibly express the KRASG12V oncogene using a combination of Cre/Lox transgenes further controlled by optogenetically inducible Cre-activated (CreER fusion that becomes active with light-induced uncaging of a tamoxifen-analogue in a targeted region of the zebrafish embryo). They further show that transient expression and activation of a pluripotency factor (e.g. Ventx fused to a GR receptor that is activated with addition of dexamethasone) must occur in the model in order for overgrowth of cells to occur. This paper describes a genetically tractable and modifiable system for studying the requirements for inducing cellular hyperplasia in a whole organism by combining overexpression of canonical genetic drivers of cancer (like Ras) with epigenetic modifiers (like specific transcription factors), which could be used to study an array of combinations and temporal relationships of these cancer drivers/modifiers.

      Strengths:

      The combination of Cre/lox inducible gene expression with potentially localized optogenetic induction (CreER and uncaging of tamoxifen analogues) of recombination as well as inducible activation of a transcription factor expressed via mRNA injection (GR-fusion to the TF and dex induction) offers a flexible system for manipulating cell growth, identity, and transcriptional programs. With this system, the authors establish that Ras activation and at least transient Ventx overexpression are together required to induce a hyperproliferative phenotype in zebrafish tissues.

      The ability to live image embryos over the course of days with inducible fluorophores indicating recombination events and transgene overexpression offers a tractable in vivo system for studying hyperplastic cells in the context of a whole organism.

      The transplant experiments demonstrate the ability of the induced hyperplastic cells to grow upon transfer to new host.

      Weaknesses:

      There is minimal quantitation of key aspects of the system, most critically in the efficiency of activation of the Ras-TFP fusion (Fig 1) in, purportedly, a single cell. The authors note "On average the oncogene is then activated in a single cell, identified within ~1h by the blue fluorescence of its nuclear marker) but no additional quantitative information is provided. For a system that is aimed at "a statistically relevant single-cell<br /> tracking and characterization of the early stages of tumorigenesis", such information seems essential.

      The authors indicate that a single cell is "initiated" (Fig 2) using the laser optogenetic technique, but without definitive genetic lineage tracing, it is not possible to conclude that cells expressing TFP distant from the target site near the ear are daughter cells of the claimed single "initiated" cell. A plausible alternative explanation is 1) that the optogenetic targeting is more diffuse (i.e. some of the light of the appropriate wavelength hits other cells nearby due to reflection/diffraction), so these adjacent cells are additional independent "initiated" cells or 2) that the uncaged tamoxifen analogue can diffuse to nearby cells and allow for CreER activation and recombination. In Fig 2B, the claim is made that "the activated cell has divided, giving rise to two cells" - unless continuously imaged or genetically traced, this is unproven. In addition, it appears that Figures S3 and S4 are showing that hyperplasica can arise in many different tissues (including intestine, pancreas, and liver, S4C) with broad Ras + Ventx activation (while unclear from the text, it appears these embryos were broadly activated and were not "single cell activated using the set-up in Fig 1E? This should be clarified in the manuscript). In Fig S7 where single cell activation and potential metastasis is discussed, similar gut tissues have TFP+ cells that are called metastatic, but this seems consistent with the possibility that multiple independent sites of initiation are occurring even when focal activation is attempted.

      Although the hyperplastic cells are transplantable (Fig 4), the use of the term "cells of origin of cancer" or metastatic cells should be viewed with care in the experiments showing TFP+ cells (Fig 1, 2, 3) in embryos with targeted activation for the reasons noted above.

      Comments on latest version:

      The authors have clarified and strengthened a number of important conclusions/claims.

      In Figure 4, the requirement for both kRas and VentX activation for successful transplant and survival of transplanted activated cells does indeed support the need for both MAPK activation and the reprogramming factor. A limitation remains that, as in a tail vein injection in a mouse model, this may be a better measure of the ability of disbursed cells to survive in the embryo, and not "native" metastatic behavior as cells may just lodge in ectopic sites, and survive, but not exhibit complete metastatic potential. Still, these are interesting and important results about the combination effects of an oncogene and a reprogramming factor.

      Further, the addition of Fig 2A and additional explanation in the text on the specificity of the light-induced activation of the Ras and/or VentX supports that transgene induction is indeed limited to one or a few cells. We agree that visual tracking of daughter cells over days is technically challenging and will be a revealing and exciting potential addition in the future.

    1. Reviewer #1 (Public review):

      When different groups (populations, species) are presented with similar environmental pressures, how similar are the ultimate targets (genes, pathways)? This study sought to illuminate this broader question via experimental evolution in D. simulans and quantifying gene-expression changes, specifically in the context of standing genetic variation (and not de novo mutation). Ultimately, the authors showed pleiotropy and standing-genetic variation play a significant role in the "predictability" of evolution.

      The results of this manuscript look at the interplay between pleiotropy, standing genetic variation and parallelism (i.e. predictability of evolution) in gene expression. Ultimately, their results suggest that (a) pleiotropic genes typically have a smaller range in variation/expression, and (b) adaptation to similar environments tends to favor changes in pleiotropic genes, which leads to parallelism in mechanisms (though not dramatically). However, it is still uncertain how much parallelism is directly due to pleiotropy, instead of a complex interplay between them and ancestral variation.

    1. Reviewer #1 (Public review):

      Summary

      The authors conducted a study on one of the fundamental research topics in neuroscience: neural mechanisms of credit assignment. Building on the original studies of Walton and his colleagues and subsequent studies on the same topic, the authors extended the research into the delayed credit assignment problem with clever task design, which compared the non-delayed (direct) and delayed (indirect) credit assignment processes. Their primary goal was to elucidate the neural basis of these processes in humans, advancing our understanding beyond previous studies.

      Major Strengths and Considerations

      Strengths:

      (1) Innovative task design distinguishing between direct and indirect credit assignment.<br /> (2) Use of sophisticated multivariate pattern analysis to identify neural correlates of pending representations.<br /> (3) Well-executed study with clear presentation of results.<br /> (4) Extension of previous research to human subjects, providing valuable comparative insights.

      Considerations for Future Research:

      (1) The task design, while clear and effective, might be further developed to capture more real-world complexity in credit assignment.<br /> (2) There's potential for deeper exploration of the role of task structure understanding in credit assignment processes.<br /> (3) The interpretation of lateral orbitofrontal cortex (lOFC) involvement could be expanded to consider its role in both credit assignment and task structure representation.

      Achievement of Aims and Support of Conclusions

      The authors successfully achieved their aim of investigating direct and indirect credit assignment processes in humans. Their results provide valuable insights into the neural representations involved in these processes. The study's conclusions are generally well-supported by the data, particularly in identifying neural correlates of pending representations crucial for delayed credit assignment.

      Impact on the Field and Utility of Methods

      This study makes a significant contribution to the field of credit assignment research by bridging animal and human studies. The methods, particularly the multivariate pattern analysis approach, provide a robust template for future investigations in this area. The data generated offers valuable insights for researchers comparing human and animal models of credit assignment, as well as those studying the neural basis of decision-making and learning.

      The study's focus on the lOFC and its role in credit assignment adds to our understanding of this brain region's function

      Additional Context and Future Directions

      (1) Temporal ambiguity in credit assignment: While the current design provides clear task conditions, future studies could explore more ambiguous scenarios to further reflect real-world complexity.

      (2) Role of task structure understanding: The difference in task comprehension between human subjects in this study and animal subjects in previous studies offers an interesting point of comparison.

      (3) The authors used a sophisticated method of multivariate pattern analysis to find the neural correlate of the pending representation of the previous choice, which will be used for credit assignment process in the later trials. The authors tend to use expressions that these representations are maintained throughout this intervening period. However the analysis period is specifically at the feedback period, which is irrelevant for the credit assignment of the immediately preceding choice. This task period can interfere with the interference of ongoing credit assignment process. Thus, rather than the passive process of maintaining the information of the previous choice, the activity of this specific period can mean the active process of protecting the information from interfering and irrelevant information. It would be great if the authors could comment on this important interpretational issue.

      (4) Broader neural involvement: While the focus on specific regions of interest (ROIs) provided clear results, future studies could benefit from a whole-brain analysis approach to provide a more comprehensive understanding of the neural networks involved in credit assignment.

      Comments after the revision:

      The authors have adequately addressed the majority of concerns raised in my previous review. The manuscript has demonstrably improved as a result of these revisions and represents a valuable contribution to the literature on credit assignment.

      However, some limitations persist that, while not readily resolvable within the scope of the current study, warrant attention. Specifically, the investigation focuses primarily on the temporal dimension of credit assignment. In real-world scenarios, the complexity of credit assignment extends beyond temporal distance to encompass the inherent ambiguity of causal attribution arising from the presence of multiple potential causal events. Resolving this ambiguity necessitates a form of structural understanding of the environment, a capacity presumably possessed by humans and animals. While the experimental design of this study provides explicit cues regarding the structure of the environment, deciphering such structure in natural settings is a crucial component of the credit assignment process.<br /> Future research should prioritize the investigation of credit assignment within more ecologically valid contexts, focusing on the role of structural understanding in navigating the causal ambiguity inherent in real-world environments. Addressing this aspect will be crucial for developing a more complete and nuanced understanding of credit assignment mechanisms.

      In addition, the newly added whole-brain searchlight decoding analysis provides an important nuance regarding the neural substrates of credit assignment (Figure S7). The results reveal not only activity in the lateral orbitofrontal cortex (lOFC), but also, and more robustly, in the medial orbitofrontal cortex/ventromedial prefrontal cortex (mOFC/vmPFC) specifically during the "indirect transition condition" and not the "direct transition condition." This finding suggests a potentially more significant role for mOFC/vmPFC in processing complex, non-immediate credit assignment scenarios. This nuance should be explicitly noted to appreciate the complexity of the neural mechanisms at play.

    1. Reviewer #2 (Public review):

      This manuscript determines how PA28g, a proteasome regulator that is overexpressed in tumors, and C1QBP, a mitochondrial protein for maintaining oxidative phosphorylation that plays a role in tumor progression, interact in tumor cells to promote their growth, migration and invasion. Evidence for the interaction and its impact on mitochondrial form and function was provided although it is not particularly strong.

      The revised manuscript corrected mislabeled data in figures and provides more details in figure legends. Misleading sentences and typos were corrected. However, key experiments that were suggested in previous reviews were not done, such as making point mutations to disrupt the protein interactions and assess the consequence on protein stability and function. Results from these experiments are critical to determine whether the major conclusions are fully supported by the data.

