10,000 Matching Annotations
  1. Aug 2025
    1. Reviewer #3 (Public review):

      Summary:

      This manuscript by Fontana et al. sets out to fill a critical gap in our understanding of how individuality in fear responses corresponds to changes in brain activity. Previous work has shown in myriad species that fear behaviors are highly variable, and these variabilities correlate with sex and strain, with epigenetic modifications, and neural activity in specific regions of the brain, such as the amygdala. However, a whole-brain functional assessment of whether activity in different regions of the brain is associated with fear behavior has been difficult to assess, in part due to the large size and opacity of the brain. The Kenney group overcomes these limitations using the zebrafish, together with powerful behavioral and brain imaging approaches pioneered by their lab. To overcome the technical obstacles of delivering a reproducible unconditioned stimulus in water and quantifying nuanced behavioral responses, the authors developed a three-day conditioning paradigm in which fish were repeatedly exposed to CAS in one tank context and to control water in another. Leveraging automated cluster analysis across over 300 individuals from four inbred strains, they identified four distinct memory-recall phenotypes - non-reactive, evaders, evading freezers, and freezers - demonstrating both the robustness of their assay and the influence of genetic background and sex on fear learning. Finally, whole-brain imaging using the AZBA atlas (Kenney et al. eLife) and cfos mapping coupled with multivariate analysis revealed that although all fish reengaged telencephalic regions during recall, high-freezing phenotypes uniquely recruited cerebellar, preglomerular, and pretectal nuclei, whereas mixed evasion-freezing fish showed preferential activation of preoptic and hypothalamic areas - a finding that lays the groundwork for dissecting the distributed neural substrates of associative fear in zebrafish.

      Strengths:

      The strengths of the study lie in the use of zeberarish and the innovative behavioral, modeling, and brain imaging tools applied to address this question. The question of how brain-wide activity correlates with variations in fear behavior is fundamental, and arguably, this system is the only system that could be used to address this. The statistics are appropriate, and the study is well reasoned. Overall, I like this manuscript very much and think it adds invaluable information to the field of fear/anxiety.

      Weaknesses:

      I have a few questions and suggestions.

      (1) The three-day contextual fear paradigm, as implemented - one CAS pairing on day 2 followed by a single recall test on day 3 - inevitably conflates acquisition and long-term memory, making it impossible to know whether strains like TU truly recall the association poorly or simply learn it more slowly. For example, given that TU fish extinguish fear faster than AB or TL strains in extended protocols, they may simply require additional or repeated CAS pairings to achieve the same asymptotic performance. To disentangle learning kinetics from recall strength, the assay could be revised to include multiple acquisition trials (e.g., conditioning on two or more consecutive days) with an immediate post-conditioning probe to assess acquisition independent of consolidation, and continuous measurement of freezing and evasive behaviors across each trial to fit learning curves for each strain. Such refinements - even if on a subset of the strains - would reveal whether "non-reactive" phenotypes reflect genuine recall deficits or merely delayed acquisition.

      (2) My second major question is with respect to Figure 3 panel B. This is a complex figure, and I can understand the gist of what the authors are attempting to show, but it is difficult to understand as it is. Can this be represented in a way that is clearer and explained a bit more easily?

      (3) The brain mapping is by far one of the most interesting aspects of this study, and the methods that the group used are interesting. The brain mapping, however, relies on generating "contrasting" groups (Figure 6A), and I was not clear as to how these two groups were formed. Could the authors elaborate a bit?

    1. eLife Assessment

      This valuable study focuses on defining how the HSP70 chaperone system utilizes J-domain proteins to regulate the heat shock response-associated transcription factor HSF1. Using a combination of orthogonal techniques in yeast, this manuscript provides compelling evidence that the J-domain protein Apj1 facilitates attenuation of HSF1 transcriptional activity through a mechanism involving its dissociation from heat shock gene promoter regions. This work generates new insight into the mechanism of HSF1 transcriptional regulation and is a significant contribution of broad interest to cell biologists interested in proteostasis, chaperone networks, and stress-responsive signaling.

    2. Reviewer #1 (Public review):

      Summary:

      In this study, the authors present a thorough mechanistic study of the J-domain protein Apj1 in Saccharomyces cerevisiae, establishing it as a key repressor of Hsf1 during the attenuation phase of the heat shock response (HSR). The authors integrate genetic, transcriptomic (ribosome profiling), biochemical (ChIP, Western), and imaging data to dissect how Apj1, Ydj1 and Sis1 modulate Hsf1 activity under stress and non-stress conditions. The work proposes a model where Apj1 specifically promotes displacement of Hsf1 from DNA-bound heat shock elements, linking nuclear PQC to transcriptional control.

      Strengths:

      Overall, the work is highly novel-this is the first detailed functional dissection of Apj1 in Hsf1 attenuation. It fills an important gap in our understanding of how Hsf1 activity is fine-tuned after stress induction, with implications for broader eukaryotic systems. I really appreciate the use of innovative techniques including ribosome profiling and time-resolved localization of proteins (and tagged loci) to probe Hsf1 mechanism. The overall proposed mechanism is compelling and clear-the discussion proposes a phased control model for Hsf1 by distinct JDPs, with Apj1 acting post-activation, while Sis1 and Ydj1 suppress basal activity.

      The manuscript is well-written and will be exciting for the proteostasis field and beyond.

      Comments on revised version:

      The authors have addressed all my concerns,

    3. Reviewer #2 (Public review):

      Summary:

      Overall, the work is exceptionally well done and controlled and the results properly and appropriately interpreted. While several of the approaches, while powerful, are somewhat indirect (i.e., following gene expression via ribosomal profiling) additional experiments utilizing traditional gene expression assays added in revision combine to ultimately provide a compelling answer to the main questions being asked.

      The key finding from this work is the discovery that Apj1 regulates Hsf1 attenuation in a manner that includes Hsp70. That finding is strongly supported by the experimental data. While it would be ideal to also demonstrate Apj1-controlled differential binding of Ssa1/2 to Hsf1 at either the N- or C-terminal binding sites during attenuation, the Hsp70-Hsf1 interactions are difficult to reproducibly assess in cell extracts and are likely beyond the scope of this study. However, this work paves the way in the future for potential biochemical reconstitution assays that could elucidate both Hsp70-Hsf1 interactions as well as the distinct JDP-Hsf1 interactions reported here.

      This discovery raises additional new questions about JDP specificity in HSR regulation and the role of JDPs in navigating protein aggregation and sensing of proteostatic challenge in the nucleus, thus advancing the field and opening new, exciting avenues for exploration.

    4. Reviewer #3 (Public review):

      Summary:

      The heat shock response (HSR) is an inducible transcriptional program that has provided paradigmatic insight into how stress cues feed information into the control of gene expression. The recent elucidation that the chaperone Hsp70 controls the DNA binding activity of the central HSR transcription factor Hsf1 by direct binding has spurred the question how such a general chaperone obtains specificity. This study has addressed the next logical question, how J-domain proteins execute this task in budding yeast, the leading cell model for studying the HSR. While an involvement and in part overlapping function of general class A and B J-domain proteins, Ydj1 and Sis1 are indicated by the genetic analysis a highly specific role for the class A Apj1 in displacing Hsf1 from the promoters is found unveiling specificity in the system.

      Strengths

      The central strong point of the paper is the identification of class A J-domain protein Apj1 as a specific regulator of the attenuation of the HSR by removing Hsf1 from HSEs at the promoters. The genetic evidence and the ChIP data strongly support this claim. This identification of a specific role for a lowly expressed nuclear J-domain protein changes how the wiring of the HSR should be viewed. It also raises important questions regarding the model of chaperone titration, the concept that a chaperone with limiting availability is involved in a thug of war involving competing interactions with misfolded protein substrates and regulatory interactions with Hsf1. Perhaps Apj1 with its low levels and interactions with misfolded and aggregated proteins in the nucleus is the titrated Hsp70 (co)chaperone that determines the extent of the HSR? This would mean that Apj1 is at the nexus of the chaperone titration mechanism. Although Apj1 is not a highly conserved J domain protein among eukaryotes the strength of the study is that is provides a conceptual framework for what may be required for chaperone titration in other eukaryotes: One or more nuclear J-domain proteins with low nuclear levels that has an affinity for Hsf1 and that can become limiting due to interactions with misfolded Hsp70 proteins. The provides a pathway for how these may be identified using for example ChIP-seq.

      Weakness

      A built-in challenge when studying the mechanism of the HSR is the general role of Hsp70 chaperone system and its J domain proteins. Indeed, a weakness of the study is that it is unclear what of the phenotypic effects have to do with directly recruiting Hsp70 to Hsf1 dependent on a J domain protein and what instead is an indirect effect of protein misfolding caused by the mutation. This interpretation problem is clearly and appropriately dealt with in the manuscript text and in experiments but is of such fundamental nature that it cannot easily be fully ruled out.

    1. eLife Assessment

      This important study provides compelling evidence that fever-like temperatures enhance the export of Plasmodium falciparum transmembrane proteins, including the cytoadherence protein PfEMP1 and the nutrient channel PSAC, to the red blood cell surface, thereby increasing cytoadhesion. Using rigorous and well-controlled experiments, the authors convincingly demonstrate that this effect results from accelerated protein trafficking rather than changes in protein production or parasite development. These findings significantly advance our understanding of parasite virulence mechanisms and offer insights into how febrile episodes may exacerbate malaria severity.

    2. Reviewer #1 (Public review):

      Summary:

      This manuscript from Jones and colleagues investigates a previously described phenomenon in which P. falciparum malaria parasites display increased trafficking of proteins displayed on the surface of infected RBCs, as well as increased cytoadherence in response to febrile temperatures. While this parasite response was previously described, it was not uniformly accepted, and conflicting reports can be found in the literature. This variability likely arises due to differences in the methods employed and the degree of temperature increase to which the parasites were exposed. Here, the authors are very careful to employ a temperature shift that likely reflects what is happening in infected humans and that they demonstrate is not detrimental to parasite viability or replication. In addition, they go on to investigate what steps in protein trafficking are affected by exposure to increased temperature and show that the effect is not specific to PfEMP1 but rather likely affects all transmembrane domain-containing proteins that are trafficked to the RBC. They also detect increased rates of phosphorylation of trafficked proteins, consistent with overall increased protein export.

      Strengths:

      The authors used a relatively mild increase in temperature (39 degrees), which they demonstrate is not detrimental to parasite viability or replication. This enabled them to avoid potential complications of a more severe heat shock that might have affected previously published studies. They employed a clever method of fractionation of RBCs infected with a var2csa-nanoluc fusion protein expressing parasite line to determine which step in the export pathway was likely accelerating in response to increased temperature. This enabled them to determine that export across the PVM is being affected. They also explored changes in phosphorylation of exported proteins and demonstrated that the effect is not limited to PfEMP1 but appears to affect numerous (or potentially all) exported transmembrane domain-containing proteins.

      Weaknesses:

      All the experiments investigating changes resulting from increased temperature were conducted after an increase in temperature from 16 to 24 hours, with sampling or assays conducted at the 24 hr mark. While this provided consistency throughout the study, this is a time point relatively early in the export of proteins to the RBC surface, as shown in Figure 1E. At 24 hrs, only approximately 50% of wildtype parasites are positive for PfEMP1, while at 32 hrs this approaches 80%. Since the authors only checked the effect of heat stress at 24 hrs, it is not possible to determine if the changes they observe reflect an overall increase in protein trafficking or instead a shift to earlier (or an accelerated) trafficking. In other words, if a second time point had been considered (for example, 32 hrs or later), would the parasites grown in the absence of heat stress catch up?

    3. Reviewer #2 (Public review):

      This manuscript describes experiments characterising how malaria parasites respond to physiologically relevant heat-shock conditions. The authors show, quite convincingly, that moderate heat-shock appears to increase cytoadherance, likely by increasing trafficking of surface proteins involved in this process.

      While generally of a high quality and including a lot of data, I have a few small questions and comments, mainly regarding data interpretation.

      (1) The authors use sorbitol lysis as a proxy for trafficking of PSAC components. This is a very roundabout way of doing things and does not, I think, really show what they claim. There could be a myriad of other reasons for this increased activity (indeed, the authors note potential PSAC activation under these conditions). One further reason could be a difference in the membrane stability following heat shock, which may affect sorbitol uptake, or the fragility of the erythrocytes to hypotonic shock. I really suggest that the authors stick to what they show (increased PSAC) without trying to use this as evidence for increased trafficking of a number of non-specified proteins that they cannot follow directly.

      (2) Supplementary Figure 6C/D: The KAHRP signal does not look like it should. In fact, it doesn't look like anything specific. The HSP70-X signal is also blurry and overexposed. These pictures cannot be used to justify the authors' statements about a lack of colocalisation in any way.

      (3) Figure 6: This experiment confuses me. The authors purport to fractionate proteins using differential lysis, but the proteins they detect are supposed to be transmembrane proteins and thus should always be found associated with the pellet, whether lysis is done using equinatoxin or saponin. Have they discovered a currently unknown trafficking pathway to tell us about? Whilst there is a lot of discussion about the trafficking pathways for TM proteins through the host cell, a number of studies have shown that these proteins are generally found in a membrane-bound state. The authors should elaborate, or choose an experiment that is capable of showing compartment-specific localisation of membrane-bound proteins (protease protection, for example).

      (4) The red blood cell contains, in addition to HSP70-X, a number of human HSPs (HSP70 and HSP90 are significant in this current case). As the name suggests, these proteins non-specifically shield exposed hydrophobic domains revealed upon partial protein unfolding following thermal insult. I would thus have expected to find significantly more enrichment following heat shock, but this is not the case. Is it possible that the physiological heat shock conditions used in this current study are not high enough to cause a real heat shock?

    4. Reviewer #3 (Public review):

      Summary:

      In this paper, it is established that high fever-like 39{degree sign}C temperatures cause parasite-infected red blood cells to become stickier. It is thought that high temperatures might help the spleen to destroy parasite-infected cells, and they become stickier in order to remain trapped in blood vessels, so they stop passing through the spleen.

      Strengths:

      The strength of this research is that it shows that fever-like temperatures can cause parasite-infected red blood cells to stick to surfaces designed to mimic the walls of small blood vessels. In a natural infection, this would cause parasite-infected red blood cells to stop circulating through the spleen, where the parasites would be destroyed by the immune system. It is thought that fevers could lead to infected red blood cells becoming stiffer and therefore more easily destroyed in the spleen. Parasites respond to fevers by making their red blood cells stickier, so they stop flowing around the body and into the spleen. The experiments here prove that fever temperatures increase the export of Velcro-like sticky proteins onto the surface of the infected red blood cells and are very thorough and convincing.

      Weaknesses:

      A minor weakness of the paper is that the effects of fever on the stiffness of infected red blood cells were not measured. This can be easily done in the laboratory by measuring how the passage of infected red blood cells through a bed of tiny metal balls is delayed under fever-like temperatures.

    5. Author response:

      Reviewer #1 (Public review):

      Summary:

      This manuscript from Jones and colleagues investigates a previously described phenomenon in which P. falciparum malaria parasites display increased trafficking of proteins displayed on the surface of infected RBCs, as well as increased cytoadherence in response to febrile temperatures. While this parasite response was previously described, it was not uniformly accepted, and conflicting reports can be found in the literature. This variability likely arises due to differences in the methods employed and the degree of temperature increase to which the parasites were exposed. Here, the authors are very careful to employ a temperature shift that likely reflects what is happening in infected humans and that they demonstrate is not detrimental to parasite viability or replication. In addition, they go on to investigate what steps in protein trafficking are affected by exposure to increased temperature and show that the effect is not specific to PfEMP1 but rather likely affects all transmembrane domain-containing proteins that are trafficked to the RBC. They also detect increased rates of phosphorylation of trafficked proteins, consistent with overall increased protein export.

      Strengths:

      The authors used a relatively mild increase in temperature (39 degrees), which they demonstrate is not detrimental to parasite viability or replication. This enabled them to avoid potential complications of a more severe heat shock that might have affected previously published studies. They employed a clever method of fractionation of RBCs infected with a var2csa-nanoluc fusion protein expressing parasite line to determine which step in the export pathway was likely accelerating in response to increased temperature. This enabled them to determine that export across the PVM is being affected. They also explored changes in phosphorylation of exported proteins and demonstrated that the effect is not limited to PfEMP1 but appears to affect numerous (or potentially all) exported transmembrane domain-containing proteins.

      Weaknesses:

      All the experiments investigating changes resulting from increased temperature were conducted after an increase in temperature from 16 to 24 hours, with sampling or assays conducted at the 24 hr mark. While this provided consistency throughout the study, this is a time point relatively early in the export of proteins to the RBC surface, as shown in Figure 1E. At 24 hrs, only approximately 50% of wildtype parasites are positive for PfEMP1, while at 32 hrs this approaches 80%. Since the authors only checked the effect of heat stress at 24 hrs, it is not possible to determine if the changes they observe reflect an overall increase in protein trafficking or instead a shift to earlier (or an accelerated) trafficking. In other words, if a second time point had been considered (for example, 32 hrs or later), would the parasites grown in the absence of heat stress catch up?

      We did not assess cytoadhesion at later stages, but in the supplementary figures we show that at 40 hours post infection both heat stress and control conditions have comparable proportions of VAR2CSA-positive iRBCs, whilst they differ at 24h. This is true for the DMSO (control wildtype resembling) HA-tagged lines of HSP70x and PF3D7_072500 (Supplementary Figures 9 and 12 respectively). In the light that protein levels appear not changed, we conclude that trafficking is accelerated during these earlier timepoints, but remains comparable at later stages. This would still increase the overall bound parasite mass as parasites start to adhere earlier during or after a heat stress.

      Reviewer #2 (Public review):

      This manuscript describes experiments characterising how malaria parasites respond to physiologically relevant heat-shock conditions. The authors show, quite convincingly, that moderate heat-shock appears to increase cytoadherance, likely by increasing trafficking of surface proteins involved in this process.

      While generally of a high quality and including a lot of data, I have a few small questions and comments, mainly regarding data interpretation.

      (1) The authors use sorbitol lysis as a proxy for trafficking of PSAC components. This is a very roundabout way of doing things and does not, I think, really show what they claim. There could be a myriad of other reasons for this increased activity (indeed, the authors note potential PSAC activation under these conditions). One further reason could be a difference in the membrane stability following heat shock, which may affect sorbitol uptake, or the fragility of the erythrocytes to hypotonic shock. I really suggest that the authors stick to what they show (increased PSAC) without trying to use this as evidence for increased trafficking of a number of non-specified proteins that they cannot follow directly.

      This is a valid point, however, uninfected RBCs do not lyse following heat stress, nor do much younger iRBCs, indicating that the observed effect is specific to infected RBCs at a defined stage. The sorbitol sensitivity assay is performed at 37°C under normal conditions after cells are returned to non–heat stress temperatures, so the effect is not due to transient changes in membrane permeability at elevated temperature. 

      Planned experiment: However, to increase the strength of our conclusions and further test our hypothesis, we will perform sorbitol sensitivity assays on >20 hours post infection iRBCs following heat stress in the presence and absence of furosemide, a PSAC inhibitor. If iRBC lysis is abolished with furosemide present, this would confirm that the effect is PSAC-dependent. However, the effect could also possibly be due to altered PSAC activity during heat stress which is maintained at lower temperatures, as outlined in the discussion.

      (2) Supplementary Figure 6C/D: The KAHRP signal does not look like it should. In fact, it doesn't look like anything specific. The HSP70-X signal is also blurry and overexposed. These pictures cannot be used to justify the authors' statements about a lack of colocalisation in any way.

      Planned experiment: We agree that the IFAs are not the best as presented and will include better quality supplementary images in a revised version.

      (3) Figure 6: This experiment confuses me. The authors purport to fractionate proteins using differential lysis, but the proteins they detect are supposed to be transmembrane proteins and thus should always be found associated with the pellet, whether lysis is done using equinatoxin or saponin. Have they discovered a currently unknown trafficking pathway to tell us about? Whilst there is a lot of discussion about the trafficking pathways for TM proteins through the host cell, a number of studies have shown that these proteins are generally found in a membrane-bound state. The authors should elaborate, or choose an experiment that is capable of showing compartment-specific localisation of membrane-bound proteins (protease protection, for example).

      We do not believe we identified a novel trafficking pathway, but that we capture trafficking intermediates of PfEMP1 between the PVM and the RBC periphery, in either small vesicles, and/ or possibly Maurer’s clefts. These would still be membrane embedded, but because of their small size, not be pelleted using the centrifugation speeds in our study (we did not use ultracentrifugation). This explanation, we believe, is in line with the current hypothesis of PfEMP1 and other exported TMD protein trafficking to the periphery or the Maurer’s clefts.

      (4) The red blood cell contains, in addition to HSP70-X, a number of human HSPs (HSP70 and HSP90 are significant in this current case). As the name suggests, these proteins non-specifically shield exposed hydrophobic domains revealed upon partial protein unfolding following thermal insult. I would thus have expected to find significantly more enrichment following heat shock, but this is not the case. Is it possible that the physiological heat shock conditions used in this current study are not high enough to cause a real heat shock?

      As noted by the reviewer, we do not see enrichment of red blood cell heat shock proteins following heat stress, either with FIKK10.2-TurboID or in the phosphoproteome. We used a physiologically relevant heat stress that significantly modifies the iRBC, as shown by our functional assays. While a higher temperature might induce an association of red blood cell heat shock proteins, such conditions may not accurately reflect the most commonly found context of malaria infection.

      Reviewer #3 (Public review):

      Summary:

      In this paper, it is established that high fever-like 39 C temperatures cause parasite-infected red blood cells to become stickier. It is thought that high temperatures might help the spleen to destroy parasite-infected cells, and they become stickier in order to remain trapped in blood vessels, so they stop passing through the spleen.

      Strengths:

      The strength of this research is that it shows that fever-like temperatures can cause parasite-infected red blood cells to stick to surfaces designed to mimic the walls of small blood vessels. In a natural infection, this would cause parasite-infected red blood cells to stop circulating through the spleen, where the parasites would be destroyed by the immune system. It is thought that fevers could lead to infected red blood cells becoming stiffer and therefore more easily destroyed in the spleen. Parasites respond to fevers by making their red blood cells stickier, so they stop flowing around the body and into the spleen. The experiments here prove that fever temperatures increase the export of Velcro-like sticky proteins onto the surface of the infected red blood cells and are very thorough and convincing.

      Weaknesses:

      A minor weakness of the paper is that the effects of fever on the stiffness of infected red blood cells were not measured. This can be easily done in the laboratory by measuring how the passage of infected red blood cells through a bed of tiny metal balls is delayed under fever-like temperatures.

      Previous work by Marinkovic et al. (cited in this manuscript) reported that all RBCs, both infected and uninfected, increase in stiffness at 41 °C compared with 37 °C, with trophozoites and schizonts exhibiting a particularly pronounced increase. We agree that it would be interesting to determine whether similar changes occur at physiological fever-like temperatures, and whether this increase in stiffness coincides with the period of elevated protein trafficking. However, since we have already demonstrated enhanced protein export using multiple complementary approaches, we have chosen to address these questions in a follow-up study.

    1. eLife Assessment

      This study provides important insights into how the EBH domain of microtubule end-binding protein 1 (EB1) interacts with SxIP peptides derived from the MACF plus-end tracking protein. The revised manuscript includes convincing ITC and NMR experiments that clarify the role of flanking residues and address the influence of dimerization and cooperativity on binding. While some mechanistic aspects remain difficult to resolve experimentally, the data and analysis now more clearly justify the proposed "dock-and-lock" model and its interpretive value. This work will be of interest to structural biologists and biophysicists studying microtubule-associated protein interactions.

    2. Reviewer #1 (Public review):

      Summary:

      In this article, Almeida and colleagues use a combination of NMR and ITC to study the interaction of the EBH domain of microtubule end-binding protein 1 (EB1) with SxIP peptides derived from the MACF plus-end tracking protein. EBH forms a dimer and in isolation has previously been shown to have a disordered C-terminal tail. Here, the authors use NMR to determine a solution structure of the EBH dimer bound to 11-mer SxIP peptides derived from MACF, and observe that the disordered C-terminal of EBH is recruited by residues C-terminal to the SxIP motif to fold into the final complex. By comparison of binding in different length peptides, and of EBH lacking the C-terminal tail, they show that these additional contacts increase binding affinity by an order of magnitude, greatly stabilising the interaction, in a binding mode they term 'dock-and-lock'.

      The authors also use their new structural knowledge to design peptides with higher affinities, and show in a cell model that these can be weakly recruited to microtubule ends - although a dimeric construct is necessary for efficient recruitment. Ultimately, by demonstrating the feasibility of targeting these proteins, this work points towards the possibility of designing small-molecules to block the interactions.

    3. Reviewer #2 (Public review):

      Summary:

      The C-terminal region of EB1 is responsible for protein-protein interactions, thereby recruiting the binding partners of EB1 to microtubules; the coiled-coil region (EBH) and the acidic tail are critical for their binding partners. The authors demonstrated by using NMR that the binding mode of EBH with the SxIP motif, which is a two-step process termed "dock-and-lock". The ITC analysis supports the results obtained from NMR. The initial version of the manuscript contained ambiguities on the ITC data; however, the results of the revised manuscript are convincing and support the two-step binding model.

      Strength:

      The authors propose a novel model of "dock-and-lock" by using multiple methods of NMR, ITC and cell biology.

    4. Author response:

      The following is the authors’ response to the original reviews

      We would like to express our sincere gratitude to the reviewers for their thorough analysis of the manuscript and their extremely helpful comments. We have taken all the suggestions into consideration and conducted a range of additional experiments to address the points raised. We have also extensively revised the manuscript to clarify descriptions, correct inaccuracies and remove inconsistencies. We have modified the figures for clarity and content.

      Overall, we expanded the description of the EBH structure to emphasise its dimeric nature and the impact of the two binding sites on interpreting the binding data, including cooperativity. Using ITC, we tested the effect of the pre-SxIP residues on the binding affinity with additional peptides. We found that these residues had a significant effect, albeit much smaller than that of the post-SxIP residues. We analysed the binding of the 11MACF-VLL mutant with EBH-ΔC and evaluated the exchange rates. In agreement with our model, we found that the EBH affinity for the SxIP peptide from CK5P2 (KKSRLPRILIKRSR), which has a C-terminal sequence similar to that of the 11MACF-VLLRK mutant, is 21nM, which is similar to the affinity of the mutant itself. This demonstrates the significant variation in affinity observed among natural SxIP ligands, as predicted by our study. Our responses to the specific points raised by the reviewers are provided below.

      Reviewer #1 (Public Review):

      There is no direct experimental evidence for independent dock and lock steps. The model is certainly plausible given their structural data, but all titration and CEST measurements are fully consistent with a simple one-step binding mechanism. Indeed, it is acknowledged that the results for the VLL peptide are not consistent with the predictions of this model, as affinity and dissociation rates do not co-vary. The model may still be a helpful way to interpret and discuss their results, and may indeed be the correct mechanism, but this has not yet been proven.

      Unfortunately, it is not possible to obtain direct experimental evidence because the folding of the C-terminus is too fast to influence the NMR parameters. However, as the reviewer pointed out, our structural data support the two-step model, since folding of the C-terminus is only possible once the ligand containing the post-SxIP residues has bound. By adopting a mechanistically supported model, we can analyse the contributions to binding and relate them to the structural characteristics of the complex. This provides a clearer insight into the roles of the various regions in the interaction and allows to modify them rationally to enhance the ligand affinity.

      In the revised version, we restate the equations in terms of comparing the on-rates. This provides a clearer view of the effect of the additional stage, which cannot increase the overall on-rate since the two stages are sequential. If the forward rate of the second stage is comparable to or slower than the off-rate of the first stage, the overall on-rate decreases. Conversely, if the forward rate is much faster, the overall on-rate remains unchanged. For the wild-type 11MACF peptide, we observed that the presence of the EBH C-terminus does not affect the on-rate of binding, which is in perfect agreement with the two-step model and indicates that the C-terminus folds very quickly.

      Additionally, we evaluated the binding of the 11MACF-VLL mutant to EBH-ΔC and observed a twofold decrease in Kd compared to WT 11MAC, primarily due to an increase in the on-rate. Interestingly, this rate is approximately twice as low as the overall on-rate for EBH/11MACF-VLL binding, contradicting the sequential two-step model. This suggests a more complex binding process where binding is accelerated by additional hydrophobic interactions with the unfolded C-terminus. However, given the difficulty of quantifying very slow exchange rates, it is more likely that the discrepancy is due to the accuracy of the rate measurements. Therefore, the model allows the rational analysis of changes in binding parameters due to mutations.

      There is little discussion of the fact that binding occurs to EBH dimers -  either in terms of the functional significance of this or in the  acquisition and analysis of their data. There is no discussion of  cooperation in binding (or its absence), either in the analysis of NMR  titrations or in ITC measurements. Complete ITC fit results have not  been reported so it is not possible to evaluate this for oneself.

      We added information about the dimer to the introduction, emphasising its role in enhancing interaction with microtubules (MTs) and its structural role in SxIP binding. The ITC data do not exhibit any biphasic behaviour and can be fitted to a single-site model with 1:1 stoichiometry relative to the EB1c monomer. This corresponds to two independent binding sites in the dimer. We have added the stoichiometry to Table 1 and the description. The NMR titration data for the 11MACF and 11MACF-VLL interactions were fitted to the TITAN dimer model, which includes cooperativity parameters. For WT 11MACF, both cooperativity parameters were zero, corresponding to independent binding sites in the ITC model. For 11MACF-VLL, the fitting suggests weak negative cooperativity, with a ~3-fold increase in Kd for binding to the second site and no change in the off-rate. This difference in Kd is likely to be too small to induce a biphasic shape to the ITC curve. As the cooperativity effect on the NMR spectra is small and absent in the ITC, we used the independent sites model for data analysis, as there is insufficient justification for introducing extra parameters into the model. Crucially, fitting to this model did not alter the off-rate value obtained by NMR or affect the conclusions. We added a description of cooperativity to the results and discussion.

      Three peptides are used to examine the role of C-terminal residues in SxIP motifs: 4-MACF (SKIP), 6-MACF (SKIPTP), and 11-MACF (KPSKIPTPQRK). The 11-mer demonstrates the strongest binding, but this has added residues to the N-terminal as well. It has also introduced charges at both termini, further complicating the interpretation of changes in binding affinities. Given this, I do not believe the authors can reasonably attribute increased affinities solely to post-SxIP residues.

      We tested the 9MACF peptide SKIPTPQRK, which has the same N-terminus as the 4- and 6-MACF peptides, and found that its binding affinity is ~10-fold weaker than that of 11MACF. This demonstrates the contribution of both the pre- and post-SxIP residues. This is likely due to electrostatic interactions between the positively charged N-terminus and the negatively charged EBH surface, similar to those involving the positive charges at the peptide C-terminus. Although significant, the contribution of the N-terminal peptide region is approximately one order of magnitude lower than that of the post-SxIP residues, meaning the post-SxIP region is the main affinity modulator. We have added the binding data on 9MACF and a discussion of the contributions to the manuscript.

      Experimental uncertainties are, with exceptions, not reported.

      Uncertainties added to the number in Table 1 and the text. Information on how uncertainties were calculated added to Table 1.

      Reviewer #1 (Recommendations For The Authors):

      (1) Have you tested the binding of the WT dimer in your cell model?

      We haven’t tested the WT dimer because it has already been reported in the 2009 Cell paper by Honappa et al. In the cell experiments, our main focus was on recruiting the high-affinity mutant to MTs. The low level of recruitment, despite the mutant's high affinity, highlights the importance of dimerisation or additional contributions to binding.

      (2) Please deposit all NMR dynamics measurements (relaxation rates and derived model-free parameters) alongside structural data in the BMRB.

      The relaxation data have been submitted to BMRB, IDs 53187 and 53188

      (3) Please report complete fitting results, e.g. for ITC, including stoichiometries. Clarify what this means for binding to a dimer, and if there is any evidence of cooperativity. Figure 3C, right hand panel, shows an unusual stoichiometry, can the authors comment on this?

      We have added more information on stoichiometry and cooperativity; please refer to our response to the above comment for details. We repeated the titration for the VLLRK mutant using fresh peptide stock. As expected, the stoichiometry was close to 1:1 relative to the EB1c monomer. The new data are now included in the table and figure.

      (4) Please report uncertainties for all measurements of Kd, koff, kon, ∆G, ∆H, ∆S, and explain whether these are determined from statistical analysis, technical or biological repeats (and where reported, clarify between standard deviation/standard error). Please also be aware of standard guidelines for reporting significant figures for data with uncertainties, as these have not been followed in Table 1.

      Uncertainties added to the number in Table 1 and the text. Information on how uncertainties were calculated added to Table 1.

      (5) The construct design for the cell model is unclear - given the importance of flanking residues, please report and discuss how the sequences are attached to venus: which termini is attached, and what is the linker composition?

      We cloned the peptides at the C-terminus of mTFP, after the GS linker of the vector. The peptide itself contains a GS sequence at the N-terminus, creating a highly flexible GSGS linker that separates the SxIP region from mTFP and minimises the potential effect of mTFP on binding. We followed the design of Honappa et al. to enable direct comparison with the published results. We have added this information to the 'Methods' section..

      (6) Which HSQC pulse sequence was used for 2D lineshape analysis? The authors mention non-linear chemical shift changes, presumably associated with the dimer interface - this would be useful to expand upon and clarify.

      For the lineshape analysis, we used the standard Bruker sequence hsqcfpf3gpphwg with soft-pulse watergate water suppression and flip-back. This sequence is included in the TITAN model. We added the description of the non-linear chemical shift changes and connection of these changes to the allosteric effect of the binding to the supplementary information describing details of the lineshape analysis.

      (7) Figure 1A could usefully highlight the dimer interface in the surface representation also.

      We believe that including the interface would make the figure too complicated. The dimer configuration is shown in different colours for the two subunits, clearly demonstrating their involvement in forming the binding site.

      (8) Figures 1C and 1D could usefully show a secondary structure schematic to assist the reader. The x-axis in these figures is not linear and this should be corrected. The calculation of combined chemical shift perturbations should be described.

      Thank you for the helpful suggestion. We changed the scale of the figures and added the diagram of the secondary structure.

      (9) Units are missing from many figure axes.

      We added missing units to the axes. Thank you for highlighting this.

      (10) What peptide concentrations are used in Figure 1C? Presumably, these should be reported at saturation for this to be a fair comparison, this should be clarified.

      The protein concentration was 50 µM. Peptides 4MACF and 6MACF were added at a 100-fold molar excess and peptide 11MACF was added at a 4-fold excess. Saturation was achieved for 11MACF. This was impossible for the short peptides due to their mM affinity. This information has been added to the figure legend. The figure's main aim is to illustrate the differences in the chemical shift perturbation profiles, which can be achieved even if full saturation is not attained. Although the absolute value of the chemical shifts is proportional to the degree of saturation, the distribution of the largest chemical shift changes is independent of this degree. Therefore, we can draw conclusions about the distribution of changes by comparing under non-saturation conditions.

      (11) The presentation of raw peak intensities in Figure 1D shows primarily the flexibility of the C-terminal region associated with high intensities. Beyond this, when comparing the binding of peptides it would be much more informative to show relative peak intensities. Residues around 210-225 appear to show strong broadening in the presence of peptide, but this is masked by the low initial intensity. Can the authors clarify and discuss this? Also, what peptide concentrations were used for this comparison? For a fair comparison, it should be close to saturation - particularly to exclude exchange broadening contributions.

      The protein concentration was 50 µM. 6MACF and 6MACF peptides were added at a 100-fold excess and 11MACF at a 4-fold excess. Saturation was achieved for 11MACF. This was impossible to achieve for the short peptide due to its mM affinity. This information has been added to the figure legend. Upon checking the data, we found a small systematic offset in the coiled-coil region of some of the complexes, as the integral intensity had been used in the initial plot. While this does not change the conclusion regarding the high dynamics of the C-terminus, it does create an inaccurate perception of the relative intensities of the folded regions in the different complexes, as noted by the reviewer. We have now plotted the amplitudes at the maximum of the peaks, which do not exhibit any systematic offset as they are much less susceptible to baseline distortions. We are grateful to the reviewer for highlighting this apparent discrepancy.

      (12) Figure 2 - the scale for S2 order parameters appears to be backwards, given the caption, but its range should be indicated. Similarly, the range of values for Rex should also be indicated. These data should also be tabulated/plotted in supporting information.

      We have corrected the figure legend and added S2 and Rex plots to the supplementary material. The figure aims to highlight regions of increased mobility, while the plots provide full quantitative information on the values. We thank the reviewer for pointing out the error in the figure legend and for the suggestions regarding the plots.

      (13) The scale in Figure 3B is illegible. Indeed, the whole structure is quite small and could usefully be expanded.

      We increased the size of the structure panels and added a scale.

      (14) Figure 4 does not show a decrease in exchange rates, as per the caption - no comparison of exchange rates is shown, only thermodynamic information in panel E. Panel C shows CEST measurements, but it is not clear what system this is for - please clarify, and consider showing the comparable data for the ∆C construct for comparison.

      We have amended the figure legend to clarify that the figure shows binding parameters. We added information about the CEST profiles for the EBH/11MACF interaction to the figure legend (Figure 4C). Exchange with the ∆C construct is too fast for CEST measurements. We used lineshape analysis to evaluate the exchange rates for this construct.

      (15) The schematics shown in Figure 4D, and elsewhere, are really quite difficult to understand. They may pose additional challenges to colourblind readers. Please consider ways that this could be clarified.

      We simplified the colour scheme in the model to make the colours easier to see and to highlight SxIP and non-SxIP regions. We believe that this improved the clarity of the figure.

      (16) Figures S1D/E - the x-axes are unclear and units are missing from the y-axes.

      We re-labelled the axes to clarify the scale and units. Thank you for pointing this.

      Reviewer #2 (Public Review):

      The C-terminal tail of EB1, which is adjacent to EBH and is not analyzed in this study, is highly acidic and plays an important role in protein interactions. If the authors discuss the C-terminus of EB1, they should analyze the whole C-terminus of EB1, which would strengthen the conclusion they have made.

      Honapa et al., Cell, 2009, reported chemical shift perturbations (CSPs) on the peptide binding for the full EB1c fragment, which includes the negatively charged C-terminus. Similar to our study, they observed significant CSPs in the FVIP region but negligible CSPs at the negatively charged EEY end. They concluded that the final eight EB1c residues did not contribute to binding and used a truncated EB1c construct for their structural analysis. Building on that study, we used the same EEY-truncated construct to analyse the contribution of the C-terminus in more detail. We believe that conducting additional experiments with the full C-terminus with respect to SxIP binding would be superfluous, as it would merely replicate the findings of Honapa EA. We have added the rationale for selecting the truncated EB1c construct to the text, referencing Honapa et al.

      Reviewer #2 (Recommendations For The Authors):

      (1) Figure 2C: The authors can analyze the 11MACF peptide as well, to provide more assurance to their argument. It would be easier to distinguish the sequences of "SKIP" and "FVIP" by changing their colors.

      Our relaxation analysis (Fig. 2C) focuses on the dynamics of the unstructured C-terminal region in both the free and complex forms. Further relaxation analysis of the peptide would not provide additional information on this, and would be complicated by the presence of free peptide in solution.

      (2) Figure 3B: Acidic residues in EBH should be labeled.<br /> Page 6, line 11: If the authors insist that the acidic patch will influence the interactions between EB1 and the peptide, the data of the analysis using the entire EB1 C-terminus should be included, given that the C-terminal tail of EB1 is highly acidic.

      To test the contribution of charge to binding, we conducted an ITC experiment at increasing salt concentrations. We observed a significant increase in Kd values when the concentration of NaCl increased from 50 to 150 mM, which supports our conclusion regarding the significant electrostatic contribution. This conclusion is independent of the presence or absence of the C-terminus.

      As we explained earlier, Honapa et al., Cell 2009, conducted an NMR experiment on the full EB1c and observed no CPSs in the EEY region, indicating a negligible contribution from the EEY region to SxIP binding. Therefore, we think that additional experiments involving the entire C-terminus are unnecessary, as they would simply replicate the results of Honapa et al. We have added the rationale for selecting the truncated EB1c to the text, referencing Honapa et al.

      It would be very difficult to label the acidic residues without enlarging 3B considerably. However, we do not think this is necessary as we are not discussing any specific residues. The current figure shows the distribution of the surface charge, which is sufficient for our purposes.

      (3) Figure 2B (Page 4, line 27): The side chain of S5477 should be drawn. The authors should include a figure of the crystal structure of EBH and SxIP as a comparison (Honnappa et al., Cell, 2009). In their paper, Honnappa et al. performed chemical shift perturbation titrations by NMR. From their analysis, I imagine that the EB1 tail may not be critical for the EB1 C-terminus:SxIP interactions, since the signals in the tail are not significantly perturbed. The authors should cite this paper.

      We are grateful to the reviewer for highlighting this. CSP analysis of the Honapa EA revealed significant changes in the FVIP region, which we also observed. They also reported negligible CSPs at the EEY end, demonstrating that this part of the tail is non-critical and can be removed. We have added text to the manuscript to highlight the similarity between CSPs and those observed in Honapa EA. Figure 2B shows the side chains for the residues with the strongest detected contacts. These do not include S5477.

      (4) Figure 3C (ITC data): The stoichiometric ratios in the ITC data look strange. EBH vs KPSKIPVLLRKRK, is it 1:1?

      We repeated the ITC experiments using a new stock of the peptide and a new batch of the protein, checking the concentrations using UV spectroscopy. The new experiments produced a stoichiometry close to 1, as shown in the table.

      (5) Page 10, line 27: "The TPQ sequence of 11MACF is not optimal...": What is the meaning of "optimal"? The transient interaction between EB1 and its binding partner is responsible for the dynamics of the microtubule cytoskeleton. In a sense, the relatively weak interaction is "optimal" for the system. The authors should rephrase the word.

      We agree that weak interactions are optimal from a functional perspective, as they have been selected through evolution. In our case, 'optimal' refers to the hydrophobic interaction with the C-terminus. We replaced 'optimal' with 'ideal' to draw more attention to the second part of the sentence, which clarifies the context.

      (6) Page 11, line 2: "small number of comets enriched in the peptide that were too faint for the quantitative analysis, comparable to the reported previously (Honnappa, Gouveia et al. 2009)." Honnappa et al. used EGFP-fusion constructs in their study: EGFP forms a weak dimer, which presumably gave different results from the authors' mTFP-constructs. The authors can note this point in the text.

      We are grateful to the reviewer for highlighting this. This aligns well with our conclusion that dimerisation is important for localisation to comets. We have added this point to the text.

      (7) Page 10, line 21: The authors calculate the free energy of complex formation between EBH and MACF peptide and explain in the text, but it is hard to follow.

      We simplified and clarified the description of the energy contributions by focusing on the SxIP and non-SxIP regions of the peptide, as well as the EBH C-terminus.

      Minor points:

      Page 2, line 9: IP motifs are not usually located in the C-terminus. For example, SxIP in Tastin is located in the N-terminal region, and SxIPs in CLASP are in the middle.

      We corrected this statement, removing C-terminal.

      Page 3, line 4: The authors should note the residue numbers of SKIP.

      We think that in this context the residue number of the SxIP region are not important and would be distracting.

      Figure 3D and Figure S3F: Make the colors and the order the same between the two figures.

      We changed the colour scheme and the order of ITC parameters in S3F to match the main figure.

      Figure 1A, 2B, Figure S5: Change the color of SKIP from other residues in the same chain, otherwise the readers cannot distinguish. Likewise, change the color of FVIP in Figure 2B.

      We think that changing the colours will complicate the figures unnecessary. The corresponding residues are clearly labelled in the figures.

      Figure 3, Figure S5, S6, S7: Box the letters of SKIP for clarity.

      We boxed the SxIP region in S5 (new S6) and underlined in S6 (new S7). In S7 (new S8) the location of SxIP is very clear from the homology.

      Figure 3B; Figure S2: Hard to recognize the peptide (MACF in green).

      We increased the size of 3D and S2, making it easier to see the peptide.

      Figure 1C and D: Make the residual numbers of the x-axes the same between the two graphs.

      We made new plots with a linear scale for the residue numbers.

      Figure 2A: The structures shown are not EB1. It should be described as EBH or EB1(191-260 a.a.).

      Corrected.

      Page 5, line 17: "the S2 values of the C-terminus" should be "the S2 values of the C-terminal loop in EBH", otherwise it is confusing.

      Corrected.

      Page 6, line 27; Figure S3C and S6: Please indicate the assignments of the resonances from "253FVI255" in the Figures.

      We labelled the peaks corresponding to the 253FVI255 region in figure S6 (new S7). Figure S3 shows EBH-ΔC that does not include this region.

      Page 7, line 25: Figure S7 should be S8.

      Corrected

      Page 12, line 6: "sulfatrahsferases" must by a typo.

      Corrected.

    1. eLife Assessment

      This useful study develops an individual-based model to investigate the evolution of division of labor in vertebrates, comparing the contributions of group augmentation and kin selection. The model incorporates several biologically relevant features, including age-dependent task switching and separate manipulation of relatedness and group-size benefits. However, the evidence remains inadequate to support the authors' central claim that group augmentation is the primary driver of vertebrate division of labor. Key modelling assumptions-such as floater dominance advantages, the absence of task synergy, and the narrow parameter space explored-restrict the potential for kin selection to produce division of labor, thereby limiting the generality of the conclusions.

    2. Reviewer #1 (Public review):

      This paper presents a computational model of the evolution of two different kinds of helping ("work," presumably denoting provisioning, and defense tasks) in a model inspired by cooperatively breeding vertebrates. The helpers in this model are a mix of previous offspring of the breeder and floaters that might have joined the group, and can either transition between the tasks as they age or not. The two types of help have differential costs: "work" reduces "dominance value," (DV), a measure of competitiveness for breeding spots, which otherwise goes up linearly with age, but defense reduces survival probability. Both eventually might preclude the helper from becoming a breeder and reproducing. How much the helpers help, and which tasks (and whether they transition or not), as well as their propensity to disperse, are all evolving quantities. The authors consider three main scenarios: one where relatedness emerges from the model, but there is no benefit to living in groups, one where there is no relatedness, but living in larger groups gives a survival benefit (group augmentation, GA), and one where both effects operate. The main claim is that evolving defensive help or division of labor requires the group augmentation; it doesn't evolve through kin selection alone in the authors' simulations.

      This is an interesting model, and there is much to like about the complexity that is built in. Individual-based simulations like this can be a valuable tool to explore the complex interaction of life history and social traits. Yet, models like this also have to take care of both being very clear on their construction and exploring how some of the ancillary but potentially consequential assumptions affect the results, including robust exploration of the parameter space. I think the current manuscript falls short in these areas, and therefore, I am not yet convinced of the results.

      In this round, the authors provided some clarity, but some questions still remain, and I remain unconvinced by a main assumption that was not addressed.

      Based on the authors' response, if I understand the life history correctly, dispersers either immediately join another group (with 1-the probability of dispersing), or remain floaters until they successfully compete for a breeder spot or die? Is that correct? I honestly cannot decide because this seems implicit in the first response but the response to my second point raises the possibility of not working while floating but can work if they later join a group as a subordinate. If it is the case that floaters can have multiple opportunities to join groups as subordinates (not as breeders; I assume that this is the case for breeding competition), this should be stated, and more details about how.

      So there is still some clarification to be done, and more to the point, the clarification that happened only happened in the response. The authors should add these details to the main text. Currently, the main text only says vaguely that joining a group after dispersing " is also controlled by the same genetic dispersal predisposition" without saying how.

      In response to my query about the reasonableness of the assumption that floaters are in better condition (in the KS treatment) because they don't do any work, the authors have done some additional modeling but I fail to see how that addresses my point. The additional simulations do not touch the feature I was commenting on, and arguably make it stronger (since assuming a positive beta_r -which btw is listed as 0 in Table 1- would make floaters on average be even more stronger than subordinates). It also again confuses me with regard to the previous point, since it implies that now dispersal is also potentially a lifetime event. Is that true?

      Meanwhile, the simplest and most convincing robustness check, which I had suggested last round, is not done: simply reduce the increase in the R of the floater by age relative to subordinates. I suspect this will actually change the results. It seems fairly transparent to me that an average floater in the KS scenario will have R about 15-20% higher than the subordinates (given no defense evolves, y_h=0.1 and H_work evolves to be around 5, and the average lifespan for both floaters and subordinates are in the range of 3.7-2.5 roughly, depending on m). That could be a substantial advantage in competition for breeding spots, depending on how that scramble competition actually works. I asked about this function in the last round (how non-linear is it?) but the authors seem to have neglected to answer.

      More generally, I find that the assumption (and it is an assumption) floaters are better off than subordinates in a territory to be still questionable. There is no attempt to justify this with any data, and any data I can find points the other way (though typically they compare breeders and floaters, e.g.: https://bioone.org/journals/ardeola/volume-63/issue-1/arla.63.1.2016.rp3/The-Unknown-Life-of-Floaters--The-Hidden-Face-of/10.13157/arla.63.1.2016.rp3.full concludes "the current preliminary consensus is that floaters are 'making the best of a bad job'."). I think if the authors really want to assume that floaters have higher dominance than subordinates, they should justify it. This is driving at least one and possibly most of the key results, since it affects the reproductive value of subordinates (and therefore the costs of helping).

      Regarding division of labor, I think I was not clear so will try again. The authors assume that the group reproduction is 1+H_total/(1+H_total), where H_total is the sum of all the defense and work help, but with the proviso that if one of the totals is higher than "H_max", the average of the two totals (plus k_m, but that's set to a low value, so we can ignore it), it is replaced by that. That means, for example, if total "work" help is 10 and "defense" help is 0, total help is given by 5 (well, 5.1 but will ignore k_m). That's what I meant by "marginal benefit of help is only reduced by a half" last round, since in this scenario, adding 1 to work help would make total help go to 5.5 vs. adding 1 to defense help which would make it go to 6. That is a pretty weak form of modeling "both types of tasks are necessary to successfully produce offspring" as the newly added passage says (which I agree with), since if you were getting no defense by a lot of food, adding more food should plausibly have no effect on your production whatsoever (not just half of adding a little defense). This probably explains why often the "division of labor" condition isn't that different than the no DoL condition.

    3. Reviewer #2 (Public review):

      Summary:

      This paper formulates an individual-based model to understand the evolution of division of labor in vertebrates. The model considers a population subdivided in groups, each group has a single asexually-reproducing breeder, other group members (subordinates) can perform two types of tasks called "work" or "defense", individuals have different ages, individuals can disperse between groups, each individual has a dominance rank that increases with age, and upon death of the breeder a new breeder is chosen among group members depending on their dominance. "Workers" pay a reproduction cost by having their dominance decreased, and "defenders" pay a survival cost. Every group member receives a survival benefit with increasing group size. There are 6 genetic traits, each controlled by a single locus, that control propensities to help and disperse, and how task choice and dispersal relate to dominance. To study the effect of group augmentation without kin selection, the authors cross-foster individuals to eliminate relatedness. The paper allows for the evolution of the 6 genetic traits under some different parameter values to study the conditions under which division of labour evolves, defined as the occurrence of different subordinates performing "work" and "defense" tasks. The authors envision the model as one of vertebrate division of labor.

      The main conclusion of the paper is that group augmentation is the primary factor causing the evolution of vertebrate division of labor, rather than kin selection. This conclusion is drawn because, for the parameter values considered, when the benefit of group augmentation is set to zero, no division of labor evolves and all subordinates perform "work" tasks but no "defense" tasks.

      Strengths:

      The model incorporates various biologically realistic details, including the possibility to evolve age polytheism where individuals switch from "work" to "defence" tasks as they age or vice versa, as well as the possibility of comparing the action of group augmentation alone with that of kin selection alone.

      Weaknesses:

      The model and its analysis is limited, which makes the results insufficient to reach the main conclusion that group augmentation and not kin selection is the primary cause of the evolution of vertebrate division of labor. There are several reasons.

      First, the model strongly restricts the possibility that kin selection is relevant. The two tasks considered essentially differ only by whether they are costly for reproduction or survival. "Work" tasks are those costly for reproduction and "defense" tasks are those costly for survival. The two tasks provide the same benefits for reproduction (eqs. 4, 5) and survival (through group augmentation, eq. 3.1). So, whether one, the other, or both tasks evolve presumably only depends on which task is less costly, not really on which benefits it provides. As the two tasks give the same benefits, there is no possibility that the two tasks act synergistically, where performing one task increases a benefit (e.g., increasing someone's survival) that is going to be compounded by someone else performing the other task (e.g., increasing that someone's reproduction). So, there is very little scope for kin selection to cause the evolution of labour in this model. Note synergy between tasks is not something unusual in division of labour models, but is in fact a basic element in them, so excluding it from the start in the model and then making general claims about division of labour is unwarranted. I made this same point in my first review, although phrased differently, but it was left unaddressed.

      Second, the parameter space is very little explored. This is generally an issue when trying to make general claims from an individual-based model where only a very narrow parameter region has been explored of a necessarily particular model. However, in this paper, the issue is more evident. As in this model the two tasks ultimately only differ by their costs, the parameter values specifying their costs should be varied to determine their effects. Instead, the model sets a very low survival cost for work (yh=0.1) and a very high survival cost for defense (xh=3), the latter of which can be compensated by the benefit of group augmentation (xn=3). Some very limited variation of xh and xn is explored, always for very high values, effectively making defense unevolvable except if there is group augmentation. Hence, as I stated in my previous review, a more extensive parameter exploration addressing this should be included, but this has not been done. Consequently, the main conclusion that "division of labor" needs group augmentation is essentially enforced by the limited parameter exploration, in addition to the first reason above.

      Third, what is called "division of labor" here is an overinterpretation. When the two tasks evolve, what exists in the model is some individuals that do reproduction-costly tasks (so-called "work") and survival-costly tasks (so-called "defense"). However, there are really no two tasks that are being completed, in the sense that completing both tasks (e.g., work and defense) is not necessary to achieve a goal (e.g., reproduction). In this model there is only one task (reproduction, equation 4,5) to which both "tasks" contribute equally and so one task doesn't need to be completed if the other task compensates for it. So, this model does not actually consider division of labor.

    1. eLife Assessment

      This study introduces a novel and potentially valuable metric-phenological lag-to quantify the gap between observed and expected phenological shifts under climate warming. While the dataset is extensive and the framework is clearly defined, key assumptions (e.g., base temperature, linear forcing response) are not empirically tested, and the analysis underexplores key spatial and climatic gradients. The strength of evidence is mostly solid but would benefit from further validation and deeper analysis.

    2. Reviewer #1 (Public review):

      Jiang et al. present a measure of phenological lag by quantifying the effects of abiotic constraints on the differences between observed and expected phenological changes, using a combination of previously published phenology change data for 980 species, and associated climate data for study sites. They found that, across all samples, observed phenological responses to climate warming were smaller than expected responses for both leafing and flowering spring events. They also show that data from experimental studies included in their analysis exhibited increased phenological lag compared to observational studies, possibly as a result of reduced sensitivity to climatic changes. Furthermore, the authors present evidence that spatial trends in phenological responses to warming may differ than what would be expected from phenological sensitivity, due to the seasonal timing of when warming occurs. Thus, climate change may not result in geographic convergences of phenological responses. This study presents an interesting way to separate the individual effects of climate change and other abiotic changes on the phenological responses across sites and species.

      Strengths:

      A straightforward mathematical definition of phenological lag allows for this method to potentially be applied in different geographic contexts. Where data exists, other researchers can partition the effects of various abiotic forcings on phenological responses that differ from those expected from warming sensitivity alone.

      Identifying phenological lag, and associated contributing factors, provides a method by which more nuanced predictions of phenological responses to climate change can be made. Thus, this study could improve ecological forecasting models.

      Weaknesses:

      The analysis here could be more robust. A more thorough examination of phenological lag would provide stronger evidence that the framework presented has utility. The differences in phenologica lag by study approach, species origin, region, and growth form are interesting, and could be expanded. For example, the authors have the data to explore the relationships between phenological lag and the quantitative variables included in the final model (altitude, latitude, mean annual temperature) and other spatial or temporal variables. This would also provide stronger evidence for the author's claims about potential mechanisms that contribute to phenological lag.

      The authors include very little data visualizations, and instead report results and model statistics in tables. This is difficult to interpret and may obscure underlying patterns in the data. Including visual representations of variable distributions and between-variable relationships, in addition to model statistics, provides stronger evidence than model statistics alone.

    3. Reviewer #3 (Public review):

      Summary:

      The authors developed a new phenological lag metric and applied this analytical framework to a global dataset to synthesize shifts in spring phenology and assess how abiotic constraints influence spring phenology.

      Strengths:

      The dataset developed in this study is extensive, and the phenological lag metric is valuable.

      Weaknesses:

      The stability of the method used in this study needs improvement, particularly in the calculation of forcing requirements. In addition, the visualization of the results (such as Table 1) should be enhanced.

    4. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Jiang et al. present a measure of phenological lag by quantifying the effects of abiotic constraints on the differences between observed and expected phenological changes, using a combination of previously published phenology change data for 980 species, and associated climate data for study sites. They found that, across all samples, observed phenological responses to climate warming were smaller than expected responses for both leafing and flowering spring events. They also show that data from experimental studies included in their analysis exhibited increased phenological lag compared to observational studies, possibly as a result of reduced sensitivity to climatic changes. Furthermore, the authors present compelling evidence that spatial trends in phenological responses to warming may differ from what would be expected from phenological sensitivity, due to the seasonal timing of when warming occurs. Thus, climate change may not result in geographic convergences of phenological responses. This study presents an interesting way to separate the individual effects of climate change and other abiotic changes on the phenological responses across sites and species.

      Greater phenological lag with experimental studies results in reduced sensitivity to climatic changes, not other way around.

      Strengths:

      A clearly defined and straightforward mathematical definition of phenological lag allows for this method to be applied in different scientific contexts. Where data exists, other researchers can partition the effects of various abiotic forcings on phenological responses that differ from those expected from warming sensitivity alone.

      Sensitivity does not tell the magnitude of phenological changes, nor does it provide indications of mechanisms responsible for changes in spring phenology. Because of uneven warming, the same average temperature change (annual or spring temperatures) can have greater (greater warming prior to budburst) or smaller (smaller warming prior to budburst) phenological change than that with even warming. When average temperature change is close to zero, uneven warming can lead to infinite sensitivity values, either advanced (warmer temperatures prior to budburst) or delayed (cooler temperatures prior to budburst) spring phenology.

      It is not clear why sensitivity is so popularly used in phenological research.

      Identifying phenological lag and associated contributing factors provides a method by which more nuanced predictions of phenological responses to climate change can be made. Thus, this study could improve ecological forecasting models.

      Weaknesses:

      The authors include very few data visualizations, and instead report results and model statistics in tables. This is difficult to interpret and may obscure underlying patterns in the data. Including visual representations of variable distributions and between-variable relationships, in addition to model statistics, provides stronger evidence than model statistics alone.

      The use of stepwise, automated regression may be less suitable than a hypothesis-driven approach to model selection, combined with expanded data visualization. The use of stepwise regression may produce inappropriate models based on factors of the sample data that may preclude or require different variable selection.

      We used two statistical methods, variance analysis to examine differential phenological responses (Figure 2) and regression analysis to determine the relative importance of forcing change, budburst temperature, and physiological lag, the drivers of changes in spring phenology (Table 2). Our objective was to understand why plants show differential responses by research approach, species origin, climatic region, and growth form identified in previous research. Variable selection may affect minor (altitude, latitude, MAT, and average spring temperature change) or insignificant (photoperiod and long-term precipitation) variables, but not those related to drivers of spring phenology. We are not sure how hypothesis-driven approach can help with our objective.

      Reviewer #2 (Public review):

      Summary:

      This is a meta-analysis of the relative contributions of spring forcing temperature, winter chilling, photoperiod and environmental variables in explaining plant flowering and leafing phenology. The authors develop a new summary variable called phenology lag to describe why species might have different responses than predicted by spring temperature.

      Strengths:

      The summary statistic is used to make a variety of comparisons, such as between observational studies and experimental studies.

      Weaknesses:

      By combining winter chilling effects, photoperiod effects, and environmental stresses that might affect phenology, the authors create a new variable that is hard to interpret. The authors do not provide information in the abstract about new insights that this variable provides.

      Phenological lag contains effects of all constraints that may include chilling effects, photoperiod effects, and environmental stresses and is, indeed, hard to interpret without investigation of individual constraints. In our synthesis, spring phenology (or photoperiod effect) is not significant across all studies complied. It is also unlikely that lack of winter chilling causes the systemic differences in phenological lag between observational and experimental studies or between native and exotic species (see discussion at lines 335-339). At individual study level, the contribution of different constraints to the overall lag effect can be specifically determined if moisture stresses, species chilling and photoperiod effects, or cold hardiness are known from on-site monitoring or previous research.

      The meaning of phenological lag is described at lines 34-38 in the abstract.

      Comments:

      It would be useful to have a map showing the sites of the studies.

      A map showing the sites of the studies was added as supplementary Figure S1.

      The authors should provide a section in which the strengths and weaknesses of the approach are discussed. Is it possible that mixing different types of data, studies, sample sizes, number of years, experimental set-ups, and growth habits results in artifacts that influence the results?

      Both strengths and weaknesses are discussed at various places throughout the paper. The weakness of our method, as indicated by the reviewer, is the inclusion of different constraints in the phenological lag and has been described at lines 34-38 in the abstract and lines 80-86 in the introduction of the concept. We have also expanded Conclusion section to discuss possible caveats at lines 369-393.

      As in all data analyses, the results can change with addition of more/different data, especially when sample size is relatively small. Ideally, comparisons are made among levels of fixed effects while controlling variations of other conditions. In phenological studies, however, climatic, phenological, and biological conditions all vary. For example, observational and experimental studies differ not only in the nature of warming (natural climate change vs artificial warming), but also in levels of warming (greater warming with experimental studies) and climatic, phenological, and biological conditions (Table 1). All phenological syntheses (or meta-analyses) have to make do with this uncontrolled nature of phenological data.

      Now that the authors have created this new variable, phenological lag, which of the components that contribute to it has the most influence on it? Or which components are most influential in which circumstances? For example, what are some examples where photoperiod causes a phenological lag?

      Any of the phenological constraints identified can contribute alone or in combination with others to the overall effect of phenological lag. Across all studies with this synthesis, the lack of significance with spring phenology rules out photoperiod effect, while the association of longer phenological lags with longer accumulation of winter chilling does not suggest general chilling shortage with the current extent of climate change.

      Although spring phenology is not significant across all studies, photoperiod effect can be influential at individual studies where changes in spring phenology are large. However, reported photoperiod effects in the literature are mostly confounding effects with temperatures, i.e., longer photoperiods are associated with longer hours of high daytime temperatures (see Chu et al., 2021). Other than European beech under an unlikely scenario of climate change (growth resumes at beginning of winter), there has been not clear evidence showing the effect of photoperiod in constraining spring phenology.

      Another confounding effect with photoperiod is extra heating effect with artificial light sources in warming experiments. Some early studies have shown that leaf temperature can be several degrees above the ambient air, due to long-wave radiation with artificial light sources. It is hard to believe the constraining effect of photoperiod on spring phenology if phenological changes are within inter-annual variations (can be a few weeks), although photoperiod effect has been increasingly discussed recently.

      Recommendations for the authors:

      Reviewing Editor:

      A key methodological concern is the inconsistent definition of growth temperature across observations. It is calculated over the interval between the baseline phenological date and the expected date under warming - a window that varies by species, site, and treatment. This variability limits comparability across observations and may introduce circularity, as growth temperature is derived from the same modelled expectation (i.e., the expected phenological advance) that it is later used to explain.

      The term “growth temperature” has been replaced with “budburst temperature” to indicate temperatures at species events. Budburst temperature is the average temperature within the window of expected response with the warmer climate and, as indicated by the editor, varies by species, sites, and treatments. This species-specific temperature provides an opportunity to compare among species, sites, and treatments and helps explain differences in observed responses, as demonstrated in the discussion of results in this synthesis.

      Forcing change, budburst temperature, and expected response are related. High budburst temperatures are associated with smaller expected responses, which helps explain smaller observed responses with late season species and areas of warm climates that have been often attributed to chilling or photoperiod effect.

      Additionally, the use of degree days above 0 {degree sign}C as a universal metric for spring forcing oversimplifies species' temperature responses. This approach assumes not only a fixed base temperature but also a linear response to temperature accumulation, which overlooks well-established nonlinear or species-specific thermal response curves. To improve the robustness and interpretability of the phenological lag framework, we encourage the authors to consider these limitations and explore ways to test or justify these modelling assumptions more explicitly.

      The use of 0 degree base temperature may not be the best choice for some species. Except for some early work, there has been few experimental research on physiological aspects of chilling and forcing processes. A popular alternative is modelling using assumed temperature response models. As variables influencing chilling and forcing processes are not controlled, the determined base temperatures and temperature response models may be OK with the species studied under particular conditions but would be inappropriate for applications beyond. It is hard to believe that species, in a study, all have different base temperature for accumulation of spring forcing and optimum temperature for winter chilling. Apparently, this is the result of model fitting, not actual dynamics of chilling and forcing processes.

      Two base temperatures are commonly used, 0 and 5 oC, although choice is not generally justified. It is known for long time that temperatures above 0oC contribute to spring forcing. My personal experience at tree nursery suggests that seedlings will flush after winter cold storage, even at forcing temperatures ≤ 5 oC in the dark. The use of 5 oC is rather the choice of tradition (5 oC is commonly used to define growing season) than scientific justification. The use of high base temperatures may not make much difference at high temperatures due to short forcing duration but will underestimate forcing at low temperatures due to long forcing duration and large proportions of forcing between 0 and base temperatures. We are not aware of any experimental studies that demonstrate non-zero base temperatures.

      Within the dominant range of spring temperatures (e.g., between 5 and 25 oC), the forcing responses to temperatures can be approximated with linear models. Again, we are not aware of any non-linear forcing models that can be safely applied beyond the species studied under particular conditions.

      Regardless, the uses of different base temperatures or forcing models would not affect the partitioning of phenological changes, simply because temperature response models reflect physiological aspects of chilling and forcing processes and would not change with climate warming.

      The authors introduce a new metric, phenological lag, to assess how phenological constraints influence spring phenology, offering new insights into phenological research. However, there are several concerns. First, the research question and the study's aim are not clearly presented. The authors primarily analyzed phenological lag and simply compared it across different groups, but additional analyses are needed to adequately address the research question. In addition, the broader importance of this study is not clearly explained - why this research is necessary and what it contributes to the field should be explicitly stated.

      The research question is outlined at lines 92-108. We added “Our objective was to determine how phenological responses differ among different groups and how differential responses are related to drivers of spring phenology, i.e., forcing change, budburst temperature, and phenological lag” at lines 106-108.

      (1) Abstract: The methodological improvements and more key results should be included.

      Growth temperature has been replaced with “budburst temperature” to indicate temperatures at time of budburst. More results are added at lines 40-48.

      (2) Line 32: Terms such as "sensitivity analysis" and "phenological lag" need clearer definitions.

      We added at lines 32-33 to define sensitivity analysis “that is based on rates of phenological changes, not on drivers of spring phenology”. Phenological lag is defined at lines 34-38.

      (3) Lines 38-47: Further results and the urgency or importance of the study should be conveyed.

      More results are added at lines 40-48. The importance of this study is described at lines 48-50.

      (4) Line 57-58: This sentence is unclear - please clarify.

      The sentence is modified to “difficult using sensitivity analysis that is based on rates of phenological changes, not on drivers of spring phenology".

      (5) Line 60: break "endodormancy".

      Breaking dormancy would mean endodormancy.

      (6) Line 67: What does "growth temperature" refer to?

      Growth temperature has been replaced with “budburst temperature” to indicate temperatures at time of budburst. It is calculated as the average temperature within the window of expected response with the warmer climate.

      (7) Lines 87-94: The specific purpose of the study is vague. Why is this method needed, and how will it serve future research?

      We have modified the paragraph at lines 92-108 to provide justification and objective of the study.

      (8) Lines 163-164: The rationale for exploring differences in observed responses and phenological lag needs to be better justified.

      We added explanations at lines 179-182 why observed responses and phenological lag were chosen in the analysis.

      (9) Lines 178-183: Tables and figures should be properly cited within the text.

      Table S3 was added at line 197.

      (10) Lines 195-198: Clarify whether variables were scaled before model analysis.

      We clarified at line 192 “variables were not standardized prior to regression analysis”.

      (11) Line 206-207: The observed response is presented as the number of advanced days, while temperature sensitivity refers to the response of spring phenology to temperature - these are different variables and should not be conflated.

      The two variables are related but show different aspects of phenological changes. Observed response divided by average temperature change gives temperature sensitivity. Observed response is the total changes in number of days observed, while temperature sensitivity is the change in number of days per unit change in average temperature (oC). Sensitivity may reflects rates of phenological change with temperature (see responses to reviewer 1).

      (12) In the discussion section, the authors compared phenological responses among different groups separately. This section requires substantial improvement to more clearly answer the research question.

      These discussions are related to our objective “how phenological responses differ among different groups identified in previous research (i.e., research approach, species origin, climatic region, and growth form) and how these differential responses are related to drivers of spring phenology, i.e., forcing change, budburst temperature, and phenological lag”.

    1. eLife Assessment

      This paper presents a valuable software package, named "Virtual Brain Inference" (VBI), that enables faster and more efficient inference of parameters in dynamical system models of whole-brain activity, grounded in artificial network networks for Bayesian statistical inference. The authors have provided convincing evidence, across several case studies, for the utility and validity of the methods using simulated data from several commonly used models, but more thorough benchmarking could be used to demonstrate the practical utility of the toolkit. This work will be of interest to computational neuroscientists interested in modelling large-scale brain dynamics.

    2. Reviewer #1 (Public review):

      This work provides a new Python toolkit for combining generative modeling of neural dynamics and inversion methods to infer likely model parameters that explain empirical neuroimaging data. The authors provided tests to show the toolkit's broad applicability, accuracy, and robustness; hence, it will be very useful for people interested in using computational approaches to better understand the brain.

      Strengths:

      The work's primary strength is the tool's integrative nature, which seamlessly combines forward modelling with backward inference. This is important as available tools in the literature can only do one and not the other, which limits their accessibility to neuroscientists with limited computational expertise. Another strength of the paper is the demonstration of how the tool can be applied to a broad range of computational models popularly used in the field to interrogate diverse neuroimaging data, ensuring that the methodology is not optimal to only one model. Moreover, through extensive in-silico testing, the work provided evidence that the tool can accurately infer ground-truth parameters even in the presence of noise, which is important to ensure results from future hypothesis testing are meaningful.

      Weaknesses

      The paper still lacks appropriate quantitative benchmarking relative to non-Bayesian-based inference tools, especially with respect to performance accuracy and computational complexity and efficiency. Without this benchmarking, it is difficult to fully comprehend the power of the software or its ability to be extended to contexts beyond large-scale computational brain modelling.

    3. Reviewer #2 (Public review):

      Summary:

      Whole-brain network modeling is a common type of dynamical systems-based method to create individualized models of brain activity incorporating subject-specific structural connectome inferred from diffusion imaging data. This type of model has often been used to infer biophysical parameters of the individual brain that cannot be directly measured using neuroimaging but may be relevant to specific cognitive functions or diseases. Here, Ziaeemehr et al introduce a new toolkit, named "Virtual Brain Inference" (VBI), offering a new computational approach for estimating these parameters using Bayesian inference powered by artificial neural networks. The basic idea is to use simulated data, given known parameters, to train artificial neural networks to solve the inverse problem, namely, to infer the posterior distribution over the parameter space given data-derived features. The authors have demonstrated the utility of the toolkit using simulated data from several commonly used whole-brain network models in case studies.

      Strength:

      - Model inversion is an important problem in whole-brain network modeling. The toolkit presents a significant methodological step up from common practices, with the potential to broadly impact how the community infers model parameters.<br /> - Notably, the method allows the estimation of the posterior distribution of parameters instead of a point estimation, which provides information about the uncertainty of the estimation, which is generally lacking in existing methods.<br /> - The case studies were able to demonstrate the detection of degeneracy in the parameters, which is important. Degeneracy is quite common in this type of models. If not handled mindfully, they may lead to spurious or stable parameter estimation. Thus, the toolkit can potentially be used to improve feature selection or to simply indicate the uncertainty.<br /> - In principle, the posterior distribution can be directly computed given new data without doing any additional simulation, which could improve the efficiency of parameter inference on the artificial neural network is well-trained.

      Weaknesses:

      - The z-scores used to measure prediction error are generally between 1-3, which seems quite large to me. It would give readers a better sense of the utility of the method if comparisons to simpler methods, such as k-nearest neighbor methods, are provided in terms of accuracy.<br /> - A lot of simulations are required to train the posterior estimator, which is computationally more expensive than existing approaches. Inferring from Figure S1, at the required order of magnitudes of the number of simulations, the simulation time could range from days to years, depending on the hardware. The payoff is that once the estimator is well-trained, the parameter inversion will be very fast given new data. However, it is not clear to me how often such use cases would be encountered. It would be very helpful if the authors could provide a few more concrete examples of using trained models for hypothesis testing, e.g., in various disease conditions.

    1. eLife Assessment

      This important study identifies and partially characterises two proteins optimised for coordinated peptidoglycan degradation during two spore morphogenesis programs in the bacterium Myxococcus xanthus. The evidence supporting the conclusions is solid, although the description of the data is somewhat overstated. After some editing, the paper will be of interest to those studying peptidoglycan synthesis and reorganisation, which is a central aspect of microbial cell biology.

    2. Reviewer #1 (Public review):

      Summary:

      Ramirez Carbo et al. use the powerful M. xanthus spore morphogenesis model to address fundamental mechanisms in coordinated peptidoglycan remodeling and degradation. As peptidoglycan is an essential macromolecule and difficult to study in vivo, the authors use indirect but important methodology. The authors first identify two lytic transglycosylase (Ltg) enzymes necessary for spore morphogenesis using mutant phenotypic studies. They characterize these mutants for their role in coordinating spore morphogenesis induced either in fruiting bodies (starvation-dependent) or in liquid-rich media conditions (chemical-dependent). They conclude from these phenotypic and epistatic analyses that LtgA is necessary for morphogenesis during chemical-induced sporulation, and LtgB appears to be necessary to coordinate LtgA activity by interfering with LtgA function. Under starvation-induced sporulation, the absence of LtgB interferes with the building of fruiting bodies. LtgA does not appear to play a primary role in promoting aggregation into fruiting bodies, nor in degradation of peptidoglycan as assayed by loss of signal in anti-PG immunofluorescence. The authors demonstrate that the purified periplasmic domain of LtgA is highly active in degrading purified PG sacculi in vitro, while that of LtgB is highly reduced (relative to LtgA or lysozyme). The authors use photoactivated mCherry Lyt fusions and PALM to track the fusion protein mobility, which they state correlates with activity as immobilization results from PG binding. They demonstrate that in vegetative cells, a greater proportion of LtgA-PAmCh is more immobile (more active) than LtgB-PAmCh, but that directly after chemical-induction of sporulation, LtgB-PAmCh becomes more immobile (active). These analyses in the partner mutant backgrounds suggest that LtgA-PAmCh is more immobile (less active) in the absence of LtgB, but the reverse is not observed. Finally, the authors demonstrate that overexpression of LtgA in vegetative conditions leads to cell rounding, likely because of uncontrolled PG degradation, while overexpression of LtgB displays no phenotype.

      Strengths:

      This paper capitalizes on a novel spore morphogenesis mechanism to define proteins and mechanisms involved in peptidoglycan reorganization. The authors use the powerful PALM microscopy technique to assess Ltg activity in vivo by assaying for immobility as a proxy for PG binding. The authors elucidate a novel mechanism by which two Ltg's function together- with one (LtgB) seeming to regulate the activity of the other (the primary Ltg).

      Despite some weaknesses, there is no question that this study provides important insight into mechanisms of peptidoglycan remodeling- a difficult but highly impactful area of study with implications for the development of novel therapeutics and the discovery of mechanisms of fundamental bacterial physiology.

      Weaknesses:

      In many places, the authors do not adequately justify interpretations of their assays, leading to some apparently unjustified conclusions. Many of these are minor and may just require citations to demonstrate that the interpretations are justified by previous studies (detailed in recommendations below), but two bigger concerns are as follows:

      (1) It is not clear how the muropeptides listed in Figure 1 were assigned, and it is missing in the methods. In the sporulating conditions, the spectra look like combinations of multiple peaks, and the data, as stated, is not convincing to the non-specialist eye.

      (2) The observation that the lytB mutant prevents appropriate aggregation into fruiting bodies does not allow the interpretation that the absence of LytB prevents PG morphogenesis in the starvation-induced sporulation pathway, per se. It is more likely that in the lytB mutant, the morphogenesis program is not even triggered. This is because signaling proteins and regulators (specifically, C-signal accumulation/activated FruA), which are dependent on increased cell-cell signaling in the fruiting body, do not accumulate appropriately in shallow aggregates. C-signal/FruA are necessary to trigger the sporulation program in FBs. BTW: A hypothesis to explain the indirect effect of ltgB absence on aggregation could be that UDP-precursors are not regulated appropriately (unregulated LtyA??), so polysaccharides necessary for motility are not properly produced.

      Along these lines, fruiting body formation does not equal sporulation, and even "darkened" fruiting bodies can be misleading, as some mutants form polysaccharide-rich fruiting bodies (that appear dark under certain light conditions in the stereomicroscope) but do not sporulate efficiently. The wording in the text suggests that the authors assume that sporulation levels are normal because fruiting bodies are produced (see specific comments for details).

      (3) The authors repeatedly state that production of spore coat polysaccharides likely affects the PG IP staining (see below), but this is not well justified. A citation is needed if this has already been directly shown, or the language needs to be softened.

      (4) Better justification for the immobility of Lyt proteins in vivo as an assay for activity may be required. If this is well known in the field, it should be explicitly stated. The authors address this better in the discussion - but still state it is a correlation.

    3. Reviewer #2 (Public review):

      Summary:

      The authors' initial goal was to demonstrate loss of PG during the slow sporulation process of Myxococcus xanthus, with examination of the PG degradation products in order to implicate possible enzymes involved. Upon finding a predominance of LGT products, they examined sporulation in strains lacking each of the 14 candidate LGTs encoded in the genome, leading to the identification of two sporulation-linked LGTs. An extensive characterization of the roles played by these LGTs. One LGT is responsible for the slow sporulation PG degradation, while another is required for the rapid sporulation process. Interestingly, the "slow" LGT seems to provide an important regulatory brake on the rapid enzyme. Single-molecule fluorescent tracking of these enzymes was used to develop a model for their interaction with PG that mimics their observed activity. The rate of PG synthesis activity was also shown to impact the rate of PG degradation, suggesting potential interplay between the synthetic and degradative enzymes.

      Strengths:

      The genetic analysis to identify sporulation-linked LGTs and their effects on growth, sporulation, and spore properties was well done and productive. The fluorescence microscopy to track LGT mobility, presumably tied to activity, produced a convincing argument about the mechanism of regulation of one LGT by another.

      Weaknesses:

      While the impact of LGTs on sporulation was clearly demonstrated, the PG analysis that resulted from the study of LGTs raised some important unanswered questions. The analyses suggest that the PG is degraded to quite small fragments, which would normally be lost during the purification of PG. How these small fragments were thus detected is unclear, and this suggests a more complex story concerning PG metabolism during sporulation. An anti-PG antibody is used to quantify PG in the spores, but it is not made clear what the specificity of this antibody is, and thus whether it would recognize the LGT-altered PG of the spore. The authors suggest a "new mechanism of sporulation" when they have actually simply identified an important factor (PG degradation by LGTs) within a complex "process of sporulation".

    1. eLife Assessment

      In this manuscript, Chen et al. used cryo-ET and in vitro reconstituted system to demonstrate that the autoinhibited form of LRRK2 can also assemble into filaments on the microtubule surface, with a new interface involving the N-terminal repeats that were disordered in the previous active-LRRK2 filament structure. The structure obtained in this study is the highest resolution of LRRK2 filaments done by subtomogram averaging, representing a major technical advance compared to the previous paper from the same group. This is an important study, especially considering the pharmacological implications of the effect of inhibitors of the protein. The strengths of the data are convincing, but the study would be considerably strengthened if the authors explored the physiological significance of the new interfaces and the incomplete decoration of microtubules described here.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Chen et al. use cryo-electron tomography and an in vitro reconstitution system to demonstrate that the autoinhibited form of LRRK2 can assemble into filaments that wrap around microtubules. These filaments are generally shorter and less ordered than the previously characterized active-LRRK2 filaments. The structure reveals a novel interface involving the N-terminal repeats, which were disordered in the earlier active filament structure. Additionally, the autoinhibited filaments exhibit distinct helical parameters compared to the active form.

      Strengths:

      This study presents the highest-resolution structure of LRRK2 filaments obtained via subtomogram averaging, marking a significant technical advance over the authors' previous work published in Cell. The data are well presented, with high-quality visualizations, and the findings provide meaningful insights into the structural dynamics of LRRK2.

      Weaknesses and Suggestions:

      The revised manuscript by Chen et al. has fully addressed all of my previous suggestions regarding the rearrangement of the main figures.

    3. Reviewer #2 (Public review):

      The authors of this paper have done much pioneering work to decipher and understand LRRK2 structure and function and uncover the mechanism by which LRRK2 binds to microtubules and to study the roles that this may play in biology. Their previous data demonstrated that LRRK2 in the active conformation (pathogenic mutation or Type I inhibitor complex) bound to microtubule filaments in an ordered helical arrangement. This they showed induced a "roadblock" in the microtubule impacting vesicular trafficking. The authors have postulated that this is a potentially serious flaw with Type 1 inhibitors and that companies should consider generating Type 2 inhibitors in which the LRRK2 is trapped in the inactive conformation. Indeed the authors have published much data that LRRK2 complexed to Type 2 inhibitors does not seem to associate with microtubules and cause roadblocks in parallel experiments to those undertaken with type 1 inhibitors published above.

      In the current study the authors have undertaken an in vitro reconstitution of microtubule bound filaments of LRRK2 in the inactive conformation, which surprisingly revealed that inactive LRRK2 can also interact with microtubules in its auto-inhibited state. The authors' data shows that while the same interphases are seen with both the active LRRK2 and inactive microtubule bound forms of LRRK2, they identified a new interphase that involves the WD40-ARM-ANK- domains that reportedly contributes to the ability of the inactive form of LRRK2 to bind to microtubule filaments. The structures of the inactive LRRK2 complexed to microtubules are of medium resolution and do not allow visualisation of side chains.

      This study is extremely well written and the figures incredibly clear and well presented. The finding that LRRK2 in the inactive autoinhibited form can associate with microtubules is an important observation that merits further investigation. This new observation makes an important contribution to the literature and builds upon the pioneering research that this team of researchers has contributed to the LRRK2 fields.

      Comments on revised version:

      The authors have adequately addressed my questions and those of the other Reviewers in my opinion.

    4. Reviewer #3 (Public review):

      Summary:

      The manuscript by Chen et al examines the structure of the inactive LRRK2 bound to microtubules using cryo-EM tomography. Mutations in this protein have been shown to be linked to Parkinson's Disease. It is already shown that the active-like conformation of LRRK2 binds to the MT lattice, but this investigation shows that full-length LRRk2 can oligomerize on MTs in its autoinhibited state with different helical parameters than were observed with active-like state. The structural studies suggest that the autoinhibited state is less stable on MTs.

      Strengths:

      The protein of interest is very important biomedically and a novel conformational binding to microtubules in proposed

      The authors have addressed my original critique.

    1. eLife Assessment

      This is an important study that demonstrates that blood pressure variability impairs myogenic tone and diminishes baroreceptor reflex. The study also provides evidence that blood pressure variability blunts functional hyperemia and contributes to cognitive decline. The evidence is compelling whereby the authors use appropriate and validated methodology in line with or more rigorous than the current state-of-the-art.

    2. Reviewer #1 (Public review):

      This study examined the effect of blood pressure variability on brain microvascular function and cognitive performance. By implementing a model of blood pressure variability using intermittent infusion of AngII for 25 days, the authors examined different cardiovascular variables, cerebral blood flow and cognitive function during midlife (12-15-month-old mice). Key findings from this study demonstrate that blood pressure variability impairs baroreceptor reflex and impairs myogenic tone in brain arterioles, particularly at higher blood pressure. They also provide evidence that blood pressure variability blunts functional hyperemia and impairs cognitive function and activity. Simultaneous monitoring of cardiovascular parameters, in vivo imaging recordings, and the combination of physiological and behavioral studies reflect rigor in addressing the hypothesis. The experiments are well designed, and data generated are clear.

      A number of issues raised earlier were addressed by the authors in the revised manuscript. The responses are convincing. These included circadian rhythm considerations, baroreflex findings, BP fluctuations driven by animal movement, and data presentation.

      Overall, this is a solid study with huge physiological implications. I believe that it will be of great benefit to the field.

    3. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      This study examined the effect of blood pressure variability on brain microvascular function and cognitive performance. By implementing a model of blood pressure variability using an intermittent infusion of AngII for 25 days, the authors examined different cardiovascular variables, cerebral blood flow, and cognitive function during midlife (12-15-month-old mice). Key findings from this study demonstrate that blood pressure variability impairs baroreceptor reflex and impairs myogenic tone in brain arterioles, particularly at higher blood pressure. They also provide evidence that blood pressure variability blunts functional hyperemia and impairs cognitive function and activity. Simultaneous monitoring of cardiovascular parameters, in vivo imaging recordings, and the combination of physiological and behavioral studies reflect rigor in addressing the hypothesis. The experiments are well-designed, and the data generated are clear. I list below a number of suggestions to enhance this important work:

      (1) Figure 1B: It is surprising that the BP circadian rhythm is not distinguishable in either group. Figure 2, however, shows differences in circadian rhythm at different timepoints during infusion. Could the authors explain the lack of circadian effect in the 24-h traces?

