10,000 Matching Annotations
  1. Sep 2025
    1. Author response:

      Reviewer #1 (Public review):

      Cognitive Load and Task-Switching Components:

      We agree that cognitive load is multi-faceted and encompasses dimensions not fully captured in our present models, including domain and rule switching. For the revision, we will explicitly model these components in the statistical analyses by incorporating predictors reflecting attended domain switching and rule complexity, as suggested. We will also explain our inclusion of n-back reaction predictors and justify their relationship with theoretical constructs of executive function. Full details of coding schemes will be provided.

      Modeling Entropy and Surprisal:

      We appreciate the reviewer’s suggestion to further explain the distinction between entropy (predictive uncertainty) and surprisal (integration difficulty), and acknowledge that our treatment of entropy warrants extension. In the revision, we will expand the results and discussion on entropy, providing clearer theoretical motivation for its inclusion and conducting supplementary analyses to examine its role alongside surprisal.

      Replicability of Findings:

      We note the concern regarding two-way vs. three-way interactions in model replication. In the revised manuscript, we will report robustness analyses on subsets of our data (e.g., matched age and education groups), clarify degrees of freedom and group sizes, and transparently report any discrepancies.

      Predictors and Statistical Modeling:

      We will add clarifications on predictor selection, data structure, and rationale for model hierarchy. The functions of d-prime, comprehension accuracy, and performance modeling will be described in more detail, including discussion of block-level vs. participant-level effects.

      Reviewer #2 (Public review):

      Distinction Between Prediction and Predictability:

      We recognize the importance of clearly communicating the difference between prediction and predictability, as well as integration-based vs. prediction-based effects. We will clarify these distinctions throughout the introduction, methods, and discussion sections, citing the relevant theoretical literature (e.g., Pickering & Gambi 2018; Federmeier 2007; Staub 2015; Frisson 2017).

      Aging, Corpus Predictability, and Individual Differences:

      We appreciate the critical point regarding age, corpus-based predictability, and potential cohort effects in language model estimates. In the revision, we will provide conceptual clarifications on how surprisal and entropy might differ for different age groups and discuss limitations in extrapolating these metrics to participant-specific predictions. The limitations inherent in relying on LLM-derived estimates and text materials will be more directly addressed.

      Coverage of Literature and Paradigms:

      We will broaden the literature review as requested, particularly on the N400 effects and behavioral traditions in prediction research. These additions should help contextualize the present work within both neuroscience and psycholinguistics.

      Experimental Context and Predictability Metrics:

      We will address concerns regarding the context window for prediction estimation, describing more precisely how context was defined and whether broader textual cues may improve predictability metrics.

      References

      Pickering, M.J. & Gambi, C. (2018). Predicting while comprehending language: A theory and review. Psychol. Bull., 144(10), 1002–1044.

      Federmeier, K.D. (2007). Thinking ahead: The role and roots of prediction in language comprehension. Psychophysiology, 44(4), 491–505.

      Frisson, S. (2017). Can prediction explain the lexical processing advantage for short words? J. Mem. Lang., 95, 121–138.\

      Staub, A. (2015). The effect of lexical predictability on eye movements in reading: Critical review and theoretical interpretation. Lang. Linguist. Compass, 9(8), 311–327.Huettig, F. & Mani, N. (2016). Is prediction necessary to understand language? Probably not. Trends Cogn. Sci., 20(10), 484–492.We appreciate the reviewers’ constructive comments and believe their suggestions will meaningfully strengthen the paper. Our planned revisions will address each of the above points with additional analyses, clarifications, and expanded discussion.

    1. eLife Assessment

      This study used a conditional knockout mouse line to remove Ptbp1 in retinal progenitors and showed that its deletion has no effect on retinal neurogenesis or cell fate specification, thereby challenging the prevailing view of Ptbp1 as a master regulator of neuronal fate. The findings are convincing, supported by transcriptome analysis, histology, and proliferation assays. This study is important, though the genetic tools employed may not fully capture Ptbp1's potential role during the earliest stages of retinal development.

    2. Reviewer #1 (Public review):

      Summary:

      The researchers sought to determine whether Ptbp1, an RNA-binding protein formerly thought to be a master regulator of neuronal differentiation, is required for retinal neurogenesis and cell fate specification. They used a conditional knockout mouse line to remove Ptbp1 in retinal progenitors and analyzed the results using bulk RNA-seq, single-cell RNA-seq, immunohistochemistry, and EdU labeling. Their findings show that Ptbp1 deletion has no effect on retinal development, since no defects were found in retinal lamination, progenitor proliferation, or cell type composition. Although bulk RNA-seq indicated changes in RNA splicing and increased expression of late-stage progenitor and photoreceptor genes in the mutants, and single-cell RNA-seq detected relatively minor transcriptional shifts in Müller glia, the overall phenotypic impact was low. As a result, the authors conclude that Ptbp1 is not required for retinal neurogenesis and development, thus contradicting prior statements about its important role as a master regulator of neurogenesis. They argue for a reassessment of this stated role. While the findings are strong in the setting of the retina, the larger implications for other areas of the CNS require more investigation. Furthermore, questions about potential reimbursement from Ptbp2 warrant further research.

      Strengths:

      This study calls into doubt the commonly held belief that Ptbp1 is a critical regulator of neurogenesis in the CNS, particularly in retinal development. The adoption of a conditional knockout mouse model provides a reliable way for eliminating Ptbp1 in retinal progenitors while avoiding the off-target effects often reported in RNAi experiments. The combination of bulk RNA-seq, scRNA-seq, and immunohistochemistry enables a thorough examination of molecular and cellular alterations at both embryonic and postnatal stages, which strengthens the study's findings. Furthermore, using publicly available RNA-Seq datasets for comparison improves the investigation of splicing and expression across tissues and cell types. The work is well-organized, with informative figure legends and supplemental data that clearly show no substantial phenotypic changes in retinal lamination, proliferation, or cell destiny, despite identified transcriptional and splicing modifications.