      The second revision of the manuscript included the proximity ligation data to support the PA28g-C1QBP interaction in cells. However, the method and data were not described in sufficient detail for readers to understand. The revision also includes the structural models of the PA28g-C1QBP complex predicted by AlphaFold. However, the method and data were not described with details for readers to understand how this structural modeling was done, what is the quality of the resulting models, and the physical nature of the protein-protein interaction such as what kind of the non-covalent interactions exist in the interface of the protein complexes. Furthermore, while the interactions mediated by the protein fragments were tested by pull-down experiments, the interactions mediated by the three residues were not tested by mutagenesis and pull-down experiments. In summary, the revision was improved, but further improvement is needed

    1. Reviewer #1 (Public review):

      Summary:

      Barlow and coauthors utilized the high-parameter imaging platform of CODEX to characterize the cellular composition of immune cells in situ from tissues obtained from organ donors with type 1 diabetes, subjects presented with autoantibodies who are at elevated risk, or non-diabetic organ donor controls. The panels used in this important study were based up prior publications using this technology, as well a priori and domain specific knowledge of the field by the investigators. Thus, there was some bias in the markers selected for analysis. The authors acknowledge that these types of experiments may be complemented moving forward with the inclusion of unbiased tissue analysis platforms that are emerging that can conduct a more comprehensive analysis of pathological signatures employing emerging technologies for both high-parameter protein imaging and spatial transcriptomics.

      Strengths:

      In terms of major findings, the authors provide important confirmatory observations regarding a number of autoimmune-associated signatures reported previously. The high parameter staining now increases the resolution for linking these features with specific cellular subsets using machine learning algorithms. These signatures include a robust signature indicative of IFN-driven responses that would be expected to induce a cytotoxic T cell mediated immune response within the pancreas. Notable findings include the upregulation of indolamine 2,3-dioxygenase-1 in the islet microvasculature. Furthermore, the authors provide key insights as to the cell:cell interactions within organ donors, again supporting a previously reported interaction between presumably autoreactive T and B cells.

      Weaknesses:

      These studies also highlight a number of molecular pathways that will require additional validation studies to more completely understand whether they are potentially causal for pathology, or rather, epiphenomenon associated with increased innate inflammation within the pancreas of T1D subjects. Given the limitations noted above, the study does present a rich and integrated dataset for analysis of enriched immune markers that can be segmented and annotated within distinct cellular networks. This enabled the authors to analyze distinct cellular subsets and phenotypes in situ, including within islets that peri-islet infiltration and/or intra-islet insulitis.

      Despite the many technical challenges and unique organ donor cohort utilized, the data are still limited in terms of subject numbers - a challenge in a disease characterized by extensive heterogeneity in terms of age of onset and clinical and histopathological presentation. Therefore, these studies cannot adequately account for all of the potential covariates that may drive variability and alterations in the histopathologies observed (such as age of onset, background genetics, and organ donor conditions). In this study, the manuscript and figures could be improved in terms of clarifying how variable the observed signatures were across each individual donor, with the clear notion that non-diabetic donors will present with some similar challenges and variability.

    1. Reviewer #3 (Public review):

      Summary:

      The authors have thoroughly addressed all my concerns. The revised version of the current manuscript is solid now. It's very interesting that there is bi-potential ability of human CD29/CD56+ myogenic progenitors. The current study substantiates the medical translational potential for human CD29/CD56+ myogenic progenitors in promoting tendon regeneration.

      Strengths:

      CD29+/CD56+ stem/progenitor cells were transplanted into immunodeficient mice with a tendon injury, and human cells expressing tenogenic markers contributed to the repair of the injured tendon. Furthermore, the authors also show better tendon biomechanical properties and plantarflexion force after transplantation.

      Weaknesses:

      None. The authors have thoroughly addressed all my concerns.

    1. Reviewer #1 (Public review):

      The fundamental claim of the manuscript is that rRNA genes experience substitutions much too quickly, given that they are a multi-copy gene system. As clarified by the authors in their response, and as I think is relatively clear in the manuscript, they are collapsing all copies of the rRNA array down. They first quantify polymorphism (in this expanded definition, where polymorphism means variable at a given site across any copy). The authors find elevated levels of heterozygosity in rRNA genes compared to single copy genes, which isn't surprising, given that there is a substantially higher target size; that being said, the increase in polymorphism is smaller than the increase in target size. They then look at substitutions between mouse species and also between human and chimp, and argue that the substitution rate is too fast compared to single copy genes in many cases.

      [Editors' note: we invite readers to consult the review in full from the previous version of the submission: https://doi.org/10.7554/eLife.99992.2.sa1]

    1. Reviewer #1 (Public review):

      The revision by Ruan et al clarifies several aspects of the original manuscript that were difficult to understand, and I think it presents some useful and interesting ideas. I understand that the authors are distinguishing their model from the standard Wright-Fisher model in that the population size is not imposed externally, but is instead a consequence of the stochastic reproduction scheme. Here, the authors chose a branching process but in principle any Markov chain can probably be used. Within this framework, the authors are particularly interested in cases where the variance in reproductive success changes through time, as explored by the DDH model, for example. They argue with some experimental results that there is a reason to believe that the variance in reproductive success does change over time.

      One of the key aspects of the original manuscript that I want to engage with is the DDH model. As the authors point out, their equations 5 and 6 are assumptions, and not derived from any principles. In essence, the authors are positing that that the variance in reproductive success, given by 6, changes as a function of the current population size. There is nothing "inherent" to a negative binomial branching mechanism that results in this: in fact, the the variance in offspring number could in principle be the same for all time. As relates to models that exist in the literature, I believe that this is the key difference: unlike Cannings models, the authors allow for a changing variance in reproduction through time.

      This is, of course, an interesting thing to consider, and I think that the situation the authors point out, in which drift is lower at small population sizes and larger at large population sizes, is not appreciated in the literature. However, I am not so sure that there is anything that needs to be resolved in Paradox 1. A very strong prediction of that model is that Ne and N could be inversely related, as shown by the blue line in Fig 3b. This suggests that you could see something very strange if you, for example, infer a population size history using a Wright-Fisher framework, because you would infer a population *decline* when there is in fact a population *expansion*. However, as far as I know there are very few "surprising population declines" found in empirical data. An obvious case where we know there is very rapid population growth is human populations; I don't think I've ever seen an inference of recent human demographic history from genetic data that suggests anything other than a massive population expansion. While I appreciate the authors empirical data supporting their claim of Paradox 1 (more on the empirical data later), it's not clear to me that there's a "paradox" in the literature that needs explaining so much as this is a "words of caution about interpreting inferred effective population sizes". To be clear, I think those words of caution are important, and I had never considered that you might be so fundamentally misled as to infer decline when there is growth, but calling it a "paradox" seems to suggest that this is an outstanding problem in the literature, when in fact I think the authors are raising a *new* and important problem. Perhaps an interesting thing for the authors to do to raise the salience of this point would be to perform simulations under this model and then infer effective population sizes using e.g. dadi or psmc and show that you could identify a situation in which the true history is one of growth, but the best fit would be one of decline

      The authors also highlight that their approach reflects a case where the population size is determined by the population dynamics themselves, as opposed to being imposed externally as is typical in Cannings models. I agree with the authors that this aspect of population regulation is understudied. Nonetheless, several manuscripts have dealt with the case of population genetic dynamics in populations of stochastically fluctuating size. For example, Kaj and Krone (2003) show that under pretty general conditions you get something very much like a standard coalescent; for example, combining their theorem 1 with their arguments on page 36 and 37, they find that exchangeable populations with stochastic population dynamics where the variance does not change with time still converge to exactly the coalescent you would expect from Cannings models. This is strongly suggestive that the authors key result isn't about stochastic population dynamics per se, but instead related to arguing that variance in reproductive success could change through time. In fact, I believe that the result of Kaj and Krone (2003) is substantially more general than the models considered in this manuscript. That being said, I believe that the authors of this manuscript do a much better job of making the implications for evolutionary processes clear than Kaj and Krone, which is important---it's very difficult to understand from Kaj and Krone the conditions under which effective population sizes will be substantially impacted by stochastic population dynamics.

      I also find the authors exposition on Paradox 3 to be somewhat strange. First of all, I'm not sure there's a paradox there at all? The authors claim that the lack of dependence of the fixation probability on Ne is a paradox, but this is ultimately not surprising---fixation of a positively selected allele depends mostly on escaping the boundary layer, which doesn't really depend on the population size (see Gillespie's book "The Causes of Molecular Evolution" for great exposition on boundary layer effects). Moreover, the authors *use a Cannings-style argument* to get gain a good approximation of how the fixation probability changes when there is non-Poisson reproduction. So it's not clear that the WFH model is really doing a lot of work here. I suppose they raise the interesting point that the particularly simple form of p(fix) = 2s is due to the assumption that variance in offspring is equal to 1.

      In addition, I raised some concerns about the analysis of empirical results on reproductive variance in my original review, and I don't believe that the authors responded to it at all. I'm not super worried about that analysis, but I think that the authors should probably respond to me.

      Overall, I feel like I now have a better understanding of this manuscript. However, I think it still presents its results too strongly: Paradox 1 contains important words of caution that reflect what I am confident is an under appreciated possibility, and Paradox 3 is, as far as I'm concerned, not a paradox at all. I have not addressed Paradox 2 very much because I think that another reviewer had solid and interesting comments on that front and I am leaving it to them. That being said, I do think Paradox 2 actually presents a deep problem in the literature and that the authors' argument may actually represent a path toward a solution.

      This manuscript can be a useful contribution to the literature, but as it's presented at the moment, I think most of it is worded too strongly and it continues to not engage appropriately with the literature. Theoretical advances are undoubtedly important, and I think the manuscript presents some interesting things to think about, but ultimately needs to be better situated and several of the claims strongly toned down.

      References:<br /> Kaj, I., & Krone, S. M. (2003). The coalescent process in a population with stochastically varying size. Journal of Applied Probability, 40(1), 33-48.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Janssens et al. addressed the challenge of mapping the location of transcriptionally unique cell types identified by single nuclei sequencing (snRNA-seq) data available through the Fly Cell Atlas. They identified 100 transcripts for head samples and 50 transcripts for fly body samples allowing identification of every unique cell type discovered through the Fly Cell Atlas. To map all of these cell types, the authors divided the fly body into head and body samples and used the Molecular Cartography (Resolve Biosciences) method to visualize these transcripts. This approach allowed them to build spatial tissue atlases of the fly head and body, to identify the location of previously unknown cell types and the subcellular localization of different transcripts. By combining snRNA-seq data from the Fly Cell Atlas with their spatially resolved transcriptomics (SRT) data, they demonstrated an automated cell type annotation strategy to identify uncharacterized clusters and infer their location in the fly body. This manuscript constitutes a proof-of-principle study to map the location of the cells identified by ever-growing single-cell transcriptomics datasets generated by others.