      The circadian rhythm pattern is apparent in Figure 2 (Active BP higher than Inactive BP), where BP is presented as 12hour averages. When the BP data is expressed as one-hour averages (rather than minute-to-minute) over 24hours, now included in the revised manuscript as Supplemental Figure 3C-D, the circadian rhythm becomes noticeable. In addition, we have included one-hour average BP data for all mice in the control and BPV groups, Supplemental Figure 3A-B.

      Notably, the Ang-II induced pulsatile BP pattern remains evident in the one-hour averages for the BPV group, Supplemental Figure 3B. To minimize bias and validate variability, pump administrations start times were randomized for both control and BPV groups, Supplemental Figure 3A-B. Despite these adjustments, the circadian rhythm profile of BP is consistently maintained across individual mice and in the collective dataset, Supplemental Figure 3C-D.

      (2) While saline infusion does not result in elevation of BP when compared to Ang II, there is an evident "and huge" BP variability in the saline group, at least 40mmHg within 1 hour. This is a significant physiological effect to take into consideration, and therefore it warrants discussion.

      Thank you for this comment. The large variations in BP in the raw traces during saline infusion reflects transient BP changes induced by movement/activity, which is now included in Figure 1B (maroon trace). The revised manuscript now includes Line 222 “Note that dynamic activity-driven BP changes were apparent during both saline- and Ang II infusions, Figure 1B”.

      (3) The decrease in DBP in the BPV group is very interesting. It is known that chronic Ang II increases cardiac hypertrophy, are there any changes to heart morphology, mass, and/or function during BPV? Can the decrease in DBP in BPV be attributed to preload dysfunction? This observation should be discussed.

      The lower DBP in the BPV group was already present at baseline, while both groups were still infused with saline, and was a difference beyond our control. However, this is an important and valid consideration, particularly considering the minimal yet significant increase in SBP within the BPV group (Figure 1D). Our goal was to induce significant transient blood pressure responses (BPV) and investigate the impact on cardiovascular and neurovascular outcomes in the absence of hypertension. We did not anticipate any major cardiac remodeling at this early time point (considering the absence of overt hypertension) and thus cardiac remodeling was not assessed and this is now discussed in the revised manuscript (Line 443-453).

      (4) Examining the baroreceptor reflex during the early and late phases of BPV is quite compelling. Figures 3D and 3E clearly delineate the differences between the two phases. For clarity, I would recommend plotting the data as is shown in panels D and E, rather than showing the mathematical ratio. Alternatively, plotting the correlation of ∆HR to ∆SBP and analyzing the slopes might be more digestible to the reader. The impairment in baroreceptor reflex in the BPV during high BP is clear, is there any indication whether this response might be due to loss of sympathetic or gain of parasympathetic response based on the model used?

      We appreciate the reviewer’s suggestion and have accordingly generated new figures displaying scatter plots of SBP vs HR with linear regression analysis (Figure 3D-G). Our goal is to further investigate which branch of the autonomic nervous system is affected in this model. The loss of a bradycardic response suggests either an enhancement of sympathetic activity, a reduction in parasympathetic activity, or a combination of both. This is briefly discussed in the revised manuscript (Line 486-496).

      Heart rate variability (HRV) serves as an index of neurocardiac function and dynamic, non-linear autonomic nervous system processes, as described in Shaffer and Ginsber[1]. However, given that our data was limited to BP and HR readings collected at one-minute intervals, our primary assessment of autonomic function is limited to the bradycardic response. Further studies will be necessary to fully characterize the autonomic parameters influenced by chronic BPV.

      (5) Figure 3B shows a drop in HR when the pump is ON irrespective of treatment (i.e., independent of BP changes). What is the underlying mechanism?

      We apologize for any lack of clarity. These observed heart rate (HR) changes occurred during Ang II infusion, when blood pressure (BP) was actively increasing. In the control group, the pump solution was switched to Ang II during specific periods (days 3-5 and 21-25 of the treatment protocol) to induce BP elevations and a baroreceptor response, allowing direct comparisons between the control and BPV group.

      To clarify this point, we have revised Line 260-263 of the manuscript: “To compare pressure-induced bradycardic responses between BPV and control mice at both early and later treatment stages, a cohort of control mice received Ang II infusion on days 3-5 (early phase) (Supplemental Figure 4) and days 21-25 (late phase) thereby transiently increasing BP”.

      Additionally, a detailed description has been added to the Methods section (Line 96-101): “Controls receiving Ang II: To facilitate between-group comparisons (control vs BPV), a separate cohort of control mice were subjected to the same pump infusion parameters as BPV mice but for a brief period receiving Ang II infusions on days 3-5 and 21-25 for experiments assessing pressure-evoked responses, including bradycardic reflex, myogenic response, and functional hyperemia at high BP.”

      (6) The correlation of ∆diameter vs MAP during low and high BP is compelling, and the shift in the cerebral autoregulation curve is also a good observation. I would strongly recommend that the authors include a schematic showing the working hypothesis that depicts the shift of the curve during BPV.

      Thank you for this insightful comment. The increase in vessel reactivity to BP elevations in parenchymal arterioles of BPV mice suggests that chronic BPV induces a leftward shift and a potential narrowing of the cerebral autoregulation range (lower BP thresholds for both the upper and lower limits of autoregulation). This has been incorporated (and discussed) into the revised manuscript (see Figure 5N).

      One potential explanation for these changes is that the absence of sustained hypertension, a prominent feature in most rodent models of hypertension, limits adaptive processes that protect the cerebral microcirculation from large BP fluctuations (e.g., vascular remodeling). While this study does not specifically address arteriole remodeling, the lack of such adaptation may reduce pressure buffering by upstream arterioles, thereby rendering the microcirculation more vulnerable to significant BP fluctuations.

      The unique model allows for measurements of parenchymal arteriole reactivity to acute dynamic changes in BP (both an increase and decrease in MAP). Our findings indicate that chronic BPV enhances the reactivity of parenchymal arterioles to BP changes—both during an increase in BP and upon its return to baseline, Supplemental Figure 5C, F. The data suggest an increased myogenic response to pressure elevation, indicative of heightened contractility, a common adaptive process observed in rodent models of hypertension[2-4]. However, our model also reveals a notable tendency for greater dilation when the BP drops, Supplemental Figure 5F. This intriguing observation may suggest ischemia during the vasoconstriction phase (at higher BP), leading to enhanced release of dilatory signals, which subsequently manifest as a greater dilation upon BP reduction. This phenomenon bears similarities to chronic hypoperfusion models[5,6], where vasodilatory mechanisms become more pronounced in response to sustained ischemic conditions. Future studies investigating the effects of BPV on myogenic responses and brain perfusion will be a priority for our ongoing research.

      (7) Functional hyperemia impairment in the BPV group is clear and well-described. Pairing this response with the kinetics of the recovery phase is an interesting observation. I suggest elaborating on why BPV group exerts lower responses and how this links to the rapid decline during recovery.

      Based on the heightened reactivity of BPV parenchymal arterioles to intravascular pressure (Figure 5), we anticipate that the reduction of sensory-evoked dilations results from an increased vasoconstrictive activity and/or a decreased availability of vasodilatory signaling pathways (NO, EETs, COX-derived prostaglandins)[7,8]. Consequently, the magnitude of the FH response is blunted during periods of elevated BP in BPV mice.

      Additionally, upon termination of the stimulus-induced response−when vasodilatory signals would typically dominate−vasoconstrictive mechanisms are rapidly engaged (or unmasked), leading to quicker return to baseline. This shift in the balance between vasodilatory and vasoconstrictive forces favors vasoconstriction, contributing to the altered recovery kinetics observed in BPV mice. This has been included in the Discussion section of the revised manuscript.

      (8) The experimental design for the cognitive/behavioral assessment is clear and it is a reasonable experiment based on previous results. However, the discussion associated with these results falls short. I recommend that the authors describe the rationale to assess recognition memory, short-term spatial memory, and mice activity, and explain why these outcomes are relevant in the BPV context. Are there other studies that support these findings? The authors discussed that no changes in alternation might be due to the age of the mice, which could already exhibit cognitive deficits. In this line of thought, what is the primary contributor to behavioral impairment? I think that this sentence weakens the conclusion on BPV impairing cognitive function and might even imply that age per se might be the factor that modulates the various physiological outcomes observed here. I recommend clarifying this section in the discussion.

      We thank the reviewer for this comment. Clinical studies have demonstrated that patients with elevated BPV exhibit impairments across multiple cognitive domains, including declines in processing speed[9] and episodic memory[10]. To evaluate memory function, we utilized behavioral tests: the novel object recognition (NOR) task to assess episodic memory[11] and the spontaneous Y-maze to evaluate short-term spatial memory[12].

      Previous research indicates that older C57Bl6 mice (14-month-old) exhibit cognitive deficits compared to younger counterparts (4- and 9-month-old)[13]. To ensure rigorous selection for behavioral testing, we conducted preliminary NOR assessment, evaluating recognition memory at the one-hour delay but observing failures at the four-, and 24-hour delays, indicating age-related deficits. Based on these results, animals failing recognition criteria were excluded from subsequent behavioral assessment. However, because no baseline cognitive testing was conducted for the spontaneous Y-maze, it is possible that some mice with aged-related deficits were included in this test, which may have influenced data interpretation.

      Additionally, the absence of differences in the Y-maze performance may suggest that short-term spatial memory remains intact following 25 days of BPV, a point that is now discussed in the revised manuscript.

      (9) Why were only male mice used?

      We appreciate this comment and acknowledge the importance of conducting experiments in both male and female mice. Studies involving female mice are currently ongoing, with telemetry data collection approximately halfway completed and two-photon imaging studies on functional hyperemia also partially completed. However, using middleaged mice for these experiments has proven challenging due to high mortality rates following telemetry surgeries. As a result, we initially limited our first cohort to male mice.

      (10) In the results for Figure 3: "Ang II evoked significant increases in SBP in both control and BPV groups;...". Also, in the figure legend: "B. Five-minute average HR when the pump is OFF or ON (infusing Ang II) for control and BPV groups...." The authors should clarify this as the methods do not state a control group that receives Ang II.

      Please refer to response to comment 5.

      Reviewer #2 (Public review):

      Summary:

      Blood pressure variability has been identified as an important risk factor for dementia. However, there are no established animal models to study the molecular mechanisms of increased blood pressure variability. In this manuscript, the authors present a novel mouse model of elevated BPV produced by pulsatile infusions of high-dose angiotensin II (3.1ug/hour) in middle-aged male mice. Using elegant methodology, including direct blood pressure measurement by telemetry, programmable infusion pumps, in vivo two-photon microscopy, and neurobehavioral tests, the authors show that this BPV model resulted in a blunted bradycardic response and cognitive deficits, enhanced myogenic response in parenchymal arterioles, and a loss of the pressure-evoked increase in functional hyperemia to whisker stimulation.

      Strengths:

      As the presentation of the first model of increased blood pressure variability, this manuscript establishes a method for assessing molecular mechanisms. The state-of-the-art methodology and robust data analysis provide convincing evidence that increased blood pressure variability impacts brain health.

      Weaknesses:

      One major drawback is that there is no comparison with another pressor agent (such as phenylephrine); therefore, it is not possible to conclude whether the observed effects are a result of increased blood pressure variability or caused by direct actions of Ang II.

      We acknowledge this limitation and have attempted to address the concern by introducing an alternative vasopressor, norepinephrine (NE), Figure 4. A subcutaneous dose of 45 µg/kg/min was titrated to match Ang II-induced transient BP pulse (Systolic BP ~150-180 mmHg), Figure 4A. Similar to Ang II treated mice, NE-treated mice exhibited no significant changes in average mean arterial pressure (MAP) throughout the 20-day treatment period (Figure 4B). Although there was a trend (P=0.08) towards increased average real variability (ARV) (Figure 4C left), it did not reach statistical significance. The coefficient of variation (CV) (Figure 4C right) was significantly increased by day 3-4 of treatment (P=0.02).

      Notably, unlike the bradycardic response observed during Ang II-induced BP elevations, NE infusions elicited a tachycardic response (Figure 4A), likely due to β-1 adrenergic receptor activation. However, significant mortality was observed within the NE cohort: three of six mice died prematurely during the second week of treatment, and two additional mice required euthanasia on days 18 and 20 due to lethargy, impaired mobility, and tachypnea.

      While we recognize the importance of comparing results across vasopressors, further investigation using additional vasopressors would require a dedicated study, as each agent may induce distinct off-target effects, potentially generating unique animal models. Alternatively, a mechanical approach−such as implanting a tethered intra-aortic balloon[14] connected to a syringe pump−could be explored to modulate blood pressure variability without pharmacological intervention. However, such an approach falls beyond the scope of the present study.

      Ang II is known to have direct actions on cerebrovascular reactivity, neuronal function, and learning and memory. Given that Ang II is increased in only 15% of human hypertensive patients (and an even lower percentage of non-hypertensive), the clinical relevance is diminished. Nonetheless, this is an important study establishing the first mouse model of increased BPV.

      We agree that high Ang II levels are not a predominant cause of hypertension in humans, which is why it is critical that our pulsatile Ang II dosing did not cause overt hypertension, (no increase in 24-hour MAP). Ang II was solely a tool to produce controlled, transient increases in BP to yield a significant increase in BPV.

      Regarding BPV specifically, prior studies indicate that primary hypertensive patients with elevated urinary angiotensinogen-to-creatinine ratio exhibit significantly higher mean 24-hour systolic ARV compared to those with lower ratios[15]. However, the fundamental mechanisms driving these harmful increases in BPV remain poorly defined. A central theme across clinical BPV studies is impaired arterial stiffness, which has been proposed to contribute to BPV through reduced arterial compliance and diminished baroreflex sensitivity. Moreover, increased BPV can exert mechanical stress on arterial walls, leading to arterial remodeling and stiffness−ultimately perpetuating a detrimental feed-forward cycle[16].

      In our model, male BPV mice exhibited a minimal yet significant elevation in SBP without corresponding increases in DBP, potentially reflecting isolated systolic hypertension, which is strongly associated with arterial stiffness[17,18]. Our initial goal was to establish controlled rapid fluctuations in BP, and Ang II was selected as the pressor due to its potent vasoconstrictive properties and short half-life[19].

      We appreciate the reviewer’s insightful comment and acknowledge the necessity of exploring alternative mechanisms underlying BPV, and independent of Ang II. It is our long-term goal to investigate these factors in further studies.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      (1) How was the dose of Ang II determined? It seems that this dose (3.1ug/hr) is quite high.

      The Ang II dose was titrated in a preliminary study to one that induced a significant and transient BP response without increasing 24-hour blood pressure (i.e. no hypertension).

      Ang II was delivered subcutaneously at 3.1 μg/hr, a concentration comparable to high-dose Ang II administration via mini-osmotic pumps (~1700 ng/kg/min)[20], with one-hour pulses occurring every 3-4 hours. With 6 pulses per day, the total daily dose equates to 18.6 µg/day in a ~30 gram mouse.

      For comparison, if the same 18.6 µg/day dose were administered continuously via a mini-osmotic pump (18.6 µg/0.03kg/1440min), the resulting dosage would be approximately 431 ng/kg/min[21,22], aligning with subpressor dose levels. Thus, while the total dose may appear high, it is not delivered in a constant manner but rather intermittently, allowing for controlled, rapid variations in blood pressure.

      (2) Were behavioral studies performed on the same mice that were individually housed? Individual housing causes significant stress in mice that can affect learning and memory tasks (PMC6709207). It's not a huge issue since the control mice would have been housed the same way, but it is something that could be mentioned in the discussion section.

      Behavioral studies were performed on mice that were individually housed following the telemetry surgery. The study was started once BP levels stabilized, as mice required several days to achieve hemodynamic stability post-surgery. Consequently, all mice were individually housed for several days before undergoing behavioral assessment.

      To account for potential cognitive variability, earlier novel object recognition (NOR) tests were conducted to established cognitive capacity, and mice that did not meet criteria were excluded from further behavioral testing. However, we acknowledge that individual housing induces stress, which can influence learning and memory, and this is a factor we were unable to fully control. Given that both experimental and control groups experienced the same housing conditions, this stress effect should be comparable across cohorts. A discussion on this limitation is now included in the text.

      (3) It looks like one control mouse that was included in both Figures 1 and 2 (control n=12) but was excluded in Table 1 (control n=11), this isn't mentioned in the text - please include the exclusion criteria in the manuscript.

      We apologize for the typo−12 control animals were consistently utilized across Figure 1-2, Table 1, Supplemental Table 1, Figure 6C, and Supplemental Figure 2B. Since the initial submission, one control mouse was completed and included into the telemetry control cohort. Thus, in the updated manuscript, we have corrected the control sample size to 13 mice across these figures ensuring consistency.

      Additionally, exclusion criteria have now been explicitly included in the manuscript (Line 173-175). Mice were excluded from the study if they died prematurely (died prior to treatment onset) or mice exhibited abnormally elevated pressure while receiving saline, likely due to complications from telemetry surgery.

      (4) Please include a statement on why female mice were not included in this study.

      As discussed in our response to Reviewer #1, our initial intention was to include both male and female mice in this study. However, high mortality rates following telemetry surgeries significantly constrained our ability to advance all aspects of the study. As a result, we limited our first cohort to males to establish the basics of the model. A statement is now included in the manuscript, Line 50-53: “Female mice were not included in the present study due to high post-surgery mortality observed in 12-14-month-old mice following complex procedures. To minimized confounding effects of differential survival and to establish foundational data for this model, we restricted the investigation to male mice.”

      Potential sex differences might be complex and warrants a separate future research to comprehensively assess sex as a biological variable, which are currently ongoing.

      (5) On page 14, "experiments from control vs experimental mice were not equally conducted in the same season raising the possibility for a seasonal effect" - does this mean that control experiments were not conducted at the same time as the Ang II infusions in BPV mice? This has huge implications on whether the effects observed are induced by treatment or just batch seasonal effects.

      We fully acknowledge the reviewer’s concern, and our statement aims to provide transparency regarding the study’s limitations. Several challenges contributed to this outcome, including high mortality rates following surgeries (primarily telemetry implantation) and technical issues related to instrumentation, particularly telemetry functionality.

      Differences between BPV and saline mice emerge primarily due to mortality or telemetry failures−some mice did not survive post-surgery, while others remain healthy but had non-functional telemeters. This issue was particularly pronounced in 14-month-old mice, as their fragile vasculature occasionally prevented proper BP readings.

      Each experiment required a minimum of two and a half months per mouse to complete, with a cost (also per mouse) exceeding $1500 USD ($300 pump, $175 mouse, $900 telemeters, per diem, drugs, reagents etc.). Despite our best effort to ensure comparable seasonal/batch data, these logistical and technical constraints prevented perfect synchronization.

      To evaluate whether seasonal differences influenced our results, we incorporated additional telemetry data into the control cohort. Of the seven included control mice, six underwent the same treatment but were allocated to a separate branch of the study, which endpoints did not require a chronic cranial window. We found no significant differences in 24-hour average MAP during the baseline period between control mice with or without a cranial window, Supplemental Figure 2A. Additionally, we grouped mice into seasonal categories based on Georgia’s climate: “Spring-Summer” (May-September) and “Fall-Winter” (October-April) but observed no BP differences between these periods, Supplemental Figure 2B.

      Given the absence of seasonal effects on BP and the fact that mice were sourced from two independent suppliers (Jackson Laboratory and NIA), we anticipate that the observed results are driven by treatment rather than seasonal or batch effects.

      (6) Methods, two-photon imaging: did the authors mean "retro-orbital" instead of "intra-orbital" injection of the Texas red dye? Also, is this a Texas red-dextran? If so, what molecular weight?

      Thank you for this comment. The correct terminology is “retro-orbital” rather than “intra-orbital” injection. Additionally, we utilized Texas Red-dextran (70 kDa, 5% [wt/vol] in saline) for the imaging experiments. These details have now been incorporated into the Methods section.

      (1) Shaffer F, Ginsberg JP. An Overview of Heart Rate Variability Metrics and Norms. Front Public Health. 2017;5:258. doi: 10.3389/fpubh.2017.00258

      (2) Pires PW, Jackson WF, Dorrance AM. Regulation of myogenic tone and structure of parenchymal arterioles by hypertension and the mineralocorticoid receptor. Am J Physiol Heart Circ Physiol. 2015;309:H127-136. doi: 10.1152/ajpheart.00168.2015

      (3) Iddings JA, Kim KJ, Zhou Y, Higashimori H, Filosa JA. Enhanced parenchymal arteriole tone and astrocyte signaling protect neurovascular coupling mediated parenchymal arteriole vasodilation in the spontaneously hypertensive rat. J Cereb Blood Flow Metab. 2015;35:1127-1136. doi: 10.1038/jcbfm.2015.31

      (4) Diaz JR, Kim KJ, Brands MW, Filosa JA. Augmented astrocyte microdomain Ca(2+) dynamics and parenchymal arteriole tone in angiotensin II-infused hypertensive mice. Glia. 2019;67:551-565. doi: 10.1002/glia.23564

      (5) Kim KJ, Diaz JR, Presa JL, Muller PR, Brands MW, Khan MB, Hess DC, Althammer F, Stern JE, Filosa JA. Decreased parenchymal arteriolar tone uncouples vessel-to-neuronal communication in a mouse model of vascular cognitive impairment. GeroScience. 2021. doi: 10.1007/s11357-020-00305-x

      (6) Chan SL, Nelson MT, Cipolla MJ. Transient receptor potential vanilloid-4 channels are involved in diminished myogenic tone in brain parenchymal arterioles in response to chronic hypoperfusion in mice. Acta Physiol (Oxf). 2019;225:e13181. doi: 10.1111/apha.13181

      (7) Tarantini S, Hertelendy P, Tucsek Z, Valcarcel-Ares MN, Smith N, Menyhart A, Farkas E, Hodges EL, Towner R, Deak F, et al. Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice. J Cereb Blood Flow Metab. 2015;35:1871-1881. doi: 10.1038/jcbfm.2015.162

      (8) Ma J, Ayata C, Huang PL, Fishman MC, Moskowitz MA. Regional cerebral blood flow response to vibrissal stimulation in mice lacking type I NOS gene expression. Am J Physiol. 1996;270:H1085-1090. doi: 10.1152/ajpheart.1996.270.3.H1085

      (9) Sible IJ, Nation DA. Blood Pressure Variability and Cognitive Decline: A Post Hoc Analysis of the SPRINT MIND Trial. Am J Hypertens. 2023;36:168-175. doi: 10.1093/ajh/hpac128

      (10) Epstein NU, Lane KA, Farlow MR, Risacher SL, Saykin AJ, Gao S. Cognitive dysfunction and greater visit-to-visit systolic blood pressure variability. Journal of the American Geriatrics Society. 2013;61:2168-2173. doi: 10.1111/jgs.12542

      (11) Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cognitive processing. 2012;13:93-110. doi: 10.1007/s10339-011-0430-z

      (12) Kraeuter AK, Guest PC, Sarnyai Z. The Y-Maze for Assessment of Spatial Working and Reference Memory in Mice. Methods Mol Biol. 2019;1916:105-111. doi: 10.1007/978-1-4939-8994-2_10

      (13) Singhal G, Morgan J, Jawahar MC, Corrigan F, Jaehne EJ, Toben C, Breen J, Pederson SM, Manavis J, Hannan AJ, et al. Effects of aging on the motor, cognitive and affective behaviors, neuroimmune responses and hippocampal gene expression. Behav Brain Res. 2020;383:112501. doi: 10.1016/j.bbr.2020.112501

      (14) Tediashvili G, Wang D, Reichenspurner H, Deuse T, Schrepfer S. Balloon-based Injury to Induce Myointimal Hyperplasia in the Mouse Abdominal Aorta. J Vis Exp. 2018. doi: 10.3791/56477

      (15) Ozkayar N, Dede F, Akyel F, Yildirim T, Ates I, Turhan T, Altun B. Relationship between blood pressure variability and renal activity of the renin-angiotensin system. J Hum Hypertens. 2016;30:297-302. doi: 10.1038/jhh.2015.71

      (16) Kajikawa M, Higashi Y. Blood pressure variability and arterial stiffness: the chicken or the egg? Hypertens Res. 2024;47:1223-1224. doi: 10.1038/s41440-024-01589-8

      (17) Laurent S, Boutouyrie P. Arterial Stiffness and Hypertension in the Elderly. Front Cardiovasc Med. 2020;7:544302. doi: 10.3389/fcvm.2020.544302

      (18) Wallace SM, Yasmin, McEniery CM, Maki-Petaja KM, Booth AD, Cockcroft JR, Wilkinson IB. Isolated systolic hypertension is characterized by increased aortic stiffness and endothelial dysfunction. Hypertension. 2007;50:228-233. doi: 10.1161/HYPERTENSIONAHA.107.089391

      (19) Al-Merani SA, Brooks DP, Chapman BJ, Munday KA. The half-lives of angiotensin II, angiotensin II-amide, angiotensin III, Sar1-Ala8-angiotensin II and renin in the circulatory system of the rat. J Physiol. 1978;278:471490. doi: 10.1113/jphysiol.1978.sp012318

      (20) Zimmerman MC, Lazartigues E, Sharma RV, Davisson RL. Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res. 2004;95:210-216. doi: 10.1161/01.RES.0000135483.12297.e4

      (21) Gonzalez-Villalobos RA, Seth DM, Satou R, Horton H, Ohashi N, Miyata K, Katsurada A, Tran DV, Kobori H, Navar LG. Intrarenal angiotensin II and angiotensinogen augmentation in chronic angiotensin II-infused mice. Am J Physiol Renal Physiol. 2008;295:F772-779. doi: 10.1152/ajprenal.00019.2008

      (22) Nakagawa P, Nair AR, Agbor LN, Gomez J, Wu J, Zhang SY, Lu KT, Morgan DA, Rahmouni K, Grobe JL, et al. Increased Susceptibility of Mice Lacking Renin-b to Angiotensin II-Induced Organ Damage. Hypertension. 2020;76:468-477. doi: 10.1161/HYPERTENSIONAHA.120.14972

    1. eLife Assessment

      This study offers a valuable contribution to our understanding of the role of layer 6b cortical neurons in sleep-wake regulation, providing new insight into how this understudied neural population may regulate cortical arousal via orexin signaling. The evidence supporting these findings is solid, although somewhat constrained by limitations in the specificity of the genetic targeting strategy. Nonetheless, the work introduces new avenues for uncovering how the classical wake-promoting peptide, orexin, exerts its effects on the cortex.

    2. Reviewer #1 (Public review):

      Summary:

      Meijer et al. sought to investigate the role of cortical layer 6b (L6b) neurons in modulating sleep-wake states and cortical oscillations under baseline and sleep deprived conditions and in response to orexin A and B. Using chronic EEG recordings in mice with silencing of Drd1a+ neurons (via constitutive Cre-dependent knockout of SNAP25), the authors report that while overall baseline sleep-wake architecture and response to sleep deprivation minimal/unchanged, "L6b silencing" leads to a slowing of theta activity during wakefulness and REM sleep, and a reduction in EEG power during NREM sleep. Additionally, orexin B-induced increases in theta activity were attenuated in L6b silenced mice, which the authors state suggests a modulatory role for L6b in orexin-mediated arousal regulation. The manuscript is generally well written with clarity and transparency. However, a major concern is the lack of specificity in the genetic manipulation, which targets Drd1a+ neurons not exclusive to L6b, undermining the attribution of observed effects solely to L6b. Verification of neuronal silencing is also unclear, and statistical inconsistencies between the main text and figures/tables make it difficult to effectively evaluate the text and stated outcomes.

      Strengths:

      (1) The text is well written.

      (2) The authors are transparent about methodological details.

      (3) The stated sleep, circadian, and orexin infusion experiments appear to be well designed, executed, and analyzed (with the exceptions of some statistical analyses detailed below).

      Weaknesses:

      (1) All outcomes are attributed specifically to L6b neurons, but the genetic manipulation is not specific to L6b neurons. The authors acknowledge this as a limitation, but in my view, this global manipulation is more than a limitation - it affects the overall interpretations of the data. The Hoerder-Suabedissen et al., 2018 paper shows sparse, but also dense, expression of Drd1a+ neurons in brain regions outside of the L6b. Given this issue, the results are largely overstated throughout the paper.

      (2) It is not clear to me that the "silencing" of Drd1a+ neurons was verified.

      (3) There were various discrepancies (and potentially misattributions) between the stated significant differences in Supplementary Table T1 data and Figure 3a & S2 spectral plots. This issue makes it difficult to effectively evaluate the main text and stated outcomes.

      Related, the authors stated that post hoc comparisons of EEG spectral frequency bins were not corrected for multiple testing. Instead, significance was only denoted if changes in at least two consecutive frequency bins were significant. However, there are multiple plots in which a single significance marker is placed over an isolated bin (i.e., 4c, 6, S5, S6). Unless each marker is equivalent to 2 consecutive frequency bins, these markers should be removed from the plots. Otherwise, please define the frequency and size of these markers in the main text.

      (4) A rainbow color scale, as in Figure 3, we've now learned, can be misleading and difficult to interpret. The viridis color scale or a different diverging color scale are good alternatives.

      (5) How much time elapsed between vehicle/orexin A & B infusions?

      (6) For Figure 6, there are statistical discrepancies between the main text and the plots (pg. 10):

      a) The text claims post hoc differences for relative ORXA frontal EEG, but there are no significance markers on the plot.<br /> b) The text states that there were no post hoc differences for the relative ORXA occipital EEG, but significance markers are on the plot.<br /> c) The main test for the relative ORXB frontal EEG was not significant, but there are post hoc significance markers on the plot.<br /> d) For relative ORXB occipital EEG, there are significant markers on the plot outside of the stated range in the text.

      (7) Some important details are only available in figure captions, making it difficult to understand the main text. For example, when describing Figure 3c in the main text on page 7, it is not clear what type of transitions are being discussed without reading the figure caption. Likewise, a "decrease," "shift," and "change" are mentioned, but relative to what? Similar comment for the EEG theta activity description on pages 7 - 8. Please add relevant details to the main text.

      (8) Statistical comparisons for data in Figure 3e, post hoc analyses for data in Figure S7a-b REM data, and post hoc analyses for Figure S7c (not b) occipital EEG should be included to support differences claims. Please denote these differences on the respective plots.

      (9) In the subsection titled "Layer 6b mediates effects of orexin on vigilance states (pg. 8)," there does not seem to be any stated differences between control and L6b silenced mice. A more accurate subtitle is needed.

    3. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Meijer and colleagues investigated the effects of inactivation (conditional silencing) of cortical layer 6b neurons on sleep-wake states and EEG spectral power under the following three conditions: during natural sleep-wake states, after sleep deprivation, or after intracerebroventricular administration of orexin A and B. The authors report that silencing of L6b neurons did not have a significant effect on the total time spent in sleep-wake states, duration, or number of state epochs, or the response to sleep deprivation. However, silencing of L6b neurons did slow down theta-frequency (6-9 Hz) during wake and REM sleep, and reduced the total EEG power during NREM sleep. Infusion of orexin A in the mice in which cortical layer 6b neurons were inactivated produced an increase in wakefulness. A similar effect was observed after infusion of orexin A in the mice in which these neurons were not silenced, but the effect (i.e., increase in wakefulness) was of a smaller magnitude. Silencing of cortical layer 6b neurons attenuated the effect of orexin B in increasing theta activity, as was observed in the control mice. The authors conclude that the cortical neurons in layer 6b play an essential role in state-dependent dynamics of brain activity, vigilance state control, and sleep regulation.

      Strengths:

      (1) A focus on cortical layer 6b neurons, which are an understudied neuronal population, especially in the context of brain and behavioral state transitions.

      (2) The authors used a well-established mouse model to study the effect of inactivation of cortical layer 6b neurons.

      Weaknesses:

      (1) Although the authors used a highly selective approach to silence layer 6b neurons, the observed changes in EEG oscillations cannot be solely attributed to layer 6b neurons because of the ICV route for orexin administration.

      (2) The rationale for using only male rats is not provided.

    4. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      (1) All outcomes are attributed specifically to L6b neurons, but the genetic manipulation is not specific to L6b neurons. The authors acknowledge this as a limitation, but in my view, this global manipulation is more than a limitation - it affects the overall interpretations of the data. The Hoerder-Suabedissen et al., 2018 paper shows sparse, but also dense, expression of Drd1a+ neurons in brain regions outside of the L6b. Given this issue, the results are largely overstated throughout the paper.

      We appreciate the reviewer’s careful reading and concern that some of our statements may have overstated the implications of our data. The Drd1a Cre mouse model used (FK164) has a relatively selective expression of Drd1a Cre in cortex, especially in layer 6b, but indeed some expression is seen in layer 6a and subcortically. We will nuance our claims throughout the paper to ensure that the conclusions are supported by our findings, and further discuss the impact of this limitation on the overall interpretation of our results. Specifically, we will discuss the potential contribution of relevant subcortical areas and layer 6a in the effects we observed.

      (2) It is not clear to me that the "silencing" of Drd1a+ neurons was verified.

      In our previous publications, we showed confirmation of the loss of regulated synaptic vesicle release from the Cre positive neuronal population (Marques-Smith et al., 2016; Hoerder-Suabedissen et al., 2018; Messore et al., 2024), which validates our approach to “silence” cortical neurons. We will discuss this further in the revised manuscript.

      (3) There were various discrepancies (and potentially misattributions) between the stated significant differences in Supplementary Table T1 data and Figure 3a & S2 spectral plots. This issue makes it difficult to effectively evaluate the main text and stated outcomes.

      We thank the reviewer for spotting the inconsistencies in how the statistical comparisons were presented: indeed, in the text we described two-way ANOVAs with posthoc tests but in the figures significance markers were positioned based on multiple t-tests. We have revised Supplementary Table T1, Figure 3a and S2 to ensure that all statistics are presented consistently throughout the manuscript, i.e. with two-way ANOVAs and accompanying posthoc tests.

      Related, the authors stated that post hoc comparisons of EEG spectral frequency bins were not corrected for multiple testing. Instead, significance was only denoted if changes in at least two consecutive frequency bins were significant. However, there are multiple plots in which a single significance marker is placed over an isolated bin (i.e., 4c, 6, S5, S6). Unless each marker is equivalent to 2 consecutive frequency bins, these markers should be removed from the plots. Otherwise, please define the frequency and size of these markers in the main text.

      In line with the previous comment, we have adjusted markers to reflect the results from posthoc tests after two-way ANOVAs in Figures 6 and supplementary figures S5 and S6. 

      We thank the reviewer for pointing out that in our comparisons of EEG spectra, in some cases single isolated frequency bins, where p-value reached 0.05 were shown as significantly different, which indeed could have occurred by chance given that, in line with previous literature, we have not employed multiple testing comparison. In the revised manuscript we will use an unbiased approach by plotting actual p-values for all bins, and moderate our conclusions accordingly, while giving the readers the opportunity to evaluate the magnitude and extent of the differences directly, rather than relying on an arbitrary threshold for significance.

      (4) A rainbow color scale, as in Figure 3, we've now learned, can be misleading and difficult to interpret. The viridis color scale or a different diverging color scale are good alternatives.

      Thank you for pointing this out, we have adjusted the colour scale.

      (5) How much time elapsed between vehicle/orexin A & B infusions?

      There were 2-4 non-infusions days between infusions. We will add this information to methods when revising the manuscript.

      (6) For Figure 6, there are statistical discrepancies between the main text and the plots (pg. 10):

      a) The text claims post hoc differences for relative ORXA frontal EEG, but there are no significance markers on the plot.

      b) The text states that there were no post hoc differences for the relative ORXA occipital EEG, but significance markers are on the plot.

      c) The main test for the relative ORXB frontal EEG was not significant, but there are post hoc significance markers on the plot.

      d) For relative ORXB occipital EEG, there are significant markers on the plot outside of the stated range in the text.

      Thank you for your careful observations, these issues reflect the same inconsistency as raise above, where the text describes two-way ANOVAs and the figures refers to results obtained with multiple t tests. We shall adjust the markers in the figures to be only shown when the ANOVA is significant and show the results of posthoc tests after ANOVAs instead of the results of multiple t tests.

      (7) Some important details are only available in figure captions, making it difficult to understand the main text. For example, when describing Figure 3c in the main text on page 7, it is not clear what type of transitions are being discussed without reading the figure caption. Likewise, a "decrease," "shift," and "change" are mentioned, but relative to what? Similar comment for the EEG theta activity description on pages 7 - 8. Please add relevant details to the main text.

      We will adjust the wording in the main text to reflect more precisely which comparisons are shown in the figures.

      (8) Statistical comparisons for data in Figure 3e, post hoc analyses for data in Figure S7a-b REM data, and post hoc analyses for Figure S7c (not b) occipital EEG should be included to support differences claims. Please denote these differences on the respective plots.

      We have added the statistical comparisons for Figure 3e to the results section.

      We have added the statistical comparisons for Figure S7A to the results section.

      We have added the statistical comparison for Figure S7b to the results section.

      In Figure S7c, there was an overall genotype difference, but there was not a time x genotype interaction, so we have not performed posthoc tests and did not plot posthoc significance markers for this figure. We have adjusted the wording in the results section to make this clearer.

      We have adjusted the reference to the figure S7c which was incorrect, thank you for your careful attention.

      (9) In the subsection titled "Layer 6b mediates effects of orexin on vigilance states (pg. 8)," there does not seem to be any stated differences between control and L6b silenced mice. A more accurate subtitle is needed.

      We shall change the subtitle to: “The effects of orexin on vigilance states in L6b silenced mice”. The main finding described in this section is that the increase in EEG theta frequency after ORXB infusion is attenuated in L6b silenced mice, so a statement summarizing this finding could be an alternative title. However, then it would not accurately reflect other, less conspicuous, yet potentially important findings described in this section (during NREM sleep, only in L6b silenced animals there is an increase in power in the lower frequency bins in the frontal derivation; in the occipital derivation, levels of relative SWA during NREM sleep after ORXA infusion were lower in L6b silenced than in control animals).

      Reviewer #2 (Public review):

      Weaknesses:

      (1) Although the authors used a highly selective approach to silence layer 6b neurons, the observed changes in EEG oscillations cannot be solely attributed to layer 6b neurons because of the ICV route for orexin administration.

      We completely agree, and did not want to imply that orexin administered through the ICV route reaches cortical Drd1a Cre expressing neurons only. We will re-word the corresponding sentences accordingly throughout the manuscript.

      (2) The rationale for using only male rats is not provided.

      We agree that this is an important limitation and will acknowledge and discuss it further in the revised manuscript. Unfortunately, our experimental protocol precluded the possibility of monitoring accurately the oestrous cycle, which as well-known has an influence on sleep-wake architecture, brain oscillations as well as orexin signalling and receptor abundance. We therefore decided to use male mice only for the current study, but planning to use both sexes in our follow up work.

    1. eLife Assessment

      In this valuable study, the authors use a cutting-edge method to perform voltage imaging of CA1 pyramidal cells in head-fixed mice running on a track while local field potentials (LFPs) were recorded in the contralateral hemisphere. The authors provide solid evidence of synchronous ensembles of CA1 pyramidal neurons that are associated with contralaterally recorded theta rhythms but not with contralaterally recorded sharp wave-ripples during exploration of a novel environment. The paper will be of interest to scientists who are interested in hippocampal neuronal coding of novel environments, particularly those with experimental questions that can benefit from this cutting-edge imaging technique.

    2. Joint Public Review:

      Summary:

      There has been extensive electrophysiological research investigating the relationship between local field potential patterns and individual cell spike patterns in the hippocampus. In this study, the authors used innovative imaging techniques to examine spike synchrony of hippocampal cells during locomotion and immobility states. The authors report that hippocampal place cells exhibit prominent synchronous spikes that co-occur with theta oscillations during exploration of novel environments.

      Strengths:

      The single cell voltage imaging used in this study is a highly novel method that may allow recordings that were not previously possible using traditional methods.

      Weaknesses:

      Local field potential recordings were obtained from the contralateral hemisphere for technical reasons, which limits some of the study's claims.

    3. Author response:

      The following is the authors’ response to the previous reviews

      Joint Public Review:

      Summary:

      For many years, there has been extensive electrophysiological research investigating the relationship between local field potential patterns and individual cell spike patterns in the hippocampus. In this study, using innovative imaging techniques, they examined spike synchrony of hippocampal cells during locomotion and immobility states. The authors demonstrated that hippocampal place cells exhibit prominent synchronous spikes locked to theta oscillations.

      Strengths:

      The single cell voltage imaging used in this study is a highly novel method that may allow recordings that were not previously possible using existing methods.

      We thank the reviewer for recognizing the strengths of our study.

      Weaknesses:

      The strength of evidence remains incomplete because of the main claim that synchronous events are not associated with ripples. As was mentioned in previous rounds of review, ripples emerge locally and independently in the two hemispheres. Thus, obtaining ripple recordings from the contralateral hemisphere does not provide solid evidence for this claim. The papers the authors are citing to make the claim that "Additionally, we implanted electrodes in the contralateral CA1 region to monitor theta and ripple oscillations, which are known to co-occur across hemispheres (29-31)" do not support this claim. For example, reference 29 contains the following statement: "These findings suggest that ripples emerge locally and independently in the two hemispheres".

      In our previous revisions, we took care to limit our claim to what our data directly supported: that synchronous ensembles of CA1 neurons were not associated with ripple oscillations recorded in the contralateral hippocampus. To address reviewer concerns, we changed the Title, modified the Abstract, adjusted relevant text in the Results, and explicitly acknowledged the methodological limitations in the Discussion. 

      In this round, we further revised the manuscript to directly address the editor’s and reviewer’s remaining concerns: 

      (1) We replaced the word “surprisingly” with a more neutral “Moreover” to avoid implying that the observed dissociation was unexpected given the use of contralateral recordings.

      Introduction (line 67-69):

      “Moreover, these synchronous ensembles occurred outside of contralateral ripples (c-ripples) …”

      (2) We removed the clause stating that ripples “co-occur across hemispheres”, along with the associated citation to Buzsaki et al. (2003), to avoid potential misinterpretation. The sentence now simply states that we recorded ripple and theta oscillations in the contralateral CA1.

      Introduction (line 63-64):

      “Additionally, we implanted electrodes in the contralateral CA1 region to monitor theta and ripple oscillations.” (co-occurrence claim removed)

      (3) We carefully replaced all mentions of “ripples” in the manuscript with “c-ripples” (i.e., contralateral ripples) to ensure that the scope of our findings is clearly defined and cannot be misinterpreted.

      (4) We strengthened the acknowledgment of the methodological limitations in the Discussion. 

      Discussion (line 528-533): 

      “While contralateral LFP recordings can capture large-scale hippocampal theta and ripple oscillations, they do not fully reflect ipsilateral-specific dynamics, such as variation in theta phase alignment or locally generated ripple events (Buzsaki et al., 2003; Szabo et al., 2022; Huang et al., 2024). Given that ripple oscillations can emerge locally and independently in each hemisphere, interpretations based on contralateral recordings must be made with caution. Further studies incorporating simultaneous ipsilateral field potential recordings will be essential to more precisely understand local-global network interactions.”

      These revisions ensure that our manuscript now presents a consistent and appropriately limited interpretation across all sections. We hope these clarifications address all remaining concerns and accurately reflect the scope of our findings.

    1. eLife Assessment

      This paper reports a valuable discovery that specific-mode electroacupuncture (EA) transiently opens the blood-brain barrier (BBB) in rats. The evidence is solid but lacks functional validation of BBB permeability changes. The work will be of interest to medical scientists working in the field of electroacupuncture and drug delivery.

    2. Reviewer #1 (Public review):

      Summary:

      The work from this paper successfully mapped transcriptional landscape and identified EA-responsive cell types (endothelial, microglia). Data suggest EA modulates BBB via immune pathways and cell communication. However, claims of "BBB opening" are not directly proven (no permeability data).

      Strengths:

      First scRNA-seq atlas of EA effects on BBB, revealing 23 cell clusters and 8 cell types. High cell throughput (98,338 cells), doublet removal, and robust clustering (Seurat, SingleR). Comprehensive bioinformatics (GO/KEGG, CellPhoneDB for ligand-receptor interactions). Raw data were deposited in GEO (GSE272895) and can be accessed.

      Weaknesses:

      (1) No in vivo/in vitro assays confirm BBB permeability changes (e.g., Evans blue leakage, TEER).

      (2) Only male rats were used, ignoring sex-specific BBB differences.

      (3) Pericytes and neurons, critical for the BBB, were not captured, likely due to dissociation artifacts.

      (4) Protein-level validation (Western blot, IHC) absent for key genes (e.g., LY6E, HSP90).

      (5) Fixed stimulation protocol (2/100 Hz, 40 min); no dose-response or temporal analysis.

    3. Reviewer #2 (Public review):

      Summary:

      This study uses single-cell RNA sequencing to explore how electroacupuncture (EA) stimulation alters the brain's cellular and molecular landscape after blood-brain barrier (BBB) opening. The authors aim to identify changes in gene expression and signaling pathways across brain cell types in response to EA stimulation using single-cell RNA sequencing. This direction holds promise for understanding the consequences of noninvasive methods of BBB opening for therapeutic drug delivery across the BBB.

      Strengths:

      (1) The study addresses an emerging and potentially important application of noninvasive stimulation methods to manipulate BBB permeability.

      (2) The dataset provides broad transcriptional profiling across multiple brain cell types using single-cell resolution, which could serve as a valuable community resource.

      (3) Analyses of receptor-ligand signaling and cell-cell communication are included and have the potential to offer mechanistic insight into BBB regulation.

      Weaknesses:

      (1) The work falls short in its current form. The experimental design lacks a clear justification, and readers are not provided with sufficient background information on the extent, timing, or regional specificity of BBB opening in this EA model. These details, established in prior work, are critical to understanding the rationale behind the current transcriptomic analyses.

      (2) Further, the results are often presented with minimal context or interpretation. There is no model of intercellular or molecular coordination to explain the BBB-opening process, despite the stated goal of identifying such mechanisms. The statement that EA induces a "unique frontal cortex-specific transcriptome signature" is not supported, as no data from other brain regions are presented. Biological interpretation is at times unclear or inaccurate - for instance, attributing astrocyte migration effects to endothelial cell clusters or suggesting microglial tight junction changes without connecting them meaningfully to endothelial function.

      (3) The study does include analyses of receptor-ligand signaling and cell-cell communication, which could be among its most biologically rich outputs. However, these are relegated to supplementary material and not shown in the leading figures. This choice limits the utility of the manuscript as a hypothesis-generating resource.

      (4) Overall, while the dataset may be of interest to BBB researchers and those developing technologies for drug delivery across the BBB, the manuscript in its current form does not yet fulfill its interpretive goals. A more integrated and biologically grounded analysis would be beneficial.

    4. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The work from this paper successfully mapped transcriptional landscape and identified EA-responsive cell types (endothelial, microglia). Data suggest EA modulates BBB via immune pathways and cell communication. However, claims of "BBB opening" are not directly proven (no permeability data).

      (1) No in vivo/in vitro assays confirm BBB permeability changes (e.g., Evans blue leakage, TEER).  

      (2) Only male rats were used, ignoring sex-specific BBB differences.

      (3) Pericytes and neurons, critical for the BBB, were not captured, likely due to dissociation artifacts.

      (4) Protein-level validation (Western blot, IHC) absent for key genes (e.g., LY6E, HSP90).

      (5) Fixed stimulation protocol (2/100 Hz, 40 min); no dose-response or temporal analysis.

      (1) We sincerely apologize for the oversight regarding the description of changes in blood-brain barrier permeability. In fact, our team conducted a series of preliminary studies that verified this aspect, but we did not provide a more detailed introduction in the introduction section. We will address and improve this in the revised manuscript. (2) We are very grateful to the reviewers for pointing out the important and meaningful issue of "gender-specific BBB differences." We will make this a focal point in our future research.

      (2) As for pericytes and neurons, we acknowledge their importance in the function of the blood-brain barrier. We acknowledge the importance of pericytes and neurons in the blood-brain barrier. However, neurons are absent because our sample processing method involves dissociation. During the dissociation procedure, neuronal axons, which are relatively long, are filtered out during the frequent cell suspension steps and cannot enter the downstream microfluidic system for analysis, so they are not present in our data. Since this experiment is primarily focused on non-neuronal cells, we did not choose to use nucleus extraction for sample processing. As for pericytes, we believe they are not captured because their proportion in our samples is extremely low, which is why they are not present in the data. Further research may require single-nucleus transcriptomics or the separate isolation of these two cell types for study. Of course, in our current mechanistic studies, we are also fully considering the important roles these two cell types play in BBB function.

      (3) In addition, for verification at the protein level, we have recently conducted some experiments and will include these results in the revised version.

      (5) Lastly, regarding our electroacupuncture intervention model, we actually conducted a series of parameter optimization experiments during the preliminary exploration phase. This part is indeed lacking in our current introduction, and we will add it to the research background and introduction.

      Reviewer #2 (Public review):

      Summary:

      This study uses single-cell RNA sequencing to explore how electroacupuncture (EA) stimulation alters the brain's cellular and molecular landscape after blood-brain barrier (BBB) opening. The authors aim to identify changes in gene expression and signaling pathways across brain cell types in response to EA stimulation using single-cell RNA sequencing. This direction holds promise for understanding the consequences of noninvasive methods of BBB opening for therapeutic drug delivery across the BBB.

      (1) The work falls short in its current form. The experimental design lacks a clear justification, and readers are not provided with sufficient background information on the extent, timing, or regional specificity of BBB opening in this EA model. These details, established in prior work, are critical to understanding the rationale behind the current transcriptomic analyses.

      (2) Further, the results are often presented with minimal context or interpretation. There is no model of intercellular or molecular coordination to explain the BBB-opening process, despite the stated goal of identifying such mechanisms. The statement that EA induces a "unique frontal cortex-specific transcriptome signature" is not supported, as no data from other brain regions are presented. Biological interpretation is at times unclear or inaccurate - for instance, attributing astrocyte migration effects to endothelial cell clusters or suggesting microglial tight junction changes without connecting them meaningfully to endothelial function.<br /> (3) The study does include analyses of receptor-ligand signaling and cell-cell communication, which could be among its most biologically rich outputs. However, these are relegated to supplementary material and not shown in the leading figures. This choice limits the utility of the manuscript as a hypothesis-generating resource.

      (4) Overall, while the dataset may be of interest to BBB researchers and those developing technologies for drug delivery across the BBB, the manuscript in its current form does not yet fulfill its interpretive goals. A more integrated and biologically grounded analysis would be beneficial.

      (1) It was indeed our mistake that we did not pay attention to the importance of research background factors such as the degree, timing, or regional specificity of BBB opening for the rationale and purpose of this experimental design. In our revision, we will thoroughly elaborate on the relevant previous studies.

      (2) Our current study is actually based on previous findings that electroacupuncture can open the BBB, with a more pronounced effect observed in the frontal lobe (this aspect should be further described in the research background). Building on this foundation, our aim is to delineate the potential biological mechanisms involved. Therefore, we selected frontal lobe tissue as our primary choice for sequencing and have not yet investigated differences across other brain regions, although this may become a focus of future research. Additionally, we recognize that the mechanism underlying BBB opening is complex, and at present, we cannot determine whether it is driven by a single direct factor or by coordinated actions between cells or molecules. As such, our results are presented only briefly for now, and we will carefully consider whether to supplement our findings by incorporating insights from other studies.

      (3) Thank you very much for bringing this to our attention. We will include the key results of the receptor-ligand signaling and cell-cell communication analysis in the main manuscript.

      (4) Indeed, our current dataset and analysis tend to present objective data results. We are also conducting a series of validations that may be related to the biology of the blood-brain barrier, and we look forward to sharing and discussing any future research findings with you and everyone.

    1. eLife Assessment

      This study presents valuable computational findings on the neural basis of learning new motor memories without interfering with previously learned behaviours using recurrent neural networks. The evidence supporting the claims of the authors is solid, but it would benefit from stronger and clearer links with experimental findings. This work will be of interest to computational and experimental neuroscientists working in motor learning.

    2. Reviewer #1 (Public review):

      Summary:

      This work investigates the neural basis of continual motor learning, specifically how brains might accommodate new motor memories without interfering with previously learned behaviours. Mainly drawing inspiration from recent experimental studies in monkeys (Losey et al. and Sun, O'Shea et al.), the authors use recurrent neural networks (RNNs) to model sequential learning and examine the emergence and properties of two proposed neural signatures of motor memory: the "uniform shift" observed in preparatory activity and the "memory trace" observed in execution activity.

      Strengths:

      The work's main contribution is demonstrating that both uniform shifts and memory traces emerge in RNN models trained on a sequential BCI task, without requiring explicit additional mechanisms. The work explores the relationship between these signatures and behavioural savings, finding that the memory trace correlates with immediate retention savings in networks without context, while the uniform shift does not. The study also investigates how properties of the new task perturbation (within- vs. outside-manifold) and the presence of explicit context cues affect these signatures and their relationship to savings, generally finding that context signals and outside-manifold perturbations reduce savings by decreasing the inherent overlap in the neural strategies used to solve the task.

      Weaknesses:

      A primary weakness is the lack of clear definitions of the uniform shift and the memory trace, which are quite different metrics. Another primary weakness is that the task modelled is well-matched to the Losey et al. BCI paradigm, but not well-matched to the Sun, O'Shea et al.'s curl field paradigm, which is likely impacting some of the results, primarily the lack of a relationship between the uniform shift and motor memories. While there are improvements that could be made in this work, we think it is a demonstration that modeling learning in neural activity using neural network models continues to be a valuable tool, moving the field forward.

    3. Reviewer #2 (Public review):

      Summary:

      Chang et al. develop an RNN model of a BCI sequential learning task to examine the emergence of motor memory in the network. They use this system to quantify signatures of memory in continual learning, comparing their model with experimental observations from monkeys in prior publications. They show that the RNN model has signatures of shifts associated with sequential learning without any non-standard learning rules. This convincing study contributes to the knowledge of how motor memories are formed and shaped so that they are flexible in acquiring multiple behaviors.

      Strengths:

      This paper describes a well-designed numerical experiment that comes to a clear interpretation of a set of neural BCI experiments. The learning signatures the authors describe are interesting and well laid out, and the paper is well written. I find it insightful that the neural signature of motor learning emerges in a trained network without special learning rules.

      Weaknesses:

      The paper could be stronger if it made a stronger interpretation of how memory traces and uniform shifts are related. These two observations are taken from the BCI sequential learning literature and introduced by two different prior experimental papers on two different tasks, so it seems like there is an opportunity here to use the RNN model to unite these concepts, or define another metric for signatures of learning from a more normative approach.

    4. Reviewer #3 (Public review):

      Summary:

      The authors build and analyze recurrent neural network (RNN) models of brain-computer interface (BCI) multi-task learning, developing a valuable theoretical understanding of learning-related neural population phenomena ("memory traces" and "uniform shifts") that have been reported in recent experimental studies of BCI and motor learning. The authors find that both phenomena emerge in their RNN models, and both correlate in some manner to learning-related behavioral phenomena ("savings" and "forgetting"). The authors also reveal that RNN training details, in particular, incorporating a task-indicating contextual input, can impact these population-level signatures of learning in RNN activity and their relation to those behavioral phenomena.

      Strengths:

      The text is well written, and the figures are clearly composed to convey the core concepts and findings. The RNN studies are elegant in their ability to recapitulate the memory trace and uniform shift phenomena, and further allow evaluations of novel scenarios that were not tested in the original corpus of the modeled animal experiments. The authors assess the sensitivity of their results to multiple approaches to RNN training, including training connectivity within a model of motor cortex, training only an upstream model that provides inputs to the motor cortex model, and providing task-indicating contextual inputs.

      Weaknesses:

      (1) It is unclear to what extent these RNN models operate in regimes relevant to biological neural networks (e.g., motor cortex), even at the neural-population level of abstraction studied here. Can the authors speak to how sensitive their results are to details that might speak to these operating regimes (e.g., signal-to-noise ratios or dimensionality of the RNN activities)?

      (2) The work could be further strengthened by analyses demonstrating a more direct link between the neural population phenomena (memory trace and uniform shift) and the behavioral phenomena (savings, forgetting, etc). While in animal experiments, it can be exceedingly difficult to demonstrate links beyond correlative effects, the promise of a model is the relative tractability of implementing manipulations that might establish something closer to a causal link between phenomena. Is it the case that the memory trace is a task-dependent, mean-preserving rotation of the across-target task-relevant activity space? And that the uniform shift is a translation (non-mean-preserving) of that space? If so, could the authors design regularization schemes that specifically target each of these effects, enabling a more direct test of the functional role the effects play in driving behavioral phenomena?

      Minor Comments:

      The current study is based on BCI learning of center-out tasks, analogous to the Losey et al. task that initially reported the memory trace phenomena. However, a rather different behavioral task - involving arm movements through curl force fields - was employed by the Sun, O'Shea, et al. study that originally reported the uniform shift phenomena. How should readers interpret the current study's findings related to the uniform shift? To what extent might the behavioral implications of the uniform shift depend on the demands of the task, e.g., the biomechanics, day-to-day experiencing of different curl-field perturbations, etc.?

    5. Author response:

      We thank the reviewers for their thoughtful comments, and we plan to implement many of their suggestions to improve the paper. We agree that the paper can benefit from clearer links between the two neural signatures (memory traces and uniform shifts) themselves, and between the neural signatures and behavioral phenomena. We will address these limitations in multiple ways. First, as the reviewers noted, RNN models have the potential to probe these relationships, so we plan to perform further analyses and modeling experiments to uncover any causal relationships. Second, we will also establish clearer definitions of the neural signatures and explore how these signatures can be unified using our models. Finally, we will compare the experimental paradigms between Losey et al and Sun, O’Shea et al, and discuss how differences between the paradigms may have impacted our observations, particularly in the context of other experimental and modeling papers.

    1. eLife Assessment

      This important study introduces the Life Identification Number (LIN) coding system as a powerful and versatile approach for classifying Neisseria gonorrhoeae lineages. The authors show that LIN codes capture both previously defined lineages and their relationships in a way that aligns with the species' phylogenetic structure. The compelling evidence presented, together with its integration into the PubMLST platform, underscores its strong potential to enhance epidemiological surveillance and advance our understanding of gonococcal population biology.

    2. Reviewer #1 (Public review):

      Summary:

      Bacterial species that frequently undergo horizontal gene transfer events tend to have genomes that approach linkage equilibrium, making it challenging to analyze population structure and establish the relationships between isolates. To overcome this problem, researchers have established several effective schemes for analyzing N. gonorrhoeae isolates, including MLST and NG-STAR. This report shows that Life Identification Number (LIN) Codes provide for a robust and improved discrimination between different N. gonorrhoeae isolates.

      Strengths:

      The description of the system is clear, the analysis is convincing, and the comparisons to other methods show the improvements offered by LIN Codes.

      Weaknesses:

      No major weaknesses were identified by this reviewer.

    3. Reviewer #2 (Public review):

      Summary:

      This paper describes a new approach for analyzing genome sequences.

      Strengths:

      The work was performed with great rigor and provides much greater insights than earlier classification systems.

      Weaknesses:

      A minor weakness is that the clinical application of LIN coding could be articulated in a more in-depth way. The LIN coding system is very impressive and is certainly superior to other protocols. My recommendation, although not necessary for this paper, is that the authors expand their analysis to noncoding sequences, especially those upstream of open reading frames. In this respect, important cis-acting regulatory mutations that might help to further distinguish strains could be identified.

    4. Reviewer #3 (Public review):

      Summary:

      In this well-written manuscript, Unitt and colleagues propose a new, hierarchical nomenclature system for the pathogen Neisseria gonorrhoeae. The proposed nomenclature addresses a longstanding problem in N. gonorrhoeae genomics, namely that the highly recombinant population complicates typing schemes based on only a few loci and that previous typing systems, even those based on the core genome, group strains at only one level of genomic divergence without a system for clustering sequence types together. In this work, the authors have revised the core genome MLST scheme for N. gonorrhoeae and devised life identification numbers (LIN) codes to describe the N. gonorrhoeae population structure.

      Strengths:

      The LIN codes proposed in this manuscript are congruent with previous typing methods for Neisseria gonorrhoeae, like cgMLST groups, Ng-STAR, and NG-MAST. Importantly, they improve upon many of these methods as the LIN codes are also congruent with the phylogeny and represent monophyletic lineages/sublineages.

      The LIN code assignment has been implemented in PubMLST, allowing other researchers to assign LIN codes to new assemblies and put genomes of interest in context with global datasets.

      Weaknesses:

      The authors correctly highlight that cgMLST-based clusters can be fused due to "intermediate isolates" generated through processes like horizontal gene transfer. However, the LIN codes proposed here are also based on single linkage clustering of cgMLST at multiple levels. It is unclear if future recombination or sequencing of previously unsampled diversity within N. gonorrhoeae merges together higher-level clusters, and if so, how this will impact the stability of the nomenclature.

      The authors have defined higher resolution thresholds for the LIN code scheme. However, they do not investigate how these levels correspond to previously identified transmission clusters from genomic epidemiology studies. It would be useful for future users of the scheme to know the relevant LIN code thresholds for these investigations.

    5. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Bacterial species that frequently undergo horizontal gene transfer events tend to have genomes that approach linkage equilibrium, making it challenging to analyze population structure and establish the relationships between isolates. To overcome this problem, researchers have established several effective schemes for analyzing N. gonorrhoeae isolates, including MLST and NG-STAR. This report shows that Life Identification Number (LIN) Codes provide for a robust and improved discrimination between different N. gonorrhoeae isolates.

      Strengths:

      The description of the system is clear, the analysis is convincing, and the comparisons to other methods show the improvements offered by LIN Codes.

      Weaknesses:

      No major weaknesses were identified by this reviewer.

      We thank the reviewer for their assessment of our paper.

      Reviewer #2 (Public review):

      Summary:

      This paper describes a new approach for analyzing genome sequences.

      Strengths:

      The work was performed with great rigor and provides much greater insights than earlier classification systems.

      Weaknesses:

      A minor weakness is that the clinical application of LIN coding could be articulated in a more in-depth way. The LIN coding system is very impressive and is certainly superior to other protocols. My recommendation, although not necessary for this paper, is that the authors expand their analysis to noncoding sequences, especially those upstream of open reading frames. In this respect, important cis-acting regulatory mutations that might help to further distinguish strains could be identified.

      We thank the reviewer for their comments. LIN code could be applied clinically, for example in the analysis of antibiotic resistant isolates, or to investigate outbreaks associated with a particular lineage. We will update the text to describe this more thoroughly.

      In regards to non-coding sequences: unfortunately, intergenic regions are generally unsuitable for use in typing systems as (i) they are subject to phase variation, which can occlude relationships based on descent; (ii) they are inherently difficult to assemble and therefore can introduce variation due to the sequencing procedure rather than biology. For the type of variant typing that LIN code represents, which aims to replicate phylogenetic clustering, protein encoding sequences are the best choice for convenience, stability, and accuracy. This is not to say that it is not a valid object to base a nomenclature on intergenic regions, which might be especially suitable for predicting some phenotypic characters, but this will still be subject to problem (ii), depending on the sequencing technology used.  Such a nomenclature system should stand beside, rather than be combined with or used in place of, phylogenetic typing. However, we could certainly investigate the relationship between an isolates LIN code and regulatory mutations in the future.

      Reviewer #3 (Public review):

      Summary:

      In this well-written manuscript, Unitt and colleagues propose a new, hierarchical nomenclature system for the pathogen Neisseria gonorrhoeae. The proposed nomenclature addresses a longstanding problem in N. gonorrhoeae genomics, namely that the highly recombinant population complicates typing schemes based on only a few loci and that previous typing systems, even those based on the core genome, group strains at only one level of genomic divergence without a system for clustering sequence types together. In this work, the authors have revised the core genome MLST scheme for N. gonorrhoeae and devised life identification numbers (LIN) codes to describe the N. gonorrhoeae population structure.

      Strengths:

      The LIN codes proposed in this manuscript are congruent with previous typing methods for Neisseria gonorrhea, like cgMLST groups, Ng-STAR, and NG-MAST. Importantly, they improve upon many of these methods as the LIN codes are also congruent with the phylogeny and represent monophyletic lineages/sublineages.

      The LIN code assignment has been implemented in PubMLST, allowing other researchers to assign LIN codes to new assemblies and put genomes of interest in context with global datasets.

      Weaknesses:

      The authors correctly highlight that cgMLST-based clusters can be fused due n to "intermediate isolates" generated through processes like horizontal gene transfer. However, the LIN codes proposed here are also based on single linkage clustering of cgMLST at multiple levels. It is unclear if future recombination or sequencing of previously unsampled diversity within N. gonorrhoeae merges together higher-level clusters, and if so, how this will impact the stability of the nomenclature.

      The authors have defined higher resolution thresholds for the LIN code scheme. However, they do not investigate how these levels correspond to previously identified transmission clusters from genomic epidemiology studies. It would be useful for future users of the scheme to know the relevant LIN code thresholds for these investigations.

      We thank the reviewer for their insightful comments. LIN codes do use multi-level single linkage clustering to define the cluster number of isolates. However, unlike previous applications of simple single linkage clustering such as N. gonorrhoeae core genome groups (Harrison et al., 2020), once assigned in LIN code, these cluster numbers are fixed within an unchanging barcode assigned to each isolate. Therefore, the nomenclature is stable, as the addition of new isolates cannot change previously established LIN codes.

      Cluster stability was considered during the selection of allelic mismatch thresholds. By choosing thresholds based on natural breaks in population structure (Figure 3), applying clustering statistics such as the silhouette score, and by assessing where cluster stability has been maintained within the previous core genome groups nomenclature, we can have confidence that the thresholds which we have selected will form stable clusters. For example, with core genome groups there has been significant group fusion with clusters formed at a threshold of 400 allelic differences, while clustering at a threshold of 300 allelic differences has remained cohesive over time (supported by a high silhouette score) and so was selected as an important threshold in the gonococcal LIN code. LIN codes have now been applied to >27000 isolates in PubMLST, and the nomenclature has remained effective despite the continual addition of new isolates to this collection. The manuscript will be revised to emphasise these points.

      Work is in progress to explore what LIN code thresholds are generally associated with transmission chains. These will likely be the last 7 thresholds (25, 10, 7, 5, 3, 1, 0) as previous work has suggested that isolates linked by transmission within one year are associated with <14 single nucleotide polymorphism differences (De Silva et al., 2016). The results of this analysis will be described in a future article, currently in preparation.

      Harrison, O.B., et al. Neisseria gonorrhoeae Population Genomics: Use of the Gonococcal Core Genome to Improve Surveillance of Antimicrobial Resistance. The Journal of Infectious Diseases 2020.

      De Silva, D., et al. Whole-genome sequencing to determine transmission of Neisseria gonorrhoeae: an observational study. The Lancet Infectious Diseases 2016;16(11):1295-1303.

    1. eLife Assessment

      This study provides valuable insights into microtubule remodeling during liver-stage Plasmodium berghei development, demonstrating that deletion of the alpha-tubulin C-terminal tail impairs parasite growth in mosquitoes and abolishes infection in HeLa cells. The work is technically ambitious, employing advanced microscopy, genetic mutants, and pharmacological approaches. However, key claims are only partially supported due to incomplete evidence linking tubulin modifications to microtubule dynamics and uncertain antibody-based PTM detection.

    2. Reviewer #1 (Public review):

      The authors try to investigate how the population of microtubules (LSPMB) that originate from sporozoite subpellicular microtubules (SSPM) and are remodelled during liver-stage development of malaria parasites. These bundles shrink over time and help form structures needed for cell division. The authors have used expansion microscopy, live-cell imaging, genetically engineered mutants, and pharmacological perturbation to study parasite development with liver cells.

      A major strength of the manuscript is the live cell imaging and expansion microscopy to study this challenging liver stage of parasite development. It gives important knowledge that PTMs of α-tubulin, such as polyglutamylation and tyrosination/detyrosination, are crucial for microtubule stability. Mutations in α-tubulin reduce the parasite's ability to move and proliferate in the liver cells. The drug oryzalin, which targets microtubules, also blocks parasite development, showing how important dynamic microtubules are at this stage.

      The major problem in the manuscript was the way it flows, as the authors keep shifting from the liver stage to the sporogony stages and then back to the liver stages. It was very confusing at times to know what the real focus of the study is, whether sporozoite development or liver stage development. The flow of the manuscript could be improved. Some of the findings reported here substantiate the previous electron microscopy.

      Overall, the study represents an important contribution towards understanding cytoskeletal remodelling during liver stage infection. The study suggests that tubulin modifications are key for the parasite's survival in the liver and could be targets for new malaria treatments. This is also the stage that has been used for vaccine development, so any knowledge of how parasites proliferate in the liver cells will be beneficial towards intervention approaches.

    3. Reviewer #2 (Public review):

      Summary:

      The authors investigated microtubule distribution and their possible post-translational modifications (PTM) in Plasmodium berghei during development of the liver stage, using either hepatocytes or HeLa cells as models. They used conventional immunofluorescence assays and expansion microscopy with various antibodies recognising tubulin and, in the second part of the work, its candidate PTMs, as well as markers of Plasmodium, in addition to live imaging with a fluorescent marker for tubulin. In the third part of the study, they generated 3 mutants deprived of either the last four residues or the last 11 residues, or where a candidate polyglutamylation site was substituted by an alanine residue.

      Strengths:

      In the first part, microtubules are monitored by a combination of two approaches (IFA and live), revealing nicely the evolution of the sporozoite subpellicular microtubules (SSPM, the sporozoite is the developmental stage present in salivary glands of the mosquitoes and that infects hepatocytes) into a different structure termed liver-stage parasite microtubule bundle (LSPMB). The LSPMB shrinks during the course of parasite development and finally disappears while hemi-spindles emerge over time. Contact points between these two structures are observed frequently in live cells and occasionally in fixed cells, suggesting the intriguing possibility that tubulin might be recycled from the LSPMB to contribute to hemi-spindle formation.

      In the second part, antibodies recognising (1) the final tyrosine found at the C-terminal tail and (2) a stretch of 3 glutamate residues in a side chain are used to monitor these candidate PTMs. Signals are positive at the SSPM, and while it remains positive for polyglutamylation, it becomes negative for the final tyrosine at the LSPM, while a positive signal emerges at hemi-spindles at later stages of development.

      In the last part, the three mutants are fed to mosquitoes, where they show reduced development, the one lacking the alpha-tubulin tail even failing to reach the salivary glands. However, the two other mutants infect HeLa cells normally, whereas sporozoites with the C-terminal tail deletion recovered from the haemolymph did not develop in these cells.

      The first part provides convincing evidence that microtubules are extensively remodelled during the infection of hepatocytes and HeLa cells, in agreement with the spectacular Plasmodium morphogenetic changes accompanying massive and rapid proliferation. The third part brings further confirmation that the C-terminal tail of alpha-tubulin is essential for multiple stages of parasite development, in agreement with previous work (50). Since it is the region where several post-translational modifications take place in other organisms (detyrosination, polyglutamylation, glycylation), it makes sense to propose that the essential function is related to these PTMs also in Plasmodium.

      Weaknesses:

      The significance of tubulin PTM relies on two antibodies whose reactivity to Plasmodium tubulins is unclear (see below). The interpretation of the literature on detyrosination and polyglutamylation is confusing in several places, meaning that the statements about the possible role of these PTMs need to be carefully revisited.

      The authors use the term "tyrosination" but the alpha1-tubulin studied here possesses the final tyrosine when it is synthesised, so it is "tyrosinated" by default. It could potentially be removed by a tyrosine carboxypeptidase of the vasoinhibin family (VASH) as reported in other species. After removal, this tyrosine can be added again by a tubulin-tyrosine ligase (TTL) enzyme. It is therefore more appropriate to talk about detyrosination-retyrosination rather than tyrosination (this confusion is unfortunately common in the literature, see Janke & Magiera, 2020).

      The difficulty here is that there is so far no evidence that detyrosination takes place in Plasmodium. Neither VASH nor TTL could be identified in the Plasmodium genome (ref 31, something we can confirm with our unsuccessful BLAST analyses), and mass spectrometry studies of purified tubulin, albeit from blood stages, did not find evidence for detyrosination (reference 43). Western blots using an antibody against detyrosinated tubulin did not produce a positive signal, neither on purified tubulin, nor on whole parasites (43). Of course, the situation could be different in liver stages, but the question of the detyrosinating enzyme is still there. The existence of a unique Plasmodium system for detyrosination cannot be formally ruled out, but given the high degree of conservation of these PTMs and their associated enzymes, it sounds difficult to imagine.

      The fact that the anti-tyrosinated antibody still produced a signal in the cell line where the final tyrosine is deleted raises issues about its specificity. A cross-reactivity with beta-tubulin is proposed, but the Plasmodium beta-tubulin does not carry a final tyrosine, further raising concerns about antibody specificity.

      The interpretation of these results should therefore be considered carefully. There also seems to be some confusion in the function of detyrosination cited from the literature. It is said in line 229 that "tyrosination has been associated with stable microtubules" (33, 34, 50, 55). References 33 and 34 actually show that tyrosinated microtubules turn over faster in neurons or in epithelial cells, respectively, while references 50 and 55 do not study de/retyrosination. The general consensus is that tyrosinated microtubules are more dynamic (see reference 24).

      The situation is a bit different for polyglutamylation since several candidate poly- or mono-glutamylases have been identified in the Plasmodium genome, and at least mono-glutamylation of beta-tubulin has been formally proven, still in bloodstream stages (ref 43). The authors propose that the residue E445 is the polyglutamylation site. To our knowledge, this has not been demonstrated for Plasmodium. This residue is indeed the favourite one in several organisms such as humans and trypanosomes (Eddé et al., Science 1990; Schneider et al., JCS, 1997), and it is tempting to propose it would be the same here. However, TTLLs bind the tubulin tails from their C-terminal end like a glove on a finger (Garnham et al., Cell, 2015), and the presence of two extra residues in Plasmodium tubulins would mean that the reactive glutamate might be in position E447 rather than E445. This is worth discussing.<br /> On the positive side, it is encouraging to see that signals for both anti-tyrosinated tail and poly-glutamylated side chain are going down in the various mutants, but this would need validation with a comparison for alpha-tubulin signal.

      Line 316: polyglutamylation "is commonly associated with dynamic microtubule behavior (78-80)". Actually, references 78 and 79 show the impact of this PTM on interaction with spastin, and reference 80 discusses polyglutamylation as a marker of stable microtubules in the context of cilia and flagella. The consensus is that polyglutamylated microtubules tend to be more stable (ref24).

      Conclusion:

      The first and the third parts of this manuscript - evolution of microtubules and importance of the C-terminal tails for Plasmodium development - are convincing and well supported by data. However, the presence and role of tubulin PTM should be carefully reconsidered.

      Plasmodium tubulins are more closely related to plant tubulins and are sensitive to inhibitors that do not affect mammalian microtubules. They therefore represent promising drug targets as several well-characterised compounds used as herbicides are available. The work produced here further defines the evolution of the microtubule network in sporozoites and liver stages, which are the initial and essential first steps of the infection. Moreover, Plasmodium has multiple specificities that make it a fascinating organism to study both for cell biology and evolution. The data reported here are elegant and will attract the attention of the community working on parasites but also on the cytoskeleton at large. It will be interesting to have the feedback of other people working on tubulin PTMs to figure out the significance of this part of the work.

    4. Reviewer #3 (Public review):

      Summary:

      The manuscript by Atchou et al. investigates the role of the microtubule cytoskeleton in sporozoites of Plasmodium berghei, including possible functions of microtubule post-translational modifications (tyrosination and polyglutamylation) in the development of sporozoites in the liver. They also assessed the development of sporozoites in the mosquito. Using cell culture models and in vivo infections with parasites that contain tubulin mutants deficient in certain PTMs, they show that may aspects of the life cycle progression are impaired. The main conclusion is that microtubule PTMs play a major role in the differentiation processes of the parasites.

      However, there are a number of major and minor points of criticism that relate to the interpretation of some of the data.

      Comments:

      (1) The first paragraph of "Results" almost suggests that the presence of a subpellicular MT-array in sporozoites is a new discovery. This is not the case, see e.g. the recent publication by Ferreira et al. (Nature Communications, 2023).

      (2) Why were HeLa cells and not hepatocytes (as in Figure 3) used for measuring infection rates of the mutants in Figure 5H and 5L? As I understand, HeLa cells are not natural host cells for invading sporozoites. HeLa cells are epithelial cells derived from a cervical tumour. I am not an expert in Plasmodium biology, but is a HeLa infection an accepted surrogate model for liver stage development?

      (3) The tubulin staining in Figures 1A and 1B is confusing and doesn't seem to make sense. Whereas in 1A the antibody nicely stains host and parasite tubulin, in 1B, only parasite tubulin is visible. If the same antibody and the same host cells have been used, HeLa cytoplasmic microtubules should be visible in 1B. In fact, they should be the predominant antigen. The same applies to Figure 2, where host microtubules are also not visible.

      (4) In Figures 2A and B, the host nuclei appear to have very different sizes in the DMSO controls and in the drug-treated cells. For example, in the 20 µM (-) image (bottom right), the nuclei are much larger than in the DMSO (-) control (top left). If this is the case, expansion microscopy hasn't worked reproducibly, and therefore, quantification of fluorescence is problematic. The scalebar is the same for all panels.

      (5) I don't quite follow the argument that spindles and the LSPMB are dynamic structures (e.g., lines 145, 174). That is a trivial statement for the spindle, as it is always dynamic, but beyond that, it has only been shown that the structure is sensitive to oryzalin. That says little about any "natural" dynamic behaviour. Any microtubule structure can be destroyed by a particular physical or chemical treatment, but that doesn't mean all structures are dynamic. It also depends on the definition of "dynamic" in a particular context, for example, the time scale of dynamic behaviour (changes within seconds, minutes, or hours).

      (6) I am not sure what part in the story EB1 plays. The data are only shown in the Supplements and don't seem to be of particular relevance. EB1 is a ubiquitous protein associated with microtubule plus ends. The statement (line 192) that it "may play a broader role..." is unsubstantiated and cannot be based merely on the observation that it is expressed in a particular life cycle stage.

      (7) Line 196 onwards: The antibody IN105 is better known in the field as polyE. Maybe that should be added in Materials and Methods. Also, the antibody T9028 against tyrosinated tubulin is poorly validated in the literature and rarely used. Usually, researchers in this field use the monoclonal antibody YL1/2. I am not sure why this unusual antibody was chosen in this study. In fact, has its specificity against tyrosinated α-tubulin from Plasmodium berghei ever been shown? The original antigen was human and had the sequence EGEEY. The Plasmodium sequence is YEADY and hence very different. It is stated that the LSPMB is both polyglutamylated and tyrosinated. This is unusual because polyglutamylated microtubules are usually indicative of stable microtubules, whereas tyrosinated microtubules are found on freshly polymerised and dynamic microtubules. However, a co-localisation within the same cell has not been attempted. This is, however, possible since polyE is a rabbit antibody and T9028 is a mouse antibody. I suspect that differences or gradients along the LSPMB would have been noticed. Also, in lines 207/208, it is said that tyrosination disappears after hepatocyte invasion, which is shown in Figure 3. However, in Figure 3A, quite a lot of positive signals for tyrosination are visible in the 54 and 56 hpi panels.

      (8) In line 229, it is stated that tyrosination "has previously been associated with stable microtubule in motility". This statement is not correct. In fact, none of the cited references that apparently support this statement show that this is the case. On the contrary, stable microtubules, such as flagellar axonemes, are almost completely detyrosinated. Therefore, tyrosination is a marker for dynamic microtubules, whereas detyrosinated microtubules are indicative of stable microtubules. This is an established fact, and it is odd that the authors claim the opposite.

      (9) Line 236 onwards: Concerning the generation of tubulin mutants, I think it is necessary to demonstrate successful replacement of the wild-type allele by the mutant allele. I am sure the authors have done this by amplification and subsequent sequencing of the genomic locus using PCR primers outside the plasmid sequences. I suggest including this information, e.g., by displaying the chromatograph trace in a supplementary figure. Or are the sequences displayed in Figure S3B already derived from sequenced genomic DNA? This is not described in the Legend or in Materials and Methods. The left PCR products obtained for Figure S3 B would be a suitable template for sequencing.

      (10) It is also important to be aware of the fact that glutamylation also occurs on β-tubulin. This signal will also be detected by polyE (IN105). Therefore, it is surprising that IN105 immunofluorescence is negative on the C-term Δ cells (Figure S3 D). Is there anything known about confirmed polyglutamylation sites on both α- and β-tubulins in Plasmodium, e.g., by MS? In Toxoplasma, both α- and β-tubulin have been shown to be polyglutamylated.

      (11) Figure S3 is very confusing. In the legend, certain intron deletions are mentioned. How does this relate to posttranslational tubulin modifications? The corresponding section in Results (lines 288-292) is also not very helpful in understanding this.

      (12) Figure 4E doesn't look like brightfield microscopy but like some sort of fluorescent imaging. In Figure 4C, were the control (NoΔ) cells with an integrated cassette, but no mutations, or non-transgenic cells?

      (13) It is difficult to understand why the TyΔ and the CtΔ mutants still show quite a strong signal using the anti-tyrosination antibody. If the mutants have replaced all wild-type alleles, the signal should be completely absent, unless the antibody (see my comment above concerning T9028) cross-reacts with detyrosinated microtubules. Therefore, the quantitation in Figures 5F and 5G is actually indicative of something that shouldn't be like that. The quantitation of 5F is at odds with the microscopy image in 5D. If this image is representative, the anti-Ty staining in TyΔ is as strong as in the control NoΔ.

      (14) The statement that the failure of CtΔ mutants to generate viable sporozoites is due to the lack of microtubule PTMs (lines 295-296) is speculative. The lack of the entire C-terminal tail could have a number of consequences, such as impaired microtubule assembly or failure to recruit and bind associated proteins. This is not necessarily linked to PTMs. Also, it has been shown in yeast that for microtubules to form properly and exquisite regulation (proteostasis) of the ratio between α- and β-tubulin is essential (Wethekam and Moore, 2023). I am not sure, but according to Materials and Methods (line 423), the gene cassettes for replacing the wild-type tubulin gene with the mutant versions contain a selectable marker gene for pyrimethamine selection. Are there qPCR data that show that expression levels of mutant α-tubulin are more or less the same as the wild-type levels?

      (15) In the Discussion, my impression is that two recent studies, the superb Expansion Microscopy study by Bertiaux et al. (2021) and the cryo-EM study by Ferreira et al. (2023), are not sufficiently recognised (although they are cited elsewhere in the manuscript). The latter study includes a detailed description of the microtubule cytoskeleton in sporozoites. However, the present study clearly expands the knowledge about the structure of the cytoskeleton in liver stage parasites and is one of the few studies addressing the distribution and function of microtubule post-translational modifications in Plasmodium.

      (16) I somewhat disagree with the statement of a co-occurrence of polyglutamylated and tyrosinated microtubules. I think the resolution is too low to reach that conclusion. As this is a bold claim, and would be contrary to what is known from other organisms, it would require a more rigorous validation. Given the apparent problems with the anti-Ty antibody (signal in the TyΔ mutant), one should be very cautious with this claim.

      (17) In the Discussion (lines 311 and 377), it is again claimed that tyrosinated microtubules are "a well-known marker of stable microtubules". This statement is completely incorrect, and I am surprised by this serious mistake. A few lines later, the authors say that polyglutamylated is "commonly associated with dynamic microtubule behaviour". Again, this is completely incorrect and is the opposite of what is firmly established in the literature. Polyglutamylation and detyrosination are markers of stable microtubules.

      (18) In line 339, the authors interpret the residual antibody staining after the introduction of the mutant tubulin as a compensatory mechanism. There is no evidence for this. More likely explanations are firstly the quality of the anti-Ty-antibody used (see comment above), and the fact that also β-tubulin carries C-terminal polyglutamylation sites, which haven't been investigated in this study. PTMs on β-tubulin are not compensatory, but normal PTMs, at least in all other organisms where microtubule PTMs have been investigated.

    5. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      The authors try to investigate how the population of microtubules (LSPMB) that originate from sporozoite subpellicular microtubules (SSPM) and are remodelled during liver-stage development of malaria parasites. These bundles shrink over time and help form structures needed for cell division. The authors have used expansion microscopy, live-cell imaging, genetically engineered mutants, and pharmacological perturbation to study parasite development with liver cells.

      A major strength of the manuscript is the live cell imaging and expansion microscopy to study this challenging liver stage of parasite development. It gives important knowledge that PTMs of α-tubulin, such as polyglutamylation and tyrosination/detyrosination, are crucial for microtubule stability. Mutations in α-tubulin reduce the parasite's ability to move and proliferate in the liver cells. The drug oryzalin, which targets microtubules, also blocks parasite development, showing how important dynamic microtubules are at this stage.

      The major problem in the manuscript was the way it flows, as the authors keep shifting from the liver stage to the sporogony stages and then back to the liver stages. It was very confusing at times to know what the real focus of the study is, whether sporozoite development or liver stage development. The flow of the manuscript could be improved. Some of the findings reported here substantiate the previous electron microscopy.

      Overall, the study represents an important contribution towards understanding cytoskeletal remodelling during liver stage infection. The study suggests that tubulin modifications are key for the parasite's survival in the liver and could be targets for new malaria treatments. This is also the stage that has been used for vaccine development, so any knowledge of how parasites proliferate in the liver cells will be beneficial towards intervention approaches.

      We would like to express our sincere gratitude to Reviewer #1 for the positive and encouraging feedback on our manuscript. We are delighted that the reviewer found our experimental design and methodologies appropriate and that our study represents an important contribution to understanding cytoskeletal remodelling during liver stage infection, a critical phase for vaccine development. We are also grateful to the reviewer for highlighting the issue with the manuscript's flow. We acknowledge this limitation and will significantly improve the narrative structure and logical progression in the revised manuscript to ensure clarity and avoid any potential confusion. Thank you again for your thoughtful and constructive comments.