      Weaknesses:

      The retina-specific method raises questions regarding whether Ptbp1 is required in other CNS locations where its neurogenic roles were first proposed. The claim that Ptbp1 is "fully dispensable" for retinal development may be toned down, given the transcriptional and splicing modifications identified. The possibility of subtle or transitory impacts, such as ectopic neuron development followed by cell death, is postulated, but not completely investigated. Furthermore, as the authors point out, the compensating potential of increased Ptbp2 warrants additional exploration. Although the study performs well in transcriptome and histological analyses, it lacks functional assessments (such as electrophysiological or behavioral testing) to determine if small changes in splicing or gene expression affect retinal function. While 864 splicing events have been found, the functional significance of these alterations, notably the 7% that are neuronal-enriched and the 35% that are rod-specific, has not been thoroughly investigated. The manuscript might be improved by describing how these splicing changes affect retinal development or function.

    3. Reviewer #2 (Public review):

      Summary:

      Ptbp1 has been proposed as a key regulator of neuronal fate through its role in repressing neurogenesis. In this study, the authors conditionally inactivated Ptbp1 in mouse retinal progenitor cells using the Chx10-Cre line. While RNA-seq analysis at E16 revealed some changes in gene expression, there were no significant alterations in retinal cell type composition, and only modest transcriptional changes in the mature retina, as assessed by immunofluorescence and scRNAseq. Based on these findings, the authors conclude that Ptbp1 is not essential for cell fate determination during retinal development.

      Strengths:

      Despite some effects of Ptbp1 inactivation (initiated around E11.5 with the onset of Chx10-Cre activity) on gene expression and splicing, the data convincingly demonstrate that retinal cell type composition remains largely unaffected. This study is highly significant since it challenges the prevailing view of Ptbp1 as a central repressor of neurogenesis and highlights the need to further investigate, or re-evaluate, its role in other model systems and regions of the CNS.

      Weaknesses:

      A limitation of the study is the use of the Chx10-Cre driver, which initiates recombination around E11. This timing does not permit assessment of Ptbp1 function during the earliest phases of retinal development, if expressed at that time.

    1. eLife Assessment

      This valuable study presents a mechanistic model of predictive coding by medial entorhinal cortex grid cells, implemented with biologically detailed conductance-based neurons. The evidence supporting the emergence of this coding scheme from specific membrane currents and the anatomical connectivity among inhibitory neurons is solid. However, the justification for the choice of connectivity patterns and other network parameters remains somewhat incomplete. This work will be of interest to neuroscientists working on spatial navigation, circuit dynamics, and neuronal coding.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors aim to elucidate the mechanisms by which grid cells in the medial entorhinal cortex generate predictive representations of spatial location. To address this, they built a computational model integrating intrinsic neuronal dynamics with structured network connectivity. Specifically, they combine a conductance-based single-cell model incorporating biologically realistic HCN channels with a continuous attractor network that reflects known properties of grid cell circuitry. Their simulations show that HCN conductance can shift grid fields forward by approximately 5% of their diameter, consistent with experimental observations in layer II grid cells. Additionally, by introducing asymmetry in the connectivity of interneurons, the model produces larger forward shifts, which parallel properties observed in layer III grid cells. Together, these two mechanisms provide a unified framework for explaining layer-specific predictive coding in the entorhinal cortex.

      Strengths:

      A major strength of the study lies in its conceptual contribution. The authors propose two distinct mechanisms to generate forward-shifted grid fields for predictive coding. One mechanism is intrinsic and depends on the time constants associated with HCN channels. The other is network-based and results from asymmetries in interneuron connectivity. These two mechanisms correspond to different observed properties of grid cells in layer II and layer III, respectively. The modeling is based on previously validated frameworks of continuous attractor network models (e.g., Burak & Fiete; Kang & DeWeese), but it incorporates several novel features, including the incorporation of biophysically realistic HCN channels, a network architecture that excludes stellate-stellate connections and relies on interneurons, and asymmetric interneuron connectivity.

      Weaknesses:

      One of the proposed mechanisms for predictive coding, namely asymmetric interneuron connectivity, is a novel idea. However, this type of connectivity has not yet been demonstrated experimentally in the medial entorhinal cortex. Therefore, the biological plausibility of this mechanism remains uncertain and will need to be evaluated in future empirical studies.

    3. Reviewer #2 (Public review):

      Summary:

      This study proposes that predictive spatial representations in medial entorhinal cortex (MEC) grid cells arise through two distinct biophysical mechanisms: (1) HCN conductance-dependent temporal dynamics, which generate modest forward shifts (~5% of grid field diameter) in Layer II cells, and (2) network asymmetry, enabling larger predictive shifts (~25% of grid field diameter) in Layer III cells. The model further predicts a dorsoventral gradient in predictive coding magnitude, correlating with observed HCN conductance variations. These results provide a mechanistic framework for understanding how intrinsic cellular properties and circuit architecture collectively enable prospective spatial coding in the MEC. This is an important study.

      Strengths:

      These findings reveal how cellular properties and circuit design enable prospective spatial coding. This novel, impactful study will be of interest to the field.

      Weaknesses:

      Some of the models are too mathematical and do not fit with the biological observation.

    4. Reviewer #3 (Public review):

      Summary:

      The manuscript by Shaikh and Assisi addresses a timely and important question related to the neural circuit mechanisms underlying spatial representations during navigation. Concretely, they present a model of the medial entorhinal cortex (MEC) with biophysically detailed conductance-based stellate cells that can perform path integration and reveal two potential mechanisms underlying two forms of predictive coding by grid cells in the MEC. One mechanism uses HCN channels to explain predictive coding in MEC layer II grid cells equivalent to ~5% of the diameter of a grid field, and the other uses asymmetric connections between interneurons and stellate cells, resulting in a ~25% predictive bias of layer III grid cells. The methods and model are technically sound, and the model is expected to be useful for computational neuroscientists studying the neural mechanisms of spatial navigation.