      Strengths:

      The authors used the Molecular Cartography (Resolve Biosciences) method to visualize 100 transcripts for head samples and 50 transcripts for fly body samples in high resolution. This method achieves high resolution by multiplexing a large number of transcript visualization steps and allows the authors to map the location of unique cell types identified by the Fly Cell Atlas.

      Weaknesses:

      Combining single-nuclei sequencing (snRNA-seq) data with spatially resolved transcriptomics (SRT) data is challenging, and the methods used by the authors in this study cannot reliably distinguish between cells, especially in brain regions where the processes of different neurons are clustered, such as neuropils. This means that a grid that the authors mark as a unique cell may actually be composed of processes from multiple cells.

      Comments on revisions:

      I believe the authors have improved the manuscript by addressing all the concerns and incorporating the suggestions raised by the reviewers. I have no further concerns or suggestions.

    1. Reviewer #1 (Public review):

      Summary:

      The significance of Notch in liver cancer has been inconsistently described to date. The authors conduct a PDX screen using JAG1 ab and identify 2 sensitive tumor models. Further characterization with bulk RNA seq, scRNA seq, and ATAC seq of these tumors was performed.

      Strengths:

      The reliance on an extensive panel of PDXs makes this study more definitive than prior studies.

      Gene expression analyses seem robust.

      Identification of a JAG1-dependent signature associated with hepatocyte differentiation is interesting.

      Weaknesses:

      The introduction is rather lengthy and not entirely accurate. HCC is a single cancer type/histology. There may be variants of histology (allusion to "mixed-lineage" is inaccurate as combined HCC-CCa are not conventionally considered HCC and are not treated as HCC in clinical practice as they are even excluded from HCC trials), but any cancer type can have differences in differentiation. Just state there are multiple molecular subtypes of this disease.

      There is minimal data on the PDXs, despite this being highlighted throughout the text. Clinical and possibly some molecular characterization of these cancers should be provided. It is also odd that the authors include only 35 HCC and then a varied sort of cancer histologies, which is peculiar given their prior statements regarding the heterogeneity of HCC.

      "super-responder" is not a meaningful term, I would eliminate this use as it has no clinical or scientific convention that I am aware of.

      The "expansion" of the PDX screen is poorly described. Why weren't these PDXs included in the first screen? This is quite odd as the responses in the initial screen were underwhelming. What was the denominator number of all PDXs that were assessed for JAG1 and NOTCH2 expression? This is important as it clarifies how relevant JAG1 inhibition would be to an unselected HCC population.

      Was there some kind of determination of the optimal dose or dose dependency for the JAG1 ab? The original description of the JAG1 ab was in mouse lungs, not malignant or liver cells. In addition, supplementary Figure 2D is missing. There needs to be data provided on the specificity of the human-specific JAG1 ab and the anti-NOTCH2 ab. I'm not familiar with these ab, and if they are not publicly accessible reagents, more transparency on this is needed. In addition, given the reliance of the entire paper on these antibodies, I would recommend orthogonal approaches (either chemical or genetic) to confirm the sensitivity and insensitivity of select PDXs to Notch inhibition.

      scRNA-seq data seems to add little to the paper and there is no follow-up of the findings. Are the low-expressing JAG1 cells eventually enriched in treated tumors contributing to disease recurrence?

      The discussion should be tempered. The finding of only 2 PDXs that are sensitive out of 45+ tumors treated or selected for indicates that JAG1/NOTCH2 inhibition is likely only effective in rare HCC.

    1. Reviewer #1 (Public review):

      Summary:

      This article investigates the phenotype of macrophages with a pathogenic role in arthritis, particularly focusing on arthritis induced by immune checkpoint inhibitor (ICI) therapy.

      Building on prior data from monocyte-macrophage coculture with fibroblasts, the authors hypothesized a unique role for the combined actions of prostaglandin PGE2 and TNF. The authors studied this combined state using an in vitro model with macrophages derived from monocytes of healthy donors. They complemented this with single-cell transcriptomic and epigenetic data from patients with ICI-RA, specifically, macrophages sorted out of synovial fluid and tissue samples. The study addressed critical questions regarding the regulation of PGE2 and TNF: Are their actions co-regulated or antagonistic? How do they interact with IFN-γ in shaping macrophage responses?

      This study is the first to specifically investigate a macrophage subset responsive to the PGE2 and TNF combination in the context of ICI-RA, describes a new and easily reproducible in vitro model, and studies the role of IFNgamma regulation of this particular Mф subset.

      Strengths:

      Methodological quality: The authors employed a robust combination of approaches, including validation of bulk RNA-seq findings through complementary methods. The methods description is excellent and allows for reproducible research. Importantly, the authors compared their in vitro model with ex vivo single-cell data, demonstrating that their model accurately reflects the molecular mechanisms driving the pathogenicity of this macrophage subset.

      Weaknesses:

      Introduction: The introduction lacks a paragraph providing an overview of ICI-induced arthritis pathogenesis and a comparison with other types of arthritis. Including this would help contextualize the study for a broader audience.

      Results Section: At the beginning of the results section, the experimental setup should be described in greater detail to make an easier transition into the results for the reader, rather than relying just on references to Figure 1 captions.

      There is insufficient comparison between single-cell RNA-seq data from ICI-induced arthritis and previously published single-cell RA datasets. Such a comparison may include DEGs and GSEA, pathway analysis comparison for similar subsets of cells. Ideally, an integration with previous datasets with RA-tissue-derived primary monocytes would allow for a direct comparison of subsets and their transcriptomic features.

      While it's understandable that arthritis samples are limited in numbers and myeloid cell numbers, it would still be interesting to see the results of PGE2+TNF in vitro stimulation on the primary RA or ICI-RA macrophages. It would be valuable to see RNA-Seq signatures of patient cell reactivation in comparison to primary stimulation of healthy donor-derived monocytes.

      Discussion: Prior single-cell studies of RA and RA macrophage subpopulations from 2019, 2020, 2023 publications deserve more discussion. A thorough comparison with these datasets would place the study in a broader scientific context.<br /> Creating an integrated RA myeloid cell atlas that combines ICI-RA data into the RA landscape would be ideal to add value to the field.<br /> As one of the next research goals, TNF blockade data in RA and ICI-RA patients would be interesting to add to such an integrated atlas. Combining responders and non-responders to TNF blockade would help to understand patient stratification with the myeloid pathogenic phenotypes. It would be great to read the authors' opinion on this in the Discussion section.

      Conclusion: The authors demonstrated that while PGE2 maintains the inflammatory profile of macrophages, it also induces a distinct phenotype in simultaneous PGE2 and TNF treatment. The study of this specific subset in single-cell data from ICI-RA patients sheds light on the pathogenic mechanisms underlying this condition, however, how it compares with conventional RA is not clear from the manuscript.<br /> Given the substantial incidence of ICI-induced autoimmune arthritis, understanding the unique macrophage subsets involved for future targeting them therapeutically is an important challenge. The findings are significant for immunologists, cancer researchers, and specialists in autoimmune diseases, making the study relevant to a broad scientific audience.

    1. Reviewer #2 (Public review):

      Summary:

      The current article presents a new type of analytical approach to the sequential organisation of whale song units.

      Strengths:

      The detailed description of the internal temporal structure of whale songs is something that has been thus far lacking.

      Weaknesses:

      The conceptual and terminological bases of the paper are problematical and hamper comparison with other taxa, including humans. According to signal theory, codas are indexical rather than symbolic. They signal an individual's group identity. Borrowing from humans and linguistics, coda inter-group variation represents a case of accents - phonologically different varieties of the same call - not dialects, confirming they are an index. This raises serious doubt about whether alleged "symbolism" and similarity between whale and human vocal behaviour is factual. The same applies to the difference between ICIs (inter-click interval) and IOIs (inter-onset interval). If the two are equivalent, variation in click duration needs to be shown so small that can be considered negligible. This raises serious doubt about whether the alleged variation in whale codas is indeed rhythmic in nature and prevents future efforts for comparison with the vocal capacities of other species. The scope and relevance of this paper for the broader field is limited.

    1. Reviewer #1 (Public review):

      Summary:

      Lejeune et al. demonstrated sex-dependent differences in the susceptibility to MRSA infection. The authors demonstrated the role of the microbiota and sex hormones as potential determinants of susceptibility. Moreover, the authors showed that Th17 cells and neutrophils contribute to the sex hormone-dependent protection in female mice.

      Strengths:

      The role of microbiota was examined in various models (germ-free, co-housing, microbiota transplantation). The identification of responsible immune cells was achieved using several genetic knockouts and cell-specific depletion models. The involvement of sex hormones was clarified using ovariectomy and the FCG model.

      Weaknesses:

      The specific microbial species/strains responsible for the protection, as well as the mechanisms by which these bacteria regulate sex hormone-mediated protection, remain unclear. However, this does not diminish the conceptual significance of the study.

      Comments on revisions:

      The authors have adequately addressed my previous concerns, and the revised manuscript shows significant improvement.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Cao et al. examines an important but understudied question of how chronic exposure to heat drives changes in affective and social behaviors. It has long been known that temperature can be a potent driver of behaviors and can lead to anxiety and aggression. However, the neural circuitry that mediates these changes is not known. Cao et al. take on this question by integrating optical tools of systems neuroscience to record and manipulate bulk activity in neural circuits, in combination with a creative battery of behavior assays. They demonstrate that chronic daily exposure to heat leads to changes in anxiety, locomotion, social approach, and aggression. They identify a circuit from preoptic area (POA) to posterior paraventricular thalamus (pPVT) in mediating these behavior changes. The POA-PVT circuit increases activity during heat exposure. Further, manipulation of this circuit can drive affective and social behavioral phenotypes even in the absence of heat exposure. Moreover, silencing this circuit during heat exposure prevents the development of negative phenotypes. Overall the manuscript makes an important contribution to the understudied area of how ambient temperature shapes motivated behaviors.

      Strengths

      The use of state-of-the-art systems neuroscience tools (in vivo optogenetics and fiber photometry, slice electrophysiology), chronic temperature-controlled experiments, and a rigorous battery of behavioral assays to determine affective phenotypes. The optogenetic gain of function of affective phenotypes in the absence of heat, and loss of function in the presence of heat are very convincing manipulation data. Overall a significant contribution to the circuit-level instantiation of temperature induced changes in motivated behavior, and creative experiments.

