46 Matching Annotations
  1. Jul 2025
  2. May 2025
    1. AI skin analysis technology provides deeply personalized customer journeys that traditional approaches simply cannot recreate. With its ability to analyze various skin parameters at the same time, Haut.AI is able to identify specific concerns and recommend targeted products or treatment processes.

      Unlock smarter beauty tech with Haut.AI integration services. From AI skin analysis to AI dermatology technology and skin condition detection, empower your health and beauty app with personalized, data-driven skincare insights. Partner with CMARIX to lead in AI-powered wellness solutions.

  3. Mar 2024
  4. Feb 2024
  5. Apr 2023
    1. My experiment illustrated how the vast majority of any medical encounter is figuring out the correct patient narrative. If someone comes into my ER saying their wrist hurts, but not due to any recent accident, it could be a psychosomatic reaction after the patient’s grandson fell down, or it could be due to a sexually transmitted disease, or something else entirely. The art of medicine is extracting all the necessary information required to create the right narrative.

      This is where complexity comes in, teasing out narratives and recombine them into probes, probing actions that may changes the weights of narratives and mental models held about a situation. Not diagnostics, but building the path towards diagnostics. Vgl [[Probe proberend handelen 20201111162752]] [[Vertelpunt 20201111170556]]

  6. Apr 2022
  7. Jan 2022
  8. Sep 2021
    1. Lee, J. W., Su, Y., Baloni, P., Chen, D., Pavlovitch-Bedzyk, A. J., Yuan, D., Duvvuri, V. R., Ng, R. H., Choi, J., Xie, J., Zhang, R., Murray, K., Kornilov, S., Smith, B., Magis, A. T., Hoon, D. S. B., Hadlock, J. J., Goldman, J. D., Price, N. D., … Heath, J. R. (2021). Integrated analysis of plasma and single immune cells uncovers metabolic changes in individuals with COVID-19. Nature Biotechnology, 1–11. https://doi.org/10.1038/s41587-021-01020-4

  9. Jul 2021
  10. May 2021
    1. Ashish K. Jha, MD, MPH. (2020, December 1). There is something funny happening with COVID hospitalizations Proportion of COVID pts getting hospitalized falling A lot Just recently My theory? As hospitals fill up, bar for admission rising A patient who might have been admitted 4 weeks ago may get sent home now Thread [Tweet]. @ashishkjha. https://twitter.com/ashishkjha/status/1333636841271078912

  11. Apr 2021
  12. Mar 2021
  13. Feb 2021
  14. Jan 2021
  15. Oct 2020
  16. Sep 2020
  17. Aug 2020
    1. Hogan, A. B., Jewell, B. L., Sherrard-Smith, E., Vesga, J. F., Watson, O. J., Whittaker, C., Hamlet, A., Smith, J. A., Winskill, P., Verity, R., Baguelin, M., Lees, J. A., Whittles, L. K., Ainslie, K. E. C., Bhatt, S., Boonyasiri, A., Brazeau, N. F., Cattarino, L., Cooper, L. V., … Hallett, T. B. (2020). Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: A modelling study. The Lancet Global Health, 0(0). https://doi.org/10.1016/S2214-109X(20)30288-6

  18. Jul 2020
  19. Jun 2020
  20. May 2020
    1. Mei, X., Lee, H.-C., Diao, K., Huang, M., Lin, B., Liu, C., Xie, Z., Ma, Y., Robson, P. M., Chung, M., Bernheim, A., Mani, V., Calcagno, C., Li, K., Li, S., Shan, H., Lv, J., Zhao, T., Xia, J., … Yang, Y. (2020). Artificial intelligence for rapid identification of the coronavirus disease 2019 (COVID-19). MedRxiv, 2020.04.12.20062661. https://doi.org/10.1101/2020.04.12.20062661

    1. Shweta, F., Murugadoss, K., Awasthi, S., Venkatakrishnan, A., Puranik, A., Kang, M., Pickering, B. W., O’Horo, J. C., Bauer, P. R., Razonable, R. R., Vergidis, P., Temesgen, Z., Rizza, S., Mahmood, M., Wilson, W. R., Challener, D., Anand, P., Liebers, M., Doctor, Z., … Badley, A. D. (2020). Augmented Curation of Unstructured Clinical Notes from a Massive EHR System Reveals Specific Phenotypic Signature of Impending COVID-19 Diagnosis [Preprint]. Infectious Diseases (except HIV/AIDS). https://doi.org/10.1101/2020.04.19.20067660

  21. Apr 2020
    1. Wynants, L., Van Calster, B., Bonten, M. M. J., Collins, G. S., Debray, T. P. A., De Vos, M., Haller, M. C., Heinze, G., Moons, K. G. M., Riley, R. D., Schuit, E., Smits, L. J. M., Snell, K. I. E., Steyerberg, E. W., Wallisch, C., & van Smeden, M. (2020). Prediction models for diagnosis and prognosis of covid-19 infection: Systematic review and critical appraisal. BMJ, m1328. https://doi.org/10.1136/bmj.m1328

  22. Mar 2020
  23. Aug 2018
  24. Dec 2017