      Strengths:

      One strength of the model is its use of conductance-based neuron models of stellate cells and interneurons, adding important biophysical constraints and details to existing continuous attractor network models of grid cells. The model fills a gap in the literature by providing mechanisms for predictive coding constrained by biophysical properties of stellate cells and simplified network topology.

      Weaknesses:

      A weakness of the model is that the neural network is relatively small (five sheets with 71 × 71 neurons each), and the 2-D toroidal topology is further simplified to a 1-D ring attractor consisting of three rings with 192 neurons each. The model incorporates biophysical detail at the single-neuron level, but not at the network level. For example, it includes only stellate cells and a generic interneuron type, and does not implement data-driven connectivity patterns.

      The restricted network size and the limited experimental knowledge about connectivity among stellate cells, principal cells, and different interneuron types in the MEC could be addressed in more detail. Moreover, the manuscript lacks a thorough discussion of assumptions common to most continuous attractor network (CAN) models of grid cells, such as the use of "hand-crafted" connections between direction-sensitive conjunctive grid cells and network cells to drive attractor shifts. Including such a discussion would strengthen the manuscript. This is especially relevant given the authors' explicit claim that they have revealed two mechanisms underlying the emergence of a predictive code in the MEC. In this reviewer's view, the work demonstrates a potential mechanism, but one that requires experimental verification. The significance of the model would thus be increased by providing more experimentally testable predictions of the model.

    1. eLife Assessment

      This fundamental study shows how past experiences shape perception across short, medium, and long time scales, using a single behavioural paradigm and reanalysed EEG data. It provides convincing evidence for two processes across all scales: an attention-dependent mechanism that speeds responses to expected events, and an attention-independent mechanism where expected events are encoded less precisely, consistent with feedforward dampening. The work offers a unifying account of temporal context effects, though stronger brain-behaviour links, integration with serial dependence attraction and repulsion models, and extension to other timescale definitions would further strengthen the contribution.

    2. Reviewer #1 (Public review):

      Summary:

      This paper addresses an important and topical issue: how temporal context - at various time scales - affects various psychophysical measures, including reaction times, accuracy and localization. It offers interesting insights, with separate mechanisms for different phenomena, which are well discussed.

      Strengths:

      The paradigm used is original and effective. The analyses are rigorous.

      Comments on revised version:

      I think the authors have dealt adequately with my issues, none of which were fundamental.

    3. Reviewer #2 (Public review):

      Summary:

      This study investigates the influence of prior stimuli over multiple time scales in a position discrimination task, using pupillometry data and a reanalysis of EEG data from an existing dataset. The authors report consistent history-dependent effects across task-related, task-unrelated, and stimulus-related dimensions, observed across different time scales. These effects are interpreted as reflecting a unified mechanism operating at multiple temporal levels, framed within predictive coding theory.

      Strengths:

      The authors have done a good job in their revision, clarifying important points and stating the limitations of the study clearly.

      I also think they made a valid effort to address and correct issues arising from the temporal dependency confound, although I still wonder whether the best approach would have been to design an experiment in a way that avoided this confound in the first place.<br /> Overall, this is a substantially improved version, and I particularly appreciate the clarification and correction regarding the direction of the bias in the EEG data (repulsive rather than attractive).

      Weaknesses:

      These are now relatively minor points.

      I believe this latter aspect, the repulsive bias, may deserve further discussion, especially in relation to their behavioral findings and, in particular, to earlier work proposing multi-stage frameworks of serial dependence, where low-level repulsion interacts with attractive biases at higher-level stages (Fritsche et al., 2020; Pascucci et al., 2019; Sheehan & Serences, 2022). The authors may also consider to cite some key reviews on serial dependence that discuss both repulsion and attraction in forced-choice and reproduction tasks (Manassi et al., 2023; Pascucci et al., 2023).

      Related to this, after finding the opposite pattern, is the sentence in line 472-473 ("Further, we found an attractive...") and the related argument still valid?

      Regarding my earlier point about former line 197 and Figure 3b,c: what I noticed-similar to the patterns reported in the studies I referenced-is that the data cannot be simply described as showing faster and more accurate responses for small deltas. Responses also appear faster and more accurate for very large deltas, with performance being worse in between. Indeed, as the authors state: "The peak in precision for large Deltas locations is consistent with alternate events being encoded more precisely, while the peak for small offsets may be explained by the attractive bias towards the previous target." I wonder whether it is necessary, or unequivocally supported by the data, to hypothesize two separate mechanisms here. An alternative could be interference effects between consecutive stimuli that are neither identical nor completely different-making the previous one more likely to interfere with the current stimulus representation.

      Finally, this is definitely a minor point, but I still find the reply to my comment about the prediction of stable retinal input rather speculative. Such a prediction would seem more plausible in world-centered coordinates.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      (1) The manuscript is quite dense, with some concepts that may prove difficult for the non-specialist. I recommend spending a few more words (and maybe some pictures) describing the difference between task-relevant and task-irrelevant planes. Nice technique, but not instantly obvious. Then we are hit with "stimulus-related", which definitely needs some words (also because it is orthogonal to neither of the above). 

      We agree that the original description of the planes was too terse and have expanded on this in the revised manuscript.