      Weaknesses

      The authors have fully addressed all of my questions and concerns, with the exception of one comment. They mention that they did carry out measurements of core body temperature as a control during optogenetic experiments and did not see any effects. However, I could only find this reported in the text but could not find the data in the main or supplementary figures.

    1. Joint Public Review:

      Satoshi Yamashita et al., investigate the physical mechanisms driving tissue bending using the cellular Potts Model, starting from a planar cellular monolayer. They argue that apical length-independent tension control alone cannot explain bending phenomena in the cellular Potts Model, contrasting with previous works, particularly Vertex Models. They conclude that an apical elastic term, with zero rest value (due to endocytosis/exocytosis), is necessary to achieve apical constriction and that tissue bending can be enhanced by adding a supracellular myosin cable. Additionally, a very high apical elastic constant promotes planar tissue configurations, opposing bending.

      Strengths:

      - The finding of the required mechanisms for tissue bending in the cellular Potts Model provides a natural alternative for studying bending processes in situations with highly curved cells.

      - Despite viewing cellular delamination as an undesired outcome in this particular manuscript, the model's capability to naturally allow T1 events might prove useful for studying cell mechanics during out-of-plane extrusion.

      [Editors' note: The previous reviews have not been updated, as the changes to the manuscript were restricted to refining the text. The authors addressed all of the minor points raised by the reviewers. Some of the major points such as the lack of a summary quantification still stand. The previous reviews are here: https://doi.org/10.7554/eLife.93496.2.sa1]

    1. Reviewer #1 (Public review):

      Summary:

      Dopamine neurons contribute to motivated and motor behaviors in many ways, and ample recent evidence has suggested that distinct dopamine neuron subclasses support discrete behavioral and circuit functions. Prior studies have subdivided dopamine neurons by spatial localization, gene expression patterns, and physiological properties. However, many of these studies were bound by previous technical limitations that made comprehensive subclassification efforts difficult or impossible. The main goal of this manuscript was to characterize and further define dopamine neuron heterogeneity in the ventral midbrain. The study uses cutting-edge single nucleus RNA-seq (on the 10X Genomics platform) and spatial transcriptomics (on the MERFISH platform) to define dopamine neuron heterogeneity with unprecedented resolution. The result is a convincing and comprehensive subclassification of dopamine neurons into three main families, each with major branches and subtypes. In addition, the study reports comparisons between wild type mice and mice that harbor a G2019S mutation in the Lrrk2 gene, which models a common cause of autosomally dominant Parkinson's Disease in humans. These results, while less robust due to the nature of the group comparisons, nevertheless identify vulnerability within specific dopamine neuron subpopulations. This vulnerability may contribute unique risk to dopamine neuron loss in the context of Parkinson's disease. Overall, the study is careful and rigorous and provides a critical resource for the rapidly evolving knowledge of dopamine neuron subtypes.

      Strengths:

      -The creation of a public-facing app where the snRNA-seq data can be investigated by anyone is a major strength.<br /> -The manuscript includes careful comparisons to prior datasets that have sought to explore dopamine neuron heterogeneity. The result is a useful synthesis of new findings with previously published work, which is helpful for moving the field forward in this area.<br /> -The integration of snRNA-seq with MERFISH results is particularly strong, and enables insight not only into subclassification, but also into how this relates to spatial localization. The careful neuroanatomy reveals important distinctions between Sox6, Calb1, and Gad2 positive dopamine neuron families, with some degree of spatial overlap.

    1. Reviewer #2 (Public review):

      The strengths of this paper are clear: The authors are asking a novel question about geometric representation that would be relevant to a broad audience. Their question has a clear grounding in pre-existing mathematical concepts, that have been only minimally explored in cognitive science. Moreover, the data themselves are quite striking, such that my only concern would be that the data seem almost too perfect. It is hard to know what to make of that, however. From one perspective, this is even more reason the results should be published. Yet I am of the (perhaps unorthodox) opinion that reviewers should voice these gut reactions, even if it does not influence the evaluation otherwise. I have a few additional comments:

      (1) The authors have now explained their theoretical position in a much more thorough and accessible way. I applaud them for that.

      (2) Although I continue to believe that the manipulation in Experiment 1 is imperfect, I am convinced by the authors that the subsequent evidence is more convincing, and thus that the merit of this work lies mostly in those data.

      If these results are robust, I believe the authors have discovered something of great value. While this paper stops short of providing definitive evidence in support of the Erlangen program (just as most work in vision science has stopped short of providing definitive evidence in support of its favored view), the data are sufficiently novel and provocative that these theories are worth entertaining further.

    1. Reviewer #1 (Public review):

      Summary:

      This study examined the changes in ATL GABA levels induced by cTBS and its relationship with BOLD signal changes and performance in a semantic task. The findings suggest that the increase in ATL GABA levels induced by cTBS is associated with a decrease in BOLD signal. The relationship between ATL GABA levels and semantic task performance is nonlinear, and more specifically, the authors propose that the relationship is an inverted U-shaped relationship.

      Strengths:

      The findings of the research regarding the increase of GABA and decrease of BOLD caused by cTBS, as well as the correlation between the two, appear to be reliable. This should be valuable for understanding the biological effects of cTBS.

      Weakness:

      I am pleased to see the authors' feedback on my previous questions and suggestions, and I believe the additional data analysis they have added is helpful. Here are my reserved concerns and newly discovered issues.

      (1) Regarding the Inverted U-Shaped Curve In the revised manuscript, the authors have accepted some of my suggestions and conducted further analysis, which is now presented in Figure 3B. These results provide partial support for the authors' hypothesis. However, I still believe that the data from this study hardly convincingly support an inverted U-shaped distribution relationship.<br /> The authors stated in their response, "it is challenging to determine the optimal level of ATL GABA," but I think this is achievable. From Figures 4C and 4D, the ATL GABA levels corresponding to the peak of the inverted U-shaped curve fall between 85 and 90. In my understanding, this can be considered as the optimal level of ATL GABA estimated based on the existing data and the inverted U-shaped curve relationship. However, in the latter half of the inverted U-shaped curve, there are quite few data points, and such a small number of data points hardly provides reliable support for the quantitative relationship in the latter half of the curve. I suggest that the authors should at least explicitly acknowledge this and be cautious in drawing conclusions. I also suggest that the authors consider fitting the data with more types of non-linear relationships, such as a ceiling effect (a combination of a slope and a horizontal line), or a logarithmic curve.

      (2) In Figure 2F, the authors demonstrated a strong practice effect in this study, which to some extent offsets the decrease in behavioral performance caused by cTBS. Therefore, I recommend that the authors give sufficient consideration to the practice effect in the data analysis.<br /> One issue is the impact of the practice effect on the classification of responders and non-responders. Currently, most participants are classified as non-responders, suggesting that the majority of the population may not respond to the cTBS used in this study. This greatly challenges the generalizability of the experimental conclusions. However, the emergence of so many non-responders is likely due to the prominent practice effect, which offsets part of the experimental effect. If the practice effect is excluded, the number of responders may increase. The authors might estimate the practice effect based on the vertex simulation condition and reclassify participants after excluding the influence of the practice effect.<br /> Another issue is that considering the significant practice effect, the analysis in Figure 4D, which mixes pre- and post-test data, may not be reliable.

      (3) The analysis in Figure 3A has a double dipping issue. Suppose we generate 100 pairs of random numbers as pre- and post-test scores, and then group the data based on whether the scores decrease or increase; the pre-test scores of the group with decreased scores will have a very high probability of being higher than those of the group with increased scores. Therefore, the findings in Figure 3A seem to be meaningless.

      (4) The authors use IE as a behavioral measure in some analyses and use accuracy in others. I recommend that the authors adopt a consistent behavioral measure.

    1. Reviewer #1 (Public review):

      Summary:

      This study explores the immune microenvironment of the placenta in preeclampsia (PE), which is often accompanied by gestational diabetes mellitus (GDM). Using CyTOF, they found that placentas from PE cases showed increased frequencies of memory-like Th17 cells, memory-like CD8⁺ T cells, and pro-inflammatory macrophages, alongside decreased levels of anti-inflammatory macrophages and granulocyte myeloid-derived suppressor cells (gMDSCs) compared to normal pregnancies. Further analysis revealed a positive correlation between pro-inflammatory macrophages and the expanded T cell populations, and a negative correlation with gMDSCs. Single-cell RNA sequencing provided mechanistic insights: transferring a specific subset of pro-inflammatory macrophages (F4/80⁺CD206⁻ with a distinct gene expression profile) from the uterus of PE mice to normal pregnant mice induced the formation of pathogenic memory-like Th17 cells via the IGF1-IGF1R pathway. This cellular interplay not only contributed to the development but also to the recurrence of PE. Additionally, these macrophages promoted the production of memory-like CD8⁺ T cells while inhibiting gMDSCs at the maternal-fetal interface, culminating in PE-like symptoms in mice. In conclusion, the study identifies a PE-specific immune cell network regulated by pro-inflammatory macrophages, offering new insights into the pathogenesis of preeclampsia.

      Strengths:

      Utilization of both human placental samples and multiple mouse models to explore the mechanisms linking inflammatory macrophages and T cells to preeclampsia (PE).<br /> Incorporation of cutting-edge and complementary techniques such as CyTOF, scRNA-seq, bulk RNA-seq, and flow cytometry.

      Identification of specific immune cell populations and their roles in PE.<br /> Demonstration of the adverse effects of pro-inflammatory macrophages and T cells on pregnancy outcomes through in vivo manipulations.

      Comments on revised version:

      Several weaknesses were addressed during revision by conducting additional experiments, clarifying the manuscript's text, and incorporating new data that was not initially included.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigated the elasticity of controllability by developing a task that manipulates the probability of achieving a goal with a baseline investment (which they refer to as inelastic controllability) and the probability that additional investment would increase the probability of achieving a goal (which they refer to as elastic controllability). They found that a computational model representing the controllability and elasticity of the environment accounted better for the data than a model representing only the controllability. They also found that prior biases about the controllability and elasticity of the environment were associated with a composite psychopathology score. The authors conclude that elasticity inference and bias guide resource allocation.

      Strengths:

      This research takes a novel theoretical and methodological approach to understanding how people estimate the level of control they have over their environment, and how they adjust their actions accordingly. The task is innovative and both it and the findings are well-described (with excellent visuals). They also offer thorough validation for the particular model they develop. The research has the potential to theoretically inform the understanding of control across domains, which is a topic of great importance.