      Reviewer #2 (Public review):

      Summary:

      The authors investigated microtubule distribution and their possible post-translational modifications (PTM) in Plasmodium berghei during development of the liver stage, using either hepatocytes or HeLa cells as models. They used conventional immunofluorescence assays and expansion microscopy with various antibodies recognising tubulin and, in the second part of the work, its candidate PTMs, as well as markers of Plasmodium, in addition to live imaging with a fluorescent marker for tubulin. In the third part of the study, they generated 3 mutants deprived of either the last four residues or the last 11 residues, or where a candidate polyglutamylation site was substituted by an alanine residue.

      Strengths:

      In the first part, microtubules are monitored by a combination of two approaches (IFA and live), revealing nicely the evolution of the sporozoite subpellicular microtubules (SSPM, the sporozoite is the developmental stage present in salivary glands of the mosquitoes and that infects hepatocytes) into a different structure termed liver-stage parasite microtubule bundle (LSPMB). The LSPMB shrinks during the course of parasite development and finally disappears while hemi-spindles emerge over time. Contact points between these two structures are observed frequently in live cells and occasionally in fixed cells, suggesting the intriguing possibility that tubulin might be recycled from the LSPMB to contribute to hemi-spindle formation.

      In the second part, antibodies recognising (1) the final tyrosine found at the C-terminal tail and (2) a stretch of 3 glutamate residues in a side chain are used to monitor these candidate PTMs. Signals are positive at the SSPM, and while it remains positive for polyglutamylation, it becomes negative for the final tyrosine at the LSPM, while a positive signal emerges at hemi-spindles at later stages of development.

      In the last part, the three mutants are fed to mosquitoes, where they show reduced development, the one lacking the alpha-tubulin tail even failing to reach the salivary glands. However, the two other mutants infect HeLa cells normally, whereas sporozoites with the C-terminal tail deletion recovered from the haemolymph did not develop in these cells.

      The first part provides convincing evidence that microtubules are extensively remodelled during the infection of hepatocytes and HeLa cells, in agreement with the spectacular Plasmodium morphogenetic changes accompanying massive and rapid proliferation. The third part brings further confirmation that the C-terminal tail of alpha-tubulin is essential for multiple stages of parasite development, in agreement with previous work (50). Since it is the region where several post-translational modifications take place in other organisms (detyrosination, polyglutamylation, glycylation), it makes sense to propose that the essential function is related to these PTMs also in Plasmodium.

      Weaknesses:

      The significance of tubulin PTM relies on two antibodies whose reactivity to Plasmodium tubulins is unclear (see below). The interpretation of the literature on detyrosination and polyglutamylation is confusing in several places, meaning that the statements about the possible role of these PTMs need to be carefully revisited.

      The authors use the term "tyrosination" but the alpha1-tubulin studied here possesses the final tyrosine when it is synthesised, so it is "tyrosinated" by default. It could potentially be removed by a tyrosine carboxypeptidase of the vasoinhibin family (VASH) as reported in other species. After removal, this tyrosine can be added again by a tubulin-tyrosine ligase (TTL) enzyme. It is therefore more appropriate to talk about detyrosination-retyrosination rather than tyrosination (this confusion is unfortunately common in the literature, see Janke & Magiera, 2020).

      The difficulty here is that there is so far no evidence that detyrosination takes place in Plasmodium. Neither VASH nor TTL could be identified in the Plasmodium genome (ref 31, something we can confirm with our unsuccessful BLAST analyses), and mass spectrometry studies of purified tubulin, albeit from blood stages, did not find evidence for detyrosination (reference 43). Western blots using an antibody against detyrosinated tubulin did not produce a positive signal, neither on purified tubulin, nor on whole parasites (43). Of course, the situation could be different in liver stages, but the question of the detyrosinating enzyme is still there. The existence of a unique Plasmodium system for detyrosination cannot be formally ruled out but given the high degree of conservation of these PTMs and their associated enzymes, it sounds difficult to imagine.

      The fact that the anti-tyrosinated antibody still produced a signal in the cell line where the final tyrosine is deleted raises issues about its specificity. A cross-reactivity with beta-tubulin is proposed, but the Plasmodium beta-tubulin does not carry a final tyrosine, further raising concerns about antibody specificity.

      The interpretation of these results should therefore be considered carefully. There also seems to be some confusion in the function of detyrosination cited from the literature. It is said in line 229 that "tyrosination has been associated with stable microtubules" (33, 34, 50, 55). References 33 and 34 actually show that tyrosinated microtubules turn over faster in neurons or in epithelial cells, respectively, while references 50 and 55 do not study de/retyrosination. The general consensus is that tyrosinated microtubules are more dynamic (see reference 24).

      The situation is a bit different for polyglutamylation since several candidate poly- or mono-glutamylases have been identified in the Plasmodium genome, and at least mono-glutamylation of beta-tubulin has been formally proven, still in bloodstream stages (ref 43). The authors propose that the residue E445 is the polyglutamylation site. To our knowledge, this has not been demonstrated for Plasmodium. This residue is indeed the favourite one in several organisms such as humans and trypanosomes (Eddé et al., Science 1990; Schneider et al., JCS, 1997), and it is tempting to propose it would be the same here. However, TTLLs bind the tubulin tails from their C-terminal end like a glove on a finger (Garnham et al., Cell, 2015), and the presence of two extra residues in Plasmodium tubulins would mean that the reactive glutamate might be in position E447 rather than E445. This is worth discussing.

      On the positive side, it is encouraging to see that signals for both anti-tyrosinated tail and poly-glutamylated side chain are going down in the various mutants, but this would need validation with a comparison for alpha-tubulin signal.

      Line 316: polyglutamylation "is commonly associated with dynamic microtubule behavior (78-80)". Actually, references 78 and 79 show the impact of this PTM on interaction with spastin, and reference 80 discusses polyglutamylation as a marker of stable microtubules in the context of cilia and flagella. The consensus is that polyglutamylated microtubules tend to be more stable (ref24).

      Conclusion:

      The first and the third parts of this manuscript - evolution of microtubules and importance of the C-terminal tails for Plasmodium development - are convincing and well supported by data. However, the presence and role of tubulin PTM should be carefully reconsidered.

      Plasmodium tubulins are more closely related to plant tubulins and are sensitive to inhibitors that do not affect mammalian microtubules. They therefore represent promising drug targets as several well-characterised compounds used as herbicides are available. The work produced here further defines the evolution of the microtubule network in sporozoites and liver stages, which are the initial and essential first steps of the infection. Moreover, Plasmodium has multiple specificities that make it a fascinating organism to study both for cell biology and evolution. The data reported here are elegant and will attract the attention of the community working on parasites but also on the cytoskeleton at large. It will be interesting to have the feedback of other people working on tubulin PTMs to figure out the significance of this part of the work.

      We thank Reviewer #2 for the thoughtful and detailed evaluation of our manuscript. We are pleased that the reviewer found our study elegant and believe it will attract the attention of the broader scientific community, both those working on parasites and those focused on cytoskeleton biology. We also acknowledge the concerns raised regarding the specificity of the antibodies used to detect tubulin post-translational modifications (PTMs), as well as the interpretation of their signals and the current lack of identified detyrosination enzymes in the Plasmodium genome. We agree that these are important limitations, and we will address them thoroughly in the revised manuscript. This includes clarifying our interpretation of tyrosination versus detyrosination, adjusting our claims regarding polyglutamylation sites, and carefully revisiting the literature cited to ensure accurate contextualization of PTM function in microtubule stability.

      We are grateful for the reviewer’s close reading and critical feedback, which will help us substantially improve the clarity, precision, and strength of our manuscript.

      Reviewer #3 (Public review):

      Summary:

      The manuscript by Atchou et al. investigates the role of the microtubule cytoskeleton in sporozoites of Plasmodium berghei, including possible functions of microtubule post-translational modifications (tyrosination and polyglutamylation) in the development of sporozoites in the liver. They also assessed the development of sporozoites in the mosquito. Using cell culture models and in vivo infections with parasites that contain tubulin mutants deficient in certain PTMs, they show that may aspects of the life cycle progression are impaired. The main conclusion is that microtubule PTMs play a major role in the differentiation processes of the parasites.

      However, there are a number of major and minor points of criticism that relate to the interpretation of some of the data.

      We thank Reviewer #3 for the overall positive assessment of our study and for recognizing its contribution to advancing our understanding of Plasmodium biology and malaria pathogenesis. We appreciate the reviewer’s constructive feedback, particularly regarding the interpretation of some of our data. These comments have been very helpful in guiding our revisions, and we have worked to improve both the clarity of our presentation and the precision of our interpretations in the revised manuscript.

      Below, we respond in detail to each of the reviewer’s points.

      Comments:<br /> (1) The first paragraph of "Results" almost suggests that the presence of a subpellicular MT-array in sporozoites is a new discovery. This is not the case, see e.g. the recent publication by Ferreira et al. (Nature Communications, 2023).

      We thank the reviewer for pointing this out and fully agree that the subpellicular microtubule (SPM) array in sporozoites is well established, as documented in earlier work (e.g., Cyrklaff et al., 2007) and more recently by Ferreira et al. (Nat. Commun., 2023). Our intention was not to suggest that the existence of the SSPM is a novel finding. Rather, our study builds on this existing knowledge by demonstrating that these sporozoite-derived microtubules are not disassembled upon hepatocyte entry but are repurposed into a newly described structure, the liver stage parasite microtubule bundle (LSPMB). This reorganization, its persistence into liver stage development, and its dynamic role in microtubule remodeling and nuclear division are, to our knowledge, novel observations. We will revise the manuscript to make this distinction clearer in the introduction and the results section.

      (2) Why were HeLa cells and not hepatocytes (as in Figure 3) used for measuring infection rates of the mutants in Figure 5H and 5L? As I understand, HeLa cells are not natural host cells for invading sporozoites. HeLa cells are epithelial cells derived from a cervical tumour. I am not an expert in Plasmodium biology, but is a HeLa infection an accepted surrogate model for liver stage development?

      We appreciate the opportunity to clarify our experimental model. While HeLa cells are not the natural host cells, they are a well-established and validated in vitro model for studying Plasmodium berghei liver stage development in our lab and others. In this system, the parasite completes its full development and generates infectious merozoites. Numerous studies have successfully used HeLa cells as a liver stage infection model, with key findings subsequently validated in primary hepatocytes or in vivo, confirming its utility as a representative model. We employed this cell line primarily to reduce animal usage in accordance with the 3Rs principles (Replacement, Reduction, Refinement). Importantly, to ensure the biological relevance of our discoveries in HeLa cells, we validated our key findings in primary mouse hepatocytes, as shown in Figure 3. Furthermore, we confirmed the in vivo infectivity of mutant parasite lines that produced typical salivary gland sporozoites through an in vivo infection assay, presented in Figure S4C.

      (3) The tubulin staining in Figures 1A and 1B is confusing and doesn't seem to make sense. Whereas in 1A the antibody nicely stains host and parasite tubulin, in 1B, only parasite tubulin is visible. If the same antibody and the same host cells have been used, HeLa cytoplasmic microtubules should be visible in 1B. In fact, they should be the predominant antigen. The same applies to Figure 2, where host microtubules are also not visible.

      We thank the reviewer for this careful observation regarding the α-tubulin staining in Figures 1A and 1B. The same host cell type (HeLa) and α-tubulin antibody were indeed used in both experiments. Figure 1A shows results from conventional immunofluorescence assays, where both host and parasite microtubules are clearly stained. In contrast, Figure 1B shows the outcome of ultrastructure expansion microscopy (U-ExM), where parasite microtubules appear prominently, while host microtubules are less visible.

      This effect appears to be a technical outcome of the U-ExM protocol, which can differentially preserve or reveal microtubule epitopes. We consistently observed stronger parasite signal across various cell types, including primary hepatocytes (Figure 3A,B). The lack of visible host microtubules in some U-ExM images does not reflect their absence, but rather reduced signal intensity relative to the parasite structures. This is not observed with all antibodies, e.g., host microtubules stain strongly with anti-tyrosinated α-tubulin (Figure 3B), likely reflecting their high tyrosination state.

      To overcome this limitation, we employed PS-ExM and combined PS-ExM/U-ExM approaches (as described in reference 56), which allowed simultaneous high-resolution visualization of both host and parasite microtubule networks. These combined methods are now being used in follow-up studies to investigate host–parasite microtubule interactions in more detail.

      We will clarify this point in the revised manuscript to avoid confusion.

      (4) In Figures 2A and B, the host nuclei appear to have very different sizes in the DMSO controls and in the drug-treated cells. For example, in the 20 µM (-) image (bottom right), the nuclei are much larger than in the DMSO (-) control (top left). If this is the case, expansion microscopy hasn't worked reproducibly, and therefore, quantification of fluorescence is problematic. The scalebar is the same for all panels.

      The expansion microscopy methods used in this study have been rigorously validated for both reproducibility and isotropicity. However, as the reviewer rightly notes, host cell nuclei can vary in size due to several factors, including cell cycle stage, infection status, and the extent of parasite development, all of which can influence host nuclei morphology and size.

      Importantly, the quantifications relevant to our conclusions were focused specifically on parasite structures. We did not rely on host nuclear size or host fluorescence intensity as a quantitative readout in this context. While we acknowledge the observed variability in host nuclear dimensions, it does not compromise the accuracy or reproducibility of the parasite specific measurements central to our study.

      We will clarify this point in the revised figure legend and manuscript.

      (5) I don't quite follow the argument that spindles and the LSPMB are dynamic structures (e.g., lines 145, 174). That is a trivial statement for the spindle, as it is always dynamic, but beyond that, it has only been shown that the structure is sensitive to oryzalin. That says little about any "natural" dynamic behaviour. Any microtubule structure can be destroyed by a particular physical or chemical treatment, but that doesn't mean all structures are dynamic. It also depends on the definition of "dynamic" in a particular context, for example, the time scale of dynamic behaviour (changes within seconds, minutes, or hours).

      We agree that sensitivity to chemical depolymerization alone does not necessarily indicate dynamic behavior, particularly in the absence of data on turnover kinetics or temporal changes.

      Our interpretation was based on two observations: first, that the LSPMB, which derives from the highly stable sporozoite subpellicular microtubules (known to be drug-resistant), becomes susceptible to depolymerization during the liver stage; and second, that the LSPMB gradually shrinks over time during parasite development. These features suggested a transition toward a more dynamic state compared to its origin. However, we fully agree that “dynamic” is a context-dependent term and that direct evidence such as turnover rates or structural changes on short time scales, is required to rigorously define microtubule dynamics.

      We will revise the manuscript to clarify our use of this term and explicitly acknowledge the need for further studies to characterize the timescale and mechanisms underlying LSPMB remodeling.

      (6) I am not sure what part in the story EB1 plays. The data are only shown in the Supplements and don't seem to be of particular relevance. EB1 is a ubiquitous protein associated with microtubule plus ends. The statement (line 192) that it "may play a broader role..." is unsubstantiated and cannot be based merely on the observation that it is expressed in a particular life cycle stage.

      We agree that EB1 is a ubiquitous microtubule plus-end binding protein and that its presence alone does not imply a novel function. Previous studies (e.g., Maurer et al., 2023; Yang et al., 2023; Zeeshan et al., 2023) have focused on its role during Plasmodium sexual stages, while its expression during liver and mosquito stages has not been previously documented.

      Our data extend this knowledge by showing that EB1 is also expressed during liver stage development, particularly during the highly mitotic schizont phase. While we agree that this observation alone does not prove functional involvement, it raises the possibility of a broader role for EB1 in regulating microtubule dynamics beyond sexual stages. To avoid overinterpretation, we have presented these findings in the supplementary material and will revise the manuscript to tone down speculative statements and clearly frame this as a preliminary observation that warrants further investigation.

      (7) Line 196 onwards: The antibody IN105 is better known in the field as polyE. Maybe that should be added in Materials and Methods. Also, the antibody T9028 against tyrosinated tubulin is poorly validated in the literature and rarely used. Usually, researchers in this field use the monoclonal antibody YL1/2. I am not sure why this unusual antibody was chosen in this study. In fact, has its specificity against tyrosinated α-tubulin from Plasmodium berghei ever been shown? The original antigen was human and had the sequence EGEEY. The Plasmodium sequence is YEADY and hence very different. It is stated that the LSPMB is both polyglutamylated and tyrosinated. This is unusual because polyglutamylated microtubules are usually indicative of stable microtubules, whereas tyrosinated microtubules are found on freshly polymerised and dynamic microtubules. However, a co-localisation within the same cell has not been attempted. This is, however, possible since polyE is a rabbit antibody and T9028 is a mouse antibody. I suspect that differences or gradients along the LSPMB would have been noticed. Also, in lines 207/208, it is said that tyrosination disappears after hepatocyte invasion, which is shown in Figure 3. However, in Figure 3A, quite a lot of positive signals for tyrosination are visible in the 54 and 56 hpi panels.

      First, we acknowledge that the IN105 antibody is more widely known as "polyE" in the field. We will update the Materials and Methods section accordingly to reflect this nomenclature.

      Regarding the use of the T9028 antibody against tyrosinated α-tubulin: we agree that this monoclonal antibody is less commonly used than YL1/2, and we appreciate the reviewer drawing attention to this. The original antigen for T9028 is based on the mammalian C-terminal sequence EGEEY, which differs from the Plasmodium α1-tubulin sequence (YEADY). Like many in the field, we face the challenge that most available antibodies are raised against mammalian epitopes, and specificity in Plasmodium can vary. Nonetheless, the literature (e.g., Hirst et al., 2022; Fennell et al., 2008) has demonstrated that tyrosination occurs in Plasmodium α1-tubulin, using anti-tyrosination antibodies including YL1/2.

      Following the reviewer’s excellent suggestion, we are currently repeating the key experiments using the YL1/2 antibody to compare staining patterns directly with those obtained using T9028. We will include these results in the revised manuscript.

      Concerning the potential co-localization of polyglutamylation and tyrosination on the LSPMB: we agree that this is an interesting and testable hypothesis. In the current manuscript, Figures 3A and 3B were generated from independent experiments, and thus co-localization was not assessed. However, as the reviewer correctly notes, polyE and T9028 antibodies are raised in rabbit and mouse, respectively, making co-staining feasible. We will follow up on this experimentally and, if feasible within our revision timeline, include data in the revised version or highlight this as a future direction.

      Finally, with regard to Figure 3 and the observation that tyrosination appears to persist at 54 and 56 hpi (Figure 3B): the reviewer is correct that tyrosination signal is still detectable at these time points. Our statement that tyrosination “disappears after hepatocyte invasion” was intended to refer to an overall decrease in signal intensity during early liver stage development, with a reappearance at later stages (e.g., cytomere formation). We will rephrase this section for greater clarity and ensure that figure annotations and legends unambiguously reflect the dynamics observed.

      (8) In line 229, it is stated that tyrosination "has previously been associated with stable microtubule in motility". This statement is not correct. In fact, none of the cited references that apparently support this statement show that this is the case. On the contrary, stable microtubules, such as flagellar axonemes, are almost completely detyrosinated. Therefore, tyrosination is a marker for dynamic microtubules, whereas detyrosinated microtubules are indicative of stable microtubules. This is an established fact, and it is odd that the authors claim the opposite.

      We fully agree that in canonical eukaryotic systems, tyrosinated microtubules are generally markers of dynamic microtubule populations, whereas detyrosinated microtubules are typically associated with stability particularly in structures such as flagellar axonemes.

      Our original statement will be corrected. In our study, we observed that tyrosinated microtubules are prevalent in invasive stages (sporozoites and merozoites), while detyrosinated forms become more prominent during intracellular liver stage development. This pattern is consistent with the established link between tyrosination and dynamic microtubules.

      What is particularly intriguing in Plasmodium is the apparent cycling of tyrosination despite the absence of known tubulin tyrosine ligase (TTL) homologs in the genome. This suggests either a highly divergent enzyme or the involvement of host cell factors, a hypothesis supported by the reappearance of tyrosinated microtubules during liver stage schizogony (Figure 3B).

      We will revise the relevant text and the Discussion section to reflect these mechanistic considerations more accurately and to avoid misrepresenting established principles of microtubule biology.

      (9) Line 236 onwards: Concerning the generation of tubulin mutants, I think it is necessary to demonstrate successful replacement of the wild-type allele by the mutant allele. I am sure the authors have done this by amplification and subsequent sequencing of the genomic locus using PCR primers outside the plasmid sequences. I suggest including this information, e.g., by displaying the chromatograph trace in a supplementary figure. Or are the sequences displayed in Figure S3B already derived from sequenced genomic DNA? This is not described in the Legend or in Materials and Methods. The left PCR products obtained for Figure S3 B would be a suitable template for sequencing.

      Indeed, these data are presented in Figure 4B and the corresponding sequence data are shown in Figure S3B. We appreciate the reviewer’s suggestion, which will help improve the transparency and reproducibility of our methodology.

      (10) It is also important to be aware of the fact that glutamylation also occurs on β-tubulin. This signal will also be detected by polyE (IN105). Therefore, it is surprising that IN105 immunofluorescence is negative on the C-term Δ cells (Figure S3 D). Is there anything known about confirmed polyglutamylation sites on both α- and β-tubulins in Plasmodium, e.g., by MS? In Toxoplasma, both α- and β-tubulin have been shown to be polyglutamylated.

      Indeed, polyglutamylation is known to occur not only on α-tubulin but also on β-tubulin in many organisms, including Toxoplasma gondii, and the polyE (IN105) antibody is expected to detect polyglutamylation on both tubulin isoforms.

      The parasites shown in Figure S3D correspond to mutant lines originally generated by Spreng et al. (2019): the IntronΔ mutant (with deletion of introns in the Plasmodium α1-tubulin gene) and the C-termΔ mutant (with deletion of the final three C-terminal residues: ADY). As the reviewer correctly notes, this particular C-terminal deletion does not include the predicted polyglutamylation site (E445 or E447, depending on alignment), and thus should not abolish all polyglutamylation. However, in our experiments, the IN105 signal is substantially reduced in this mutant. This may suggest that structural alterations in the tubulin tail affect accessibility of the polyglutamylation epitope or influence the modification itself though we cannot exclude other possibilities, including changes in antibody recognition.

      To date, polyglutamylation sites in Plasmodium tubulins have not been definitively confirmed by mass spectrometry. However, a recent MS-based study (reference 43) detected monoglutamylation on β-tubulin in blood stage parasites. Direct MS evidence for polyglutamylation of either α- or β-tubulin in Plasmodium liver stages is still lacking. We will clarify these points in the revised manuscript to avoid potential confusion and to highlight the need for future biochemical validation of PTM sites.

      (11) Figure S3 is very confusing. In the legend, certain intron deletions are mentioned. How does this relate to posttranslational tubulin modifications? The corresponding section in Results (lines 288-292) is also not very helpful in understanding this.

      The parasite lines shown in Figure S3D were originally generated by Spreng et al. (2019) and are not directly part of the main set of PTM-targeted mutants described in our study. Specifically, the IntronΔ line carries deletions in introns of the Plasmodium α1-tubulin gene, while the C-termΔ line lacks the final three C-terminal residues (ADY). These lines were included for comparative purposes to explore whether structural changes in α-tubulin could impact polyglutamylation signal, as detected by the polyE (IN105) antibody.

      We acknowledge that the figure legend and corresponding text (lines 288–292) did not adequately explain the rationale for including these control lines. We will revise both the legend and Results section to more clearly describe the origin, purpose, and relevance of these mutants to the overall study.

      (12) Figure 4E doesn't look like brightfield microscopy but like some sort of fluorescent imaging. In Figure 4C, were the control (NoΔ) cells with an integrated cassette, but no mutations, or non-transgenic cells?

      The reviewer is absolutely correct: Figure 4E shows a fluorescent image acquired using widefield microscopy and not a brightfield image. We will revise the figure legend accordingly to avoid confusion. The “BF” (brightfield) label applies only to the left panel in Figure 4C, which depicts oocysts imaged using transmitted light.

      Regarding the controls labeled "NoΔ" in Figure 4C, we confirm that these parasites contain the integrated selection cassette but do not harbor any mutations in the target gene. They serve as proper integration controls, allowing us to distinguish the effects of the point mutations or deletions introduced in the experimental lines.

      (13) It is difficult to understand why the TyΔ and the CtΔ mutants still show quite a strong signal using the anti-tyrosination antibody. If the mutants have replaced all wild-type alleles, the signal should be completely absent, unless the antibody (see my comment above concerning T9028) cross-reacts with detyrosinated microtubules. Therefore, the quantitation in Figures 5F and 5G is actually indicative of something that shouldn't be like that. The quantitation of 5F is at odds with the microscopy image in 5D. If this image is representative, the anti-Ty staining in TyΔ is as strong as in the control NoΔ.

      We agree that the persistence of anti-tyrosination signal in the TyΔ and CtΔ mutant lines is unexpected, given that all wild-type alleles were replaced. This discrepancy has led us to further investigate the specificity of the T9028 antibody, as raised in the reviewer’s earlier comment. To address this concern, we are currently repeating the key experiments using the well-established YL1/2 monoclonal antibody, which is widely accepted for detecting tyrosinated α-tubulin in other systems.

      We also acknowledge that Figure 5F shows residual tyrosination signal, and the reviewer is correct that this should not occur if the modified residues are the exclusive PTM sites. One possible explanation is that adjacent residues or even alternative tubulin isoforms may serve as substrates. While α1-tubulin is the dominant isoform in Plasmodium, low-level expression of α2-tubulin has been detected in liver stages based on transcriptomic data, and it may contribute to the observed signal.

      Regarding the apparent discrepancy between the quantification in Figure 5F and the representative image in Figure 5D, we will revise the figure legend to clarify that image selection aimed to show detectable signal, not necessarily the average phenotype. We will also reassess and, if needed, repeat the quantification with improved image sets to ensure accuracy and consistency.

      We will revise the manuscript to reflect these points and include a more nuanced interpretation of the residual staining in the mutant lines.

      (14) The statement that the failure of CtΔ mutants to generate viable sporozoites is due to the lack of microtubule PTMs (lines 295-296) is speculative. The lack of the entire C-terminal tail could have a number of consequences, such as impaired microtubule assembly or failure to recruit and bind associated proteins. This is not necessarily linked to PTMs. Also, it has been shown in yeast that for microtubules to form properly and exquisite regulation (proteostasis) of the ratio between α- and β-tubulin is essential (Wethekam and Moore, 2023). I am not sure, but according to Materials and Methods (line 423), the gene cassettes for replacing the wild-type tubulin gene with the mutant versions contain a selectable marker gene for pyrimethamine selection. Are there qPCR data that show that expression levels of mutant α-tubulin are more or less the same as the wild-type levels?

      We agree that attributing the developmental failure of the CtΔ mutants solely to the absence of microtubule post-translational modifications (PTMs) is speculative. As the reviewer rightly points out, deletion of the entire C-terminal tail may have multiple effects, including impaired microtubule assembly, altered α/β-tubulin stoichiometry, or disruption of interactions with essential microtubule-associated proteins (MAPs). These consequences may arise independently of PTMs.

      That said, we note that PTMs particularly polyglutamylation, can modulate MAP binding by altering the surface charge of microtubules (Genova et al., 2023; Mitchell et al., 2010). Therefore, while PTM loss may be a contributing factor, we acknowledge that the phenotype likely results from a combination of mechanisms. We will revise the relevant section of the manuscript to present a more cautious and balanced interpretation.

      Regarding the reviewer’s question on expression levels: although the replacement constructs include a pyrimethamine resistance cassette, we have not yet quantified α-tubulin transcript levels by qPCR. In the interim, the study by Spreng et al. (2019) (reference 50) on a related α1-tubulin nutations provides valuable insight. They observed no difference in mRNA levels in day 12 oocysts, yet reported fainter microtubule staining and shorter sporozoites, suggesting a post-transcriptional mechanism affecting protein expression or function in later stages. Furthermore, the phenotypic spectrum across their mutant panel (Suppl. Fig. 3 D and E) implies that robust α-tubulin regulation is highly sensitive to specific sequences.

      We acknowledge this as a current limitation in our study and will address it in the revised manuscript, noting that direct measurement of transcript levels is a key area for future investigation.

      (15) In the Discussion, my impression is that two recent studies, the superb Expansion Microscopy study by Bertiaux et al. (2021) and the cryo-EM study by Ferreira et al. (2023), are not sufficiently recognised (although they are cited elsewhere in the manuscript). The latter study includes a detailed description of the microtubule cytoskeleton in sporozoites. However, the present study clearly expands the knowledge about the structure of the cytoskeleton in liver stage parasites and is one of the few studies addressing the distribution and function of microtubule post-translational modifications in Plasmodium.

      Indeed, our work builds upon the established knowledge from Bertiaux et al. (2021) and the cryo-EM study by Ferreira et al. (2023), as rightly mentioned by the reviewer. We agree that these foundational studies, combined with our findings, will significantly expand the understanding of Plasmodium biology and cytoskeleton dynamics across its life cycle and will open the door for further investigations. We are grateful for this suggestion and will ensure these key studies are appropriately acknowledged in the revised manuscript.

      (16) I somewhat disagree with the statement of a co-occurrence of polyglutamylated and tyrosinated microtubules. I think the resolution is too low to reach that conclusion. As this is a bold claim, and would be contrary to what is known from other organisms, it would require a more rigorous validation. Given the apparent problems with the anti-Ty antibody (signal in the TyΔ mutant), one should be very cautious with this claim.

      This is a very important point to clarify. As mentioned previously, the initial experiments for these modifications were performed independently. It is established that sporozoite subpellicular microtubules exhibit both tyrosination and polyglutamylation. We will revise the manuscript to temper this statement and clearly indicate that the co-occurrence of these PTMs remains a hypothesis that requires more rigorous validation. As suggested, we are now conducting additional co-staining experiments using the better validated YL1/2 antibody to re-express and directly compare the distribution of both PTMs within the same cell. These follow-up experiments will help clarify whether both modifications occur simultaneously on the same microtubule structures in Plasmodium liver stages.

      (17) In the Discussion (lines 311 and 377), it is again claimed that tyrosinated microtubules are "a well-known marker of stable microtubules". This statement is completely incorrect, and I am surprised by this serious mistake. A few lines later, the authors say that polyglutamylated is "commonly associated with dynamic microtubule behaviour". Again, this is completely incorrect and is the opposite of what is firmly established in the literature. Polyglutamylation and detyrosination are markers of stable microtubules.

      Indeed, in canonical eukaryotic systems, tyrosinated microtubules are generally considered markers of dynamic microtubule populations, whereas detyrosinated and polyglutamylated microtubules are more commonly associated with stability.

      We acknowledge this mistake and will revise the Discussion to correct these statements accordingly. In the context of Plasmodium, our observations suggest an unusual regulation of microtubule dynamics, which may reflect parasite-specific adaptations. For example, we observed tyrosinated α-tubulin in the stable subpellicular microtubules of sporozoites structures typically known for their exceptional stability. This atypical association implies either non-canonical roles for tyrosination or parasite-specific mechanisms for modulating microtubule properties. Additionally, the presence of both PTMs at different stages of development and on different microtubule populations suggests tightly regulated spatial and temporal modulation of microtubule function.

      We will carefully revise the relevant sections of the manuscript to remove incorrect generalizations and ensure accurate representation of the current consensus in the field, while emphasizing the possibility of Plasmodium-specific adaptations that merit further study.

      (18) In line 339, the authors interpret the residual antibody staining after the introduction of the mutant tubulin as a compensatory mechanism. There is no evidence for this. More likely explanations are firstly the quality of the anti-Ty-antibody used (see comment above), and the fact that also β-tubulin carries C-terminal polyglutamylation sites, which haven't been investigated in this study. PTMs on β-tubulin are not compensatory, but normal PTMs, at least in all other organisms where microtubule PTMs have been investigated.

      As mentioned above, we are currently repeating the key experiments with the [YL1/2] antibody, as suggested. Furthermore, we fully agree with the reviewer's point regarding polyglutamylation on β-tubulin. The C-terminal tail of β-tubulin does indeed contain polyglutamylation sites. As we noted in the manuscript (Lines 340-352), this aspect has not been investigated in the present study, and we acknowledge it as a valuable direction for future research. We will revise the text accordingly to avoid overinterpretation and to more accurately reflect the limitations of our current data.

    1. eLife Assessment

      This important work shows that fine particulate matter exposure to the lungs led to nociceptor-dependent neutrophilic inflammation. Likely macrophage-neuronal crosstalk, via release of artemin from macrophages and activation of Gfra3 on the JNC neuron, potentiated the response. The data convincingly strengthens links between pollutants, immune and neural interactions.

    2. Reviewer #1 (Public review):

      Summary:

      In the presented study, the authors aim to explore the role of nociceptors in the fine particulate matter (FPM) mediated Asthma phenotype, using rodent models of allergic airway inflammation. This manuscript builds on previous studies, and identify transciptomic reprogramming and an increased sensitivity of the jugular nodose complex (JNC) neurons, one of the major sensory ganglion for the airways, on exposure to FPM along with Ova during the challenge phase. The authors then use OX-314 a selectively permeable form of lidocaine, and TRPV1 knockouts to demonstrate that nociceptor blocking can reduce airway inflammation in their experimental setup.

      The authors further identify the presence of Gfra3 on the JNC neurons, a receptor for the protein Artemin, and demonstrate their sensitivity to Artmein as a ligand. They further show that alveolar macrophages release Artemin on exposure to FPM.

      Strengths:

      The study builds on results available from multiple previous works, and presents important results which allow insights into the mixed phenotypes of Asthma seen clinically. In addition, by identifying the role of nociceptors, they identify potential therapeutic targets which bear high translational potential.

      Weaknesses:

      While the results presented in the study are highly relevant, there is a need for further mechanistic dissection to allow better inferences. Currently, certain results seem associative. Also, certain visualisations and experimental protocols presented in the manuscript need careful assessment and interpretation.

      While Asthma is a chronic disease, the presented results are particularly important to explore Asthma exacerbations in response to acute exposure to air pollutants. This is relevant in today's age of increasing air pollution and increasing global travel.

      Comments on revisions:

      Thank you for addressing the suggestions. No further comments.

    3. Reviewer #2 (Public review):

      Summary:

      The authors sought to investigate the role of nociceptor neurons in the pathogenesis of pollution-mediated neutrophilic asthma. The authors overall achieved the aim of demonstrating that nociceptor neurons are important to the pathogenesis of pollution-exacerbated asthma. Their results support their conclusions overall, although there are ways the study findings can be strengthened. This work further evaluates how nociceptor neurons contribute to asthma pathogenesis important for consideration while proposing treatment strategies for under treated asthma endotypes.

      Strengths:

      The authors utilize TRPV1 ablated mice to confirm the effects of intranasally administered QX-314 utilized to block sodium currents.

      Use of intravital microscopy to track alveolar macrophage and neutrophil motility in their model

      The authors demonstrate that via artemin, which is upregulated in alveolar macrophages in response to pollution, sensitizes JNC neurons thereby increasing their responsiveness to pollution. Ablation or inactivity of nociceptor neurons prevented the pollution induced increase in inflammation.

      Weaknesses:

      While neutrophilic, unclear of the endotype of asthma represented by the model

      Comments on revisions:

      The authors have addressed or commented on all concerns.

    4. Reviewer #3 (Public review):

      Asthma is a complex disease that includes endogenous epithelial, immune and neural components that respond to environmental stimuli. Small airborne particles with diameters in the range of 2.5 micrometers or less, so-called PM2.5, are thought to contribute to some forms of asthma. These forms of asthma may have neutrophils, eosinophils and macrophages in bronchoalveolar lavage. Here, Wang and colleagues build on a recent model that incorporated PM2.5 which was found to have a neutrophilic component. Wang altered the model to provide an extra kick via the incorporation of ovalbumin. The major strength of this work is that silencing TRPV1-expressing neurons either pharmacologically or genetically, modulated inflammation and the motility of neutrophils. By examining bronchoalveolar lavage fluid, they found not only that levels of a number of cytokines were increased, but also that artemin, a protein that supports neuronal development and function, was elevated, which did not occur in nociceptor- ablated mice. Their data strengthens links between pollutants, immune and neural interactions.

      Comments on revisions:

      The manuscript has been revised extensively, including the addition of new experiments, such as intravital microscopy. Did the comments from the reviewers, manifest by additional experiments and modifying how some of the data was presented, result in any changes in the hypotheses or the interpretation of such?

    1. eLife Assessment

      CCL2 is a chemokine with immune cell chemoattractant properties, and it appears to play a role in several chronic inflammatory diseases. The RNA-binding protein HuR controls the stability and translation of CCL2 mRNA. This paper presents convincing evidence that a relatively common genetic variant tied to several disease phenotypes affects the interaction between the mRNA of CCL2 and the RNA-binding protein HuR. While the experiments cannot definitively distinguish between effects on RNA transcription and stability, CCL2 is thought to be relevant for leukocyte migration in various conditions, including chronic inflammation and cancer, and the study presents important findings that may be relevant to a broad audience.

    2. Reviewer #1 (Public review):

      Summary:

      This paper presents evidence that a relatively common genetic variant tied to several disease phenotypes affects the interaction between the mRNA of CCL2 and the RNA binding protein HuR. CCL2 is an immune cell chemoattractant protein.

      Strengths:

      The study is well conducted with relevant controls. The techniques are appropriate, and several approaches provided concordant results were generally supportive of the conclusions reached. The impact of this work, identifying a genetic variant that works by altering the binding of an RNA-regulatory protein, has important implications given that the HuR protein could be a drug target to improve its function and over-ride this genetic change. This could have important implications for a number of diseases where this genetic variant contributes to disease risk.

      The authors have done a nice job of citing prior work. Details of the experimental protocols are well elaborated and the significance of the findings are well contextualized.

      Weaknesses:

      Authors have addressed prior weaknesses.

    3. Reviewer #2 (Public review):

      This study focuses on the differential binding of the RNA-binding protein HuR to CCL2 transcript (genetic variants rs13900 T or C). The study explores how this interaction influences the stability and translation of CCL2 mRNA. Employing a combination of bioinformatics, reporter assays, binding assays, and modulation of HuR expression, the study proposes that the rs13900T allele confers increased binding to HuR, leading to greater mRNA stability and higher translational efficiency. These findings indicate that rs13900T allele might contribute to heightened disease susceptibility due to enhanced CCL2 expression mediated by HuR. The study is interesting and most results are convincing, however the interpretation relative to RNA transcription and/or stability must be modified, and some data need better presentation or interpretation.

      Major Points

      Figure 2C:<br /> The authors describe an experiment to assess mRNA stability by labeling nascent RNA with EU for 3 hours, followed by washout of EU, and then incubation with or without actinomycin D for an additional 4 hours before measuring the remaining EU-labeled RNA. While the approach to label nascent RNA with EU is appropriate for tracking RNA decay, I have concerns regarding the use and interpretation of actinomycin D in this context.<br /> After EU washout, the pool of EU-labeled RNA is fixed and no new EU incorporation can occur. Therefore, the addition of actinomycin D at this stage should not affect the decay rate of the already labeled RNA, as transcription of EU-labeled RNA has effectively ceased. In this design, measuring the decrease in EU-labeled RNA over time reflects mRNA stability (even in absence of actinomycin D) rather than transcriptional activity.<br /> Therefore, the authors' statement that the non-actinomycin D treatment group represents transcriptional changes is not accurate here. Since EU labeling was stopped prior to the 4-hour incubation, any changes in EU-labeled RNA levels during this period reflect RNA decay, not new transcription.

      In summary:<br /> To assess transcriptional changes, one would compare the amount of EU-labeled RNA synthesized during the initial labeling period (the first 3 hours), before washout.<br /> If the authors wish to use actinomycin D to block transcription, this should be done in a separate decay assay without EU labeling.<br /> In the current experimental setup, actinomycin D is unnecessary after EU washout and does not influence the decay of the labeled RNA.<br /> I recommend the authors reconsider the interpretation of their data accordingly. I recommend to remove the data points relative to the presence of actinomycin D, as the non-actinomycin D samples are already representative of post-transcriptional changes given that EU was washed out. If Authors want to assess transcriptional changes, they would have to assess the levels during the initial labeling period (before the washout). Transcriptional differences were not assessed, therefore I would modify the text accordingly.<br /> In this context, any changes observed in the actinomycin D-treated samples are likely attributable to general cellular stress induced by actinomycin D, which is known to be highly stressful for cells. This stress could indirectly influence the decay rates of already-labeled EU-RNA.

      Figure 4C and 4D:<br /> The Author provided an updated gel with relative quantification - which effectively show the enhanced binding of CCL2 mRNA carrying the T variant to HuR - but they only provided it as data for reviewers (Figure R1). I highly recommend to use these data in the final manuscript instead of the data currently presented in Figure 4C and 4D. This would be important in order not to not create confusion in the reader or concerns regarding probe degradation or saturation.

      Minor points<br /> For the IP, I recommend to explain in the final version why the input was not provided (lack of material) and to clarify that the specific binding of Actin was used as a loading control in absence of input. This would be highly beneficial for the readers.

    1. eLife Assessment

      In this important study, the authors engineered and characterised novel genetically encoded calcium indicators (GECIs) and an analytical tool (CaFire) capable of reporting and quantifying various sub-synaptic events, including miniature synaptic events, with a speed and sensitivity approaching that of intracellular electrophysiological recordings. While the evidence supporting the improvements in the speed and accuracy of these tools is convincing, including additional information about key imaging parameters, the Bar8f experiments, and CaFire would strengthen the study. This work will be of interest to neurobiologists studying synaptic calcium dynamics in various model systems.

    2. Reviewer #1 (Public review):

      Summary:

      Chen et al. engineered and characterized a suite of next-generation GECIs for the Drosophila NMJ that allow for the visualization of calcium dynamics within the presynaptic compartment, at presynaptic active zones, and in the postsynaptic compartment. These GECIs include ratiometric presynaptic Scar8m (targeted to synaptic vesicles), ratiometric active zone localized Bar8f (targeted to the scaffold molecule BRP), and postsynaptic SynapGCaMP8m. The authors demonstrate that these new indicators are a large improvement on the widely used GCaMP6 and GCaMP7 series GECIs, with increased speed and sensitivity. They show that presynaptic Scar8m accurately captures presynaptic calcium dynamics with superior sensitivity to the GCaMP6 and GCaMP7 series and with similar kinetics to chemical dyes. The active-zone targeted Bar8f sensor was assessed for the ability to detect release-site-specific nanodomain changes, but the authors concluded that this sensor is still too slow to accurately do so. Lastly, the use of postsynaptic SynapGCaMP8m was shown to enable the detection of quantal events with similar resolution to electrophysiological recordings. Finally, the authors developed a Python-based analysis software, CaFire, that enables automated quantification of evoked and spontaneous calcium signals. These tools will greatly expand our ability to detect activity at individual synapses without the need for chemical dyes or electrophysiology.

      Strengths:

      (1) In this study, the authors rigorously compare their newly engineered GECIs to those previously used at the Drosophila NMJ, highlighting improvements in localization, speed, and sensitivity. These comparisons appropriately substantiate the authors' claim that their GECIs are superior to those currently in use.

      (2) The authors demonstrate the ability of Scar8m to capture subtle changes in presynaptic calcium resulting from differences between MN-Ib and MN-Is terminals and from the induction of presynaptic homeostatic potentiation (PHP), rivaling the sensitivity of chemical dyes.

      (3) The improved postsynaptic SynapGCaMP8m is shown to approach the resolution of electrophysiology in resolving quantal events.

      (4) The authors created a publicly available pipeline that streamlines and standardizes analysis of calcium imaging data.

      Weaknesses:

      (1) Given the superior performance of GCaMP8m in the vesicle-tethered and postsynaptic applications, an analysis of its functionality at individual active zones ("Bar8m") would be a useful addition to this compendium, especially since the authors show that the faster kinetics of GCaMP8f are still not fast enough to resolve active zone-specific calcium dynamics.

      (2) Description of the CaFire pipeline could be clearer (for example, what exactly is the role of Excel?), and the GitHub user guide could be more fleshed out (with the addition of example ImageJ scripts and analyzed images).

    3. Reviewer #2 (Public review):

      Summary

      Calcium ions play a key role in synaptic transmission and plasticity. To improve calcium measurements at synaptic terminals, previous studies have targeted genetically encoded calcium indicators (GECIs) to pre- and postsynaptic locations. Here, Chen et al. improve these constructs by incorporating the latest GCaMP8 sensors and a stable red fluorescent protein to enable ratiometric measurements. In addition, they develop a new analysis platform, 'CaFire', to facilitate automated quantification. Using these tools, the authors demonstrate favorable properties of their sensors relative to earlier constructs. Impressively, by positioning postsynaptic GCaMP8m near glutamate receptors, they show that their sensors can report miniature synaptic events with speed and sensitivity approaching that of intracellular electrophysiological recordings. These new sensors and the analysis platform provide a valuable tool for resolving synaptic events using all-optical methods.

      Strengths:

      The authors present a rigorous characterization of their sensors using well-established assays. They employ immunostaining and super-resolution STED microscopy to confirm correct subcellular targeting. Additionally, they quantify response amplitude, rise and decay kinetics, and provide side-by-side comparisons with earlier-generation GECIs. Importantly, they show that the new sensors can reproduce known differences in evoked Ca²⁺ responses between distinct nerve terminals. Finally, they present what appears to be the first simultaneous calcium imaging and intracellular mEPSP recording to directly assess the sensitivity of different sensors in detecting individual miniature synaptic events.

      Weaknesses:

      Major points:

      (1) While the authors rigorously compared the response amplitude, rise, and decay kinetics of several sensors, key parameters like brightness and photobleaching rates are not reported. I feel that including this information is important as synaptically tethered sensors, compared to freely diffusible cytosolic indicators, can be especially prone to photobleaching, particularly under the high-intensity illumination and high-magnification conditions required for synaptic imaging. Quantifying baseline brightness and photobleaching rates would add valuable information for researchers intending to adopt these tools, especially in the context of prolonged or high-speed imaging experiments.

      (2) In several places, the authors compare the performance of their sensors with synthetic calcium dyes, but these comparisons are based on literature values rather than on side-by-side measurements in the same preparation. Given differences in imaging conditions across studies (e.g., illumination, camera sensitivity, and noise), parameters like indicator brightness, SNR, and photobleaching are difficult to compare meaningfully. Additionally, the limited frame rate used in the present study may preclude accurate assessment of rise times relative to fast chemical dyes. These issues weaken the claim made in the abstract that "...a ratiometric presynaptic GCaMP8m sensor accurately captures .. Ca²⁺ changes with superior sensitivity and similar kinetics compared to chemical dyes." The authors should clearly acknowledge these limitations and soften their conclusions. A direct comparison in the same system, if feasible, would greatly strengthen the manuscript.

      (3) The authors state that their indicators can now achieve measurements previously attainable with chemical dyes and electrophysiology. I encourage the authors to also consider how their tools might enable new measurements beyond what these traditional techniques allow. For example, while electrophysiology can detect summed mEPSPs across synapses, imaging could go a step further by spatially resolving the synaptic origin of individual mEPSP events. One could, for instance, image MN-Ib and MN-Is simultaneously without silencing either input, and detect mEPSP events specific to each synapse. This would enable synapse-specific mapping of quantal events - something electrophysiology alone cannot provide. Demonstrating even a proof-of-principle along these lines could highlight the unique advantages of the new tools by showing that they not only match previous methods but also enable new types of measurements.

      (4) For ratiometric measurements, it is important to estimate and subtract background signals in each channel. Without this correction, the computed ratio may be skewed, as background adds an offset to both channels and can distort the ratio. However, it is not clear from the Methods section whether, or how, background fluorescence was measured and subtracted.

      (5) At line 212, the authors claim "... GCaMP8m showing 345.7% higher SNR over GCaMP6s....(Fig. 3D and E) ", yet the cited figure panels do not present any SNR quantification. Figures 3D and E only show response amplitudes and kinetics, which are distinct from SNR. The methods section also does not describe details for how SNR was defined or computed.

      (6) Lines 285-287 "As expected, summed ΔF values scaled strongly and positively with AZ size (Fig. 5F), reflecting a greater number of Cav2 channels at larger AZs". I am not sure about this conclusion. A positive correlation between summed ΔF values and AZ size could simply reflect more GCaMP molecules in larger AZs, which would give rise to larger total fluorescence change even at a given level of calcium increase.

      (7) Lines 313-314: "SynapGCaMP quantal signals appeared to qualitatively reflect the same events measured with electrophysiological recordings (Fig. 6D)." This statement is quite confusing. In Figure 6D, the corresponding calcium and ephys traces look completely different and appear to reflect distinct sets of events. It was only after reading Figure 7 that I realized the traces shown in Figure 6D might not have been recorded simultaneously. The authors should clarify this point.

      (8) Lines 310-313: "SynapGCaMP8m .... striking an optimal balance between speed and sensitivity", and Lines 314-316: "We conclude that SynapGCaMP8m is an optimal indicator to measure quantal transmission events at the synapse." Statements like these are subjective. In the authors' own comparison, GCaMP8m is significantly slower than GCaMP8f (at least in terms of decay time), despite having a moderately higher response amplitude. It is therefore unclear why GCaMP8m is considered 'optimal'. The authors should clarify this point or explain their rationale for prioritizing response amplitude over speed in the context of their application.

    4. Reviewer #3 (Public review):

      Genetically encoded calcium indicators (GECIs) are essential tools in neurobiology and physiology. Technological constraints in targeting and kinetics of previous versions of GECIs have limited their application at the subcellular level. Chen et al. present a set of novel tools that overcome many of these limitations. Through systematic testing in the Drosophila NMJ, they demonstrate improved targeting of GCaMP variants to synaptic compartments and report enhanced brightness and temporal fidelity using members of the GCaMP8 series. These advancements are likely to facilitate more precise investigation of synaptic physiology.

      This is a comprehensive and detailed manuscript that introduces and validates new GECI tools optimized for the study of neurotransmission and neuronal excitability. These tools are likely to be highly impactful across neuroscience subfields. The authors are commended for publicly sharing their imaging software.

      This manuscript could be improved by further testing the GECIs across physiologically relevant ranges of activity, including at high frequency and over long imaging sessions. The authors provide a custom software package (CaFire) for Ca2+ imaging analysis; however, to improve clarity and utility for future users, we recommend providing references to existing Ca2+ imaging tools for context and elaborating on some conceptual and methodological aspects, with more guidance for broader usability. These enhancements would strengthen this already strong manuscript.

    1. eLife Assessment

      This important study describes a non-canonical role for IκBα in regulating mouse embryonic stem cell pluripotency and differentiation, independent of the classical NF-κB pathway. The conclusions are convincingly supported through orthogonal approaches and separation of function mutants. The findings add new insight into pluripotency regulation in mouse cells.

    2. Reviewer #1 (Public review):

      Summary:

      This study probes the role of the NF-κB inhibitor IκBa in the regulation of pluripotency in mouse embyronic stem cells (mESCs). It follows from previous work that identified a chromatin-specific role for IκBa in the regulation of tissue stem cell differentiation. The work presented here shows that a fraction of IκBa specifically associates with chromatin in pluripotent stem cells. Using three Nfkbia-knockout lines, the authors show that IκBa ablation impairs the exit from pluripotency, with embryonic bodies (an in vitro model of mESC multi-lineage differentiation) still expressing high levels of pluripotency markers after sustained exposure to differentiation signals. The maintenance of aberrant pluripotency gene expression under differentiation conditions is accompanied by pluripotency-associated epigenetic profiles of DNA methylation and histone marks. Using elegant separation of function mutants identified in a separate study, the authors generate versions of IκBa that are either impaired in histone/chromatin binding or NF-κB binding. They show that the provision of the WT IκBa, or the NF-κB-binding mutant can rescue the changes in gene expression driven by loss of IκBa, but the chromatin-binding mutant can not. Thus the study identifies a chromatin-specific, NF-κB-independent role of IκBa as a regulator of exit from pluripotency.

      Strengths:

      The strengths of the manuscript lie in:<br /> (a) the use of several orthogonal assays to support the conclusions on the effects of exit from pluripotency;<br /> (b) the use of three independent clonal Nfkbia-KO mESC lines (lacking IκBa), which increase confidence in the conclusions; and<br /> (c) the use of separation of function mutants to determine the relative contributions of the chromatin-associated and NF-κB-associated IκBa, which would otherwise be very difficult to unpick.

      Weaknesses:

      No notable weaknesses remain in this revised version.

    3. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates the role of IκBα in regulating mouse embryonic stem cell (ESC) pluripotency and differentiation. The authors demonstrate that IκBα knockout impairs the exit from the naïve pluripotent state during embryoid body differentiation. Through mechanistic studies using various mutants, they show that IκBα regulates ESC differentiation through chromatin-related functions, independent of the canonical NF-κB pathway.

      Strengths:

      The authors nicely investigate the role of IκBα in pluripotency exit, using embryoid body formation and complementing the phenotypic analysis with a number of genome-wide approaches, including transcriptomic, histone marks deposition, and DNA methylation analyses. Moreover, they generate a first-of-its-kind mutant set that allows them to uncouple IκBα's function in chromatin regulation versus its NF-κB-related functions. This work contributes to our understanding of cellular plasticity and development, potentially interesting a broad audience including developmental biologists, chromatin biology researchers, and cell signaling experts.

      Weaknesses:

      Future experiments will likely help establish a more direct mechanistic link between IκBα activity and the chromatin remodeling events observed in pluripotent cells.

    1. Reviewer #1 (Public review):

      Summary:

      The authors define the principles that, based on first principles, should be guiding the optimisation of transcription factors with intrinsically disordered regions (IDR). The authors introduce an original search process, coined "octopusing", that involves transcription factor IDR and their binding affinities to optimise search times and binding affinities. The first part concerns the optimal strategies to define binding affinities to the genome in the receiving region that is called the "antenna", highlighting the following: (i) reduce the target to IDR-binding distance on the genome, (ii) optimise the distance between the DNA binding domain and the binding sites on the IDR to be as close as possible to the distance between their binding sites on the genome; (iii) keep the same number of binding sites and their targets and modulate this number with binding strength, reducing them with increased strength; (iv) modulate the binding strength to be above a threshold that depends on the proportion of IDR binding sites in the antenna. The second part concerns the scaling of the search time in function of key parameters such as the volume of the nucleus, and the size of the antenna, derived as a combination of 3D search and 1D "octopusing". The third part focuses on validation, where the current results are compared to binding probability data from a single experiment, and new experiments are proposed to further validate the model as well as testing designed transcription factors.

      Strengths:

      The strength of this work is that it provides simple, interpretable and testable theoretical conclusions. This will allow the derived design principles to be understood, evaluated and improved in the future. The theoretical derivations are rigorous. The authors provide a comparison to experiments, and also propose new experiments to be performed in the future. This is a great value in the paper since it will set the stage and inspire new experimental techniques. Further, the field needs inspiration and motivation to develop these techniques, since they are required to benchmark the transcription factors designed with the methods presented in this paper, as well as to develop novel data based or in vivo methods that would greatly benefit the field. As such, this paper is a fundamental contribution to the field.

      Weaknesses:

      The model presents many first principles to drive the design of transcription factors, but arguably, other principles and mechanisms might also play a role by being beneficial to the search and binding process. These other principles are mentioned at the end of the discussion part of the paper. On the other hand, an important task left to do, is to critically consider these principles altogether, and analyse the available data to quantify which role is predominant among transcription factors IDRs functions. Further, since one function doesn't exclude another, a theoretical investigation of possible crosstalk, interaction, and cooperativity of those different hypothetical functions is still missing.

    2. Reviewer #2 (Public review):

      Summary:

      This is an interesting theoretical exploration of how a flexible protein domain, which has multiple DNA-binding sites along it, affects the stability of the protein-DNA complex. It proposes a mechanism ("octopusing") for protein doing a random walk while bound to DNA which simultaneously enables exploration of the DNA strand and stability of the bound state.

      Strengths:

      Stability of the protein-DNA bound state and the ability of the protein to perform 1d diffusion along the DNA are two properties of a transcription factor that are usually seen as being in opposition of each other. The octopusing mechanism is an elegant resolution of the puzzle of how both could be accommodated. This mechanism has interesting biological implications for the functional role of intrinsically disordered domains in transcription factor (TF) proteins. They show theoretically how these domains, if flexible and able to make multiple weak contacts with the DNA, can enhance the ability of the TF to efficiently find their binding site on the DNA from which they exert control over the transcription of their target gene. The paper concludes with a comparison of model predictions with experimental data which gives further support to the proposed mechanism. Overall, this is an interesting and well-executed theoretical paper that proposes an interesting idea about the functional role for IDR domains in TFs.

      Weaknesses:

      It is not clear how ubiquitous among eukaryotic transcription factors are the DNA binding sites for multiple subdomains along the IDR, which are assumed by the model. These assumptions though, provide interesting points of departure for further experiments.

    3. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      The authors define the principles that, based on first principles, should be guiding the optimisation of trascription factors with intrinsically disordered regions (IDR). The first part of the study defines the following principles to optimize the binding affinities to the genome in the receiving region that is called the ”antenna”: (i) reduce the target to IDR-binding distance on the genome, (ii) optimise the distance betwee the DNA binding domain and the binding sites on the IDR to be as close as possible to the distance between their binding sites on the genome; (iii) keep the same number of binding sites and their targets and modulate this number with binding strength, reducing them with increased strenght; (iv) modulate the binding strenght to be above a threshold that depends on the proportion of IDR binding sites in the antenna. The second part defines the scaling of the seach time in function of key parameters such as the volume of the nucleus, and the size of the antenna, derived as a combination of 3D search of the antenna and 1D ”octopusing” on the antenna. The third part focuses on validation, where the current results are compared to binding probabilith data from a single experiment, and new experiment are proposed to further validate the model as well as testing designed transcription factors.

      Strengths:

      The strength of this work is that it provides simple, interpretable and testable theoretical conclusions. This will allow the derived design principles to be understood, evaluated and improved in the future. The theoretical derivations are rigorous. The authors provides a comparison to experiments, and also propose new experiments to be performed in the future, this is a great value in the paper since it will set the stage and inspire new experimental techniques. Further, the field needs inspiration and motivations to develop these techniques, since they are required to benchmark the transcription factors designed with the methods presented in this paper, as well as to develop novel data based or in vivo methods that would greatly benefit the field. As such, this paper is a fundamental contribution to the field.

      Weaknesses:

      The model assumption that the interaction between the transcription factor and the DNA outside of the antenna region is negligible is probably too strong for many/most transcription factors, particularly in organisms with a longer genome than yeasts. The model presents many first principles to drive the design of transcription factor, but arguably, other principles and mechanisms might also play a role by being beneficial to the search and binding process. Specifically: (i) a role of the IDR in complex formation and cooperativity between multiple trascription factors, (ii) ability of the IDR to do parallel searching based on multiple DNA binding sites spaced by disordered regions, (iii) affinity of the IDR to specific compartmentalisations in the nucleus reducing the search time, etc. The paper would be improved by a discussion over alternative mechanisms.

      We thank the reviewer for highlighting that our work delivers simple, interpretable and rigorously derived conclusions, backed by experimental comparison and concrete proposals for future studies.

      Regarding interactions outside the antenna region, Supplementary S10 shows that the non-specific IDR–DNA interactions (on the order of 1 kBT) only slightly alter the 3D diffusion coefficient and thus do not affect our conclusions regarding the optimal search process.

      We have also added sentences in the discussion section regarding the alternative mechanism.

      Reviewer #2 (Public review):

      Summary:

      This is an interesting theoretical exploration of how a flexible protein domain, which has multiple DNAbinding sites along it, affects the stability of the protein-DNA complex. It proposes a mechanism (”octopusing”) for protein doing a random walk while bound to DNA which simultaneously enables exploration of the DNA strand and stability of the bound state.

      Strengths:

      Stability of the protein-DNA bound state and the ability of the protein to perform 1d diffusion along the DNA are two properties of a transcription factor that are usually seen as being in opposition of each other. The octopusing mechanism is an elegant resolution of the puzzle of how both could be accommodated. This mechanism has interesting biological implications for the functional role of intrinsically disordered domains in transcription factor (TF) proteins. They show theoretically how these domains, if flexible and able to make multiple weak contacts with the DNA, can enhance the ability of the TF to efficiently find their binding site on the DNA from which they exert control over the transcription of their target gene. The paper concludes with a comparison of model predictions with experimental data which gives further support to the proposed model. Overall, this is an interesting and well executed theoretical paper that proposes an interesting idea about the functional role for IDR domains in TFs.

      Weaknesses:

      IDR domains are assumed flexible which I believe is not always the case. Also, I’m not sure how ubiquitous are the assumed binding sites on the DNA for multiple subdomains along the IDR. These assumptions though seem like interesting points of departure for further experiments.

      We thank the reviewer for their careful and insightful evaluation of our work. In particular, we appreciate your emphasis on the inherent trade-off between binding stability and one-dimensional diffusion, and your recognition of how the octopusing mechanism elegantly reconciles these conflicting requirements.

      To address the flexibility of TFs with IDRs, we incorporated the spring’s rest length—effectively introducing tunable rigidity—in Supplementary Section S1, and we show that our design principles for binding probability remain robust. Indeed, this is a highly interesting point; a comprehensive study will require more detailed modeling alongside experimental validation.

      We acknowledge that the current evidence for IDR-directed DNA binding is primarily derived from a limited number of well-studied cases, particularly Msn2 in yeast, and the ubiquity of this mechanism across diverse transcription factors remains to be established.

      Reviewer #1 (Recommendations for the authors):

      The paper jumps to fast to the results, an larger introduction might improve the paper, the current introduction jumps too fast to results. Further, line 50, I don’t think that the figure is properly referenced. The formula 2 is confusing since what is the target volume V1 is not explained in the context of the formula, please expand the explanations.

      We appreciate the reviewer’s valuable recommendations. We have expanded the Introduction, clarified V<sub>1</sub>, and updated the line 50.

      Reviewer #2 (Recommendations for the authors):

      I have some mostly minor suggestions to the authors for improving the manuscript:

      In the abstract and introduction on at least two occasions the authors talk about IDRs as though they’re necessarily flexible. My understanding is that, while this is a very reasonable assumption, I don’t think this is something we know with any certainty for most IDRs. If the authors agree with my assessment I think they should reflect this uncertainty in the writing.

      Thank you for the recommendations. We revised the wording to reflect the uncertainty, changing it to: “... commonly assumed to behave as a long, flexible...” and “...can be assumed as flexible....”.

      It took me a bit of time to figure out what’s going on in Figure 1b. To help the reader I would suggest labeling the DBD targets (yellow square) and the IDR targets (gray squares) as such. The figure also left me guessing whether the DBD domain can bind to the IDR targets non-specifically? (I presume not.) This also brought a slightly bigger question into focus for me, wouldn’t the presence of the IDR binding ”sites” (since these ”sites” are on the protein I think the term ”domains” instead of ”sites” ) mean that this would increase the time the protein is bound non-specifically somewhere far from the target thereby increasing the search time. Or is the ability of the protein to bind specifically to DNA away from the DBD target ignored?

      We have labeled the DBD targets and IDR targets in the figure. ‘Domains’ usually refers to structured parts; we keep using ‘sites’ and clarify that they correspond to short linear motifs.

      The reviewer is correct. Our model omits any non-specific binding between the DBD and IDR-binding targets, as well as between the TF and other DNA regions. If such interactions were to substantially lengthen the search time, they would effectively revert our mechanism to the classical bacterial facilitateddiffusion model, which is generally considered inappropriate for IDR-mediated TF search in eukaryotic cells. However, Supplementary Figure S10 demonstrates that non-specific IDR–DNA interactions induce only marginal changes in the effective three-dimensional diffusion coefficient within complex chromatin environments, and therefore do not alter our conclusions regarding the optimal search process.

      In Equation 2 and the text that follows I was left wondering what is the target volume V1. Also, I think it would be helpful to the reader to give them a sense of scale for the dimension full quantities appearing in Equation 2. This is done later when comparing the theory to experimental data, but I think it would be helpful to give a sense of size earlier in the manuscript.

      V<sub>1</sub> denotes the volume of the IDR–binding target region, which is on the order of bp<sup>3</sup>. f(d,l<sub>0</sub>) has units of inverse volume. We have included the units and specified the order of magnitude of V<sub>1</sub> after Equation 2.

      The binding energy EB is discussed a number of times but it wasn’t clear to me that this quantity referred to the energy per IDR site on the DNA or the total energy when the IDR is bound to DNA. In Figure 1 it would seem that the model allows only one IDR domain bound at a given time but I think the model allows for multiple IDR domains to be bound to the IDR target sites simultaneously. Right? Maybe make this clear in the Figure and the text.

      E<sub>B</sub> denotes the binding energy per binding site, where each site corresponds to a short linear motif. Yes, we allow for multiple IDR domains to be bound to the IDR target sites simultaneously. We have clarified the definition of E<sub>B</sub> and adjusted the figure slightly to avoid any misunderstanding.

      After Eq 4 the discussion suggests that for ϕ << 1 the threshold energy is much greater than kBT, but that’s hard to imagine given that the logarithmic dependence of the latter on the former. Also in Figure 2d it seems that the threshold energy is about 8 kBT. Clearly this is not a big deal, just thought the authors might want to revise the language.

      Thank you. We now clarify the sentence using the representative values of ϕ and E<sub>th</sub> after Equation 4.

      Right after Figure 2 there is a discussion of the different parameters that the authors vary. I suggest having a figure that illustrates these parameters (possibly in Figure 1b) to make it easier to follow the discussion.

      We have added explanations of the relevant parameters in Figure 1 for clarity.

      When discussing the dynamics of search the result stated is that the search time is minimum for a specific value of R. I think it would be useful to translate this into a TF concentration. Also, if R represents the radius of the cells nucleus 1/6 um is almost an order of magnitude smaller than the size of a typical nucleus. Is this a worry? Either way some clarification of this number would be helpful.

      Thank you for the suggestion. As noted later in this section, we have translated R into an equivalent TF concentration, and we clarify that we assume the scaling of the minimum search time remains unchanged when extrapolated to the size of a typical nucleus.

      There is a comment regarding the role of the DNA persistence length and how it was not accounted for. It would be helpful if the authors could add a sentence or two explains how a folded DNA conformation, as is the case in the nucleus, would affect their calculation. (So that the reader gets an idea without having to get into the details described in the Supplement).

      Thank you. We have revised the sentence to: “We have verified that reducing the DNA persistence length, which promotes increased DNA coiling, results in only a modest increase in mean search time. Even under extreme coiling conditions, the increase remains below 30% of the baseline value, as detailed in Supplementary S9.”.

    1. eLife Assessment

      This valuable work shows that subcortically-generated behaviors, like grooming, can have widespread representations in cortical activity. While the evidence is solid, additional analyses are necessary to strengthen the claims associated with outsized cortical representations of grooming onsets, as well as to address atypical grooming events. This work will be of interest to neuroscientists interested in how subcortically-generated behaviors are represented across the cortex.

    2. Reviewer #1 (Public review):

      In their manuscript, Michelson et al use a combination of mesoscopic 1p and single-cell resolution 2p imaging to characterise cortical encoding of grooming behaviour. Despite their subcortical locus of control (and non-reliance on cortex), the authors report that grooming movements are accompanied by widespread activation of dorsal cortex. Different grooming movements elicit distinct spatiotemporal cortical activity patterns. They find that cortical engagement is greater at the beginning of grooming episodes than at their end. They also report greater cortical activation for atypical unilateral grooming movements seen under head-restraint in comparison to cortical activity during bilateral movements typical of unrestrained or spontaneous grooming.

      While this is not the first study to report cortical representations of subcortically controlled behaviours, and the authors themselves cite many previous reports of cortical activation during locomotion and even grooming (Sjöbom et al 2020), the value of the present study lies in their use of imaging to reveal the widespread nature of cortical activation during execution of a complex, innate behaviour. I also appreciate the systematic approach used by the authors to break down grooming episodes into their constituent movements and reveal their transition structure.

      I do have concerns, however, that some of the authors' claims are insufficiently supported by their results, and more analysis is required to convincingly rule out alternative interpretations.

      (1) One possible explanation for the gradual decline in cortical activity is that unilateral movements associated with greater cortical activation dominate early in grooming episodes, whereas bilateral movements that elicit weaker cortical activity dominate later (Figure 3G and 2C). The authors could check whether cortical activity associated with the *same* grooming movement is constant or declines during such episodes. A related point: doesn't the regression analysis shown in Figure 3, Supplement 2, assume that a stationary relationship between movement and spatiotemporal patterns of cortical activity?

      (2) From the decline in cortical responses during long grooming episodes, the authors suggest that "mesoscale cortical activity mostly reflects the initiation of subcortically-mediated behaviors, rather than the behavior itself". The authors have taken a lot of trouble to come up with a rich, detailed segmentation and clustering of the grooming behaviour into its constituent movements (Figure 1). Therefore, I am somewhat surprised that they make this claim solely from analysis of averaged cortical activity during nearly minute-long grooming episodes rather than a higher time resolution analysis of transitions between distinct grooming movements (like the prior study by Sjöbom et al and related work in striatal encoding of innate movement sequences by Markowitz et al).

      (3) The authors find that unilateral, atypical grooming movements elicit cortical activity that is distinct from the more naturalistic bilateral movements. They interpret this as reflecting the temporal transition structure of the behaviour. However, an alternative explanation is that the differences (or similarities) in evoked activity simply reflect differences (or similarities) in the kinematics of these movements, with bilateral movements appearing more similar to each other than to unilateral movements. A related point: there is little description of the "non-grooming forelimb movements". Were these kinematically similar to the unilateral forelimb movements, which may explain why they cluster together in Figure 4H?

      (4) Page 13, last paragraph: the authors suggest that similar encoding of non-grooming forelimb movements and unilateral grooming movements may reflect a shared reliance on the cortex. This is rather speculative. Several studies have demonstrated that voluntary unilateral movements employed for reaching or lever pressing are not generally reliant on the cortex (Whishaw et al, Beh Brain Res, 1991; Kawai et al, 2015). There isn't, in my opinion, a broad consensus for the authors' statement that "reaching for food is a cortex-dependent action". Rather than extrapolating from past studies, could the authors not experimentally assess whether unilateral grooming movements are more sensitive to cortical silencing than bilateral ones, possibly revealing a cortical locus of control?

    3. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Michelson, Gupta, and Murphy use calcium imaging to map the distribution of neural activity across the cerebral cortex of grooming, head-restrained mice. Animals groomed spontaneously and in response to wetting of the face. Individual movement elements, such as bilateral strokes across the face, resembled those observed in freely-moving animals. Sequencing of movement elements was structured, but did not consist of full "syntactic grooming chains." Widefield imaging across the cortex revealed distinct patterns of activity for distinct movement elements. Individual neurons responded strongly during movement and had largely similar properties across cortical areas.

      Strengths:

      In my opinion, this is a solid paper that will be of interest to the mouse sensorimotor neuroscience community. The experiments are technically sound, the text is well-written, and the figures are clear. The activity maps are presented in standardized Allen Atlas coordinates, and I expect they will be very useful for future studies of orofacial and limb movement.

      Weaknesses:

      While the manuscript provides a valuable description of cortical activity during head-restrained grooming, I think it could engage a bit more with contemporary theories and debates in cortical physiology and motor control. The Abstract nicely highlights an apparent paradox: the motor cortex sends strong projections to the spinal cord, and is strongly modulated during behaviors like grooming. Nevertheless, blocking corticospinal traffic by inactivating or lesioning the motor cortex leaves such behaviors intact. There are several potential resolutions to this paradox. First, cortical activity during grooming could be confined to an "output-null" subspace that is responsible for monitoring sensorimotor events and preparing voluntary movements, but does not drive muscle activity (c.f. work in the macaque: Kaufman et al., Nature Neuroscience 2014; Churchland & Shenoy, Nature Reviews Neuroscience 2024). Second, cortical activity during grooming could be transmitted to lower centers, but gated out through inhibition. Third, it is possible that cortical activity in intact animals does contribute to muscle activation during grooming, but following a lesion or inactivation, other descending pathways compensate for the cortical deficit. The authors might wish to discuss their findings in light of these considerations.

      In the first paragraph of the Introduction, it could be made clearer which results are specific to mice. The Niell & Stryker finding, for example, holds in mice, but not marmosets (Liska et al., eLife 2024).

      The "hotspots" in Figure 3G appear to be more anterior during bilateral elliptical than unilateral elliptical movements. How do the authors interpret this finding?

      The distribution of single-neuron responses looks relatively similar across cortical areas, including forelimb, hindlimb, and trunk somatosensory cortex, and primary and secondary forelimb motor cortex. What do the authors make of this?

    4. Reviewer #3 (Public review):

      Summary:

      The authors use a combination of a head-fixed grooming paradigm, single-photon mesoscale, and wide-field-of-view two-photon calcium imaging to characterize cortical activity patterns during evoked grooming. Previous work has shown that grooming behavior does not require cortex, but that there are neuronal representations of grooming in motor cortex. The authors extend these findings by showing cortex-wide activation patterns at the meso-scale that relate to distinct grooming elements. This activation is strongest at grooming onset, but declines over the course of extended grooming periods. They also find similar activity patterns during licking/drinking behavior. Two-photon imaging further revealed that individual neurons across the cortex are preferentially activated by grooming. While their activity also declines after grooming onset, they remain active throughout grooming periods. This work extends previous findings by revealing that grooming and other subcortically-generated behaviors may be represented not only in motor cortex, but across dorsal cortex, both on the mesoscale and single neuron levels. These findings may lead to further investigation into the role of cortical activity during subcortically generated behaviors.

      Strengths:

      (1) Detailed characterization of grooming behavior in a head-fixed paradigm.

      (2) Combination of single photon mesoscale and two-photon wide field-of-view imaging to characterize grooming (and licking)-related activity across dorsal cortex on multiple levels

      Weaknesses:

      (1) The behavior observed in the head-fixed grooming paradigm only partially resembles spontaneous grooming, lacking typical elements of the syntactic chain, while additionally evoking non-typical behaviors, resembling unilateral reaches, making the interpretation of the observations and their relevance to natural behaviors difficult. Furthermore, the nature of the non-typical movements (which may be cortex-dependent while typical grooming is not) is not explored.

      (2) Two important findings in relation to the neural representations of individual grooming behaviors remain unclear:

      a) The authors state that individual grooming behaviors did not have distinct neuronal representations (except unilateral grooming; Figure 4G) - it remains unclear how this fits with the observation of distinct activation maps during the different grooming behaviors. Should this differential activation not also correspond to distinct activation patterns of 'grooming' neurons across the cortex? Or do they mean that the activity in the 'grooming' neurons is not consistent across grooming instances and therefore no distinct representation can be detected?

      b) The authors state that the 'typical' grooming behaviors do not have consistent activation patterns across animals (Figure 3 and supplements). It remains, therefore, unclear what the averaged activation maps really represent. Furthermore, this observation leaves several open questions: Are the activation patterns consistent in individual animals? Do differences across animals emerge due to differences in their behavior? And most importantly, can the actual behavior be decoded from the activation patterns?

      (3) Multiple statements/conclusions are not supported by quantification of the data, but only by qualitative assessments, e.g.: lines 433-435: "In general, the maximally activated networks involved in licking and unilateral grooming behaviors 'appeared' to be the most consistent across animals compared to the bilateral grooming movements (Figure 3G)."; 436-437: "Averaged cortical activation maps associated with licking and elliptical behaviors were 'qualitatively similar' between evoked and spontaneous sessions, where the water drop was not applied".; 480-482: "The unique explained variance maps for the licking behavior 'differed' in the drinking context compared to the grooming context (Figure 3-figure supplement 3F)." The lack of quantification leaves the significance of these observations unclear.

      (4) It remains unclear what the ongoing activity in 'grooming' neurons represents, since there is no detailed analysis of the relationship between activity and the detailed kinematics of the grooming movements.

      The authors show that neuronal representations of grooming and other subcortical behaviors can be found across dorsal cortex and that these representations are at least to some degree specific to distinct behavioral elements. While this study does not reveal functional insights into the role of cortical representations of subcortically-generated behaviors, it is a step towards more in-depth studies. In the future, it will be important to determine whether these representations are efference copies or sensory-driven, or whether they affect the behavior, and if so, under which circumstances.

    1. eLife Assessment

      This valuable study applies transcranial direct current stimulation (tCDS) to the prefrontal cortex of non-human primates during two states: (1) propofol-induced unconsciousness; and (2) wakeful performance of a fixation task. The analysis offers incomplete evidence to indicate that the effect of tDCS on brain dynamics, as recorded with functional magnetic resonance imaging, is contingent on the state of consciousness during which the stimulation is applied. The findings will be of interest to researchers interested in brain stimulation and consciousness.

    2. Reviewer #2 (Public review):

      General comments

      We thank the reviewers and editor for their thoughtful feedback. We are glad that the minor comments appear resolved. In this revision, we added subject-specific analyses, further FC comparisons, and clarified our rationale for stimulation parameters. We acknowledge that two concerns remain: (1) the 1 mA-2 mA sequence may introduce confounds, and (2) electric field modeling was not included due to technical limitations. We now explicitly note these as limitations in the manuscript and provide justification and discussion accordingly.

      Major comments

      R.2.1. For the anesthetized monkeys, the anode location differs between subjects, with the electrode positioned to stimulate the left DLFPC in monkey R and the right DLPFC in monkey N. The authors mention that this discrepancy does not result in significant differences in the electric field due to the monkeys' small head size. However, this is incorrect, as placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side. Running an electric field simulation would confirm this. Additionally, the small electrode size suggested by the Easy cap configuration for NHP appears sufficient to stimulate the targeted regions focally. If this interpretation is correct, the authors should provide additional evidence to support their claim, such as a computational simulation of the EF distribution.

      R.2.1 Authors' answer: We thank the Reviewer for the comments. First, regarding the reviewer's statement that placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side, we would like to clarify that we did not use a typical 4 x 1 concentric ring high-definition setup (which consists of a small centre electrode surrounded by four return electrodes), but a two-electrode montage, with one electrode over the left or right PFC and the other one over the contralateral occipital cortex. According to EF modelling papers, a 4 x 1 high-definition setup would produce an EF that is focused and limited to the cortical area circumscribed by the ring of the return electrodes (Datta et al. 2009; Alam et al. 2016). Therefore, targeting the left or right DLPFC with a 4 x 1 setup would produce an EF confined to the targeted hemisphere of the PFC. In contrast, we expect the brain current flow generated with our 2-electrode setup to be broader, despite the small size of the electrodes, because there is no constraint from return electrodes. Thus, with our setup, the current is expected to flow between the PFC and the occipital cortex (see also our responses to comments R3.3., R.E.C.#2.1. and R.E.C.#2.2.).

      Second, we would like to point out that in awake experiments, in which we stimulated the right PFC of both monkeys, there was no gross evidence of left or right asymmetry in the computed functional connectivity patterns (Figure 3A, Figure 3 - figure supplement 2A; Figure 5A). These results, showing that our stimulation montages did not induce asymmetric dynamic FC changes in NHPs, support the idea that our setups did not generate EFs that were spatially focused enough to alter brain activity in one hemisphere substantially more than the other.

      Third, it is also worth noting that current evidence suggests that human brains are significantly more lateralized than those of macaques. Macaque monkeys have been found to have some degree of lateralized networks, but these are of lower complexity, and the lateralization is less pronounced and functionally organized than in humans. (Whey et al., 2014; Mantini et al., 2013). This suggests that, even if the stimulation were focal enough to stimulate the left or the right part of the PFC only, the behavioural effects would likely be similar.

      Follow-up comment: Thank you for the detailed response and for referencing both experimental data and prior literature. While I appreciate the discussion on the lack of functional asymmetry and reduced lateralization in macaques, my original concern was about the physical distribution of the electric field (EF) due to different anode placements. Functional connectivity outcomes do not necessarily reflect EF symmetry, and without EF modeling, it's difficult to determine whether the stimulation affected both hemispheres equally. I understand the challenges of NHP-specific modeling, but even a simplified simulation or acknowledgment of this limitation in the manuscript would help clarify the interpretability of your results.

      R.2.2. For the anesthetized monkeys, the authors applied 1 mA tDCS first, followed by 2 mA tDCS. A 20-minute stimulation duration of 1 mA tDCS is strong enough to produce after-effects that could influence the brain state during the 2 mA tDCS. This raises some concerns. Previous studies have shown that 1 mA tDCS can generate EF of over 1 V/m in the brain, and the effects of stimulation are sensitive to brain state (e.g., eye closed vs. eye open). How do the authors ensure that there are no after-effects from the 1 mA tDCS? This issue makes it challenging to directly compare the effects of 1 mA and 2 mA stimulation.<br /> R.2.2 Authors' answer: We agree with the reviewer's comment that 1 mA tDCS may induce aftereffects, as has been observed in several human studies (e.g., (Jamil et al. 2017, 2020). Although the differences between the 1 mA post-stimulation and baseline conditions were not significant in our analyses, it's still possible that the stimulation produced some effects below the threshold of significance that may contribute, albeit weakly, to the changes observed during

      Follow-up comment: Thank you for the clarification and for acknowledging the potential for 1 mA after-effects. While I appreciate the authors' transparency and the amendment to the manuscript, I still find it important that the limitation be clearly stated in the Discussion section. The fact that 2 mA stimulation always followed 1 mA introduces a potential confound, making it difficult to attribute observed changes uniquely to 2 mA. If a counterbalanced design was not feasible, I would recommend explicitly noting this as a limitation in the interpretation of dose-dependent effects.

      R.2.3. The occurrence rate of a specific structural-functional coupling pattern among random brain regions shows significant effects of tDCS. However, these results seem counterintuitive. It is generally understood that non-invasive brain stimulation tends to modulate functional connectivity rather than structural or structural-functional connectivity. How does the occurrence rate of structural-functional coupling patterns provide a more suitable measure of the effectiveness of tDCS than functional connectivity alone? I would recommend that the authors present the results based on functional connectivity itself. If there is no change in functional connectivity, the relevance of changes in structural-functional coupling might not translate into a meaningful alteration in brain function, making it unclear how significant this finding is without corresponding functional evidence.

      R.2.3. Authors' answer: First of all, we would like to make it clear that the occurrence rate of patterns as a function of their SFC is not intended to be used or seen as a 'better' measure of the efficacy of tDCS. Instead, it is one aspect of the effects of tDCS on whole-brain functional cortical dynamics, obtained from refined measures (phase-coherences), that specifically addresses the coupling between structure and function. This type of analysis is further motivated by its increasing use in the literature due to its suspected relationship to wakefulness (e.g., (Barttfeld et al. 2015, Demertzi et al. 2019; Castro et al. 2023)). Also, in our analysis, the structure is kept constant: the connectivity matrix used to correlate the functional brain states is always the same (CoCoMac82). Thus, the influence of tDCS on the structure-function side can only be explained by modulating the functional aspects, as suggested by intuition and previous results.

      Then, we agree with the reviewer that studying the functional changes induced by tDCS alone could be valuable. However, usual metrics used in FC analysis are usually done statistically: FC-states are either computed through averaging spatial correlations over time, then analyzed through graph-theoretical properties for instance (or by just directly computing the element-wise differences), or either by considering the properties of the different visited FC-states by computing spatial correlations over a sliding time-window, and then similar analysis can be done as previously explained. But these are static metrics, if the states visited are essentially the same (which is expected from non-invasive neuromodulations that haven't already demonstrated strong and/or characteristic impact), but the dynamical process of visiting said states changes, one would see no difference in that regard. As such, in the case of resting-state fMRI, differences in FCs are hard to interpret given that between-sessions within-condition differences are usually found with some degree of variance for the respective conditions. Trying then to interpret between-condition differences is quite tricky in the case of subtle modulations of the system's activity. On the other hand, more subtle differences can be captured by considering more detailed analysis, such as using phase-based methods like we did, by incorporating some statistical learning component with regard to the dynamicity of the system (supervised learning for instance like we did followed by temporal & transition-based methodology), and by adding some dimensions along which one will be able to give some interpretation to the analysis. In our case we were interested in characterizing resting-state differences between stimulation conditions, which have nuanced and subtle interactions with the biological system. As such, classical measures of differences between FC states are likely to not be refined and precise enough. In fact, we propose additional files investigating those classically used measures such as differences in average FC matrices, or changes in functional graph properties (like modularity, efficiency and density) of the visited FC states. These figures show that, for the first case, comparing region-to-region specific FCs provides very few statistically significant results. With respect to the second part, we show that virtually no differences are observed in the properties of the functional states visited. These results suggest, as expected, that the actual brain states visited across the different stimulation conditions are topologically quite similar, and that only very few region-specific pairwise functional connectivities are particularly modulated by specific tDCS montages while, on the other hand, the actual dynamical process dictating how the brain activity passes from one state to another is in fact being influenced as shown by the dynamical analysis presented in the main figures in a more apparent and meaningful way (in that it is dependent on the montage, somewhat consistent with regard to the post-stimulations conditions, and can be made sense of by considering the theoretical effect of near-anodal versus near-cathodal neuromodulatory effects).

      Actions in the text: We have added new supplementary files showing the effects of the stimulations on FC matrices and on classical functional graph properties in awake and anesthesia datasets (Supplementary Files 3 & 4). We have added new sentences about these new analyses on the effects of the stimulations on FC matrices and on classical functional graph properties in the Results section:<br /> Follow-up comment: Thank you for the detailed and comprehensive response. The clarification regarding the use of SFC dynamics and the additional analyses provided are convincing.

      R2.4. The authors recorded data from only two monkeys, which may limit the investigation of the group effects of tDCS. As the number of scans for the second monkey in each consciousness condition is lower than that in the first monkey, there is a concern that the main effects might primarily reflect the data from a single monkey. I suggest that the authors should analyze the data for each monkey individually to determine if similar trends are observed in both subjects.