      Line 85 - To test the influence of attention, trials were sorted according to two spatial reference planes, based on the location of the stimulus: task-related and task-unrelated (Fig. 1b). The task-related plane corresponded to participants’ binary judgement (Fig 1b, light cyan vertical dashed line) and the task-unrelated plane was orthogonal to this (Fig 1b, dark cyan horizontal dashed line). For example, if a participant was tasked with performing a left-or-right of fixation judgement, then their task-related plane was the vertical boundary between the left and right side of fixation, while their task-unrelated plane was the horizontal boundary. The former (left-right) axis is relevant to their task while the latter (top-bottom) axis is orthogonal and task irrelevant. This orthogonality can be leveraged to analyze the same data twice (once according to the task-related plane and again according to the taskunrelated plane) in order to compare performance when the relative location of an event is either task relevant or irrelevant.

      Line 183 - whereas task planes were constant, the stimulus-related plane was defined by the location of the stimulus on the previous trial, and thus varied from trial to trial. That is, on each trial, the target is considered a repeat if it changes location by <|90°| relative to its location on the previous trial, and an alternate if it moves by >|90°|.

      (2) While I understand that the authors want the three classical separations, I actually found it misleading. Firstly, for a perceptual scientist to call intervals in the order of seconds (rather than milliseconds), "micro" is technically coming from the raw prawn. Secondly, the divisions are not actually time, but events: micro means one-back paradigm, one event previously, rather than defined by duration. Thirdly, meso isn't really a category, just a few micros stacked up (and there's not much data on this). And macro is basically patterns, or statistical regularities, rather than being a fixed time. I think it would be better either to talk about short-term and long-term, which do not have the connotations I mentioned. Or simply talk about "serial dependence" and "statistical regularities". Or both. 

      We agree that the temporal scales defined in the current study are not the only way one could categorize perceptual time. We also agree that by using events to define scales, we ignore the influence of duration. In terms of the categories, we selected these for two reasons: 1) they conveniently group previous phenomena, and 2) they loosely correspond to iconic-, short- and long-term memory. We agree that one could also potentially split it up into two categories (e.g., short- and long-term), but in general, we think any form of discretization will have limitations. For example, Reviewer 1 suggests that the meso category is simply a few micros stacked together. However, there is a rich literature on phenomena associated with sequences of an intermediate length that do not appear to be entirely explained by stacking micro effects (e.g., sequence learning and sequential dependency). We also find that when controlling for micro level effects, there are clear meso level effects. Also, by the logic that meso level effects are just stacked micro effects, one could also argue the same for macro effects. We don’t think this argument is incorrect, rather we think it exemplifies the challenge of discretising temporal scales. Ultimately, the current study was aimed to test whether seemingly disparate phenomena identified in previous work could be captured by unifying principles. To this end we found that these categories were the most useful. However, we have included a “Limitations and future directions” section in the Discussion of the revised manuscript that acknowledges both the alternative scheme proposed by Reviewer 1, and the value of extending this work to consider the influence of duration (as well as events).

      Line 488 - Limitations and future directions. One potential limitation of the current study is the categorization of temporal scales according to events, independent of the influence of event duration. While this simplification of time supports comparison between different phenomena associated with each scale (e.g., serial dependence, sequential dependencies, statistical learning), future work could investigate the role of duration to provide a more comprehensive understanding of the mechanisms identified in the current study.

      Related to this, while the temporal scales applied here conveniently categorized known sensory phenomena, and partially correspond to iconic-, short-, and long-term memory, they are but one of multiple ways to delineate time. For example, temporal scales could alternatively be defined simply as short- and long-term (e.g., by combining micro and meso scale phenomena). However, this could obscure meaningful differences between phenomena associated with sensory persistence and short-term memory, or qualitative differences in the way that shortsequences of events are processed.

      (3) More serious is the issue of precision. Again, this is partially a language problem. When people use the engineering terms "precision" and "accuracy" together, they usually use the same units, such as degrees. Accuracy refers to the distance from the real position (so average accuracy gives bias), and precision is the clustering around the average bias, usually measured as standard deviation. Yet here accuracy is percent correct: also a convention in psychology, but not when contrasting accuracy with precision, in the engineering sense. I suggest you change "accuracy" to "percent correct". On the other hand, I have no idea how precision was defined. All I could find was: "mixture modelling was used to estimate the precision and guess rate of reproduction responses, based on the concentration (k) and height of von Mises and uniform distributions, respectively". I do not know what that means.

      In the case of a binary decision, is seems reasonable to use the term “accuracy” to refer to the correspondence between the target state and the response on a task. However, we agree that while our (main) task is binary, the target is not and nor is the secondary task. We thank the reviewer for bringing this to our attention, as we agree that this will be a likely cause of confusion. To avoid confusion we have specifically referred to “task accuracy” throughout the revised manuscript.

      With regards to precision, our measure of precision is consistent with what Reviewer 1 describes as such, i.e., the clustering of responses. In particular, the von Mises distribution is essentially a Gaussian distribution in circular space, and the kappa parameter defines the width of the distribution, regardless of the mean, with larger values of kappa indicating narrower (more precise) distributions. We could have used standard deviation to assess precision; however, this would incorrectly combine responses on which participants failed to encode the target (e.g., because of a blink) and were simply guessing. To account for these trials, we applied mixture modelling of guess and genuine responses to isolate the precision of genuine responses, as is standard in the visual working memory literature. However, we agree that this was not sufficiently described in the original manuscript and have elaborated on this method in the revised version.

      Line 598 - From the reproduction task, we sought to estimate participant’s recall precision. It is likely that on some trials participants failed to encode the target and were forced to make a response guess. To isolate the recall precision from guess responses, we used mixture modelling to estimate the precision and guess rate of reproduction responses, based on the concentration (k) and height of von Mises and uniform distributions, respectively (Bays et al., 2009). The k parameter of the von Mises distribution reflects its width, which indicates the clustering of responses around a common location.

      (4) Previous studies show serial dependence can increase bias but decrease scatter (inverse precision) around the biased estimate. The current study claims to be at odds with that. But are the two measures of precision relatable? Was the real (random) position of the target subtracted from each response, leaving residuals from which the inverse precision was calculated? (If so, the authors should say so..) But if serial dependence biases responses in essentially random directions (depending on the previous position), it will increase the average scatter, decreasing the apparent precision. 