      Weaknesses:

      An overarching concern is that this paper is framed as addressing resource investments across domains that include time, money, and effort, and the introductory examples focus heavily on effort-based resources (e.g., exercising, studying, practicing). The experiments, though, focus entirely on the equivalent of monetary resources - participants make discrete actions based on the number of points they want to use on a given turn. While the same ideas might generalize to decisions about other kinds of resources (e.g., if participants were having to invest the effort to reach a goal), this seems like the kind of speculation that would be better reserved for the Discussion section rather than using effort investment as a means of introducing a new concept (elasticity of control) that the paper will go on to test.

      Setting aside the framing of the core concepts, my understanding of the task is that it effectively captures people's estimates of the likelihood of achieving their goal (Pr(success)) conditional on a given investment of resources. The ground truth across the different environments varies such that this function is sometimes flat (low controllability), sometimes increases linearly (elastic controllability), and sometimes increases as a step function (inelastic controllability). If this is accurate, then it raises two questions.

      First, on the modeling front, I wonder if a suitable alternative to the current model would be to assume that the participants are simply considering different continuous functions like these and, within a Bayesian framework, evaluating the probabilistic evidence for each function based on each trial's outcome. This would give participants an estimate of the marginal increase in Pr(success) for each ticket, and they could then weigh the expected value of that ticket choice (Pr(success)*150 points) against the marginal increase in point cost for each ticket. This should yield similar predictions for optimal performance (e.g., opt-out for lower controllability environments, i.e., flatter functions), and the continuous nature of this form of function approximation also has the benefit of enabling tests of generalization to predict changes in behavior if there was, for instance, changes in available tickets for purchase (e.g., up to 4 or 5) or changes in ticket prices. Such a model would of course also maintain a critical role for priors based on one's experience within the task as well as over longer timescales, and could be meaningfully interpreted as such (e.g., priors related to the likelihood of success/failure and whether one's actions influence these). It could also potentially reduce the complexity of the model by replacing controllability-specific parameters with multiple candidate functions (presumably learned through past experience, and/or tuned by experience in this task environment), each of which is being updated simultaneously.

      Second, if the reframing above is apt (regardless of the best model for implementing it), it seems like the taxonomy being offered by the authors risks a form of "jangle fallacy," in particular by positing distinct constructs (controllability and elasticity) for processes that ultimately comprise aspects of the same process (estimation of the relationship between investment and outcome likelihood). Which of these two frames is used doesn't bear on the rigor of the approach or the strength of the findings, but it does bear on how readers will digest and draw inferences from this work. It is ultimately up to the authors which of these they choose to favor, but I think the paper would benefit from some discussion of a common-process alternative, at least to prevent too strong of inferences about separate processes/modes that may not exist. I personally think the approach and findings in this paper would also be easier to digest under a common-construct approach rather than forcing new terminology but, again, I defer to the authors on this.

    1. Reviewer #1 (Public review):

      Summary:

      This study identified three independent components of glucose dynamics-"value," "variability," and "autocorrelation", and reported important findings indicating that they play an important role in predicting coronary plaque vulnerability. Although the generalizability of the results needs further investigation due to the limited sample size and validation cohort limitations, this study makes several notable contributions: validation of autocorrelation as a new clinical indicator, theoretical support through mathematical modeling, and development of a web application for practical implementation. These contributions are likely to attract broad interest from researchers in both diabetology and cardiology and may suggest the potential for a new approach to glucose monitoring that goes beyond conventional glycemic control indicators in clinical practice.

      Strengths:

      The most notable strength of this study is the identification of three independent elements in glycemic dynamics: value, variability, and autocorrelation. In particular, the metric of autocorrelation, which has not been captured by conventional glycemic control indices, may bring a new perspective for understanding glycemic dynamics. In terms of methodological aspects, the study uses an analytical approach combining various statistical methods such as factor analysis, LASSO, and PLS regression, and enhances the reliability of results through theoretical validation using mathematical models and validation in other cohorts. In addition, the practical aspect of the research results, such as the development of a Web application, is also an important contribution to clinical implementation.

      Weaknesses:

      The most significant weakness of this study is the relatively small sample size of 53 study subjects. This sample size limitation leads to a lack of statistical power, especially in subgroup analyses, and to limitations in the assessment of rare events. In terms of validation, several challenges exist, including geographical and ethnic biases in the validation cohorts, lack of long-term follow-up data, and insufficient validation across different clinical settings. In terms of data representativeness, limiting factors include the inclusion of only subjects with well-controlled serum cholesterol and blood pressure and the use of only short-term measurement data. In terms of elucidation of physical mechanisms, the study is not sufficient to elucidate the mechanisms linking autocorrelation and clinical outcomes or to verify them at the cellular or molecular level.

    1. Reviewer #1 (Public review):

      Summary:

      This study represents an incremental step toward mitochondrial DNA editing but raises several concerns regarding its impact and broader applicability. The reported in vitro editing efficiency of 17% in mitotic cells, with non-specific editing across multiple A:T sites, offers limited improvement over prior technologies like DdCBE. Editing efficiency for the Mt-Atp6 gene was even lower (~4%), rendering it unlikely to produce functional changes relevant to mitochondrial function or bioenergetics.

      While the modified TadA8e(V28R) mutant alleviated toxicity and enabled sufficient AAV production for in vivo experiments, the low in vivo editing efficiency (~4%) after 4 weeks was disappointing and unlikely to be biologically meaningful. Furthermore, the use of P1 postnatal tissues, which are still developing, raises questions about their suitability as models for postmitotic tissues, especially since the brain - a key organ affected by mitochondrial diseases - was excluded from the analysis.

      Despite demonstrating feasibility for mitochondrial adenine base editing, the study highlights significant limitations, underscoring the need for further optimization. The reviewer also suggests adopting clearer terminology, such as "pathological variant" instead of "mutation," to enhance precision.

      Strengths:

      The study demonstrates the feasibility of adenine base editing in mitochondrial DNA, marking a step forward in expanding mitochondrial genome engineering capabilities. A notable strength is the development of a modified TadA8e(V28R) mutant, which successfully mitigated toxicity and enabled sufficient AAV production for in vivo experiments. This technical advancement addresses a key challenge in mitochondrial gene editing and provides a foundation for improving delivery methods and reducing off-target effects.

      Additionally, the study highlights the potential for targeted mitochondrial DNA modifications using optimized TALEs, achieving A:T to G:C conversions in multiple genes. While the in vitro editing efficiency remains modest, the approach represents an important proof-of-concept for potentially advancing mitochondrial editing technologies, particularly in the context of addressing pathological variants.

      Weaknesses:

      The major weaknesses of the study center around its low editing efficiency, both in vitro and in vivo. In vitro editing achieved only 17% efficiency in mitotic cells, while the efficiency for the Mt-Atp6 gene was even lower, around 4%. This level of editing is unlikely to produce meaningful functional or biological changes, particularly in cells with pathological mtDNA variants. Similarly, in vivo, editing efficiency after a 4-week exposure period remained at approximately 4%, which is insufficient to support claims of effective mitochondrial genome editing. Another significant limitation is the lack of editing specificity, as observed changes occurred at multiple A:T sites within and across the editing window rather than being confined to a single position, raising concerns about precision and off-target effects.

      The use of P1 postnatal mouse tissues also raises questions about the relevance of the model, as these tissues are still undergoing development and may not truly reflect postmitotic states. This casts doubt on whether the findings are transferable to mature tissues, such as the adult brain, which is frequently affected by mitochondrial diseases. Furthermore, the exclusion of brain tissue from the analysis limits the study's applicability to neurological disorders, a key area of mitochondrial disease research. The rationale for excluding brain tissue is not addressed, leaving an important gap in the study's scope.

      The findings also lack novelty, as the reported low efficiency and lack of specificity are consistent with previous studies, making it unclear whether this work represents a significant advancement over existing technologies.

      Collectively, these weaknesses underscore the need for further optimization of the approach, improved targeting specificity, and validation in more relevant models to demonstrate therapeutic potential.

    1. Reviewer #1 (Public review):

      In all animals, the fertilized egg is transcriptionally silent, and thus early embryonic development relies on maternally deposited factors. A key mode of regulation is translational control to produce the proteins needed by the developing embryo. In zebrafish as well as other animals, distinct ribosomes, those coming from the maternal pool (maternal ribosomes produced in the germ line/oocytes), and those produced from new transcription after genome activation (somatic ribosomes). In zebrafish, the maternal pool consists of a "maternal" rRNA produced from rDNA on chromosome 4, that has previously been shown to be amplified or expressed specifically in the germ line and in oocytes. The observed sex-specific expression of m-rDNA has led to models that it is involved in sex differentiation and/or maternal control of early embryonic development, both as mediators of translation and as a source of raw materials needed to produce new ribosomes. The work to date in the field indicates that maternal and somatic ribosomes are distinct in their expression profiles but whether they have unique, or gene-specific activities awaits determining if somatic rDNA can functionally replace m-rDNA.

      In this manuscript, the authors investigated the expression profiles, protein composition, and ability of maternal and somatic ribosome components to interact with one another and their association with polysomes. This study reports sequence differences between maternal and somatic ribosomal components as well as proteomics and structural analysis of ribosome composition in oocytes and early development. This analysis shows that ribosome subunit composition changes over developmental time but did not uncover evidence suggesting maternal or somatic ribosome-specific ribosomal protein paralog use. The key findings of this work are:<br /> (1) Observation of hybrid ribosomes composed of subunits of maternal and somatic origin in the embryo.<br /> (2) Detection of both maternal and somatic ribosomes in polysomes, indicating maternal and somatic ribosomes both support translation in the embryos and may not be functionally unique.<br /> (3) Persistent expression of m-rRNA in germ cells, suggesting m-ribosomes, as the main ribosome type present, are important for translation in germ cells. The question of ribosome heterogeneity and the function of maternal versus somatic rDNA and ribosomes is of great interest to the broader scientific community. Overall, the manuscript is clearly written and the solid data provided support the main ideas and conclusions.

      Specific points are detailed below.

      (1) In Figure 1D the m-rRNA abundance goes down at 3dpf, then up again while the s-rRNA steadily increases and peaks at 3dpf then drops thereafter. As presented in the graph it is unclear if this up-then-down trend is consistently observed or not. There are bars on the graph for m-rRNA but not for s-rRNA, thus it is unclear how many times this experiment was performed for the s-rRNA or how variable the results were from sample to sample. Beyond this technical point, if the pattern is consistent, this is an interesting observation as it would signal either a shift in rDNA transcription to silence the somatic locus and/or post-transcriptional targeted degradation of the somatic rRNA in germ cells.