      R.2.4. Authors' answer: We agree that the small number of subjects is a limitation of our study. However, we have already addressed these aspects by reporting statistical analyses that consider them, using linear models of such variables, and running them through ANOVA tests. In addition, we experimentally ensured that we recorded a relatively high number of sessions over a period of several years. Regardless, we agree that our study would benefit from further investigation into this matter. We have therefore prepared complementary figures showing the main analysis performed separately for the two monkeys as proposed, as well as further investigations into the inter-condition variability outmatching the inter-individual variability, itself being also outmatched by intra-individual changes.

      Actions in the text: We have added a supplementary file showing the main analyses performed separately for the two monkeys (Supplementary File 2) and further investigations into the inter-condition variability (Supplementary Files 3 & 4). We have added new sentences about these analyses performed separately for the two monkeys in the Results section:

      Follow-up comment: Thank you for addressing this concern and for providing the individual monkey analysis. The additional figures and statistical explanations are helpful and appreciated.

      R2.5. Anodal tDCS was only applied to anesthetized monkeys, which limits the conclusion that the authors are aiming for. It raises questions about the conclusion regarding brain state dependency. To address this, it would be better to include the cathodal tDCS session for anesthetized monkeys. If cathodal tDCS changes the connectivity during anesthesia, it becomes difficult to argue that the effects of cathodal tDCS vary depending on the state of consciousness as discussed in this paper. On the other hand, if cathodal tDCS would not produce any changes, the conclusion would then focus on the relationship between the polarity of tDCS and consciousness. In that case, the authors could maintain their conclusion but might need to refine it to reflect this specific relationship more accurately.

      R.2.5. Authors' answer: We agree with the reviewer that it would have been interesting to investigate the effects of cathodal tDCS in anesthetized monkeys. However, due to the challenging nature of the experimental procedures under anesthesia, we had to limit the investigations to only one stimulation modality. We chose to deliver anodal stimulation because, from a translational point of view, we aimed to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness. It also made much more sense to increase the cortical excitability of the prefrontal cortex in an attempt to wake up the sedated monkeys rather than doing the opposite.

      Actions in the text: We have added a new sentence in the Results section:

      "Due to the challenging nature of the experimental procedures under anesthesia, we limited the investigations to only one stimulation modality. We chose to deliver anodal stimulation to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness and to increase the cortical excitability of the PFC in an attempt to wake up the sedated monkeys."

      Follow-up comment: Thank you for clarifying the rationale behind applying only anodal stimulation under anesthesia. While I appreciate the experimental constraints and the translational motivation, I would still encourage the authors to explicitly acknowledge in the Discussion that the absence of a cathodal condition under anesthesia limits the ability to dissociate polarity-specific effects from state-dependent effects. This clarification would help temper the conclusions and better reflect the scope of the current dataset.

    3. Reviewer #3 (Public review):

      Summary:

      This study used transcranial direct current stimulation administered using small 'high definition' electrodes to modulate neural activity within the non-human primate prefrontal cortex during both wakefulness and anaesthesia. Functional magnetic resonance imaging (fMRI) was used to assess neuromodulatory effects of stimulation. The authors report on modification of brain dynamics during and following anodal and cathodal stimulation during wakefulness and following anodal stimulation at two intensities (1 mA, 2 mA) during anaesthesia. This study provides some support that prefrontal direct current stimulation can alter neural activity patterns across wakefulness and sedation in monkeys.

      Strengths and Weaknesses:

      A key strength of this work is the use of fMRI-based methods to track changes in brain activity with good spatial precision. Another strength is the exploration of stimulation effects across wakefulness and sedation, which has the potential to provide novel information on the impact of electrical stimulation across states of consciousness. The authors should be commended for undertaking this challenging and important work.

      The lack of a sham stimulation condition is a limitation of the study, as it somewhat restricts the certainty with which the results can be attributed to the active stimulation as opposed to other external factors such as drowsiness or fatigue as a result of the experimental procedure? Nevertheless, I acknowledge the demanding nature of performing this work in non-human primates and that only runs with high fixation rates were included, which should have helped reduce any fatigue-related effects.

      In the anaesthesia condition, the authors investigated the effects of two intensities of stimulation (1 mA and 2 mA). However, it is possible that the initial 1 mA stimulation block might have caused some level of plasticity-related changes in neural activity that could have potentially interfered with the following 2 mA block due to the lack of a sufficient wash-out period. This potentially limits the findings from the 2 mA block as they cannot be interpreted as completely separate to the initial 1 mA stimulation period, given that they were administered consecutively. However, I do acknowledge the author's point that differences between the 1 mA post-stimulation and baseline conditions were not significantly different, which provides some evidence against this possibility.

      The different electrode placement for the two anaesthetised monkeys (i.e., Monkey R: F3/O2 montage, Monkey N: F4/O1 montage) is potentially problematic, as it might have resulted in stimulation over different brain regions. Electric field models of brain current flow for the monkeys would really be needed to understand with reasonable certainty, however, I recognise that these models are generally designed for human studies making their integration into non-human primate studies challenging.

      Finally, the sample size is obviously small. However, I realise this is often a limitation in non-human primate research, which can be both expensive and labour intensive.

      Assessment:

      This manuscript presents some novel insights into the effects of transcranial direct current stimulation on functional brain dynamics in awake and anaesthetised monkeys using MRI-based connectivity indices. Overall, the study presents several interesting and potentially impactful findings regarding stimulation-induced changes in brain activity. There are some limitations, such as the small sample size, lack of a sham stimulation control, and lack of electric field models, which, if included, would have, in my view, further helped improve the rigour of the study. Nevertheless, the manuscript presents several important findings, which warrant further analysis in future work.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      In this work, the authors apply TDCS to awake and anesthetized macaques to determine the effect of this modality on dynamic connectivity measured by fMRI. The question is to understand the extent to which TDCS can influence conscious or unconscious states. Their target was the PFC. During the conscious states, the animals were executing a fixation task. Unconsciousness was achieved by administering a constant infusion of propofol and a continuous infusion of the muscle relaxant cisatracurium. They observed the animals while awake receiving anodal or cathodal hd-TDCS applied to the PFC. During the cathodal stimulation, they found disruption of functional connectivity patterns, enhanced structure-function correlations, a decrease in Shannon entropy, and a transition towards patterns that were more commonly anatomically based. In contrast under propofol anesthesia anodal hd-TDCS stimulation appreciably altered the brain connectivity patterns and decreased the correlation between structure and function. The PFC stimulations altered patterns associated with consciousness as well as those associated with unconsciousness.

      Strengths: 

      The authors carefully executed a set of very challenging experiments that involved applying tDCS in awake and anesthetized non-human primates while conducting functional imaging.

      We thank the Reviewer for summarising our study and for his appreciation of the highly challenging experiments we performed.

      Weaknesses:

      The authors show that tDCS can alter functional connectivity measured by fMRI but they do not make clear what their studies teach the reader about the effects of tDCS on the brain during different states of consciousness. No important finding is stated contrary to what is stated in the abstract. It is also not clear what the work teaches us about how tDCS works nor is it clear what are the "clinical implications for disorders of consciousness." The deep anesthesia is akin to being in a state of coma. This was not discussed.  

      While the authors have executed a set of technically challenging experiments, it is not clear what they teach us about how tDCS works, normal brain neurophysiology, or brain pathological states such as disorders of consciousness.

      We thank the reviewer for his comments. We agree that we could better highlight the value and implications of our work, and we take this opportunity to improve our manuscript according to the suggestions.

      Actions in the text: We have added several new paragraphs in the Discussion section, considering these comments and other related remarks from the Reviewing Editor (see below our answer to the first comment of the Reviewing Editor: REC#1).

      Reviewer #2 (Public review): 

      General comments: 

      The authors investigated the effects of tDCS on brain dynamics in awake and anesthetized monkeys using functional MRI. They claim that cathodal tDCS disrupts the functional connectivity pattern in awake monkeys while anodal tDCS alters brain patterns in anesthetized monkeys. This study offers valuable insight into how brain states can influence the outcomes of noninvasive brain stimulation. However, there are several aspects of the methods and results sections that should be improved to clarify the findings.

      We thank the Reviewer for the summary and appreciation of our study.  

      Major comments 

      For the anesthetized monkeys, the anode location differs between subjects, with the electrode positioned to stimulate the left DLFPC in monkey R and the right DLPFC in monkey N. The authors mention that this discrepancy does not result in significant differences in the electric field due to the monkeys' small head size. However, this is incorrect, as placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side. Running an electric field simulation would confirm this. Additionally, the small electrode size suggested by the Easy cap configuration for NHP appears sufficient to stimulate the targeted regions focally. If this interpretation is correct, the authors should provide additional evidence to support their claim, such as a computational simulation of the EF distribution.

      We thank the Reviewer for the comments. First, regarding the reviewer’s statement that placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side, we would like to clarify that we did not use a typical 4 x 1 concentric ring high-definition setup (which consists of a small centre electrode surrounded by four return electrodes), but a two-electrode montage, with one electrode over the left or right PFC and the other one over the contralateral occipital cortex. According to EF modelling papers, a 4 x 1 high-definition setup would produce an EF that is focused and limited to the cortical area circumscribed by the ring of the return electrodes (Datta et al. 2009; Alam et al. 2016). Therefore, targeting the left or right DLPFC with a 4 x 1 setup would produce an EF confined to the targeted hemisphere of the PFC. In contrast, we expect the brain current flow generated with our 2-electrode setup to be broader, despite the small size of the electrodes,  because there is no constraint from return electrodes. Thus, with our setup, the current is expected to flow between the PFC and the occipital cortex (see also our responses to comments R3.3., R.E.C.#2.1. and R.E.C.#2.2.). 

      Second, we would like to point out that in awake experiments, in which we stimulated the right PFC of both monkeys, there was no gross evidence of left or right asymmetry in the computed functional connectivity patterns (Figure 3A, Figure 3 - figure supplement 2A; Figure 5A). These results, showing that our stimulation montages did not induce asymmetric dynamic FC changes in NHPs, support the idea that our setups did not generate EFs that were spatially focused enough to alter brain activity in one hemisphere substantially more than the other.

      Third, it is also worth noting that current evidence suggests that human brains are significantly more lateralized than those of macaques. Macaque monkeys have been found to have some degree of lateralized networks, but these are of lower complexity, and the lateralization is less pronounced and functionally organized than in humans. (Whey et al., 2014; Mantini et al., 2013). This suggests that, even if the stimulation were focal enough to stimulate the left or the right part of the PFC only, the behavioural effects would likely be similar.

      We strongly agree with the reviewer that conducting an EF simulation would be valuable to confirm our expectations and to gain a comprehensive view of the characteristics of the EFs generated with our different setups in NHPs. However, the challenge is in the fact that EF computational models have been developed for humans, and their use in NHPs is not straightforward due to significant anatomical differences. For example, macaque monkeys are distinct from humans in terms of brain size, shape and cortical organisation, skull thickness, and the presence of muscles, as well as different tissue conductivities (Lee et al. 2015; Datta et al.2016; Mantell et al. 2023). We plan to address this in future work.

      Actions in the text: In the Materials and Methods section, we have modified the sentence: “Because of the small size of the monkey's head and because we did not use return electrodes to restrict the current flow (as is achieved with typical high-definition montages (Datta et al. 2009; Alam et al. 2016)), we expected that tDCS stimulation with the two symmetrical montages would result in nearly equivalent electric fields across the monkey’s head and produce roughly similar effects on brain activity.” 

      We also added a new sentence about EF simulation: 

      “This would need to be confirmed by running an electric field simulation. However, computational electric field models have been developed for humans, and their use in NHPs is not straightforward due to anatomical specificities. Indeed, monkeys differ from humans in terms of brain size, shape and cortical organization, skull thickness, tissue conductivities and the presence of muscles (Lee et al. 2015; Datta et al. 2016; Mantell et al. 2023). Modelling of EFs generated with the specific tDCS montages employed in this study will be performed in future work.”

      For the anesthetized monkeys, the authors applied 1 mA tDCS first, followed by 2 mA tDCS. A 20-minute stimulation duration of 1 mA tDCS is strong enough to produce after-effects that could influence the brain state during the 2 mA tDCS. This raises some concerns. Previous studies have shown that 1 mA tDCS can generate EF of over 1 V/m in the brain, and the effects of stimulation are sensitive to brain state (e.g., eye closed vs. eye open). How do the authors ensure that there are no after-effects from the 1 mA tDCS? This issue makes it challenging to directly compare the effects of 1 mA and 2 mA stimulation.

      We agree with the reviewer's comment that 1 mA tDCS may induce aftereffects, as has been observed in several human studies (e.g., (Jamil et al. 2017, 2020). Although the differences between the 1 mA post-stimulation and baseline conditions were not significant in our analyses, it's still possible that the stimulation produced some effects below the threshold of significance that may contribute, albeit weakly, to the changes observed during and after 2 mA stimulation. We have, therefore, amended the paper in line with the reviewer's comments.

      Actions in the text: We have added the following text in the Result section: 

      “While several human studies have reported that 1 mA transcranial stimulation induces aftereffects (e.g., (Jamil et al. 2017, 2020; Monte-Silva et al. 2010), the differences between the 1 mA post-stimulation and baseline conditions were not significant in our analyses. However, it is still possible that the 1 mA stimulation produced some effects below the threshold of significance that may contribute to the changes observed during and after the 2 mA stimulation.”

      The occurrence rate of a specific structural-functional coupling pattern among random brain regions shows significant effects of tDCS. However, these results seem counterintuitive. It is generally understood that noninvasive brain stimulation tends to modulate functional connectivity rather than structural or structural-functional connectivity. How does the occurrence rate of structural-functional coupling patterns provide a more suitable measure of the effectiveness of tDCS than functional connectivity alone? I would recommend that the authors present the results based on functional connectivity itself. If there is no change in functional connectivity, the relevance of changes in structural-functional coupling might not translate into a meaningful alteration in brain function, making it unclear how significant this finding is without corresponding functional evidence.

      First, of all, we would like to make it clear that the occurrence rate of patterns as a function of their SFC is not intended to be used or seen as a ‘better’ measure of the efficacy of tDCS. Instead, it is one aspect of the effects of tDCS on whole-brain functional cortical dynamics, obtained from refined measures (phase-coherences), that specifically addresses the coupling between structure and function. This type of analysis is further motivated by its increasing use in the literature due to its suspected relationship to wakefulness (e.g., (Barttfeld et al. 2015, Demertzi et al. 2019; Castro et al. 2023)). Also, in our analysis, the structure is kept constant: the connectivity matrix used to correlate the functional brain states is always the same (CoCoMac82). Thus, the influence of tDCS on the structure-function side can only be explained by modulating the functional aspects, as suggested by intuition and previous results.

      Then, we agree with the reviewer that studying the functional changes induced by tDCS alone could be valuable. However, usual metrics used in FC analysis are usually done statistically: FC-states are either computed through averaging spatial correlations over time, then analyzed through graph-theoretical properties for instance (or by just directly computing the element-wise differences), or either by considering the properties of the different visited FC-states by computing spatial correlations over a sliding time-window, and then similar analysis can be done as previously explained. But these are static metrics, if the states visited are essentially the same (which is expected from non-invasive neuromodulations that haven’t already demonstrated strong and/or characteristic impact), but the dynamical process of visiting said states changes, one would see no difference in that regard. As such, in the case of resting-state fMRI, differences in FCs are hard to interpret given that between-sessions within-condition differences are usually found with some degree of variance for the respective conditions. Trying then to interpret between-condition differences is quite tricky in the case of subtle modulations of the system’s activity. On the other hand, more subtle differences can be captured by considering more detailed analysis, such as using phase-based methods like we did,  by incorporating some statistical learning component with regard to the dynamicity of the system (supervised learning for instance like we did followed by temporal & transition-based methodology), and by adding some dimensions along which one will be able to give some interpretation to the analysis.  In our case we were interested in characterizing resting-state differences between stimulation conditions, which have nuanced and subtle interactions with the biological system. 

      As such, classical measures of differences between FC states are likely to not be refined and precise enough. In fact, we propose additional files investigating those classically used measures such as differences in average FC matrices, or changes in functional graph properties (like modularity, efficiency and density) of the visited FC states. These figures show that, for the first case, comparing region-to-region specific FCs provides very few statistically significant results. With respect to the second part, we show that virtually no differences are observed in the properties of the functional states visited. 

      These results suggest, as expected, that the actual brain states visited across the different stimulation conditions are topologically quite similar, and that only very few region-specific pairwise functional connectivities are particularly modulated by specific tDCS montages while, on the other hand, the actual dynamical process dictating how the brain activity passes from one state to another is in fact being influenced as shown by the dynamical analysis presented in the main figures in a more apparent and meaningful way (in that it is dependent on the montage, somewhat consistent with regard to the post-stimulations conditions, and can be made sense of by considering the theoretical effect of near-anodal versus near-cathodal neuromodulatory effects).

      Actions in the text: We have added new supplementary files showing the effects of the stimulations on FC matrices and on classical functional graph properties in awake and anesthesia datasets (Supplementary Files 3 & 4).

      We have added new sentences about these new analyses on the effects of the stimulations on FC matrices and on classical functional graph properties in the Results section:

      “In addition, we performed the main analyses separately for the two monkeys, explored the inter-condition variability (Supplementary File 2), and computed classical measures of functional connectivity such as average FC matrices and functional graph properties (modularity, efficiency and density) of the visited FC states (Supplementary File 3).... In contrast, classical FC metrics did not show significant differences across stimulation conditions, highlighting the value of dynamic FC metrics to capture the neuromodulatory effects of tDCS.”

      “Analyses of the two monkeys separately showed that the changes in slope and Shannon entropy were bigger in one of the two monkeys but went in the same direction (Supplementary File 2), while classical FC metrics did not capture any statistical differences between the different stimulation conditions (Supplementary File 3).”

      The authors recorded data from only two monkeys, which may limit the investigation of the group effects of tDCS. As the number of scans for the second monkey in each consciousness condition is lower than that in the first monkey, there is a concern that the main effects might primarily reflect the data from a single monkey. I suggest that the authors should analyze the data for each monkey individually to determine if similar trends are observed in both subjects.

      We agree that the small number of subjects is a limitation of our study. However, we have already addressed these aspects by reporting statistical analyses that consider them, using linear models of such variables, and running them through ANOVA tests. In addition, we experimentally ensured that we recorded a relatively high number of sessions over a period of several years. Regardless, we agree that our study would benefit from further investigation into this matter. We have therefore prepared complementary figures showing the main analysis performed separately for the two monkeys as proposed, as well as further investigations into the inter-condition variability outmatching the inter-individual variability, itself being also outmatched by intra-individual changes. 

      Actions in the text: We have added a supplementary file showing the main analyses performed separately for the two monkeys (Supplementary File 2) and further investigations into the inter-condition variability (Supplementary Files 3 & 4).

      We have added new sentences about these analyses performed separately for the two monkeys in the Results section:

      “In addition, we performed the main analyses separately for the two monkeys, explored the inter-condition variability (Supplementary File 2), and computed classical measures of functional connectivity such as average FC matrices and functional graph properties (modularity, efficiency and density) of the visited FC states (Supplementary File 3). The separate analyses showed that the changes in slope and Shannon entropy were substantially more pronounced in one of the two monkeys, corroborating some of the effects captured in the ANOVA tests.”

      “Analyses of the two monkeys separately showed that the changes in slope and Shannon entropy were bigger in one of the two monkeys but went in the same direction (Supplementary

      File 2)”.

      Anodal tDCS was only applied to anesthetized monkeys, which limits the conclusion that the authors are aiming for. It raises questions about the conclusion regarding brain state dependency. To address this, it would be better to include the cathodal tDCS session for anesthetized monkeys. If cathodal tDCS changes the connectivity during anesthesia, it becomes difficult to argue that the effects of cathodal tDCS vary depending on the state of consciousness as discussed in this paper. On the other hand, if cathodal tDCS would not produce any changes, the conclusion would then focus on the relationship between the polarity of tDCS and consciousness. In that case, the authors could maintain their conclusion but might need to refine it to reflect this specific relationship more accurately. 

      We agree with the reviewer that it would have been interesting to investigate the effects of cathodal tDCS in anesthetized monkeys. However, due to the challenging nature of the experimental procedures under anesthesia, we had to limit the investigations to only one stimulation modality. We chose to deliver anodal stimulation because, from a translational point of view, we aimed to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness. It also made much more sense to increase the cortical excitability of the prefrontal cortex in an attempt to wake up the sedated monkeys rather than doing the opposite.

      Actions in the text: We have added a new sentence in the Results section:

      “Due to the challenging nature of the experimental procedures under anesthesia, we limited the investigations to only one stimulation modality. We chose to deliver anodal stimulation to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness and to increase the cortical excitability of the PFC in an attempt to wake up the sedated monkeys.”

      Reviewer #3 (Public review): 

      Summary: 

      This study used transcranial direct current stimulation administered using small 'high-definition' electrodes to modulate neural activity within the non-human primate prefrontal cortex during both wakefulness and anaesthesia. Functional magnetic resonance imaging (fMRI) was used to assess the neuromodulatory effects of stimulation. The authors report on the modification of brain dynamics during and following anodal and cathodal stimulation during wakefulness and following anodal stimulation at two intensities (1 mA, 2 mA) during anaesthesia. This study provides some possible support that prefrontal direct current stimulation can alter neural activity patterns across wakefulness and sedation in monkeys. However, the reported findings need to be considered carefully against several important methodological limitations. 

      Strengths: 

      A key strength of this work is the use of fMRI-based methods to track changes in brain activity with good spatial precision. Another strength is the exploration of stimulation effects across wakefulness and sedation, which has the potential to provide novel information on the impact of electrical stimulation across states of consciousness.

      We thank the Reviewer for the summary and for highlighting the strengths of our study. 

      Weaknesses: 

      The lack of a sham stimulation condition is a significant limitation, for instance, how can the authors be sure that results were not affected by drowsiness or fatigue as a result of the experimental procedure?

      We agree with the reviewer that adding control conditions could have strengthened our study. Control conditions usually consist of a sham condition or active control conditions. However, as mentioned in response to one of Reviewer 2 comments (R.2.5), we had to make choices as we could not perform as many experiments due to their demanding nature, especially under anesthesia. 

      In the awake state, we acquired data with two experimental conditions; the monkeys were exposed to either anodal (F4/O1) or cathodal (O1/F4) PFC tDCS. As anodal tDCS of the PFC induced only minor changes in brain dynamics, it could be considered as an active control condition for the cathodal condition, which had striking effects on the cortical dynamics. It is also worth noting that doubts have been raised about the neurobiological inertia of certain sham protocols. Indeed, different sham protocols have been employed in the literature, some of which may produce unintended effects (Fonteneau et al. 2019). Therefore, active control conditions, such as reversing the polarity of the stimulation or targeting a different brain region, have been proposed to provide better control (Fonteneau et al. 2019). Furthermore, in the context of experiments performed under anesthesia, the relevance of a sham control condition typically used to achieve adequate blinding is questionable. 

      With regard to drowsiness and fatigue as a result of the experimental procedure, we agree with the reviewer that this is a common problem in functional imaging due to the length of the recording sessions. We assumed, as was done in previous work (Uhrig, Dehaene, and Jarraya 2014; Wang et al. 2015), that the monkeys' performance on the fixation task during acquisition would capture these periods of fatigue. Therefore, only sessions with fixation rates above 85% were included in our analysis. 

      Actions in the text: We have now specified, in the Materials and Methods section, the fact that only runs with a high fixation rate (> 85%) were included in the study: 

      “To ensure that the results were not biased by fatigue or drowsiness due to the lengthy

      In the anaesthesia condition, the authors investigated the effects of two intensities of stimulation (1 mA and 2 mA). However, a potential confound here relates to the possibility that the initial 1 mA stimulation block might have caused plasticity-related changes in neural activity that could have interfered with the following 2 mA block due to the lack of a sufficient wash-out period. Hence, I am not sure any findings from the 2 mA block can really be interpreted as completely separate from the initial 1 mA stimulation period, given that they were administered consecutively. Several previous studies have shown that same-day repeated tDCS stimulation blocks can influence the effects of neuromodulation (e.g., Bastani and Jaberzadeh, 2014, Clin Neurophysiol; Monte-Silva et al., J. Neurophysiology). 

      We agree with the reviewer’s comment that the initial 1 mA stimulation block might have induced changes in neural activity and that the 20-minute post 1 mA block would not be long enough to wash out these changes. This comment is very similar to the second comment made by Reviewer 2 (R.2.2). Although our experimental data do not support this possibility (as the differences between the 1 mA post-stimulation and baseline conditions were not significant), it is still conceivable that the stimulation produced some effects below the threshold of significance and that these might weakly contribute to the changes observed during and after the 2 mA stimulation. 

      Actions in the text: We have modified the paper according to the reviewers' comments (please see our answer and actions in the text to R.2.2.).

      The different electrode placement for the two anaesthetised monkeys (i.e., Monkey R: F3/O2 montage, Monkey N: F4/O1 montage) is problematic, as it is likely to have resulted in stimulation over different brain regions. The authors state that "Because of the small size of the monkey's head, we expected that tDCS stimulation with these two symmetrical montages would result in nearly equivalent electric fields across the monkey's head and produce roughly similar effects on brain activity"; however, I am not totally convinced of this, and it really would need E-field models to confirm. It is also more likely that there would in fact be notable differences in the brain regions stimulated as the authors used HD-tDCS electrodes, which are generally more focal.

      We thank the Reviewer for the remark, which is very similar to the second comment from Reviewer 2. Please see our answer to the first comment of Reviewer 2 

      Actions in the text: We have modified the paper according to the reviewers' comments (please see the actions taken in response to R.2.1.).

      Given the very small sample size, I think it is also important to consider the possibility that some results might also be impacted by individual differences in response to stimulation. For instance, in the discussion (page 9, paragraph 2) the authors contrast findings observed in awake animals versus anaesthetised animals. However, different monkeys were examined for these two conditions, and there were only two monkeys in each group (monkeys J and Y for awake experiments [both male], and monkeys R and N [male and female] for the anaesthesia condition). From the human literature, it is well known that there is a considerable amount of inter-individual variability in response to stimulation (e.g., Lopez-Alonso et al., 2014, Brain Stimulation; Chew et al., 2015, Brain Stimulation), therefore I wonder if some of these differences could also possibly result from differences in responsiveness to stimulation between the different monkeys? At the end of the paragraph, the authors also state "Our findings also support the use of tDCS to promote rapid recovery from general anesthesia in humans...and suggest that a single anodal prefrontal stimulation at the end of the anesthesia protocol may be effective." However, I'm not sure if this statement is really backed-up by the results, which failed to report "any behavioural signs of awakening in the animals" (page 7)?

      We thank the Reviewer for this comment. Because working with non-human primates is expensive and labor intensive, the sample sizes in classical macaque experiments are generally small (typically 2-4 subjects per experiment). Our sample size (i.e. 2 rhesus macaques in awake experiments and 2 macaques under sedation, 11 +/- 9 scan sessions per animal, 288 and 136 runs in the awake and anesthesia state, respectively) is comparable to other previous work in non-human primates using fMRI (Milham et al. 2018; Yacoub et al. 2020; Uchimura, Kumano, and Kitazawa 2024). In addition, we would like to point out that the baseline cortical dynamics we found before stimulation, whether in the awake or sedated state, are comparable to previous studies (Barttfeld et al. 2015; Uhrig et al. 2018; Tasserie et al. 2022). This suggests our results are reproducible across datasets, despite the small sample size.

      That being said, we agree with the reviewer that inter-individual variability in response to stimulation can be considerable, as shown by a large body of literature in the field. It seems possible that the two monkeys studied in each condition responded differently to the stimulation. But even if that’s the case, our results suggest that at least in one of the two monkeys, cathodal PFC stimulation in the awake state and anodal PFC stimulation under propofol anesthesia induced striking changes in brain dynamics, which we believe is a significant contribution to the field. 

      In fact, supplementary analysis, as proposed by Reviewer 2 (cf R2.4), investigating how the different measurables we’ve used were differently affected by tDCS show that indeed monkey Y’s case is more apparent and significant than monkey J’s. Still, the effects observed in monkey J’s case are still congruent with what is observed in monkey Y’s and at the population level (though less flagrant). We also show that these inter-individual variabilities are outmatched by the inter-condition variability, (as indicated by our initially strong statistical results at the population levels), thus showing that, even though we have different responses depending on the subject, the effects observed at the population level cannot be only accounted for by the differences in subjects’ specificities.

      Lastly, the Reviewer questioned whether our results support that a single anodal prefrontal stimulation at the end of the anesthesia protocol could effectively promote rapid recovery from general anesthesia, because the stimulation did not wake the animals in our experiments. It should be emphasized that in our case, the monkeys were stimulated while they were still receiving continuous propofol perfusion. In contrast, during the recovery process from anesthesia, the delivery of the anesthetic drug is stopped. It is therefore conceivable that anodal PFC tDCS, which successfully enriched brain dynamics in sedated monkeys in our experiments, may accelerate the recovery from anesthesia when the drug is no longer administered. 

      Actions in the text: We have added a line in the Materials and Methods to compare to other studies:

      “Our sample size is comparable to previous work in NHP using fMRI (Milham et al. 2018; Yacoub et al. 2020; Uchimura, Kumano, and Kitazawa 2024).”

      Reviewing Editor Comments: 

      In some cases, authors opt to submit a revised manuscript. Should you choose to do so, please be aware that the reviewers have indicated that their appraisal is unlikely to change unless some of the suggested field modelling is incorporated into the work. This may change the evaluation of the strength of evidence, but the final wording will be subject to reviewer discretion. Details for responding to the reviews are provided at the bottom of this email.

      Reviewer #1 (Recommendations for the authors): 

      The work should discuss the implications of their experiments for using tDCS to arouse a patient from a coma. The anesthetized animal is effectively in a drug-induced coma. While they observed connectivity changes, these changes did not map nicely onto behavioral changes. 

      I would suggest that the authors spell out more clearly what they view as the clinical implications of their work in terms of new insights into how tDCS may be used to either understand and or treat disorders of consciousness.

      We thank the Reviewer for his thoughtful comments. We appreciate the opportunity to clarify and expand on the key findings and implications of our work, particularly regarding the new insights into how tDCS can be used to understand and treat disorders of consciousness. We therefore provide a broader perspective on the clinical implications of our experiments regarding coma and disorders of consciousness. We also agree with the Reviewer that the absence of behavioral changes but the presence of functional differences should be more clearly addressed. 

      Actions in the text: We have added a few lines about the relevance of anesthesia as a model for disorders of consciousness in the Introduction part:

      “Anesthesia provides a unique model for studying consciousness, which, similarly to DOC, is characterized by the disruption or even  the loss of consciousness (Luppi 2024). Additionally, anesthesia mechanisms involve several subcortical nuclei that are key components of the brain's sleep and arousal circuits (Kelz and Mashour 2019).”

      In the Discussion section, we have modified and expanded a paragraph about the effects of tDCS in DOC patients and how this technique could be further used to study consciousness: From another clinical perspective, our results demonstrating that 2 mA anodal PFC tDCS decreased the structure-function correlation and modified the dynamic repertoire of brain patterns during anesthesia (Figures 6 and 7) are consistent with the beneficial effects of such stimulation in DOC patients (Thibaut et al., 2014; Angelakis et al., 2014; Thibaut et al., 2017; Zhang et al., 2017; Martens et al., 2018; Cavinato et al., 2019; Wu et al., 2019; Hermann et al., 2020; Peng et al., 2022; Thibaut et al., 2023). Although some clinical trials investigated the effects of stimulating other brain regions, such as the motor cortex (Martens et al., 2019; Straudi et al., 2019) or the parietal cortex (Huang et al., 2017; Guo et al., 2019; Zhang et al., 2022; Wan et al., 2023; Wang et al., 2020), the DLPFC appears to be the most effective target for patients with a minimally conscious state (Liu et al., 2023). In terms of neuromodulatory effects in DOC patients, DLPFC tDCS has been reported to increase global excitability (Bai et al., 2017), increase the P300 amplitude (Zhang et al., 2017; Hermann et al., 2020), improve the fronto-parietal coherence in the theta band (Bai et al., 2018), enhance the putative EEG markers of consciousness (Bai et al., 2018; Hermann et al., 2020) and reduce the incidence of slow-waves in the resting state (Mensen et al., 2020). Our findings further support the PFC as a relevant target for modulating consciousness level and align with growing evidence showing that the PFC plays a key role in conscious access networks (Mashour, Pal, and Brown 2022; Panagiotaropoulos 2024). Nevertheless, we hypothesize that other brain targets for tDCS may be of interest for consciousness restoration, potentially using multi-channel tDCS (Havlík et al., 2023). Among transcranial electrical stimulation techniques, tDCS has the great advantage of facilitating either excitation or inhibition of brain regions, depending on the polarity of the stimulation (Sdoia et al., 2019) exploited this advantage to investigate the causal involvement of the DLPFC in conscious access to a visual stimulus during an attentional blink paradigm. While conscious access was enhanced by anodal stimulation of the left DLPFC compared to sham stimulation, opposite effects were found with cathodal stimulation compared to sham over the same locus. Finally, this literature and our findings suggest that tDCS constitutes a non-invasive, reversible, and powerful tool for studying consciousness.”

      We have added a new paragraph about patients with cognitive-motor dissociation and dissociation between consciousness and behavioral responsiveness:

      “Changes in the state of consciousness are generally closely associated with changes in behavioural responsiveness, although some rare cases of dissociation have been described. Cognitive-motor dissociation (CMD) is a condition observed in patients with severe brain injury, characterized by behavior consistent with unresponsive wakefulness syndrome or a minimally conscious state minus (Thibaut et al., 2019). However, in these patients, specific cortical brain areas activate in response to mental imagery tasks (e.g., imagining playing tennis or returning home) in a manner indistinguishable from that of healthy controls, as shown through fMRI or EEG (Thibaut et al., 2019; Owen et al., 2006; Monti et al., 2010; Bodien et al., 2024). Thus, although CMD patients are behaviorally unresponsive, they demonstrate cognitive awareness that is not outwardly apparent. It is worth noting that both the structure-function correlation and the rate of the pattern closest to the anatomy were shown to be significantly reduced in unresponsive patients showing command following during mental imagery tasks compared to those who do not show command following (Demertzi et al., 2019). These observations would be compatible with our findings in anesthetized macaques exposed to 2 mA anodal PFC tDCS. The richness of the brain dynamics would be recovered (at least partially, in our experiments), but not the behaviour. This hypothesis also fits with a recent longitudinal fMRI study on patients recovering from coma (Crone et al., 2020). The researchers examined two groups of patients: one group consisted of individuals who were unconscious at the acute scanning session but regained consciousness and improved behavioral responsiveness a few months later, and the second group consisted of patients who were already conscious from the start and only improved behavioral responsiveness at follow-up. By comparing these two groups, the authors could distinguish between the recovery of consciousness and the recovery of behavioral responsiveness. They demonstrated that only initially conscious patients exhibited rich brain dynamics at baseline. In contrast, patients who were unconscious in the acute phase and later regained consciousness had poor baseline dynamics, which became more complex at follow-up. Complete recovery of both consciousness and responsiveness under general anesthesia is possible through electrical stimulation of the central thalamus (Redinbaugh et al., 2020; Tasserie et al., 2022).”

      Reviewer #2 (Recommendations for the authors): 

      Method 

      (1) The authors mentioned that they used HD-tDCS in their experiments; however, they used 1 x 1 tDCS, which is not HD-tDCS but rather single-channel tDCS.

      We thank the Reviewing Editor for pointing out this ambiguous wording. We understand that "HD-tDCS", which we used in our paper to refer to high-density 1x1 tDCS (because we used small carbon electrodes instead of the large sponge electrodes employed in conventional tDCS), may cause some confusion with high-definition tDCS, which uses compact ring electrodes and most commonly refers to a 4x1 montage (1 active central electrode over the target area and 4 return electrodes placed around the central electrode).

      Therefore, to avoid any confusion, we will use the term "tDCS" rather than “HD-tDCS” to qualify the technique used in this paper and suppress mentions of high-density or high-definition tDCS.

      Actions in the text: We have replaced the abbreviation “HD-tDCS” with “tDCS” throughout the paper. We have also suppressed the sentence about high-definition tDCS in the Introduction (“While conventional tDCS relies on the use of relatively large rectangular pad electrodes, high-density tDCS (HD-tDCS) utilizes more compact ring electrodes, allowing for increased focality, stronger electric fields, and presumably, greater neurophysiological changes (Datta et al. 2009; Dmochowski et al. 2011)”) and the two related citations in the References section.

      (2) Please provide the characteristics of electrodes, including their size, shape, and thickness.

      We thank the Reviewing Editor for this recommendation. We now provide the complete characteristics of the tDCS electrodes used in the paper.

      Actions in the text: We have added a sentence describing the characteristics of the tDCS electrodes in the Materials and Methods section:

      “We used a 1x1 electrode montage with two carbon rubber electrodes (dimensions: 1.4 cm x 1.85 cm, 0.93  cm thick) inserted into Soterix HD-tES MRI electrode holders (base diameter: 25 mm; height: 10.5 mm), which are in contact with the scalp. These electrodes (2.59 cm2) are smaller than conventional tDCS sponge electrodes (typically 25 to 35 cm<sup>2</sup>).”

      (3) Could the authors clarify why they chose to stimulate the right DLPFC? Is there a specific rationale for this choice? Additionally, could the authors explain how they ensured that the stimulation targeted the DLPFC, given that the monkey cap might differ from human configurations? In many NHP studies, structural MRI is used to accurately determine electrode placement. Considering that a single channel F4 - O2 montage was used, even a small displacement of the frontal electrode laterally could result in the electric field not adequately covering the DLPFC. Could the authors provide structural MRI images and details of electrode positioning to help readers better understand targeting accuracy?

      We thank the Reviewing Editor for the thoughtful comments and recommendations. We appreciate the opportunity to further clarify our rationale for stimulating the right DLPFC and also the suggestion to provide structural MRI images and details of electrode positioning, which we think will improve the quality of the paper by showing targeting accuracy.

      First, we would like to clarify that our initial decision to stimulate the right PFC in most animals was driven by experimental constraints. Indeed, we had limited access to the left PFC in three of the four macaques, either due to the presence of cement (spreading asymmetrically from the centre of the head) used to fix the head post in awake animals or due to a scar in one of the two animals studied under anesthesia. 

      Second, we agree with the Reviewing Editor on the importance of showing details of electrode positioning and evidence of targeting accuracy across MRI sessions. Therefore, we now provide structural images showing the positions of anodal and cathodal electrodes in almost all acquired sessions: 10 sessions (out of 10) under anesthesia and 30 sessions in the awake state (out of 34 sessions, because we could not acquire structural images in four sessions). These images show that, in anesthesia experiments, the anodal electrode was positioned over the dorsal prefrontal cortex and the cathodal electrode was placed over the contralateral occipital cortex (at the level of the parieto–occipital junction) in both monkeys. In the awake state, the montage still targeted the prefrontal cortex and the occipital cortex, but with a slightly different placement. One of the electrodes was placed over the prefrontal cortex, closer to the premotor cortex than in anesthesia experiments, while the other one was placed over the occipital cortex (V1), slightly more posterior than in anesthesia experiments. These images therefore show that the placement was relatively accurate across sessions and reproducible between monkeys in each of the two arousal conditions.

      Actions in the text: We have added a supplementary file showing electrode positioning in 40 of the 44 acquired MRI sessions (Supplementary File 1). We have also added a new supplement figure (Figure 1 - figure supplement 1) showing electrode positioning in representative MRI sessions of the awake and anesthetized experiments in the main manuscript. 

      We added a few sentences referring to these figures in the Result section: 

      “Representative structural images showing electrode placements on the head of the two awake monkeys are shown in Figure 1 - figure supplement 1A). Supplementary File 1 displays the complete set of structural images, showing that the two electrodes were accurately placed over the prefrontal cortex and the occipital cortex in a reproducible manner across awake sessions.”

      Figure 1 - figure supplement 1. Structural images displaying electrode placements on the head of monkeys. A) Awake experiments. Representative sagittal, coronal and transverse MRI sections, and the corresponding skin reconstruction images showing the position of the prefrontal and the occipital electrodes on the head of monkeys J. and Y. B) Anesthesia experiments. Representative sagittal, coronal and transverse MRI sections, and the corresponding skin reconstruction images showing the position of the prefrontal and occipital electrodes over the occipital cortex on the head of monkeys R. and N.

      Supplementary File 1 (see attached file). Structural images showing the position of the tDCS electrodes on the monkey's head across sessions. Sagittal, coronal and transverse MRI sections, and corresponding skin reconstruction images showing the position of the prefrontal and occipital electrodes on the monkey's head for each MRI session (except for 4 sessions in which no anatomical scan was acquired). The two electrodes were accurately placed over the prefrontal cortex and the occipital cortex in a reproducible manner across sessions and between the two monkeys studied in each arousal state. In anesthesia experiments, the anodal electrode was placed over the dorsal prefrontal cortex, while the cathodal electrode was positioned over the parieto-occipital junction. In awake experiments, the prefrontal electrode was positioned over the dorsal prefrontal cortex/pre-motor cortex, while the occipital electrode was placed over the visual area 1. The position of the two electrodes differed slightly between the anesthetized and awake experiments due to different body positions (the prone position of the sedated monkeys prevented a more posterior position of the occipital electrode) and also due to the presence of a headpost on the head of the two monkeys in awake experiments (the monkeys we worked with in anesthesia experiments did not have an headpost).

      (4) If the authors did not analyze the data for the passive event-related auditory response, it may be helpful to remove the related sentence to avoid potential confusion for readers.

      We thank the Reviewing Editor for the comment. Although we understand the reviewer’s point of view, we decide to keep this information in the paper to inform the reader that the macaques were passively engaged in an auditory task, as this could have some influence on the brain state. In the Materials and Methods section, we already mentioned that the analysis of the cerebral responses to the auditory paradigm is not part of the paper. We have modified the sentence to make it clearer and to avoid potential confusion for readers.

      Actions in the text: We have modified the sentence referring to the passive event-related auditory response in the Materials and Methods section:

      “All fMRI data were acquired while the monkeys were engaged in a passive event-related auditory task, the local-global paradigm, which is based on local and global deviations from temporal regularities (Bekinschtein et al. 2009; Uhrig, Dehaene, and Jarraya 2014). The present paper does not address how tDCS perturbs cerebral responses to local and global deviants, which will be the subject of future work.”

      (5) Could the authors clarify what x(t) represents in the equation? Additionally, it would be better to number the equations.

      We apologize for the confusion,  x(t) represents the evolution of the BOLD signals over time. We have numbered the equations as suggested. 

      Actions in the text: We have added explanations about the notation and numerotation of equations.

      (6) It would be much better to provide schematic illustrations to explain what the authors did for analyzing fMRI data.

      We thank the Reviewing Editor for the suggestion and now provide a new figure as suggested.  

      Actions in the text: We have added a new figure (Figure 2) graphically showing the overall analysis performed. We have added a sentence about the new Figure 2 in the Results section:  “A graphical overview of the overall analysis is shown in Figure 2.” We have renumbered Figure 2 - supplement figures accordingly.

      Figure 2. fMRI Phase Coherence analysis. A) Left) Animals were scanned before, during and after PFC tDCS stimulation in the awake state (two macaques) or under deep propofol anesthesia (two macaques). Right) Example of Z-scored filtered BOLD time series for one macaque, 111 time points with a TR of 2.4 s. B) Hilbert transform of the z-scored BOLD signal of one ROI into its time-varying amplitude A(t) (red) and the real part of the phase φ (green). In blue, we recover the original z-scored BOLD signal as A(t)cos(φ). C) Example of the phase of the Hilbert transform for each brain region at one TR. D) Symmetric matrix of cosines of the phase differences between all pairs of brain regions. E) We concatenated the vectorized form of the triangular superior of the phase difference matrices for all TRs for all participants, in all the conditions for both datasets separately obtaining using the K-means algorithm, the brain patterns whose statistics are then analyzed in the different conditions.

      Results 

      (1) In Figures 3A, 5A, and 6A showing brain connectivity, it is difficult to relate the connectivity variability among the brain regions. Instead of displaying connection lines for nodes, it would be more effective if the authors highlighted significant, strong connectivity within specific brain regions using additional methods, such as bootstrapping.

      We thank the Reviewing Editor for the comment and suggestion. The connection lines indeed represent all the synchronizations above 0.5 and all the anti-synchronization below -0.5 between all pairs of brain regions. As suggested, another element we haven’t addressed is the heterogeneity in coherences between individual brain regions. We hence propose additional supplementary figures showing, for all centroids mentioned in main figures, the variance in phase-based connectivity of the distributions of coherence of all brain regions to the rest of the brain. High value would then indicate a wide range of values of coherence, while low would indicate the different coherence a region has with the rest of the brain have similar values. Thus, a brain with uniform color would indicate high homogeneity in coherence among brain regions, while sharp changes in colors would reveal that certain regions are more subject to high variance in their coherence distributions. We expect this new figure to more clearly expose the connectivity variability among the brain regions.

      Actions in the text: We have added new figures showing, for all centroids mentioned in the main figures, the variances in phase-based connectivity of the distributions of coherence  (Figure 3 - figure supplement 3;  Figure 5 - figure supplement 2; Figure 6 - figure supplement 3; Figure 7 - figure supplement 2). One of them is shown below for the only awake analysis (Figure 3 - figure supplement 3).

      Figure 3 - figure supplement 3. Variance in inter-region phase coherences of brain patterns. Low values (red and light red) indicate that the distribution of synchronizations between a brain region and the rest of the brain has relatively low variance, while high values (blue and light blue) indicate relatively high variance. Are displayed both supra (top) and subdorsal (bottom) views for each brain pattern from the main figure, ordered similarly as previously: from left (1) to right (6) as their respective SFC increases. 

      We added a few sentences about variances in phase-based connectivity of the distributions of coherence in the Result section: 

      “Further investigation of the variances in inter-region phase coherences of brain patterns, presented in Figure 3 - figure supplement 3, revealed two main findings. First, all the patterns exhibited some degree of lateral symmetry. Second, except for the pattern with the highest SFC, most patterns displayed high heterogeneity in their coherence variances and striking inter-pattern differences. These observations reflect both the segmentation of distinct functional networks across patterns and a topological organization within the patterns themselves: some regions showed a broader spectrum of synchrony with the rest of the brain, while others exhibited narrower distributions of coherence variances. For instance, unlike other brain patterns, pattern 5 was characterized by a high coherence variance in the frontal premotor areas and low variance in the occipital cortex, whereas pattern 3 had a high variance in the frontal and orbitofrontal regions. In addition, we performed the main analyses separately for the two monkeys, explored the inter-condition variability (Supplementary File 2), and computed classical measures of functional connectivity such as average FC matrices and functional graph properties (modularity, efficiency and density) of the visited FC states (Supplementary File 3).”

      “The variance in inter-regional phase coherence across brain patterns showed notably that pattern 4, in contrast to most other patterns, was characterized by a high variance in frontal premotor areas and a low variance in the occipital cortex (Figure 5 - figure supplement 2)." 

      “The variance in inter-region phase coherences of the brain patterns is displayed in Figure 6 - figure supplement 3 and showed a striking heterogeneity between the patterns. For example, pattern 5 had a low overall variance (except in the frontal cortex), while pattern 1 was the only pattern with a high variance in the occipital cortex.”

      “The variance in inter-region phase coherences of brain patterns is displayed in Figure 6 - figure supplement 2.”

      (2) For both conditions, only 2 to 3 out of 6 patterns showed significant effects of tDCS on the occurrence rate. Is it sufficient to claim the authors' conclusion?

      We thank the Reviewer Editor for the comment. We would like to point out that similar kinds of differences in the occurrence rates of specific brain patterns (particularly in patterns at the extremities of the SFC scale) have already been reported previously. Prior works in patients suffering from disorders of consciousness, in healthy humans or in non-human primates,  have shown, by using a similar method of analysis, that not all brain states are equally disturbed by loss of consciousness, even in different modalities of unconscious transitioning (Luppi et al. 2021; Z. Huang et al. 2020; Demertzi et al. 2019; Castro et al. 2023; Golkowski et al. 2019; Barttfeld et al. 2015). Therefore, yes we believe that our conclusions are still supported by the results.

      (3) If the authors want to assert that the brain state significantly influences the effects of tDCS as discussed in the manuscript, further analysis is necessary. First, it would be great to show the difference in connectivity between two consciousness conditions during the baseline (resting state) to see how resting state connectivity or structural connectivity varies. Second, demonstrating the difference in connectivity between the awake and anesthetized conditions (e.g., awake during cathodal vs. anesthetized cathodal) to show how the connectivity among the brain regions was changed by the brain state during tDCS. This would strengthen the authors' conclusion.

      We thank the reviewer for this comment. Firstly, we’d like to clarify that the structural connectivity doesn’t change from one session to another in the same animal and minimally between subjects. Secondly, we agree with the Reviewing Editor that it is informative to show the differences between the baselines and this is what we have done. The results are shown in Figures 5 and 7. Regarding the comparison of the stimulating conditions across arousal levels, the only contrast that we could make is to compare 2 mA anodal awake with 2 mA anodal anesthetized (during and post-stimulation). However, as 2 mA anodal stimulation in the awake state did not affect the connectivity much (compared to the awake baseline), the results would be almost similar to the comparison of the awake baseline with 2 mA anodal anesthetized, which is shown in Figure 7. Therefore, we believe that this would result in minimal informative gains and even more redundancy. 

      Reviewer #3 (Recommendations for the authors): 

      Introduction, par 2: HD-tDCS does not necessarily produce stronger electric fields (E-fields) in the brain. The E-field is largely montage-dependent, and some configurations such as the 4x1 configuration can actually have weaker E-fields compared to conventional tDCS designs (i.e., with two sponge electrodes) as electrodes are often closer together resulting in more current being shunted by skull, scalp, and CSF. I would consider re-phrasing this section.

      We agree with the Reviewer Editor that high-definition tDCS does not necessarily produce stronger electric fields in the brain and apologize for the confusion caused by our use of HD-tDCS to refer to high-density tDCS. To avoid any confusion, we have removed the sentence mentioning that HD-tDCS produces stronger electric fields. 

      Actions in the text: We have removed the sentence about high-definition tDCS in the Introduction (“While conventional tDCS relies on the use of relatively large rectangular pad electrodes, high-density tDCS (HD-tDCS) utilizes more compact ring electrodes, allowing for increased focality, stronger electric fields, and presumably, greater neurophysiological changes (Datta et al. 2009; Dmochowski et al. 2011)”) and the two related citations in the References section.

    1. eLife Assessment

      This interesting study presents important information on how human cytomegalovirus (HCMV) infection disrupts the activity of the TEAD1 transcription factor, leading to widespread chromatin alterations. The strength of evidence in revised manuscript is convincing, and includes additional functional data teasing out how TEAD1-driven chromatin changes might influence HCMV replication. This work will be of interest to the virology, chromosome biology and transcriptional co-regulation fields.

    2. Reviewer #1 (Public review):

      The manuscript by Sayeed et al. uses a comprehensive series of multi-omics approaches to demonstrate that late-stage human cytomegalovirus (HCMV) infection leads to a marked disruption of TEAD1 activity, a concomitant loss of TEAD1-DNA interactions, and extensive chromatin remodeling. The data are thoroughly presented and provide evidence for the role of TEAD1 in the cellular response to HCMV infection.

      However, a key question remains unresolved: is the observed disruption of TEAD1 activity a direct consequence of HCMV infection, or could it be secondary to the broader innate antiviral response? In this respect, the study would benefit from more in-depth experiments that assess the effect of TEAD1 overexpression or knockdown/deletion on HCMV replication dynamics. The new data provided by the authors in Reviewer Response Figures 1 and 2 suggest that the presence of constitutively expressed TEAD1 does not substantially impact HCMV replication and gene expression as assessed at 72 and 96 hours post-infection. However, this does not discount the fact that HCMV infection induces significant TEAD1-related chromatin changes that may impact other cellular functions.

    3. Reviewer #2 (Public review):

      Summary:

      This work uses genomic and biochemical approaches for HCMV infection in human fibroblasts and retinal epithelial cell lines, followed by comparisons and some validations using strategies such as immunoblots. Based on these analyses, they propose several mechanisms that could contribute to the HCMV-induced diseases, including closing of TEAD1-occupying domains and reduced TEAD1 transcript and protein levels, decreased YAP1 and phospho-YAP1 levels, and exclusion of TEAD1 exon 6. Some functional assays, using over-expression of TEAD1, are provided.

      Strengths:

      The genomics experiments were done in duplicates and data analyses show good technical reproducibility. Data analyses are performed to show changes at the transcript and chromatin level changes, followed by some Western blot validations.

      Weaknesses:

      For readers who are outside the field, some clarifications of the system and design would be helpful.

    1. eLife Assessment

      This paper is important in demonstrating a requirement for sulfation in organizing apical ECM (aECM) during tubulogenesis in Drosophila melanogaster. The authors identify and characterize the organization of some of the first known components of the non-chitinous aECM in the Drosophila salivary gland tube, and these findings are supported by convincing data. This study would be of interest to developmental and cell biologists.

      [Editors' note: this paper was reviewed by Review Commons.]

    2. Reviewer #1 (Public review):

      Summary:

      There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations. Importantly, the rescue experiments also demonstrated that sulfation enzymatic activity is important.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing.

      Significance:

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore, it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

      Comments on revised version:

      Overall, I am pleased with the authors' revisions in response to my original comments and those of the other reviewers

    3. Reviewer #2 (Public review):

      Summary

      This study provides new insights into organ morphogenesis using the Drosophila salivary gland (SG) as a model. The authors identify a requirement for sulfation in regulating lumen expansion, which correlates with several effects at the cellular level, including regulation of intracellular trafficking and the organization of Golgi, the aECM and the apical membrane. In addition, the authors show that the ZP proteins Dumpy (Dpy) and Pio form an aECM regulating lumen expansion. Previous reports already pointed to a role for Papss in sulfation in SG and the presence of Dpy and Pio in the SG. Now this work extends these previous analyses and provides more detailed descriptions that may be relevant to the fields of morphogenesis and cell biology (with particular focus on ECM research and tubulogenesis). This study nicely presents valuable information regarding the requirements of sulfation and the aECM in SG development.

      Strengths

      -The results supporting a role for sulfation in SG development are strong. In addition, the results supporting the involvement of Dpy and Pio in the aECM of the SG, their role in lumen expansion, and their interactions, are also strong.

      -The authors have made an excellent job in revising and clarifying the many different issues raised by the reviewers, particularly with the addition of new experiments and quantifications. I consider that the manuscript has improved considerably.

      -The authors generated a catalytically inactive Papss enzyme, which is not able to rescue the defects in Papss mutants, in contrast to wild type Papss. This result clearly indicates that the sulfation activity of Papss is required for SG development.

      Weaknesses

      -The main concern is the lack of clear connection between sulfation and the phenotypes observed at the cellular level, and, importantly, the lack of connection between sulfation and the Pio-Dpy matrix. Indeed, the mechanism/s by which sulfation affects lumen expansion are not elucidated and no targets of this modification are identified or investigated. A direct (or instructive) role for sulfation in aECM organization is not clearly supported by the results, and the connection between sulfation and Pio/Dpy roles seems correlative rather than causative. As it is presented, the mechanisms by which sulfation regulates SG lumen expansion remains elusive in this study.

      -In my opinion the authors overestimate their findings with several conclusions, as exemplified in the abstract:

      "In the absence of Papss, Pio is gradually lost in the aECM, while the Dpy-positive aECM structure is condensed and dissociates from the apical membrane, leading to a thin lumen. Mutations in dpy or pio, or in Notopleural, which encodes a matriptase that cleaves Pio to form the luminal Pio pool, result in a SG lumen with alternating bulges and constrictions, with the loss of pio leading to the loss of Dpy in the lumen. Our findings underscore the essential role of sulfation in organizing the aECM during tubular organ formation and highlight the mechanical support provided by ZP domain proteins in maintaining luminal diameter."

      The findings leading to conclude that sulfation organizes the aECM and that the absence of Papss leads to a thin lumen due to defects in Dpy/Pio are not strong. The authors certainly show that Papss is required for proper Pio and Dpy accumulation. They also show that Pio is required for Dpy accumulation, and that Pio and Dpy form an aECM required for lumen expansion. However, the absence of Pio and Dpy do not fully recapitulate Papss mutant defects (thin lumen). I wonder whether other hypothesis and models could account for the observed results. For instance, a role for Papss affecting secretion, in which case sulfation would have an indirect role in aECM organization. This study does not address the mechanical properties of Dpy in normal and mutant salivary glands.

      -Minor issues relate to the genotype/phenotype analysis. It is surprising that the authors detect only mild effects on sulfation in Papss mutants using an anti-sulfoTyr antibody, as Papss is the only Papss synthathase. Generating germ line clones (which is a feasible experiment) would have helped to prove that this minor effect is due to the contribution of maternal product. The loss of function allele used in this study seems problematic, as it produces effects in heterozygous conditions difficult to interpret. Cleaning the chromosome or using an alternative loss of function condition (another allele, RNAi, etc...) would have helped to present a more reliable explanation.

    4. Author response:

      General Statements:

      The formation of three-dimensional tubes is a fundamental process in the development of organs and aberrant tube size leads to common diseases and congenital disorders, such as polycystic kidney disease, asthma, and lung hypoplasia. The apical (luminal) extracellular matrix (ECM) plays a critical role in epithelial tube morphogenesis during organ formation, but its composition and organization remain poorly understood. Using the Drosophila embryonic salivary gland as a model, we reveal a critical role for the PAPS Synthetase (Papss), an enzyme that synthesizes the universal sulfate donor PAPS, as a critical regulator of tube lumen expansion. Additionally, we identify two zona pellucida (ZP) domain proteins, Piopio (Pio) and Dumpy (Dpy) as key apical ECM components that provide mechanical support to maintain a uniform tube diameter.

      The apical ECM has a distinct composition compared to the basal ECM, featuring a diverse array of components. Many studies of the apical ECM have focused on the role of chitin and its modification, but the composition of the non-chitinous apical ECM and its role, and how modification of the apical ECM affects organogenesis remain elusive. The main findings of this manuscript are listed below.

      (1) Through a deficiency screen targeting ECM-modifying enzymes, we identify Papss as a key enzyme regulating luminal expansion during salivary gland morphogenesis. 

      (2) Our confocal and transmission electron microscopy analyses reveal that Papss mutants exhibit a disorganized apical membrane and condensed aECM, which are at least partially linked to disruptions in Golgi structures and intracellular trafficking. Papss is also essential for cell survival and basal ECM integrity, highlighting the role of sulfation in regulating both apical and basal ECM.

      (3) Salivary gland-specific overexpression of wild-type Papss rescues all defects in Papss mutants, but the catalytically inactive mutant form does not, suggesting that defects in sulfation are the underlying cause of the phenotypes.

      (4) We identify two ZP domain proteins, Piopio (Pio) and Dumpy (Dpy), as key components of the salivary gland aECM. In the absence of Papss, Pio is progressively lost from the aECM, while the Dpy-positive aECM structure is condensed and detaches from the apical membrane, resulting in a narrowed lumen. 

      (5) Mutations in pio or dpy, or in Notopleural (Np), which encodes a matriptase that cleaves Pio, cause the salivary gland lumen to develop alternating bulges and constrictions. Additionally, loss of pio results in loss of Dpy in the salivary gland lumen, suggesting that the Dpycontaining filamentous structures of the aECM is critical for maintaining luminal diameter, with Pio playing an essential role in organizing this structure.

      (6) We further reveal that the cleavage of the ZP domain of Pio by Np is critical for the role of Pio in organizing the aECM structure.

      Overall, our findings underscore the essential role of sulfation in organizing the aECM during tubular organ formation and highlight the mechanical support provided by ZP domain proteins in maintaining tube diameter. Mammals have two isoforms of Papss, Papss1 and Papss2. Papss1 shows ubiquitous expression, with higher levels in glandular cells and salivary duct cells, suggesting a high requirement for sulfation in these cell types. Papss2 shows a more restricted expression, such as in cartilage, and mutations in Papss2 have been associated with skeletal dysplasia in humans. Our analysis of the Drosophila Papss gene, a single ortholog of human Papss1 and Papss2, reveals its multiple roles during salivary gland development. We expect that these findings will provide valuable insights into the function of these enzymes in normal development and disease in humans. Our findings on the key role of two ZP proteins, Pio and Dpy, as major components of the salivary gland aECM also provide valuable information on the organization of the non-chitinous aECM during organ formation.

      We believe that our results will be of broad interest to many cell and developmental biologists studying organogenesis and the ECM, as well as those investigating the mechanisms underlying human diseases associated with conserved mutations.

      Point-by-point description of the revisions:

      We are delighted that all three reviewers were enthusiastic about the work. Their comments and suggestions have improved the paper. The details of the changes we have made in response to each reviewer’s comments are included in italicized text below.

      Reviewer #1 (Evidence, reproducibility and clarity):

      PAPS is required for all sulfotransferase reactions in which a sulfate group is covalently attached to amino acid residues of proteins or to side chains of proteoglycans. This sulfation is crucial for properly organizing the apical extracellular matrix (aECM) and expanding the lumen in the Drosophila salivary gland. Loss of Papss potentially leads to decreased sulfation, disorganizing the aECM, and defects in lumen formation. In addition, Papss loss destabilizes the Golgi structures.

      In Papss mutants, several changes occur in the salivary gland lumen of Drosophila. The tube lumen is very thin and shows irregular apical protrusions. There is a disorganization of the apical membrane and a compaction of the apical extracellular matrix (aECM). The Golgi structures and intracellular transport are disturbed. In addition, the ZP domain proteins Piopio (Pio) and Dumpy (Dpy) lose their normal distribution in the lumen, which leads to condensation and dissociation of the Dpy-positive aECM structure from the apical membrane. This results in a thin and irregularly dilated lumen.

      (1) The authors describe various changes in the lumen in mutants, from thin lumen to irregular expansion. I would like to know the correct lumen diameter, and length, besides the total area, by which one can recognize thin and irregular.

      We have included quantification of the length and diameter of the salivary gland lumen in the stage 16 salivary glands of control, Papss mutant, and salivary gland-specific rescue embryos (Figure 1J, K). As described, Papss mutant embryos have two distinct phenotypes, one group with a thin lumen along the entire lumen and the other group with irregular lumen shapes. Therefore, we separated the two groups for quantification of lumen diameter. Additionally, we have analyzed the degree of variability for the lumen diameter to better capture the range of phenotypes observed (Figure 1K’). These quantifications enable a more precise assessment of lumen morphology, allowing readers to distinguish between thin and irregular lumen phenotypes.

      (2) The rescue is about 30%, which is not as good as expected. Maybe the wrong isoform was taken. Is it possible to find out which isoform is expressed in the salivary glands, e.g., by RNA in situ Hyb? This could then be used to analyze a more focused rescue beyond the paper.

      Thank you for this point, but we do not agree that the rescue is about 30%. In Papss mutants, about 50% of the embryos show the thin lumen phenotype whereas the other 50% show irregular lumen shapes. In the rescue embryos with a WT Papss, few embryos showed thin lumen phenotypes. About 40% of the rescue embryos showed “normal, fully expanded” lumen shapes, and the remaining 60% showed either irregular (thin+expanded) or slightly overexpanded lumen. It is not uncommon that rescue with the Gal4/UAS system results in a partial rescue because it is often not easy to achieve the balance of the proper amount of the protein with the overexpression system. 

      To address the possibility that the wrong isoform was used, we performed in situ hybridization to examine the expression of different Papss spice forms in the salivary gland. We used probes that detect subsets of splice forms: A/B/C/F/G, D/H, and E/F/H, and found that all probes showed expression in the salivary gland, with varying intensities. The original probe, which detects all splice forms, showed the strongest signals in the salivary gland compared to the new probes which detect only a subset. However, the difference in the signal intensity may be due to the longer length of the original probe (>800 bp) compared to other probes that were made with much smaller regions (~200 bp). Digoxigenin in the DIG labeling kit for mRNA detection labels the uridine nucleotide in the transcript, and the probes with weaker signals contain fewer uridines (all: 147; ABCFG, 29; D, 36; EFH, 66). We also used the Papss-PD isoform, for a salivary gland-specific rescue experiment and obtained similar results to those with Papss-PE (Figure 1I-L, Figure 4D and E). 

      Furthermore, we performed additional experiments to validate our findings. We performed a rescue experiment with a mutant form of Papss that has mutations in the critical rescues of the catalytic domains of the enzyme, which failed to rescue any phenotypes, including the thin lumen phenotype (Figure 1H, J-L), the number and intensity of WGA puncta (Figure 3I, I’), and cell death (Figure 4D, E). These results provide strong evidence that the defects observed in Papss mutants are due to the lack of sulfation.  

      (3) Crb is a transmembrane protein on the apicolateral side of the membrane. Accordingly, the apicolateral distribution can be seen in the control and the mutant. I believe there are no apparent differences here, not even in the amount of expression. However, the view of the cells (frame) shows possible differences. To be sure, a more in-depth analysis of the images is required. Confocal Z-stack images, with 3D visualization and orthogonal projections to analyze the membranes showing Crb staining together with a suitable membrane marker (e.g. SAS or Uif). This is the only way to show whether Crb is incorrectly distributed. Statistics of several papas mutants would also be desirable and not just a single representative image. When do the observed changes in Crb distribution occur in the development of the tubes, only during stage 16? Is papss only involved in the maintenance of the apical membrane? This is particularly important when considering the SJ and AJ, because the latter show no change in the mutants.

      We appreciate your suggestion more thoroughly analyze Crb distribution. We adapted a method from a previous study (Olivares-Castiñeira and Llimargas, 2017) to quantify Crb signals in the subapical region and apical free region of salivary gland cells. Using E-Cad signals as a reference, we marked the apical cell boundaries of individual cells and calculated the intensity of Crb signals in the subapical region (along the cell membrane) and in the apical free region. We focused on the expanded region of the SG lumen in Papss mutants for quantification, as the thin lumen region was challenging to analyze. This quantification is included in Figure 2D. Statistical analysis shows that Crb signals were more dispersed in SG cells in Papss mutants compared to WT.

      (4) A change in the ECM is only inferred based on the WGA localization. This is too few to make a clear statement. WGA is only an indirect marker of the cell surface and glycosylated proteins, but it does not indicate whether the ECM is altered in its composition and expression. Other important factors are missing here. In addition, only a single observation is shown, and statistics are missing.

      We understand your concern that WGA localization alone may not be sufficient to conclude changes in the ECM. However, we observed that luminal WGA signals colocalize with Dpy-YFP in the WT SG (Figure 5-figure supplement 2C), suggesting that WGA detects the aECM structure containing Dpy. The similar behavior of WGA and Dpy-YFP signals in multiple genotypes further supports this idea. In Papss mutants with a thin lumen phenotype, both WGA and Dpy-YFP signals are condensed (Figure 5E-H), and in pio mutants, both are absent from the lumen (Figure 6B, D). We analyzed WGA signals in over 25 samples of WT and Papss mutants, observing consistent phenotypes. We have included the number of samples in the text. While we acknowledge that WGA is an indirect marker, our data suggest that it is a reliable indicator of the aECM structure containing Dpy. 

      (5) Reduced WGA staining is seen in papss mutants, but this could be due to other circumstances. To be sure, a statistic with the number of dots must be shown, as well as an intensity blot on several independent samples. The images are from single confocal sections. It could be that the dots appear in a different Z-plane. Therefore, a 3D visualization of the voxels must be shown to identify and, at best, quantify the dots in the organ.

      We have quantified cytoplasmic punctate WGA signals. Using spinning disk microscopy with super-resolution technology (Olympus SpinSR10 Sora), we obtained high-resolution images of cytoplasmic punctate signals of WGA in WT, Papss mutant, and rescue SGs with the WT and mutant forms of Papss-PD. We then generated 3D reconstructed images of these signals using Imaris software (Figure 3E-H) and quantified the number and intensity of puncta. Statistical analysis of these data confirms the reduction of the number and intensity of WGA puncta in Papss mutants (Figure 3I, I’). The number of WGA puncta was restored by expressing WT Papss but not the mutant form. By using 3D visualization and quantification, we have ensured that our results are not limited to a single confocal section and account for potential variations in Z-plane localization of the dots.

      (6) A colocalization analysis (statistics) should be shown for the overlap of WGA with ManII-GFP.

      Since WGA labels multiple structures, including the nuclear envelope and ECM structures, we focused on assessing the colocalization of the cytoplasmic WGA punctate signals and ManIIGFP signals. Standard colocalization analysis methods, such as Pearson’s correlation coefficient or Mander’s overlap coefficient, would be confounded by WGA signals in other tissues. Therefore, we used a fluorescent intensity line profile to examine the spatial relationship between WGA and ManII-GFP signals in WT and Papss mutants (Figure 3L, L’). 

      (7) I do not understand how the authors describe "statistics of secretory vesicles" as an axis in Figure 3p. The TEM images do not show labeled secretory vesicles but empty structures that could be vesicles.

      Previous studies have analyzed “filled” electron-dense secretory vesicles in TEM images of SG cells (Myat and Andrew, 2002, Cell; Fox et al., 2010, J Cell Biol; Chung and Andrew, 2014, Development). Consistent with these studies, our WT TEM images show these vesicles. In contrast, Papss mutants show a mix of filled and empty structures. For quantification, we specifically counted the filled electron-dense vesicles (now Figure 3W). A clear description of our analysis is provided in the figure legend.

      (8) The quality of the presented TEM images is too low to judge any difference between control and mutants. Therefore, the supplement must present them in better detail (higher pixel number?).

      We disagree that the quality of the presented TEM images is too low. Our TEM images have sufficient resolution to reveal details of many subcellular structures, such as mitochondrial cisternae. The pdf file of the original submission may not have been high resolution. To address this concern, we have provided several original high-quality TEM images of both WT and Papss mutants at various magnifications in Figure 2-figure supplement 2. Additionally, we have included low-magnification TEM images of WT and Papss mutants in Figure 2H and I to provide a clearer view of the overall SG lumen morphology. 

      (9) Line 266: the conclusion that apical trafficking is "significantly impaired" does not hold. This implies that Papss is essential for apical trafficking, but the analyzed ECM proteins (Pio, Dumpy) are found apically enriched in the mutants, and Dumpy is even secreted. Moreover, they analyze only one marker, Sec15, and don't provide data about the quantification of the secretion of proteins.

      We agree and have revised our statement to “defective sulfation affects Golgi structures and multiple routes of intracellular trafficking”. 

      (10) DCP-1 was used to detect apoptosis in the glands to analyze acellular regions. However, the authors compare ST16 control with ST15 mutant salivary glands, which is problematic. Further, it is not commented on how many embryos were analyzed and how often they detect the dying cells in control and mutant embryos. This part must be improved.

      Thank you for the comment. We agree and have included quantification. We used stage 16 samples from WT and Papss mutants to quantify acellular regions. Since DCP-1 signals are only present at a specific stage of apoptosis, some acellular regions do not show DCP-1 signals. Therefore, we counted acellular regions regardless of DCP-1 signals. We also quantified this in rescue embryos with WT and mutant forms of Papss, which show complete rescue with WT and no rescue with the mutant form, respectively. The graph with a statistical analysis is included (Figure 4D, E).

      (11) WGA and Dumpy show similar condensed patterns within the tube lumen. The authors show that dumpy is enriched from stage 14 onwards. How is it with WGA? Does it show the same pattern from stage 14 to 16? Papss mutants can suffer from a developmental delay in organizing the ECM or lack of internalization of luminal proteins during/after tube expansion, which is the case in the trachea.

      Dpy-YFP and WGA show overlapping signals in the SG lumen throughout morphogenesis. DpyYFP is SG enriched in the lumen from stage 11, not stage 14 (Figure 5-figure supplement 2). WGA is also detected in the lumen throughout SG morphogenesis, similar to Dpy. In the original supplemental figure, only a stage 16 SG image was shown for co-localization of Dpy-YFP and WGA signals in the SG lumen. We have now included images from stage 14 and 15 in Figure 5figure supplement 2C. 

      Given that luminal Pio signals are lost at stage 16 only and that Dpy signals appear as condensed structures in the lumen of Papss mutants, it suggests that the internalization of luminal proteins is not impaired in Papss mutants. Rather, these proteins are secreted but fail to organize properly. 

      (12) Line 366. Luminal morphology is characterized by bulging and constrictions. In the trachea, bulges indicate the deformation of the apical membrane and the detachment from the aECM. I can see constrictions and the collapsed tube lumen in Fig. 6C, but I don't find the bulges of the apical membrane in pio and Np mutants. Maybe showing it more clearly and with better quality will be helpful.

      Since the bulging phenotype appears to vary from sample to sample, we have revised the description of the phenotype to “constrictions” to more accurately reflect the consistent observations. We quantified the number of constrictions along the entire lumen in pio and Np mutants and included the graph in Figure 6F.

      (13) The authors state that Papss controls luminal secretion of Pio and Dumpy, as they observe reduced luminal staining of both in papss mutants. However, the mCh-Pio and Dumpy-YFP are secreted towards the lumen. Does papss overexpression change Pio and Dumpy secretion towards the lumen, and could this be another explanation for the multiple phenotypes? 

      Thank you for the comment. To clarify, we did not observe reduced luminal staining of Pio and Dpy in Papss mutants, nor did we state that Papss controls luminal secretion of Pio and Dpy. In Papss mutants, Pio luminal signals are absent specifically at stage 16 (Figure 5H), whereas strong luminal Pio signals are present until stage 15 (Figure 5G). For Dpy-YFP, the signals are not reduced but condensed in Papss mutants from stages 14-16 (Figure 5D, H). 

      It remains unclear whether the apparent loss of Pio signals is due to a loss of Pio protein in the lumen or due to epitope masking resulting from protein aggregation or condensation. As noted in our response to Comment 11 internalization of luminal proteins seems unaffected in Papss mutants; proteins like Pio and Dpy are secreted into the lumen but fail to properly organize. Therefore, we have not tested whether Papss overexpression alters the secretion of Pio or Dpy.

      In our original submission, we incorrectly stated that uniform luminal mCh-Pio signals were unchanged in Papss mutants. Upon closer examination, we found these signals are absent in the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly. 

      Regulation of luminal ZP protein level is essential to modulate the tube expansion; therefore, Np releases Pio and Dumpy in a controlled manner during st15/16. Thus, the analysis of Pio and Dumpy in NP overexpression embryos will be critical to this manuscript to understand more about the control of luminal ZP matrix proteins.

      Thanks for the insightful suggestion. We overexpressed both the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. It is important to note that these overexpression experiments were done in the presence of the endogenous WT Np. 

      Overexpression of Np.WT led to increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. In contrast, overexpression of Np.S990A resulted in a near complete loss of luminal mCh-Pio signals. Pio antibody signals remained strong at the apical membrane but was weaker in the luminal filamentous structures compared to WT. 

      Due to the GFP tag present in the UAS-Np.S990A line, we could not reliably analyze Dpy-YFP signals because of overlapping fluorescent signals in the same channel. However, the filamentous Pio signals in the lumen co-localized with GFP signals, suggesting that these structures might also include Dpy-YFP, although this cannot be confirmed definitively. 

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I.

      (14) Minor:

      Fig. 5 C': mChe-Pio and Dumpy-YFP are mixed up at the top of the images.

      Thanks for catching this error.  It has been corrected.

      Sup. Fig7. A shows Pio in purple but B in green. Please indicate it correctly.

      It has been corrected.

      Reviewer #1 (Significance):

      In 2023, the functions of Pio, Dumpy, and Np in the tracheal tubes of Drosophila were published. The study here shows similar results, with the difference that the salivary glands do not possess chitin, but the two ZP proteins Pio and Dumpy take over its function. It is, therefore, a significant and exciting extension of the known function of the three proteins to another tube system. In addition, the authors identify papss as a new protein and show its essential function in forming the luminal matrix in the salivary glands. Considering the high degree of conservation of these proteins in other species, the results presented are crucial for future analyses and will have further implications for tubular development, including humans.

      Reviewer #2 (Evidence, reproducibility and clarity):

      Summary:

      There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation (Alcian Blue staining) and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing, with just a few things about the fusions needing clarification.

      Minor comments

      (1) Although the Dpy and Qsm fusions are published reagents, it would still be helpful to mention whether the tags are C-terminal as suggested by the nomenclature, and whether Westerns have been performed, since (as discussed for Pio) cleavage could also affect the appearance of these fusions.

      Thanks for the comment. Dpy-YFP is a knock-in line in which YFP is inserted into the middle of the dpy locus (Lye et al., 2014; the insertion site is available on Flybase). mCh-Qsm is also a knock-in line, with mCh inserted near the N-terminus of the qsm gene using phi-mediated recombination using the qsm<sup>MI07716</sup> line (Chu and Hayashi, 2021; insertion site available on Flybase). Based on this, we have updated the nomenclature from Qsm-mCh to mCh-Qsm throughout the manuscript to accurately reflect the tag position. To our knowledge, no western blot has been performed on Dpy-YFP or mCh-Qsm lines. We have mentioned this explicitly in the Discussion.  

      (2) The Dpy-YFP reagent is a non-functional fusion and therefore may not be a wholly reliable reporter of Dpy localization. There is no antibody confirmation. As other reagents are not available to my knowledge, this issue can be addressed with text acknowledgement of possible caveats.

      Thanks for raising this important point. We have added a caveat in the Discussion noting this limitation and the need for additional tools, such as an antibody or a functional fusion protein, to confirm the localization of Dpy.

      (3) TEM was done by standard chemical fixation, which is fine for viewing intracellular organelles, but high pressure freezing probably would do a better job of preserving aECM structure, which looks fairly bad in Fig. 2G WT, without evidence of the filamentous structures seen by light microscopy. Nevertheless, the images are sufficient for showing the extreme disorganization of aECM in papss mutants.

      We agree that HPF is a better method and intent to use the HPF system in future studies. We acknowledge that chemical fixation contributes to the appearance of a gap between the apical membrane and the aECM, which we did not observe in the HPF/FS method (Chung and Andrew, 2014). Despite this, the TEM images still clearly reveal that Papss mutants show a much thinner and more electron-dense aECM compared to WT (Figure 2H, I), consistent to the condensed WGA, Dpy, and Pio signals in our confocal analyses. As the reviewer mentioned, we believe that the current TEM data are sufficient to support the conclusion of severe aECM disorganization and Golgi defects in Papss mutants.

      (4) The authors may consider citing some of the work that has been done on sulfation in nematodes, e.g. as reviewed here: https://pubmed.ncbi.nlm.nih.gov/35223994/ Sulfation has been tied to multiple aspects of nematode aECM organization, though not specifically to ZP proteins.

      Thank you for the suggestion. Pioneering studies in C. elegans have highlighted the key role of sulfation in diverse developmental processes, including neuronal organization, reproductive tissue development, and phenotypic plasticity. We have now cited several works.  

      Reviewer #2 (Significance):

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

      My expertise: I am a developmental geneticist with interests in apical ECM

      Reviewer #3 (Evidence, reproducibility and clarity):

      In this work Woodward et al focus on the apical extracellular matrix (aECM) in the tubular salivary gland (SG) of Drosophila. They provide new insights into the composition of this aECM, formed by ZP proteins, in particular Pio and Dumpy. They also describe the functional requirements of PAPSS, a critical enzyme involved in sulfation, in regulating the expansion of the lumen of the SG. A detailed cellular analysis of Papss mutants indicate defects in the apical membrane, the aECM and in Golgi organization. They also find that Papss control the proper organization of the Pio-Dpy matrix in the lumen. The work is well presented and the results are consistent.

      Main comments

      - This work provides a detailed description of the defects produced by the absence of Papss. In addition, it provides many interesting observations at the cellular and tissular level. However, this work lacks a clear connection between these observations and the role of sulfation. Thus, the mechanisms underlying the phenotypes observed are elusive. Efforts directed to strengthen this connection (ideally experimentally) would greatly increase the interest and relevance of this work.

      Thank you for this thoughtful comment. To directly test whether the phenotypes observed in Papss mutants are due to the loss of sulfation activity, we generated transgenic lines expressing catalytically inactive forms of Papss, UAS-PapssK193A, F593P, in which key residues in the APS kinase and ATP sulfurylase domains are mutated. Unlike WT UAS-Papss (both the Papss-PD or Papss-PE isoforms), the catalytically inactive UAS-Papssmut failed to rescue any of the phenotypes, including the thin lumen phenotype (Figure 1I-L), altered WGA signals (Figure I, I’) and the cell death phenotype (Figure 4D, E). These findings strongly support the conclusion that the enzymatic sulfation activity of Papss is essential for the developmental processes described in this study.  

      - A main issue that arises from this work is the role of Papss at the cellular level. The results presented convincingly indicate defects in Golgi organization in Papss mutants. Therefore, the defects observed could stem from general defects in the secretion pathway rather than from specific defects on sulfation. This could even underly general/catastrophic cellular defects and lead to cell death (as observed).

      This observation has different implications. Is this effect observed in SGs also observed in other cells in the embryo? If Papss has a general role in Golgi organization this would be expected, as Papss encodes the only PAPs synthatase in Drosophila.

      Can the authors test any other mutant that specifically affect Golgi organization and investigate whether this produces a similar phenotype to that of Papss?

      Thank you for the comment. To address whether the defects observed in Papss mutants stem from general disruption of the secretory pathway due to Golgi disorganization, we examined mutants of two key Golgi components: Grasp65 and GM130. 

      In Grasp65 mutants, we observed significant defects in SG lumen morpholgy, including highly irregular SG lumen shape and multiple constrictions (100%; n=10/10). However, the lumen was not uniformly thin as in Papss mutants. In contrast, GM130 mutants–although this line was very sick and difficult to grow–showed relatively normal salivary glands morphology in the few embryos that survived to stage 16 (n=5/5). It is possible that only embryos with mild phenotypes progressed to this stages, limiting interpretation. These data have now been included in Figure 3-figure supplement 2. Overall, while Golgi disruption can affect SG morphology, the specific phenotypes seen in Papss mutants are not fully recapitulated by Grasp65 or GM130 loss. 

      - A model that conveys the different observations and that proposes a function for Papss in sulfation and Golgi organization (independent or interdependent?) would help to better present the proposed conclusions. In particular, the paper would be more informative if it proposed a mechanism or hypothesis of how sulfation affects SG lumen expansion. Is sulfation regulating a factor that in turn regulates Pio-Dpy matrix? Is it regulating Pio-Dpy directly? Is it regulating a

      product recognized by WGA?

      For instance, investigating Alcian blue or sulfotyrosine staining in pio, dpy mutants could help to understand whether Pio, Dpy are targets of sulfation.

      Thank you for the comment. We’re also very interested in learning whether the regulation of the Pio-Dpy matrix is a direct or indirect consequence of the loss of sulfation on these proteins. One possible scenario is that sulfation directly regulates the Pio-Dpy matrix by regulating protein stability through the formation of disulfide bonds between the conserved Cys residues responsible for ZP module polymerization. Additionally, the Dpy protein contains hundreds of EGF modules that are highly susceptible to O-glycosylation. Sulfation of the glycan groups attached to Dpy may be critical for its ability to form a filamentous structure. Without sulfation, the glycan groups on Dpy may not interact properly with the surrounding materials in the lumen, resulting in an aggregated and condensed structure. These possibilities are discussed in the Discussion.

      We have not analyzed sulfation levels in pio or dpy mutants because sulfation levels in mutants of single ZP domain proteins may not provide much information. A substantial number of proteoglycans, glycoproteins, and proteins (with up to 1% of all tyrosine residues in an organism’s proteins estimated to be sulfated) are modified by sulfation, so changes in sulfation levels in a single mutant may be subtle. Especially, the existing dpy mutant line is an insertion mutant of a transposable element; therefore, the sulfation sites would still remain in this mutant. 

      - Interpretation of Papss effects on Pio and Dpy would be desired. The results presented indicate loss of Pio antibody staining but normal presence of cherry-Pio. This is difficult to interpret. How are these results of Pio antibody and cherry-Pio correlating with the results in the trachea described recently (Drees et al. 2023)?

      In our original submission, we stated that the uniform luminal mCh-Pio signals were not changed in Papss mutants, but after re-analysis, we found that these signals were actually absent from the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly. 

      After cleavages by Np and furin, the Pio protein should have three fragments. The Nterminal region contains the N-terminal half of the ZP domain, and mCh-Pio signals show this fragment. The very C-terminal region should localize to the membrane as it contains the transmembrane domain. We think the middle piece, the C-terminal ZP domain, is recognized by the Pio antibody. The mCh-Pio and Pio antibody signals in the WT trachea (Drees et al., 2023) are similar to those in the SG. mCh-Pio signals are detected in the tracheal lumen as uniform signals, at the apical membrane, and in cytoplasmic puncta. Pio antibody signals are exclusively in the tracheal lumen and show more heterogenous filamentous signals. 

      In Papss mutants, the middle fragment (the C-terminal ZP domain) seems to be most affected because the Pio antibody signals are absent from the lumen. The loss of Pio antibody signals could be due to protein degradation or epitope masking caused by aECM condensation and protein misfolding. This fragment seems to be key for interacting with Dpy, since Pio antibody signals always colocalize with Dpy-YFP. The N-terminal mCh-Pio fragment does not appear to play a significant role in forming a complex with Dpy in WT (but still aggregated together in Papss mutants), and this can be tested in future studies.

      In response to Reviewer 1’s comment, we performed an additional experiment to test the role of Np in cleaving Pio to help organize the SG aECM. In this experiment, we overexpressed the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. Np.WT overexpression resulted in increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. However, overexpression of Np.S990A resulted in the absence of luminal mCh-Pio signals. Pio antibody signals were strong at the apical membrane but rather weak in the luminal filamentous structures. Since the UAS-Np.S990A line has the GFP tag, we could not reliably analyze Dpy-YFP signals due to overlapping Np.S990A.GFP signals in the same channel. However, the luminal filamentous Pio signals co-localized with GFP signals, and we assume that these overlapping signals could be Dpy-YFP signals. 