      Previous studies have shown that when serial dependence is attractive there is a corresponding increase in precision around small offsets from the previous item (citations). Indeed, attractive biases will lead to reduced scattering (increased precision) around a central attracter. Consistent with previous studies, and this rational, we also found an attractive bias coupled with increased precision. To clarify, for the serial dependency analysis, we calculated bias and precision by binning reproduction responses according to the offset between the current and previous target and then performing the same mixture modelling described above to estimate the mean (bias) and kappa (precision) parameters of the von Mises distribution fit to the angular errors. This was not explained in the original manuscript, so we thank Reviewer 1 for bringing this to our attention and have clarified the analysis in the revised version.

      Line 604 - For the serial dependency analysis, we calculated bias and precision by binning reproduction responses according to the angular offset between the current and previous target and then performing mixture modelling to estimate the mean (bias) and k (precision) parameters of the von Mises distribution.

      (5) I suspect they are not actually measuring precision, but location accuracy. So the authors could use "percent correct" and "localization accuracy". Or be very clear what they are actually doing. 

      As explained in our response to Reviewer 1’s previous comment, we are indeed measuring precision.

      Reviewer #2 (Public review):

      (1) The abstract should more explicitly mention that conclusions about feedforward mechanisms were derived from a reanalysis of an existing EEG dataset. As it is, it seems to present behavioral data only.

      It is not clear what relevance the fact that the data has been analyzed previously has to the results of the current study. However, we do think that it is important to be clear that the EEG recordings were collected separately from the behavioural and eyetracking data, so we have clarified this in the revised abstract.

      Line 7 - By integrating behavioural and pupillometry recordings with electroencephalographical recordings from a previous study, we identify two distinct mechanisms that operate across all scales.

      (2) The EEG task seems quite different from the others, with location and color changes, if I understand correctly, on streaks of consecutive stimuli shown every 100 ms, with the task involving counting the number of target events. There might be different mechanisms and functions involved, compared to the behavioral experiments reported. 

      As stated above, we agree that it is important that readers are aware that the EEG recordings were collected separately to the behavioural and eyetracking data. We were forthright about this in the original manuscript and how now clarified this in the revised abstract. We agree that collecting both sets of data in the same experiment would be a useful validation of the current results and have acknowledged this in a new Limitations and future directions section of the Discussion of the revised manuscript.

      Line 501 - Another limitation of the current study is that the EEG recordings were collected in the separate experiment to the behavioural and pupillometry data. The stimuli and task were similar between experiments, but not identical. For example, the EEG experiment employed coloured arc stimuli presented at a constant rate of ~3.3 Hz and participants were tasked with counting the number of stimuli presented at a target location. By contrast, in the behavioural experiment, participants viewed white blobs presented at an average rate of ~2.8 Hz and performed a binary spatial task coupled with an infrequent reproduction task. An advantage of this was that the sensory responses to stimuli in the EEG recordings were not conflated with motor responses; however, future work combining these measures in the same experiment would serve as a validation for the current results.

      (3) How is the arbitrary choice of restricting EEG decoding to a small subset of parieto-occipital electrodes justified? Blinks and other artifacts could have been corrected with proper algorithms (e.g., ICA) (Zhang & Luck, 2025) or even left in, as decoders are not necessarily affected by noise. Moreover, trials with blinks occurring at the stimulus time should be better removed, and the arbitrary selection of a subset of electrodes, while reducing the information in input to the decoder, does not account for trials in which a stimulus was missed (e.g., due to blinks).

      Electrode selection was based on several factors: 1) reduction of eye movement/blink artifacts (as noted in the original manuscript), 2) consistency with the previous EEG study (Rideaux, 2024) and other similar decoding studies (Buhmann et al., 2024; Harrison et al., 2023; Rideaux et al., 2023), 3) improved signal-to-noise by including only sensors that carry the most position information (as shown in Supplementary Figure 1a and the previous EEG study). We agree that this was insufficiently explained in the original manuscript and have clarified our sensor selection in the revised version.

      Line 631 - We only included the parietal, parietal-occipital, and occipital sensors in the analyses to i) reduce the influence of signals produced by eye movements, blinks, and non-sensory cortices, ii) for consistency with similar previous decoding studies (Buhmann et al., 2024; Rideaux, 2024; Rideaux et al., 2025), and iii) to improve decoding accuracy by restricting sensors to those that carried spatial position information (Supplementary Fig. 1a).

      (4) The artifact that appears in many of the decoding results is puzzling, and I'm not fully convinced by the speculative explanation involving slow fluctuations. I wonder if a different high-pass filter (e.g., 1 Hz) might have helped. In general, the nature of this artifact requires better clarification and disambiguation.

      We agree that the nature of this artifact requires more clarification and disambiguation. Due to relatively slow changes in the neural signal, which are not stimulus-related, there is a degree of temporal autocorrelation in the recordings. This can be filtered out, for example, by using a stricter high-pass filter; however, we tried a range of filters and found that a cut-off of at least 0.7 Hz is required to remove the artifact, and even a filter of 0.2 Hz introduces other (stimulus-related) artifacts, such as above-chance decoding prior to stimulus onset. These stimulus-related artifacts are due to the temporal smearing of data, introduced by the filtering, and have a more pronounced and complex influence on the results and are more difficult to remove through other means, such as the baseline correction applied in the original manuscript.