      (2) Although qualified by the authors to some extent, the conclusion regarding maternal ribosomes and specificity related to the translation of germ line-specific transcripts is potentially confusing or misleading. Since the maternal form appears to be the only or predominant form of ribosomes in the germ cells at this stage, these would be the only ribosomes available for translation in germ cells. So, any RNA being translated in the germ cells, even RNAs that are not specifically expressed in the germline would be "enriched in association with" and translated by the maternal ribosomes in germ cells. Additional supporting evidence would be required to support the conclusion that the maternal ribosomes are specifically dedicated to the translation of germ cell-specific RNAs, like nanos3, rather than just general translation in germ cells. Consistent with a more general role for the maternal ribosomes in translation in germ cells, differential codon use has been previously documented for the RNAs produced in oocytes (aka maternal RNAs) (for example Bazzini et al EMBO 2016; Mishima and Tomari Mol Cell 2016), and tRNA genes were recently reported by Wilson and Postlethwait to reside along with the maternal 5S genes and maternal-specific spliceosome components in the region of chromosome 4 that is differentially activated in oocytes and testis (region 2 coding genes are silenced in the ovary but maternal ribosome-related genes are expressed in the ovary; region 4 contains the maternal 45S gene). Further, some of the authors of this manuscript undergo a shift in tRNA repertoire and a change in iso-decoder expression at the onset of gastrulation (Rappol et al, Nucleic Acids Research 2024). Technical limitations pose challenges to definitively testing the hypothesis, but it would be helpful to place the findings here in the context of the published work.

      (3) "An alternate and non-exclusive hypothesis is that the maternal rDNA locus may be involved in PGC fate and sex determination in zebrafish." It would be helpful to further discuss the published evidence supporting this hypothesis. In accord with a potential role for m-rDNA in ovary differentiation, differential methylation of m-rDNA has been previously reported, with high methylation in testis and low methylation in ovaries. Further, several groups have shown that treating fish with broad inhibitors of methyltransferases causes testis-biased differentiation of the gonad. Finally, Moser et al (Philosophical Transactions of the Royal Society B 2024) recently published work in which CRISPR-Cas9 was used to target the 45S m-rDNA promoter and interfere with its expression. The mutants with these promoter mutations developed as fertile males, consistent with a role for m-rDNA in ovary differentiation. A recent paper from Moser et. al. (Philosophical Transactions of the Royal Society B 2024) showing that disrupting the m-rDNA locus leads to male-only development should be discussed. This paper does not exclude the possibility of a maternal role for the ribosomes since only one female was recovered among the 45S-m-rDNA mutants. The expression data in Figure 1D of this manuscript showing that m-rRNA levels go down and then up in PGCs indicates the PGCs are making their own m-rRNA. This observation together with the recovery of fertile males reported in the Moser et al study (Philosophical Transactions of the Royal Society B 2024) doesn't seem to support a requirement for m-rDNA in PGC fate or germ cell-specific translation, at least in testis, since the mutant males produce sperm and are fertile.

      (4) Although the rationale for examining rRNAs in adult tumors, cultured zebrafish cell lines, and during fin regeneration is clear based on the published literature showing elevated embryonic rRNAs, this line of investigation doesn't add much to this study and is a bit of a distraction. That said, the observation that in contrast to published work, neither the maternal (early embryo) nor the specific rRNAs examined are unregulated in these contexts is important and warrants communication with the research community.

      (5) The numbers of embryos and stages are not consistently stated in the manuscript. For example, in the "Isolation of zebrafish ribosome." and "isolation of monosomes" sections of the methods, the stage and number of embryos used for the IPs are not clearly stated in the methods. These important details should be stated throughout the manuscript so that others can perform future studies in a manner that will facilitate comparisons.

      (6) The terminology used for the RiboFLAG experiments is potentially confusing or misleading. Specifically, different terms are used to describe the source of the ribosomes (Figure 5, Figure S7, Figure S8 and in the text). For example, "transmission" is used to describe "maternal transmission" for Mat-RiboFLAG, and "paternal transmission" is used for Som-RiboFLAG, and in Figure 5 and Figure S8 "maternally provided" and "paternally provided" are used. However, these terms may be confusing or unintentionally misleading because transmission and provided refer to two different things. In the case of Mat-RiboFLAG, the terms refer to the maternal Rpl10-FLAG ribosomes, which the progeny receive from their mother independent of whether or not they express the transgene. On the other hand, for Som-RiboFLAG, the terms refer to the transgene rather than the Rpl10-FLAG ribosomes that will be produced by the embryo using the transgene they inherited from their father. Consider instead sticking to "maternal" and "somatic", or alternatively "zygotic expression" and "maternal expression" or "zygotic ribosomes" and "maternal ribosomes".

    1. Reviewer #1 (Public review):

      Summary:

      This study investigates the relationship between climate variables and malaria incidence from monthly records, for rainfall, temperature, and a measure of ENSO, in a lowland region of Kenya in East Africa. Wavelet analyses show significant variability at the seasonal scale at the 6-month scale with some variation in its signal over time, and some additional variability at the 12-month scale for some variables. As conducted, the analyses show weak (non-significant) signals at the interannual time scales (longer than seasonal). Cross-wavelet analysis also highlights the 6-month scale and the association of malaria and climate variables at that scale, with some signal at 12 months, reflecting the role of climate in seasonality. Evidence is presented for some small changes in the lags of the response of malaria to the seasonal climate drivers over time.

      Strengths:

      Although there have been many studies of climate drivers of malaria dynamics in East Africa, these analyses have been largely focused on highlands where these drivers are expected to exhibit the strongest signal of association with disease burden at interannual and longer time scales. It is therefore of interest to take advantage of a relatively long time series of cases to examine the role of climate variables in more endemic malaria in lowlands.

      Weaknesses:

      (1) Major comments:

      The work is not sufficiently placed in the context of what is known about climate variability in East Africa, and the role of climate variables in the temporal variation of malaria cases in this region. This context includes the relationship between large (global/regional) drivers of interannual climate variability such as ENSO (and the Indian Ocean Dipole) and local temporal patterns in rainfall and temperature. There is for example literature on the influence of those drivers and the short and long rains in East Africa. That is, phenomena such as ENSO would influence malaria through those local climate variables. This context should be considered when formulating and interpreting the analyses.

      There are conceptual problems with the design of the analyses which can limit the findings on association. It is not surprising that rainfall would exhibit a clear association at seasonal scales. It is nevertheless valuable to confirm this as the authors have done and to examine the faster than 12-month scale, given the typical pattern of two rainfall seasons in this area. However, the results on temperature are less clear. If rainfall is the main limiting factor for the transmission season, the temperature variation that would matter can be during the rainy periods. One would then see an association with temperature only in particular windows of time during the year, when rainfall is sufficient (see for example, Rodo et al. Nat. Commun. 2022, for this finding in a highland region of Ethiopia). For this situation, there would be no clear association with temperature when all months are considered, and one would not find a significant relationship (or a lagged one) between peak times in this climate factor and malaria's seasonal cases. It would be difficult for the wavelet analysis to reveal such an effect. Another consideration is whether to use an ENSO variable that includes seasonality or to use an ENSO index computed as an anomaly, to focus on interannual variability. That is, it is most relevant to consider how ENSO influences time scales of variation longer than seasonal (the multiannual variation in seasonal epidemics) and for this purpose, one would typically rely on an anomaly. This choice would better enable one to see whether there is a role of ENSO at interannual time scales. It would also make sense to analyze with cross-wavelets the effect of ENSO on local climate factors, temperature, and rainfall, and not only on malaria. This would allow us to establish evidence for a chain of causality, from a global driver of interannual variability to local climate variability to malaria incidence.

      The multiresolution analysis and associated analysis of lag variations were confusing and difficult to follow as presented: (1) the lags chosen by the multiresolution analysis do not match the phase differences of the cross-wavelet analysis if I followed what was presented. On page 8, phase differences are expressed in months. I do not understand then the following statements on page 9: "The phase differences obtained by the cross-wavelet transforms were turned into lags, allowing us to plot the evolution of the lags over time". The resulting lags in Figure 6 are shorter than the phase differences provided in the text on page 8. (2) The phase difference of the cross-wavelet analyses for malaria and temperature is also too long for this climate factor to explain an effect on the vector and then on the disease. (3) In Table 3, the regression results that are highlighted are those for Land Surface Temperatures (LST) and ENSO, with a weak but significant negative linear correlation, and for LST and bednet coverage, and this is considered part of the lag analysis. The previous text and analyses up to that point do not seem to consider the relationship of ENSO and local climate variables, or that between local climate variables and bednets (which would benefit from some context for the causal pathways this would reflect).

      The conclusion in the Abstract: "Our study underlines the importance of considering long-term time scales when assessing malaria dynamics. The presented wavelet approach could be applicable to other infectious diseases" needs to be reformulated. The use of "long-term" time scales for those of ENSO and interannual variability is not consistent with the climate literature, where long-term could be interpreted as decadal and longer. The time scales beyond those of seasonality, especially those of climate variability, have been addressed in many malaria studies. It is not compelling to have the significance of this study be the importance of considering those time scales. This is not new. I recommend focusing on what has been done for lowland malaria and endemic regions (for example, in Laneri et al. PNAS 2015) as there has been less work for those regions than for seasonal epidemic ones of low transmission (e.g. altitude fringes and desert ones, e.g. Laneri et al. PloS Comp. Biol. 2010; Roy et al. Mal. J. 2015). Also, wavelet analyses have been used extensively by now to consider the association of climate variables and infectious diseases at multiple time scales. There is here an additional component of the analysis but the decomposition that underlies the linear regressions is also not that new, as decompositions of time series have been used before in this area. In summary, I recommend a more appropriate and compelling conclusion on what was learned about malaria at this location and what it may tell us about other, similar, locations, but not malaria dynamics everywhere.

      The conversion from monthly cases to monthly incidence needs a better explanation of the Methods, rather than a referral to another paper. This is a key aspect of the data. It may be useful to plot the monthly time series of both variables in the Supplement, for comparison.