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I. 

      A proposed model of the Pio-Dpy aECM in WT, Papss, pio, and Np mutants has now been included in Figure 7.

      -  What does the WGA staining in the lumen reveal? This staining seems to be affected differently in pio and dpy mutants: in pio mutants it disappears from the lumen (as dpy-YFP does), but in dpy mutants it seems to be maintained. How do the authors interpret these findings? How does the WGA matrix relate to sulfated products (using Alcian blue or sulfotyrosine)?

      WGA binds to sialic acid and N-acetylglucosamine (GlcNAc) residues on glycoproteins and glycolipids. GlcNAc is a key component of the glycosaminoglycan (GAG) chains that are covalently attached to the core protein of a proteoglycan, which is abundant in the ECM. We think WGA detects GlcNAc residues in the components of the aECM, including Dpy as a core component, based on the following data. 1) WGA and Dpy colocalize in the lumen, both in WT (as thin filamentous structures) and Papss mutant background (as condensed rod-like structures), and 2) are absent in pio mutants. WGA signals are still present in a highly condensed form in dpy mutants. That’s probably because the dpy mutant allele (dpyov1) has an insertion of a transposable element (blood element) into intron 11 and this insertion may have caused the Dpy protein to misfold and condense. We added the information about the dpy allele to the Results section and discussed it in the Discussion.

      Minor points:

      - The morphological phenotypic analysis of Papss mutants (homozygous and transheterozygous) is a bit confusing. The general defects are higher in Papss homozygous than in transheterozygotes over a deficiency. Maybe quantifying the defects in the heterozygote embryos in the Papss mutant collection could help to figure out whether these defects relate to Papss mutation.

      We analyzed the morphology of heterozygous Papss mutant embryos. They were all normal. The data and quantifications have now been added to Figure 1-figure supplement 3. 

      - The conclusion that the apical membrane is affected in Papss mutants is not strongly supported by the results presented with the pattern of Crb (Fig 2). Further evidences should be provided. Maybe the TEM analysis could help to support this conclusion

      We quantified Crb levels in the sub-apical and medial regions of the cell and included this new quantification in Figure 2D. TEM images showed variation in the irregularity of the apical membrane, even in WT, and we could not draw a solid conclusion from these images.

      - It is difficult to understand why in Papss mutants the levels of WGA increase. Can the authors elaborate on this?

      We think that when Dpy (and many other aECM components) are condensed and aggregated into the thin, rod-like structure in Papss mutants, the sugar residues attached to them must also be concentrated and shown as increased WGA signals.   

      - The explanation about why Pio antibody and mcherry-Pio show different patterns is not clear. If the antibody recognizes the C-t region, shouldn't it be clearly found at the membrane rather than the lumen?

      The Pio protein is also cleaved by furin protease (Figure 5B). We think the Pio fragment recognized by the antibody should be a “C-terminal ZP domain”, which is a middle piece after furin + Np cleavages. 

      - The qsm information does not seem to provide any relevant information to the aECM, or sulfation.

      Since Qsm has been shown to bind to Dpy and remodel Dpy filaments in the muscle tendon (Chu and Hayashi, 2021), we believe that the different behavior of Qsm in the SG is still informative. As mentioned briefly in the Discussion, the cleaved Qsm fragment may localize differently, like Pio, and future work will need to test this. We have shortened the description of the Qsm localization in the manuscript and moved the details to the figure legend of Figure 5-figure supplement 3.

      Reviewer #3 (Significance):

      Previous reports already indicated a role for Papss in sulfation in SG (Zhu et al 2005). Now this work provides a more detailed description of the defects produced by the absence of Papss. In addition, it provides relevant data related to the nature and requirements of the aECM in the SG. Understanding the composition and requirements of aECM during organ formation is an important question. Therefore, this work may be relevant in the fields of cell biology and morphogenesis.

    1. eLife Assessment

      This valuable study combines anatomical tracing and slice physiology to examine how anterior thalamic and retrosplenial inputs converge in the presubiculum, a key region in the navigation circuit. The authors show that near-simultaneous co-activation of retrosplenial and thalamic inputs drives supra-linear presubiculum responses, revealing a potential cellular mechanism for anchoring the brain's head direction system to external visual landmarks. Their thorough experimental approach and analyses provide convincing evidence for the cellular basis of how the brain's internal compass may be anchored to the external world, laying the groundwork for future experimental testing in vivo.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors use anatomical tracing and slice physiology to investigate the integration of thalamic (ATN) and retrosplenial cortical (RSC) signals in the dorsal presubiculum (PrS). This work will be of interest to the field, as postsubiculum is thought to be a key region for integrating internal head direction representations with external landmarks. The main result is that ATN and RSC inputs drive the same L3 PrS neurons, which exhibit superlinear summation to near-coincident inputs. Moreover, this activity can induce bursting in L4 PrS neurons, which can pass the signals LMN (perhaps gated by cholinergic input).

      Strengths:

      The slice physiology experiments are carefully done. The analyses are clear and convincing, and the figures and results are well composed. Overall, these results will be a welcome addition to the field.

      Weaknesses:

      The conclusions about the circuit-level function of L3 PrS neurons sometimes outstrip the data, and their model of the integration of these inputs is unclear. I would recommend some revision of the introduction and discussion. I also had some minor comments about the experimental details and analysis.

      Specific major comments:

      (1) I found that the authors' claims sometimes outstrip their data, given that there were no in vivo recordings during behavior. For example, in the abstract that their results indicate "that layer 3 neurons can transmit a visually matched HD signal to medial entorhinal cortex", and in the conclusion they state "[...] cortical RSC projections that carry visual landmark information converge on layer 3 pyramidal cells of the dorsal presubiculum". However, they never measured the nature of the signals coming from ATN and RSC to L3 PrS (or signals sent to downstream regions). Their claim is somewhat reasonable with respect to ATN, where the majority of neurons encode HD, but neurons in RSC encode a vast array of spatial and non-spatial variables other than landmark information (e.g., head direction, egocentric boundaries, allocentric position, spatial context, task history to name a few), so making strong claims about the nature of the incoming signals is unwarranted.

      (2) Related to the first point, the authors hint at, but never explain, how coincident firing of ATN and RSC inputs would help anchor HD signals to visual landmarks. Although the lesion data (Yoder et al. 2011 and 2015) support their claims, it would be helpful if the proposed circuit mechanism was stated explicitly (a schematic of their model would be helpful in understanding the logic). For example, how do neurons integrate the "right" sets of landmarks and HD signals to ensure a stable anchoring? Moreover, it would be helpful to discuss alternative models of HD-to-landmark anchoring, including several studies that have proposed that the integration may (also?) occur in RSC (Page & Jeffrey, 2018; Yan, Burgess, Bicanski, 2021; Sit & Goard, 2023). Currently, much of the Discussion simply summarizes the results of the study, this space could be better used in mapping the findings to the existing literature on the overarching question of how HD signals are anchored to landmarks.

      Comments on revised version:

      The authors addressed all of my major points and most of my minor points in the revised submission.

    3. Reviewer #2 (Public review):

      Richevaux et al investigate how anterior thalamic (AD) and retrosplenial (RSC) inputs are integrated by single presubicular (PrS) layer 3 neurons. They show that these two inputs converge onto single PrS layer 3 principal cells. By performing dual wavelength photostimulation of these two inputs in horizontal slices, the authors show that in most layer 3 cells, these inputs summate supra-linearly. They extend the experiments by focusing on putative layer 4 PrS neurons and show that they do not receive direct anterior thalamic nor retrosplenial inputs; rather, they are (indirectly) driven to burst firing in response to strong activation of the PrS network.

      This is a valuable study, which investigates an important question - how visual landmark information (possibly mediated by retrosplenial inputs) converges and integrates with HD information (conveyed by the AD nucleus of the thalamus) within PrS circuitry. The data indicate that near-coincident activation of retrosplenial and thalamic inputs leads to non-linear integration in target layer 3 neurons, thereby offering a potential biological basis for landmark + HD binding.

      Main limitations relate to the anatomical annotation of 'putative' PrS L4 neurons, and to the presentation of retrosplenial / thalamic input modularity. Specifically, more evidence should be provided to convincingly demonstrate that the 'putative L4 neurons' of the PrS are not distal subicular neurons (as the authors' anatomy and physiology experiments seem to indicate). The modularity of thalamic and retrosplenial inputs could be better clarified in relation to the known PrS modularity.

    4. Reviewer #3 (Public review):

      Summary:

      The authors sought to determine, at the level of individual presubiculum pyramidal cells, how allocentric spatial information from retrosplenial cortex was integrated with egocentric information from the anterior thalamic nuclei. Employing a dual opsin optogenetic approach with patch clamp electrophysiology, Richevaux and colleagues found that around three quarters of layer 3 pyramidal cells in presubiculum receive monosynaptic input from both brain regions. While some interesting questions remain (e.g. the role of inhibitory interneurons in gating the information flow and through different layers of presubiculum, this paper provides valuable insights into the microcircuitry of this brain region and the role that it may play in spatial navigation.

      Strengths:

      One of the main strengths of this manuscript was that the dual opsin approach allowed the direct comparison of different inputs within an individual neuron, helping to control for what might otherwise have been an important source of variation. The experiments were well-executed and the data rigorously analysed. The conclusions were appropriate to the experimental questions and were well-supported by the results. These data will help to inform in vivo experiments aimed at understanding the contribution of different brain regions in spatial navigation and could be valuable for computational modelling.

      Weaknesses:

      Some attempts were made to gain mechanistic insights into how inhibitory neurotransmission may affect processing in presubiuclum (e.g. figure 5) but these experiments were a little underpowered and the analysis carried out could have been more comprehensively undertaken, as was done for other experiments in the manuscript.

      Comments on revised version:

      The authors have addressed all of my comments and I have nothing further to add. Well done for an interesting and valuable contribution!

    1. eLife Assessment

      This study presents a useful set of experiments to explore how a salivary protein might facilitate planthopper-transmitted rice stripe virus infection by interfering with callose deposition and if fully validated, these findings would significantly advance our understanding of tripartite virus-vector-plant interactions and could be of broad interest to plant science research. The authors provide additional data supporting protein-protein interactions and clarify the transient presence of LssaCA in plants. However, the mechanistic framework remains incomplete, particularly regarding the temporal dynamics of callose function and the sustained effect of LssaCA after virus inoculation. Evidence for the tripartite interaction's functional relevance is still limited, and several critical phenotypic and biochemical details require further substantiation.

    2. Reviewer #1 (Public review):

      In this study, the authors identified an insect salivary protein LssaCA participating viral initial infection in plant host. LssaCA directly bond to RSV nucleocapsid protein and then interacted with a rice OsTLP that possessed endo-β-1,3-glucanase activity to enhance OsTLP enzymatic activity and degrade callose caused by insects feeding. The manuscript suffers from fundamental logical issues, making its central narrative highly unconvincing.

      (1) These results suggested that LssaCA promoted RSV infection through a mechanism occurring not in insects or during early stages of viral entry in plants, but in planta after viral inoculation. As we all know that callose deposition affects the feeding of piercing-sucking insects and viral entry, this is contradictory to the results in Fig. S4 and Fig 2. It is difficult to understand callose functioned in virus reproduction in 3 days post virus inoculation. And authors also avoided to explain this mechanism.

      (2) Missing significant data. For example, the phenotypes of the transgenic plants, the RSV titers in the transgenic plants (OsTLP OE, ostlp). The staining of callose deposition were also hard to convince. The evidence about RSV NP-LssaCA-OsTLP tripartite interaction to enhance OsTLP enzymatic activity is not enough.

      (3) Figure 4a, there was the LssaCA signal in the fourth lane of pull-down data. Did MBP also bind LsssCA? The characterization of pull-down methods was rough a little bit. The method of GST pull-down and MBP pull-down should be characterized more in more detail.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this study, the authors identify an insect salivary protein participating viral initiate infection in plant host. They found a salivary LssaCA promoting RSV infection by interacting with OsTLP that could degrade callose in plants. Furthermore, RSV NP bond to LssaCA in salivary glands to form a complex, which then bond to OsTLP to promote degradation of callose.

      The story focus on tripartite virus-insect vector-plant interaction and is interesting. However, the study is too simple and poor-conducted. The conclusion is also overstated due to unsolid findings.

      We thank the reviewer for their constructive feedback. We have conducted additional experiments to strengthen our results and conclusions as detailed below:

      (1) The comparison between vector inoculation and microinjection involves multiple confounding factors that could affect the experimental results, including salivary components, RSV inoculation titers, and the precision of viral deposition. The differential outcomes could be attributed to these various factors rather than definitively demonstrating the necessity of salivary factors. Therefore, we have removed this comparison from the revised manuscript and instead focused on elucidating the specific mechanisms by which LssaCA facilitates viral infection.

      (2) We conducted new experiments to assess the function of LssaCA enzymatic activity in mediating RSV infection. Additional experiments revealed that OsTLP enzymatic activity is highly pH-dependent, with increased activity as pH decreases from 7.5 to 5.0 (Fig. 3H). However, the LssaCA-OsTLP interaction at pH 7.4 significantly enhanced OsTLP enzymatic activity without requiring pH changes. These results demonstrate that LssaCA-OsTLP protein interactions are crucial for mediating RSV infection. In contrast to pH-dependent mechanisms, our study demonstrated that LssaCA's biological function in mediating RSV infection is at least partially, if not completely, independent of its enzymatic activity. We have added these new resulted into the revised manuscript (Lines 220-227). We have also added a comprehensive discussion comparing the aphid CA mechanism described by Guo et al. (2023 doi.org/10.1073/pnas.2222040120) with our findings in the revised manuscript (Lines 350-371).

      (3) We have repeated majority of callose deposition experiments, providing clearer images (Figures 5-6). In addition to aniline blue staining, we quantified callose concentrations using a plant callose ELISA kit to provide more precise measurements (Figure 5A, I, 6A, C and S8A). We utilized RT-qPCR to measure callose synthase expression in both feeding and non-feeding areas, confirming that callose synthesis was induced specifically in feeding regions, leading to localized callose deposition (Figures 5D-G and S8B-E). For sieve plate visualization, we examined longitudinal sections, which revealed callose deposition in sieve plates during SBPH feeding and RSV infection (Figure S7).

      (4) We generated OsTLP mutant rice seedlings (ostlp) and use this mutant to directly demonstrate that LssaCA mediates callose degradation in planta through enhancement of OsTLP enzymatic activity (Lines 288-302 and Figure 6).

      (5) We produced LssaCA recombinant proteins in sf9 cells to ensure full enzymatic activity and constructed a comprehensive CA mutant protein, in which all seven residues constituting the enzymatic active center mutated (LssaCA<sup>H111D</sup>,LssaCA<sup>N139H</sup>,LssaCA<sup>H141D</sup>, LssaCA<sup>H143D</sup>, LssaCA<sup>E153H</sup>, LssaCA<sup>H166D</sup>, LssaCA<sup>T253E</sup>) (Fig. S1B). This LssaCA mutant protein demonstrated complete loss of enzymatic activity (Fig. 1C).

      Major comments:

      (1) The key problem is that how long the LssCA functioned for in rice plant. Author declared that LssCA had no effect on viral initial infection, but on infection after viral inoculation. It is unreasonable to conclude that LssCA promoted viral infection based on the data that insect inoculated plant just for 2 days, but viral titer could be increased at 14 days post-feeding. How could saliva proteins, which reached phloem 12-14 days before, induce enough TLP to degrade callose to promote virus infection? It was unbelievable.

      We appreciate your insightful comment and acknowledge that our initial description may have been unclear. We agree that salivary proteins would not present in plant tissues for two weeks post-feeding or post-injection. Our intention was to clarify that when salivary proteins enhance RSV infection, this initial enhancement leads to sustained high viral loads. We measured viral burden at 14 days post-feeding or post-injection because this is the common measurement time point when viral titers are sufficiently high for reliable detection by qRT-PCR or western blotting. We have clarified this rationale in the revised manuscript (Lines 155-157).

      To determine the actual persistence of LssaCA in plant tissues, we conducted additional experiments where insects were allowed to feed on a defined aera of rice seedlings for two days. We then monitored LssaCA protein levels at 1 and 3 days after removing the insects. Western blotting analysis revealed that LssaCA protein levels decreased post-feeding and remained detectable at 3 days post-feeding. These results are presented in Figure 2H and described in detail in Lines 184-193.

      (2) Lines 110-116 and Fig. 1, the results of viruliferous insect feeding and microinjection with purified virus could not conclude the saliva factor necessary of RSV infection, because these two tests are not in parallel and comparable. Microinjection with salivary proteins combined with purified virus is comparable with microinjection with purified virus.

      We thank the reviewer’s insightful comment. We agree that “the results of viruliferous insect feeding and microinjection with the purified virus could not conclude the saliva factor necessary of RSV infection”. However, due to the technical difficulty in collecting sufficient quantities of salivary proteins to conduct the microinjection experiment, we have removed these results from the revised manuscript.

      (3) The second problem is how many days post viruliferous insect feeding and microinjection with purified virus did author detect viral titers? in Method section, authors declared that viral titers was detected at 7-14 days post microinjection. Please demonstrate the days exactly.

      We thank the reviewer’s insightful comment. We typically measured RSV infection levels at both 7- and 14-days post-microinjection. However, since the midrib microinjection experiments have been removed from the revised manuscript, this methodology has also been removed accordingly.

      (4) The last problem is that how author made sure that the viral titers in salivary glands of insects between two experiments was equal, causing different phenotype of rice plant. If not, different viral titers in salivary glands of insects between two experiments of course caused different phenotype of rice plant.

      We thank the reviewer’s comment. When we compared the effects of LssaCA deficiency on RSV infection of rice plants, we have compared the viral titers in the insect saliva and salivary glands. The results indicated that the virus titers in both tissues have not changed by LssaCA deficiency, suggesting that the viruses inoculated into rice phloem by insects of different treatments were comparable. Please refer to the revised manuscript Figures 2D-G and Lines 161-173.

      (5) The callose deposition in phloem can be induced by insect feeding. In Fig. 5H, why was the callose deposition increased in the whole vascular bundle, but not phloem? Could the transgenic rice plant directional express protein in the phloem? In Fig. 5, why was callose deposition detected at 24 h after insect feeding? In Fig. 6A, why was callose deposition decreased in the phloem, but not all the cells of the of TLP OE plant? Also in Fig.6A and B, expression of callose synthase genes was required.

      We thank the reviewer for these insightful comments.

      (1) Figure 5. The callose deposition increased in multiple cells within the vascular bundle, including sieve tubes, parenchymatic cells, and companion cells. While callose deposition was detected in other parts of the vascular bundle, no significant differences were observed between treatments in these regions, indicating that in response to RSV infection and other treatments, altered callose deposition mainly occurred in phloem cells. Please refer to the revised 5B, 5J, 6B, and 6D.

      (2) Transgenic plant expression. The OsTLP-overexpressing transgenic rice plants express TLP proteins in various cells under the control of CaMV 35S promoter, rather than being directionally expressed in the phloem. However, since TLP proteins are secreted, they are potentially transported and concentrated in the phloem where they can degrade callose.

      (3) Figure 5. The 24-hour time point for callose deposition detection was selected based on established protocols from previous studies. According to Hao et al. (Plant Physiology 2008), callose deposition increased during the first 3 days of planthopper infestation and decreased after 4 days. Additionally, Ellinger and Voigt (Ann Bot 2014) demonstrated that callose visualization typically begins 18-24 hours after treatment, making 24 hours an optimal detection time point.

      (4) Figure 6, Phloem-specific changes. Similar to Figure 5, while callose deposition was detected in other parts of vascular bundle, significant differences between treatments were mainly observed in phloem cells, indicating that RSV infection specifically affects callose deposition in phloem tissue.

      (5) Callose synthase gene expression. We performed RT-qPCR analysis to measure the expression levels of callose synthase genes. The results indicated that OsTLP overexpression did not significantly alter the mRNA levels of these genes, regardless of RSV infection status in SBPH.

      Reviewer #2 (Public Review):

      There is increasing evidence that viruses manipulate vectors and hosts to facilitate transmission. For arthropods, saliva plays an essential role for successful feeding on a host and consequently for arthropod-borne viruses that are transmitted during arthropod feeding on new hosts. This is so because saliva constitutes the interaction interface between arthropod and host and contains many enzymes and effectors that allow feeding on a compatible host by neutralizing host defenses. Therefore, it is not surprising that viruses change saliva composition or use saliva proteins to provoke altered vector-host interactions that are favorable for virus transmission. However, detailed mechanistic analyses are scarce. Here, Zhao and coworkers study transmission of rice stripe virus (RSV) by the planthopper Laodelphax striatellus. RSV infects plants as well as the vector, accumulates in salivary glands and is injected together with saliva into a new host during vector feeding.

      The authors present evidence that a saliva-contained enzyme - carbonic anhydrase (CA) - might facilitate virus infection of rice by interfering with callose deposition, a plant defense response. In vitro pull-down experiments, yeast two hybrid assay and binding affinity assays show convincingly interaction between CA and a plant thaumatin-like protein (TLP) that degrades callose. Similar experiments show that CA and TLP interact with the RSV nuclear capsid protein NT to form a complex. Formation of the CA-TLP complex increases TLP activity by roughly 30% and integration of NT increases TLP activity further. This correlates with lower callose content in RSV-infected plants and higher virus titer. Further, silencing CA in vectors decreases virus titers in infected plants.

      (1) Interestingly, aphid CA was found to play a role in plant infection with two non-persistent non-circulative viruses, turnip mosaic virus and cucumber mosaic virus (Guo et al. 2023 doi.org/10.1073/pnas.2222040120), but the proposed mode of action is entirely different.

      We appreciate the reviewer’s insightful comment and have carefully examined the cited publication. The study by Guo et al. (2023) elucidates a distinct mechanism for aphid-mediated transmission of non-persistent, non-circulative viruses (turnip mosaic virus and cucumber mosaic virus). In their model, aphid-secreted CA-II in the plant cell apoplast leads to H<sup>+</sup> accumulation and localized acidification. This trigger enhanced vesicle trafficking as a plant defense response, inadvertently facilitating virus translocation from the endomembrane system to the apoplast.

      In contrast to these pH-dependent mechanisms, our study demonstrated that LssaCA’s biological function in mediating RSV infection is, if not completely, at least partially independent of its enzymatic activity. We performed additional experiments to reveal that OsTLP enzymatic activity is highly pH-dependent and exhibits increased enzymatic activity as pH decreases from 7.5 to 5.0 (Fig. 3H); however, the LssaCA-OsTLP interaction occurring at pH 7.4 significantly enhanced OsTLP enzymatic activity without any change in buffer pH (Fig. 3G). These results demonstrate the crucial importance of LssaCA-OsTLP protein interactions, rather than enzymatic activity alone, in mediating RSV infection.

      We have incorporated these new experimental results and added a comprehensive discussion comparing the aphid CA mechanism described by Guo et al. (2023) with our findings in the revised manuscript. Please refer to Figures 3G-H, Lines 220-227 and 350-371 for detailed information.

      (2) While this is an interesting work, there are, in my opinion, some weak points. The microinjection experiments result in much lower virus accumulation in rice than infection by vector inoculation, so their interpretation is difficult.

      We acknowledge the reviewer's concern regarding the lower virus accumulation observed in microinjection experiments compared to vector-mediated inoculation. We have removed these experiments from the revised manuscript. To address the core question raised by these experiments, we have conducted new experiments that directly demonstrate the importance of LssaCA-OsTLP protein-protein interactions in mediating RSV infection. These results demonstrate the crucial importance of LssaCA-OsTLP protein interactions, rather than enzymatic activity alone, in mediating RSV infection. Additionally, we have incorporated a comprehensive discussion examining carbonic anhydrase activity, pH homeostasis, and viral infection. Please refer to the detailed experimental results and discussion in the sections mentioned in our previous response (Figures 3G-H, Lines 220-227 and 350-371).

      (3) Also, the effect of injected recombinant CA protein might fade over time because of degradation or dilution.

      We appreciate the reviewer’s insightful comment. This is indeed a valid concern that could affect the interpretation of microinjection results. To address the temporal dynamics of CA protein presence in planta, we conducted time-course experiments to monitor the retention of naturally SBPH-secreted CA proteins in rice plants. Our analysis at 1- and 3- days post-feeding (dpf) revealed that CA protein levels decreased progressively following SBPH feeding, but could also been detected at 3dpf (Fig. 2H). Please refer to Figures 2H and lines 184-193 for detailed information.

      (4) The authors claim that enzymatic activity of CA is not required for its proviral activity. However, this is difficult to assess because all CA mutants used for the corresponding experiments possess residual activity.

      We appreciate the reviewer’s insightful comment. We constructed a comprehensive CA mutant protein in which all seven residues constituting the enzymatic active center mutated (LssaCA<sup>H111D</sup>, LssaCA<sup>N139H</sup>, LssaCA<sup>H141D</sup>, LssaCA<sup>H143D</sup>, LssaCA<sup>E153H</sup>, LssaCA<sup>H166D</sup>, LssaCA<sup>T253E</sup>) (Fig. S1B). This LssaCA mutant protein demonstrated complete loss of enzymatic activity (Fig. 1C). However, since we have removed the recombinant CA protein microinjection experiments from the revised manuscript, we lack sufficient direct evidence to definitively demonstrate that CA enzymatic activity is dispensable for its proviral function. To address the core question raised by these experiments, we have conducted new experiments that provide direct evidence for the importance of LssaCA-OsTLP protein-protein interactions in mediating RSV infection. Additionally, we have incorporated a comprehensive discussion examining carbonic anhydrase activity, pH homeostasis, and viral infection. Please refer to the detailed experimental results and discussion in the sections mentioned in our previous response (Figures 3G-H, Lines 220-227 and 350-371).

      (5) It remains also unclear whether viral infection deregulates CA expression in planthoppers and TLP expression in plants. However, increased CA and TLP levels could alone contribute to reduced callose deposition.

      We have compared LssaCA mRNA levels in RSV-free and RSV-infected L.striatellus salivary glands, which indicated that RSV infection does not significantly affect LssaCA expression (Figure 1J). By using RSV-free and RSV-infected L.striatellus to feed on rice seedlings, we clarified that RSV infection does not affect TLP expression in plants (Figure 5H).

      Reviewer #1: (Recommendations For The Authors):

      Other comments:

      (1) Most data proving viral infection and LssaCA expression were derived from qPCR assays. Western blot data are strongly required to prove the change at the protein level.

      We agree that western blot data are required to prove the change at the protein level. In the revised manuscript, we have added western-blotting results (Figures 1F, 1I, 2C, 2J, and S6).

      (2) Line 145, data that LssaCA was significantly downregulated should be shown.

      Thank you and the data has been added to the revised manuscript. Please refer to Line 165 and Figure 2D.

      (3) Lines 159-161, how did authors assure that the dose of recombinant LssCA was closed to the release level of insect feeding, but not was excessive? How did author exclude the possibility of upregulated RSV titer caused by excessive recombinant LssCA?

      We appreciate this important concern regarding dosage controls. While microinjection of recombinant proteins typically yields viral infection levels significantly lower than those achieved through natural insect feeding, higher protein concentrations are often required to achieve high viral infection levels. In this experiment, we compared RSV infection levels following microinjection of BSA+RSV versus LssaCA+RSV, with the expectation that any observed upregulation in RSV titer would be specifically attributable to recombinant LssaCA rather than excessive protein dosing. However, given the low RSV infection levels observed with viral microinjection, we have removed their corresponding results from the revised manuscript.

      (4) Lines 124-125, recombinantly expressed LssaCA protein should be underlined, but not the LssaCA protein itself.

      We have clearly distinguished recombinantly expressed LssaCA from endogenous LssaCA protein throughout the manuscript, ensuring that all references to recombinant proteins are properly labeled as such.

      (5) LssaCA expression in salivary glands of viruliferous and nonviruliferous insects is required. LssaCA accumulation in rice plant exposed to viruliferous and nonviruliferous insects is also required.

      We have measured LssaCA mRNA levels in salivary glands of viruliferous and nonviruliferous insects (Figure 1J), and protein levels in rice plant exposed to viruliferous and nonviruliferous insects (Figure 1I).

      (6) Fig. 4G, the enzymatic activities of OsTLP were too low compared with that in Fig. 4E and Fig. 7E. Why did the enzymatic activities of the same protein show so obvious difference?

      We apologize for the error in Fig. 4G. The original data presented relative fold changes between OsTLP+BSA and OsTLP+LssaCA treatment, with OsTLP+BSA normalized to 1.0 and OsTLP+LssaCA values expressed as fold changes relative to this baseline. However, the Y-axis was incorrectly labeled as “β-1,3-glucanase (units mg<sup>-1</sup>)”, which suggested absolute enzymatic activity values. We have now corrected the figure (revised Figure 3G) to display the actual absolute enzymatic activity values with the appropriate Y-axis label “β-1,3-glucanase (units mg<sup>-1</sup>)”.

      (7) Fig. 7E, was the LssaCA + NP and LssaCA + GST quantified?

      Yes, all proteins were quantified, and enzymatic activity values were calculated and expressed as units per milligram of proteins (units mg<sup>-1</sup>).

      Minor comments:

      (1) The keywords: In fact, the LssaCA functioned during initial viral infection in plant, but not viral horizontal transmission.

      We appreciate the reviewer’s insightful comment. We have revised the manuscript title to “Rice stripe virus utilizes an Laodelphax striatellus salivary carbonic anhydrase to facilitate plant infection by direct molecular interaction” and changed the keyword from “viral horizontal transmission” to “viral infection of plant”.

      (2) Fig. 2A, how about testes? Was this data derived from female insects? Fig. 2C, is the saliva collected from nonviruliferous insects? Fig. 2E, what is the control?

      We appreciate the reviewer’s insightful comments.

      (1) Fig. 2A: The data present mean and SD calculated from three independent experiments, with 5 tissue samples per experiment. Since 3<sup>rd</sup> instar nymphs were used for feeding experiments in this study, we also used 3<sup>rd</sup> instar RSV-free nymphs to measure gene expression in guts, salivary glands and fat bodies. R-body represents the remaining body after removing these tissues. Female insects were used to measure gene expression in ovaries, and gene expression in testes was also added. We have added this necessary information to the revised manuscript (please refer to new Figure 1F and Lines 402-403).

      (2) Fig. 2C: Yes, saliva was collected from nonviruliferous insects.

      (3) Fig. 2E: The control consisted of 100 mM PBS, as described in the experimental section (Lines 643-644): “A blank control consisted of 2 mL of 100 mM PBS (pH 7.0) mixed with 1 mL of 3 mM p-NPA.” In the revised manuscript, we recombinantly expressed LssaCA and its mutant proteins in both sf9 cells and E.coli. Therefore, we have used the mutant proteins as controls to demonstrate specific enzymatic activity. Please refer to Figure 1C, Lines 115-122 and 621-635 for detailed information.

      (3) Some figure labeling appeared unprofessional. For example, "a-RSV", "loading" in Fig. 1, "W-saliva", "G-saliva" in Fig. 2, and so on, the related explanations were absent.

      We appreciate the reviewer’s insightful comments. We have thoroughly reviewed all figures to ensure professional labels. Specifically, we have:

      (1) Used proper protein names to label western blots and clearly explained the antibodies used for protein detection.

      (2) Provided comprehensive explanations for all abbreviations used in figures within the corresponding figure legends.

      (3) Ensured consistent and clear labeling throughout all figures.

      Please refer to the revised Figures 1-3 for these corrections.

      (4) Lines 83-84, please cite references on callose preventing viral movement. I do not think the present references were relevant.

      We have added a more relevant reference (Yue et al., 2022, Line 82), which revealed that palmitoylated γb promotes virus cell-to-cell movement by interacting with NbREM1 to inhibit callose deposition at plasmodesmata.

      (5) The background of transgenic plants of OsTLP OE should be characterized. And the overexpression of OsTLP should be shown. Which generation of OsTLP OE did authors use?

      The background of transgenic plants of OsTLP OE and its generation used have been shown in the “Materials and methods” section (Line 782-786) and has been mentioned in the main text (Line 214). T<sup>2</sup> lines have been selected for further analysis (Line 789).

      (6) Fig. 5A, the blank, which derived from plants without exposure to insect, was absent.

      We appreciate the reviewer’s insightful comments. We have added the non- fed control in the revised Figure 5A-C.

      (7) Fig. 7A, the nonviruruliferous insects were required to serve as a control.

      Immunofluorescence localization of RSV and LssaCA in uninfected L. striatellus salivary glands have been added to the revised manuscript (Figure S2).

      (8) The manuscript needs English language edit.

      The manuscript has undergone comprehensive English language editing to improve clarity, grammar, and overall readability.

      Reviewer #2 (Recommendations For The Authors):

      (1) The first experiment compares vector inoculation vs microinjection of RSV in tissue. I am not sure that your claim (saliva factors are necessary for inoculation) holds, because the vector injects RSV directly into the phloem, whereas microinjection is less precise and you cannot control where exactly the virus is deposed. However, virus deposited in other tissues than the phloem might not replicate, and indeed you observe, compared to natural vector inoculation, highly reduced virus titers.

      We appreciate the reviewer’s insightful comments. We agree that the comparison between vector inoculation and microinjection involves multiple confounding factors that could affect the experimental results, including salivary components, RSV inoculation titers, and the precision of viral deposition. As the reviewer correctly points out, the differential outcomes could be attributed to these various factors rather than definitively demonstrating the necessity of salivary factors. Therefore, we have removed this comparison from the revised manuscript and instead focused on elucidating the specific mechanisms by which LssaCA facilitates viral infection.

      (2) Next the authors show that a carbonic anhydrase (CA) that they previously detected in saliva is functional and secreted into rice. I assume this is done with non-infected insects, but I did not find the information. Silencing the CA reduces virus titers in inoculated plants at 14 dpi, but not in infected planthoppers. At 1 dpi, there is no difference in RSV titer in plants inoculated with CA silenced planthoppers or control hoppers. To see a direct effect of CA in virus infection, purified virus is injected together with a control protein or recombinant CA into plants. At 14 dpi, there is about double as much virus in the CA-injected plants, but compared to authentic SBPH inoculation, titers are 20,000 times lower. Actually, I believe it is not very likely that the recombinant CA is active or present so long after initial injection.

      We appreciate the reviewer’s insightful comments.

      (1) Our previous study identified the CA proteins from RSV-free insects. We have added this information to the revised manuscript (Line 110).

      (2) We acknowledge the reviewer's concern regarding the lower virus accumulation observed in microinjection experiments compared to vector-mediated inoculation. We have removed these experiments from the revised manuscript and instead focused on elucidating the specific mechanisms by which LssaCA facilitates viral infection.

      (3) We didn’t intend to suggest that LssaCA proteins presented for 14 days post-injection. We measured viral titers at 14 days post-feeding or post-injection because this is the common measurement time point when viral titers are sufficiently high for reliable detection by RT-qPCR or western blotting. We have clarified this rationale in the revised manuscript (Lines 155-157). To determine the actual persistence of LssaCA in plant tissues, we monitored LssaCA protein levels at 1 and 3 dpf. Western blotting analysis revealed that LssaCA protein levels decreased post-feeding and remained detectable at 3 dpf. These results are presented in Figure 2H and described in detail in Lines 184-193.

      (3) Then the authors want to know whether CA activity is required for its proviral action and single amino acid mutants covering the putative active CA site are created. The recombinant mutant proteins have 30-70 % reduced activity, but none of them has zero activity. When microinjected together with RSV into plants, RSV replication is similar as injection with wild type CA. Since no knock-out mutant with zero activity is used, it is difficult to judge whether CA activity is unimportant for viral replication, as claim the authors.

      We appreciate the reviewer’s insightful comment. We constructed a comprehensive CA mutant protein in which all seven residues constituting the enzymatic active center mutated (LssaCA<sup>H111D</sup>, LssaCA<sup>N139H</sup>, LssaCA<sup>H141D</sup>, LssaCA<sup>H143D</sup>, LssaCA<sup>E153H</sup>, LssaCA<sup>H166D</sup>, LssaCA<sup>T253E</sup>) (Fig. S1B). This LssaCA mutant protein demonstrated complete loss of enzymatic activity (Fig. 1C). However, since we have removed the recombinant CA proteins microinjection experiments from the revised manuscript, we lack sufficient direct evidence to definitively demonstrate that CA enzymatic activity is dispensable for its proviral function. To address the core question raised by these experiments, we have conducted new experiments that provide direct evidence for the importance of LssaCA-OsTLP protein-protein interactions in mediating RSV infection. Additionally, we have incorporated a comprehensive discussion examining carbonic anhydrase activity, pH homeostasis, and viral infection. Please refer to the detailed experimental results and discussion in the sections mentioned in our previous response (Figures 3G-H, Lines 220-227 and 350-371).

      (4) Next a yeast two hybrid assay reveals interaction with a thaumatin-like rice protein (TLP). It would be nice to know whether you detected other interacting proteins as well. The interaction is confirmed by pulldown and binding affinity assay using recombinant proteins. The kD is in favor of a rather weak interaction between the two proteins.

      We have added a list of rice proteins that potentially interact with LssaCA (Table S1) and have measured interactions with additional proteins (unpublished data). Despite the relatively weak binding affinity, the functional significance of the LssaCA-OsTLP interaction in enhancing TLP enzymatic activity is substantial.

      (5) Then the glucanase activity of TLP is measured using recombinant TLP-MBP or in vivo expressed TLP. It is not clear to me which TLP is used in Fig. 4G (plant-expressed or bacteria-expressed). If it is plant-expressed TLP, why is its basic activity 10 times lower than in Fig. 4F?

      Fig. 4G is the Fig. 3G in the revised manuscript. A E. coli-expressed TLP protein has been used. We apologize for the error in our original Fig. 4G. The original data presented relative fold changes between OsTLP+BSA and OsTLP+LssaCA treatment, with OsTLP+BSA normalized to 1.0 and OsTLP+LssaCA values expressed as fold changes relative to this baseline. However, the Y-axis was incorrectly labeled as “β-1,3-glucanase (units mg<sup>-1</sup>)”, which suggested absolute enzymatic activity values. We have now corrected the figure to display the actual absolute enzymatic activity values with the appropriate Y-axis label “β-1,3-glucanase (units mg<sup>-1</sup>)”.

      (6) There is also a discrepancy in the construction of the transgenic rice plants: did you use TLP without signal peptide or full length TLP? If you used TLP without signal peptide, you should explain why, because the wild type TLP contains a signal peptide.

      We cloned the full-length OsTLP gene including the signal peptide sequence (Line 782 in the revised manuscript).

      (7) The authors find that CA increases glucanase activity of TLP. Next the authors test callose deposition by aniline blue staining. Feeding activity of RSV-infected planthoppers induces more callose deposition than does feeding by uninfected insects. In the image (Fig. 5A) I see blue stain all over the cell walls of xylem and phloem cells. Is this what the authors expect? I would have expected rather a patchy pattern of callose deposition on cell walls. Concerning sieve plates, I cannot discern any in the image; they are easier to visualize in longitudinal sections than in transversal section as presented here.

      We appreciate the reviewer’s insightful comment.

      (1) Callose deposition pattern: While callose deposition was detected in other parts of the vascular bundle, significant differences between treatments were mainly observed in phloem cells, indicating that phloem-specific callose deposition is the primary response to RSV infection and SBPH feeding (Figures 5B and 5J).

      (2) Sieve plate visualization: We have examined longitudinal sections to visualize sieve plates, which revealed callose deposition in sieve plates during SBPH feeding and RSV infection (Figure S7).

      (3) Quantitative analysis: In addition to aniline blue staining, we quantified callose concentrations using a plant callose ELISA kit to provide more precise measurements (Figure 5A, 5I and S8A).

      (4) Gene expression analysis: We utilized RT-qPCR to measure callose synthase expression in both feeding and non-feeding areas, confirming that callose synthesis was induced specifically in feeding regions, leading to localized callose deposition (Figures 5D-H).

      These experimental results collectively demonstrate that RSV infection induces enhanced callose synthesis and deposition, with this response occurring primarily in phloem cells, including sieve plates, within feeding sites and their immediate vicinity.

      (8) I do not quite understand how you quantified callose deposition (arbitrary areas?) with ImageJ. Please indicate in detail the analysis method.

      We have added more detailed information for the methods to quantify callose deposition (Lines 673-678).

      (9) More callose content is also observed by a callose ELISA assay of tissue extracts and supported by increased expression of glucanase synthase genes. Did you look whether expression of TLP is changed by feeding activity and RSV infection? Silencing CA in planthoppers increases callose deposition, which is inline with the observation that CA increases TLP activity.

      We measured OsTLP expression following feeding by RSV-free or RSV-infected SBPH and found that gene expression was not significantly affected by either insect feeding or RSV infection. These results have been added to the revised manuscript (Lines 275-277 and Figure 5H).

      (10) Next, callose is measured after feeding of RSV-infected insects on wild type or TLP-overexpressing rice. Less callose deposition (after 2 days) and more virus (after 14 days) is observed in TLP overexpressors. I am missing a control in this experiment, that is feeding of uninfected insects on wild type or TLP overexpressing rice, where I would expect intermediate callose levels.

      We appreciate the reviewer’s insightful comment and fully agree with the prediction. In the revised manuscript, we have constructed ostlp mutant plants and conducted additional experiments to further clarify how callose deposition is regulated by insect feeding, RSV infection, LssaCA levels, and OsTLP expression. Specifically: 

      (1) Both SBPH feeding and RSV infection induce callose deposition, with RSV-infected insect feeding resulting in significantly higher callose levels compared to RSV-free insect feeding (Fig. 5A-C).

      (2) LssaCA enhances OsTLP enzymatic activity, thereby promoting callose degradation (Fig. 5I-K).

      (3) OsTLP-overexpressing (OE) plants exhibit lower callose levels than wild-type (WT) plants, while ostlp mutant plants show higher callose levels than WT (Fig. 6A-B).

      (4) In ostlp knockout plants, LssaCA no longer affects callose levels, indicating that OsTLP is required for LssaCA-mediated regulation of callose (Fig. 6C-D).

      These additional data address the reviewer’s concern and support the conclusion that OsTLP plays a central role in modulating callose levels in response to RSV infection and insect feeding.

      (11) Next the authors test for interaction between virions and CA. Immunofluorescence shows that RSV and CA colocalize in salivary glands; in my opinion, there is partial and not complete colocalization (Fig. 7A).

      We agree with the reviewer’s observation. CA is primarily produced in the small lobules of the principal salivary glands, while RSV infects nearly all parts of the salivary glands. In regions where RSV and CA colocalize within the principal glands, the CA signal appears sharper than that of RSV, likely due to the relatively higher abundance of CA compared to RSV in these areas. This may explain the partial, rather than complete, colocalization observed in our original Figure 7A. In the revised manuscript, please refer to Figure 1A.

      (12) Pulldown experiments with recombinant RSV NP capsid protein and CA confirm interaction, binding affinity assays indicate rather weak interaction between CA and NP. Likewise in pull-down experiments, interaction between NP, CA and TLP is shown. Finally, in vitro activity assays show that activity of preformed TLP-CA complexes can be increased by adding NP; activity of TLP alone is not shown.

      We performed two independent experiments to confirm the influence on TLP enzymatic activity by LssaCA or by the LssaCA-RSV NP complex. In the first experiment, we compared the enhancement of TLP activity by LssaCA using TLP alone as a control (Figure 3G). In the second experiment examining the LssaCA-RSV NP complex effect on TLP activity, we used the LssaCA-TLP combination as the baseline control rather than TLP alone (Figure 4B), since we had already established the LssaCA enhancement effect in the previous experiment.

      (13) For all microscopic acquisitions, you should indicate the exact acquisition conditions, especially excitation and emission filter settings, kind of camera used and objectives. Use of inadequate filters or of a black & white camera could for example be the reason why you observe a homogeneous cell wall label in the aniline blue staining assays. Counterstaining cell walls with propidium iodide might help distinguish between cell wall and callose label.

      Thank you for your insightful suggestions. We have added the detailed information to the revised manuscript (Lines 656-659 and 673-678).

      (14) You should provide information whether CA is deregulated in infected planthoppers, as this could also modify its mode of action.\

      We have compared LssaCA mRNA levels in RSV-free and RSV-infected L.striatellus salivary glands. The results indicated that RSV infection does not significantly affect LssaCA expression (Figure 1J).

      (15) You should show purity of the proteins used for affinity binding measurements.

      We have included SDS-PAGE results of purified proteins in the revised manuscript (Figure S3).

      (16) L 39: Not all arboviruses are inoculated into the phloem.

      Thank you. We have revised this description (Lines 40, 73, 95 and 97).

      (17) L 76: Watery saliva is also injected in epidermis and mesophyll cells.

      Thank you. We have revised this description (Line 73).

      (18) L 79: What do you mean by "avirulent gene"?

      Thank you for your valuable comments. We have revised this description as “certain salivary effectors may be recognized by plant resistance proteins to induce effector-triggered immunity”. Please refer to Lines 76-77 for detail.

      (19) L 128: Please add delivery method.

      Thank you. We have added the delivery methods (Line 134).

      (20) L 195: Please explain "MST".

      Explained (Line 124). Thank you.

      (21) L 203: Please add the plant species overexpressing TLP.

      Added (Line 214). Thank you.

      (22) L 213: Callose deposition has also a role against phloem-feeding insects.

      We appreciate the reviewer’s insight comment. We have added this information to the revised manuscript (Line 252).

      (23) L 626: What is a "mutein"?

      "mutein" is an abbreviation for mutant proteins. Since the recombinant protein microinjection experiments have been removed from the revised manuscript, the term “mutein” has also been removed. For all other instances, we now use the full term “mutant proteins”.

      (24) Fig. 1E: what is "loading"? You should rather show here and elsewhere (or add to supplement) complete protein gels and Western blot membranes and not only bands of interest.

      Thank you for your valuable suggestion. Although Figure 1E has been removed from the revised manuscript, we have carefully reviewed all figures to ensure that the term “loading” has been replaced with the specific protein names where appropriate.

      (25) Fig. 2C: Please indicate which is the blot and which is the silver stained gel and add mass markers in kDa to the silver stained gel.

      Thank you for your suggestion. We have revised figure to include labeled silver-stained gels with indicated molecular weight markers (Figure 1H in the revised manuscript).

    1. eLife Assessment

      This paper presents an analysis of demography and selection from whole-genome sequencing of 40 Faroese, with data that are useful beyond the study region. Much of the analysis is solid, but a more fine-scale analysis of demographic history could have led to more interesting findings. In addition, there are concerns about the selection analyses, given the special nature of the studied population and sampling scheme. Finally, lack of data availability limits the broader value of the paper.

    2. Reviewer #1 (Public review):

      Summary:

      The paper reports an analysis of whole-genome sequence data from 40 Faroese. The authors investigate aspects of demographic history and natural selection in this population. The key findings are that the Faroese (as expected) have a small population size and are broadly of Northwest European ancestry. Accordingly, selection signatures are largely shared with other Northwest European populations, although the authors identify signals that may be specific to the Faroes. Finally, they identify a few predicted deleterious coding variants that may be enriched in the Faroes.

      Strengths:

      The data are appropriately quality-controlled and appear to be of high quality. Some aspects of the Faroese population history are characterized, in particular, by the relatively (compared to other European populations) high proportion of long runs of homozygosity, which may be relevant for disease mapping of recessive variants. The selection analysis is presented reasonably, although as the authors point out, many aspects, for example differences in iHS, can reflect differences in demographic history or population-specific drift and thus can't reliably be interpreted in terms of differences in the strength of selection.

      Weaknesses:

      The main limitations of the paper are as follows:

      (1) The data are not available. I appreciate that (even de-identified) genotype data cannot be shared; however, that does substantially reduce the value of the paper. Minimally, I think the authors should share summary statistics for the selection scans, in line with the standard of the field.

      (2) The insight into the population history of the Faroes is limited, relative to what is already known (i.e., they were settled around 1200 years ago, by people with a mixture of Scandinavian and British ancestry, have a small effective population size, and any admixture since then comes from substantially similar populations). It's obvious, for example, that the Faroese population has a smaller bottleneck than, say, GBR.

      More sophisticated analyses (for example, ARG-based methods, or IBD or rare variant sharing) would be able to reveal more detailed and fine-scale information about the history of the populations that is not already known. PCA, ADMIXTURE, and HaplotNet analysis are broad summaries, but the interesting questions here would be more specific to the Faroes, for example, what are the proportions of Scandinavian vs Celtic ancestry? What is the date and extent of sex bias (as suggested by the uniparental data) in this admixture? I think that it is a bit of a missed opportunity not to address these questions.

      (3) I don't really understand the rationale for looking at HLA-B allele frequencies. The authors write that "ankylosing spondylitis (AS) may be at a higher prevalence in the Faroe Islands (unpublished data), however, this has not been confirmed by follow-up epidemiological studies". So there's no evidence (certainly no published evidence) that AS is more prevalent, and hence nothing to explain with the HLA allele frequencies?

    3. Reviewer #2 (Public review):

      In this paper, Hamid et al present 40 genomes from the Faroe Islands. They use these data (a pilot study for an anticipated larger-scale sequencing effort) to discuss the population genetic diversity and history of the sample, and the Faroes population. I think this is an overall solid paper; it is overall well-polished and well-written. It is somewhat descriptive (as might be expected for an explorative pilot study), but does make good use of the data.

      The data processing and annotation follows a state-of-the-art protocol, and at least I could not find any evidence in the results that would pinpoint towards bioinformatic issues having substantially biased some of the results, and at least preliminary results lead to the identification of some candidate disease alleles, showing that small, isolated cohorts can be an efficient way to find populations with locally common, but globally rare disease alleles.

      I also enjoyed the population structure analysis in the context of ancient samples, which gives some context to the genetic ancestry of Faroese, although it would have been nice if that could have been quantified, and it is unfortunate that the sampling scheme effectively precludes within-Faroes analyses.

      I am unfortunately quite critical of the selection analysis, both on a statistical level and, more importantly, I do not believe it measures what the authors think it does.

      Major comments:

      (1) Admixture timing/genomic scaling/localization:<br /> As the authors lay out, the Faroes were likely colonized in the last 1,000-1,500 years, i.e., 40-60 generations ago. That means most genomic processes that have happened on the Faroese should have signatures that are on the order of ~1-2cM, whereas more local patterns likely indicate genetic history predating the colonization of the islands. Yet, the paper seems to be oblivious to this (to me) fascinating and somewhat unique premise. Maybe this thought is wrong, but I think the authors miss a chance here to explain why the reader should care beyond the fact that the small populations might have high-frequency risk alleles and the Faroes are intrinsically interesting, but more importantly, it also makes me think it leads to some misinterpretations in the selection analysis

      (2) ROH:<br /> Would the sampling scheme impact ROH? How would it deal with individuals with known parental coancestry? As an example of what I mean by my previous comment, 1MB is short enough in that I would expect most/many 1MB ROH-tracts to come from pedigree loops predating the colonization of the Faroes. (i.e, I am actually quite surprised that there isn't much more long ROH, which makes me wonder if that would be impacted by the sampling scheme).

      (3) Selection scan:

      We are talking about a bottlenecked population that is recently admixed (Faroese), compared to a population (GBR) putatively more closely related to one of its sources. My guess would be that selection in such a scenario would be possibly very hard to detect, and even then, selection signals might not differentiate selection in Faroese vs. GBR, but rather selection/allele frequency differences between different source populations. I think it would be good to spell out why XP-EHH/iHS measures selection at the correct time scale, and how/if these statistics are expected to behave differently in an admixed population.

      (4) Similarly, for the discussion of LCT, I am not convinced that the haplotypes depicted here are on the right scale to reflect processes happening on the Faroes. Given the admixture/population history, it at the very least should be discussed in the context of whether the 13910 allele frequency on the Faroes is at odds with what would be expected based on the admixture sources.

      (5) I am lacking information to evaluate the procedure for turning the outliers into p-values. Both iHS and XP-EHH are ratio statistics, meaning they might be heavy-tailed if one is not careful, and the central limit theorem may not apply. It would be much easier (and probably sufficient for the points being made here) to reframe this analysis in terms of empirical outliers.

      (6) Oldest individual predating gene flow: It seems impossible to make any statements based on a single individual. Why is it implausible that this person (or their parents), e.g., moved to the Faroes within their lifetime and died there?

    1. eLife Assessment

      This valuable study identifies and characterizes probe binding errors in a widely used commercial platform for visualizing gene activity in tissue samples, discovering that at least 21 out of 280 genes in a human breast cancer panel are not accurately detected. The authors provide convincing evidence for their findings validated against multiple independent sequencing technologies and reference datasets. Given the broad adoption of this spatial gene detection platform in biomedical research, this work provides an essential quality control resource that will improve data interpretation across numerous studies.

    2. Reviewer #1 (Public review):

      Summary:

      In the manuscript, Hallinan et al. describe off-target probe binding in the 10x Genomics Xenium platform, which results in invalid profiling of some genes in a spatial context. This was validated by comparing the Xenium results with Visium and scRNA-seq using human breast tissue, which are comprehensive and convincing. The authors also provide a dedicated tool to predict such off-target binding, Off-target Probe Tracker (OPT), which could be widely adopted in the field by researchers who are interested in validating the previously published results.

      Strengths:

      (1) This is the first study to suggest off-target binding of probes in the gene panels of the Xenium platform, which could be easily overlooked.

      (2) The results were rigorously validated with two different methods.

      (3) This paper will be a helpful resource for properly interpreting the results of previously published papers based on the Xenium platform (the signals could be mixed).

      Weaknesses:

      (1) The results were only tested with one tissue (human breast). However, this is not a major weakness, as one can easily extrapolate that this should be the case for any other tissue.

      (2) Once the 10X Genomics corrects their gene panels according to this finding, the tool (OPT) will not be useful for most people. Still, it can be used by those who want to design de novo probes from scratch.

    3. Reviewer #2 (Public review):

      This paper describes an analysis of a commercially available panel for a spatial transcriptomic approach and introduces a computational tool to predict potential off-target binding sites for the type of probe used in the aforementioned panel. The performance of the prediction tool was validated by examining a dataset that profiled the same cancer tissue with multiple modalities. Finally, a detailed analysis of the potential pitfalls in a published study communicated by the company that commercialized the spatial transcriptomic platform in question is provided, along with best practice guidelines for future studies to follow.

      Strengths:

      The manuscript is clearly written and easy to follow.

      The authors provide clean, organized, and well-documented code in the associated GitHub repository.

      Weaknesses:

      The manuscript section on the software tool feels underdeveloped.

    4. Reviewer #3 (Public review):

      Summary:

      The authors present a new computational method (OPT) for predicting off-target probe binding in the commercial 10X Xenium spatial transcriptomics platform. They identified 28 genes in the 10x xenium human breast cancer gene panel (280 genes) that are not accurately detected at the single-molecule level. They validated the predicted off-target binding using reference data from single-cell RNA-seq and 3'-sequencing-based Visium RNA-seq. This work provides a practical resource and will serve as a valuable reference for future data interpretation.

      Strengths:

      (1) Provides a toolbox for the community to identify off-target probes.

      (2) Validates the predictions using single-cell RNA-seq and sequencing-based Visium RNA-seq datasets.

      Weaknesses:

      (1) Does not apply the OPT method to the most widely used Xenium gene panels (e.g., pan-Human, pan-Mouse panels with ~5,000 genes each).

      (2) Lacks clarity on how the confidence level of off-target predictions is calculated.

    5. Author response:

      We sincerely thank the editors and the reviewers for their feedback in helping us improve this manuscript. During the time this work has been under review, 10x Genomics has updated the probe sequences of their gene panels. We therefore plan to update these findings as well as further expand to incorporate reviewer recommendations.

    1. eLife Assessment

      This valuable study reveals the pro-locomotor effects of activating a deep brain region containing diverse range of neurons in both healthy and Parkinson's disease mouse models. While the findings are solid, mechanistic insights remain limited due to the small sample size. This research is relevant to motor control researchers and offers clinical perspectives.

    2. Reviewer #1 (Public review):

      Summary:

      This study aimed to investigate the effects of optically stimulating the A13 region in healthy mice and a unilateral 6-OHDA mouse model of Parkinson's disease (PD). The primary objectives were to assess changes in locomotion, motor behaviors, and the neural connectome. For this, the authors examined the dopaminergic loss induced by 6-OHDA lesioning. They found a significant loss of tyrosine hydroxylase (TH+) neurons in the substantia nigra pars compacta (SNc) while the dopaminergic cells in the A13 region were largely preserved. Then, they optically stimulated the A13 region using a viral vector to deliver the channelrhodopsine (CamKII promoter). In both sham and PD model mice, optogenetic stimulation of the A13 region induced pro-locomotor effects, including increased locomotion, more locomotion bouts, longer durations of locomotion, and higher movement speeds. Additionally, PD model mice exhibited increased ipsilesional turning during A13 region photoactivation. Lastly, the authors used whole-brain imaging to explore changes in the A13 region's connectome after 6-OHDA lesions. These alterations involved a complex rewiring of neural circuits, impacting both afferent and efferent projections. In summary, this study unveiled the pro-locomotor effects of A13 region photoactivation in both healthy and PD model mice. The study also indicates the preservation of A13 dopaminergic cells and the anatomical changes in neural circuitry following PD-like lesions that represent the anatomical substrate for a parallel motor pathway.

      Strengths:

      These findings hold significant relevance for the field of motor control, providing valuable insights into the organization of the motor system in mammals. Additionally, they offer potential avenues for addressing motor deficits in Parkinson's disease (PD). The study fills a crucial knowledge gap, underscoring its importance, and the results bolster its clinical relevance and overall strength.

      The authors adeptly set the stage for their research by framing the central questions in the introduction, and they provide thoughtful interpretations of the data in the discussion section. The results section, while straightforward, effectively supports the study's primary conclusion-the pro-locomotor effects of A13 region stimulation, both in normal motor control and in the 6-OHDA model of brain damage.

      Weaknesses:

      (1) Anatomical investigation. I have a major concern regarding the anatomical investigation of plastic changes in the A13 connectome (Figures 4 and 5). While the methodology employed to assess the connectome is technically advanced and powerful, the results lack mechanistic insight at the cell or circuit level into the pro-locomotor effects of A13 region stimulation in both physiological and pathological conditions. This concern is exacerbated by a textual description of results that doesn't pinpoint precise brain areas or subareas but instead references large brain portions like the cortical plate, making it challenging to discern the implications for A13 stimulation. Lastly, the study is generally well-written with a smooth and straightforward style, but the connectome section presents challenges in readability and comprehension. The presentation of results, particularly the correlation matrices and correlation strength, doesn't facilitate biological understanding. It would be beneficial to explore specific pathways responsible for driving the locomotor effects of A13 stimulation, including examining the strength of connections to well-known locomotor-associated regions like the Pedunculopontine nucleus, Cuneiformis nucleus, LPGi, and others in the diencephalon, midbrain, pons, and medulla. Additionally, identifying the primary inputs to A13 associated with motor function would enhance the study's clarity and relevance.

      The study raises intriguing questions about compensatory mechanisms in Parkinson's disease a new perspective with the preservation of dopaminergic cells in A13, despite the SNc degeneration, and the plastic changes to input/output matrices. To gain inspiration for a more straightforward reanalysis and discussion of the results, I recommend the authors refer to the paper titled "Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon from the David Kleinfeld laboratory." This could guide the authors in investigating motor pathways across different brain regions.

      (2) Description of locomotor performance. Figure 3 provides valuable data on the locomotor effects of A13 region photoactivation in both control and 6-OHDA mice. However, a more detailed analysis of the changes in locomotion during stimulation would enhance our understanding of the pro-locomotor effects, especially in the context of 6-OHDA lesions. For example, it would be informative to explore whether the probability of locomotion changes during stimulation in the control and 6-OHDA groups. Investigating reaction time, speed, total distance, and even kinematic aspects during stimulation could reveal how A13 is influencing locomotion, particularly after 6-OHDA lesions. The laboratory of Whelan has a deep knowledge of locomotion and the neural circuits driving it so these features may be instructive to infer insights on the neural circuits driving movement. On the same line, examining features like the frequency or power of stimulation related to walking patterns may help elucidate whether A13 is engaging with the Mesencephalic Locomotor Region (MLR) to drive the pro-locomotor effects. These insights would provide a more comprehensive understanding of the mechanisms underlying A13-mediated locomotor changes in both healthy and pathological conditions.

      (3) Figure 2 indeed presents valuable information regarding the effects of A13 region photoactivation. To enhance the comprehensiveness of this figure and gain a deeper understanding of the neurons driving the pro-locomotor effect of stimulation, it would be beneficial to include quantifications of various cell types:

      • cFos-Positive Cells/TH-Positive Cells: it can help determine the impact of A13 stimulation on dopaminergic neurons and the associated pro-locomotor effect in healthy condition and especially in the context of Parkinson's disease (PD) modeling.

      • cFos-Positive Cells /TH-Negative Cells: Investigating the number of TH-negative cells activated by stimulation is also important, as it may reveal non-dopaminergic neurons that play a role in locomotor responses. Identifying the location and characteristics of these TH-negative cells can provide insights into their functional significance.<br /> Incorporating these quantifications into Figure 2 would enhance the figure's informativeness and provide a more comprehensive view of the neuronal populations involved in the locomotor effects of A13 stimulation.

      (4) Referred to Figure 3. In the main text (page 5) when describing the animal with 6-OHDA the wrong panels are indicated. It is indicated in Figure 2A-E but it should be replaced with 3A-E. Please do that.

      Summary of the Study after revision

      The revised manuscript reflects significant efforts to improve clarity, organization, and data interpretation. The refinements in anatomical descriptions, behavioral analyses, and contextual framing have strengthened the manuscript considerably. However, the study still lacks direct causal evidence linking anatomical remodeling to behavioral improvements, and the small sample size in the anatomical analyses remains a concern. The authors have addressed many points raised in the initial review, but further acknowledgement of the exploratory nature of these findings would enhance the scientific rigor of the work.

      Key Improvements in the Revision

      The revised manuscript demonstrates considerable progress in clarifying data presentation, refining behavioral analyses, and improving the contextualization of anatomical findings. The restructuring of the anatomical section now provides greater precision in describing motor-related pathways, integrating terminology from the Allen Brain Atlas. The addition of new figures (Figures 4 and 5) strengthens the accessibility of these findings by illustrating key connectivity patterns more effectively. Furthermore, the correlation matrices have been adjusted to improve interpretability, ensuring that the presented data contribute meaningfully to the overall narrative of the study.

      The authors have also made significant improvements in their behavioral analyses, particularly in the organization and presentation of locomotor data. Figure 3 has been revised to distinctly separate results from 6-OHDA and sham animals, providing a clearer comparison of locomotor outcomes. Additional metrics, such as reaction time, locomotion bouts, and movement speed, further enhance the granularity of the analysis, making the results more informative.

      The discussion surrounding anatomical connectivity has also been strengthened. The revised manuscript now places greater emphasis on motor-related pathways and refines its analysis of A13 efferents and afferents. A newly introduced figure provides a concise summary of these connections, improving the contextualization of the anatomical data within the study's broader scope. Moreover, the authors have addressed the translational relevance of their findings by acknowledging the differences between optogenetic stimulation and deep brain stimulation (DBS). Their discussion now better situates the findings within existing literature on PD-related motor circuits, providing a more balanced perspective on the potential implications of A13 stimulation.

      Remaining Concerns

      Despite these substantial improvements, a number of critical concerns remain. The anatomical findings, though insightful, remain largely correlative and do not establish a causal link between structural remodeling and locomotor recovery. While the authors argue that these data will serve as a reference for future investigations, their necessity for the core conclusions of the study is not entirely clear. Additionally, while the anatomical data offer an interesting perspective on A13 connectivity, their direct relevance to the study's primary goal-demonstrating the role of A13 in locomotor recovery-remains uncertain. The authors emphasize that these data will be valuable for future research, yet their integration into the study's main narrative feels somewhat supplementary. Based on this last thought of the authors it is even more relevant another key limitation lying in the small sample size used for connectivity analyses. With only two sham and three 6-OHDA animals included, the statistical confidence in the findings is inherently limited. The absence of direct statistical comparisons between ipsilesional and contralesional projections further weakens the conclusions drawn from these anatomical studies. The authors have acknowledged that obtaining the necessary samples, acquiring the data, and analyzing them is a prolonged and resource-intensive process. While this may be a valid practical limitation, it does not justify the lack of a robust statistical approach. A more rigorous statistical framework should be employed to reinforce the findings, or alternative techniques should be considered to provide additional validation. Given these constraints, it remains unclear why the authors have not opted for standard immunohistochemistry, which could provide a complementary and more statistically accessible approach to validate the anatomical findings. Employing such an approach would not only increase the robustness of the results but also strengthen the study's impact by providing an independent confirmation of the observed structural changes.

    3. Reviewer #2 (Public review):

      Summary:

      The paper by Kim et al. investigates the potential of stimulating the dopaminergic A13 region to promote locomotor restoration in a Parkinson's mouse model. Using wild-type mice, 6-OHDA injection depletes dopaminergic neurons in the substantia nigra pars compacta, without impairing those of the A13 region and the ventral tegmentum area, as previously reported in humans. Moreover, photostimulation of presumably excitatory (CAMKIIa) neurons in the vicinity of the A13 region improves bradykinesia and akinetic symptoms after 6-OHDA injection. Whole-brain imaging with retrograde and anterograde tracers reveals that the A13 region undergoes substantial changes in the distribution of its afferents and projections after 6-OHDA injection, thus suggesting a remodeling of the A13 connectome. Whether this remodelling contributes to pro-locomotor effects of the photostimulation of the A13 region remains unknown as causality was not addressed.

      Strengths:

      Photostimulation of presumably excitatory (CAMKIIa) neurons in the vicinity of the A13 region promotes locomotion and locomotor recovery of wild-type mice 1 month after 6-OHDA injection in the medial forebrain bundle, thus identifying a new potential target for restoring motor functions in Parkinson's disease patients. The study also provides a description of the A13 region connectome pertaining to motor behaviors and how it changes after a dopaminergic lesion. Although there is no causal link between anatomical and behavioral data, it raises interesting questions for further studies.

      Weaknesses:

      Although CAMKIIa is a marker of presumably excitatory neurons and can be used as an alternative marker of dopaminergic neurons, some uncertainty remains regarding the phenotype of neurons underlying recovery of akinesia and improvement of bradykinesia.

      Figure 4 is improved, but the results from the correlation analyses remain difficult to interpret, as they may reflect changes in various impaired brain regions independently of the A13 region. While the analysis offers a snapshot of correlated changes within the connectome, it does not identify which specific cell or axonal populations are actually increasing or decreasing. Although functional MRI connectome analyses are well-established, anatomical data seem less suitable for this purpose. How can one interpret correlated changes in anatomical inputs or outputs between two distinct regions?

      Figure 5 is also improved, but there is room for further enhancement. As currently presented, it is difficult to distinguish the differences between the sham and 6-OHDA groups. The first column could compare afferents, while the second column could compare efferents. Given the small sample size, it would be more appropriate to present individual data rather than the mean and standard deviation.

      Appraisal and impact

      Although the behavioral experiments are convincing, the low number of animals in the anatomical studies is insufficient to make any relevant statistical conclusions due to extremely low statistical power.

    4. Reviewer #3 (Public review):

      Kim, Lognon et al. present an important finding on pro-locomotor effects of optogenetic activation of the A13 region, which they identify as a dopamine-containing area of the medial zona incerta that undergoes profound remodeling in terms of afferent and efferent connectivity after administration of 6-OHDA to the MFB. The authors claim to address a model of PD-related gait dysfunction, a contentious problem that can be difficult to treat by dopaminergic medication or DBS in conventional targets. They make use of an impressive array of technologies to gain insight into the role of A13 remodeling in the 6-OHDA model of PD. The evidence provided is solid and the paper is well written, but there are several general issues that reduce the value of the paper in its current form, and a number of specific, more minor ones. Also some suggestions, that may improve the paper compared to its recent form, come to mind.

      The most fundamental issue that needs to be addressed is the relation of the structural to the behavioral findings. It would be very interesting to see whether the structural heterogeneity in afferent/effects projections induced by 6-OHDA is related to the degree of symptom severity and motor improvement during A13 stimulation.

      The authors provide extensive interrogation of large-scale changes in the organization of the A13 region afferent and efferent distributions. It remains unclear how many animals were included to produce Fig 4 and 5. Fig S5 suggests that only 3 animals were used, is that correct? Please provide details about the heterogeneity between animals. Please provide a table detailing how many animals were used for which experiment. Were the same animals used for several experiments?

      While the authors provide evidence that photoactivation of the A13 is sufficient in driving locomotion in the OFT, this pro-locomotor effect seems to be independent of 6-OHDA induced pathophysiology. Only in the pole test do they find that there seems to be a difference between Sham vs 6-OHDA concerning effects of photoactivation of the A13. Because of these behavioral findings, optogenic activation of A13 may represent a gain of function rather than disease-specific rescue. This needs to be highlighted more explicitly in the title, abstract and conclusion.

      The authors claim that A13 may be a possible target for DBS to treat gait dysfunction. However, the experimental evidence provided (imparticular lack of disease-specific changes in the OFT) seem insufficient to draw such conclusions. It needs to be highlighted that optogenetic activation does not necessarily have the same effects as DBS (see the recent review from Neumann et al. in Brain: https://pubmed.ncbi.nlm.nih.gov/37450573/). This is important because ZI-DBS so far had very mixed clinical effects. The authors should provide plausible reasons for these discrepancies. Is cell-specificity, that only optogenetic interventions can achieve, necessary? Can new forms of cyclic burst DBS achieve similar specificity (Spix et al, Science 2021)? Please comment.

      In a recent study, Jeon et al (Topographic connectivity and cellular profiling reveal detailed input pathways and functionally distinct cell types in the subthalamic nucleus, 2022, Cell Reports) provided evidence on the topographically graded organization of STN afferents and McElvain et al. (Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon, 2021, Neuron) have shown similar topographical resolution for SNr efferents. Can a similar topographical organization of efferents and afferents be derived for the A13/ ZI in total?

      In conclusion, this is an interesting study that can be improved taking into consideration the points mentioned above.

    5. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #2 (Public review):

      Summary:

      The paper by Kim et al. investigates the potential of stimulating the dopaminergic A13 region to promote locomotor restoration in a Parkinson's mouse model. Using wild-type mice, 6-OHDA injection depletes dopaminergic neurons in the substantia nigra pars compacta, without impairing those of the A13 region and the ventral tegmentum area, as previously reported in humans. Moreover, photostimulation of presumably excitatory (CAMKIIa) neurons in the vicinity of the A13 region improves bradykinesia and akinetic symptoms after 6-OHDA injection. Whole-brain imaging with retrograde and anterograde tracers reveals that the A13 region undergoes substantial changes in the distribution of its afferents and projections after 6-OHDA injection, thus suggesting a remodeling of the A13 connectome. Whether this remodelling contributes to pro-locomotor effects of the photostimulation of the A13 region remains unknown as causality was not addressed.

      Strengths:

      Photostimulation of presumably excitatory (CAMKIIa) neurons in the vicinity of the A13 region promotes locomotion and locomotor recovery of wild-type mice 1 month after 6-OHDA injection in the medial forebrain bundle, thus identifying a new potential target for restoring motor functions in Parkinson's disease patients. The study also provides a description of the A13 region connectome pertaining to motor behaviors and how it changes after a dopaminergic lesion. Although there is no causal link between anatomical and behavioral data, it raises interesting questions for further studies.

      Thank you for the comments.

      Weaknesses:

      Although CAMKIIa is a marker of presumably excitatory neurons and can be used as an alternative marker of dopaminergic neurons, some uncertainty remains regarding the phenotype of neurons underlying recovery of akinesia and improvement of bradykinesia.

      The primary objective was to focus on a population of neurons that could contribute to functional recovery, with a long-term translational focus in mind. We have followed up on this by creating a rat-based DBS model of stimulating the A13 region (Bisht et al 2025). We agree that the next steps are to genetically dissect the circuits, and we have made a start on this with our recent publication (Sharma et al 2024).

      Figure 4 is improved, but the results from the correlation analyses remain difficult to interpret, as they may reflect changes in various impaired brain regions independently of the A13 region. While the analysis offers a snapshot of correlated changes within the connectome, it does not identify which specific cell or axonal populations are actually increasing or decreasing. Although functional MRI connectome analyses are well-established, anatomical data seem less suitable for this purpose. How can one interpret correlated changes in anatomical inputs or outputs between two distinct regions?

      We appreciate the reviewer's thoughtful comment regarding the interpretability of the correlation analyses in Figure 4. We fully acknowledge that our anatomical data cannot establish causality or identify specific cell types or axonal populations undergoing changes following unilateral nigrostriatal degeneration. However, our intent with this analysis was not to infer mechanistic pathways but rather to provide a systems-level overview of how the global organization of A13 efferents and afferents is altered following 6-OHDA lesioning. By calculating proportions of total inputs and outputs and comparing them across brain regions, we aimed to control for variability in labeling and highlight relative shifts in network organization. The correlation matrices are intended to capture coordinated changes in input/output distribution patterns, effectively reflecting how groups of regions co-vary in their input to or output from the A13 region. In our case, we used correlation analysis to identify how input and output distributions across brain regions reorganize as a network following 6-OHDA lesioning. For example, a positive correlation between inputs from Region A and Region B to the A13 suggests that across animals, when input from Region A is relatively high, input from Region B tends to be high as well, indicating that connectivity from these regions to the A13 may be co-regulated or affected similarly by the lesion. Conversely, a shift from positive to negative correlation may signal a divergence in how regions contribute to the A13 connectome after nigrostriatal degeneration (e.g., increased connectivity to Region A compared to reduced connectivity to Region B). Thus, these patterns offer new insight into the broader reorganization of the A13 connectome and may serve as systems-level signatures of altered anatomical organization, providing a foundation for future mechanistic investigations using circuit-specific tools. We have revised the text to better emphasize the correlative and descriptive nature of these analyses and to clarify that they serve as a hypothesis-generating exploration. Future studies using cell type- and/or projection-specific functional manipulations will be essential to determine the causal roles of these reorganized circuits. We believe our use of this method is justified in the context of exploring broad, lesion-induced network reorganization, and we hope this additional context helps clarify the purpose and limitations of our approach.

      Figure 5 is also improved, but there is room for further enhancement. As currently presented, it is difficult to distinguish the differences between the sham and 6-OHDA groups. The first column could compare afferents, while the second column could compare efferents. Given the small sample size, it would be more appropriate to present individual data rather than the mean and standard deviation.

      We have reorganized Figure 5 as suggested.

      Appraisal and impact

      Although the behavioral experiments are convincing, the low number of animals in the anatomical studies is insufficient to make any relevant statistical conclusions due to extremely low statistical power.

      See previous comments on this.

      Reviewer #2 (Recommendations for the authors):

      Points that need to be addressed:

      Figure S1 is supposed to illustrate the percentage of expression in all mice, but the number of mice does not match (n=3 and 3 in Figure S1 versus n=5 and 6 in Figure 1). Revise the legend or add the missing data.

      We have added the additional data to this graph (Figure 2 – figure supplement 1) and have separated out 6-OHDA and sham mice for clarity.

      Page 4: "There was also an increase in the number of ChR2 cells with c-fos labeling in 6-OHDA ChR2 mice compared to the 6-OHDA eYFP mice. However, there was no net increase in TH+ cells labelled with ChR2 and c-Fos suggesting a heterogeneous population of activated cells." A quantification will be necessary to advance this conclusion.

      We were able to determine that there was a trend of increased c-Fos intensity within the A13 region following photostimulation. However, the variability in the data makes it premature to comment on the TH co-localization and we have deleted this statement.

      Figure 3: The choice of red and green could be a problem for color-blind people.

      Thank you - switched to orange and cyan instead.

      Page 7, 4th paragraph: "6-OHDA mice demonstrated significantly greater descent times than sham mice (Figure 3L, p<0.01)." This is not what is shown in the Figure 3L.

      We made changes in the legend and text to clarify.

      Page 7, last line: PT abbreviation should be introduced in parentheses at the beginning of this section.

      Removed the abbreviation.

      Figure S4A: The authors should show data for the VTA or refer to the quantification of Figure S4G in the text.

      Now referenced correctly in the text.

      Figure S7 and S8 are not referenced in the results or methods.

      References added to text.

      Double-check the formatting of some references: L.-X. Li et al, 2021, L. Kim et al., 2021.

      References checked and corrected.

    1. eLife Assessment

      Bonnifet et al. present data on the expression and interacting partners of the transposable element L1 in the mammalian brain. The work includes important findings addressing the potential role of L1 in aging and neurodegenerative disease. The reviewers conclude that several aspects of the study are well done and most evidence is solid, with a noted concern related to the RNA-seq analysis.

    2. Reviewer #1 (Public review):

      Summary:

      In this study, Bonnifet et al. profile the presence of L1 ORF1p in the mouse and human brain and report that ORF1p is expressed in the human and mouse brain specifically in neurons at steady state and that there is an age-dependent increase in expression. This is a timely report as two recent papers have extensively documented the presence of full-length L1 transcripts in the mouse and human brain (PMID: 38773348 & PMID: 37910626). Thus, the finding that L1 ORF1p is consistently expressed in the brain is important to document and will be of value to the field.

      Strengths:

      Several parts of this manuscript appear to be well done and include the necessary controls. In particular, the documentation of neuron-specific expression of ORF1p in the mouse brain is an interesting finding with nice documentation. This will be very useful information for the field.

      Weaknesses:

      The transcriptomic data using human postmortem tissue presented in Figures 4 and 5 are not convincing. Quantification of transposon expression on short read sequencing has important limitations. Longer reads and complementary approaches are needed to study the expression of evolutionarily young L1s (see PMID: 38773348 & PMID: 37910626 for examples of the current state of the art). As presented, the human RNA data is inconclusive due to the short read length and small sample size. The value of including an inconclusive analysis in the manuscript is difficult to understand. With this data set, the authors cannot investigate age-related changes in L1 expression in human neurons.

      In line with these comments, the title should be changed to better reflect the findings in the manuscript. A title that does not mention "L1 increase with aging" would be better.

      Comments on Revisions:

      It is notable that the expression of ORF1p in the human brain shows two strong bands in the WB. As the authors acknowledge in their discussion, some labs report only one band. The authors have performed a number of controls to address this issue, acknowledge remaining uncertainty, and discuss the discrepancy in the field.

    3. Reviewer #2 (Public review):

      Summary:

      Bonnifet et al. sought to characterize the expression pattern of L1 ORF1p expression across the entire mouse brain, in young and aged animals and to corroborate their characterization with Western blotting for L1 ORF1p and L1 RNA expression data from human samples. They also queried L1 ORF1p interacting partners in the mouse brain by IP-MS.

      Strengths:

      A major strength of the study is the use of two approaches: a deep-learning detection method to distinguish neuronal vs. non-neuronal cells and ORF1p+ cells vs. ORF1p- cells across large-scale images encompassing multiple brain regions mapped by comparison to the Allen Brain Atlas, and confocal imaging to give higher resolution on specific brain regions. These results are also corroborated by Western blotting on six mouse brain regions. Extension of their analysis to post-mortem human samples, to the extent possible, is another strength of the paper. The identification of novel ORF1p interactors in brain is also a strength in that it provides a novel dataset for future studies.

      Weaknesses:

      The main weakness of the IP-MS portion of the study is that none of the interactors were individually validated or subjected to follow-up analyses. The list of interactors was compared to previously published datasets, but not to ORF1p interactors in any other mouse tissue.

      Comments on revisions:

      The co-staining of Orf1p with Parvalbumin (PV) presented in Supplemental Figure S5 is a welcome addition exploring the cell type-specificity of Orf1p staining, and broadly corroborates the work of Bodea et al. while revealing that Orf1p also is expressed in non-PV+ cells, consistent with L1 activity across a range of neuronal subtypes. The authors also have strengthened their findings regarding the increased intensity of ORF1p staining in aged compared to young animals, and the newly presented results are indeed more convincing. The prospect of increased neuronal L1 activity with age is exciting, and the results in this paper have provided the groundwork for ongoing discoveries in this area. While it is disappointing that no Orf1p interactors were followed up, this is understandable and the data are nonetheless valuable and will likely prove useful to future studies.

    4. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review): 

      Summary: 

      In this study, Bonnifet et al. profile the presence of L1 ORF1p in the mouse and human brain and report that ORF1p is expressed in the human and mouse brain specifically in neurons at steady state and that there is an age-dependent increase in expression. This is a timely report as two recent papers have extensively documented the presence of full-length L1 transcripts in the mouse and human brain (PMID: 38773348 & PMID: 37910626). Thus, the finding that L1 ORF1p is consistently expressed in the brain is important to document and will be of value to the field. 

      Strengths: 

      Several parts of this manuscript appear to be well done and include the necessary controls. In particular, the documentation of neuron-specific expression of ORF1p in the mouse brain is an interesting finding with nice documentation. This will be very useful information for the field. 

      We thank the reviewer for this positive comment. 

      Weaknesses: 

      Several parts of the manuscript appear to be more preliminary and need further experiments to validate their claims. In particular, the data suggesting expression of L1 ORF1p in the human brain and the data suggesting increased expression in the aged brain need further validation. Detailed comments: 

      (1) The expression of ORF1p in the human brain shown in Fig. 1j is puzzling. Why are there two strong bands in the WB? How can the authors be sure that this signal represents ORF1p expression and not non-specific labelling? While the authors discuss that others have found double bands when examining human ORF1p, there are also several labs that report only one band. This discrepancy in the field should at least be discussed and the uncertainties with their findings should be acknowledged. 

      Please see also our extensive response to this comment we made in round #1 of the revisions.

      As a summary, in response to the initial review, we included several lines of additional evidence in the revised manuscript:

      siRNA-mediated knockdown of ORF1p in human neurons, resulting in ≈50% signal reduction using the antibody in question (Suppl. Fig. 2C) immunoprecipitation using the human ORF1p antibody in question confirming signal specificity (Suppl. Fig. 2B) use of a second antibody in immunostainings, including a new control (Suppl. Fig. 2E) and a revised discussion acknowledging the uncertainty surrounding the lower band:

      “The double band pattern in Western blots has been observed in other studies for human ORF1p outside of the brain as well as for mouse ORF1p. […] The nature of the lower band is unknown, but might be due to truncation, specific proteolysis or degradation.”

      We have also now added more content to the paragraph starting from line 183 : "While there is some discrepancy in the field, the double band pattern in Western blots..."

      To our understanding, this combination of independent methods using two antibodies and complementary validation strategies supports the presence of ORF1p in human brain tissue.

      (2) The data showing a reduction in ORF1p expression in the aged mouse brain is an interesting observation, but the effect magnitude of effect is very limited and somewhat difficult to interpret. This finding should be supported by orthogonal methods to strengthen this conclusion. For example, by WB and by RNA-seq (to verify that the increase in protein is due to an increase in transcription). 

      This would indeed be valuable but at this point, we will not be able to perform these experiments at this point (please also see revision #1 for a more detailed answer)

      (3) The transcriptomic data using human postmortem tissue presented in Figure 4 and Figure 5 are not convincing. Quantification of transposon expression on short read sequencing has important limitations. Longer reads and complementary approaches are needed to study the expression of evolutionarily young L1s (see PMID: 38773348 & PMID: 37910626 for examples of the current state of the art). As presented, the human RNA data is inconclusive due to the short read length and small sample size. The value of including an inconclusive analysis in the manuscript is difficult to understand. With this data set, the authors cannot investigate age-related changes in L1 expression in human neurons. 

      Please see also our extensive response to this comment we made in round #1 of the revisions.

      In the revised version, we have added further statistical analyses, incorporated locus-specific mappability scores and provided an even more nuanced interpretation of our findings, as illustrated in lines 390 and 427.

      We have acknowledged the limitations of short-read sequencing in this context, while referencing established methodologies (e.g., Teissandier et al., 2019) and recent benchmarking studies (e.g., Schwarz et al., 2022) that validate the use of such data under specific precautions—many of which we have implemented.

      Given these considerations, and with the guidance of a co-author with specific expertise in TE bioinformatics, we believe our approach is justified and robust.

      (4) In line with these comments, the title should be changed to better reflect the findings in the manuscript. A title that does not mention "L1 increase with aging" would be better. 

      In line with our response to Point (3), we prefer to retain the current analyses and discussion, which we believe strike an appropriate balance between caution and added scientific value.

      Reviewer #2 (Public review): 

      Summary: 

      Bonnifet et al. sought to characterize the expression pattern of L1 ORF1p expression across the entire mouse brain, in young and aged animals and to corroborate their characterization with Western blotting for L1 ORF1p and L1 RNA expression data from human samples. They also queried L1 ORF1p interacting partners in the mouse brain by IP-MS. 

      Strengths: 

      A major strength of the study is the use of two approaches: a deep-learning detection method to distinguish neuronal vs. non-neuronal cells and ORF1p+ cells vs. ORF1p- cells across large-scale images encompassing multiple brain regions mapped by comparison to the Allen Brain Atlas, and confocal imaging to give higher resolution on specific brain regions. These results are also corroborated by Western blotting on six mouse brain regions. Extension of their analysis to post-mortem human samples, to the extent possible, is another strength of the paper. The identification of novel ORF1p interactors in brain is also a strength in that it provides a novel dataset for future studies. 

      We thank the reviewer for these positive comments.

      Weaknesses: 

      The main weakness of the IP-MS portion of the study is that none of the interactors were individually validated or subjected to follow-up analyses. The list of interactors was compared to previously published datasets, but not to ORF1p interactors in any other mouse tissue.