      The temporal autocorrelation is detected by the decoder during training and biases it to classify/decode targets that are presented nearby in time as similar. That is, it learns the neural pattern for a particular stimulus location based on the activity produced by the stimulus and the temporal autocorrelation (determined by slow stimulus unrelated fluctuations). The latter only accounts for a relatively smaller proportion of the variance in the neural recordings under normal circumstances and would typically go undetected when simply plotting decoding accuracy as a function of position. However, it becomes weakly visible when decoding accuracy is plotted as a function of distance from the previous target, as now the bias (towards temporally adjacent targets) aligns with the abscissa. Further, it becomes highly visible when the stimulus labels are shuffled, as now the decoder can only learn from the variance associated with the temporal autocorrelation (and not from the activity produced by the stimulus).

      In the linear discriminant analysis, this led to temporally proximal items being more likely to be classified as on the same side. This is why there is above-chance performance for repeat trials (Supplementary Figure 2b), and below-chance performance for alternate trials, even when the labels are shuffled – the temporal autocorrelation produces a general bias towards classifying temporally proximate stimuli as on the same side, which selectively improves the classification accuracy of repeat trials. Fortunately, the bias is relatively constant as a function of time within the epoch and is straightforward to estimate by shuffling the labels, which means that it can be removed through a baseline correction. However, to further demonstrate that the autocorrelation confound cannot account for the differences observed between repeat and alternate trials in the micro classification analysis, we now additionally show the results from a more strictly filtered version of the data (0.7 Hz). These results show a similar pattern as the original, with the additional stimulusrelated artifacts introduced by the strict filter, e.g., above chance decoding prior to stimulus onset.

      In the inverted encoding analysis, the same temporal autocorrelation manifests as temporally proximal trials being decoded as more similar locations. This is why there is increased decoding accuracy for targets with small angular offsets from the previous target, even when the labels are shuffled (Supplementary Figure 3c), because it is on these trials that the bias happens to align with the correct position. This leads to an attractive bias towards the previous item, which is most prominent when the labels are shuffled.

      To demonstrate the phenomenon, we simulated neural recordings from a population of tuning curves and performed the inverted encoding analysis on a clean version of the data and a version in which we introduced temporal autocorrelation. We then repeated this after shuffling the labels. The simulation produced very similar results to those we observed in the empirical data, with a single exception: while precision in the simulated shuffled data was unaffected by autocorrelation, precision in the unshuffled data was clearly affected by this manipulation. This may explain why we did not find a correlation between the shuffled and unshuffled precision in the original manuscript. 

      These results echo those from the classification analysis, albeit in a more continuous space. However, whereas in the classification analysis it was straightforward to perform a baseline correction to remove the influence of general temporal dependency, the more complex nature of the accuracy, precision, and bias parameters over the range of time and delta location makes this approach less appropriate. For example, the bias in the shuffled condition ranged from -180 to 180 degrees, which when subtracted from the bias in the unshuffled condition would produce an equally spurious outcome, i.e., the equal opposite of this extreme bias. Instead for the inverted encoding analysis, we used the data high-pass filtered at 0.7 Hz. As with the classification analysis, this removed the influence of general temporal dependencies, as indicated by the results of the shuffled data analysis (Supplementary Figure 3f), but it also temporally smeared the stimulus-related signal, resulting in above chance decoding accuracy prior to stimulus onset (Supplementary Figure 3d). However, given thar we were primarily interested in the pattern of accuracy, precision, and bias as a function of delta location, and less concerned with the precise temporal dynamics of these changes, which appeared relatively stable in the filtered data. Thus, this was the more suitable approach to removing the general temporal dependencies in the inverted encoding analysis and the one that is presented in Figure 3.

      We have updated the revised manuscript in light of these changes, including a fuller description of the artifact and the results from the abovementioned control analyses.

      Figure 3 updated.

      Figure 3 caption - e) Decoding accuracy for stimulus location, from reanalysis of previously published EEG data (17). Inset shows the EEG sensors included in the analysis (blue dots), and black rectangles indicate the timing of stimulus presentations (solid: target stimulus, dashed: previous and subsequent stimuli). f) Decoding accuracy for location, as a function of time and D location. Bright colours indicate higher decoding accuracy; absolute accuracy values can be inferred from (e). g-i) Average location decoding  (g) accuracy, (h) precision, and (h) bias from 50 – 500 ms following stimulus onset. Horizontal bar in (e) indicates cluster corrected periods of significance; note, all time points were significantly above chance due to temporal smear introduced by strict high-pass filtering (see Supplementary Figure 3 for full details). Note, the temporal abscissa is aligned across (e & f). Shaded regions indicate ±SEM.

      Line 218 - To further investigate the influence of serial dependence, we applied inverted encoding modelling to the EEG recordings to decode the angular location of stimuli. We found that decoding accuracy of stimulus location sharply increased from ~60 ms following stimulus onset (Fig. 3e). Note, to reduce the influence of general temporal dependencies, we applied a 0.7 Hz high-pass filter to the data, which temporally smeared the stimulus-related information, resulting in above chance decoding accuracy prior to stimulus presentation (for full details, see Supplementary Figure 3). To understand how serial dependence influences the representation of these features, we inspected decoding accuracy for location as a function of both time and D location (Fig. 3f). We found that decoding accuracy varied depending not only as a function of time, but also as a function of D location. To characterise this relationship, we calculated the average decoding accuracy from 50 ms until the end of the epoch (500 ms), as a function of D location (Fig. 3g). This revealed higher accuracy for targets with larger D location. We found a similar pattern of results for decoding precision (Fig. 3h). These results are consistent with the micro temporal context (behavioural) results, showing that targets that alternated were recalled more precisely. Lastly, we calculated the decoding bias as a function of D location and found a clear repulsive bias away from the previous item (Fig. 3i). While this result is inconsistent with the attractive behavioural bias, it is consistent with recent studies of serial dependence suggesting an initial pattern of repulsion followed by an attractive bias during the response period (20–22).