      There is plenty of evidence of the seasonal role of rainfall on malaria's seasonality in many regions. The literature cited here to support this well-known association is quite limited. It would be useful to provide a context that better reflects the literature and some context for the environmental conditions of this lowland region that would explain the dominant role of rainfall on malaria seasonality. Two papers (from 2017 and 2019) are cited in the second paragraph of the introduction as showing that "key climatic factors are rainfall and temperatures". This is a misrepresentation of the field. That these factors matter to malaria in general has been known for a very long time given that the vectors are mosquitoes, and the cited studies are particular ones that examine the mechanistic basis of this link for modeling purposes. Either these papers are presented as examples, with a more accurate description of what they add to the earlier literature or earlier literature should be acknowledged. Also, what has been much less studied is the role of these variables at interannual time scales, as potentially mediating the effects of global drivers in teleconnections.

      (2) Minor comments:

      In relation to the conceptual issues raised above, it would be valuable to consider whether the negative association with temperature persists if one considers mean temperature during the rainy seasons only, against the total cases in the transmission season each year (as in Rodó et al. 2021). This would allow one to disentangle whether the negative association reflects a robust result or an artifact of an interaction between temperature and rainfall so that the former matters when the latter is permissive for transmission.

      The conclusion in the Discussion " This suggests that minor climate variations have a limited impact on malaria incidence at shorter time scales, whereas climatic trends may play a more substantial role in shaping long-term malaria dynamics" is unsubstantiated. There is no clear result in the paper on climatic trends that I can see.

      The Abstract writes: "The true impact of climate change...". This paper is not about climate change but about climate seasonality and variability. This text needs to be changed to make it consistent with the content of the paper.

      Page 2, Introduction: The statement on Pascual et al. 2008 is not completely accurate. This paper shows an interplay of climate variability and disease dynamics, but not cycles that are completely independent of climate.

      Page 2, next sentence: "More recently, such cycles have been attributed to global climate drivers such as ENSO (Cazelles et al., 2023)". This writing is also somewhat unclear. Are you referring to the cycles for the same location in Kenya? Or generically, to the interannual variability of malaria?

      There are multiple places in the writing that could be edited.

    1. Reviewer #1 (Public review):

      This work derives a general theory of optimal gain modulation in neural populations. It demonstrates that population homeostasis is a consequence of optimal modulation for information maximization with noisy neurons. The developed theory is then applied to the distributed distributional code (DDC) model of the primary visual cortex to demonstrate that homeostatic DDCs can account for stimulus-specific adaptation.

      What I consider to be the most important contribution of this work is the unification of efficient information transmission in neural populations with population homeostasis. The former is an established theoretical framework, and the latter is a well-known empirical phenomenon - the relationship between them has never been fully clarified. I consider this work to be an interesting and relevant step in that direction.

      The theory proposed in the paper is rigorous and the analysis is thorough. The manuscript begins with a general mathematical setting to identify normative solutions to the problem of information maximization. It then gradually builds towards questions about approximate solutions, neural implementation and plausibility of these solutions, applications of the theory to specific models of neural computation (DDC), and finally comparisons to experimental data in V1. Such a connection of different levels of abstraction is an obvious strength of this work.

      Overall I find this contribution interesting and assess it positively. At the same time, I have three major points of criticism, which I believe the authors should address. I list them below, followed by a number of more specific comments and feedback.

      Major comments:

      (1) Interpretation of key results and relationship between different parts of the manuscript. The manuscript begins with an information-transmission ansatz which is described as "independent of the computational goal" (e.g. p. 17). While information theory indeed is not concerned with what quantity is being encoded (e.g. whether it is sensory periphery or hippocampus), the goal of the studied system is to *transmit* the largest amount of bits about the input in the presence of noise. In my view, this does not make the proposed framework "independent of the computational goal". Furthermore, the derived theory is then applied to a DDC model which proposes a very specific solution to inference problems. The relationship between information transmission and inference is deep and nuanced. Because the writing is very dense, it is quite hard to understand how the information transmission framework developed in the first part applies to the inference problem. How does the neural coding diagram in Figure 3 map onto the inference diagram in Figure 10? How does the problem of information transmission under constraints from the first part of the manuscript become an inference problem with DDCs? I am certain that authors have good answers to these questions - but they should be explained much better.

      (2) Clarity of writing for an interdisciplinary audience. I do not believe that in its current form, the manuscript is accessible to a broader, interdisciplinary audience such as eLife readers. The writing is very dense and technical, which I believe unnecessarily obscures the key results of this study.

      (3) Positioning within the context of the field and relationship to prior work. While the proposed theory is interesting and timely, the manuscript omits multiple closely related results which in my view should be discussed in relationship to the current work. In particular:

      A number of recent studies propose normative criteria for gain modulation in populations:

      - Duong, L., Simoncelli, E., Chklovskii, D. and Lipshutz, D., 2024. Adaptive whitening with fast gain modulation and slow synaptic plasticity. Advances in Neural Information Processing Systems<br /> - Tring, E., Dipoppa, M. and Ringach, D.L., 2023. A power law describes the magnitude of adaptation in neural populations of primary visual cortex. Nature Communications, 14(1), p.8366.<br /> - Młynarski, W. and Tkačik, G., 2022. Efficient coding theory of dynamic attentional modulation. PLoS Biology<br /> - Haimerl, C., Ruff, D.A., Cohen, M.R., Savin, C. and Simoncelli, E.P., 2023. Targeted V1 co-modulation supports task-adaptive sensory decisions. Nature Communications<br /> - The Ganguli and Simoncelli framework has been extended to a multivariate case and analyzed for a generalized class of error measures:<br /> - Yerxa, T.E., Kee, E., DeWeese, M.R. and Cooper, E.A., 2020. Efficient sensory coding of multidimensional stimuli. PLoS Computational Biology<br /> - Wang, Z., Stocker, A.A. and Lee, D.D., 2016. Efficient neural codes that minimize LP reconstruction error. Neural Computation, 28(12),

      More detailed comments and feedback:

      (1) I believe that this work offers the possibility to address an important question about novelty responses in the cortex (e.g. Homann et al, 2021 PNAS). Are they encoding novelty per-se, or are they inefficient responses of a not-yet-adapted population? Perhaps it's worth speculating about.

      (2) Clustering in populations - typically in efficient coding studies, tuning curve distributions are a consequence of input statistics, constraints, and optimality criteria. Here the authors introduce randomly perturbed curves for each cluster - how to interpret that in light of the efficient coding theory? This links to a more general aspect of this work - it does not specify how to find optimal tuning curves, just how to modulate them (already addressed in the discussion).

      (3) Figure 8 - where do Hz come from as physical units? As I understand there are no physical units in simulations.

      (4) Inference with DDCs in changing environments. To perform efficient inference in a dynamically changing environment (as considered here), an ideal observer needs some form of posterior-prior updating. Where does that enter here?

      (5) Page 6 - "We did this in such a way that, for all ν, the correlation matrices, ρ(ν), were derived from covariance matrices with a 1/n power-law eigenspectrum (i.e., the ranked eigenvalues of the covariance matrix fall off inversely with their rank), in line with the findings of Stringer et al. (2019) in the primary visual cortex." This is a very specific assumption, taken from a study of a specific brain region - how does it relate to the generality of the approach?

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Bu et al examined the dynamics of TRPV4 channel in cell overcrowding in carcinoma conditions. They investigated how cell crowding (or high cell confluence) triggers a mechano-transduction pathway involving TRPV4 channels in high-grade ductal carcinoma in situ (DCIS) cells that leads to large cell volume reduction (or cell volume plasticity) and pro-invasive phenotype.

      In vitro, this pathway is highly selective for highly malignant invasive cell lines derived from a normal breast epithelial cell line (MCF10CA) compared to the parent cell line, but not present in another triple-negative invasive breast epithelial cell line (MDA-MB-231). The authors convincingly showed that enhanced TRPV4 plasmamembrane localization correlates with high-grade DCIS cells in patient tissue samples. Specifically in invasive MCF10DCIS.com cells they showed that overcrowding or over-confluence leads to a decrease in cell volume and intracellular calcium levels. This condition also triggers the trafficking of TRPV4 channels from intracellular stores (nucleus and potentially endosomes), to the plasma membrane (PM). When these over-confluent cells are incubated with a TRPV4 activator, there is an acute and substantial influx of calcium, attesting the fact that there are high number of TRPV4 channels present on the PM. Long-term incubation of these over-confluent cells with the TRPV4 activator results in the internalization of the PM-localized TRPV4 channels.

      In contrast, cells plated at lower confluence primarily have TRPV4 channels localized in the nucleus and cytosol. Long-term incubation of these cells at lower confluence with a TRPV4 inhibitor leads to the relocation of TRPV4 channels to the plasma membrane from intracellular stores and a subsequent reduction in cell volume. Similarly, incubation of these cells at low confluence with PEG 3000 (a hyperosmotic agent) promotes the trafficking of TRPV4 channels from intracellular stores to the plasma membrane.

      Strengths:

      The study is elegantly designed and the findings are novel. Their findings on this mechano-transduction pathway involving TRPV4 channels, calcium homeostasis, cell volume plasticity, motility and invasiveness will have a great impact in the cancer field and potentially applicable to other fields as well. Experiments are well-planned and executed, and the data is convincing. Authors investigated TRVP4 dynamics using multiple different strategies- overcrowding, hyperosmotic stress, pharmacological and genetic means, and showed a good correlation between different phenomena.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Jena et al. addresses important questions on the fundamental mechanisms of genetic adaptation, specifically, does adaptation proceed via changes of copy number (gene duplication and amplification "GDA") or by point mutation. While this question has been worked on (for example by Tomanek and Guet) the authors add several important aspects relating to resistance against antibiotics and they clarify the ability of Lon protease to reduce duplication formation (previous work was more indirect).

      A key finding Jena et al. present is that point mutations after significant competition displace GDA. A second one is that alternative GDA constantly arise and displace each other (see work on GDA-2 in Figure 3). Finally, the authors found epistasis between resistance allele that was contingent on lon. Together this shows an intricate interplay of lon proteolysis for the evolution and maintenance of antibiotic resistance by gene duplication.

      Strengths:

      The study has several important strengths: (i) the work on GDA stability and competition of GDA with point mutations is a very promising area of research and the authors contribute new aspects to it, (ii) rigorous experimentation, (iii) very clearly written introduction and discussion sections. To me, the best part of the data is that deletion of lon stimulates GDA, which has not been shown with such clarity until now.

      Weaknesses:

      Previously raised minor weaknesses and technical questions have been adequately resolved in the revised manuscript. As the experiments and their results are described in great detail the interested reader needs stamina. The details will, however, be informative to the specialist.