      As we had stated in the first round of revision, the list of previously published datasets does include a mouse dataset with ORF1p interacting proteins in mouse spermatocytes (please see line 478-4479: “ORF1p interactors found in mouse spermatocytes were also present in our analysis including CNOT10, CNOT11, PRKRA and FXR2 among others (Suppl_Table4).”) -> De Luca, C., Gupta, A. & Bortvin, A. Retrotransposon LINE-1 bodies in the cytoplasm of piRNA-deficient mouse spermatocytes: Ribonucleoproteins overcoming the integrated stress response. PLoS Genet 19, e1010797 (2023)). We agree that a validation of protein interactors of ORF1p in the mouse brain would have been valuable. However, the significant overlap with previously published interactors highlights the validity of our data. As reviewer #2 points out in the comments on revisions, we hope that follow-up studies will address these points and we anticipate that this list of ORF1p protein interactors in the mouse brain will be of further use for the community.

      Comments on revisions: 

      The co-staining of Orf1p with Parvalbumin (PV) presented in Supplemental Figure S5 is a welcome addition exploring the cell type-specificity of Orf1p staining, and broadly corroborates the work of Bodea et al. while revealing that Orf1p also is expressed in non-PV+ cells, consistent with L1 activity across a range of neuronal subtypes. The authors also have strengthened their findings regarding the increased intensity of ORF1p staining in aged compared to young animals, and the newly presented results are indeed more convincing. The prospect of increased neuronal L1 activity with age is exciting, and the results in this paper have provided the groundwork for ongoing discoveries in this area. While it is disappointing that no Orf1p interactors were followed up, this is understandable and the data are nonetheless valuable and will likely prove useful to future studies. 

      Thank you for your time and constructive comments.

      Reviewer #1 (Recommendations for the authors): 

      We would recommend that the human RNA-seq analysis is removed from the manuscript. The human RNA data is inconclusive due to the short read length and small sample size. The value of including an inconclusive analysis in the manuscript is difficult to understand. With this data set, the authors cannot investigate age-related changes in L1 expression in human neurons. 

      Reviewer #2 (Recommendations for the authors): 

      Thank you for addressing my suggestions. I have no further recommendations at this time.

    1. eLife Assessment

      This useful study advances our understanding of how organisms respond to chronic oxidative stress. Using the nematode C. elegans, the authors identified key neuronal signaling molecules and their receptors that are required for stress signaling and survival. The evidence supporting the conclusions is solid, with rigorous genetics, stress response analysis, and transcriptional profiling. This research will be of broad interest to neuroscientists and researchers working in the field of oxidative stress regulation.

    2. Reviewer #1 (Public review):

      Summary:

      The researchers aimed to identify which neurotransmitter pathways are required for animals to withstand chronic oxidative stress. This work thus has important implications for disease processes that are caused/linked to oxidative stress. This work identified specific neurotransmitters and receptors that coordinate stress resilience, both prior to and during stress exposure. Further, the authors identified specific transcriptional programs coordinated by neurotransmission that may provide stress resistance.

      Strengths:

      The manuscript is very clearly written with a well-formulated rationale. Standard C. elegans genetic analysis and rescue experiments were performed to identify key regulators of the chronic oxidative stress response. These findings were enhanced by transcriptional profiling that identified differentially expressed genes that likely affect survival when animals are exposed to stress.

      Weaknesses:

      Where the gar-3 promoter drives expression was not discussed in the context of the rescue experiments in Figure 7.

    3. Reviewer #2 (Public review):

      In this paper, Biswas et al. describe the role of acetylcholine (ACh) signaling in protection against chronic oxidative stress in C. elegans. They showed that disruption of ACh signaling in either unc-17 mutants or gar-3 mutants led to sensitivity to toxicity caused by chronic paraquat (PQ) treatment. Using RNA seq, they found that approximately 70% of the genes induced by chronic PQ exposure in wild type failed to upregulate in these mutants. The overexpression of gar-3 selectively in cholinergic neurons was sufficient to promote protection against chronic PQ exposure in an ACh-dependent manner. The study points to a previously undescribed role for ACh signaling in providing organism-wide protection from chronic oxidative stress, likely through the transcriptional regulation of numerous oxidative stress-response genes. The paper is well-written, and the data are robust, though some conclusions seem preliminary and do not fully support the current data. While the study identifies the muscarinic ACh receptor gar-3 as an important regulator of the response to PQ, the specific neurons in which gar-3 functions were not unambiguously identified, and the sources of ACh that regulate GAR-3 signaling and the identities of the tissues targeted by gar-3 were not addressed, limiting the scope of the study.

      Major Comments:

      (1) The site of action of cholinergic signaling for protection from PQ was not adequately explored. The authors' conclusion that cholinergic motor neurons are protective is based on studies using overexpression of gar-3 and an unc-17 allele that may selectively disrupt ACh in cholinergic motor neurons (Figure 9F), but these approaches are indirect. To more directly address the site of action, the authors should conduct rescue experiments using well-defined heterologous promoters. Figure 7G shows that gar-3 expressed under a 7.5 kb promoter fragment fully rescues the defect of gar-3 mutants, but the authors did not report where this promoter fragment is expressed, nor did they conduct rescue experiments of the specific tissues where gar-3 is known to be expressed (cholinergic neurons, GABAergic neurons, pharynx, or muscles). UNC-17 rescue experiments could also be useful to address the site of action. Does expression of unc-17 selectively in cholinergic motor neurons rescue the stress sensitivity of unc-17 mutants (or restore resistance to gar-3(OE); unc-17 mutants)? These experiments may also address whether ACh acts in an autocrine or paracrine manner to activate gar-3, which would be an important mechanistic insight to this study that is currently lacking.

      (2) The genetic pan-neuronal silencing experiments presented in Figure 1 motivated the subsequent experiments, but the authors did not relate these observations to ACh/gar-3 signaling. For example, the authors did not address whether silencing just the cholinergic motor neurons at the different times tested has the same effects on survival as pan-neuronal silencing.

      (3) It is assumed that protection occurs through inter-tissue signaling of ACh to target tissues, where it impacts gene expression. While this is a reasonable assumption, it has not been directly shown here. It is recommended that the authors examine GFP reporter expression of a sampling of the genes identified in this study (including proteasomal genes that the authors highlight) that are regulated by unc-17 and gar-3. This would serve to independently confirm the RNAseq data and to identify target tissues that are subject to gene expression regulation by ACh, which would significantly strengthen the study.

    4. Author response:

      Reviewer #1 (Recommendations for the authors):

      “The gar-3 promoter expression pattern was not discussed in the context of rescue experiments.”

      We agree that the expression pattern of the gar-3 promoter used in our rescue experiments should be clarified. We will include a description of the tissues where the 7.5 kb gar-3 promoter fragment is expressed, based on both prior studies and our own expression data. We will also discuss how the gar-3 cell and tissue expression pattern relates to both our analysis of gar-3 expression in the genome edited strain we generated as well as the observed rescue effects.

      Reviewer #2 (Recommendations for the authors):

      (1) The site of action of cholinergic signaling was not adequately explored.

      We plan to perform additional rescue experiments using heterologous promoters to drive gar-3 expression in specific tissues (e.g. cholinergic neurons, muscle). These experiments will help clarify the sufficiency of unc-17 expression in specific cell types for rescue. However, we point out that cell-specific unc-17 knockdown by RNAi using the unc-17b promoter (expression largely restricted to ventral cord ACh motor neurons) increases sensitivity to PQ in our long-term survival assays. Combined with our analysis of unc-17(e113) mutants, we believe our data offer robust support of a requirement for unc-17 expression in cholinergic motor neurons.

      (2) Pan-neuronal silencing experiments were not connected to ACh/GAR-3 signaling.

      We will expand our discussion to relate the pan-neuronal silencing results to our analysis of ACh signaling. We used the pan-neuronal silencing to motivate further analysis of various neurotransmitter systems. We note that our studies implicate both glutamatergic and cholinergic systems in protective responses to oxidative stress. The effects of silencing on survival during long-term PQ exposure may therefore be derived solely from cholinergic neurons, glutamatergic neurons, or a combination of both neuronal populations. We hope the reviewer will agree that distinguishing between these possibilities may be quite complicated and is not central to the main message of our paper. We therefore suggest this additional analysis lies outside the scope of this revision.

      (3) Inter-tissue signaling and transcriptional regulation by ACh were assumed but not directly shown.

      We will generate GFP reporters for a subset of genes (including proteasomal genes) identified in our RNA-seq analysis or assess their expression by quantitative RT-PCR to validate cholinergic regulation. These experiments will help to identify target tissues and confirm transcriptional regulation by cholinergic signaling.

      We appreciate the opportunity to revise our manuscript and believe that these additions will significantly strengthen the mechanistic insights and overall impact of our study. Please let us know if further clarification is needed.

    1. eLife Assessment

      This important work by Lesser et al provides a first and comprehensive description of Drosophila wing proprioceptors at an EM resolution. By linking peripheral neurons with information on their morphology and connectivity in the central nervous system, the authors provide new hypotheses and tools to study proprioceptive motor control of the wing in the fruit fly. The evidence and techniques supporting this work are solid, and this resource will contribute to connectome-based modeling of fly behavior.

    2. Reviewer #1 (Public review):

      Summary:

      Lesser et al provide a comprehensive description of Drosophila wing proprioceptive sensory neurons at the electron microscopy resolution. This "tour-de-force" provides a strong foundation for future structural and functional research aimed at understanding wing motor control in Drosophila with implications for understanding wing control across other insects.

      Strengths:

      (1) The authors leverage previous research that described many of the fly wing proprioceptors, and combine this knowledge with EM connectome data such that they now provide a near-complete morphological description of all wing proprioceptors.

      (2) The authors cleverly leverage genetic tools and EM connectome data to tie the location of proprioceptors on the wings with axonal projections in the connectome. This enables them to both align with previous literature as well as make some novel claims.

      3) In addition to providing a full description of wing proprioceptors, the authors also identified a novel population of sensors on the wing tegula that make direct connections with the B1 wing motor neurons, implicating the role of the tegula in wing movements that was previously underappreciated.

      (4) Despite being the most comprehensive description so far, it is reassuring that the authors clearly state the missing elements in the discussion.

      Weaknesses:

      (1) The authors do their main analysis on data from the FANC connectome but provide corresponding IDs for sensory neurons in the MANC connectome. I wonder how the connectivity matrix compares across FANC and MANC if the authors perform a similar analysis to the one they have done in Figure 2. This could be a valuable addition and potentially also pick up any sexual dimorphism.

      (2) The authors speculate about the presence of gap junctions based on the density of mitochondria. I'm not convinced about this, given that mitochondrial densities could reflect other things that correlate with energy demands in sub-compartments.

      (3) I'm intrigued by how the tegula CO is negative for iav. I wonder if authors tried other CO labeling genes like nompc. And what does this mean for the nature of this CO. Some more discussion on this anomaly would be helpful.

      (4) The authors conclude there are no proprioceptive neurons in sclerite pterale C based on Chat-Gal4 expression analysis. It would be much more rigorous if authors also tried a pan-neuronal driver like nsyb/elav or other neurotransmitter drivers (Vglut, GAD, etc) to really rule this out. (I hope I didn't miss this somewhere.)

      Overall, I consider this an exceptional analysis that will be extremely valuable to the community.

    3. Reviewer #2 (Public review):

      Summary:

      Lesser et al. present an atlas of Drosophila wing sensory neurons. They proofread the axons of all sensory neurons in the wing nerve of an existing electron microscopy dataset, the female adult fly nerve cord (FANC) connectome. These reconstructed sensory axons were linked with light microscopy images of full-scale morphology to identify their origin in the periphery of the wing and encoded sensory modalities. The authors described the morphology and postsynaptic targets of proprioceptive neurons as well as previously unknown sensory neurons.

      Strengths:

      The authors present a valuable catalogue of wing sensory neurons, including previously undescribed sensory axons in the Drosophila wing. By providing both connectivity information with linked genetic drive lines, this research facilitates future work on the wing motor-sensory network and applications relating to Drosophila flight. The findings were linked to previous research as well as their putative role in the proprioceptive and nerve cord circuitry, providing testable hypotheses for future studies.

      Weaknesses:

      (1) With future use as an atlas, it should be noted that the evidence is based on sensory neurons on only one side of the nerve cord. Fruit flies have stereotyped left/right hemispheres in the brain and left/right hemisegments in the nerve cord. The comparison of left and right neurons of the nervous system can give a sense of how robust the morphological and connectivity findings are. Here, the authors have not compared the left and right side sensory axons from the wing nerve, leaving potential for developmental variability across samples and left/right hemisegments.

      (2) Not all links between the EM reconstructions and driver lines are convincing. To strengthen these, for all EM-LM matches in Figures 3-7, rotated views of the driver line (matching the rotated EM views) should be shown to provide a clearer comparison of the data. In particular, Figure 3G and Figure 7B are not very convincing based on the images shown. MCFO imaging of the driver lines in Figure 3G and 7B would make this position stronger if a clone that matches the EM reconstruction could be identified.

      (3) Figure 7B looks like the driver line might have stochastic expression in the sensory neuron, which further reduces confidence in the result shown in Figure 7C. Is this expression pattern in the wing consistently seen? Many split-GAL4s have stochastic expressions. The evidence would be strengthened if the authors presented multiple examples (~4-5) of each driver line's expression pattern in the supplement.

      (4) Certain claims in this work lack quantitative evidence. On line 128, for instance, "Overall, our comprehensive reconstruction revealed many morphological subgroups with overlapping postsynaptic partners, suggesting a high degree of integration within wing sensorimotor circuits." If a claim of subgroups having shared postsynaptic partners is being made, there should have been quantitative evidence. For example, cosine similar amongst members of each group compared to the cosine similarity of shuffled/randomised sets of axons from different groups. The heat map of cosine similarity in Figure 2B alone is not sufficient.

      (5) Similarly, claims about putative electrical connections to b1 motor neurons are very speculative. The authors state that "their terminals contain very densely packed mitochondria compared to other cells", without providing a quantitative comparison to other sensory axons. There is also no quantitative comparison to the one example of another putative electrical connection from the literature. Further, it should be noted that this connection from Trimarchi and Murphey, 1997, is also stated as putative on line 167, which further weakens this evidence. Quantification would strongly strengthen this position. Identification of an example of high mitochondrial density at a confirmed electrical connection would be even better. In the related discussion section "A potential metabolic specialization for flight circuitry", it should be more clearly noted that the dense mitochondria could be unrelated to a putative electrical connection. If the authors have an alternative hypothesis about the mitochondria density, this should be stated as well.

      (6) It would be appropriate to cite previous work using a similar strategy to match sensory axons to their cell bodies/dendrites at the periphery using driver lines and connectomics (see Figure 5 for example in the following paper: https://doi.org/10.7554/eLife.40247 ).

      The methods section is very sparse. For the sake of replicability, all sections should be expanded upon.

    4. Reviewer #3 (Public review):

      Summary:

      The authors aim to identify the peripheral end-organ origin in the fly's wing of all sensory neurons in the anterior dorsomedial nerve. They reconstruct the neurons and their downstream partners in an electron microscopy volume of a female ventral nerve cord, analyse the resulting connectome, and identify their origin with a review of the literature and imaging of genetic driver lines. While some of the neurons were already known through previous work, the authors expand on the identification and create a near-complete map of the wing mechanosensory neurons at synapse resolution.

      Strengths:

      The authors elegantly combine electron microscopy, neuron morphology, connectomics, and light microscopy methods to bridge the gap between fly wing sensory neuron anatomy and ventral nerve cord morphology. Further, they use EM ultrastructural observations to make predictions on the signaling modality of some of the sensory neurons and thus their function in flight.

      The work is as comprehensive as state-of-the-art methods allow to create a near-complete map of the wing mechanosensory neurons. This work will be of importance to the field of fly connectomics and modelling of fly behavior, as well as a useful resource to the Drosophila research community.

      Through this comprehensive mapping of neurons to the connectome, the authors create a lot of hypotheses on neuronal function, partially already confirmed with the literature and partially to be tested in the future. The authors achieved their aim of mapping the periphery of the fly's wing to axonal projections in the ventral nerve cord, beautifully laying out their results to support their mapping.

      The authors identify the neurons in a previously published connectome of a male fly ventral nerve cord to enable cross-individual analysis of connections. Further, together with their companion paper, Dhawan et al. 2025, describing the haltere sensory neurons in the same EM dataset, they cover the entire mechanosensory space involved in Drosophila flight.

      Weaknesses:

      The connectomic data are only available upon request; the inclusion of a connectivity table of the reconstructed neurons would aid analysis reproducibility and cross-dataset comparisons.

    1. eLife Assessment

      This fundamental study identifies specific neural mechanisms through which HIF-1 signaling in ADF serotonergic neurons extends lifespan in C. elegans, revealing that downstream signaling in multiple types of neurons, as well as other neuromodulators like GABA, tyramine, and NLP-17, is required for this effect. The strength of the evidence is largely convincing, as the authors establish the necessity and causality of key neuronal components using multiple genetic tools and functional dissection in a well-validated model organism.

    2. Reviewer #1 (Public review):

      Summary:

      In this study by Kitto et al., the authors set out to identify specific signaling components regulating the hypoxic response from the neurons to the periphery and which components are required for lifespan extension. Their previous work had shown that expression of a stabilized HIF-1 mutant in the nervous system extends lifespan through the serotonin receptor SER-7 and leads to the induction of fmo-2 in the intestine. In the current study, they mapped the precise neural circuits required for this response, as well as the signaling mediators. Their work reveals that neurotransmitters GABA and tyramine, and the neuropeptide NLP-17, act downstream of neuronal HIF-1 to convey a "hypoxic signal" to peripheral tissues. Through cell-type-specific expression studies, targeted knockouts, and comprehensive lifespan analysis, the authors provide robust evidence to support their conclusions. The insights gained from the study are both moving the field forward as they advance our understanding of neuro-peripheral hypoxic signaling, but they also lay the groundwork for potential therapeutic strategies aimed at the modulation of such signaling pathways.

      Strengths:

      (1) This study provides new evidence further delineating signaling components required for hypoxic signaling-mediated longevity, from the nervous system to the periphery. Using a rigorous approach where they express stabilized HIF-1 mutant selectively in ADF, NSM, and HSN serotonergic neurons, followed by cell-type-specific tph-1 knockouts to pinpoint ADF-dependent serotonin signaling as essential for both lifespan extension and intestinal fmo-2 induction.

      This was followed by generating 11 transgenic lines that drive SER-7 expression under distinct neuron-specific promoters, to systematically tease out in which of 27 candidate neurons SER-7 functions to mediate hypoxia-induced longevity. This ultimately highlighted the RIS interneuron as the required signaling hub.

      (2) As the intestine lacks direct neuronal innervation, the authors employ neuron-specific RNAi (TU3311 strain) and dense core vesicle analyses to identify that the neuropeptide NLP-17 is required to transmit the hypoxic signal from RIS to induce fmo-2 in the intestine.

      (3) Overall, the paper is very well written. The experiments were carried out carefully and thoroughly, and the conclusions drawn are also well supported by the results they are showing.

      Weaknesses:

      Overall, I don't see many weaknesses. One point relates to their read-outs, which rely heavily on lifespan measurements and fmo-2 induction without evaluating other physiological processes that serotonin or NLP-17 might affect. For translational relevance, it would be valuable to assess or mention potential adverse effects, such as changes in reproduction, pharyngeal pumping, or proteostasis capacity (proteostasis capacity specifically in the tissue showing fmo-2 upregulation).

      While lifespan assays and fmo-2 expression do provide strong evidence, incorporating additional markers of stress resistance could strengthen the link between hypoxic signaling and organismal health as well.

    3. Reviewer #2 (Public review):

      Summary:

      The authors aimed to identify the specific neurons, neurotransmitters, and neuropeptides that mediate the longevity effects of the hypoxic response in C. elegans. By genetically dissecting the pathway downstream of HIF-1, they define a neural circuit involving ADF serotonergic neurons, the SER-7 receptor in the RIS interneuron, tyraminergic signaling from RIM, and neuropeptide NLP-17, ultimately linking neuronal hypoxic sensing to pro-longevity signaling in the intestine.

      Strengths:

      The study employs a diverse genetic toolkit, including neuron-specific transgenes, tissue-specific knockouts and rescues, RNAi knockdowns, allowing the authors to pinpoint causality, sufficiency, and necessity with high resolution. The comprehensive mapping of cell-nonautonomous signaling adds depth to our understanding of how HIF and serotonin signaling interface with aging pathways. The conclusions are supported by consistent survival assays and fmo-2 gene expression analyses.

      Weaknesses:

      A key limitation is the lack of clear evidence showing epistasis of so many identified molecular/neuronal components downstream of HIF-1 and serotonin. Thus, the mechanisms of how a diverse set of molecules/neurons coordinate and mediate neuronal HIF-1 effects on intestinal fmo-2 and longevity remain murky. Some rescue strategies may inadvertently cause non-physiological expression. Additionally, environmental hypoxia was not tested in parallel, so the claim on "hypoxia respone" throughout the manuscript is not justified by genetic manipulation alone, and the translational relevance of the genetic manipulations remains somewhat uncertain.

    4. Reviewer #3 (Public review):

      Summary:

      This study found that ADF serotonergic neurons have a significant role in extending lifespan mediated by HIF-1, as well as serotonin receptor SER-7 in the GABAergic RIS interneurons. The author focuses on the sufficiency and necessity of components from the central nervous system and how they contribute to aging upon hypoxia.

      Previous work from the lab has identified that the stabilization of HIF-1 in neurons is sufficient to extend lifespan through the serotonin receptor, SER-7, which subsequently activates fmo-2 in the intestine and leads to lifespan extension. Building on this, the author sought to determine which serotonergic neurons are involved and found that serotonin signaling in ADF neurons is required for lifespan extension mediated by HIF-1.

      The author next tested which subset of neurons requires Ser-7 expression to rescue hypoxic response. They found that ser-7 expression in multiple neurons is sufficient to induce fmo-2, with the top candidate being the RIS neuron. Ablation of the RIS neuron did not extend lifespan, suggesting that ser-7 expression in the RIS neuron is required for lifespan extension, positioning it as a key component in the longevity signaling pathway.

      The author also investigated neurotransmitters and found that GABA and tyramine are important components in this circuit. They showed that the tyramine receptor called tyra-3 is required for vhl-1-mediated longevity. Given that tyra-3 is expressed in oxygen- and carbon dioxide-sensing neurons, the author demonstrated that these sensing neurons work downstream of serotonin signaling. Lastly, the author screened neuropeptide/receptor binding pairs and identified NLP-17 as playing a role in hypoxia-mediated longevity.

      Originality and Significance:

      This research is significant in that it uncovers components that are sufficient and necessary for lifespan extension via the hypoxic response. It provides comprehensive data supporting longevity induced by HIF-1-mediated hypoxic response, in conjunction with fmo-2, a longevity gene, as demonstrated in previous work from the lab. Moreover, it provides a number of new transgenic worm tools for C. elegans and aging communities.

      Data and Methodology:

      (1) The experiments were thoroughly conducted, especially the generations of strains using different neuron-type promoters and crossing into mutant strains to demonstrate sufficiency and necessity.

      (2) Some figure legends from the text do not match what the data show. (Figure 6E, F, G).

      (3) The lifespan graph legends are confusing and could use some revamping for better clarification.

      Conclusions:

      This study provides insights into how hypoxic response regulates aging in a cell non-autonomous manner, outlining a potential circuit involving neurons, neurotransmitters, and neuropeptides.

    1. eLife Assessment

      This study presents a valuable application of a video-text alignment deep neural network model to improve neural encoding of naturalistic stimuli in fMRI. The authors found that models based on multimodal and dynamic embedding features of audiovisual movies predicted brain responses better than models based on unimodal or static features. The evidence supporting the claims is generally solid, with clear benchmarking against baseline models. The work will be of interest to researchers in cognitive neuroscience and AI-based brain modeling.

    2. Reviewer #1 (Public review):

      Summary:

      This study compares four models - VALOR (dynamic visual-text alignment), CLIP (static visual-text alignment), AlexNet (vision-only), and WordNet (text-only) - in their ability to predict human brain responses using voxel-wise encoding modeling. The results show that VALOR not only achieves the highest accuracy in predicting neural responses but also generalizes more effectively to novel datasets. In addition, VALOR captures meaningful semantic dimensions across the cortical surface and demonstrates impressive predictive power for brain responses elicited by future events.

      Strengths:

      The study leverages a multimodal machine learning model to investigate how the human brain aligns visual and textual information. Overall, the manuscript is logically organized, clearly written, and easy to follow. The results well support the main conclusions of the paper.

      Weaknesses:

      (1) My primary concern is that the performance difference between VALOR and CLIP is not sufficiently explained. Both models are trained using contrastive learning on visual and textual inputs, yet CLIP performs significantly worse. The authors suggest that this may be due to VALOR being trained on dynamic movie data while CLIP is trained on static images. However, this explanation remains speculative. More in-depth discussion is needed on the architectural and inductive biases of the two models, and how these may contribute to their differences in modeling brain responses.

      (2) The methods section lacks clarity regarding which layers of VALOR and CLIP were used to extract features for voxel-wise encoding modeling. A more detailed methodological description is necessary to ensure reproducibility and interpretability. Furthermore, discussion of the inductive biases inherent in these models-and their implications for brain alignment - is crucial.

      (3) A broader question remains insufficiently addressed: what is the purpose of visual-text alignment in the human brain? One hypothesis is that it supports the formation of abstract semantic representations that rely on no specific input modality. While VALOR performs well in voxel-wise encoding, it is unclear whether this necessarily indicates the emergence of such abstract semantics. The authors are encouraged to discuss how the computational architecture of VALOR may reflect this alignment mechanism and what implications it has for understanding brain function.

      (4) The current methods section does not provide enough details about the network architectures, parameter settings, or whether pretrained models were used. If so, please provide links to the pretrained models to facilitate reproducible science.

    3. Reviewer #2 (Public review):

      Summary:

      Fu and colleagues have shown that VALOR, a model of multimodal and dynamic stimulus features, better predicts brain responses compared to unimodal or static models such as AlexNet, WordNet, or CLIP. The authors demonstrated the robustness of their findings by generalizing encoding results to an external dataset. They demonstrated the models' practical benefit by showing that semantic mappings were comparable to another model that required labor-intensive manual annotation. Finally, the authors showed that the model reveals predictive coding mechanisms of the brain, which held a meaningful relationship with individuals' fluid intelligence measures.

      Strengths:

      Recent advances in neural network models that extract visual, linguistic, and semantic features from real-world stimuli have enabled neuroscientists to build encoding models that predict brain responses from these features. Higher prediction accuracy indicates greater explained variance in neural activity, and therefore a better model of brain function. Commonly used models include AlexNet for visual features, WordNet for audio-semantic features, and CLIP for visuo-semantic features; these served as comparison models in the study. Building on this line of work, the authors developed an encoding model using VALOR, which captures the multimodal and dynamic nature of real-world stimuli. VALOR outperformed the comparison models in predicting brain responses. It also recapitulated known semantic mappings and revealed evidence of predictive processing in the brain. These findings support VALOR as a strong candidate model of brain function.

      Weaknesses:

      The authors argue that this modeling contributes to a better understanding of how the brain works. However, upon reading, I am less convinced about how VALOR's superior performance over other models tells us more about the brain. VALOR is a better model of the audiovisual stimulus because it processes multimodal and dynamic stimuli compared to other unimodal or static models. If the model better captures real-world stimuli, then I almost feel that it has to better capture brain responses, assuming that the brain is a system that is optimized to process multimodal and dynamic inputs from the real world. The authors could strengthen the manuscript if the significance of their encoding model findings were better explained.

      In Study 3, the authors show high alignment between WordNet and VALOR feature PCs. Upon reading the method together with Figure 3, I suspect that the alignment almost has to be high, given that the authors projected VALOR features to the Huth et al.'s PC space. Could the authors conduct non-parametric permutation tests, such as shuffling the VALOR features prior to mapping onto Huth et al.'s PC space, and then calculating the Jaccard scores? I imagine that the null distribution would be positively shifted. Still, I would be convinced if the alignment is higher than this shifted null distribution for each PC. If my understanding of this is incorrect, I suggest editing the relevant Method section (line 508) because this analysis was not easy to understand.

      In Study 4, the authors show that individuals whose superior parietal gyrus (SPG) exhibited high prediction distance had high fluid cognitive scores (Figure 4C). I had a hard time believing that this was a hypothesis-driven analysis. The authors motivate the analysis that "SPG and PCu have been strongly linked to fluid intelligence (line 304)". Did the authors conduct two analyses only-SPG-fluid intelligence and PCu-fluid intelligence-without relating other brain regions to other individual differences measures? Even if so, the authors should have reported the same r-value and p-value for PCu-fluid intelligence. If SPG-fluid intelligence indeed holds specificity in terms of statistical significance compared to all possible scenarios that were tested, is this rationally an expected result, and could the authors explain the specificity? Also, the authors should explain why they considered fluid intelligence to be the proxy of one's ability to anticipate upcoming scenes during movie watching. I would have understood the rationale better if the authors had at least aggregated predictive scores for all brain regions that held significance into one summary statistic and found a significant correlation with the fluid intelligence measure.

    4. Reviewer #3 (Public review):

      Summary:

      In this work, the authors aim to improve neural encoding models for naturalistic video stimuli by integrating temporally aligned multimodal features derived from a deep learning model (VALOR) to predict fMRI responses during movie viewing.

      Strengths:

      The major strength of the study lies in its systematic comparison across unimodal and multimodal models using large-scale, high-resolution fMRI datasets. The VALOR model demonstrates improved predictive accuracy and cross-dataset generalization. The model also reveals inherent semantic dimensions of cortical organization and can be used to evaluate the integration timescale of predictive coding.

      This study demonstrates the utility of modern multimodal pretrained models for improving brain encoding in naturalistic contexts. While not conceptually novel, the application is technically sound, and the data and modeling pipeline may serve as a valuable benchmark for future studies.

      Weaknesses:

      The overall framework of using data-driven features derived from pretrained AI models to predict neural response has been well studied and accepted by the field of neuroAI for over a decade. The demonstrated improvements in prediction accuracy, generalization, and semantic mapping are largely attributable to the richer temporal and multimodal representations provided by the VALOR model, not a novel neural modeling framework per se. As such, the work may be viewed as an incremental application of recent advances in multimodal AI to a well-established neural encoding pipeline, rather than a conceptual advance in modeling neural mechanisms.

      Several key claims are overstated or lack sufficient justification:

      (1) Lines 95-96: The authors claim that "cortical areas share a common space," citing references [22-24]. However, these references primarily support the notion that different modalities or representations can be aligned in a common embedding space from a modeling perspective, rather than providing direct evidence that cortical areas themselves are aligned in a shared neural representational space.

      (2) The authors discuss semantic annotation as if it is still a critical component of encoding models. However, recent advances in AI-based encoding methods rely on features derived from large-scale pretrained models (e.g., CLIP, GPT), which automatically capture semantic structure without requiring explicit annotation. While the manuscript does not systematically address this transition, it is important to clarify that the use of such pretrained models is now standard in the field and should not be positioned as an innovation of the present work. Additionally, the citation of Huth et al. (2012, Neuron) to justify the use of WordNet-based annotation omits the important methodological shift in Huth et al. (2016, Nature), which moved away from manual semantic labeling altogether.

      Since the 2012 dataset is used primarily to enable comparison in study 3, the emphasis should not be placed on reiterating the disadvantages of semantic annotation, which have already been addressed in prior work. Instead, the manuscript's strength lies in its direct comparison between data-driven feature representations and semantic annotation based on WordNet categories. The authors should place greater emphasis on analyzing and discussing the differences revealed by these two approaches, rather than focusing mainly on the general advantage of automated semantic mapping.

      (3) The authors use subject-specific encoding models trained on the HCP dataset to predict group-level mean responses in an independent in-house dataset. While this analysis is framed as testing model generalization, it is important to clarify that it is not assessing traditional out-of-distribution (OOD) generalization, where the same subject is tested on novel stimuli, but rather evaluating which encoding model's feature space contains more stimulus-specific and cross-subject-consistent information that can transfer across datasets.

      Within this setup, the finding that VALOR outperforms CLIP, AlexNet, and WordNet is somewhat expected. VALOR encodes rich spatiotemporal information from videos, making it more aligned with movie-based neural responses. CLIP and AlexNet are static image-based models and thus lack temporal context, while WordNet only provides coarse categorical labels with no stimulus-specific detail. Therefore, the results primarily reflect the advantage of temporally-aware features in capturing shared neural dynamics, rather than revealing surprising model generalization. A direct comparison to pure video-based models, such as Video Swin Transformers or other more recent video models, would help strengthen the argument.

      Moreover, while WordNet-based encoding models perform reasonably well within-subject in the HCP dataset, their generalization to group-level responses in the Short Fun Movies (SFM) dataset is markedly poorer. This could indicate that these models capture a considerable amount of subject-specific variance, which fails to translate to consistent group-level activity. This observation highlights the importance of distinguishing between encoding models that capture stimulus-driven representations and those that overfit to individual heterogeneities.

    1. eLife Assessment

      This important Research Advance builds on the authors' previous work delineating the roles of the rodent perirhinal cortex and the basolateral amygdala in first- and second-order learning. The convincing results show that serial exposure of non-motivationally relevant stimuli influences how those stimuli are encoded within the perirhinal cortex and basolateral amygdala when paired with a shock. This manuscript will be interesting for researchers in cognitive and behavioral neuroscience.

    2. Reviewer #1 (Public review):

      Summary:

      This study advances the lab's growing body of evidence exploring higher-order learning and its neural mechanisms. They recently found that NMDA receptor activity in the perirhinal cortex was necessary for integrating stimulus-stimulus associations with stimulus-shock associations (mediated learning) to produce preconditioned fear, but it was not necessary for forming stimulus-shock associations. On the other hand, basolateral amygdala NMDA receptor activity is required for forming stimulus-shock memories. Based on these facts, the authors assessed: (1) why the perirhinal cortex is necessary for mediated learning but not direct fear learning, and (2) the determinants of perirhinal cortex versus basolateral amygdala necessity for forming direct versus indirect fear memories. The authors used standard sensory preconditioning and variants designed to manipulate the novelty and temporal relationship between stimuli and shock and, therefore, the attentional state under which associative information might be processed. Under experimental conditions where information would presumably be processed primarily in the periphery of attention (temporal distance between stimulus/shock or stimulus pre-exposure), perirhinal cortex NMDA receptor activation was required for learning indirect associations. On the other hand, when information would likely be processed in focal attention (novel stimulus contiguous with shock), basolateral amygdala NMDA activity was required for learning direct associations. Together, the findings indicate that the perirhinal cortex and basolateral amygdala subserve peripheral and focal attention, respectively. The authors provide support for their conclusions using careful, hypothesis-driven experimental design, rigorous methods, and integrating their findings with the relevant literature on learning theory, information processing, and neurobiology. Therefore, this work will be highly interesting to several fields.

      Strengths:

      (1) The experiments were carefully constructed and designed to test hypotheses that were rooted in the lab's previous work, in addition to established learning theory and information processing background literature.

      (2) There are clear predictions and alternative outcomes. The provided table does an excellent job of condensing and enhancing the readability of a large amount of data.

      (3) In a broad sense, attention states are a component of nearly every behavioral experiment. Therefore, identifying their engagement by dissociable brain areas and under different learning conditions is an important area of research.

      (4) The authors clearly note where they replicated their own findings, report full statistical measures, effect sizes, and confidence intervals, indicating the level of scientific rigor.

      (5) The findings raise questions for future experiments that will further test the authors' hypotheses; this is well discussed.

      Weaknesses:

      As a reader, it is difficult to interpret how first-order fear could be impaired while preconditioned fear is intact; it requires a bit of "reading between the lines".

    3. Reviewer #2 (Public review):

      Summary:

      This paper continues the authors' research on the roles of the basolateral amygdala (BLA) and the perirhinal cortex (PRh) in sensory preconditioning (SPC) and second-order conditioning (SOC). In this manuscript, the authors explore how prior exposure to stimuli may influence which regions are necessary for conditioning to the second-order cue (S2). The authors perform a series of experiments which first confirm prior results shown by the author - that NMDA receptors in the PRh are necessary in SPC during conditioning of the first-order cue (S1) with shock to allow for freezing to S2 at test; and that NMDA receptors in the BLA are necessary for S1 conditioning during the S1-shock pairings. The authors then set out to test the hypothesis that the PRh encodes associations in a peripheral state of attention, whereas the BLA encodes associations in a focal state of attention, similar to the A1 and A2 states in Wagner's theory of SOP. To do this, they show that BLA is necessary for conditioning to S2 when the S2 is first exposed during a serial compound procedure - S2-S1-shock. To determine whether pre-exposure of S2 will shift S2 to a peripheral focal state, the authors run a design in which S2-S1 presentations are given prior to the serial compound phase. The authors show that this restores NMDA receptor activity within the PRh as necessary for the fear response to S2 at test. They then test whether the presence of S1 during the serial compound conditioning allows the PRh to support the fear responses to S2 by introducing a delay conditioning paradigm in which S1 is no longer present. The authors find that PRh is no longer required and suggest that this is due to S2 remaining in the primary focal state.

      Strengths:

      As with their earlier work, the authors have performed a rigorous series of experiments to better understand the roles of the BLA and PRh in the learning of first- and second-order stimuli. The experiments are well-designed and clearly presented, and the results show definitive differences in functionality between the PRh and BLA. The first experiment confirms earlier findings from the lab (and others), and the authors then build on their previous work to more deeply reveal how these regions differ in how they encode associations between stimuli. The authors have done a commendable job of pursuing these questions.

      Table 1 is an excellent way to highlight the results and provide the reader with a quick look-up table of the findings.

      Weaknesses:

      The authors have attempted to resolve the question of the roles of the PRh and BLA in SPC and SOC, which the authors have explored in previous papers. Laudably, the authors have produced substantial results indicating how these two regions function in the learning of first- and second-order cues, providing an opportunity to narrow in on possible theories for their functionality. Yet the authors have framed this experiment in terms of an attentional framework and have argued that the results support this particular framework and hypothesis - that the PRh encodes peripheral and the BLA encodes focal states of learning. This certainly seems like a viable and exciting hypothesis, yet I don't see why the results have been completely framed and interpreted this way. It seems to me that there are still some alternative interpretations that are plausible and should be included in the paper.

    4. Reviewer #3 (Public review):

      Summary:

      This manuscript presents a series of experiments that further investigate the roles of the BLA and PRH in sensory preconditioning, with a particular focus on understanding their differential involvement in the association of S1 and S2 with shock.

      Strengths:

      The motivation for the study is clearly articulated, and the experimental designs are thoughtfully constructed. I especially appreciate the inclusion of Table 1, which makes the designs easy to follow. The results are clearly presented, and the statistical analyses are rigorous. My comments below mainly concern areas where the writing could be improved to help readers more easily grasp the logic behind the experiments.

      Weaknesses:

      (1) Lines 56-58: The two previous findings should be more clearly summarized. Specifically, it's unclear whether the "mediated S2-shock" association occurred during Stage 2 or Stage 3. I assume the authors mean Stage 2, but Stage 2 alone would not yet involve "fear of S2," making this expression a bit confusing.

      (2) Line 61: The phrase "Pavlovian fear conditioning" is ambiguous in this context. I assume it refers to S1-shock or S2-shock conditioning. If so, it would be clearer to state this explicitly.

      (3) Regarding the distinction between having or not having Stage 1 S2-S1 pairings, is "novel vs. familiar" the most accurate way to frame this? This terminology could be misleading, especially since one might wonder why S2 couldn't just be presented alone on Stage 1 if novelty is the critical factor. Would "outcome relevance" or "predictability" be more appropriate descriptors? If the authors choose to retain the "novel vs. familiar" framing, I suggest providing a clear explanation of this rationale before introducing the predictions around Line 118.

      (4) Line 121: This statement should refer to S1, not S2.

      (5) Line 124: This one should refer to S2, not S1.

      (6) Additionally, the rationale for Experiment 4 is not introduced before the Results section. While it is understandable that Experiment 4 functions as a follow-up to Experiment 3, it would be helpful to briefly explain the reasoning behind its inclusion.

    1. eLife Assessment

      This manuscript describes the identification and characterization of 12 specific phosphomimetic mutations in the recombinant full-length human tau protein that trigger tau to form fibrils. This fundamental study will allow in vitro mechanistic investigations. The presented evidence is convincing. This manuscript will be of interest to all scientists in the amyloid formation field.

    2. Reviewer #1 (Public review):

      Summary and Strengths:

      The very well-written manuscript by Lövestam et al. from the Scheres/Goedert groups entitled "Twelve phosphomimetic mutations induce the assembly of recombinant full-length human tau into paired helical filaments" demonstrates the in vitro production of the so-called paired helical filament Alzheimer's disease (AD) polymorph fold of tau amyloids through the introduction of 12 point mutations that attempt to mimic the disease-associated hyper-phosphorylation of tau. The presented work is very important because it enables disease-related scientific work, including seeded amyloid replication in cells, to be performed in vitro using recombinant-expressed tau protein.

      Comments on revised version:

      The manuscript is significantly improved, as also indicated by Reviewer 2, with the 100% formation of the PHF and the additional experiments to elucidate on the potential mechanism by the PTMs. This is a great work.

    3. Reviewer #2 (Public review):

      Summary:

      This manuscript addresses an important impediment in the field of Alzheimer's disease (AD) and tauapathy research by showing that 12 specific phosphomimetic mutations in full-length tau allow the protein to aggregate into fibrils with the AD fold and the fold of chronic traumatic encephalopathy fibrils in vitro. The paper presents comprehensive structural and cell based seeding data indicating the improvement of their approach over previous in vitro attempts on non-full-length tau constructs. The main weaknesses of this work results from the fact that only up to 70% of the tau fibrils form the desired fibril polymorphs. In addition, some of the figures are of low quality and confusing.

      Strengths:

      This study provides significant progress towards a very important and timely topic in the amyloid community, namely the in vitro production of tau fibrils found in patients.

      The 12 specific phosphomimetic mutations presented in this work will have an immediate impact in the field since they can be easily reproduced.

      Multiple high-resolution structures support the success of the phosphomimetic mutation approach.

      Additional data show the seeding efficiency of the resulting fibrils, their reduced tendency to bundle, and their ability to be labeled without affecting core structure or seeding capability.

      Comments on revised version:

      Generally, I am satisfied with the revisions. Specifically, the new results showing 100% formation of PHF is a significant improvement.

    4. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review): 

      Summary and Strengths:

      The very well-written manuscript by Lövestam et al. from the Scheres/Goedert groups entitled "Twelve phosphomimetic mutations induce the assembly of recombinant fulllength human tau into paired helical filaments" demonstrates the in vitro production of the so-called paired helical filament Alzheimer's disease (AD) polymorph fold of tau amyloids through the introduction of 12 point mutations that attempt to mimic the disease-associated hyper-phosphorylation of tau. The presented work is very important because it enables disease-related scientific work, including seeded amyloid replication in cells, to be performed in vitro using recombinant-expressed tau protein. 

      Weaknesses: 

      The following points are asked to be addressed by the authors:

      (i) In the discussion it would be helpful to note the findings that in AD the chemical structure tau (including phosphorylation) is what defines the polymorph fold and not the buffer/cellular environment. It would be further interesting to discuss these findings in respect to the relationship between disease and structure. The presented findings suggest that due to a cellular/organismal alteration, such as aging or Abeta aggregation, tau is specifically hyper-phosphorylated which then leads to its aggregation into the paired helical filaments that are associated with AD. 

      We have added an extra sentence to the Introduction to emphasise this possibility: “Besides the cellular environment in which they assemble, different tau folds may also be determined by chemical modifications of tau itself.”

      In addition, the last paragraph of the Discussion now reads: “It could be that, besides different cellular environments in which the filaments assemble, different posttranslational modification patterns are also important for the assembly of tau into protofilament folds that are specific for the other tauopathies.”

      (ii) The conditions used for each assembly reaction are a bit hard to keep track of and somewhat ambiguous. In order to help the reader, I would suggest making a table to show conditions used for each type of assembly (including the diameter / throw of the orbital shaker) and the results (structural/biological) of those conditions. For example, presumably the authors did not have ThT in the samples used for cryo-EM but the methods section does not specify this. Also, the presence of trace NaCl is proposed as a possible cause for the CTE fold to appear in the 0N4R sample (page 4) but no explanation of why this particular sample would have more NaCl than the others. Furthermore, it appears that NaCl was actually used in the seeded assembly reactions that produced the PHF and not the CTE fold. This would seem to indicate the CTE structure of 0N4RPAD12 is not actually induced by NaCl (like it was for tau297-391). In order for the reader to better understand the reproducibility of the polymorphs, it would be helpful to indicate in how many different conditions and how many replicates with new protein preparations each polymorph was observed (could be included in the same table)  

      We have added a new table (Table 1) with the buffer conditions, protein concentration and shaking speed and time, for all structures described in this paper. We never added ThT to assembly reactions that were used for cryo-EM.

      We did not use NaCl in the seeded assembly reactions (we used sodium citrate). We don’t really know why 0N4R PAD12 tau more readily forms the CTE fold. The observation that it does so prompted us to use 0N3R for all ensuing experiments. 

      (iii) It is not clear how the authors calculate the percentage of each filament type. In Figure 1 it is stated "discarded solved particles (coloured) and discarded filaments in grey" which leaves the reviewer wondering what a "discarded solved particle" is and which filaments were discarded. From the main text one guesses that the latter is probably false positives from automated picking but if so, these should not be referred to as filaments. Also, are the percentages calculated for filaments or segments? In any case, it would be more helpful in such are report to know the best estimate of the ratio of identified filament types without confusing the reader with a measure of the quality of the picking algorithm. Please clarify. Also, a clarification is asked for the significance of the varying degrees of PHF and AD monomer filaments in the various assembly conditions. It could be expected that there is significant variability from sample to sample but it would be interesting to know if there has been any attempt to reproduce the samples to measure this variability. If not, it might be worth mentioning so that the % values are taking with the appropriate sized grain of salt. Finally, the representation of the data in Figure 1 would seem to imply that the 0N3R forms less or no monofilament AD fold because no cross-section is shown for this structure, however it is very similar to (or statistically the same as) the 1:1 mix of 0N3R:0N4R.

      In the revised manuscript, we have used bi-hierchical clustering of filaments, where each segment (or particle) is classified based on both 2D class assignment and to which filament it belongs (this method is based on [Porthula et al (2019), Ultramicroscopy 203, 132-138] and was further developed in [Lövestam et al (2024) Nature 7993, 119-125]. Based on the assumption that filament type does not change within a single filament type, we have observed that this gives excellent classification results, and that this approach allows classification of many, even small minority, filament types. Using this approach, we now quantify the different filament types on the number of segments extracted from filaments classified in this way. 

      Moreover, we have also addressed the problem of having singlets among the PHF preparation: it turns out that waiting longer, just by transferring samples out of the shaker after one week and incubating it quiescently at 37 ºC for two more weeks, the singlets disappear and only PHFs remain. Filaments made for the fluorophore labelling in the revised Figure 3 were also done using the new protocol. In total, we have N=7 replicates with a mean of 95.3% PHFs and a standard deviation of 9.4%. The revised text in the Results section reads:

      “To further increase the proportions of PHFs-to-singlet ratio, we removed the plate from the shaker after one week and incubated it quiescently at 37 ºC for two more weeks. This resulted in 100% PHFs formed (Figure 1 – figure supplement 4). When repeated seven times, on average 95.3% PHFs formed, with 25% of singlets formed in a single outlier (Figure 1 – figure supplement 5)” 

      (iv) The interpretation of the NMR data on soluble tau that the mutations on the second site are suppressing in part long range dynamic interaction around the aggregationinitiation site (FIA) is sound. It is in particular interesting to find that the mutations have a similar effect as the truncation at residue 391. An additional experiment using solvent PREs to elaborate on the solvent exposed sequence-resolved electrostatic potential and the intra-molecular long range interactions would likely strengthen the interpretation significantly (Iwahara, for example, Yu et al, in JACS 2024). Figure 6D Figure supplement shows the NMR cross peak intensities between tau 151-391 and PAD12tau151-391. Overall the intensities of the PAD12 tau construct are more intense which could be interpreted with less conformational exchange between long range dynamic interactions. There are however several regions which do not show any intensity anymore when compared with the corresponding wildtype construct such as 259-262, 292-294 which should be discussed/explained. 

      While long-range intramolecular interactions of tau have previously been reported through the use of spin labels (Mukrasch et al 2009 PLoS Biol 7(2): e1000034), we have been hesitant to introduce paramagnetic agents into our samples for two reasons. First, the bulky size of the spin label may affect filament formation or influence the dynamic properties of the protein. Second, covalent addition of the spin label requires mutation of the primary sequence to both remove native cysteine residues and add cysteines at the desired label location. We have previously shown that mutation of cysteine 322 to alanine leads to the formation of tau filaments with a structure that is different from the PHF (Santambrogio et al (2025) bioRxiv 2025.03.29.646137). 

      Instead, we have included in the revised manuscript new NMR and cryo-EM data that provide further support for the model that a FIA-like interaction between residues <sub>392</sub>IVYK<sub>395</sub> and residues <sub>306</sub>VQIVYK<sub>311</sub> has an inhibiting effect on filament nucleation in unmodified full-length tau. A mutant of tau297-441 where residues <sub>392</sub>IVYK<sub>395</sub> have been deleted and that does not contain the four PAD12 mutations in the carboxy-terminal domain behaves similarly in the NMR experiment as the tau297-441 construct with those four PAD12 mutations. Moreover, full-length 0N3R tau with the eight PAD12 mutations in the amino-terminal fuzzy coat and with the deletion of<sub>392</sub>IVYK<sub>395</sub>, but without the four PAD12 mutations in the carboxy-terminal domain, assembles readily into amyloid filaments (of which we also solved a cryo-EM structure, see the revised Figure 6B). These observations provide mechanistic insights into the previously proposed paper-clip model [Jeganathan (2008), J Biol Chem 283, 32066-32076], where interactions between the fuzzy coat inhibit filament formation of unmodified full-length tau, and phosphorylation in the fuzzy coat interferes with these interactions, thus leading to filament nucleation. Of course, the identification of residues <sub>392</sub>IVYK<sub>395</sub> for this interaction also explain why truncation of tau at residue 391 leads to spontaneous assembly. We have introduced a new Figure 7 to the revised manuscript to explain this model in more detail. The corresponding new section in the Results reads:

      “To investigate this further, we also tested a tau construct comprising residues tau297-441 without the phosphomimetic mutations, but with a deletion of residues (Δ392-395). Filaments formed rapidly and the cryo-EM structure showed that the ordered core consisted of the amino-terminal part of the construct spanning residues 297-318 (Figure 6B). NMR analysis (Figure 6 – figure supplement 5B) showed that the tau297441 Δ392-395 construct exhibited similar backbone rigidity properties to the tau297-441 PAD12 construct, despite peak locations and local secondary structural propensities being more similar to the wildtype tau297-441 (Figure 6 – figure supplement 5A; Figure 6 – figure supplement 6). HSQC peak intensities in the 297-319 and 392-404 regions of tau297-441 Δ392-395 (Figure 6A, expanded from Figure 6 - figure supplement 5C) were like those in the tau297-441 PAD12. These data suggest that the IVYK deletion has a similar effect as the phosphomimetics on residues 396, 400, 403 and 404 on disrupting an intra-molecular interaction between the FIA core region and the carboxy-terminal domain, which may therefore be mediated by interactions between the two IVYK motifs that are similar to those observed in the FIA (Lövestam et al, 2024).”

      A new section in the Discussion now reads:

      “Our NMR data provide insights into the mechanism by which phosphorylation in the fuzzy coat of tau, or truncations of tau, lead to the formation of filaments with ordered cores of residues that are themselves not phosphorylated. HSQC peak intensity differences between unmodified tau 297-441, PAD12 tau 297-441 and tau297-391 suggest that phosphorylation of the fuzzy coat, particularly near the <sub>392</sub>IVYK<sub>395</sub> motif in the carboxy-terminal domain, a7ects the conformation of the residues of tau that become ordered in the FIA (Lövestam et al., 2024). Removal of residues <sub>392</sub>IVYK<sub>395</sub> in the carboxyterminal domain of tau 297-441 led to rapid filament formation in the absence of phosphomimetics, while HSQC peak intensity di7erences for this construct indicate similar backbone rigidity compared to tau 297-441 without the deletion, but with the four PAD12 mutations in the carboxy-terminal domain. Combined, these observations support a model where the <sub>392</sub>IVYK<sub>395</sub> motif in unmodified full-length tau monomers interacts with the <sub>308</sub>IVYK<sub>311</sub> motif, thus inhibiting filament formation by preventing the formation of the nucleating species, the FIA. Phosphorylation of nearby residues 396, 400, 403 and 404, or truncation at residue 391, disrupt this interaction and lead to filament formation. This model agrees with the previously proposed hairpin-like model of tau (Jeganathan et al., 2008), although the corresponding interaction between the aminoterminal domain of tau and the core-forming region remains unknown (Figure 7).”

      Due to the challenging nature of the assignment, it was not possible to assign all residues in the HSQC of the tau151-391 and the PAD12 tau151-391 samples, including residues 259-262 and 292-294 for PAD12 tau151-391. To make this clearer, we have marked residues that are not assigned with an asterisk in the revised version of Figure 6 – figure supplement 1.  

      (v) Concerning the Cryo-EM data from the different hyper-phosphorylation mimics, it would seem that the authors could at least comment on the proportion of monofilament and paired-filaments even if they could not solve the structures. Nonetheless, based on their previous publications, one would also expect that they could show whether the nontwisted filaments are likely to have the same structure (by comparing the 2D classes to projections of non-twisted models). Also, it is very interesting to note that the twist could be so strongly controlled by the charge distribution on the non-structured regions (and may be also related to the work by Mezzenga on twist rate and buffer conditions). Is the result reported in Figure 2 a one-oT case or was it also reproducible?

      As also indicated in the main text, the assembly conditions for the PAD12+4, PAD12-4 and PAD12+/-4 constructs were kept the same as those for the PAD12 construct. It is possible that further optimisation of the conditions could again lead to twisting filaments, but we chose not to pursue this route. With unlimited resources and time, one could assess in detail which of the PAD12 mutations are required and which ones could be omitted to form PHFs. However, this would require a lot of work and cryo-EM time. For now, we chose to prioritise reporting conditions that do work to reproducibly make PHFs in the laboratory (using the PAD12 construct) and leave the more detailed analysis of other constructs for future studies. 

      Reviewer #2 (Public review): 

      Summary: 

      This manuscript addresses an important impediment in the field of Alzheimer's disease (AD) and tauapathy research by showing that 12 specific phosphomimetic mutations in full-length tau allow the protein to aggregate into fibrils with the AD fold and the fold of chronic traumatic encephalopathy fibrils in vitro. The paper presents comprehensive structural and cell based seeding data indicating the improvement of their approach over previous in vitro attempts on non-full-length tau constructs. The main weaknesses of this work results from the fact that only up to 70% of the tau fibrils form the desired fibril polymorphs. In addition, some of the figures are of low quality and confusing. 

      As also explained in our response to reviewer #1, we have performed better quantification of filament types in the revised manuscript, and we have investigated how to get rid of the singlets. In the revised manuscript, we report that singlets disappear as time passes and that one can obtain 100% pure PHFs by quiescently incubating samples for another two weeks, after shaking for a week.

      Strengths: 

      This study provides significant progress towards a very important and timely topic in the amyloid community, namely the in vitro production of tau fibrils found in patients.

      The 12 specific phosphomimetic mutations presented in this work will have an immediate impact in the field since they can be easily reproduced.

      Multiple high-resolution structures support the success of the phosphomimetic mutation approach. Additional data show the seeding efficiency of the resulting fibrils, their reduced tendency to bundle, and their ability to be labeled without affecting core structure or seeding capability.

      Weaknesses: 

      Despite the success of making full-length AD tau fibrils, still ~30% of the fibrils are either not PHF, or not accounted for. A small fraction of the fibrils are single filaments and another ~20% are not accounted for. The authors mention that ~20% of these fibrils were not picked by the automated algorithm. However, it would be important to get additional clarity about these fibrils. Therefore, it would improve the impact of the paper if the authors could manually analyze passed-over particles to see if they are compatible with PHF or fall into a different class of fibrils. In addition, it would be helpful if the authors could comment on what can be done/tried to get the PHF yield closer to 90-100%

      As mentioned above, in the revised manuscript we show that the singlets disappear over time and we now include a description of a method that leads to 100% PHF formation.

      Reviewer #1 (Recommendations for the authors):

      Minor points: 

      (a) In Figure 6 the dashed purple vertical lines overlap with the black bars, rendering a grey color which is confusing because the grey bars used for the shorter construct. It is suggested to improve the colors (remove transparency on the purple?)

      We thank the reviewers for their suggestions for improving the visualisation of our data. We have recoloured the tau297-391 data from grey to gold and moved the dashed lines to the back of image to remove the apparent colour changes.  

      (b) Is there any support for the suggestion that "part of the second microtubule-binding repeat is ordered" being "related to this construct forming filaments with only a single protofilament"? It seemed to have come out of nowhere.

      There is no further support for this statement, but we thought it would be worth hypothesizing about this observation. 

      (c) Figures 1 and 4 E is better described as a "main chain trace" or "backbone trace" although the latter usually refers to only CA positions. Ribbon usually refers to something else in representations of protein structures. 

      This has been changed into “main chain trace” in Figures 1 and 4. 

      (d) Figure 1 Supplement 3: Panel letters in the legend do not match. 

      This has been fixed.

      Reviewer #2 (Recommendations for the authors): 

      The introduction is a bit lengthy (e.g. 3rd paragraph of introduction) and could benefit by focusing specific question the manuscript addresses. 

      We have shortened the Introduction. It now contains ~1150 words, which we hope provides a better compromise between length and sufficient background information.

      Figure captions are generally not helpful in conveying a message to the reader.

      Figure 1 - figure supplement 3 is quite confusing. The 4 structures in A) do not correspond to the grids in B-E. What is this figure supposed to show?

      This confusion was probably the result of incorrect labelling of panels in the legend, which was also pointed out by reviewer #1. This has been fixed in the revised manuscript.

      Page 11: Although I know what you mean, 'linear increase of ThT fluorescence' is not the correct term. 

      We have replaced “linear” with “rapid”.

      Page 15: Although line shape and peak intensity can be related you are not reporting on line shape or width but simply on peak intensity. Therefore, I wouldn't talk about the result of a 'line shape analysis'.

      We have changed the wording accordingly. 

      Figure 6 (and supplement 1) are confusing and too small to be readable in print. It might be sufficient to show the CSP and upload the remaining data to the BMRB. 

      We have made a clearer version of the main NMR Figure 6 in the revised manuscript showing the most pertinent NMR data and have moved the previous version into the figure supplements. We designed these figures to be viewed as full page A4 panels, ideally seen in one image as they show multiple comparisons of different experiments and constructs.

      As such we feel these will be best viewed on screen as part of the eLife web document. We have uploaded HSQC spectra and assignments to the BMRB (see below).

      Figure 6 supplement 3 might benefit from pointing out key residues in the overlay.

      We have added the labels (this is now Figure 6 supplement 4).

      Data availability: Please upload the assignments to the BMRB together with key spectra (e.g. HSQCs). 

      We have uploaded HSQC data along with our assignments to the BMRB, the accession codes are 52694 – tau297-441 wt; 52695 – tau297-441 PAD-12; 52696 – tau151-391 wt; 52697 – tau151-391 PAD-12; and 53230 – tau297-441 delta392-395.  These accession codes have been added to the manuscript. 

      The quality of some of the figures (specifically Figure 1 - supplement 3 and Figure 6) is not suitable for publication. 

      For the original submission to bioRxiv, we produced a single PDF with a manageable file size. We will liaise with the eLife staff to ensure the images used in the version of record will be suitable for publication.

    1. eLife Assessment

      This important work presents a stochastic branching process model of tumour-immune coevolution, incorporating stochastic antigenic mutation accumulation and escape within the cancer cell population. They then used this model to investigate how tumour-immune interactions influence tumour outcome and the summary statistics of sequencing data of bulk and single-cell sequencing of a tumour. The evidence is compelling and the work will be of interest to cancer-immune biology fields.

    2. Reviewer #1 (Public review):

      Summary:

      The topic of tumor-immune co-evolution is an important, understudied topic with, as the authors noted, a general dearth of good models in this space. The authors have made important progress on the topic by introduced a stochastic branching process model of antigenicity / immunogenicity and measuring the proportion of simulated tumors which go extinct. The model is extensively explored and authors provide some nice theoretical results in addition to simulated results, including an analysis of increasing cancer/immune versus cyclical cancer/immune dynamics. The analysis appropriately builds upon the foundation of other work in the field of predicting site frequency spectrum, but extends the results into cancer-immune co-evolution in an intuitive computational framework.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      The topic of tumor-immune co-evolution is an important, understudied topic with, as the authors  noted, a general dearth of good models in this space. The authors have made important progress on the topic by introducing a stochastic branching process model of antigenicity/immunogenicity and measuring the proportion of simulated tumors that go extinct. The model is extensively explored, and the authors provide some nice theoretical results in addition to simulated results. 

      We thank the reviewer for the positive comments on our work.

      Major comments 

      The text in lines 183-191 is intuitively and nicely explained. However, I am not sure all of it follows from the figure panels in Figure 2. For example, the authors refer to a mutation that has a large immunogenicity, but it's not shown how many mutations, or the relative size of the mutations in Figure 2. The same comment holds true for the claim that spikes also arise for mutations with low antigenicity. 

      We thank the reviewer for helping us to further specify this statement in our original submission. We now added muller plots in a new Appendix Figure (Figure A3) presenting the relative abundances of different types of effector cells in the population over time. Each effector type is colour-coded with its antigenicity and immunogenicity. To align with this Appendix Figure (Figure A3), we also updated our Figure 2 generated under the same realisation as Figure A3. We can now see clearly that the spikes in the mean values of the antigenicity and immunogenicity over the whole effector populations in new Figure 2B&2D indeed correspond to the expansion of single or several antigenic mutations recruiting the specific effector cell types. For example, in Figure 2B, we can see that the spikes of low average antigenicity and high immunogenicity (around time 11) happen at the same time when an effector type in Figure A3 with such a trait (coloured in green) arises and takes over the population. We have rewritten our Results section related (Line 192 - Line 222 in main text and Appendix A6).

      Reviewer #2 (Public review): 

      Summary: 

      In this work, the authors developed a model of tumour-immune dynamics, incorporating stochastic antigenic mutation accumulation and escape within the cancer cell population. They then used this  model to investigate how tumour-immune interactions influence tumour outcome and summary  statistics of sequencing data. 

      Strengths: 

      This novel modeling framework addresses an important and timely topic. The authors consider the useful question of how bulk and single-cell sequencing may provide insights into the tumourimmune interactions and selection processes. 

      We thank the reviewer for the positive comments.

      Weaknesses: 

      One set of conclusions presented in the paper is the presence of cyclic dynamics between effector/cancer cells, antigenicity, and immunogenicity. However, these conclusions are supported in the manuscript by two sample trajectories of stochastic simulations, and these provide mixed support for the conclusions (i.e. the phasing asynchrony described in the text does not seem to apply to Figure 2C). 

      We have now developed a method to quantify the cyclic dynamics in our system (Appendix A7), where can track the directional changes phase portrait of the abundances of the cancer and effector cells. We first tested this method in a non-evolving stochastic predator-prey system, where our method can correctly capture the number of cycles in this system (Figure A7). We then use this method to quantify the number of cycles we observed between cancer and effector cells under different mutation rates (Figure A5) as well as whether they are counter-clockwise or clockwise cycles (Figure A6). Our results showed that the cyclic dynamics are more often to be observed when mutation rates are higher, and the majority of those cycles are counter-clockwise. When the mutation rate is high, we observe an increase of clockwise cycles, which have been observed in predator-prey systems and explained through coevolution. However, even under high mutation rates, counter-clockwise cycles are still the more frequent type. 

      In our simulations, we observed rarely out-of-phase cycles, which was by chance present in our original Figure 2. We have now removed that statement about out-of-phase cycles and replaced by more systematic analysis of the cyclic dynamics as described above (Line 192 to 207 in the revised version). We thank the constructive comment of the reviewer, which motivated us to improve our analysis significantly. 

      Similarly, the authors also find immune selection effects on the shape of the mutational burden in Figure 5 D/H using a qualitative comparison between the distributions and theoretical predictions in  the absence of immune response. However the discrepancy appears quite small in panel D, and  there are no quantitative comparisons provided to evaluate the significance. An analysis of the robustness of all the conclusions to parameter variation is missing. 

      We have now added statistical analysis using Wasserstein distance between the simulated mutation burden distribution and theoretical (neutral) expectation in Figure 5 C, D, G, H as well as in Figure A11 C&D when there is no cancer-immune interaction. We can see that the measurements of the  Wasserstein distance agrees with our statement, that the higher immune effectiveness leads to larger deviation from the neutral expectation.

      Lastly, the role of the Appendix results in the main messages of the paper is unclear. 

      We agree with the review and have now removed the Appendix sections “Deterministic Analysis”. 

      Reviewing Editor Comments: 

      I find the abstract too long. For example, "Knowledge of this coevolutionary system and the selection taking place within it can help us understand tumour-immune dynamics both during tumorigenesis but also when treatments such as immunotherapies are applied." can be shortened to: "Knowledge of this coevolutionary system can help us understand tumour-immune dynamics both during tumorigenesis and during immunotherapy treatments." 

      We agree and have taken the suggestion of the reviewer to shorten our abstract.

      Reviewer #1 (Recommendations for the authors): 

      The discussion at lines 134-140, centered around Figure A1, is an important and nicely constructed feature of the model. 

      Reviewer #2 (Recommendations for the authors): 

      I suggest that the authors conduct a more in-depth analysis of their conclusions on cyclic dynamics over a large set of sample paths.

      Done and please see our detailed response to the reviewer 2 above.

      In addition, statistical comparisons between the observed mutational burden distribution and  theoretical predictions in the absence of immune selection should be carried out to support their conclusions. In all cases, conclusions should be tested extensively for robustness/sensitivity to parameters. 

      Done and please see our detailed response to the reviewer 2 above.

      Here are some specific suggestions/comments: 

      (1) Please provide a precise mathematical description of the model to complement Figure 1. 

      We have significantly revised our “Model” section to provide a precise mathematical description of our model (Line 138 - 148). Please also see our document showing the difference between the revised version and original submission.

      (2) Section on "Interactions dictate outcome of tumour progress" and Figure 3: please define 'tumour outcome' - are the heatmaps produced in Figure 3 tumor size reflecting whether or not the population has reached level K before a particular time? Also, I do not see a definition for the 'slowgrowing' tumour proportion plotted in Figure 3CF or in the accompanying text. 

      We have now added the definition of “tumour outcome” in our “Model” section (line 171 to 176), where we explain our model parameters and quantities measured in the following “Results” section.

      (3) Figure 5C/G: the green dotted vertical line is difficult to see. 

      We have now changed the mean of the simulations to solid red lines instead of using the green dotted vertical lines previously.

      (4) Appendix A1 text under (A2) should U/N be U/C? N does not appear to be defined. 

      We have more removed the previous A1 section. Please see our response to reviewer 2 as well.

      (5) Text under (A5): it is unclear what is meant by "SFS must be heavy tailed (that is, more heterogeneous)" -- a more precise statement regarding tail decay rate and associated consequences would be more helpful. 

      We have more removed the previous A section, where the original text "...SFS must be heavy-tailed" was.

      (6) Section A4 and Figure A1: can these calculations be compared to simulations? 

      We have more removed the previous A section on the deterministic analysis as they are not so  relevant to our stochastic simulations indeed. Please see our response to reviewer 2 as well.

      (7) Also, in general, please clarify how the results in the Appendix are used in the main text conclusions or provide insights relevant to these conclusions. If they are not, one can consider removing them.  

      We have more removed the previous A section on the deterministic analysis. The remaining sections are about stochastic simulations and extended figures which support our main figures.  

      (8) Figure A2: the two lines are difficult to tell apart on each panel. Please consider different styles.

      We have changed one of the dotted lines to be solid. This figure is now Figure A1 in our revision.

    1. eLife Assessment

      This important study introduces a new class of spectrally tunable, dye-based calcium sensors optimized for imaging in organelles with high calcium concentrations, such as the endoplasmic reticulum and mitochondria. The experimental evidence supporting the applicability of these sensors is convincing, with thorough validation in cultured cells and neurons. The work will be of high interest to researchers studying calcium signaling dynamics in subcellular compartments.

    2. Reviewer #1 (Public review):

      Summary:

      The manuscript by Moret et al. details the development and characterisation of novel ER- and mitochondria-targeted genetically encoded chemogenic Ca2+ sensors.

      Strengths:

      Compared to existing probes, these sensors exhibited superior responsiveness, brightness, and photostability within the red and far-red emission spectrum, enabling triple compartment Ca2+ measurements (ER, mitochondria, cytosol) and the detection of Ca2+ dynamics in axons and dendrites.

      Weaknesses:

      The data are robust and convincing, although the manuscript text lacks precision.

    3. Reviewer #2 (Public review):

      Summary:

      Moret et al. present an engineered family of fluorescent calcium indicators based on HaloCamp, a HaloTag-based sensor system that utilizes Janelia Fluorophores (JF dyes) to report calcium dynamics. By introducing single or multiple amino acid substitutions, the authors reduce HaloCamp's calcium affinity, making these low-affinity variants well-suited for imaging calcium transients in high-calcium environments such as the endoplasmic reticulum (ER) and mitochondria. The study validates the sensors' dissociation constants (Kd), spectra, and multiplex capabilities. It demonstrates improved performance compared to existing tools when targeted to subcellular compartments in mammalian cells and cultured neurons. The sensors can be tuned across the red-to-far-red spectrum via JF585 and JF635 labeling, enabling flexible multiplexed imaging. For example, the authors show that HaloCamp can be targeted to mitochondria and used alongside other green and red sensors, allowing simultaneous imaging of calcium dynamics in the cytosol, ER, and mitochondria. Overall, they achieve their goals, and the data demonstrate that HaloCamp variants are effective for detecting ER and mitochondrial calcium changes under physiological conditions. The presented experiments support the conclusions. However, some key aspects, such as sensor kinetics and axonal validation, would benefit from further analysis.

      This work is likely to have an important impact on the fields of calcium imaging and organelle physiology. The modular design of HaloCamp and its compatibility with a wide range of fluorophores offer a broad application range for cell biologists and neuroscientists.

      Strengths:

      (1) The authors introduce the first tunable, dye-based, low-affinity HaloTag calcium sensors for subcellular imaging, addressing a significant unmet need for ER and mitochondrial calcium detection.

      (2) The ability to pair HaloCamp with JF585 and JF635 extends the spectral range, facilitating multiplexed imaging with existing calcium indicators.

      (3) The sensors are validated in a range of subcellular compartments (ER, mitochondria, cytosol) in both mammalian cells and neurons.

      (4) The authors successfully demonstrate simultaneous imaging of three compartments using orthogonal sensors, a technically impressive feat.

      (5) Kd values are measured, and fluorescent responses are tested under physiologically relevant stimulation.

      Weaknesses:

      (1) The authors do not quantify the kinetics (e.g., decay tau or off-rate) of the fluorescent signals, particularly after stimulation. For example, in the ER imaging experiments in neurons, the decay of the HaloCamp fluorescence after field stimulation (20 APs @ 20 Hz) is not analyzed or compared to ER-GCaMP6-210 or R-CEPIer.

      (2) It remains unclear whether the observed decay represents the sensor's off-kinetics or actual physiological calcium clearance from the ER. A comparison between sensors or an independent measurement of ER clearance rates in vitro would clarify this.

      (3) The choice of 20 APs at 20 Hz is not justified. Specifically, single APs or low-frequency stimulations are not tested, leaving unclear what the detection threshold of the new sensors is.

      (4) In neuron experiments, the authors report measuring ER calcium in axons based presumably on morphology, but no specific justification for selection, markers, or post hoc labeling is described.

      (5) Figure 5 assumes that all three indicators (cytosolic, ER, and mitochondrial) are fast enough to report calcium dynamics in response to histamine. This assumption is not fully validated. Cross-controls (e.g., expressing GCaMP6-210 in mitochondria and HaloCamp in the ER) would strengthen confidence that the sensors are correctly reporting dynamic changes.

      (6) It is not clear why Thapsigargin leads to depletion in HeLa cells and neurons in experiments shown in Figure 1E, but not in 2B upon field stimulation.

    1. eLife Assessment

      This study presents useful findings on the molecular mechanisms driving female-to-male sex reversal in the ricefield eel (Monopterus albus) during aging, which would be of interest to biologists studying sex determination. The manuscript describes an interesting mechanism potentially underlying sex differentiation in M. albus. However, the current data are incomplete and would benefit from more rigorous experimental approaches.

    2. Reviewer #1 (Public review):

      Summary:

      This study investigates the molecular mechanism by which warm temperature induces female-to-male sex reversal in the ricefield eel (Monopterus albus), a protogynous hermaphroditic fish of significant aquacultural value in China. The study identifies Trpv4 - a temperature-sensitive Ca²⁺ channel - as a putative thermosensor linking environmental temperature to sex determination. The authors propose that Trpv4 causes Ca²⁺ influx, leading to activation of Stat3 (pStat3). pStat3 then transcriptionally upregulates the histone demethylase Kdm6b (aka Jmjd3), leading to increased dmrt1 gene expression and ovo-testes development. This work aims to bridge ecological cues with molecular and epigenetic regulators of sex change and has potential implications for sex control in aquaculture.

      Strengths:

      (1) This study proposes the first mechanistic pathway linking thermal cues to natural sex reversal in adult ricefield eel, extending the temperature-dependent sex determination paradigm beyond embryonic reptiles and saltwater fish.

      (2) The findings could have applications for aquaculture, where skewed sex ratios apparently limit breeding efficiency.

      Weaknesses:

      (A) Scientific Concerns:

      (1) There is insufficient replication and data transparency. First, the qPCR data are presented as bar graphs without individual data points, making it impossible to assess variability or replication. Please show all individual data points and clarify n (sample size) per group. Second, the Western blotting is only shown as single replicates. If repeated 2-3 times as stated, quantification and normalization (e.g., pStat3/Stat3, GAPDH loading control) are essential. The full, uncropped blots should be included in the supplementary data.

      (2) The biological significance of the results is not clear. Many reported fold changes (e.g., kdm6b modulation by Stat3 inhibition, sox9a in S3A) are modest (<2-fold), raising concerns about biological relevance. Can the authors define thresholds of functional relevance or confirm phenotypic outcomes in these animals?

      (3) The specificity of key antibodies is not validated. Key antibodies (Stat3, pStat3, Foxl2, Amh) were raised against mammalian proteins. Their specificity for ricefield eel proteins is unverified. Validation should include siRNA-mediated knockdown with immunoblot quantification with 3 replicates. Homemade antibodies (Sox9a, Dmrt1) also require rigorous validation.

      (4) Most of the imaging data (immunofluorescence) is inconclusive. Immunofluorescence panels are small and lack monochrome channels, which severely limits interpretability. Larger, better-contrasted images (showing the merge and the monochrome of important channels) and quantification would enhance the clarity of these findings.

      (B) Other comments about the science:

      (1) In S3A, sox9a expression is not dose-responsive to Trpv4 modulation, weakening the causal inference.

      (2) An antibody against Kdm6b (if available) should be used to confirm protein-level changes.

      In sum, the interpretations are limited by the above concerns regarding data presentation and reagent specificity.

    3. Reviewer #2 (Public review):

      Summary:

      This study presents valuable findings on the molecular mechanisms driving the female-to-male transformation in the ricefield eel (Monopterus albus) during aging. The authors explore the role of temperature-activated TRPV4 signaling in promoting testicular differentiation, proposing a TRPV4-Ca²⁺-pSTAT3-Kdm6b axis that facilitates this gonadal shift.

      Strengths:

      The manuscript describes an interesting mechanism potentially underlying sex differentiation in M. albus.

      Weaknesses:

      The current data are insufficient to fully support the central claims, and the study would benefit from more rigorous experimental approaches.

      (1) Overstated Title and Claims:

      The title "TRPV4 mediates temperature-induced sex change" overstates the evidence. No histological confirmation of gonadal transformation (e.g., formation of testicular structures) is presented. Conclusions are based solely on molecular markers such as dmrt1 and sox9a, which, although suggestive, are not definitive indicators of functional sex reversal.

      (2) Temperature vs Growth Rate Confounding (Figure 1E):

      The conclusion that warm temperature directly induces gonadal transformation is confounded by potential growth rate effects. The authors state that body size was "comparable" between 25{degree sign}C and 33{degree sign}C groups, but fail to provide supporting data. In ectotherms, growth is intrinsically temperature-dependent. Given the known correlation between size and sex change in M. albus, growth rate-rather than temperature per se-may underlie the observed sex ratio shifts. Controlled growth-matched comparisons or inclusion of growth rate metrics are needed.

      (3) TRPV4 as a Thermosensor-Insufficient Evidence:

      The characterisation of TRPV4 as a direct thermosensor lacks biophysical validation. The observed transcriptional upregulation of Trpv4 under heat (Figure 2) reflects downstream responses rather than primary sensor function. Functional thermosensors, including TRPV4, respond to heat via immediate ion channel activity-typically measurable within seconds-not mRNA expression over hours. No patch-clamp or electrophysiological data are provided to confirm TRPV4 activation thresholds in eel gonadal cells. Additionally, the Ca²⁺ imaging assay (Figure 2F) lacks essential details: the timing of GSK1016790A/RN1734 administration relative to imaging is unclear, making it difficult to distinguish direct channel activity from indirect transcriptional effects.

      (4) Cellular Context of TRPV4 Activity Is Unclear:

      In situ hybridisation suggests TRPV4 expression shifts from interstitial to somatic domains under heat (Figures. 2H, S2C), implying potential cell-type-specific roles. However, the study does not clarify: (i) whether TRPV4 plays the same role across these cell types, (ii) why somatic cells show stronger signal amplification, or (iii) the cellular composition of explants used in in vitro assays. Without this resolution, conclusions from pharmacological manipulation (e.g., GSK1016790A effects) cannot be definitively linked to specific cell populations.

      (5) Rapid Trpv4 mRNA Elevation and Channel Function:

      The authors report a dramatic increase in Trpv4 mRNA within one day of heat exposure (Figures 4D, S2B). Given that TRPV4 is a membrane channel, not a transcription factor, its rapid transcriptional sensitivity to temperature raises mechanistic questions. This finding, while intriguing, seems more correlational than functional. A clearer explanation of how TRPV4 senses temperature at the molecular level is needed.

      (6) Inconclusive Evidence for the Ca<sup>2+</sup> -pSTAT3-Kdm6b Axis:

      Although the authors propose a TRPV4-Ca<sup>2+</sup> -pSTAT3-Kdm6b-dmrt1 pathway, intermediate steps remain poorly supported. For example, western blot data (Figures 3C, 4B) do not convincingly demonstrate significant pSTAT3 elevation at 34{degree sign}C. Higher-resolution and properly quantified blots are essential. The inferred signalling cascade is based largely on temporal correlation and pharmacological inhibition, which are insufficient to establish direct regulatory relationships.

      (7) Species-Specific STAT3-Kdm6b Regulation Is Unresolved:

      The proposed activation of Kdm6b by pSTAT3 contrasts with findings in the red-eared slider turtle (Trachemys scripta), where pSTAT3 represses Kdm6b. This divergence in regulatory direction between the two TSD species is surprising and demands further justification. Cross-species differences in binding motifs or epigenetic context should be explored. Additional evidence, such as luciferase reporter assays (using wild-type and mutant pSTAT3 binding motifs in the Kdm6b promoter) is needed to confirm direct activation. A rescue experiment-testing whether Kdm6b overexpression can compensate for pSTAT3 inhibition-would also greatly strengthen the model.

      (8) Immunofluorescence-Lack of Structural Markers:

      All immunofluorescence images should include structural markers to delineate gonadal boundaries. Furthermore, image descriptions in the figure legends and main text lack detail and should be significantly expanded for clarity.

      (9) Pharmacological Reagents-Mechanisms and References:

      The manuscript lacks proper references and mechanistic descriptions for the pharmacological agents used (e.g., GSK1016790A, RN1734, Stattic). Established literature on their specificity and usage context should be cited to support their application and interpretation in this study.

      (10) Efficiency of Experimental Interventions:

      The percentage of gonads exhibiting sex reversal following pharmacological or RNAi treatments should be reported in the Results. This is critical for evaluating the strength and reproducibility of the interventions.

    1. eLife Assessment

      This important work advances our understanding of DNA methylation and its consequences for susceptibility to DNA damage. This work presents evidence that DNA methylation can accentuate the genomic damage propagated by DNA damaging agents as well as potentially being an independent source of such damage. The experimental results reported are sound. The evidence presented to support the conclusions drawn is convincing and alternative interpretations are considered. The work will be of broad interest to biochemists, cell and genome biologists.

    2. Reviewer #1 (Public review):

      Summary:

      The manuscript titled "Introduction of cytosine-5 DNA methylation sensitizes cells to oxidative damage" proposes that 5mC modifications to DNA, despite being ancient and wide-spread throughout life, represent a vulnerability, making cells more susceptible to both chemical alkylation and, of more general importance, reactive oxygen species. Sarkies et al take the innovative approach of introducing enzymatic genome-wide cytosine methylation system (DNA methyltransferases, DNMTs) into E. coli, which normally lacks such a system. They provide compelling evidence that the introduction of DNMTs increases the sensitivity of E. coli to chemical alkylation damage. Surprisingly they also show DNMTs increase the sensitivity to reactive oxygen species and propose that the DNMT generated 5mC presents a target for the reactive oxygen species that is especially damaging to cells. Evidence is presented that DNMT activity directly or indirectly produces reactive oxygen species in vivo, which is an important discovery if correct, though the mechanism for this remains obscure.

      I am satisfied that the points #2, #3 and #4 relating to non-addativity, transcriptional changes and ROS generation have been appropriately addressed in this revised manuscript. The most important point (previously #1) has not been addressed beyond the acknowledgement in the results section that: "Alternatively, 3mC induction by DNMT may lead to increased levels of ssDNA, particularly in alkB mutants, which could increase the risk of further DNA damage by MMS exposure and heighten sensitivity." This slightly miss-represents the original point that 5mC the main enzymatic product of DNMTs rather or in addition to 3mC is likely to lead to transient damage susceptible ssDNA, especially in an alkB deficient background. And more centrally to the main claims of this manuscript, the authors have not resolved whether methylated cytosine introduced into bacteria is deleterious in the context of genotoxic stress because of the oxidative modification to 5mC and 3mC, or because of oxidative/chemical attack to ssDNA that is transiently exposed in the repair processing of 5mC and 3mC, especially in an alkB deficient background. This is a crucial distinction because chemical vulnerability of 5mC would likely be a universal property of cytosine methylation across life, but the wide-spread exposure of ssDNA is expected to be peculiarity of introducing cytosine methylation into a system not evolved with that modification as a standard component of its genome.

      These two models make different predictions about the predominant mutation types generated, in the authors system using M.SssI that targets C in a CG context - if oxidative damage to 5mC dominates then mutations are expected to be predominantly in a CG context, if ssDNA exposure effects dominate then the mutations are expected to be more widely distributed - sequencing post exposure clones could resolve this.

      Strengths:

      This work is based on an interesting initial premise, it is well motivated in the introduction and the manuscript is clearly written. The results themselves are compelling.

      Weaknesses:

      I am not currently convinced by the principal interpretations and think that other explanations based on known phenomena could account for key results. Specifically the authors have not resolved whether oxidative modification to 5mC and 3mC, or chemical attack to ssDNA that is transiently exposed in the repair processing of 5mC and 3mC is the principal source of the observed genotoxicity. The authors acknowledge this potential alternative model in their discussion of the revised manuscript.

    3. Reviewer #2 (Public review):

      5-methylcytosine (5mC) is a key epigenetic mark in DNA and plays a crucial role in regulating gene expression in many eukaryotes including humans. The DNA methyltransferases (DNMTs) that establish and maintain 5mC, are conserved in many species across eukaryotes, including animals, plants, and fungi, mainly in a CpG context. Interestingly, 5mC levels and distributions are quite variable across phylogenies with some species even appearing to have no such DNA methylation.

      This interesting and well-written paper discusses continuation of some of the authors' work published several years ago. In that previous paper, the laboratory demonstrated that DNA methylation pathways coevolved with DNA repair mechanisms, specifically with the alkylation repair system. Specifically, they discovered that DNMTs can introduce alkylation damage into DNA, specifically in the form of 3-methylcytosine (3mC). (This appears to be an error in the DNMT enzymatic mechanism where the generation 3mC as opposed to its preferred product 5-methylcytosine (5mC), is caused by the flipped target cytosine binding to the active site pocket of the DNMT in an inverted orientation.) The presence of 3mC is potentially toxic and can cause replication stress, which this paper suggests may explain the loss of DNA methylation in different species. They further showed that the ALKB2 enzyme plays a crucial role in repairing this alkylation damage, further emphasizing the link between DNA methylation and DNA repair.

      The co-evolution of DNMTs with DNA repair mechanisms suggest there can be distinct advantages and disadvantages of DNA methylation to different species which might depend on their environmental niche. In environments that expose species to high levels of DNA damage, high levels of 5mC in their genome may be disadvantageous. This present paper sets out to examine the sensitivity of an organism to genotoxic stresses such as alkylation and oxidation agents as the consequence of DNMT activity. Since such a study in eukaryotes would be complicated by DNA methylation controlling gene regulation, these authors cleverly utilize Escherichia coli (E.coli) and incorporate into it the DNMTs from other bacteria that methylate the cytosines of DNA in a CpG context like that observed in eukaryotes; the active sites of these enzymes are very similar to eukaryotic DNMTs and basically utilize the same catalytic mechanism (also this strain of E.coli does not specifically degrade this methylated DNA) .