      Line 726 - As shown in Supplementary Figure 3, we found the same general temporal dependencies in the decoding accuracy computed using inverted encoding that were found using linear discriminant classification. However, as a baseline correction would not have been appropriate or effective for the parameters decoded with this approach, we instead used a high-pass filter of 0.7 Hz to remove the confound, while being cautious about interpreting the timing of effects produced by this analysis due to the temporal smear introduced by the filter.

      Supplementary Figure 2 updated.

      Supplementary Figure 2 caption - Removal of general micro temporal dependencies in EEG responses. We found that there were differences in classification accuracy for repeat and alternate stimuli in the EEG data, even when stimulus labels were shuffled. This is likely due to temporal autocorrelation within the EEG data due to low frequency signal changes that are unrelated to the decoded stimulus dimension. This signal trains the decoder to classify temporally proximal stimuli as the same class, leading to a bias towards repeat classification. For example, in general, the EEG signal during trial one is likely to be more similar to that during trial two than during trial ten, because of low frequency trends in the recordings. If the decoder has been trained to classify the signal associated with trial one as a leftward stimulus, then it will be more likely to classify trial two as a leftward stimulus too. These autocorrelations are unrelated to stimulus features; thus, to isolate the influence of stimulus-specific temporal context, we subtracted the classification accuracy produced by shuffling the stimulus labels from the unshuffled accuracy (as presented in Figure 2e, f). We confirmed that using a stricter high-pass filter (0.7 Hz) removes this artifact, as indicated by the equal decoding accuracy between the two shuffled conditions. However, the stricter high-pass filter temporally smears the stimulus-related signal, which introduces other (stimulus-related) artifacts, e.g., above-chance decoding accuracy prior to stimulus presentation, that are larger and more complex, i.e., changing over time. Thus, we opted to use the original high pass filter (0.1 Hz) and apply a baseline correction. a) The uncorrected classification  accuracy along task related and unrelated planes. Note that these results are the same as the corrected version shown in Figure 2e, because the confound is only apparent when accuracy is grouped according to temporal context.

      b) Same as (a), but split into repeat and alternate stimuli, along (left) task-related and (right) unrelated planes. Classification  accuracy when labels are shuffled is also shown. Inset in (a) shows the EEG sensors included in the analysis (blue dots). (c, d) Same as (a, b), but on data filtered using a 0.7 Hz high-pass filter. Black rectangles indicate the timing of stimulus presentations (solid: target stimulus, dashed: previous and subsequent stimuli). Shaded regions indicate ±SEM.

      Supplementary Figure 3 updated.

      Supplementary Figure 3 caption - Removal of general temporal dependencies in EEG responses for inverted encoding analyses. As described in Methods - Neural Decoding, we used inverted encoding modelling of EEG recordings to estimate the decoding accuracy, precision, and bias of stimulus location. Just as in the linear discriminant classification analysis, we also found the influence of general temporal dependencies in the results produced by the inverted encoding analysis. In particular, there was increased decoding accuracy for targets with low D location. This was weakly evident in the period prior to stimulus presentation, but clearly visible when the labels were shuffled. These results are mirror those from the classification analysis, albeit in a more continuous space. However, whereas in the classification analysis it was straightforward to perform a baseline correction to remove the influence of general temporal dependency, the more complex nature of the accuracy, precision, and bias parameters over the range of time and D location makes this approach less appropriate. For example, the bias in the shuffled condition ranged from -180° to 180°, which when subtracted from the bias in the unshuffled condition would produce an equally spurious outcome, i.e., the equal opposite of this extreme bias. Instead for the inverted encoding analysis, we used the data high-pass filtered at 0.7 Hz. As with the classification analysis, this significantly reduced the influence of general temporal dependencies, as indicated by the results of the shuffled data analysis, but it also temporally smeared the stimulus-related signal, resulting in above chance decoding accuracy prior to stimulus onset. However, we were primarily interested in the pattern of accuracy, precision, and bias as a function of D location, and less concerned with the precise temporal dynamics of these changes. Thus, this was the more suitable approach to removing the general temporal dependencies in the inverted encoding analysis and the one that is presented in Figure 3. (a) Decoding accuracy as a function of time for the EEG data filtered using a 0.1 Hz high-pass filter. Inset shows the EEG sensors included in the analysis (blue dots), and black rectangles indicate the timing of stimulus presentations (solid: target stimulus, dashed: previous and subsequent stimuli). (b, c) The same as (a), but as a function of time and D location for (b) the original data and (c) data with shuffled labels. (d-f) Same as (a-c), but for data filtered using a 0.7 Hz high-pass filter. Shaded regions in (a, d) indicate ±SEM. Horizontal bars in (a, d) indicate cluster corrected periods of significance; note, all time points in (d) were significantly above chance. Note, the temporal abscissa is vertically aligned across plots (a-c & d-f).

      In the process of performing these additional analyses and simulations, we became aware that the sign of the decoding bias in the inverted encoding analyses had been interpreted in the wrong direction. That is, where we previously reported an initial attractive bias followed by a repulsive bias relative to the previous target, we have in fact found the opposite, an initial repulsive bias followed by an attractive bias relative to the previous target. Based on the new control analyses and simulations, we think that the latter attractive bias was due to general temporal dependencies. That is, in the filtered data, we only observe a repulsive bias. While the bias associated with serial dependence was not a primary feature of the study, this (somewhat embarrassing) discovery has led to reinterpretation of some results relating to serial dependence. However, it is encouraging to see that our results now align with those of recent studies (Fischer et al., 2024; Luo et al., 2025; Sheehan et al. 2024).

      Line 385 - Our corresponding EEG analyses revealed better decoding accuracy and precision for stimuli preceded by those that were different and a bias away from the previous stimulus. These results are consistent with finding that alternating stimuli are recalled more precisely. Further, while the repulsive pattern of biases is inconsistent with the observed behavioural attractive biases, it is consistent with recent work on serial dependence indicating an initial period of repulsion, followed by an attractive bias during the response period (20–22). These findings indicate that serial dependence and first-order sequential dependencies can be explained by the same underlying principle.