    1. Reviewer #1 (Public review):

      Summary:

      The authors conducted a human neuroimaging study investigating the role of context in the representation of fear associations when the contingencies between a conditioned stimulus and shock unconditioned stimulus switch between contexts. The novelty of the analysis centered on neural pattern similarity to derive a measure of context and cue stability and generalization across different regions of the brain. Given the complexity and nuance of the results, it is kind of difficult to provide a concise summary. But during fear and reversal, there was cue generalization (between current CS+ cues) in the canonical fear network, and "item stability" for cues that changed their association with the shock in the IFG and precuneus. Reinstatement was quantified as pattern similarity for items or sets of cues from the earlier phases to the test phases, and they found different patterns in the IFG and dmPFC. A similar analytical strategy was applied to contexts.

      Strengths:

      Overall, I found this to be a novel use of MVPA to study the role of context in the reversal/extinction of human fear conditioning that yielded interesting results. The paper was overall well-written, with a strong introduction and fairly detailed methods and results. The lack of any univariate contrast results from the test phases was used as motivation for the neural pattern similarity approach, which I appreciated as a reader.

      Weaknesses:

      This is quite a complicated protocol and analysis plan. The authors did a decent job explaining it, given the complexity of the approach and the dense results. But it did take reading it a couple of times to start to understand it. I'm not sure if there is a simpler way to describe the approach though. Just an observation. But perhaps there is a better way to explain the density of the different comparisons between the multiple cues and contexts. It can be difficult to totally avoid jargon in a complex scientific article, but the paper is very jargon-y.

      Here are a few more comments and stray observations, in no particular order of importance.

      (1) I had a difficult time unpacking lines 419-420: "item stability represents the similarity of the neural representation of an item to other representations of this same item."

      (2) The authors use the phrase "representational geometry" several times in the paper without clearly defining what they mean by this.

      (3) The abstract is quite dense and will likely be challenging to decipher for those without a specialized knowledge of both the topic (fear conditioning) and the analytical approach. For instance, the goal of the study is clearly articulated in the first few sentences, but then suddenly jumps to a sentence stating "our data show that contingency changes during reversal induce memory traces with distinct representational geometries characterized by stable activity patterns across repetitions..." this would be challenging for a reader to grok without having a clear understanding of the complex analytical approach used in the paper.

      (4) Minor: I believe it is STM200 not the STM2000.

      (5) Line 146: "...could be particularly fruitful as a means to study the influence of fear reversal or extinction on context representations, which have never been analyzed in previous fear and extinction learning studies." I direct the authors to Hennings et al., 2020, Contextual reinstatement promotes extinction generalization in healthy adults but not PTSD, as an example of using MVPA to decipher reinstatement of the extinction context during test.

      (6) This is a methodological/conceptual point, but it appears from Figure 1 that the shock occurs 2.5 seconds after the CS (and context) goes off the screen. This would seem to be more like a trace conditioning procedure than a standard delay fear conditioning procedure. This could be a trivial point, but there have been numerous studies over the last several decades comparing differences between these two forms of fear acquisition, both behaviorally and neurally, including differences in how trace vs delay conditioning is extinguished.

      (7) In Figure 4, it would help to see the individual data points derived from the model used to test significance between the different conditions (reinstatement between Acq, reversal, and test-new).

    1. Reviewer #1 (Public review):

      Summary:

      The authors seek to understand the role of different ratios of excitatory to inhibitory (EI) neurons, which in experimental studies of the cerebral cortex have been shown to range from 4 to 9. They do this through a simulation study of sparsely connected networks of excitatory and inhibitory neurons.

      Their main finding is that the participation ratio and decoding accuracy increase as the E/I ratio decreases. This suggests higher computational complexity.

      This is the start of an interesting computational study. However, there is no analysis to explain the numerical results, although there is a long literature of reduced models for randomly connected neural networks which could potentially be applied here. (For example, it seems that the authors could derive a mean field expression for the expected firing rate and variance - hence CV - which could be used to target points in parameter space (vs. repeated simulation in Figures 1,2).) The paper would be stronger and more impactful if this was attempted.

      Strengths:

      Some issues I appreciated are:

      (1) The use of a publicly available simulator (Brian), which helps reproducibility. I would also request that the authors supply submission or configuration scripts (if applicable, I don't know Brian).

      (2) A thorough exploration of the parameter space of interest (shown in Figure 2).

      (3) A good motivation for the underlying question: other things being equal, how does the E/I ratio impact computational capacity?

      Weaknesses:

      (1) Lack of mathematical analysis of the network model

      Major issues I recommend that the authors address (not sure whether these are "weaknesses"):

      (1) In "Coding capacity in different layers of visual cortex" the authors measure PR values from layers 2/3 and 4 in VISp and find that layer 2/3 has a higher PR than layer 4.

      But in Dahmen et al. 2020 (https://doi.org/10.1101/2020.11.02.365072 ), the opposite was found (see Figure 2d of Dahmen et al.): layer 2 had a lower PR than layer 4. Can the authors explain how that difference might arise? i.e. were they analyzing the same data sets? If so why the different results? Could it have to do with the way the authors subsample for the E/I ratio?

      From the Methods of that paper: "Visual stimuli were generated using scripts based on PsychoPy and followed one of two stimulus sequences ("brain observatory 1.1" and<br /> "functional connectivity"). We focused on spontaneous neural activity registered while the animal was not performing any task. In each session, the spontaneous activity condition lasted 30 minutes while the animal was in front of a screen of mean grey luminance. We, therefore, analyzed 26 of the original 58 sessions corresponding to the "functional connectivity" subdataset as they included such a period of spontaneous activity. " This suggests to me they may have analyzed recordings with the other stimulus sequence; however, the hypothesis that E/I ratio should modulate dimensionality would not seem to "care" about which stimulus sequence was used.

      (2) In Discussion (pg. 20, line 383): "They showed that brain regions closer to sensory input, like the thalamus, have higher dimensionality than those further away, such as<br /> the visual cortex. " How is this consistent with the hypothesis that "higher dimensionality might be linked to more complex cognitive functions"?

      (3) What is the probability of connection between different populations? e.g. the probability of there being a synaptic connection between any two E cells? I could not find a statement about this. It should be included in the Methods.

      (4) pg. 27, line 540: "Synchronicity within the network" For each cell pair, the authors use the maximum cross-correlation over time lag. I don't think I have seen this before. Can the authors explain why they use this measurement, vs (a) integrated cross-correlation or (b) cross-correlation at some time scale? Also, it seems like this fails to account for neuron pairs for which there is a strong inhibitory correlation.

      (5) "When stimulated, a time-varying input, μext(t), is applied to 2,000 randomly selected excitatory neurons. " I would guess that computing PR would depend on the overlap of the 500 neurons analyzed and this population. Do the authors check or control for that?

      5b) Related: to clarify, are the 500 neurons chosen from the analysis equally likely to be E or I neurons?

    1. Reviewer #1 (Public review):

      This manuscript presents a pipeline incorporating a deep generative model and peptide property predictors for the de novo design of peptide sequences with dual antimicrobial/antiviral functions. The authors synthesized and experimentally validated three peptides designed by the pipeline, demonstrating antimicrobial and antiviral activities, with one leading peptide exhibiting antimicrobial efficacy in animal models.

      Overall, the authors have addressed each major comment through new experiments, particularly by validating 24 peptides, clarifying alignment methods, and demonstrating sequence novelty. These additions have strengthened the manuscript. To further refine the work, it would be helpful to briefly describe any steps taken to mitigate GAN pathologies (such as mode collapse), provide a short rationale for the use of five AVP classifiers and how they complement each other, and clearly present the expanded experimental data (including MIC values and antiviral results) in the main text. Finally, the authors should also compare their approach with recently described deep-learning-enabled antibiotic discovery methods.

    1. Joint Public Review:

      This is an interesting, timely, and high-quality study on the potential neuroprotective capabilities of C-C chemokine receptor type 5 (CCR5) antagonists in ischemic stroke. The focus is on preclinical investigations.

      An outstanding feature is that stroke patient representatives have directly participated in the work. Although this is often called for, it is hardly realized in research practice, so the work goes beyond established standards.

      The included studies were assessed regarding the therapeutic impact and their adherence to current quality assurance guidelines such as STAIR and SRRR, another important feature of this work. While overall results were promising, there were some shortcomings regarding guideline adherence.

      The paper is very well written and concise yet provides much highly useful information. It also has very good illustrations, and extremely detailed and transparent supplements.

      [Editors' note: The authors have responded appropriately to the comments shared by the reviewers. The authors have provided a good academic justification for not needing to update the literature search, as one of the reviewers had suggested.]

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript entitled "Phosphodiesterase 1A Physically Interacts with YTHDF2 and Reinforces the Progression of Non-Small Cell Lung Cancer" explores the role of PDE1A in promoting NSCLC progression by binding to the m6A reader YTHDF2 and regulating the mRNA stability of several novel target genes, consequently activating the STAT3 pathway and leading to metastasis and drug resistance.

      Strengths:

      The study addresses a novel mechanism involving PDE1A and YTHDF2 interaction in NSCLC, contributing to our understanding of cancer progression.

    1. Überblicksartikel von 2019 zu den Angriffen auf die Wissenschaft während der ersten Trump-Regierung und ihre kurz- und langfristigen Folgen. Forschungen zur Klimakrise und öffentlichen Gesundheit wurden behindert, weil sie den Interessen der fossilen Industrien schaden. Der Kampf gegen Foschung, die Interessen bestimmter Unternehmen und Branchen bedroht, ging aber weit über die Klimathematik hinaus und dient u.a. auch der Chemie- und Agroindustrien. Zu den Maßnahmen gehörten: - Beendigung von Forschungsprojekten - Abbau des Einflusses von Wissenschaftler:innen auf regulatorische Entscheidungen - Verhinderung von öffentlichen Stellungnahmen von Wissenschaftler:innen - Behinderung von Forschungen zum menschengemachten Klimawandel - Vorschreiben erwünschter Forschungsergebnisse - Overruling von Experten durch politische Funktionäre bei Begutachtungen und Regulierungen - Einstellungsstopps und Entlassungen - Entfernung bestimmter Wissenschaftler:innen aus Beratungsgremien - Verbot der Berücksichtigung bestimmter Wissenschaftstypen bei Regulierungen - Druck auf Forschende, unwissenschaftliche Aussagen des Präsidenten zu unterstützen - Schließung von Forschungszentren und -büros und Auflösung von Ausschüssen - Umsiedlungen von Behörden und Forschungseinrichtungen in unattraktive Gegenden

      https://www.nytimes.com/2019/12/28/climate/trump-administration-war-on-science.html