      The experiments in this paper more than adequately show that E. coli expression of these DNMTs (comparing to the same strain without the DNMTS) do indeed show increased sensitivity to alkylating agents and this sensitivity was even greater than expected when a DNA repair mechanism was inactivated. Moreover, they show that this E. coli expressing this DNMT is more sensitive to oxidizing agents such as H2O2 and has exacerbated sensitivity when a DNA repair glycosylase is inactivated. Both propensities suggest that DNMT activity itself may generate additional genotoxic stress. Intrigued that DNMT expression itself might induce sensitivity to oxidative stress, the experimenters used a fluorescent sensor to show that H2O2 induced reactive oxygen species (ROS) are markedly enhanced with DNMT expression. Importantly, they show that DNMT expression alone gave rise to increased ROS amounts and both H2O2 addition and DNMT expression has greater effect that the linear combination of the two separately. They also carefully checked that the increased sensitivity to H2O2 was not potentially caused by some effect on gene expression of detoxification genes by DNMT expression and activity. Finally, by using mass spectroscopy, they show that DNMT expression led to production of the 5mC oxidation derivatives 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) in DNA. 5fC is a substrate for base excision repair while 5hmC is not; more 5fC was observed. Introduction of non-bacterial enzymes that produce 5hmC and 5fC into the DNMT expressing bacteria again showed a greater sensitivity than expected. Remarkedly, in their assay with addition of H2O2, bacteria showed no growth with this dual expression of DNMT and these enzymes.

      Overall, the authors conduct well thought-out and simple experiments to show that a disadvantageous consequence of DNMT expression leading to 5mC in DNA is increased sensitivity to oxidative stress as well as alkylating agents.

      Again, the paper is well-written and organized. The hypotheses are well-examined by simple experiments. The results are interesting and can impact many scientific areas such as our understanding of evolutionary pressures on an organism by environment to impacting our understanding about how environment of a malignant cell in the human body may lead to cancer.

      In a new revised version of the paper, the authors have adequately addressed issues put forth by other reviewers.

    4. Reviewer #3 (Public review):

      Summary:

      Krwawicz et al., present evidence that expression of DNMTs in E. coli results in (1) introduction of alkylation damage that is repaired by AlkB; (2) confers hypersensitivity to alkylating agents such as MMS (and exacerbated by loss of AlkB); (3) confers hypersensitivity to oxidative stress (H2O2 exposure); (4) results in a modest increase in ROS in the absence of exogenous H2O2 exposure; and (5) results in the production of oxidation products of 5mC, namely 5hmC and 5fC, leading to cellular toxicity. The findings reported here have interesting implications for the concept that such genotoxic and potentially mutagenic consequences of DNMT expression (resulting in 5mC) could be selectively disadvantageous for certain organisms. The other aspect of this work which is important for understanding the biological endpoints of genotoxic stress is the notion that DNA damage per se somehow induces elevated levels of ROS.

      Strengths:

      The manuscript is well-written, and the experiments have been carefully executed providing data that support the authors' proposed model presented in Fig. 7 (Discussion, sources of DNA damage due to DNMT expression).

      Weaknesses:

      (1) The authors have established an informative system relying on expression of DNMTs to gauge the effects of such expression and subsequent induction of 3mC and 5mC on cell survival and sensitivity to an alkylating agent (MMS) and exogenous oxidative stress (H2O2 exposure). The authors state (p4) that Fig. 2 shows that "Cells expressing either M.SssI or M.MpeI showed increased sensitivity to MMS treatment compared to WT C2523, supporting the conclusion that the expression of DNMTs increased the levels of alkylation damage." This is a confusing statement and requires revision as Fig. 2 does ALL cells shown in Fig. 2 are expressing DNMTs and have been treated with MMS. It is the absence of AlkB and the expression of DNMTs that that causes the MMS sensitivity.

      (2) It would be important to know whether the increased sensitivity (toxicity) to DNMT expression and MMS is also accompanied by substantial increases in mutagenicity. The authors should explain in the text why mutation frequencies were not also measured in these experiments.

      (3) Materials and Methods. ROS production monitoring. The "Total Reactive Oxygen Species (ROS) Assay Kit" has not been adequately described. Who is the Vendor? What is the nature of the ROS probes employed in this assay? Which specific ROS correspond to "total ROS"?

      (4) The demonstration (Fig. 4) that DNMT expression results in elevated ROS and its further synergistic increase when cells are also exposed to H2O2 is the basis for the authors' discussion of DNA damage-induced increases in cellular ROS. S. cerevisiae does not possess DNMTs/5mC, yet exposure to MMS also results in substantial increases in intracellular ROS (Rowe et al, (2008) Free Rad. Biol. Med. 45:1167-1177. PMC2643028). The authors should be aware of previous studies that have linked DNA damage to intracellular increases in ROS in other organisms and should comment on this in the text.

      Comments for the revised manuscript:

      In this revised manuscript, the authors have satisfactorily addressed the issues raised in the review of the original submission and have significantly improved these studies.

    5. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      I am not currently convinced by the principal interpretations and think that other explanations based on known phenomena could account for key results. Specifically the authors have not resolved whether oxidative modification to 5mC and 3mC, or chemical attack to ssDNA that is transiently exposed in the repair processing of 5mC and 3mC is the principal source of the observed genotoxicity.

      (1) Original query which still stands: As noted in the manuscript, AlkB repairs alkylation damage by direct reversal (DNA strands are not cut). In the absence of AlkB, repair of alklylation damage/modification is likely through BER or other processes involving strand excision and resulting in single stranded DNA. It has previously been shown that 3mC modification from MMS exposure is highly specific to single stranded DNA (PMID:20663718) occurring at ~20,000 times the rate as double stranded DNA. Consequently the introduction of DNMTs is expected to introduce many methylation adducts genome-wide that will generate single stranded DNA tracts when repaired in an AlkB deficient background (but not in an AlkB WT background), which are then hyper-susceptible to attack by MMS. Such ssDNA tracts are also vulnerable to generating double strand breaks, especially when they contain DNA polymerase stalling adducts such as 3mC. The generation of ssDNA during repair is similarly expected follow the H2O2 or TET based conversion of 5mC to 5hmC or 5fC neither of which can be directly repaired and depend on single strand excision for their removal. The potential importance of ssDNA generation in the experiments has not been [adequately] considered.

      We thank the reviewer for expanding on their previous comment.  We completely agree with the possibility that they raise and have added an extra paragraph in the discussion to expand on our consideration of the role of ssDNA in DNMT-induced DNA damage, which we reproduce here:

      "The observation that TET overexpression sensitizes cells expressing DNMTs to oxidative stress strongly suggests that the site of DNA damage is the modified cytosine itself.  However, we do not currently have definitive evidence supporting this.  As mentioned in the results section, the presence of unrepaired 3mC may lead to increased levels of ssDNA; it is also possible that 5mC itself may increase ssDNA levels.  Loss of alkB would be expected to increase the amount of ssDNA.  Thus DNA damage surrounding modification sites, but not specifically localised to it, might be the cause of the increased sensitivity.  These two different models make different predictions.  If modified cytosines are the source of the damage, mutations arising would be predominantly located at CG dinucleotides.  Alternatively, ssDNA exposure would result in distributed mutations that would not necessarily be located at CG sites.  The highly biased spectrum of mutations that can be screened through the Rif resistance assay does not allow us to address this currently.  However, future experiments to create mutation accumulation lines could allow us to address the question systematically on a genome-wide level. "

    1. eLife Assessment

      This study presents DeepTX, a valuable methodological tool that integrates mechanistic stochastic models with single-cell RNA sequencing data to infer transcriptional burst kinetics at genome scale. The approach is broadly applicable and of interest to subfields such as systems biology, bioinformatics, and gene regulation. The evidence supporting the findings is solid, with appropriate validation on synthetic data and thoughtful discussion of limitations related to identifiability and model assumptions.

    2. Joint Public Review:

      In this work, the authors present DeepTX, a computational tool for studying transcriptional bursting using single-cell RNA sequencing (scRNA-seq) data and deep learning. The method aims to infer transcriptional burst dynamics-including key model parameters and the associated steady-state distributions-directly from noisy single-cell data. The authors apply DeepTX to datasets from DNA damage experiments, revealing distinct regulatory patterns: IdU treatment in mouse stem cells increases burst size, promoting differentiation, while 5FU alters burst frequency in human cancer cells, driving apoptosis or survival depending on dose. These findings underscore the role of burst regulation in mediating cell fate responses to DNA damage.

      The main strength of this study lies in its methodological contribution. DeepTX integrates a non-Markovian mechanistic model with deep learning to approximate steady-state mRNA distributions as mixtures of negative binomial distributions, enabling genome-scale parameter inference with reduced computational cost. The authors provide a clear discussion of the framework's assumptions, including reliance on steady-state data and the inherent unidentifiability of parameter sets, and they outline how the model could be extended to other regulatory processes.

      The revised manuscript addresses many of the original concerns, particularly regarding sample size requirements, distributional assumptions, and the biological interpretation of inferred parameters. However, the framework remains limited by the constraints of snapshot data and cannot yet resolve dynamic heterogeneity or causality. The manuscript would also benefit from a broader contextualisation of DeepTX within the landscape of existing tools linking mechanistic modelling and single-cell transcriptomics. Finally, the interpretation of pathway enrichment analyses still warrants clarification.

      Overall, this work represents a valuable contribution to the integration of mechanistic models with high-dimensional single-cell data. It will be of interest to researchers in systems biology, bioinformatics, and computational modelling.

    1. eLife Assessment

      This study reveals that female moths use ultrasonic sounds emitted by dehydrated plants to guide their oviposition decisions. It highlights sound as an additional sensory modality in host searching, adding an important piece to the puzzle of how insects and plants interact. Through convincing experimental approaches, the authors provide insights that advance our understanding of plant-insect interactions.

    2. Reviewer #2 (Public review):

      This paper presents interesting and fresh approach as it investigates whether female moths utilize plant-emitted ultrasounds, particularly those associated with dehydration stress, in their egg-laying decision-making process. It provides the first empirical evidence suggesting that acoustic information may contribute to insect-plant interactions.

      The revised version is significantly strengthened by the addition of supplementary data and improved explanations. The authors present robust results across multiple experiments, enhancing the credibility of their conclusions.

      Female moths showed a preference for moist, fresh plants over dehydrated ones in experiments using actual plants. Additionally, when both plants were fresh but ultrasonic sounds specific to dehydrated plants were presented from one side, the moths chose the silent plant. However, in experiments without plants, contrary to the hypothesis derived from the above results, the moths preferred to oviposit near ultrasonic playback mimicking the sounds of dehydrated plants. 

      These results clearly indicate that moths can perceive plant presence through sound. The findings also highlight the need for future investigation into the multi-modal nature of moth decision-making, as acoustic cues alone may not fully explain the behavioral choices observed across different contexts.

      Overall, the results are intriguing, and I think the experiments are very well designed. The authors successfully demonstrate that plant-derived acoustic signals influence oviposition behavior in female moths, thereby achieving the study's objectives. The experimental design and analysis protocols are reproducible and well suited for adaptation to other species.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      (1) The authors demonstrate that female Spodoptera littoralis moths prefer to oviposit on wellwatered tomato plants and avoid drought-stressed plants. The study then recorded the sounds produced by drought-stressed plants and found that they produce 30 ultrasonic clicks per minute. Thereafter, the authors tested the response of female S. littoralis moths to clicks with a frequency of 60 clicks per minute in an arena with and without plants and in an arena setting with two healthy plants of which one was associated with 60 clicks per minute. These experiments revealed that in the absence of a plant, the moths preferred to lay eggs on the side of the area in which the clicks could be heard, while in the presence of a plant the S. littoralis females preferred to oviposit on the plant where the clicks were not audible. In addition, the authors also tested the response of S. littoralis females in which the tympanic membrane had been pierced making the moths unable to detect the click sounds. As hypothesised, these females placed their eggs equally on both sites of the area.

      Finally, the authors explored whether the female oviposition choice might be influenced by the courtship calls of S. littoralis males which emit clicks in a range similar to a drought-stressed tomato plant. However, no effect was found of the clicks from ten males on the oviposition behaviour of the female moths, indicating that the females can distinguish between the two types of clicks. Besides these different experiments, the authors also investigated the distribution of egg clusters within a longer arena without a plant, but with a sugar-water feeder. Here it was found that the egg clusters were mostly aggregated around the feeder and the speaker producing 60 clicks per minute. Lastly, video tracking was used to observe the behaviour of the area without a plant, which demonstrated

      that the moths gradually spent more time at the arena side with the click sounds.

      We thank the reviewers for their helpful comments. We agree with the summary, but would like to note that in the control experiment (Figure 2) we used a click rate of 30 clicks per minute—a design choice driven by the editor’s feedback. We have clarified this and, to further probe the system’s dynamics, added a second experiment employing the same click rate (30 clicks per minute) with a dehydrated plant (see details below). In both experiments, females again showed a clear tendency to oviposit nearer the speaker; these findings are described in the updated manuscript.

      (2) The study addresses a very interesting question by asking whether female moths incorporate plant acoustic signals into their oviposition choice, unfortunately, I find it very difficult to judge how big the influence of the sound on the female choice really is as the manuscript does not provide any graphs showing the real numbers of eggs laid on the different plants, but instead only provides graphs with the Bayesian model fittings for each of the experiments. In addition, the numbers given in the text seem to be relatively similar with large variations e.g. Figure 1B3: 1.8 {plus minus} 1.6 vs. 1.1 {plus minus} 1.0. Furthermore, the authors do not provide access to any of the raw data or scripts of this study, which also makes it difficult to assess the potential impact of this study. Hence, I would very much like to encourage the authors to provide figures showing the measured values as boxplots including the individual data points, especially in Figure 1, and to provide access to all the raw data underlying the figures.

      We acknowledge that there are researchers who favor Bayesian graphical representation versus raw data visualization. Therefore, we have added chartplots of the raw data from Figure 1 in the supplementary section. We are aware of the duplication in presentation and apologize for this redundancy.  

      Regarding the variance and means we obtained in our experiment, we have analyzed all raw data using the statistical model presented, and if statistical significance was found despite a particular mean difference or variance, this is meaningful from a biological perspective. One can certainly discuss whether this difference has biological importance, but it should be remembered that in this experimental system, we are trying to isolate the acoustic signal from a complex system that includes multiple signals. Therefore, at no point we’ve suggested that this is a standalone factor, but rather proposed it as an informative and significant component. 

      In addition to the experiments described above, we conducted an experiment in which we counted both eggs and clusters. The results indicate that cluster counts are a reliable proxy for reproductive investment at a given location. In this experiment, we present cluster numbers alongside egg counts (Figure 2).

      Furthermore, we apologize for the technical error that prevented our uploaded data files from reaching the reviewers. We have also uploaded updated data and code.

      (3) Regarding the analysis of the results, I am also not entirely convinced that each night can be taken as an independent egg-laying event, as the amount of eggs and the place were the eggs are laid by a female moth surely depends on the previous oviposition events. While I must admit that I am not a statistician, I would suggest, from a biological point of view, that each group of moths should be treated as a replicate and not each night. I would therefore also suggest to rather analyse the sum of eggs laid over the different consecutive nights than taking the eggs laid in each night as an independent data point.

      We thank the reviewer for this question. This is a valid and point that we will address in three aspects: 

      First, regarding our statistical approach, we used a model that takes into account the sequence of nights and examines whether there is an effect of the order of nights, i.e., we used GLMMs, with the night nested within the repetition. This is equivalent to addressing this as a repeated measure and is, to our best knowledge, the common way to treat such data. 

      Second, following the reviewer's comment, we also reran the statistics of the third experiment (i.e., “sound gradient experiments”, Figure 2 and Supplementary figure 4) when only taking the first night when the female/s laid eggs to avoid the concern of dependency. This analysis revealed the same result – i.e., a significant preference for the sound stimulus. We have now updated our methods and results section to clarify this point.  

      Third, an important detail that may not have been clearly specified in the methods: at the end of each night, we cleaned the arena of counted egg clusters using a cloth with ethanol, so that on the subsequent night, we would not expect there to be evidence of previous oviposition but thus would not exclude some sort of physiological or cognitive memories. We have now updated our methods section to clarify this important procedural point. 

      (4) Furthermore, it did not become entirely clear to me why a click frequency of 60 clicks per minute was used for most experiments, while the plants only produce clicks at a range of 30 clicks per minute. Independent of the ecological relevance of these sound signals, it would be nice if the authors could provide a reason for using this frequency range. Besides this, I was also wondering about the argument that groups of plants might still produce clicks in the range of 60 clicks per minute and that the authors' tests might therefore still be reasonable. I would agree with this, but only in the case that a group of plants with these sounds would be tested. Offering the choice between two single plants while providing the sound from a group of plants is in my view not the most ecologically reasonable choice. It would be great if the authors could modify the argument in the discussion section accordingly and further explore the relevance of different frequencies and dBlevels.

      This is an excellent point. We originally increased the click rate generate a strong signal. However, it was important for us to verify that there was ecological relevance in the stimulus we implemented in the system. For this purpose, we recorded a group of dehydrated plants at a distance of ~20cm and we measured a click rate of 20 clicks per minute (i.e., 0.33 Hz) (see Methods section). Therefore, as mentioned at the beginning of this letter, in the additional experiment described in Figure 2, we reduced the click frequency to 30 clicks per minute, and at this lower rate, the effect was maintained. Increasing plant density would probably lead to a higher rate of 30 clicks per minute. 

      (5) Finally, I was wondering how transferable the findings are towards insects and Lepidopterans in general. Not all insects possess a tympanic organ and might therefore not be able to detect the plant clicks that were recorded. Moreover, I would imagine that generalist herbivorous like Spodoptera might be more inclined to use these clicks than specialists, which very much rely on certain chemical cues to find their host plants. It would be great if the authors would point more to the fact that your study only investigated a single moth species and that the results might therefore only hold true for S. littoralis and closely related species, but not necessary for other moth species such as Sphingidae or even butterflies.

      Good point. Our research uses a specific model system of one moth species and one plant species in a particular plant-insect interaction where females select host plants for their offspring. As with any model-based research that attempts to draw broader conclusions, we've taken care to distinguish between our direct findings and potential wider implications. We believe our system may represent mechanisms relevant to a wider group of herbivorous insects with hearing capabilities, particularly considering that several moth families and other insect orders can detect ultrasound. However, additional research examining more moth and plant species is necessary to determine how broadly applicable these findings are. We have made these clarifications in the text.

      Reviewer #2 (Public review):

      (6) The results are intriguing, and I think the experiments are very well designed. However, if female moths use the sounds emitted by dehydrated plants as cues to decide where to oviposit, the hypothesis would predict that they would avoid such sounds. The discussion mentions the possibility of a multi-modal moth decision-making process to explain these contradictory results, and I also believe this is a strong possibility. However, since this remains speculative, careful consideration is needed regarding how to interpret the findings based solely on the direct results presented in the results section.  

      Thank you for this insightful observation. We agree that the apparent attraction of females to dehydrated-plant sounds contradicts our initial prediction. Having observed this pattern consistently across multiple setups, we have now added a targeted choice experiment to the revised manuscript: here female moths were offered a choice between dehydrated plants broadcasting their natural ultrasonic emissions and a control. These results—detailed in the Discussion and presented in full in the Supplementary Materials (Supplementary Figure 4)—show that when only a dehydrated plant is available, moths would prefer it for oviposition, supporting our hypothesis that in the absence of a real plant, the plant’s sounds might represent a plant..

      (7) Additionally, the final results describing differences in olfactory responses to drying and hydrated plants are included, but the corresponding figures are placed in the supplementary materials. Given this, I would suggest reconsidering how to best present the hypotheses and clarify the overarching message of the results. This might involve reordering the results or re-evaluating which data should appear in the main text versus the supplementary materials

      Thank you for this suggestion. We have reorganized the manuscript and removed the olfactory response data from the current version to maintain a focused narrative on acoustic cues. We agree that a detailed investigation of multimodal interactions deserves a separate study, which we plan to pursue in future work. 

      (8) There were also areas where more detailed explanations of the experimental methods would be beneficial.

      Thank you for highlighting this point. We have expanded and clarified the Methods section to provide comprehensive detail on our experimental procedures.

      Reviewer #1 (Recommendations for the authors):

      (9) Line 1: Please include the name of the species you tested also in the title as your results might not hold true for all moth species.

      We do not fully agree with this comment. Please see comment 5.

      (10) Line 19-20: Please rephrase the sentence so that it becomes clear that the "dehydration stress" refers to the plant and not to the moths.

      Thank you for the suggestion; we have clarified the text accordingly

      (11) Line 31: Male moths might provide many different signals to the females, maybe better "male sound signals" or similar.

      Thank you for the suggestion; we have clarified the text accordingly.

      (12) Line 52-53: Maybe mention here that not all moth species have evolved these abilities.

      Thank you for the suggestion; we have clarified the text accordingly.

      (13) Line 77: add a space after 38.

      Thank you for the suggestion; we have clarified the text accordingly.

      (14) Line 88: Maybe change "secondary predators" to "natural enemies".

      Thank you for the suggestion; we have clarified the text accordingly.

      (15) Line 134: Why is "notably" in italics? I would suggest using normal spelling/formatting rules here.

      Thank you for the suggestion; we have clarified the text accordingly.

      (16) Line 140-144: If you did perform the experiment also with the more ecological relevant playback rate, why not present these findings as your main results and use the data with the higher playback frequency as additional support?

      Thank you for this suggestion. We agree that the ecologically relevant playback data are important; as described in detail at the beginning of this letter and also in comment 4, however, to preserve a clear and cohesive narrative, we have maintained the original ordering of this section. Nevertheless, the various experiments conducted in Figure 1 differ in several components from Figure 2 and the work that examined sounds in plant groups in the appendices. Therefore, we find it more appropriate to use them as supporting evidence for the main findings rather than creating a comparison between different experimental systems. For this reason, we chose to keep them as a separate description in "The ecological playback findings (Lines 140–144) remain fully described in the Results and serve to reinforce the main observations without interrupting the manuscript's flow.

      (17) Line 146: Please explain already here how you deafened the moths.

      Thank you for the suggestion; we have clarified the text accordingly.

      (18) Line 181: should it be "male moths' " ?

      Thank you for the suggestion; we have clarified the text accordingly.

      (19) Line 215: Why is "without a plant" in italics? I would suggest using normal spelling/formatting rules here.

      Thank you for the suggestion; we have clarified the text accordingly.

      (20) Line 234: I do not understand why this type of statistic was used to analyse the electroantennogram (EAG) results. Would a rather simple Student's t-test or a Wilcon rank sum test not have been sufficient? I would also like to caution you not to overinterpret the data derived from the EAG, as you combined the entire headspace into one mixture it is no longer possible to derive information on the different volatiles in the blends. The differences you observe might therefore mostly be due to the amount of emitted volatiles.

      We have reorganized the manuscript and removed the olfactory response data from the current version to maintain a focused narrative on acoustic cues (See comment 7). 

      (21) Line 268: It might be nice to add an additional reference here referring to the multimodal oviposition behaviour of the moths.

      Thank you for the suggestion; we have clarified the text accordingly.

      (22) Line 284: If possible, please add another reference here referring to the different cues used by moths during oviposition.

      Thank you for the suggestion; we have clarified the text accordingly.

      (23) Line 336: What do you mean by "closed together"?

      Thank you for the suggestion; we have clarified the text accordingly.

      (24) Line 434-436: Please see my overall comments. I do not think that you can call it ecologically relevant if the signal emitted by multiple plants is played in the context of just a single plant.

      Please see comments 1 and 4.

      (25) Line 496: Please change "stats" to statistics.

      Thank you for the suggestion; we have clarified the text accordingly.

      (26) Line 522-524: I am not sure whether simply listing their names does give full credit to the work these people did for your study. Maybe also explain how they contributed to your work.

      Thank you for the suggestion; we have clarified the text accordingly.

      Reviewer #2 (Recommendations for the authors):

      (27) L54 20-60kHz --> 20Hz-60kHz or 20kHz - 60kHz?

      OK. We have replaced it.

      (28) L124 Are the results for the condition where nothing was placed and the condition where a decoy silent resistor was placed combined in the analysis? If so, were there no significant differences between the two conditions? Comparing these with a condition presenting band-limited noise in the same frequency range as the drought-stressed sounds might also have been an effective approach to further isolate the specific role of the ultrasonic emissions.

      We have used both conditions due to technical constrains and pooled them tougher for analysis— statistical tests confirmed no significant differences between them—and this clarification has now been added to the Methods section including the results of the statistical test.

      (29) L125 (Fig. 1A), see Exp. 1 in the Methods). -> (Fig.1B. See Exp.1 in the Methods).

      Thank you for the suggestion; we have clarified the text accordingly.

      (30) L132 "The opposite choice to what was seen in the initial experiment (Fig.1B)"

      Thank you for the suggestion; we have clarified the text accordingly.

      (31) L137-143 If you are writing about results, why not describe them with figures and statistics? The current description reads like a discussion.

      These findings were not among our primary research questions; however, we believe that including them in the Results section underscores the experimental differences. In our opinion, introducing an additional figure or expanding the statistical analysis at this point would disrupt the narrative flow and risk confusing the reader.

      (32) L141 "This is higher than the rate reported for a single young plant" Are you referring to the tomato plants used in the experiments? It might be helpful to include in the main text the natural click rate emitted by tomato plants, as this information is currently only mentioned in the Methods section.

      See comment 4.  

      (33) L191 Is the main point here to convey that the plant playback effect remained significant even when the sound presentation frequency was reduced to 30 clicks per minute? The inclusion of the feeder element, however, seems to complicate the message. To simplify the results, moving the content from lines 185-202 to the supplementary materials might be a better approach. Additionally, what is the rationale for placing the sugar solution in the arena? Is it to maintain the moths' vitality during the experiment? Clarifying this in the methods section would help provide context for this experimental detail.

      In this series of experiments, we manipulated four variables—single moths, ultrasonic click rate, arena configuration (from a two-choice design to an elongated enclosure), and the response metric (total egg counts rather than cluster counts)—to evaluate moth oviposition under more ecologically realistic conditions. We demonstrate the system’s robustness and validity in a more realistic setting (by tracking individual moths, counting single eggs, etc.).  

      As noted in the text, feeders were included to preserve the moths’ natural behavior and vitality. We have further clarified this in the revised manuscript.

      (34) L215 Is the click presentation frequency 30 or 60 per minute? Since Figure 3 illustrates examples of moth movement from the experiment described in Figure 1, it might be more effective to present Figure 3 when discussing the results of Figure 1 or to include it in the supplementary materials for better clarity and organization.

      See comments 1 and 4. As mentioned in the above 

      (35) L291 Please provide a detailed explanation of the experiments and measurements for the results shown in Figure S3 (and Figure S2). If the multi-modal hypothesis discussed in the study is a key focus, it might be better to include these results in the main results section rather than in the supplementary materials.

      Thank you for this suggestion. Figure S2 was removed, see comments above. We’ve added now the context to figure S3.

      (36) L303 It might be helpful to include information about the relationship between the moth species used in this study and tomato plants somewhere in the text. This would provide an important context for understanding the ecological relevance of the experiments.

      Thank you for the suggestion; we have clarified the text accordingly.

      (37) Table 1 The significant figures in the numbers presented in the tables should be consistent.

      Thank you for the suggestion; we have clarified the text accordingly.

      (38) L341 The text mentions that experiments were conducted in a greenhouse, but does this mean the arena was placed inside the greenhouse? Also, the term "arena" is used - does this refer to a sealed rectangular case or something similar? For the sound presentation experiments, it seems that the arena cage was placed inside a soundproof room. If the arena is indeed a case-like structure, were there any specific measures taken to prevent sound scattering within the case, such as the choice of materials or structural modifications?

      Here, “arena” refers to the plastic boxes used throughout this study. In this particular experiment, we presented plants alone—reflecting ongoing debate in the literature—and used these trials as a baseline for our subsequent sound-presentation experiments, during which we measured sound intensity as described in the Methods section. All sound-playback experiments were conducted in sound-proof rooms, and acoustic levels were measured beforehand—sound on the control side fell below our system’s detection threshold. 

      (39) L373 "resister similar to the speaker" Could you explain it in more detail? I think this would depend on the type of speaker used-particularly whether it includes magnets. From an experimental perspective, presenting different sounds such as white noise from the speaker might have been a better control. Was there a specific reason for not doing so? Additionally, the study does not clearly demonstrate whether the electric and magnetic field environments on both sides of the arena were appropriately controlled. Without this information, it is difficult to evaluate whether using a resistor as a substitute was adequate.

      Thank you for this comment. We have now addressed this point in the Discussion. We acknowledge that we did not account for the magnetic field, which might have differed between the speaker and the resistor. We agree that using an alternative control, such as white noise, could have been informative, and we now mention this as a limitation in the revised Methods.

      (40) L435 60Hz? The representation of frequencies in the text is inconsistent, with some values expressed in Hz and others as "clicks per second." It would be better to standardize these units for clarity, such as using Hz throughout the manuscript.

      We agree that this is confusing. We reviewed the text and made sure that when we addressed click per second, we meant how many clicks were produced and when we addressed Hz units it was in the context of sound frequencies.  

      (41) L484 "we quantified how many times each individual crossed the center of the arena" Is this data being used in the results?

      Yes. Mentioned in the text just before Figure 3. L220

    1. eLife Assessment

      IL-10 balances protective and deleterious immune functions in mice and humans, but if IL-10 also controls avian intestinal homeostasis remains unclear. Generating genetic knockouts, Meunier et al. established that a complete lack of IL-10 strengthened immunity against enteric bacteria in chickens, while also aggravating infection-inflicted inflammatory tissue damage and dysbiosis upon parasite infection, but unlike mouse models, IL-10 deficiency did not provoke spontaneous colitis in chickens. The findings presented are valuable, and the strength of evidence is convincing. The observation may have implications for the livestock industry and additional studies involving genetic knockouts may further unravel conserved and distinct avian IL-10 controls.

    2. Reviewer #1 (Public review):

      Summary:

      In this study, Meunier et al. investigated the functional role of IL-10 in avian mucosal immunity. While the anti-inflammatory role of IL-10 is well established in mammals, and several confirmatory Knock-out models available in mice, IL-10's role in avian mucosal immunity is so far correlative. In this study the authors generated two different models of IL-10 ablation in Chickens. A whole body knock-out model, and an enhancer KO model leading to reduced IL10 expression. The authors first performed in vitro LPS stimulation based experiments, and then in vivo two different infection models employing C. jejuni and E. tenella, to demonstrate that complete ablation of IL10 leads to enhanced inflammation related pathology and gene expression, and enhanced pathogen clearance. At a steady-state level, however, IL-10 ablation did not lead to spontaneous colitis.

      Strengths:

      Overall the study is well executed and establishes an anti-inflammatory role of IL-10 in birds. While the results are expected, and not surprising, this appears to be the first report to conclusively demonstrate IL-10's anti-inflammatory role upon its genetic ablation in avian model. Provided the applicability of this information in combating pathogen infection in livestock species in sustainable industries like poultry, the study is worth publishing.

      Weaknesses:

      The study is primarily a confirmation of the already established anti-inflammatory role of IL-10.

      Comments on revised version:

      The authors have incorporated most of the points raised, and provided a reasonable argument for not considering DSS mediated colitis as an additional model.

    3. Reviewer #2 (Public review):

      Summary:

      The authors were to investigate functional role of IL10 on mucosal immunity in chickens. CRISPR technology was employed to generate IL10 knock out chickens in both exon and putative enhancer regions. IL10 expressions were either abolished (knockout in exon) or reduced (enhancer knock-out). IL-10 play an important role in the composition of the caecal microbiome. Through various enteric pathogens challenge, deficient IL10 expression was associated with enhanced pathogen clearance, but with more severe lesion score and body weight loss.

      Strengths:

      Both in vitro and in vivo knock-out in abolished and reduced IL10 expression and broad enteric pathogens were challenged in vivo and various parameters were examined to evaluate the functional role of IL10 on mucosal immunity.

      Weaknesses:

      Overexpression of IL10 either in vitro or in vivo may further support the findings from this study.

      Comments on revised version:

      The authors' response and justifications are appropriate.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      In this study, Meunier et al. investigated the functional role of IL-10 in avian mucosal immunity. While the anti-inflammatory role of IL-10 is well established in mammals, and several confirmatory knockout models are available in mice, IL-10's role in avian mucosal immunity is so far correlative. In this study, the authors generated two different models of IL-10 ablation in Chickens. A whole body knock-out model and an enhancer KO model leading to reduced IL10 expression. The authors first performed in vitro LPS stimulation-based experiments, and then in vivo two different infection models employing C. jejuni and E. tenella, to demonstrate that complete ablation of IL10 leads to enhanced inflammation-related pathology and gene expression, and enhanced pathogen clearance. At a steady-state level, however, IL-10 ablation did not lead to spontaneous colitis. 

      Strengths: 

      Overall, the study is well executed and establishes an anti-inflammatory role of IL-10 in birds. While the results are expected and not surprising, this appears to be the first report to conclusively demonstrate IL-10's anti-inflammatory role upon its genetic ablation in the avian model. Provided this information is applicable in combating pathogen infection in livestock species in sustainable industries like poultry, the study will be of interest to the field. 

      Weaknesses: 

      The study is primarily a confirmation of the already established anti-inflammatory role of IL-10. 

      We do not agree that this work is primarily confirmatory. The anti-inflammatory role of IL10 was indeed known previously from studies in mammals. The much more general insight from the current study is our demonstration of the intrinsic trade-off between inflammation and tolerance in the response to both the microbiome (which was significantly altered in the IL10 knockout birds) and mucosal pathogens. The study of Eimeria challenge in particular highlights the fact that it may be better for the host to tolerate a potential pathogen than to take on the cost of elimination.

      Reviewer #2 (Public review): 

      Summary: 

      The authors were to investigate the functional role of IL10 on mucosal immunity in chickens. CRISPR technology was employed to generate IL10 knock-out chickens in both exon and putative enhancer regions. IL10 expressions were either abolished (knockout in exon) or reduced (enhancer knock-out). IL-10 plays an important role in the composition of the caecal microbiome. Through various enteric pathogen challenges, deficient IL10 expression was associated with enhanced pathogen clearance, but with more severe lesion scores and body weight loss. 

      Strengths: 

      Both in vitro and in vivo knock-out abolished and reduced IL10 expression, and broad enteric pathogens were challenged in vivo, and various parameters were examined to evaluate the functional role of IL10 on mucosal immunity. 

      Weaknesses: 

      Overexpression of IL-10 either in vitro or in vivo may further support the findings from this study. 

      An overexpression experiment, regardless of outcome, would not necessarily support or invalidate the findings of the current study. It would address the question of whether the absolute concentration of IL10 produced alters the outcome of an infection.

      Reviewer #1 (Recommendations for the authors): 

      The following are the recommendations that, in my opinion, will be helpful to enhance the quality of the study. 

      Major point: 

      The authors at a steady state did not observe any sign of spontaneous colitis. Since IL-10 KO in mice leads to enhanced pathological score upon DSS-mediated induction of colitis, and several colitis models are well established in birds, it will be worthwhile to test the consequence of experimentally inducing colitis in this context. 

      One of the novel features of this study is the observation that the microbiome is modified in the IL10KO HOM chicks, which may serve to mitigate potential spontaneous pathology; we now mention this in the discussion. We agree that it could be worthwhile in the future to look at additional challenge models. However, we would argue that the Eimeria challenge is a sufficiently adequate experimentally-induced model of colitis to demonstrate the increased inflammation that occurs in an IL10-deficient bird. This is further supported by evidence of enhanced inflammatory responses in the caeca of IL10KO HOM birds challenged with Campylobacter or Salmonella relative to WT controls. See in the revised manuscript (pages 12-13).

      Minor points: 

      (1) In Figure 2B, the authors should confirm whether the ROS-AV163 groups also have LPS treatment. 

      The legend for Figure 2B already states that neutralizing anti-IL10 antibody was added to LPS-stimulated BMDMs: “Nitric oxide production was assessed by measuring nitrite levels using Griess assay for LPS-stimulated BMDMs […] in the absence or presence of neutralizing anti-IL10 antibody ROS-AV163”. However, for added clarity we have now modified the x-axis label for Figure 2B (“+ROS-AV163” replaced by “+LPS +anti-IL10”) and we have also made minor changes to the figure legend. See in the revised manuscript (page 33).

      (2) In Figure 3F, the authors should discuss why the duodenum of KO birds has enhanced infiltration compared to WT? 

      We are not sure what the reviewer is referring to here. Although not specifically mentioned in Figure 3F, there is no statistically significant difference in cellular infiltration in the duodenum of IL10KO WT and HOM birds raised in our specified pathogen-free (SPF) facility, nor in the duodenum of IL10KO WT and HOM birds raised in our conventional facility (Mann-Whitney U tests, p>0.1 in both cases); this can be seen in the sums of histopathological scores shown in Figures 3C (SPF facility) and 3E (conventional facility). Figure 3F shows that there is a statistically significant difference in cellular infiltration scores in the duodenum and proximal colon of both IL10KO WT and HOM birds based on the environment they are raised in (SPF vs conventional). We have made minor changes to the text to clarify this. See in the revised manuscript (page 7).

      (3) The authors should discuss the observed differences in the C. jejuni colonization results among the two cohorts at week 1 and week 2 post-infection. 

      Numbers of C. jejuni in the caeca of IL10KO HOM birds were markedly lower than for WT controls at 1-week post-infection in cohort 1, and at both time intervals post-infection in cohort 2 (Figure 4A). This reached statistical significance at 1-week post-infection in cohort 1 and at 2-weeks post-infection in cohort 2. It is evident from Figure 4A that considerable inter-animal variance existed in each group, and in the IL10KO HOM birds in particular. This is typical of C. jejuni colonisation in chickens, where bacterial population structures have been reported to be variable and unpredictable (Coward et al., Appl Environ Microbiol 2008, PMID: 18424530). Similar variation between time intervals, birds and repeated experiments has been reported when evaluating vaccines against C. jejuni colonisation (e.g. Buckley et al., Vaccine 2010, PMID: 19853682; Nothaft et al., Front Microbiol 2021, PMID: 34867850). We performed two independent studies for this reason. Taken together, we consider that our data provide convincing evidence of elevated pro-inflammatory responses upon C. jejuni infection in IL10KO HOM birds relative to WT controls that associates with reduced bacterial burden. Our data is also consistent with a published observation that a commercial broiler line with low IL10 expression had correspondingly elevated expression of CXCLi-1, CXCLi-2 and IL-1b (Humphrey et al., mBio 2014, reference 33 in our original submission). We have added text to the discussion to capture the points above.  See in the revised manuscript (page 13).

      Reviewer #2 (Recommendations for the authors): 

      For the animal challenging experiments, both IL10KO HOM and IL10EnKO HOM chickens were used for Eimeria challenge, but not for Salmonella and Campylobacter. Could the authors justify why? 

      The Eimeria challenge produced a much higher and more reproducible level of inflammation than either of the bacterial challenge models. Within the parasite challenge cohorts, IL10KO HET and IL10EnKO HOM birds were only marginally different from WT controls (e.g. parasite replication: Figures 5A and B; lesion scores: Figures 5E and F; body weight gain: Figures 5G and H). Given the more limited response and the inter-individual variation in the bacterial challenge models, we felt that analysis of a sufficiently large cohort of the IL10KO HOM was appropriate, while additional cohorts of IL10KO HET and IL10EnKO HOM birds large enough to detect statistically significant differences could not be justified.

      In the M&M, there was no mention of # of birds generated for IL10EnKO HOM, HET, etc. 

      Full details of bird numbers can be found in SI Appendix Table S1 “Number of IL10KO and IL10EnKO WT, HET and HOM chicks hatched in the NARF SPF chicken facility in the first (G1) and second (G2) generations”. Table S1 is already referred to in the Results section “Generation of IL10-deficient chickens”; we have now also clearly referred to it in the “Animals” and “Generation of surrogate host chickens and establishment of the IL10KO and IL10EnKO lines under SPF conditions” sections of the Materials and Methods. In all three sections we have also added some text to clarify that the table details G1 and G2 bird numbers. See in the revised manuscript (pages 5, 15, 17).

      From the results of Campylobacter challenge, the results from the cohort 1 and cohort 2 were not consistent at both 1 and 2 weeks of post-infection. There is not much discussion on this inconsistency. What is the final conclusion: significant difference in week 1 or week 2, OR none of them, OR both of them. What would happen if an additional cohort were conducted for Salmonella and Eimeria? 

      As noted in response to Reviewer 1 (minor point 3), we have now added text to the discussion on the partial inconsistency between independent C. jejuni challenge studies. We do not feel that additional experiments to address this comment are required. Highly significant increases in the infiltration of lymphoplasmacytic cells and heterophils were detected in IL10KO HOM chickens relative to WT controls in the caeca, a key site of Campylobacter colonisation. This was consistently observed in two independent cohorts at both 1- and 2-weeks post-infection (SI Appendix Figures S7 and S8) and was reflected in similar patterns of expression of pro-inflammatory genes at these intervals in both cohorts (Figure 4B). As our laboratory has observed substantially less variation between repeated Salmonella challenges, a single study was performed, but with adequate power to detect statistical differences.  The effects of E. tenella infection in IL10KO WT and HOM birds were replicated (compare Figure 4 with data from day 6 in Figure 5).

    1. eLife Assessment

      The authors present a software (TEKRABber) to analyze how expression of transposable elements (TEs) and TE silencing factors KRAB zinc finger (KRAB-ZNF) genes are correlated in experimentally validated datasets. TEKRABber is used to reconstruct regulatory networks of KRAB-ZNFs and TEs during human brain evolution and in Alzheimer's disease. The direction of the work is important, with potentially significant interest from others looking for a tool for correlative gene expression analysis across individual genomes and species. However, the reviews identified biases and shortcomings in the pipeline that could lead to an unacceptable number of false positive and negative signals and thus impact the conclusions, leaving the work in its current form incomplete.

    2. Reviewer #1 (Public review):

      The authors present their new bioinformatic tool called TEKRABber, and use it to correlate expression between KRAB ZNFs and TEs across different brain tissues, and across species. While the aims of the authors are clear and there would be significant interest from other researchers in the field for a program that can do such correlative gene expression analysis across individual genomes and species, the presented approach and work display significant shortcomings. In the current state of the analysis pipeline, the biases and shortcomings mentioned below, for which I have seen no proof of that they are accounted for by the authors, are severely impacting the presented results and conclusions. It is therefore essential that the points below are addressed, involving significant changes in the TEKRABber progamm as well as the analysis pipeline, to prevent the identification of false positive and negative signals, that would severely affect the conclusions one can raise about the analysis.

      My main concerns are provided below:

      One important shortcoming of the biocomputational approach is that most TEs are not actually expressed, and others (Alus) are not a proxy of the activity of the TE class at all. I will explain: While specific TE classes can act as (species-specific) promoters for genes (such as LTRs) or are expressed as TE derived transcripts (LINEs, SVAs), the majority of other older TE classes do not have such behavior and are either neutral to the genome or may have some enhancer activity (as mapped in the program they refer to 'TEffectR'. A big focus is on Alus, but Alus contribute to a transcriptome in a different way too: They often become part of transcripts due to alternative splicing. As such, the presence of Alu derived transcripts is not a proxy for the expression/activity of the Alu class, but rather a result of some Alus being part of gene transcripts (see also next point). Bottom line is that the TEKRABber software/approach is heavily prone to picking up both false positives (TEs being part of transcribed loci) and false negatives (TEs not producing any transcripts at all) , which has a big implication for how reads from TEs as done in this study should be interpreted: The TE expression used to correlate the KRAB ZNF expression is simply not representing the species-specific influences of TEs where the authors are after.

      With the strategy as described, a lot of TE expression is misinterpreted: TEs can be part of gene-derived transcripts due to alternative splicing (often happens for Alus) or as a result of the TE being present in an inefficiently spliced out intron (happens a lot) which leads to TE-derived reads as a result of that TE being part of that intron, rather than that TE being actively expressed. As a result, the data as analysed is not reliably indicating the expression of TEs (as the authors intend too) and should be filtered for any reads that are coming from the above scenarios: These reads have nothing to do with KRAB ZNF control, and are not representing actively expressed TEs and therefore should be removed. Given that from my lab's experience in brain (and other) tissues, the proportion of RNA sequencing reads that are actually derived from active TEs is a stark minority compared to reads derived from TEs that happen to be in any of the many transcribed loci, applying this filtering is expected to have a huge impact on the results and conclusions of this study.

      Another potential problem that I don't see addressed is that due to the high level of similarity of the many hundreds of KRAB ZNF genes in primates and the reads derived from them, and the inaccurate annotations of many KZNFs in non-human genomes, the expression data derived from RNA-seq datasets cannot be simply used to plot KZNF expression values, without significant work and manual curation to safeguard proper cross species ortholog-annotation: The work of Thomas and Schneider (2011) has studied this in great detail but genome-assemblies of non-human primates tend to be highly inaccurate in appointing the right ortholog of human ZNF genes. The problem becomes even bigger when RNA-sequencing reads are analyzed: RNA-sequencing reads from a human ZNF that emerged in great apes by duplication from an older parental gene (we have a decent number of those in the human genome) may be mapped to that older parental gene in Macaque genome: So, the expression of human-specific ZNF-B, that derived from the parental ZNF-A, is likely to be compared in their DESeq to the expression of ZNF-A in Macaque RNA-seq data. In other words, without a significant amount of manual curation, the DE-seq analysis is prone to lead to false comparisons which make the stategy and KRABber software approach described highly biased and unreliable.

      There is no doubt that there are differences in expression and activity of KRAB-ZNFs and TEs repspectively that may have had important evolutionary consequences. However, because all of the network analyses in this paper rely on the analyses of RNA-seq data and the processing through the TE-KRABber software with the shortcomings and potential biases that I mentioned above, I need to emphasize that the results and conclusions are likely to be significantly different if the appropriate measures are taken to get more accurate and curated TE and KRAB ZNF expression data.

      Finally, there are some minor but important notes I want to share:

      The association with certain variations in ZNF genes with neurological disorders such as AD, as reported in the introduction is not entirely convincing without further functional support. Such associations could be merely happen by chance, given the high number of ZNF genes in the human genome and the high chance that variations in these loci happen associate with certatin disease associated traits. So using these associations as an argument that changes in TEs and KRAB ZNF networks are important for diseases like AD should be used with much more caution.

      There is a number of papers where KRAB ZNF and TE expression are analysed in parallel in human brain tissues. So the novelty of that aspect of the presented study may be limited.

      Additional note after reviewing the revised version of the manuscript:

      After reviewing the revised version of the manuscript, my criticism and concerns with this study are still evenly high and unchanged. To clarify, the revised version did not differ in essence from the original version; it seems that unfortunately, no efforts were taken to address the concerns raised on the original version of the manuscript, the results section as well as the discussion section are virtually unchanged.

    1. eLife Assessment

      Axon growth is essential to formation of neural connections. This manuscript presents a useful presentation of a new method for assessing the adhesion strength of axons with the use of a laser-induced shock wave. However, the strength of the evidence is incomplete as critical controls for calibration and time course are lacking.

    2. Reviewer #1 (Public review):

      Summary:

      Axon growth is of course essential to formation of neural connections. Adhesion is generally needed to anchor and rectify such motion, but whether the tenacity or forces of adhesion must be optimal for maximal axon extension is unknown. Measurements and contributing factors are generally lacking and are pursued here with a laser-induced shock wave approach near the axon growth cone. The authors claim to make measurements of the pressure required to detach axon from low to high matrix density. The results seem to support the authors' conclusions, and the work -- with further support per below - is likely to impact the field of cell adhesion. In particular, there could be some utility of the methods for the adhesion and those interested in aspects of axon growth

      Strengths:

      A potential ability to control the pressure simply via proximity of the laser spot is convenient and perhaps responsible. The 0 to 1 scale for matrix density is a good and appropriate measure for comparing adhesion and other results. The attention to detachment speed, time, F-actin, and adhesion protein mutant provides key supporting evidence. Lastly, the final figure of traction force microscopy with matrix varied on a gel is reasonable and more physiological because neural tissue is soft (cite PMID: 16923388); an optimum in Fig.6 also perhaps aligns with axon length results in Fig.5.

      Weaknesses:

      The results seem incomplete and less than convincing. This is because the force calibration curve seems to be from a >10 yr old paper without any more recent checks or validating measurements. Secondly, the claimed effect of pressure on detachment of the growth cone does not consider other effects such as cavitation or temperature and certainly needs validation with additional methods that overcome such uncertainties. The authors need to check whether the laser perturbs the matrix, particularly local density. A relation between traction stresses of ~20-50 pN/um2 in Fig.6 and the adhesion pressure of 3-5 kPa of FIg.3 needs to be carefully explained; the former units equate to 0.02-0.05 kPa, and would perhaps suggest cells cannot detach themselves and move forward.

      The authors need to measure axon length on gels (Fig.6) as more physiological because neural tissue is soft. The studies are also limited to a rudimentary in vitro model without clear relevance to in vivo.

      Weaknesses concerning the laser method have been addressed, but alternative methods and relevance to in vivo remain lacking.

    3. Reviewer #3 (Public review):

      Summary:

      Yamada et al. build on classic and more recent studies (Chen et al., 2023; Lemmon et al., 1992; Nichol et al., 2016; Zheng et al., 1994; Schense and Hubbell, 2000) to better understand the relationship between substrate adhesion and neurite outgrowth.

      Strengths:

      The primary strength of the manuscript lies in developing a method for investigating the role of adhesion in axon outgrowth and traction force generation using a femtosecond laser technique. The most exciting finding is that both outgrowth and traction force generation have a biphasic relationship with laminin concentration.

      Weaknesses:

      The primary weaknesses, as written, are a lack of discussion of prior studies that have directly measured the strength of growth cone adhesions to the substrate (Zheng et al., 1994) and traction forces (Koch et al., 2012), the inverse correlation between retrograde flow rate and outgrowth (Nichol et al., 2016), and prior studies noting a biphasic effect of substrate concentration of neurite outgrowth (Schense and Hubbell, 2000).

      Overall, the claims and conclusions are well justified by the data. The main exception is that the data is more relevant to how the rate of neurite outgrowth is controlled rather than axonal guidance.

      This manuscript will help foster interest in the interrelationship between neurite outgrowth, traction forces, and substrate adhesion, and the use of a novel method to study this problem.

      The authors did an excellent job in addressing my original concerns in the revision.

    4. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Axon growth is of course essential to the formation of neural connections. Adhesion is generally needed to anchor and rectify such motion, but whether the tenacity or forces of adhesion must be optimal for maximal axon extension is unknown. Measurements and contributing factors are generally lacking and are pursued here with a laser-induced shock wave approach near the axon growth cone. The authors claim to make measurements of the pressure required to detach axons from low to high matrix density. The results seem to support the authors' conclusions, and the work - with further support - is likely to impact the field of cell adhesion. In particular, there could be some utility of the methods for the adhesion and those interested in aspects of axon growth.

      Strengths:

      A potential ability to control the pressure simply via proximity of the laser spot is convenient and perhaps reasonable. The 0 to 1 scale for matrix density is a good and appropriate measure for comparing adhesion and other results. The attention to detachment speed, time, F-actin, and adhesion protein mutant provides key supporting evidence. Lastly, the final figure of traction force microscopy with matrix varied on a gel is reasonable and more physiological because neural tissue is soft (cite PMID: 16923388); an optimum in Fig.6 also perhaps aligns with axon length results in Fig.5.

      We thank you for your many suggestions to improve the presentation to explain our experimental results obtained. We carefully reconsidered problems you pointed out and revised the manuscripts as follows.

      Weaknesses:

      The results seem incomplete and less than convincing. This is because the force calibration curve seems to be from a >10 yr old paper without any more recent checks or validating measurements.

      As the force calibration data, although we have indicated by the experimental system over 10 years ago, we have used the same system under appropriate maintenance. The system performance has been checked regularly and maintained. Therefore, the calibration data displayed is suitable even in the present. There is no problem with the calibration data.

      Secondly, the claimed effect of pressure on the detachment of the growth cone does not consider other effects such as cavitation or temperature, and certainly needs validation with additional methods that overcome such uncertainties.

      The authors need to check whether the laser perturbs the matrix, particularly local density. A relation between traction stresses of ~20-50 pN/um<sup>2</sup> in Fig.6 and the adhesion pressure of 3-5 kPa of FIg.3 needs to be carefully explained; the former units equate to 0.02-0.05 kPa, and would perhaps suggest cells cannot detach themselves and move forward.

      We have previously reported that a single pulse from a Ti:sapphire femtosecond laser amplifier can effectively generate shockwave and stress waves with minimal thermal effects. Notably, during this process, the temperature elevation at the laser focal point is sufficiently suppressed, allowing efficient force generation without causing significant heating in the surrounding area. By applying this method, we have confirmed that cell have any damage after the force loading. Therefore, this approach enables cell detachment while minimizing thermal and cavitation-induced damage to the cell. This clarification has been incorporated into the revised results section (lines 119-120). We agree with the reviewer that the presented data was insufficient for supporting the proposed model. To this end, we have performed additional experiments and analyses, which are included in the revised version of the manuscript. To examine the impact of femtosecond laser irradiation on laminin, fluorescently labeled laminin was coated onto glass-bottom dishes, and the fluorescent intensity was analyzed before and after the impulsive force loading. The result indicates that the fluorescent intensity at the laser focal point remained unaffected by laser irradiation. This finding suggests that axon detachment results from the dissociation between L1 and laminin rather than the detachment of laminin from the substrate. These data have been incorporated into Supplementary Fig. 1 and page 5 (lines 113-120). In addition, explanation of the relationship between the adhesion pressure and the traction stress has been specified in page 8 (lines 253-258).

      The authors need to measure axon length on gels (Fig.6) as more physiological because neural tissue is soft. The studies are also limited to a rudimentary in vitro model without clear relevance to in vivo.

      In response to the reviewer’s request, we measured the axon length on the polyacrylamide gel with stiffness comparable to brain tissue (0.3kPa). The axon length was consistently shorter on the gel on the glass under our experimental conditions, in agreement with previous findings (Abe at al., 2021). Furthermore, a biphasic relationship between axon outgrowth and laminin concentration was observed. These results suggest that the biphasic behavior of axon outgrowth identified in this study is likely to occur in vivo. We have updated the Fig. 6 and specified the result (lines 224-225) in revised manuscript.

      Reviewer #1 (Recommendations For The Authors):

      The force calibration curve seems to be from a >10 yr old paper without any more recent checks or validating measurements - which are essential. Effects of cavitation and temperature must be checked, and validated with additional methods that overcome such uncertainties. The authors need to check whether the laser perturbs the matrix, particularly local density. A relation between traction stresses of ~20-50 pN/um2 in Fig.6 and the adhesion pressure of 3-5 kPa of FIg.3 needs to be carefully explained; the former units equate to 0.02-0.05 kPa, and would perhaps suggest cells cannot detach themselves and move forward. The authors need to measure axon length on gels (Fig.6) as more physiological because neural tissue is soft. The studies are also limited to a rudimentary in vitro model without clear relevance to in vivo.

      Thank you this reviewer for the recommendations on our manuscript. For this, we have answered above comments. Please find our response there.

      Reviewer #2 (Public Review):

      Summary:

      The authors measure axon outgrowth rate, laminin adhesion strength, and actin rearward flow rate. They find that the axon outgrowth rate has a biphasic dependence on adhesion strength. In interpreting the results, they suggest that the results "imply that adhesion modulation is key to the regulation of axon guidance"; however, they measure elongation rate, not guidance.

      Strengths:

      The measurements of adhesion strength by laser-induced shock waves are reasonable as is the measurement of actin flow rates by speckle microscopy.

      Weaknesses:

      They only measure the length of the axons after 3 days and have no measurements of the actual rate of growth cone movements when they are moving. They do not measure the rate of actin growth at the leading edge to know its contribution to the extension rate. This is inadequate.

      These studies are unlikely to have an impact on the field because the measurement of axon growth rate at short times is missing.

      We thank the reviewer for understanding novelty of our study. We agree with the reviewer’s comment. Following the comment, we performed time-lapse imaging of growth cone movements and quantified the migration rate. Consistent with the length of axons, the migration rate did not exhibit a monotonic increase with increased L1CAM-laminin binding but rather displayed biphasic behavior, where excessive L1CAM-laminin binding led to a reduction in the migration rate. Notably, the biphasic migration behavior was abolished in the L1CAM knockdown neurons. We believe these results provide further support for our proposed model. This has been incorporated into new Fig.5 and page 7 (lines 209-218) of the revised manuscript. In addition, the experimental method has been added in page 13 (lines 385-391).

      Reviewer #2 (Recommendations For The Authors):

      This is a very weak paper because of the lack of relevant measurements to enable correlations between actual extension rate, traction force, and rates of speckle movement.

      Thank you this reviewer for the critical comment on our model. we performed time-lapse imaging of growth cone movements and quantified the migration rate. From this reviewer and reviewer #3 comments, we recognized the importance of prior studies that the measurement of adhesion strength in the growth cone, traction force, the correlation between retrograde flow and outgrowth, and biphasic dependence of substrate concentration of neurite outgrowth (Please also find our response to recommendations from reviewer #3).

      Reviewer #3 (Public Review):

      Summary:

      Yamada et al. build on classic and more recent studies (Chen et al., 2023; Lemmon et al., 1992; Nichol et al., 2016; Zheng et al., 1994; Schense and Hubbell, 2000) to better understand the relationship between substrate adhesion and neurite outgrowth.

      Strengths:

      The primary strength of the manuscript lies in developing a method for investigating the role of adhesion in axon outgrowth and traction force generation using a femtosecond laser technique. The most exciting finding is that both outgrowth and traction force generation have a biphasic relationship with laminin concentration.

      Weaknesses:

      The primary weaknesses are a lack of discussion of prior studies that have directly measured the strength of growth cone adhesions to the substrate (Zheng et al., 1994) and traction forces (Koch et al., 2012), the inverse correlation between retrograde flow rate and outgrowth (Nichol et al., 2016), and prior studies noting a biphasic effect of substrate concentration of neurite outgrowth (Schense and Hubbell, 2000).

      Overall, the claims and conclusions are well justified by the data. The main exception is that the data is more relevant to how the rate of neurite outgrowth is controlled rather than axonal guidance.

      This manuscript will help foster interest in the interrelationship between neurite outgrowth, traction forces, and substrate adhesion, and the use of a novel method to study this problem.

      We thank the reviewer for appropriate comments and recognition of the strength to our manuscript. Regarding to these comments, we recognized the importance of prior studies that the measurement of adhesion strength in the growth cone, traction force, the correlation between retrograde flow and outgrowth, and biphasic dependence of substrate concentration of neurite outgrowth. With respecting the prior studies, we revised the introduction (lines 38-44, 61-65) and discussion (lines 272-281) in the manuscript. The references suggested by the reviewer have been added (Ref. 17, 26, 27, 31, and 35) (see also below responses).

      Reviewer #3 (Recommendations For The Authors):

      Overall, I found the experiments discussed in the manuscript to be excellent. My primary suggestion is to slightly expand the introduction and discussion to put this work in context better. Additionally, the writing is unclear in places and would be helped by a careful edit.

      We appreciate the reviewer’s constructive critiques and would like to thank him/her for the experimental suggestions, which we have taken into account in the revised version of the manuscript. We trust that the additional modification of the text will satisfactorily address the reviewer’s concerns.

      In more detail:

      The introduction is well-written but could be improved by discussing how these studies build earlier work. Through the 1980s and 90s, an important question was whether growth cone guidance occurred as the result of chemical cues that altered the activity of signaling pathways or differences in the adhesion between growth cones and substrates. While there was some clear evidence that growth cones were steered to more adhesive substrates (Hammarback and Letourneau, 1986), there were also important exceptions. For example, (Calof and Lander, 1991) examined the biophysical relationship between neuronal migration and substrate adhesion and found that laminin, which tends to support rapid migration and neurite outgrowth, tended to decrease adhesion.

      Thank you for critical comments to our manuscript. We have modified the introduction to discuss our understanding of the growth cone guidance, particularly regarding the role of neurite migration and substrate adhesion into introduction (line 38-40, 42-44) in revised manuscript.

      To better understand the relationship between substrate adhesion and outgrowth, Heidemann's group (Zheng et al., 1994) was, to the best of my knowledge, the first paper to directly measure the force required to detach growth cones from substrates; including laminin and L1. For DRG neurons, this was ~ 1000 - 3000 dynes (i.e., 10 to 30 nN) and they noted that traction force generation is 3 to 15 times less than the force needed to dislodge growth cones. Additionally, that manuscript goes on to suggest, "These data argue against the differential adhesion mechanism for growth cone guidance preferences in culture." With the rising development of powerful molecular genetic tools and a growing appreciation of the importance of signaling pathways in neurite outgrowth (Huber et al., 2003), the field as the whole has focused on the molecular aspects of growth cone guidance, leaving many aspects of the physical process of neurite outgrowth unanswered. The strength of this manuscript is that it develops a new method for measuring growth cone adhesion forces, which reassuringly generates similar results to classic studies. In turn, it combines this with molecular genetic analysis to determine the contribution L1-LN interaction makes to the overall adhesion strength.

      We will ensure that the manuscript explicitly acknowledges the significance of Zheng et al. (1994) in shaping the field and clarifies how our study expands upon these foundational findings. Following the reviewer’s suggestion we have added Zheng et al. (1994) in reference and modified discussion (line 272-281, Ref. 17) in revised manuscript.

      There are also a couple of other papers directly relevant to this work. In particular, (Koch et al., 2012) measured the traction forces generated by hippocampal neurons on polyacrylamide gels. They estimated it to be ~ 5 to 10 Pa. While the overall results are similar, in this manuscript, it is reported that the forces generated by hippocampal neurons are significantly higher, in the range of 25-75 Pa. I don't have an issue with this difference, but please look at the Koch paper and see if there is some technical reason for the different estimates of traction forces. Along these lines, please note the Young's modulus of the gels used in the experiments.

      As you mentioned, the traction force measured in our experiments is more than 5 times stronger than that reported by Koch et al., While the exact reason remains unclear, difference in gel-coating may have influenced the result. In the study by Koch et al., pre-coating was performed using Cell-Tak before laminin coating. in contrast, our study used poly-lysin for pre-coating. This methodological difference may have affected the measurement of traction force. However, at least, our experiments have consistently yielded reproducible results.

      (Nichol et al., 2016) nicely shows an inverse relationship between RF rate and LN density at low concentrations. While the results reported here are similar, a strength of this paper is that it extends the work to higher LN concentrations.

      Thank you for pointing out the relevance of Nichol et al., 2016 to our study. We agree that their study provides important insights into the relationship between RF rate and LN density at low concentrations. The novelty our study lies not only in extending the analysis to higher LN concentrations, but also performed analysis that include adhesion strength, traction force, and migration rate in the growth cone. We have included this discussion (line 259-261, Ref. 26) in revised manuscript.

      My understanding is that the biphasic effect of LN in neurite outgrowth was previously established. For example, Buetter and Pittman, 1991 note a biphasic effect of LN conc on some parameters of neurite outgrowth, such as RMS, a measure of growth cone velocity, but not others, such as total neurite length. Likewise, (Schense and Hubbell, 2000) noted a biphasic effect of RGB peptides on outgrowth. In light of this, it would seem the main contribution of this paper is the finding that traction force generation has a bi-phasic relationship with LN concentration.

      Thank you for your thoughtful comment. We agree that the main contribution of this study is demonstrating that the biphasic behavior of axon migration arises from the biphasic dependence of the traction force on laminin concentration. We have included this discussion (line 272-281, Ref. 31) in the revised manuscript.

      Please appreciate that I'm not asking the authors to copy-paste the text above into the manuscript. Instead, the references provide a starting point for better explaining the novel contributions here. The interaction of adhesions, traction force generation, the rate of neurite outgrowth, and biophysics of growth cone guidance is a classic problem in neuronal mechanics but is far from solved. My hope is that this manuscript might inspire more interest in this problem.

      Thank you for your thoughtful feedback and for highlighting the importance of better contextualizing our novel contributions within the broader field of neuronal mechanics. We appreciate your emphasis on the classic yet unresolved nature of the interactions between adhesions, traction force generation, axon outgrowth rate, and the biophysics of growth cone guidance.

      We hope these revisions help strengthen the manuscript’s impact and inspire further investigation into this important problem. We appreciate your insightful comments and the opportunity to improve our work.

      The text would be improved with a careful copy edit, for example:

      The last sentence of the introduction currently reads, "We suggested mechanism of the axon outgrowth which depends on the density of laminin on the substrate, revealing L1CAM-laminin binding as a mechanism for the regulation of axon outgrowth." which is challenging to understand.

      We appreciate the reviewer’s comment pointing out the lack of clarity in the final sentence of the introduction. To improve readability and clarity, we have revised the sentence as follows:

      “In this study, we suggested mechanism of the axon outgrowth that depends on the density of laminin on the substrate, i.e. the L1CAM-laminin binding is key to the regulation of axon outgrowth..” We believe this revised version better conveys our main finding in a more concise and comprehensible manner.

      Line 224 needs to be F-actin and the next sentence is difficult to understand.

      Thank you for pointing this out. We have corrected "F-action" to "F-actin" to ensure accuracy (line 256). Additionally, we have revised the following sentence to improve clarity (line 256-258).

      Line 232 instead of "traction force slows", did you mean the rate of retrograde flow slows?

      Thank you for pointing this out. We mean to refer to the rate of retrograde flow, not the traction force itself. We have revised the wording accordingly to avoid confusion (line 266).

      Line 242, shear-stress instead of share-stress.

      We have corrected the typo into "shear-stress" (line 282).

      Lines 255, 267, and the abstract. The paper doesn't directly address axonal guidance. It would be more accurate to replace axonal guidance with neurite outgrowth.

      Thank you for your insightful comment. We agree that the term "neurite outgrowth" more accurately reflects the scope of our study, as we do not directly examine the mechanisms of axonal guidance. Accordingly, we have revised the text in Lines 273, 275, and the abstract to replace "axonal guidance" with "neurite outgrowth" to better align with the presented data and experimental focus.

      Line 362, perhaps reference (Minegishi et al., 2021) here as it provides a nice explanation of the technique.

      Thank you for the helpful suggestion. We have now added a reference to Minegishi et al., 2021 (line 416, Ref.35) in revised manuscript, as it indeed provides a clear explanation of the method.

    1. eLife Assessment

      In this useful study, the authors conducted a set of computational and experimental investigations of the mechanism of cholesterol transport in the smoothened (SMO) protein. The computational component integrated multiple state-of-the-art approaches such as adaptive sampling, free energy simulations, and Markov state modeling, providing support for the proposed mechanistic model, which is also consistent with the experimental mutagenesis data. However, substantial revisions are needed for the discussion of the computational results and interpretation of the literature to provide a more balanced and accurate perspective on cholesterol-mediated SMO regulation. In the current form, therefore, the strength of evidence of the study is considered incomplete.

    2. Reviewer #1 (Public review):

      Summary:

      This manuscript uses primarily simulation tools to probe the pathway of cholesterol transport with the smoothened (SMO) protein. The pathway to the protein and within SMO is clearly discovered, and interactions deemed important are tested experimentally to validate the model predictions.

      Strengths:

      The authors have clearly demonstrated how cholesterol might go from the membrane through SMO for the inner and outer leaflets of a symmetrical membrane model. The free energy profiles, structural conformations, and cholesterol-residue interactions are clearly described.

      Weaknesses:

      (1) Membrane Model:

      The authors decided to use a rather simple symmetric membrane with just cholesterol, POPC, and PSM at the same concentration for the inner and outer leaflets. This is not representative of asymmetry known to exist in plasma membranes (SM only in the outer leaflet and more cholesterol in this leaflet). This may also be important to the free energy pathway into SMO. Moreover, PE and anionic lipids are present in the inner leaflet and are ignored. While I am not requesting new simulations, I would suggest that the authors should clearly state that their model does not consider lipid concentration leaflet asymmetry, which might play an important role.

      (2) Statistical comparison of barriers:

      The barriers for pathways 1 and 2 are compared in the text, suggesting that pathway 2 has a slightly higher barrier than pathway 1. However, are these statistically different? If so, the authors should state the p-value. If not, then the text in the manuscript should not state that one pathway is preferred over the other.

      (3) Barrier of cholesterol (reasoning):

      The authors on page 7 argue that there is an enthalpy barrier between the membrane and SMO due to the change in environment. However, cholesterol lies in the membrane with its hydroxyl interacting with the hydrophilic part of the membrane and the other parts in the hydrophobic part. How is the SMO surface any different? It has both characteristics and is likely balanced similarly to uptake cholesterol. Unless this can be better quantified, I would suggest that this logic be removed.

    3. Reviewer #2 (Public review):

      Summary:

      In this work, the authors applied a range of computational methods to probe the translocation of cholesterol through the Smoothened receptor. They test whether cholesterol is more likely to enter the receptor straight from the outer leaflet of the membrane or via a binding pathway in the inner leaflet first. Their data reveal that both pathways are plausible but that the free energy barriers of pathway 1 are lower, suggesting this route is preferable. They also probe the pathway of cholesterol transport from the transmembrane region to the cysteine-rich domain (CRD).

      Strengths:

      (1) A wide range of computational techniques is used, including potential of mean force calculations, adaptive sampling, dimensionality reduction using tICA, and MSM modelling. These are all applied in a rigorous manner, and the data are very convincing. The computational work is an exemplar of a well-carried out study.

      (2) The computational predictions are experimentally supported using mutagenesis, with an excellent agreement between their PMF and mRNA fold change data.

      (3) The data are described clearly and coherently, with excellent use of figures. They combine their findings into a mechanism for cholesterol transport, which on the whole seems sound.

      (4) The methods are described well, and many of their analysis methods have been made available via GitHub, which is an additional strength.

      Weaknesses:

      (1) Some of the data could be presented a little more clearly. In particular, Figure 7 needs additional annotation to be interpretable. Can the position of the cholesterol be shown on the graph so that we can see the diameter change more clearly?

      (2) In Figure 3C, it doesn't look like the Met is constricting the tunnel at all. What residue is constricting the tunnel here? Can we see the Ala and Met panels from the same angle to compare the landscapes? Or does the mutation significantly change the tunnel? Why not A283 to a bulkier residue? Finally, the legend says that the figure shows that cholesterol can still pass this residue, but it doesn't really show this. Perhaps if the HOLE graph was plotted, we could see the narrowest point of the tunnel and compare it to the size of cholesterol.

      (3) The PMF axis in 3b and d confused me for a bit. Looking at the Supplementary data, it's clear that, e.g., the F455I change increases the energy barrier for chol entering the receptor. But in 3d this is shown as a -ve change, i.e., favourable. This seems the wrong way around for me. Either switch the sign or make this clearer in the legend, please.

      (4) The impact of G280V is put down to a decrease in flexibility, but it could also be a steric hindrance. This should be discussed.

      (5) Are the reported energy barriers of the two pathways (5.8{plus minus}0.7 and 6.5{plus minus}0.8 kcal/mol) significantly and/or substantially different enough to favour one over the other? This could be discussed in the manuscript.

      (6) Are the energy barriers consistent with a passive diffusion-driven process? It feels like, without a source of free energy input (e.g., ion or ATP), these barriers would be difficult to overcome. This could be discussed.

      (7) Regarding the kinetics from MSM, it is stated that the values seen here are similar to MFS transporters, but this then references another MSM study. A comparison to experimental values would support this section a lot.

    4. Reviewer #3 (Public review):

      This manuscript presents a study combining molecular dynamics simulations and Hedgehog (Hh) pathway assays to investigate cholesterol translocation pathways to Smoothened (SMO), a G protein-coupled receptor central to Hedgehog signal transduction. The authors identify and characterize two putative cholesterol access routes to the transmembrane domain (TMD) of SMO and propose a model whereby cholesterol traverses through the TMD to the cysteine-rich domain (CRD), which is presented as the primary site of SMO activation.

      The MD simulations and biochemical experiments are carefully executed and provide useful data. However, the manuscript is significantly weakened by a narrow and selective interpretation of the literature, overstatement of certain conclusions, and a lack of appropriate engagement with alternative models that are well-supported by published data-including data from prior work by several of the coauthors of this manuscript. In its current form, the manuscript gives a biased impression of the field and overemphasizes the role of the CRD in cholesterol-mediated SMO activation. Below, I provide specific points where revisions are needed to ensure a more accurate and comprehensive treatment of the biology.

      Major Comments:

      (1) Overstatement of the CRD as the Orthosteric Site of SMO Activation

      The manuscript repeatedly implies or states that the CRD is the orthosteric site of SMO activation, without adequate acknowledgment of alternative models. To give just a few examples (of many in this manuscript):

      a) "PTCH is proposed to modulate the Hh signal by decreasing the ability of membrane cholesterol to access SMO's extracellular cysteine-rich domain (CRD)" (p. 3).

      b) "In recent years there has been a vigorous debate on the orthosteric site of SMO" (p. 3).

      c) "cholesterol must travel through the SMO TMD to reach the orthosteric site in the CRD" (p. 4).

      d) "we observe cholesterol moving along TM6 to the TMD-CRD interface (common pathway, Fig. 1d) to access the orthosteric binding site in the CRD" (p. 6).

      While the second quote in this list at least acknowledges a debate, the surrounding text suggests that this debate has been entirely resolved in favor of the CRD model. This is misleading and not reflective of the views of other investigators in the field (see, for example, a recent comprehensive review from Zhang and Beachy, Nature Reviews Molecular and Cell Biology 2023, which makes the point that both the CRD and 7TM sites are critical for cholesterol activation of SMO as well as PTCH-mediated regulation of SMO-cholesterol interactions).

      In contrast, a large body of literature supports a dual-site model in which both the CRD and the TMD are bona fide cholesterol-binding sites essential for SMO activation. Examples include:

      a) Byrne et al., Nature 2016: point mutation of the CRD cholesterol binding site impairs-but does not abolish-SMO activation by cholesterol (SMO D99A, Y134F, and combination mutants - Fig 3 of the 2016 study).

      b) Myers et al., Dev Cell 2013 and PNAS 2017: CRD deletion mutants retain responsiveness to PTCH regulation and cholesterol mimetics (similar Hh responsiveness of a CRD deletion mutant is also observed in Fig 4 Byrne et al, Nature 2016).

      c) Deshpande et al., Nature 2019: mutation of residues in the TMD cholesterol binding site blocks SMO activation entirely, strongly implicating the TMD as a required site, in contrast to the partial effects of mutating or deleting the CRD site.

      Qi et al., Nature 2019, and Deshpande et al., Nature 2019, both reported cholesterol binding at the TMD site based on high-resolution structural data. Oddly, Deshpande et al., Nature 2019, is not cited in the discussion of TMD binding on p. 3, despite being one of the first papers to describe cholesterol in the TMD site and its necessity for activation (the authors only cite it regarding activation of SMO by synthetic small molecules).

      Kinnebrew et al., Sci Adv 2022 report that CRD deletion abolished PTCH regulation, which is seemingly at odds with several studies above (e.g., Byrne et al, Nature 2016; Myers et al, Dev Cell 2013); but this difference may reflect the use of an N-terminal GFP fusion to SMO in the Kinnebrew et al 2022, which could alter SMO activation properties by sterically hindering activation at the TMD site by cholesterol (but not synthetic SMO agonists like SAG); in contrast, the earlier work by Byrne et al is not subject to this caveat because it used an untagged, unmodified form of SMO.

      Although overexpression of PTCH1 and SMO (wild-type or mutant) has been noted as a caveat in studies of CRD-independent SMO activation by cholesterol, this reviewer points out that several of the studies listed above include experiments with endogenous PTCH1 and low-level SMO expression, demonstrating that SMO can clearly undergo activation by cholesterol (as well as regulation by PTCH1) in a manner that does not require the CRD.

      Recommendation:

      The authors should revise the manuscript to provide a more balanced overview of the field and explicitly acknowledge that the CRD is not the sole activation site. Instead, a dual-site model is more consistent with available structural, mutational, and functional data. In addition, the authors should reframe their interpretation of their MD studies to reflect this broader and more accurate view of how cholesterol binds and activates SMO.

      (2) Bias in Presentation of Translocation Pathways

      The manuscript presents the model of cholesterol translocation through SMO to the CRD as the predominant (if not sole) mechanism of activation. Statements such as: "Cholesterol traverses SMO to ultimately reach the CRD binding site" (p. 6) suggest an exclusivity that is not supported by prior literature in the field. Indeed, the authors' own MD data presented here demonstrate more stable cholesterol binding at the TMD than at the CRD (p 17), and binding of cholesterol to the TMD site is essential for SMO activation. As such, it is appropriate to acknowledge that cholesterol may activate SMO by translocating through the TM5/6 tunnel, then binding to the TMD site, as this is a likely route of SMO activation in addition to the CRD translocation route they highlight in their discussion.

      The authors describe two possible translocation pathways (Pathway 1: TM2/3 entry to TMD; Pathway 2: TM5/6 entry and direct CRD transfer), but do not sufficiently acknowledge that their own empirical data support Pathway 2 as more relevant. Indeed, because their experimental data suggest Pathway 2 is more strongly linked to SMO activation, this pathway should be weighted more heavily in the authors' discussion. In addition, Pathway 2 is linked to cholesterol binding to both the TMD and CRD sites (the former because the TMD binding site is at the terminus of the hydrophobic tunnel, the latter via the translocation pathway described in the present manuscript), so it is appropriate that Pathway 2 figure more prominently than Pathway 1 into the authors' discussion.

      The authors also claim that "there is no experimental structure with cholesterol in the inner leaflet region of SMO TMD" (p 16). However, a structural study of apo-SMO from the Manglik and Cheng labs (Zhang et al., Nat Comm, 2022) identified a cholesterol molecule docked at the TM5/6 interface and also proposed a "squeezing" mechanism by which cholesterol could enter the TM5/6 pocket from the membrane. The authors do not take this SMO conformation into account in their models, nor do they discuss the possibility that conformational dynamics at the TM5/6 interface could facilitate cholesterol flipping and translocation into the hydrophobic conduit, even though both possibilities have precedent in the 2022 empirical cryoEM structural analysis.

      Recommendation:

      The authors should avoid oversimplification of the SMO cholesterol activation process, either by tempering these claims or broadening their discussion to better reflect the complexity and multiplicity of cholesterol access and activation routes for SMO, and consider the 2022 apo-SMO cryoEM structure in their analysis of the TM5/6 translocation pathway.

      (3) Alternative Possibility: Direct Membrane Access to CRD

      The possibility that the CRD extracts cholesterol directly from the membrane outer leaflet is not considered. While the crystal structures place the CRD in a stable pose above the membrane, multiple cryo-EM studies suggest that the CRD is dynamic and adopts a variety of conformations, raising the possibility that the stability of the CRD in the crystal structures is a result of crystal packing and that the CRD may be far more dynamic under more physiological conditions.

      Recommendation:

      The authors should explicitly acknowledge and evaluate this potential mechanism and, if feasible, assess its plausibility through MD simulations.

      (4) Inconsistent Framing of Study Scope and Limitations

      The discussion contains some contradictory and misleading language. For example, the authors state that "In this study we only focused on the cholesterol movement from the membrane to CRD binding site." and then several sentences later state that "We outline the entire translocation mechanism from a kinetic and thermodynamic perspective.". These statements are at odds. The former appropriately (albeit briefly) notes the limited scope of the modeling, while the latter overstates the generality of the findings.

      In addition, the authors' narrow focus on the CRD site constitutes a major caveat to the entire work. It should be acknowledged much earlier in the manuscript, preferably in the introduction, rather than mentioned as an aside in the penultimate paragraph of the conclusion.

      Recommendation:<br /> The authors should clarify the scope of the study and expand the discussion of its limitations. They should explicitly acknowledge that the study models one of several cholesterol access routes and that the findings do not rule out alternative pathways.

      Summary:

      This study has the potential to make a useful contribution to our understanding of cholesterol translocation and SMO activation. However, in its current form, the manuscript presents an overly narrow and, at times, misleading view of the literature and biological models; as such, it is not nearly as impactful as it could be. I strongly encourage the authors to revise the manuscript to include:

      (1) A more balanced discussion of the CRD vs. TMD binding sites.

      (2) Acknowledgment of alternative cholesterol access pathways.

      (3) More comprehensive citation of prior structural and functional studies.

      (4) Clarification of assumptions and scope.

      Of note, the above suggestions require little to no additional MD simulations or experimental studies, but would significantly enhance the rigor and impact of the work.

    1. eLife Assessment

      This study is valuable for understanding how dysfunctional mitochondria contribute to vascular diseases by investigating the influence of Miro1 on smooth muscle cell proliferation and neointima development. The solid findings collectively indicate that Miro1 regulates mitochondrial cristae architecture and the efficiency of the respiratory chain. Nevertheless, the analysis would benefit from a more thorough assessment of the relationship between Miro1-dependent mitochondrial defects and vascular smooth muscle cell proliferation.

    2. Reviewer #1 (Public review):

      Summary:

      In this paper, the authors investigate the effects of Miro1 on VSMC biology after injury. Using conditional knockout animals, they provide the important observation that Miro1 is required for neointima formation. They also confirm that Miro1 is expressed in human coronary arteries. Specifically, in conditions of coronary diseases, it is localized in both media and neointima, and, in atherosclerotic plaque, Miro1 is expressed in proliferating cells.

      However, the role of Miro1 in VSMC in CV diseases is poorly studied, and the data available are limited; therefore, the authors decided to deepen this aspect. The evidence that Miro-/- VSMCs show impaired proliferation and an arrest in S phase is solid and further sustained by restoring Miro1 to control levels, normalizing proliferation. Miro1 also affects mitochondrial distribution, which is strikingly changed after Miro1 deletion. Both effects are associated with impaired energy metabolism due to the ability of Miro1 to participate in MICOS/MIB complex assembly, influencing mitochondrial cristae folding. Interestingly, the authors also show the interaction of Miro1 with NDUFA9, globally affecting super complex 2 assembly and complex I activity.

      Finally, these important findings also apply to human cells and can be partially replicated using a pharmacological approach, proposing Miro1 as a target for vasoproliferative diseases.

      Strengths:

      The discovery of Miro1 relevance in neointima information is compelling, as well as the evidence in VSMC that MIRO1 loss impairs mitochondrial cristae formation, expanding observations previously obtained in embryonic fibroblasts.

      The identification of MIRO1 interaction with NDUFA9 is novel and adds value to this paper. Similarly, the findings that VSMC proliferation requires mitochondrial ATP support the new idea that these cells do not rely mostly on glycolysis.

      Weaknesses:

      (1) Figure 3:

      I appreciate the system used to assess mitochondrial distribution; however, I believe that time-lapse microscopy to evaluate mitochondrial movements in real time should be mandatory. The experimental timing is compatible with time-lapse imaging, and these experiments will provide a quantitative estimation of the distance travelled by mitochondria and the fraction of mitochondria that change position over time. I also suggest evaluating mitochondrial shape in control and MIRO1-/- VSMC to assess whether MIRO1 absence could impact mitochondrial morphology, altering fission/fusion machinery, since mitochondrial shape could differently influence the mobility.

      (2) Figure 6:

      The evidence of MIRO1 ablation on cristae remodeling is solid; however, considering that the mechanism proposed to explain the finding is the modulation of MICOS/MIB complex, as shown in Figure 6D, I suggest performing EM analysis in each condition. In my mind, Miro1 KK and Miro1 TM should lead to different cristae phenotypes according to the different impact on MICOS/MIB complex assembly. Especially, Miro1 TM should mimic Miro1 -/- condition, while Miro1 KK should drive a less severe phenotype. This would supply a good correlation between Miro1, MICOS/MIB complex formation and cristae folding.

      I also suggest performing supercomplex assembly and complex I activity with each plasmid to correlate MICOS/MIB complex assembly with the respiratory chain efficiency.

      (3) I noticed that none of the in vitro findings have been validated in an in vivo model. I believe this represents a significant gap that would be valuable to address. In your animal model, it should not be too complex to analyze mitochondria by electron microscopy to assess cristae morphology. Additionally, supercomplex assembly and complex I activity could be evaluated in tissue homogenates to corroborate the in vitro observations.

      (4) I find the results presented in Figure S7 somewhat unclear. The authors employ a pharmacological strategy to reduce Miro1 and validate the findings previously obtained with the genetic knockout model. They report increased mitophagy and a reduction in mitochondrial mass. However, in my opinion, these changes alone could significantly impact cellular metabolism. A lower number of mitochondria would naturally result in decreased ATP production and reduced mitochondrial respiration. This, in turn, weakens the proposed direct link between Miro1 deletion and impaired metabolic function or altered electron transport chain (ETC) activity. I believe this section would benefit from additional experiments and a more in-depth discussion.

    3. Reviewer #2 (Public review):

      Summary:

      This study identifies the outer‑mitochondrial GTPase MIRO1 as a central regulator of vascular smooth muscle cell (VSMC) proliferation and neointima formation after carotid injury in vivo and PDGF-stimulation ex vivo. Using smooth muscle-specific knockout male mice, complementary in vitro murine and human VSMC cell models, and analyses of mitochondrial positioning, cristae architecture, and respirometry, the authors provide solid evidence that MIRO1 couples mitochondrial motility with ATP production to meet the energetic demands of the G1/S cell cycle transition. However, a component of the metabolic analyses is suboptimal and would benefit from more robust methodologies. The work is valuable because it links mitochondrial dynamics to vascular remodelling and suggests MIRO1 as a therapeutic target for vasoproliferative diseases, although whether pharmacological targeting of MIRO1 in vivo can effectively reduce neointima after carotid injury has not been explored. This paper will be of interest to those working on VSMCs and mitochondrial biology.

