33 Matching Annotations
  1. Dec 2021
    1. Patone, M., Mei, X. W., Handunnetthi, L., Dixon, S., Zaccardi, F., Shankar-Hari, M., Watkinson, P., Khunti, K., Harnden, A., Coupland, C. A. C., Channon, K. M., Mills, N. L., Sheikh, A., & Hippisley-Cox, J. (2021). Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nature Medicine, 1–13. https://doi.org/10.1038/s41591-021-01630-0

  2. Jun 2021
  3. Sep 2020
  4. Aug 2020
  5. Jun 2020
  6. May 2020
  7. Apr 2020
  8. onlinelibrary.wiley.com onlinelibrary.wiley.com
    1. ompared with patients without cardiac injury, patients with cardiac injury presented with more severe acute illness, manifested by abnormal laboratory and radiographic findings, such as higher levels of C-reactive protein, NT-proBNP, and creatinine levels; more multiple mottling and ground-glass opacity; and a greater proportion requiring noninvasive or invasive ventilation.
    2. After adjusting for age, preexisting cardiovascular diseases (hypertension, coronary heart disease, and chronic heart failure), cerebrovascular diseases, diabetes mellitus, chronic obstructive pulmonary disease, renal failure, cancer, ARDS, creatinine levels greater than 133 μmol/L, and NT-proBNP levels greater than 900 pg/mL, the multivariable adjusted Cox proportional hazard regression model showed a significantly higher risk of death in patients with cardiac injury than in those without cardiac injury, either during time from symptom onset (hazard ratio [HR], 4.26 [95% CI, 1.92-9.49]) or time from admission to study end point (HR, 3.41 [95% CI, 1.62-7.16]) (Table 3).
    1. The clinical effects of pneumonia have been linked to increased risk of cardiovascular disease up to 10-year follow-up16 and it is likely that cases infected via respiratory virus outbreaks will experience similar adverse outcomes. Therapeutic use of corticosteroids further augments the possibility of adverse cardiovascular events. However, long-term follow-up data concerning the survivors of respiratory virus epidemics are scarce. Lipid metabolism remained disrupted 12 years after clinical recovery in a metabolomic study amongst 25 SARS survivors,17 whereas cardiac abnormalities observed during hospitalisation in eight patients with H7N9 influenza returned to normal at 1-year follow-up.
    1. CMR (day 7) showed a recovery of systolic function (from 52% by CTA to 64% by CMR), although with persistence of a mild hypokinesia at basal and mid left ventricular segments; at the same sites, diffuse myocardial oedema, determining wall pseudo-hypertrophy, was observed on short T1 inversion recovery (STIR) sequences (Panel D) and confirmed by T1 and T2 mapping (average native T1 = 1188 ms, normal value <1045; average T2 = 61 ms, normal value <50). Late gadolinium enhancement sequences demonstrated absence of detectable myocardial scar/necrotic foci.
    1. While the spectrum of clinical manifestation is highly related to the inflammation process of the respiratory tract, this case provides evidence of cardiac involvement as a possible late phenomenon of the viral respiratory infection. This process can be subclinical with few interstitial inflammatory cells, as reported by an autopsy study,10 or can present with overt manifestations even without respiratory symptoms, as in the present case.
    2. Chest radiography was repeated on day 4 and showed no thoracic abnormalities. Transthoracic echocardiography, performed on day 6, revealed a significant reduction of LV wall thickness (interventricular septum, 11 mm; posterior wall, 10 mm), an improvement of LVEF to 44%, and a slight decrease of pericardial effusion (maximum, 8-9 mm). At the time of submission, the patient was hospitalized with progressive clinical and hemodynamic improvement.
    3. Transthoracic echocardiography revealed normal left ventricular (LV) dimensions with an increased wall thickness (interventricular septum, 14 mm, posterior wall, 14 mm) and a diffuse echo-bright appearance of the myocardium. There was diffuse hypokinesis, with an estimated LV ejection fraction (LVEF) of 40%. There was no evidence of heart valve disease. Left ventricular diastolic function was mildly impaired with mitral inflow patterns, with an E/A ratio of 0.7 and an average E/e′ ratio of 12. There was a circumferential pericardial effusion that was most notable around the right cardiac chambers (maximum, 11 mm) without signs of tamponade. Cardiac magnetic resonance imaging (MRI) confirmed the increased wall thickness with diffuse biventricular hypokinesis, especially in the apical segments, and severe LV dysfunction (LVEF of 35%) (Video 1 and Video 2). Short tau inversion recovery and T2-mapping sequences showed marked biventricular myocardial interstitial edema. Phase-sensitive inversion recovery sequences showed diffuse late gadolinium enhancement extended to the entire biventricular wall (Figure 2). The myocardial edema and pattern of late gadolinium enhancement fulfilled all the Lake Louise criteria for the diagnosis of acute myocarditis.6 The circumferential pericardial effusion was confirmed, especially around the right cardiac chambers (maximum, 12 mm).
    4. Cardiac magnetic resonance imaging showed increased wall thickness with diffuse biventricular hypokinesis, especially in the apical segments, and severe left ventricular dysfunction (left ventricular ejection fraction of 35%). Short tau inversion recovery and T2-mapping sequences showed marked biventricular myocardial interstitial edema, and there was also diffuse late gadolinium enhancement involving the entire biventricular wall. There was a circumferential pericardial effusion that was most notable around the right cardiac chambers. These findings were all consistent with acute myopericarditis.
    1. When Ace2 is transgenically overexpressed in mouse heart, cardiac defects are again observed, most notably a lethal ventricular arrhythmia, which is associated with disruption of gap junction formation [9Donoghue M et al.Heart block, ventricular tachycardia, and sudden death in ACE2 transgenic mice with downregulated connexins.J. Mol. Cell. Cardiol. 2003; 35: 1043-1053Abstract Full Text Full Text PDF PubMed Scopus (142) Google Scholar]. The high incidence of sudden death in these mice correlated with the levels of Ace2 transgene expression. Surviving older mice showed a spontaneous downregulation of the transgene and restoration of normal cardiac function.