      Strengths:

      The strength of the study lies in its comprehensive approach, assessing the role of MIRO1 in VSMC proliferation in vivo, ex vivo, and importantly in human cells. The subject provides mechanistic links between MIRO1-mediated regulation of mitochondrial mobility and optimal respiratory chain function to cell cycle progression and proliferation. Finally, the findings are potentially clinically relevant given the presence of MIRO1 in human atherosclerotic plaques and the available small molecule MIRO1.

      Weaknesses:

      (1) There is a consistent lack of reporting across figure legends, including group sizes, n numbers, how many independent experiments were performed, or whether the data is mean +/- SD or SEM, etc. This needs to be corrected.

      (2) The in vivo carotid injury experiments are in male mice fed a high-fat diet; this should be explicitly stated in the abstract, as it's unclear if there are any sex- or diet-dependent differences. Is VSMC proliferation/neointima formation different in chow-fed mice after carotid injury?

      (3) The main body of the methods section is thin, and it's unclear why the majority of the methods are in the supplemental file. The authors should consider moving these to the main article, especially in an online-only journal.

      (4) Certain metabolic analyses are suboptimal, including ATP concentration and Complex I activity measurements. The measurement of ATP/ADP and ATP/AMP ratios for energy charge status (luminometer or mass spectrometry), while high-resolution respirometry (Oroboros) to determine mitochondrial complex I activity in permeabilized VSMCs would be more informative.

      (5) The statement that 'mitochondrial mobility is not required for optimal ATP production' is poorly supported. XF Seahorse analysis should be performed with nocodazole and also following MIRO1 reconstitution +/- EF hands.

      (6) The authors should consider moving MIRO1 small molecule data into the main figures. A lot of value would be added to the study if the authors could demonstrate that therapeutic targeting of MIRO1 could prevent neointima formation in vivo.

    4. Reviewer #3 (Public review):

      Summary:

      This study addresses the role of MIRO1 in vascular smooth muscle cell proliferation, proposing a link between MIRO1 loss and altered growth due to disrupted mitochondrial dynamics and function. While the findings are potentially useful for understanding the importance of mitochondrial positioning and function in this specific cell type within health and disease contexts, the evidence presented appears incomplete, with key bioenergetic and mechanistic claims lacking adequate support.

      Strengths:

      (1) The study focuses on an important regulatory protein, MIRO1, and its role in vascular smooth muscle cell (VSMC) proliferation, a relatively underexplored context.

      (2) It explores the link between smooth muscle cell growth, mitochondrial dynamics, and bioenergetics, which is a potentially significant area for both basic and translational biology.

      (3) The use of both in vivo and in vitro systems provides a potentially useful experimental framework to interrogate MIRO1 function in this context.

      Weaknesses:

      (1) The central claim that MIRO1 loss impairs mitochondrial bioenergetics is not convincingly demonstrated, with only modest changes in respiratory parameters and no direct evidence of functional respiratory chain deficiency.

      (2) The proposed link between MIRO1 and respiratory supercomplex assembly or function is speculative, lacking mechanistic detail and supported by incomplete or inconsistent biochemical data.

      (3) Key mitochondrial assays are either insufficiently controlled or poorly interpreted, undermining the strength of the conclusions regarding oxidative phosphorylation.

      (4) The study does not adequately assess mitochondrial content or biogenesis, which could confound interpretations of changes in respiratory activity.

      (5) Overall, the evidence for a direct impact of MIRO1 on mitochondrial respiratory function in the experimental setting is weak, and the conclusions overreach the data.

    1. eLife Assessment

      This study reports a dynamic association/dissociation between malate dehydrogenase (MDH1) and citrate synthase (CIT1) in Saccharomyces cerevisiae under different metabolic conditions that control TCA pathway flux rate. The research question is timely, the use of the NanoBiT split-luciferase system to monitor protein-protein interactions is innovative, and the significance of the findings is valuable. However, the strength of evidence needed to support the conclusions was found to be incomplete based on a lack of critical control and mechanistic experiments.

    2. Reviewer #1 (Public review):

      Summary:

      The study by the Obata group characterizes the dynamics of the canonical malate dehydrogenase-citrate synthase metabolon in yeast.

      Strengths:

      The study is well-written and appears to give clear demonstrations of this phenomenon.

      Studies of the dynamics of metabolon formation are rare; if the authors can address the concern detailed below, then they have provided such for one of the canonical metabolons in nature.

      Weaknesses:

      There is a fundamental issue with the study, which is that the authors do not provide enough support or information concerning the split luciferase system that they use. Is the binding reversible or not? How the data is interpreted is massively influenced by this fact. What are the pros and cons of this method in comparison to, for example, FLIM-FRET? The authors state that the method is semi-quantitative - can they document this? All of the conclusions are based on the quality of this method. I know that it has been used by others, but at least some preliminary documentation to address these questions is required.

    3. Reviewer #2 (Public review):

      This study explores the dynamic association between malate dehydrogenase (MDH1) and citrate synthase (CIT1) in Saccharomyces cerevisiae, with the aim of linking this interaction to respiratory metabolism. Utilizing a NanoBiT split-luciferase system, the authors monitor protein-protein interactions in vivo under various metabolic conditions.

      Major Concerns:

      (1) NanoBiT Signal May Reflect Protein Abundance Rather Than Interaction Strength

      In Figure 1C, the authors report increased MDH1-CIT1 interaction under respiratory (acetate) conditions and decreased interaction during fermentation (glucose), as indicated by NanoBiT luminescence. However, this signal appears to correlate strongly with the expression levels of MDH1 and CIT1, raising the possibility that the observed luminescence reflects protein abundance rather than specific interaction dynamics. To resolve this, NanoBiT signals should be normalized to the expression levels of both proteins to distinguish between abundance-driven and interaction-driven changes.

      (2) Lack of Causal Evidence

      The study presents a series of metabolic perturbation experiments (e.g., arsenite, AOA, antimycin A, malonate) and correlates changes in metabolite levels with NanoBiT signals. However, these data are correlative and do not establish a functional role for the MDH1-CIT1 interaction in metabolic regulation. To demonstrate causality, the authors should implement approaches to specifically disrupt the MDH1-CIT1 interaction. One strategy could involve using a 15-residue peptide (Pept1) derived from the Pro354-Pro366 region of CIT1, previously shown to mediate the interaction, or introducing the cit1Δ3 (Arg362Glu) mutation, which perturbs binding. Metabolic flux analysis using ^13C-labeled glucose and mitochondrial respiration assays (e.g., Seahorse) could then assess functional consequences.

      (3) Absence of Protein Expression Controls Under Perturbation Conditions

      In experiments involving acetate, arsenite, AOA, antimycin A, and malonate, the authors infer changes in MDH1-CIT1 association based solely on NanoBiT signals. However, no accompanying data are provided on MDH1 and CIT1 protein levels under these conditions. This omission weakens the conclusions, as altered expression rather than interaction strength could underlie the observed luminescence changes. Immunoblotting or quantitative proteomics should be used to confirm constant protein expression across conditions.

      Conclusion:

      Although the central question is compelling and the use of NanoBiT in live cells is a strength, the manuscript requires additional experimental rigor. Specifically, normalization of interaction signals, introduction of causative perturbations, and validation of protein expression are essential to substantiate the study's claims.

    4. Reviewer #3 (Public review):

      Summary:

      Metabolons are multisubunit complexes that promote the physical association of sequential enzymes within a metabolic pathway. Such complexes are proposed to increase metabolic flux and efficiency by channeling reaction intermediates between enzymes. The TCA cycle enzymes malate dehydrogenase (MDH1) and citrate synthase (CIT1) have been linked to metabolon formation, yet the conditions under which these enzymes interact, and whether such interactions are dynamic in response to metabolic cues, remain unclear, particularly in the native cellular context. This study uses a nanoBIT protein-protein interaction assay to map the dynamic behavior of the MDH1-CIT1 interaction in response to multiple metabolic stimuli and challenges in yeast. Beyond mapping these interactions in real time, the authors also performed GC-MS metabolomics to map whole-cell metabolite alterations across experimental conditions. Finally, the authors use microscale thermophoresis to determine components that alter the MDH1-CIT1 interaction in vitro. Collectively, the authors synthesize their collected data into a model in which the MDH1-CIT1 metabolon dissociates in conditions of low respiratory flux, and is stimulated during conditions of high respiratory flux. While their data largely support these models, some key exceptions are found that suggest this model is likely oversimplified and will require further work to understand the complexities associated with MDH1-CIT1 interaction dynamics. Nonetheless, the authors put forth an interesting and timely toolkit to begin to understand the interaction kinetics and dynamics of key metabolic enzymes that should serve as a platform to begin disentangling these important yet understudied aspects of metabolic regulation.

      Strengths:

      (1) The authors address an important question: how do metabolon-associated protein-protein interactions change across altered metabolic conditions?

      (2) The development and validation of the MDH1-CIT1 nanoBIT assay provides an important tool to allow the quantification of this protein-protein interaction in vivo. Importantly, the authors demonstrate that the assay allows kinetic and real time assessment of these protein interactions, which reveal interesting and dynamic behavior across conditions.

      (3) The use of classic biochemical techniques to confirm that pH and various metabolites can alter the MDH1-CIT1 interaction in vitro is rigorous and supports the model put forth by the authors.

      Weaknesses:

      (1) Some of the data collected seem to be merely reported rather than synthesized and interpreted for the reader. This is particularly true for data that seem to reflect more complex trends, such as the GC-MS experiments that map metabolites across multiple experiments, or treatments that show somewhat counterintuitive results, such as the antimycin A treatment, which promotes rather than disrupts the MDH1-CIT1 interaction.

      (2) Some of the assertions put forth in the manuscript are not substantiated by the data presented, and the authors are at times overly reliant on previous findings from the literature to support their claims. This is particularly notable for claims about "TCA cycle flux"; the authors do not perform flux analysis anywhere in their study and should be cautious when insinuating correlations between their observations and "flux".

      (3) The manuscript presentation could be improved. For figures, at times, the axes do not have intuitive labels (example, Figure 1A), data points and details about the number of samples analyzed are missing (bar graphs and box plots), and molecular weight markers are not reported on western blots. The authors refer to the figures out of order in the text, which makes the manuscript challenging to navigate as a reader.

    1. eLife Assessment

      This useful study analyzed 335 Mycobacterium tuberculosis Complex genomes and found that MTBC has a closed pangenome with few accessory genes. The research provides solid evidence for gene presence-absence patterns which support the appending conclusions however, the main criticism regarding the dominance of genome reduction remains.

    2. Reviewer #1 (Public review):

      Summary:

      In this paper, Behruznia and colleagues use long-read sequencing data for 339 strains of the Mycobacterium tuberculosis complex to study genome evolution in this clonal bacterial pathogen. They use both a "classical" pangenome approach that looks at the presence and absence of genes, and a pangenome graph based on whole genomes in order to investigate structural variants in non-coding regions. The comparison of the two approaches is informative and shows that much is missed when focusing only on genes. The two main biological results of the study are that 1) the MTBC has a small pangenome with few accessory genes, and that 2) pangenome evolution is driven by genome reduction. The second result is still questionable because it relies on a method that disregards paralogs.

      Strengths:

      The authors put together the so-far largest data set of long-read assemblies representing most lineages of the Mycobacterium tuberculosis context, and covering a large geographic area. They sequenced and assembled genomes for strains of M. pinnipedi, L9, and La2, for which no high-quality assemblies were available previously. State-of-the-art methods are used to analyze gene presence-absence polymorphisms (Panaroo) and to construct a pangenome graph (PanGraph). Additional analysis steps are performed to address known problems with misannotated or misassembled genes.

      Weaknesses:

      The main criticism regarding the dominance of genome reduction remains after two rounds of revisions. A method that systematically excludes paralogs is hardly suitable to draw conclusions about the relative importance of insertions/duplications and deletions in a clonal organism, where any insertion/duplication will result in a paralog. I understand that a re-analysis of the data might not be practical, and the authors have added a few sentences in the discussion that touch on this problem. However, the statements regarding the dominance of genome reduction remain too assertive given this basic flaw.

      Here are the more detailed argument from the previous review:

      In a fully clonal organism, any insertion/duplication will be an insertion/duplication of an existing sequence and thus produce a paralog. If I'm correctly understanding your methods section, paralogs are systematically excluded in the pangraph analysis. Genomic blocks are summarized at the sublineage level as follows (l.184 ): "The DNA sequences from genomic blocks present in at least one sub-lineage but completely absent in others were extracted to look for long-term evolution patterns in the pangenome." I presume this is done using blastn, as in other steps of the analysis.

      So a sublineage-specific copy of IS6110 would be excluded here, because IS6110 is present somewhere in the genome in all sublineages. However, the appropriate category of comparison, at least for the discussion of genome reduction, is orthology rather than homology: is the same, orthologous copy of IS6110, at the same position in the genome, present or absent in other sublineages? The same considerations apply to potential sublineage-specific duplicates of PE, PPE, and Esx genes. These gene families play important roles in host-pathogen interactions, so I'd argue that the neglect of paralogs is not a finicky detail, but could be of broader biological relevance.

    3. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this paper, Behruznia and colleagues use long-read sequencing data for 339 strains of the Mycobacterium tuberculosis complex to study genome evolution in this clonal bacterial pathogen. They use both a "classical" pangenome approach that looks at the presence and absence of genes, and a pangenome graph based on whole genomes in order to investigate structural variants in non-coding regions. The comparison of the two approaches is informative and shows that much is missed when focussing only on genes. The two main biological results of the study are that 1) the MTBC has a small pangenome with few accessory genes, and that 2) pangenome evolution is driven by genome reduction. In the revised article, the description of the data set and the methods is much improved, and the comparison of the two pangenome approaches is more consistent. I still think, however, that the discussion of genome reduction suffers from a basic flaw, namely the failure to distinguish clearly between orthologs and homologs/paralogs.

      Strengths:

      The authors put together the so-far largest data set of long-read assemblies representing most lineages of the Mycobacterium tuberculosis context, and covering a large geographic area. They sequenced and assembled genomes for strains of M. pinnipedi, L9, and La2, for which no high-quality assemblies were available previously. State-of-the-art methods are used to analyze gene presence-absence polymorphisms (Panaroo) and to construct a pangenome graph (PanGraph). Additional analysis steps are performed to address known problems with misannotated or misassembled genes.

      Weaknesses:

      The revised manuscript has gained much clarity and consistency. One previous criticism, however, has in my opinion not been properly addressed. I think the problem boils down to not clearly distinguishing between orthologs and paralogs/homologs. As this problem affects a main conclusion - the prevalence of deletions over insertions in the MTBC - it should be addressed, if not through additional analyses, then at least in the discussion.

      Insertions and deletions are now distinguished in the following way: "Accessory regions were further classified as a deletion if present in over 50% of the 192 sub-lineages or an insertion/duplication if present in less than 50% of sub-lineages." The outcome of this classification is suspicious: not a single accessory region was classified as an insertion/duplication. As a check of sanity, I'd expect at least some insertions of IS6110 to show up, which has produced lineage- or sublineage-specific insertions (Roychowdhury et al. 2015, Shitikov et al. 2019). Why, for example, wouldn't IS6110 insertions in the single L8 strain show up here?

      In a fully clonal organism, any insertion/duplication will be an insertion/duplication of an existing sequence, and thus produce a paralog. If I'm correctly understanding your methods section, paralogs are systematically excluded in the pangraph analysis. Genomic blocks are summarized at the sublineage levels as follows (l.184 ): "The DNA sequences from genomic blocks present in at least one sub-lineage but completely absent in others were extracted to look for long-term evolution patterns in the pangenome." I presume this is done using blastn, as in other steps of the analysis.

      So a sublineage-specific copy of IS6110 would be excluded here, because IS6110 is present somewhere in the genome in all sublineages. However, the appropriate category of comparison, at least for the discussion of genome reduction, is orthology rather than homology: is the same, orthologous copy of IS6110, at the same position in the genome, present or absent in other sublineages? The same considerations apply to potential sublineage-specific duplicates of PE, PPE, and Esx genes. These gene families play important roles in host-pathogen interactions, so I'd argue that the neglect of paralogs is not a finicky detail, but could be of broader biological relevance.

      Reviewer #2 (Public review):

      Summary:

      The authors attempted to investigate the pangenome of MTBC by using a selection of state-of-the-art bioinformatic tools to analyse 324 complete and 11 new genomes representing all known lineages and sublineages. The aim of their work was to describe the total diversity of the MTBC and to investigate the driving evolutionary force. By using long read and hybrid approaches for genome assembly, an important attempt was made to understand why the MTBC pangenome size was reported to vary in size by previous reports. This study provides strong evidence that the MTBC pangenome is closed and that genome reduction is the main driver of this species evolution.

      Strengths:

      A stand-out feature of this work is the inclusion of non-coding regions as opposed to only coding regions which was a focus of previous papers and analyses which investigated the MTBC pangenome. A unique feature of this work is that it highlights sublineage-specific regions of difference (RDs) that was previously unknown. Another major strength is the utilisation of long-read whole genomes sequences, in combination with short-read sequences when available. It is known that using only short reads for genome assembly has several pitfalls. The parallel approach of utilizing both Panaroo and Pangraph for pangenomic reconstruction illuminated limitations of both tools while highlighting genomic features identified by both. This is important for any future work and perhaps alludes to the need for more MTBC-specific tools to be developed. Lastly, ample statistical support in the form of Heaps law and genome fluidity calculations for each pangenome to demonstrate that they are indeed closed.

      Weaknesses:

      There are no major weaknesses in the revised version of this manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      l. 27: "lineage-specific and -independent deletions": it is still not clear to me what a lineage-independent, or convergent, deletion is supposed to be. TBD1, for instance, is not lineage-specific, but it is also not convergent: it occurred once in the common ancestor of lineages 1, 2, and 3, while convergence implies multiple parallel occurrences.

      We have changed this and in other places to more evolutionary terms, such as divergent (single event) and convergent (multiple events), or explain exactly what is meant where needed.

      l. 118: "where relevant", what does that mean?

      This was superfluous to the description and so is now removed.

      l. 178ff.: It is not clear to me what issue is addressed by this correction of the pangenome graph. Also here there seems to be some confusion regarding orthologs and paralogs. A gene or IS copy can be present at one locus but absent at another, which is not a mistake of Pangraph that would require correction. It's rather the notion of "truly absent region" which is ambiguous.

      We have changed the text to be more specific on the utility of this step. Since it is known that Panaroo mislabels some genes as being absent due to over splitting (see Ceres et al 2022 and our reclassification earlier in the paper), we wanted to see if the same occurred in Pangraph. We have modified the methods text to be more specific (line 181) and in the results included the percentage of total genes/regions affected by this correction.

      In relation to copy number, Pangraph is not syntenic in its approach; if a region is present anywhere it is labelled as present in the genome. Pangraph will look for multiple copies of that region (e.g. an IS element) but indeed we did not look for specific syntenic changes across the genomes. This would be a great analysis and something we will consider in the future; we have indicated such in the discussion (line 454).

      l. 305: "mislabelled as absent": see above, is this really 'mislabelled'?

      See answer to question above

      l. 372: "using the approach": something missing here.

      This was superfluous to the description and so is now removed.

      l. 381: the "additional analysis of paralogous blocks" (l. 381) seems to suffer from the same confusion of ortho- and paralogy described above: no new sub-lineage-specific accessory regions are found presumably because the analysis did consider any copy rather than orthologous copies.

      Paralogous copies were looked for by Pangraph, and we did not find any sub-lineage where all members had additional copies compared to other sub-lineages. Indeed, single genomes could have these, and shorter timescales could see a lot of such insertions, but we looked at longer-scale (all genomes within a sub-lineage) patterns and did not find these. These limitations are already outlined in the discussion.

      l. 415: see above. There is no diagnosis of a problem that would motivate a "correction". That's different from the correction of the Panaroo results, where fragmented annotations have been shown to be a problem.

      Of interest, the refining of regions did re-label multiple regions as being core when Pangraph labelled it as absent from some genomes was at about the same rate as the correction to Pangraph (2% of genes/regions). This indicates there is a stringency issue with pangraph where blocks are mislabelled as absent. The underlying reason or this is not clear but the correction is evidently required in this version of Pangraph.

      l. 430ff.: The issue of paralogy and that the "same" gene or region is defined in terms of homology rather than orthology should be addressed here. For me the given evidence does not support the claim that deletion is driving molecular evolution in the MTBC.

      As outlined above, indeed paralogy may be driving some elements of the overall evolutionary patterns; our analysis just did not find this. Panaroo without merged paralogs did not find paralogous genes as a main differentiating factor for any sub-lineage. Pangraph also did not find multiple copies of blocks present in all genomes in a sub-lineage. As outlined above, indeed single genomes show such patterns but we did not include single genome analyses here, and outline that as a next steps in the discussion. We have also linked to a recent pangenome paper that showed duplication is present in the pangenome of Mtbc, although not related to any specific lineage (Discussion line 485).

      l. 443 ff: "lineage-independent deletions (convergent evolution)": see above, I still think this terminology is unclear

      This has now been made clearer to be specifically about convergent and divergent evolutionary patterns.

    1. eLife Assessment

      The authors investigate mechanisms of acquired resistance (AR) to KRAS-G12C inhibitors (sotorasib) in non-small cell lung cancer, proposing that resistance arises from signaling rewiring rather than additional mutations. While the study addresses a valuable clinical question, it is limited by several weaknesses in experimental rigor, data interpretation, and presentation, meaning the strength of evidence is incomplete

    2. Reviewer #1 (Public review):

      Summary:

      In this study, the authors investigate mechanisms of acquired resistance (AR) to KRAS-G12C inhibitors (sotorasib) in NSCLC, proposing that resistance arises from signaling rewiring rather than additional mutations.

      Strengths:

      Using a panel of AR models - including cell lines, PDXs, CDXs, and PDXOs - they report activation of KRAS and PI3K/AKT/mTOR pathways, with elevated PI3K levels. Pharmacologic inhibition or CRISPR-Cas9 knockout of PI3K partially restores sotorasib sensitivity, and p-4EBP1 upregulation is implicated as an additional contributor, with dual mTORC1/2 inhibition more effective than mTORC1 inhibition alone.

      Weaknesses:

      While the study addresses an important clinical question, it is limited by several weaknesses in experimental rigor, data interpretation, and presentation. The mechanistic findings are not entirely novel, since the role of PI3K-AKT-mTOR signaling in therapeutic resistance is already well-established in the literature. Rather than uncovering new resistance mechanisms, the study largely confirms known pathways. Several key conclusions are not supported by the data, and critical alternative explanations - such as additional mutations or increased KRAS expression - are not thoroughly investigated or ruled out. Furthermore, while the authors use CRISPR-Cas9 to knock out PI3K and 4E-BP1 in H23-AR and H358-AR cells to restore sotorasib sensitivity, they do not perform reconstitution experiments to confirm that re-expressing PI3K or 4E-BP1 reverses the sensitization. This prevents full characterization of PI3K and p-4EBP1 upregulation as contributors to resistance. The manuscript also has several errors, poor figure quality, and a lack of proper quantification. Additional experimental validation, data improvement, and text revisions are required.

    3. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors focus on the identification of the mechanisms involved in the acquired resistance to Sotorasib in non-small lung KRASG12C mutant cells. To perform this study, the authors generate different clones of cell lines, cell-derived xenografts, patient-derived xenograft organoids, and patient-derived xenografts. In all these models, the authors generate resistant forms (i.e., resistant cell lines PDXs and organoids) and the genetic and molecular changes were characterised using whole-exome sequencing, proteomics, and phospho-proteomics. This analysis led to the identification of an important role of the PI3K/AKT/mTORC1/2 signalling network in the acquisition of resistance in several of the models tested. Molecular characterisation identified changes in the expression of some of the proteins in this network as key changes for the acquisition of resistance, and in particular, the authors show that changes in 4E-BP1 are common to some of the cells downstream of PI3K. Using pharmacological testing, they show that different drugs targeting PI3K, AKT, and MTORC1/2 sensitise some of the resistant models to Sotorasib. The analyses showed that the PI3K inhibitor copanlisib has an effect in NSCLC cells that, in some cases, seems to be synergistic with Sotorasib. Based on the work performed, the authors conclude that the PI3K/mTORC1/2 mediated 4E-BP1 phosphorylation is one of the mechanisms associated with the acquisition of resistance to Sotorasib and that targeting this signalling module could result in effective treatments for NSCLC patients.

      The work as presented in the current manuscript is very interesting, provides cell models that benefit the community, and can be used to expand our knowledge of the mechanism of resistance to KRAS targeting therapies. Overall, the techniques and methodology seem to be performed in agreement with standard practice, and the results support most of the conclusions made by the authors. However, there are some points that, if addressed, would increase the value and relevance of the findings and further extend the impact of this work. Some of the recommendations for changes relate to the way things are explained and presented, which need some work. Other changes might require the performance of additional experiments or reanalysis of the existing data.

      Strengths:

      (1) One of the stronger contributions of this article is the different models used to study the acquisition of resistance to Sotorasib. The resistant cell lines, PDXs and PDXOs, and the fact that the authors have different clones for each, made this collection especially relevant, as they seem to show different mechanisms that the cells used to become resistant to Sotorasib. Although logically, the authors focus on one of these mechanisms, the differential responses of the different clones and models to the treatments used in this work show that some of the clones used additional mechanisms of resistance that can be explored in other studies. Importantly, as they use in vitro and in vivo models, the results also consider the tumour microenvironment and other factors in the response to the treatments.

      (2) Another strength is the molecular characterisation of the different Sotorasib-resistant tumour cells by WES, which shows that these cells do not seem to acquire secondary mutations.

      (3) The use of MS-based proteomics also identifies proteome signatures that are associated with the acquisition of resistance, including PI3K/mTORC1/2. The combination of proteomics and phospho-proteomics results should allow the identification of several mechanisms that are deregulated in Sotorasib-resistant cells.

      (4) The results show a strong response of the NSCLC cells and PDXs to copanlisib, a drug for which there is limited information in this cancer type.

      (5) The way they develop the PDX-resistant and the PDXO seems to be appropriate.

      Weaknesses:

      In general, the data is of good quality, but due to the sheer amount of data included and the way it is presented and discussed, several of the claims or conclusions are not clear.

      (1) The abstract is rather long and gives details that are not usually included in one. This makes it very complicated to identify the most relevant findings of the work. The use of acronyms PDX, PDXO, and CDX without defining them makes it complicated for the non-specialist to know what the models are. Rewriting and reorganisation of the abstract would benefit the manuscript.

      (2) Expression, presentation, and grammar should be reviewed in all sections of the manuscript.

      (3) In the different parts of the result section where the models shown in Figure 2 are described the authors indicate "Whole-exome sequencing (WES) confirmed that XXX model retained the KRASG12C mutation with no additional KRAS mutations detected" however, it is not indicated where this data is shown and in not all the cases there is explanation to other possible modifications that might relate to mechanisms of resistance. This information should be included in the manuscript, and the WES made publicly available.

      (4) The way the proteomics analysis of the TC303 and TC314 parental and resistant PDX is described in the text is confusing. The addition of an experimental layout figure would facilitate the understanding. As it is written, it is not obvious that the parental PDX were also analysed. For instance, the authors say, "The global and phosphoproteomic analyses identified over 8,000 and 4,000 gene protein products (GPPs), respectively". Is this comparing only resistant cells, or from the comparison of the parental and resistant pairs? And where are these numbers presented in the figures? Also, there is information that seems more adequate for the materials and methods sections, i.e., "Samples were analyzed using label-free nanoscale liquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS) on a Thermo Fusion Mass Spectrometer. The resulting data were processed and quantified using the Proteome Discoverer 2.5 interface with the Mascot search engine, referencing the NCBI RefSeq protein database (Saltzman, Ruprecht). Two-component analysis is better named principal component analysis."

      (5) While the presentation of the proteomics data could be done in different ways, the way the data is presented in Figure 3 does not allow the reader to get an idea of many of the findings from this experiment. Although it is indicated that a table with the data will be made available, this should be central to the way the data is presented and explained. A table (ie, Excel doc) where the raw data and all the analysis are presented should be included and referenced. Additionally, heat maps for the whole proteomes identified should be included. In the text, it is said, "Global proteomic heatmap analysis revealed unique protein profiles in TC303AR and TC314AR PDXs compared to their sensitive counterparts (Figure 3C)." However, this figure only shows the histogram of the differentially regulated cells. Inclusion of the histogram showing all the cells is necessary, and it might be informative to include the histogram comparing the two isogenic pairs, which could identify common mechanisms and differences between both sets. In Figure 3C, the protein names should be readable, or a reference to tables where the proteins are listed should be included.

      (6) In Figure 3, the pathway enrichment tool and GO used should be mentioned in the text. The tables with all significant tables should also be provided. The proteomics data seems to convincingly identify mTOR as one of the pathways deregulated in resistant cells, but there is little explanation of what is considered a significant FDR value and if there are other pathways or networks that are also modified, which might not be common to both isogenic models. In MS-based Phosphoproteome could help with the identification of differentially regulated pathways, but it is not really presented in the current manuscript. Most of the analysis of phospho-proteomics comes from the RPPA analysis, which is targeted proteomics. With the way the data is presented, the authors show evidence for a role of mTOR in the acquisition of resistance, but unfortunately, they do not discuss or allow the reader to explore if other pathways might also contribute to this change.

      (7) Where is the proteomics data going to be deposited, and will it be made public to comply with FAIR principles?

      (8) The authors claim that the resistance shown for H23AR and H353AR cells is due to reactivation of KRAS signalling. This is done by looking to phosphorylation of ERK as a surrogate, as they claim, "KRAS inhibition is commonly assessed by evaluating the inhibition of ERK phosphorylation (p-ERK)". While this might be true in many cases, the data presented does not demonstrate that the increase in p-ERK is due to reactivation of KRAS. To make this claim, the authors should measure activation of KRAS (and possibly H- and NRAS) using GST-pull down or an image-based method.

      (9) The experiments in Figure 4 are very confusing, and some controls are missing. There is no blot where they show the effect of Sotorasib treatment in H23 and H358 parental cells. Is the increase shown in resistant cells shown in parental or is it exclusive for resistant cells only (and therefore acquired)? Experiment 4B should include this control. What is clear is that there is an increase in the expression of AKT and PI3K.

      (10) The main point here is whether this is acquired resistance or the sensitivity to the drug is already there, and there was no need to do an omics experiment to find this. In some cases, it seems that the single treatment with PI3K inhibitors is as effective as Sotorasib treatment, promoting the death of the parental cells. This is in line with previous data in H23 and H353 that show sensitivity to PI3K inhibition ( i.e., H358 10.1016/j.jtcvs.2005.06.051 ; 10.1016/j.jtcvs.2005.06.051H23 10.20892/j.issn.2095-3941.2018.0361). The data is clear, especially for copanlisib, but would it be the case that this treatment could be used for the treatment of NSCLC alone or directly in combination with Sotorasib and prevent resistance? The results shown in Figure 4C strongly support that a single treatment might be effective in cases that do not respond to Sotorasib. The data in figure 4D-F (please correct typo "inhibition" in labels) seem to support that PI3K treatment of parental cells is as effective as in the resistant cells.

      (11) The experiments presented in Figure 7 show synergy between Sotorasib and copanlisib treatment in some of the resistant cells. But in Figure 7G, the single treatment of H23AR is as effective as the combination. Did the authors check the effect of this drug on the parental cells? As they do not include this control, it is not possible to know if this is acquired sensitivity to PI3K inhibition or if the parental cells were already sensitive (as indicated by the Figure 4 results).

    4. Author response:

      Reviewer #1 (Public review):

      Summary:

      In this study, the authors investigate mechanisms of acquired resistance (AR) to KRAS-G12C inhibitors (sotorasib) in NSCLC, proposing that resistance arises from signaling rewiring rather than additional mutations.

      Strengths:

      Using a panel of AR models - including cell lines, PDXs, CDXs, and PDXOs - they report activation of KRAS and PI3K/AKT/mTOR pathways, with elevated PI3K levels. Pharmacologic inhibition or CRISPR-Cas9 knockout of PI3K partially restores sotorasib sensitivity, and p-4EBP1 upregulation is implicated as an additional contributor, with dual mTORC1/2 inhibition more effective than mTORC1 inhibition alone.

      Weaknesses:

      While the study addresses an important clinical question, it is limited by several weaknesses in experimental rigor, data interpretation, and presentation. The mechanistic findings are not entirely novel, since the role of PI3K-AKT-mTOR signaling in therapeutic resistance is already well-established in the literature. Rather than uncovering new resistance mechanisms, the study largely confirms known pathways. Several key conclusions are not supported by the data, and critical alternative explanations - such as additional mutations or increased KRAS expression - are not thoroughly investigated or ruled out. Furthermore, while the authors use CRISPR-Cas9 to knock out PI3K and 4E-BP1 in H23-AR and H358-AR cells to restore sotorasib sensitivity, they do not perform reconstitution experiments to confirm that re-expressing PI3K or 4E-BP1 reverses the sensitization. This prevents full characterization of PI3K and p-4EBP1 upregulation as contributors to resistance. The manuscript also has several errors, poor figure quality, and a lack of proper quantification. Additional experimental validation, data improvement, and text revisions are required.

      Acquired resistance to KRAS<sup>G12C</sup> inhibitors such as sotorasib or adagrasib remains a significant clinical challenge. Therefore, the identification of mechanisms of acquired resistance, along with the development of alternative therapeutic strategies, including combination therapies with KRAS inhibitors, represents an urgent unmet clinical need. The emergence of secondary KRAS mutations or new mutations in other oncogenic drivers has been observed as a primary cause of acquired resistance in a fraction of patients. No identifiable mutations were detected in more than half of the tumors from patients who developed acquired resistance after treatment with sotorasib or adagrasib.

      Using a discovery-based approach that integrated global proteomic and phosphoproteomic analyses in the TC303AR and TC314AR PDX models, we identified distinct protein signatures associated with KRAS reactivation, upregulation of mTORC1 signaling, and activation of the PI3K/AKT/mTOR pathway. These findings prompted further investigation into these mechanisms of resistance and evaluation of novel therapeutic combinations to overcome resistance. Notably, the combination of sotorasib with copanlisib (a PI3K inhibitor), or the combination of sotorasib with AZD8055 or sapanisertib (mTORC1/2 dual inhibitors) demonstrated strong potential for future clinical use. These regimens effectively restored sotorasib sensitivity in both in vitro and in vivo models and produced robust, synergistic antitumor effects across various acquired resistance models.

      CRISPR-Cas9-mediated PI3K and 4E-BP1 knockout clones were generated in more than one resistant cell line that expressed a robust level of the knockout target, and multiple independent clones in each cell line were evaluated with and without gene disruption. Given the thorough nature of this analysis, additional reconstitution experiments were deemed unnecessary, as they would not yield further insight.

      Whole exome sequencing was performed on resistant cells or PDX models to confirm retention of the KRAS<sup>G12C</sup> mutation and to identify secondary KRAS mutations, none of which were found. We acknowledge that additional resistance mechanisms may be involved. These will be the focus of future investigations.

      The revised manuscript will feature improved figure quality, complete and clarified figure legends, and corrected textual errors to enhance overall clarity and presentation.  

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors focus on the identification of the mechanisms involved in the acquired resistance to Sotorasib in non-small lung KRASG12C mutant cells. To perform this study, the authors generate different clones of cell lines, cell-derived xenografts, patient-derived xenograft organoids, and patient-derived xenografts. In all these models, the authors generate resistant forms (i.e., resistant cell lines PDXs and organoids) and the genetic and molecular changes were characterised using whole-exome sequencing, proteomics, and phospho-proteomics. This analysis led to the identification of an important role of the PI3K/AKT/mTORC1/2 signalling network in the acquisition of resistance in several of the models tested. Molecular characterisation identified changes in the expression of some of the proteins in this network as key changes for the acquisition of resistance, and in particular, the authors show that changes in 4E-BP1 are common to some of the cells downstream of PI3K. Using pharmacological testing, they show that different drugs targeting PI3K, AKT, and MTORC1/2 sensitise some of the resistant models to Sotorasib. The analyses showed that the PI3K inhibitor copanlisib has an effect in NSCLC cells that, in some cases, seems to be synergistic with Sotorasib. Based on the work performed, the authors conclude that the PI3K/mTORC1/2 mediated 4E-BP1 phosphorylation is one of the mechanisms associated with the acquisition of resistance to Sotorasib and that targeting this signalling module could result in effective treatments for NSCLC patients.

      The work as presented in the current manuscript is very interesting, provides cell models that benefit the community, and can be used to expand our knowledge of the mechanism of resistance to KRAS targeting therapies. Overall, the techniques and methodology seem to be performed in agreement with standard practice, and the results support most of the conclusions made by the authors. However, there are some points that, if addressed, would increase the value and relevance of the findings and further extend the impact of this work. Some of the recommendations for changes relate to the way things are explained and presented, which need some work. Other changes might require the performance of additional experiments or reanalysis of the existing data.

      Strengths:

      (1) One of the stronger contributions of this article is the different models used to study the acquisition of resistance to Sotorasib. The resistant cell lines, PDXs and PDXOs, and the fact that the authors have different clones for each, made this collection especially relevant, as they seem to show different mechanisms that the cells used to become resistant to Sotorasib. Although logically, the authors focus on one of these mechanisms, the differential responses of the different clones and models to the treatments used in this work show that some of the clones used additional mechanisms of resistance that can be explored in other studies. Importantly, as they use in vitro and in vivo models, the results also consider the tumour microenvironment and other factors in the response to the treatments.

      (2) Another strength is the molecular characterisation of the different Sotorasib-resistant tumour cells by WES, which shows that these cells do not seem to acquire secondary mutations.

      (3) The use of MS-based proteomics also identifies proteome signatures that are associated with the acquisition of resistance, including PI3K/mTORC1/2. The combination of proteomics and phospho-proteomics results should allow the identification of several mechanisms that are deregulated in Sotorasib-resistant cells.

      (4) The results show a strong response of the NSCLC cells and PDXs to copanlisib, a drug for which there is limited information in this cancer type.

      (5) The way they develop the PDX-resistant and the PDXO seems to be appropriate.

      Weaknesses:

      In general, the data is of good quality, but due to the sheer amount of data included and the way it is presented and discussed, several of the claims or conclusions are not clear.

      (1) The abstract is rather long and gives details that are not usually included in one. This makes it very complicated to identify the most relevant findings of the work. The use of acronyms PDX, PDXO, and CDX without defining them makes it complicated for the non-specialist to know what the models are. Rewriting and reorganisation of the abstract would benefit the manuscript.

      We will revise the abstract to ensure that the key findings and overall message are clearly communicated and easily understood by readers.

      2) Expression, presentation, and grammar should be reviewed in all sections of the manuscript.

      Will be done accordingly in the revised version

      (3) In the different parts of the result section where the models shown in Figure 2 are described the authors indicate "Whole-exome sequencing (WES) confirmed that XXX model retained the KRASG12C mutation with no additional KRAS mutations detected" however, it is not indicated where this data is shown and in not all the cases there is explanation to other possible modifications that might relate to mechanisms of resistance. This information should be included in the manuscript, and the WES made publicly available.

      WES was done for KRAS to identify secondary mutations in the KRAS as well as to verify the retention of the KRAS<sup>G12C</sup> mutation in these AR models. WES data will be provided as supplements

      (4) The way the proteomics analysis of the TC303 and TC314 parental and resistant PDX is described in the text is confusing. The addition of an experimental layout figure would facilitate the understanding. As it is written, it is not obvious that the parental PDX were also analysed. For instance, the authors say, "The global and phosphoproteomic analyses identified over 8,000 and 4,000 gene protein products (GPPs), respectively". Is this comparing only resistant cells, or from the comparison of the parental and resistant pairs? And where are these numbers presented in the figures? Also, there is information that seems more adequate for the materials and methods sections, i.e., "Samples were analyzed using label-free nanoscale liquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS) on a Thermo Fusion Mass Spectrometer. The resulting data were processed and quantified using the Proteome Discoverer 2.5 interface with the Mascot search engine, referencing the NCBI RefSeq protein database (Saltzman, Ruprecht). Two-component analysis is better named principal component analysis."

      The texts will be revised accordingly

      (5) While the presentation of the proteomics data could be done in different ways, the way the data is presented in Figure 3 does not allow the reader to get an idea of many of the findings from this experiment. Although it is indicated that a table with the data will be made available, this should be central to the way the data is presented and explained. A table (ie, Excel doc) where the raw data and all the analysis are presented should be included and referenced. Additionally, heat maps for the whole proteomes identified should be included. In the text, it is said, "Global proteomic heatmap analysis revealed unique protein profiles in TC303AR and TC314AR PDXs compared to their sensitive counterparts (Figure 3C)." However, this figure only shows the histogram of the differentially regulated cells. Inclusion of the histogram showing all the cells is necessary, and it might be informative to include the histogram comparing the two isogenic pairs, which could identify common mechanisms and differences between both sets. In Figure 3C, the protein names should be readable, or a reference to tables where the proteins are listed should be included.

      The raw data associated with the proteomics and global proteomics will be added as supplements.

      (6) In Figure 3, the pathway enrichment tool and GO used should be mentioned in the text. The tables with all significant tables should also be provided. The proteomics data seems to convincingly identify mTOR as one of the pathways deregulated in resistant cells, but there is little explanation of what is considered a significant FDR value and if there are other pathways or networks that are also modified, which might not be common to both isogenic models. In MS-based Phosphoproteome could help with the identification of differentially regulated pathways, but it is not really presented in the current manuscript. Most of the analysis of phospho-proteomics comes from the RPPA analysis, which is targeted proteomics. With the way the data is presented, the authors show evidence for a role of mTOR in the acquisition of resistance, but unfortunately, they do not discuss or allow the reader to explore if other pathways might also contribute to this change.

      The authors agree that other pathways may be involved, and this will be the subject of future studies. The raw data will be added as supplements.

      (7) Where is the proteomics data going to be deposited, and will it be made public to comply with FAIR principles?

      will be uploaded according to the journal guidelines

      (8) The authors claim that the resistance shown for H23AR and H353AR cells is due to reactivation of KRAS signalling. This is done by looking to phosphorylation of ERK as a surrogate, as they claim, "KRAS inhibition is commonly assessed by evaluating the inhibition of ERK phosphorylation (p-ERK)". While this might be true in many cases, the data presented does not demonstrate that the increase in p-ERK is due to reactivation of KRAS. To make this claim, the authors should measure activation of KRAS (and possibly H- and NRAS) using GST-pull down or an image-based method.

      We agree that KRAS activation can be assessed through various methods. In this manuscript, which primarily focuses on mechanisms of resistance, pathway analysis revealed upregulation of KRAS signaling. This finding correlated with the incomplete inhibition of p-ERK by sotorasib in resistant cells. Notably, p-ERK status is widely recognized and routinely used as a surrogate marker for KRAS pathway activation.

      (9) The experiments in Figure 4 are very confusing, and some controls are missing. There is no blot where they show the effect of Sotorasib treatment in H23 and H358 parental cells. Is the increase shown in resistant cells shown in parental or is it exclusive for resistant cells only (and therefore acquired)? Experiment 4B should include this control. What is clear is that there is an increase in the expression of AKT and PI3K.

      H23 and H358 cells are highly sensitive to sotorasib, as demonstrated by the cell viability assays presented in Figure 2. As shown in Figure 3—figure supplement 3, sotorasib treatment led to complete inhibition of p-ERK in these parental cell lines. In contrast, p-ERK inhibition was incomplete in the resistant H23AR and H358AR cells. Moreover, these AR cells were continuously cultured under sotorasib pressure to maintain resistance.

      (10) The main point here is whether this is acquired resistance or the sensitivity to the drug is already there, and there was no need to do an omics experiment to find this. In some cases, it seems that the single treatment with PI3K inhibitors is as effective as Sotorasib treatment, promoting the death of the parental cells. This is in line with previous data in H23 and H353 that show sensitivity to PI3K inhibition ( i.e., H358 10.1016/j.jtcvs.2005.06.051 ; 10.1016/j.jtcvs.2005.06.051H23 10.20892/j.issn.2095-3941.2018.0361). The data is clear, especially for copanlisib, but would it be the case that this treatment could be used for the treatment of NSCLC alone or directly in combination with Sotorasib and prevent resistance? The results shown in Figure 4C strongly support that a single treatment might be effective in cases that do not respond to Sotorasib. The data in figure 4D-F (please correct typo "inhibition" in labels) seem to support that PI3K treatment of parental cells is as effective as in the resistant cells.

      We agree. Based on our in vitro (Figure 4) and in vivo (Figure 7) data, copanlisib was able to overcome sotorasib resistance, demonstrating either synergistic or additive effects depending on the specific model. These findings support the potential of combining PI3K inhibition with KRAS<sup>G12C</sup> inhibition as a promising strategy to address acquired resistance.

      (11) The experiments presented in Figure 7 show synergy between Sotorasib and copanlisib treatment in some of the resistant cells. But in Figure 7G, the single treatment of H23AR is as effective as the combination. Did the authors check the effect of this drug on the parental cells? As they do not include this control, it is not possible to know if this is acquired sensitivity to PI3K inhibition or if the parental cells were already sensitive (as indicated by the Figure 4 results).

      Both H23 and H23AR cells showed high sensitivity to copanlisib, as shown in Figure 4. Combination index analysis for the copanlisib + sotorasib treatment (Figure 7A) revealed synergistic effects on cell viability at specific concentrations. However, in the in vivo experiment (Figure 7G), we did not observe a clear synergistic effect of the combination treatment against H23AR xenografts. This may be attributed to the dose of copanlisib used, which was potentially sufficient on its own to produce a strong antitumor response, thereby masking any additional benefit from the combination.

    1. eLife Assessment

      This important work substantially advances our understanding of how accessory olfactory bulb neurons respond to social odor cues across the estrous cycle, showing that responses vary with the strain and sex of the odor source but display no consistent differences between estrous and non-estrous states. It employs a unique electrophysiology preparation that activates the vomeronasal organ pump via electric stimulation, enabling precise recordings of accessory olfactory bulb cell responses to different chemosignals in anesthetized mice. Overall, the study presents convincing findings on the stability and variability of accessory olfactory bulb response patterns, indicating that while accessory olfactory bulb detects social signals, it does not appear to interpret them based on reproductive state. This work will be of interest to those studying olfaction, social behavior, reproductive cycles, and systems neuroscience more broadly.

    2. Reviewer #1 (Public review):

      Summary:

      In this detailed study, Cohen and Ben-Shaul characterized the AOB cell responses to various conspecific urine samples in female mice across the estrous cycle. The authors found that AOB cell responses vary with strains and sexes of the samples. Between estrous and non-estrous females, no clear or consistent difference in responses was found. The cell response patterns, as measured by the distance between pairs of stimuli, are largely stable. When some changes do occur, they are not consistent across strains or male status. The authors concluded that AOB detects the signals without interpreting them. Overall, this study will provide useful information for scientists in the field of olfaction.

      Strengths:

      The study uses electrophysiological recording to characterize the responses of AOB cells to various urines in female mice. AOB recording is not trivial as it requires activation of VNO pump. The team uses a unique preparation to activate the VNO pump with electric stimulation, allowing them to record AOB cell responses to urines in anesthetized animals. The study comprehensively described the AOB cell responses to social stimuli and how the responses vary (or not) with features of the urine source and the reproductive state of the recording females. The dataset could be a valuable resource for scientists in the field of olfaction.

      Weaknesses:

      The study will be significantly strengthened by understanding the "distance" of chemical composition in different urine. This could be an important future direction.

    1. eLife Assessment

      The study presents a valuable resource of proline hydroxylation proteins for molecular biology studies in oxygen-sensing and cell signaling with the characterization of Repo-man proline hydroxylation site. The evidence supporting the claim of the authors is solid, although further clarification of the overall efficiency of the HILIC analysis, the specificity/sensitivity of immonium ion analysis, as well as quantification of proline hydroxylation identifications will be helpful. The work will be of interest to researchers studying post-translational modification, oxygen sensing, and cell signaling.

    2. Reviewer #1 (Public review):

      Summary:

      The manuscript by Hao Jiang et al described a systematic approach to identify proline hydroxylation proteins. The authors implemented a proteomic strategy with HILIC-chromatographic separation and reported an identification of 4993 sites from HEK293 cells (4 replicates) and 3247 sites from RCC4 sites (3 replicates) with 1412 sites overlapping between the two cell lines. From the analysis, the authors identified 225 sites and 184 sites respectively from 293 and RCC4 cells with HyPro diagnostic ion. The identifications were validated by analyzing a few synthetic peptides, with a specific focus on Repo-man (CDCA2) through comparing MS/MS spectra, retention time, and diagnostic ions. With SILAC analysis and recombinant enzyme assay, the study showed that Repo-man HyPro604 is a target of the PHD1 enzyme.

      Strengths:

      The study involved extensive LC-MS analysis and was carefully implemented. The identification of over 4000 confident proline hydroxylation sites would be a valuable resource for the community. The characterization of Repo-man proline hydroxylation is a novel finding.

      Weaknesses:

      However, as a study mainly focused on methodology, the findings from the experimental data did not convincingly demonstrate the sensitivity and specificity of the workflow for site-specific identification of proline hydroxylation in global studies.

      Major concerns:

      (1) The study applied HILIC-based chromatographic separation with a goal of enriching and separating hydroxyproline-containing peptides. However, as the authors mentioned, such an approach is not specific to proline hydroxylation. In addition, many other chromatography techniques can achieve deep proteome fractionation such as high pH reverse phase fractionation, strong-cation exchange etc. There was no data in this study to demonstrate that the strategy offered improved coverage of proline hydroxylation proteins, as the identifications of the HyPro sites could be achieved through deep fractionation and a highly sensitive LCMS setup. The data of Figure 2A and S1A were somewhat confusing without a clear explanation of the heat map representations.

      (2) The study reported that the HyPro immonium ion is a diagnostic ion for HyPro identification. However, the data showed that only around 5% of the identifications had such a diagnostic ion. In comparison, acetyllysine immonium ion was previously reported to be a useful marker for acetyllysine peptides (PMID: 18338905), and the strategy offered a sensitivity of 70% with a specificity of 98%. In this study, the sensitivity of HyPro immonium ion was quite low. The authors also clearly demonstrated that the presence of immonium ion varied significantly due to MS settings, peptide sequence, and abundance. With further complications from L/I immonium ions, it became very challenging to implement this strategy in a global LC-MS analysis to either validate or invalidate HyPro identifications.

      (3) The study aimed to apply the HILIC-based proteomics workflow to identify HyPro proteins regulated by the PHD enzyme. However, the quantification strategy was not rigorous. The study just considered the HyPro proteins not identified by FG-4592 treatment as potential PHD targeted proteins. There are a few issues. First, such an analysis was not quantitative without reproducibility or statistical analysis. Second, it did not take into consideration that data-dependent LC-MS analysis was not comprehensive and some peptide ions may not be identified due to background interferences. Lastly, FG-4592 treatment for 24 hrs could lead to wide changes in gene expressions and protein abundances. Therefore, it is not informative to draw conclusions based on the data for bioinformatic analysis.

      (4) The authors performed an in vitro PHD1 enzyme assay to validate that Repo-man can be hydroxylated by PHD1. However, Figure 9 did not show quantitatively PHD1-induced increase in Repo-man HyPro abundance and it is difficult to assess its reaction efficiency to compare with HIF1a HyPro.

    3. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Jiang et al. developed a robust workflow for identifying proline hydroxylation sites in proteins. They identified proline hydroxylation sites in HEK293 and RCC4 cells, respectively. The authors found that the more hydrophilic HILIC fractions were enriched in peptides containing hydroxylated proline residues. These peptides showed differences in charge and mass distribution compared to unmodified or oxidized peptides. The intensity of the diagnostic hydroxyproline iminium ion depended on parameters including MS collision energy, parent peptide concentration, and the sequence of amino acids adjacent to the modified proline residue. Additionally, they demonstrate that a combination of retention time in LC and optimized MS parameter settings reliably identifies proline hydroxylation sites in peptides, even when multiple proline residues are present

      Strengths:

      Overall, the manuscript presents an advanced, standardized protocol for identifying proline hydroxylation. The experiments were well designed, and the developed protocol is straightforward, which may help resolve confusion in the field.

      Weaknesses:

      (1) The authors should provide a summary of the standard protocol for identifying proline hydroxylation sites in proteins that can easily be followed by others.

      (2) Cockman et al. proposed that HIF-α is the only physiologically relevant target for PHDs. Their approach is considered the gold standard for identifying PHD targets. Therefore, the authors should discuss the major progress they made in this manuscript that challenges Cockman's conclusion.

    4. Reviewer #3 (Public review):

      Summary:

      The authors present a new method for detecting and identifying proline hydroxylation sites within the proteome. This tool utilizes traditional LC-MS technology with optimized parameters, combined with HILIC-based separation techniques. The authors show that they pick up known hydroxy-proline sites and also validate a new site discovered through their pipeline.

      Strengths:

      The manuscript utilizes state-of-the-art mass spectrometric techniques with optimized collision parameters to ensure proper detection of the immonium ions, which is an advance compared to other similar approaches before. The use of synthetic control peptides on the HILIC separation step clearly demonstrates the ability of the method to reliably distinguish hydroxy-proline from oxidized methionine - containing peptides. Using this method, they identify a site on CDCA2, which they go on to validate in vitro and also study its role in regulation of mitotic progression in an associated manuscript.

      Weaknesses:

      Despite the authors' claim about the specificity of this method in picking up the intended peptides, there is a good amount of potential false positives that also happen to get picked (owing to the limitations of MS-based readout), and the authors' criteria for downstream filtering of such peptides require further clarification. In the same vein, greater and more diverse cell-based validation approach will be helpful to substantiate the claims regarding enrichment of peptides in the described pathway analyses.

    5. Author response:

      Reviewer #1 (Recommendations for the authors):

      We appreciate the reviewer recognising that our study has been carefully performed and provides a valuable resource for the community. The characterization of Repo-man proline hydroxylation is also recognised as a novel finding.

      With respect to Concerns raised by reviewer 1:

      (1) The study applied HILIC-based chromatographic separation with a goal of enriching and separating hydroxyproline-containing peptides. However, as the authors mentioned, such an approach is not specific to proline hydroxylation. In addition, many other chromatography techniques can achieve deep proteome fractionation such as high pH reverse phase fractionation, strong-cation exchange etc. There was no data in this study to demonstrate that the strategy offered improved coverage of proline hydroxylation proteins, as the identifications of the HyPro sites could be achieved through deep fractionation and a highly sensitive LCMS setup. The data of Figure 2A and S1A were somewhat confusing without a clear explanation of the heat map representations.

      We do not agree that the apparent concern raised here, i.e., that the method we present is not 100% specific for enriching only hydroxylated peptides, is a serious issue. We show specifically that our method indeed enriches samples for hydroxylated peptides, thereby increasing the chances of identifying proline hydroxylated peptides in a cell extract. We never claimed that it was mono-specific for enrichment of hydroxylated peptides. Further, we note that almost no chromatographic method we know of, including those commonly used to enrich for different types of post translationally-modified peptides (including phospho-peptides) is completely mono-specific for a single type of modified peptide. The reviewer comments that it could have been possible to use alternative methods to identify proline-hydroxylated peptides. This may be true, but we know of no published examples, or previous studies, where this has been demonstrated experimentally on a scale comparable to that we show here. Of course there is always more than one way to approach technical challenges and it may be that future methods will be demonstrated that achieve equivalent, or even superior, results with respect to the detection of proline hydroxylated peptides. To the best of our knowledge, however, our current study provides a robust methodology that goes well beyond any previously published analysis of proline hydroxylation.

      (2) The study reported that the HyPro immonium ion is a diagnostic ion for HyPro identification. However, the data showed that only around 5% of the identifications had such a diagnostic ion. In comparison, acetyllysine immonium ion was previously reported to be a useful marker for acetyllysine peptides (PMID: 18338905), and the strategy offered a sensitivity of 70% with a specificity of 98%. In this study, the sensitivity of HyPro immonium ion was quite low. The authors also clearly demonstrated that the presence of immonium ion varied significantly due to MS settings, peptide sequence, and abundance. With further complications from L/I immonium ions, it became very challenging to implement this strategy in a global LC-MS analysis to either validate or invalidate HyPro identifications.

      We feel that the reviewer’s initial comment is potentially misleading - it implies that we were proposing here that the 'HyPro immonium ion is a diagnostic ion for HyPro identification’. In contrast, this concept was already widely held in the field before we started this project. Indeed, the fact that the diagnostic HyPro immonium ion is often difficult to detect, has been used as one of the arguments by other researchers to support the view that HIF-α is the only physiologically relevant target for PHD enzymes, a controversy referenced explicitly by Reviewer 2 below. What we actually show here are novel data that help to explain why the diagnostic HyPro immonium ion is often difficult to detect, when standard approaches and technical parameters for MS analysis are used. We beleive that this observation, along with other data we present, is a useful contribution to the field that can help to resolve the previous controversies concerning the true prevalence and biological roles of PHD-catalysed proline hydroxylation on protein targets.

      (3) The study aimed to apply the HILIC-based proteomics workflow to identify HyPro proteins regulated by the PHD enzyme. However, the quantification strategy was not rigorous. The study just considered the HyPro proteins not identified by FG-4592 treatment as potential PHD targeted proteins. There are a few issues. First, such an analysis was not quantitative without reproducibility or statistical analysis. Second, it did not take into consideration that data-dependent LC-MS analysis was not comprehensive and some peptide ions may not be identified due to background interferences. Lastly, FG-4592 treatment for 24 hrs could lead to wide changes in gene expressions and protein abundances. Therefore, it is not informative to draw conclusions based on the data for bioinformatic analysis.

      We agree that this study is not quantifying or addressing the stoichiometry of proline hydroxylation across the very large number of new PHD target sites we identify. That was not claimed and was not the objective of our study. Nonetheless, we feel the comments of the referee do not adequately take into account the SILAC data we included (cf Figure 8) or the full range of experimental data presented in this study. We would further refer the reviewer also to the data presented in the companion paper by Druker et al., which we cross-referenced extensively in our study and have also made available previously on biorxiv.

      (4) The authors performed an in vitro PHD1 enzyme assay to validate that Repo-man can be hydroxylated by PHD1. However, Figure 9 did not show quantitatively PHD1-induced increase in Repo-man HyPro abundance and it is difficult to assess its reaction efficiency to compare with HIF1a HyPro.

      Here again we refer to the recent controversy referenced explicitly by Reviewer 2 below, concerning the view expressed by some researchers that only HIF-α is a physiological substrate for PHD enzymes in cells. We were challenged to show that any of the novel protein targets of PHDs we identified were indeed hydroxylated by PHD enzymes in vitro and that is what we demonstrated in Figure 9. This was not an experiment performed to quantify stoichiometry and indeed, it is not possible to draw any firm conclusions about efficiency or stiochiometry in vitro when using catalytic PHD subunits alone, given that we do not yet know whether PHDs may show different properties in cells, dependent on interactions with other factors and/or modifications.

      Reviewer #2 (Recommendations for the authors):

      We appreciate the reviewer’s comments that our manuscript presents an advanced, standardized protocol for identifying proline hydroxylation, with well designed experiments, which may help resolve confusion in the field.

      With respect to Concerns raised by reviewer 2:

      (1) The authors should provide a summary of the standard protocol for identifying proline hydroxylation sites in proteins that can easily be followed by others.

      We agree and plan to provide a clearly described, step by step guide to assist other researchers who wish to employ our methods for proline hydroxylation analysis in their own studies.

      (2) Cockman et al. proposed that HIF-α is the only physiologically relevant target for PHDs. Their approach is considered the gold standard for identifying PHD targets. Therefore, the authors should discuss the major progress they made in this manuscript that challenges Cockman's conclusion.

      We agree that our study provides valuable information germane to the recent controversy in the field and the views published by Cockman et al., to the effect that HIF-α is the only physiologically relevant target for PHDs. We will carefully review our statements when preparing a suitably revised version of record with the aim of providing a balanced and objective discussion of this issue.

      Reviewer #3 (Recommendations for the authors):

      We appreciate the reviewer’s comments that our study employs state-of-the-art mass spectrometric techniques with optimized collision parameters to ensure proper detection of the immonium ions, along with their recognition that our study is, 'an advance compared to other similar approaches before.’ We also appreciate their reference to our companion study by Druker et al, in which we characterise the mechanism and biological role in regulation of mitotic progression of the hydroxylation of P604 in the target protein RepoMan (CDCA2), that is identified in this study.

      With respect to the Concern raised by reviewer 3:

      Despite the authors' claim about the specificity of this method in picking up the intended peptides, there is a good amount of potential false positives that also happen to get picked (owing to the limitations of MS-based readout), and the authors' criteria for downstream filtering of such peptides require further clarification. In the same vein, greater and more diverse cell-based validation approach will be helpful to substantiate the claims regarding enrichment of peptides in the described pathway analyses..

      We agree that this study, which has a focus on methodology and technical approaches for detecting sites of PHD- catalysed proline hydroxylation, cannot exhaustively validate the biological significance of all of the putative sites and targets identified. As the reviewer notes, we have performed a detailed functional characterisation of one such novel PHD-catalyed proline hydroxylation site, i.e. P604 in the protein RepoMan (CDCA2). This functional analysis is presented in the companion paper by Druker et al., which has also been reviewed by eLife and placed on biorxiv (doi: https://doi.org/10.1101/2025.05.06.652400). We hope that publication of our identification of many new putative PHD target sites will encourage other researchers to pursue characterisation of their functional reoles in different biological mechanisms and have tried here to provide some degree of guidance to focus attention on the identification of those sites for which we currently have highest confidence.

    1. eLife Assessment

      This valuable study advances our understanding of how bactofilin cytoskeletal proteins associate with cell membranes by identifying and characterizing a conserved membrane-targeting sequence. The evidence is solid, with a well-integrated combination of mutagenesis, biophysical analysis, molecular simulations, and bioinformatics supporting the mechanistic model. The work will be of particular interest to microbiologists and structural biologists studying bacterial cytoskeletons and membrane-protein interactions.

    2. Reviewer #2 (Public review):

      Summary:

      The authors of this study investigated the membrane-binding properties of bactofilin A from Caulobacter crescentus, a classic model organism for bacterial cell biology. BacA was the progenitor of a family of cytoskeletal proteins that have been identified as ubiquitous structural components in bacteria, performing a range of cell biological functions. Association with the cell membrane is a frequent property of the bactofilins studied and is thought to be important for functionality. However, almost all bactofilins lack a transmembrane domain. While membrane association has been attributed to the unstructured N-terminus, experimental evidence had yet to be provided. As a result, the mode of membrane association and the underlying molecular mechanics remained elusive.

      Liu at al. analyze the membrane binding properties of BacA in detail and scrutinize molecular interactions using in-vivo, in-vitro and in-silico techniques. They show that few N-terminal amino acids are important for membrane association or proper localization and suggest that membrane association promotes polymerization. Bioinformatic analyses revealed conserved lineage-specific N-terminal motifs indicating a conserved role in protein localization. Using HDX analysis they also identify a potential interaction site with PbpC, a morphogenic cell wall synthase implicated in Caulobacter stalk synthesis. Complementary, they pinpoint the bactofilin-interacting region within the PbpC C-terminus, known to interact with bactofilin. They further show that BacA localization is independent of PbpC.

      Although the phenotypic effects of an abolished BacA-PbpC interaction are mild, these data significantly advance our understanding of bactofilin membrane binding, polymerization, and function at the molecular level. The major strength of the comprehensive study is the combination of complementary in vivo, in vitro and bioinformatic/simulation approaches, the results of which are consistent.

    3. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The investigators undertook detailed characterization of a previously proposed membrane targeting sequence (MTS), a short N-terminal peptide, of the bactofilin BacA in Caulobacter crescentus. Using light microscopy, single molecule tracking, liposome binding assays, and molecular dynamics simulations, they provide data to suggest that this sequence indeed does function in membrane targeting and further conclude that membrane targeting is required for polymerization. While the membrane association data are reasonably convincing, there are no direct assays to assess polymerization and some assays used lack proper controls as detailed below. Since the MTS isn't required for bactofilin polymerization in other bacterial homologues, showing that membrane binding facilitates polymerization would be a significant advance for the field.

      We agree that additional experiments were required to consolidate our results and conclusions. Please see below for a description of the new data included in the revised version of the manuscript.

      Major concerns

      (1) This work claims that the N-termina MTS domain of BacA is required for polymerization, but they do not provide sufficient evidence that the ∆2-8 mutant or any of the other MTS variants actually do not polymerize (or form higher order structures). Bactofilins are known to form filaments, bundles of filaments, and lattice sheets in vitro and bundles of filaments have been observed in cells. Whether puncta or diffuse labeling represents different polymerized states or filaments vs. monomers has not been established. Microscopy shows mis-localization away from the stalk, but resolution is limited. Further experiments using higher resolution microscopy and TEM of purified protein would prove that the MTS is required for polymerization.

      We do not propose that the MTS is directly involved in the polymerization process and state this more clearly now in the Results and Discussion sections of the revised manuscript. To address this point, we performed transmission electron microscopy studies comparing the polymerization behavior of wild-type and mutant BacA variants. The results clearly show that the MTS-free BacA variant (∆2-8) forms polymers that are indistinguishable from those formed by the wild-type protein, when purified from an E. coli overproduction strain (new Figure 1–figure supplement 1). This finding is consistent with structural work showing that bactofilin polymerization is exclusively mediated by the conserved bactofilin domain (Deng et al, Nat Microbiol, 2019). However, at native expression levels, BacA only accumulates to ~200 molecules per cell (Kühn et al, EMBO J, 2006). Under these conditions, the MTS-mediated increase in the local concentration of BacA at the membrane surface and, potentially, steric constraints imposed by membrane curvature, may facilitate the polymerization process. This hypothesis has now been stated more clearly in the Results and Discussion sections.

      For polymer-forming proteins, defined localized signals are typically interpreted as slow-moving or stationary polymeric complexes. A diffuse localization, by contrast, suggests that a protein exists in a monomeric or, at most, (small) oligomeric state in which it diffuses rapidly within the cell and is thus no longer detected as distinct foci by widefield microscopy. Our single-molecule data show that BacA variants that are no longer able to interact with the membrane (as verified by cell fractionation studies and in vitro liposome binding assays) have a high diffusion rate, similar to that measured for the non-polymerizing and non-membrane-bound F130R variant. These results demonstrate that a defect in membrane binding strongly reduces the ability of BacA to form polymeric assemblies. To support this hypothesis, we have now repeated all single-particle tracking experiments and included mVenus as a freely diffusible reference protein. Our data confirm that the mobilities of the ∆2-8 and F130R variants are similar and approach those of free mVenus, supporting the idea that the deficiency to interact with the membrane prevents the formation of extended polymeric structures (which should show much lower mobilities). To underscore the relevance of membrane binding for BacA assembly, we have now included a new experiment, in which we used the PbpC membrane anchor (PbpC<sub>1-132</sub>-mcherry) to restore the recruitment of the ∆2-8 variant to the membrane (Figure 9 and Figure 9–figure supplement 1). The results obtained show that the ∆2-8 variant transitions from a diffuse localization to polar foci upon overproduction of PbpC<sub>1-132</sub>-mcherry. The polymerization-impaired F130R variant, by contrast, remains evenly distributed throughout the cytoplasm under all conditions. These findings further support the idea that polymerization and membrane-association are mutually interdependent processes.

      (2) Liposome binding data would be strengthened with TEM images to show BacA binding to liposomes. From this experiment, gross polymerization structures of MTS variants could also be characterized.

      We do not have the possibility to perform cryo-electron microscopy studies of liposomes bound to BacA. However, the results of the cell fractionation and liposome sedimentation assays clearly support a critical role of the MTS in membrane binding.

      (3) The use of the BacA F130R mutant throughout the study to probe the effect of polymerization on membrane binding is concerning as there is no evidence showing that this variant cannot polymerize. Looking through the papers the authors referenced, there was no evidence of an identical mutation in BacA that was shown to be depolymerized or any discussion in this study of how the F130R mutation might to analogous to polymerization-deficient variants in other bactofilins mentioned in these references.

      Residue F130 in the C-terminal polymerization interface of BacA is conserved among bactofilin homologs, although its absolute position in the protein sequence may vary, depending on the length of the N-terminal unstructured tail. The papers cited in our manuscript show that an exchange of this conserved phenylalanine residue abolishes polymer formation. Nevertheless, we agree that it is important to verify the polymerization defect of the F130R variant in the system under study. We have now included size-exclusion chromatography data showing that BacA-F130R forms a low-molecular-weight complex, whereas the wild-type protein largely elutes in the exclusion volume, indicating the formation of large, polymeric species (new Figure 1–figure supplement 1). In addition, we performed transmission electron microscopy analyses of BacA-F130R, which verified the absence of larger oligomers (new Figure 1–figure supplement 2).

      (4) Microscopy shows that a BacA variant lacking the native MTS regains the ability to form puncta, albeit mis-localized, in the cell when fused to a heterologous MTS from MreB. While this swap suggests a link between puncta formation and membrane binding the relationship between puncta and polymerization has not been established (see comment 1).

      We show that a BacA variant lacking the MTS (∆2-8) regains the ability to form membrane-associated foci when fused to the MTS of MreB. By contrast, a similar variant that additionally carries the F130R exchange (preventing its polymerization) shows a diffuse cytoplasmic localization. In addition, we show that the F130R exchange leads to a loss of membrane binding and to a considerable increase in the mobility of the variants carrying the MTS of E. coli MreB. As described above, we now provide additional data demonstrating that elevated levels of the PbpC membrane anchor can reinstate polar localization for the ∆2-8 variant, whereas it fails to do so for the polymerization-deficient F130R variant (Figure 9 and Figure 9–figure supplement 1). Together, these results support the hypothesis that membrane association and polymerization act synergistically to establish localized bactofilin assemblies at the stalked cell pole.

      (5) The authors provide no primary data for single molecule tracking. There is no tracking mapped onto microscopy images to show membrane localization or lack of localization in MTS deletion/ variants. A known soluble protein (e.g. unfused mVenus) and a known membrane bound protein would serve as valuable controls to interpret the data presented. It also is unclear why the authors chose to report molecular dynamics as mean squared displacement rather than mean squared displacement per unit time, and the number of localizations is not indicated. Extrapolating from the graph in figure 4 D for example, it looks like WT BacA-mVenus would have a mobility of 0.5 (0.02/0.04) micrometers squared per second which is approaching diffusive behavior. Further justification/details of their analysis method is needed. It's also not clear how one should interpret the finding that several of the double point mutants show higher displacement than deleting the entire MTS. These experiments as they stand don't account for any other cause of molecular behavior change and assume that a decrease in movement is synonymous with membrane binding.

      We now provide additional information on the single-particle analysis. A new supplemental figure now shows a mapping of single-particle tracks onto the cells in which they were recorded for all proteins analyzed (Figure 2–figure supplement 1). Due to the small size of C. crescentus, it is difficult to clearly differentiate between membrane-associated and cytoplasmic protein species. However, overall, slow-diffusing particles tend to be localized to the cell periphery, supporting the idea that membrane-associated particles form larger assemblies (apart from diffusing more slowly due to their membrane association). In addition, we have included a movie that shows the single-particle diffusion dynamics of all proteins in representative cells (Figure 2-video 1). Finally, we have included a table that gives an overview of the number of cells and tracks analyzed for all proteins investigated (Supplementary file 1). Figure 2A and 4D show the mean squared displacement as a function of time, which makes it possible to assess whether the particles observed move by normal, Brownian diffusion (which is the case here). We repeated the entire single-particle tracking analysis to verify the data obtained previously and obtained very similar results. Among the different mutant proteins, only the K4E-K7E variant consistently shows a higher mobility than the MTS-free ∆2-8 variant, with MSD values similar to that of free mVenus. The underlying reason remains unclear. However, we believe that an in-depth analysis of this phenomenon is beyond the scope of this paper. We re-confirmed the integrity of the construct encoding the K4E/K7E variant by DNA sequencing and once again verified the size and stability of the fusion protein by Western blot analysis, excluding artifacts due to errors during cloning and strain construction.

      We agree that the single-molecule tracking data alone are certainly not sufficient to draw firm conclusions on the relationship between membrane binding and protein mobility. However, they are consistent with the results of our other in vivo and in vitro analyses, which together indicate a clear correlation between the mobility of BacA and its ability to interact with the membrane and polymerize (processes that promote each other synergistically).

      (6) The experiments that map the interaction surface between the N-terminal unstructured region of PbpC and a specific part of the BacA bactofilin domain seem distinct from the main focus of the paper and the data somewhat preliminary. While the PbpC side has been probed by orthogonal approaches (mutation with localization in cells and affinity in vitro), the BacA region side has only been suggested by the deuterium exchange experiment and needs some kind of validation.

      The results of the HDX analysis per se are not preliminary and clearly show a change in the solvent accessibility of backbone amides in the C-terminal region in the bactofilin domain in the presence of the PbpC<sub>1-13</sub> peptide. However, we agree that additional experiments would be required to verify the binding site suggested by these data. We agree that further research is required to precisely map and verify the PbpC binding site. However, as this is not the main focus of the paper, we would like to proceed without conducting further experiments in this area.

      We now provide additional data showing that elevated levels of the PbpC membrane anchor are able to recruit the MTS-free BacA variant (∆2-8) to the cytoplasmic membrane and stimulate its assembly at the stalked pole (Figure 9). These results now integrate Figure 8 more effectively into the overall theme of the paper.

      Reviewer #2 (Public review):

      Summary:

      The authors of this study investigated the membrane-binding properties of bactofilin A from Caulobacter crescentus, a classic model organism for bacterial cell biology. BacA was the progenitor of a family of cytoskeletal proteins that have been identified as ubiquitous structural components in bacteria, performing a range of cell biological functions. Association with the cell membrane is a common property of the bactofilins studied and is thought to be important for functionality. However, almost all bactofilins lack a transmembrane domain. While membrane association has been attributed to the unstructured N-terminus, experimental evidence had yet to be provided. As a result, the mode of membrane association and the underlying molecular mechanics remained elusive.

      Liu at al. analyze the membrane binding properties of BacA in detail and scrutinize molecular interactions using in-vivo, in-vitro and in-silico techniques. They show that few N-terminal amino acids are important for membrane association or proper localization and suggest that membrane association promotes polymerization. Bioinformatic analyses revealed conserved lineage-specific N-terminal motifs indicating a conserved role in protein localization. Using HDX analysis they also identify a potential interaction site with PbpC, a morphogenic cell wall synthase implicated in Caulobacter stalk synthesis. Complementary, they pinpoint the bactofilin-interacting region within the PbpC C-terminus, known to interact with bactofilin. They further show that BacA localization is independent of PbpC.

      Strengths:

      These data significantly advance the understanding of the membrane binding determinants of bactofilins and thus their function at the molecular level. The major strength of the comprehensive study is the combination of complementary in vivo, in vitro and bioinformatic/simulation approaches, the results of which are consistent.

      Thank you for this positive feedback.

      Weaknesses:

      The results are limited to protein localization and interaction, as there is no data on phenotypic effects. Therefore, the cell biological significance remains somewhat underrepresented.

      We agree that it is interesting to investigate the phenotypic effects caused by the reduced membrane binding activity of BacA variants with defects in the MTS. We have now included phenotypic analyses that shed light on the role of region C1 in the localization of PbpC and its function in stalk elongation under phosphate-limiting conditions (see below).

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      To address the missing estimation of biological relevance, some additional experiments may be carried out.

      For example, given that BacA localizes PbpC by direct interaction, one might expect an effect on stalk formation if BacA is unable to bind the membrane or to polymerize. The same applies to PbpC variants lacking the C1 region. As the mutant strains are available, these data are not difficult to obtain but would help to compare the effect of the deletions with previous data (e.g. Kühn et al.) even if the differences are small.

      We have now analyzed the effect of the removal of region C1 on the ability of mVenus-PbpC to promote stalk elongation in C. crescentus under phosphate starvation. Interestingly, our results show that the lack of the BacA-interaction motif impairs the recruitment of the fusion protein to the stalked pole, but it does not interfere with its stimulatory effect on stalk biogenesis. Thus, the polar localization of PbpC does not appear to be critical for its function in localized peptidoglycan synthesis at the stalk base. These results are now shown in Figure 8–Figure supplement 4. The results obtained may be explained by residual transient interactions of mVenus-PbpC with proteins other than BacA at the stalked pole. Notably, PbpC has also been implicated in the attachment of the stalk-specific protein StpX to components of the outer membrane at the stalk base. The polar localization of PbpC may therefore be primarily required to ensure proper StpX localization, consistent with previous work by Hughes et al. (Mol Microbiol, 2013) showing that StpX is partially mislocalized in a strain producing an N-terminally truncated PbpC variant that no longer localizes to the stalk base.

      We have also attempted to investigate the ability of the Δ2-8 and F130R variants of BacA-mVenus to promote stalk elongation under phosphate starvation. However, the levels of the WT, Δ2-8 and F130R proteins and their stabilities were dramatically different after prolonged incubation of the cells in phosphate-limited medium, so that it was not possible to draw any firm conclusions from the results obtained (not shown).

      In addition, the M23-like endopeptidase LdpA is proposed to be a client protein of BacA (in C. crescentus, Billini et al. 2018, and H. neptunium or R. rubrum, Pöhl et al. 2024). In H. neptunium, it is suggested that the interaction is mediated by a cytoplasmic peptide of LmdC reminiscent of PbpC. This should at least be commented on. It would be interesting to see, if LpdA in C. crescentus is also delocalized and if so, this could identify another client protein of BacA.

      We agree that it would be interesting to study the role of BacA in LdpA function. However, we have not yet succeeded in generating a stable fluorescent protein fusion to LdpA, which currently makes it impossible to study the interplay between these two proteins in vivo. The focus of the present paper is on the mode of interaction between bactofilins and the cytoplasmic membrane and on the mutual interdependence of membrane binding and bactofilin polymerization. Given that PbpC is so far the only verified interaction partner of BacA in C. crescentus, we would like to limit our analysis to this client protein.

      Further comments:

      L105: analyze --> analyzed

      Done.

      L169: Is there any reason why the MTS of E. coli MreB was doubled?

      Previous work has shown that two tandem copies of the N-terminal amphiphilic helix of E. coli MreB were required to partially target a heterologous fusion partner protein (GFP) to the cytoplasmic membrane of E. coli cells (Salje et al, 2011).

      Fig. S3:

      a) Please decide which tag was used (mNG or mVenus) and adapt the figure or legend accordingly.<br /> b) In the legend for panel (C), please describe how the relative amounts were calculated, as the fractions arithmetically cannot add to > 100%. I guess each band was densiometrically rated and independently normalized to the whole-cell signal?

      The fluorescent tag used was mNeonGreen, as indicated in the figure. We have now corrected the legend accordingly. Thank you for making us aware of the wrong labeling of the y-axis. We have now corrected the figure and describe the method used to calculate the plotted values in the legend.

      Legend of Fig 1b: It is not clear to me, to which part of panel B the somewhat cryptic LY... strain names belong. I suggest putting them either next to the images, to delete them, or at least to unify the layout (compare, e.g. to Fig S7). (I would delete the LY numbers and stay with the genes/mutations throughout. This is just a suggestion).

      These names indicate the strains analyzed in panel B, and we have now clarified this in the legend. It is more straightforward to label the images according to the mutations carried by the different strains. Nevertheless, we would like to keep the strain names in the legend, so that the material used for the analysis can be clearly identified.

      Fig. 2a: As some of the colors are difficult to distinguish, I suggest sorting the names in the legend within the graph according to the slope of the curves (e.g. K4E K7E (?) on top and WT being at the bottom).

      Thank you for this suggestion. We have now rearranged the labels as proposed.

      In the legend (L924), correct typo "panel C" to "panel B".

      Done.

      Fig. 3: In the legend, I suggest deleting the abbreviations "S" and "P" as they do not show up in the image. In line 929, I suggest adding: average "relative" amount... or even more precisely: "average relative signal intensities obtained..."

      We have removed the abbreviations and now state that the bars indicate the “average relative signal intensities” obtained for the different fractions.

      Fig 4d: same suggestion as for Fig. 2a.

      Done.

      Fig 8: In the legend (L978), delete 1x "the"

      Done.

      L258 and Fig. S5: The expression "To account for biases in the coverage of bacterial species" seems somewhat unclear. I suggest rephrasing and adding information from the M+M section here (e.g. from L593, if this is meant).

      We now state that this step in the analysis pipeline was performed “To avoid biases arising from the over-representation of certain bacterial species in UniProt”.

      I appreciate the outline of the workflow in panel (a) of Fig. S5. It would be even more useful when some more details about the applied criteria for filtering would be provided (e.g. concerning what is meant with "detailed taxonomic information" or "filter out closely related sequences". Does the latter mean that only one bactofilin sequence per species was used? (As quite many bacteria have more than one but similar bactofilins.)

      We removed sequences from species with unclear phylogeny (e.g. candidate species whose precise taxonomic position has not yet been determined). For many pathogenic species, numerous strains have been sequenced. To account for this bias, only one sequence from clusters of highly similar bactofilin sequences (>90% identity) was retained per species. This information has now been included in the diagram. It is true that many bacteria have more than one bactofilin homolog. However, the sequences of these proteins are typically quite different. For instance, the BacA and BacB from C. crescentus only share 52% identity. Therefore, our analysis does not systematically eliminate bactofilin paralogs that coexist in the same species.

      L281: Although likely, I am not sure if membrane binding has ever been shown for a bactofilin from these phyla. (See also L 380.) Is there an example? Otherwise, membrane binding may not be a property of these bactofilins.

      To our knowledge, the ability of bactofilins from these clades to interact with membranes has not been investigated to date. We agree that the absence of an MTS-like motif may indicate that they lack membrane binding activity, and we have now stated this possibility in the Results and Discussion.

      L285: See comment above concerning the M23-like peptidase LpdA. Although not yet directly shown for C. crescentus, it seems likely that BacACc does also localize this peptidase in addition to PbpC. I suggest rephrasing, e.g. "known" --> "shown"

      We now use the word “reported”.

      L295 and Fig S8: PbpC is ubiquitous. Which criteria/filters have been applied to select the shown sequences?

      C. crescentus PbpC is different from E. coli Pbp1C. It is characterized by distinctive, conserved N- and C-terminal tails and only found in C. crescentus and close relatives. The C. crescentus homolog of E. coli PbpC is called PbpZ (Yakhnina et al, J Bacteriol, 2013; Strobel et al, J Bacterol, 2014), whereas C. crescentus PbpC is related to E. coli PBP1A. We have now added this information to the text to avoid confusion.

      L311: may replace "assembly" by "polymerization"

      Done.

      L320: bactofilin --> bactofilin domain?

      Yes, this was supposed to read “bactofilin domain”. Thank you for spotting this issue.

      L324: The HDX analysis of BacA suggests that the exchange is slowed down in the presence of the PbpC peptide, which is indicative of a physical interaction between these two molecules. To corroborate the claim that BacA polymerization is critical for interaction with the peptide (resp. PbpC), this experiment should be carried out with the polymerization defective BacA version F130R.

      (Or tone this statement down, e.g. show --> suggest.)

      “suggest”

      L386: undergoes --> undergo

      Done.

      L391-400: This idea is tempting but the suggested mechanism then would be restricted to bactofilins of C. crescentus and close relatives. The bactofilin of Rhodomicrobium, for example, was shown to localize dynamically and not to stick to a positively curved membrane.

      In the vast majority of species investigated so far, bactofilins were found to associate with specifically curved membrane regions and to contribute to the establishment of membrane curvature. Unfortu­nately, the sequences of the three co-polymerizing bactofilin paralogs of R. vannielii DSM 166 studied by Richter et al (2023) have not been reported and the genome sequence of this strain is not publicly available. However, in related species with three bactofilin paralogs, only one paralog shows an MTS-like N-terminal peptide and another paralog typically contains an unusual cadherin-like domain of unknown function, as also reported for R. vannielii DSM 166. Therefore, the mechanism controlling the localization dynamics of bactofilins may be complex in the Rhodomicrobium lineage. Nevertheless, at native expression levels, the major bactofilin (BacA) of R. vannielii DSM 166 was shown to localize predominantly to the hyphal tips and the (incipient) bud necks, suggesting that regions of distinct membrane curvature could also play a role in its recruitment. We do not claim that all bactofilins recognize positive membrane curvature, which is clearly not the case. It rather appears as though the curvature preference of bactofilins varies depending on their specific function.

      L405-406: I agree that localization of BacA has been shown to be independent of PbpC. However, this does not generally preclude an effect on BacA localization by other "client" or interacting proteins. (See also comment above about the putative BacA interactor LpdA). I suggest either to corroborate or to change this statement from "client binding" to "PbpC binding".

      Thank you for pointing out the imprecision of this statement. We now conclude that “PbpC binding” is not critical for BacA assembly and positioning.

      Suppl. Fig. S11: In the legend, please correct the copy-paste mismatch (...VirB...).

      Done.

      L482: delete 1x "at"

      Done.

      L484: may be better "soluble and insoluble fractions"?

      We now describe the two fractions as “soluble and membrane-containing insoluble fractions” to make clear to all readers that membrane vesicles are found in the pellet after ultracentrifugation.

      L489-490: check spelling immunoglobulin – immuneglobulin

      Done.

      L500 and 504: º_C --> ºC

      Done.

      Suppl. file X (HDX data): please check the table headline, table should be included in Suppl. file 1

      We have now included a headline in this file (now Supplementary file 3).

    1. eLife Assessment

      This manuscript offers valuable structural and mechanistic insights into the structure and assembly of the Type II internal ribosome entry site (IRES) from encephalomyocarditis virus (EMCV) and the translation initiation complex, revealing a direct interaction between the IRES and the 40S ribosomal subunit. While a solid cryo-EM method was used, enhancing the overall resolution or adding complementary biochemical data would further improve the clarity and impact of this study. This manuscript will attract researchers in cap-independent translation, host-pathogen interactions, and virology.