      (5) Given the relatively early decoding results and surprisingly early differences in decoding peaks, it would be useful to visualize ERPs across conditions to better understand the latencies and ERP components involved in the task.

      A rapid presentation design was used in the EEG experiment, and while this is well suited to decoding analyses, unfortunately we cannot resolve ERPs because the univariate signal is dominated by an oscillation at the stimulus presentation frequency (~3 Hz). We agree that this could be useful to examine in future work.

      (6) It is unclear why the precision derived from IEM results is considered reliable while the accuracy is dismissed due to the artifact, given that both seem to be computed from the same set of decoding error angles (equations 8-9).

      This point has been addressed in our response to point (4).

      (7) What is the rationale for selecting five past events as the meso-scale? Prior history effects have been shown to extend much further back in time (Fritsche et al., 2020). 

      We used five previous items in the meso analyses to be consistent with previous research on sequential dependencies (Bertelson, 1961; Gao et al., 2009; Jentzsch & Sommer, 2002; Kirby, 1976; Remington, 1969). However, we agree that these effects likely extend further and have acknowledged this in the revied version of the manuscript.

      Line 240 - Higher-order sequential dependences are an example of how stimuli (at least) as far back as five events in the past can shape the speed and task accuracy of responses to the current stimulus (9, 10); however, note that these effects have been observed for more than five events (20).

      (8) The decoding bias results, particularly the sequence of attraction and repulsion, appear to run counter to the temporal dynamics reported in recent studies (Fischer et al., 2024; Luo et al., 2025; Sheehan & Serences, 2022). 

      This point has been addressed in our response to point (4).

      (9) The repulsive component in the decoding results (e.g., Figure 3h) seems implausibly large, with orientation differences exceeding what is typically observed in behavior. 

      As noted in our response to point (4), this bias was likely due to the general temporal dependency confound and has been removed in the revised version of the manuscript.

      (10) The pattern of accuracy, response times, and precision reported in Figure 3 (also line 188) resembles results reported in earlier work (Stewart, 2007) and in recent studies suggesting that integration may lead to interference at intermediate stimulus differences rather than improvement for similar stimuli (Ozkirli et al., 2025).

      Thank you for bringing this to our attention, we have acknowledged this in the revised manuscript.

      Line 197 - Consistent with our previous binary analysis, and with previous work (19), we also found that responses were faster and more accurate when D location was small (Fig. 3b, c).

      (11) Some figures show larger group-level variability in specific conditions but not others (e.g., Figures 2b-c and 5b-c). I suggest reporting effect sizes for all statistical tests to provide a clearer sense of the strength of the observed effects. 

      Yes, as noted in the original manuscript, we find significant differences between the variance task-related and -unrelated conditions. We think this is due to opposing forces in the task-related condition: 

      “The increased variability of response time differences across the taskrelated plane likely reflects individual differences in attention and prioritization of responding either quickly or accurately. On each trial, the correct response (e.g., left or right) was equally probable. So, to perform the task accurately, participants were motivated to respond without bias, i.e., without being influenced by the previous stimulus. We would expect this to reduce the difference in response time for repeat and alternate stimuli across the taskrelated plane, but not the task-unrelated plane. However, attention may amplify the bias towards making faster responses for repeat stimuli, by increasing awareness of the identity of stimuli as either repeats or alternations (17). These two opposing forces vary with task engagement and strategy and thus would be expected produce increased variability across the task-related plane.” We agree that providing effect sizes may provided a clearer sense of the observed effects and have done so in the revised version of the manuscript.

      Line 739 - For Wilcoxon signed rank tests, the rank-biserial correlation (r) was calculated as an estimate of effect size, where 0.1, 0.3, and 0.5 indicate small, medium, and large effects, respectively (54). For Friedman’s ANONA tests, Kendal’s W was calculated as an estimate of effect size, where 0.1, 0.3, and 0.5 indicate small, medium, and large effects, respectively (55).

      (12) The statement that "serial dependence is associated with sensory stimuli being perceived as more similar" appears inconsistent with much of the literature suggesting that these effects occur at post-perceptual stages (Barbosa et al., 2020; Bliss et al., 2017; Ceylan et al., 2021; Fischer et al., 2024; Fritsche et al., 2017; Sheehan & Serences, 2022). 

      In light of the revised analyses, this statement has been removed from the manuscript.

      (13) If I understand correctly, the reproduction bias (i.e., serial dependence) is estimated on a small subset of the data (10%). Were the data analyzed by pooling across subjects?

      The dual reproduction task only occurred on 10% of trials. There were approximately 2000 trials, so ~200 reproduction responses. For the micro and macro analyses, this was sufficient to estimate precision within each of the experimental conditions (repeat/alternate, expected/unexpected). However, it is likely that we were not able to reproduce the effect of precision at the meso level across both experiments because we lacked sufficient responses to reliably estimate precision when split across the eight sequence conditions. Despite this, the data was always analysed within subjects.

      (14) I'm also not convinced that biases observed in forced-choice and reproduction tasks should be interpreted as arising from the same process or mechanism. Some of the effects described here could instead be consistent with classic priming. 

      We agree that the results associated with the forced-choice task (response time task accuracy) were likely due to motor priming, but that a separate (predictive) mechanism may explain the (precision) results associated with the reproduction task. These are two mechanisms we think are operating across the three temporal scales investigated in the current study.

      Reviewing Editor Comments:

      (1) Clarify task design and measurement: The dense presentation makes it difficult to understand key design elements and their implications. Please provide clearer descriptions of all task elements, and how they relate to each other (EEG vs. behaviour, stimulus plane vs. TR and TU plane, reproduction vs. discrimination and role of priming), and clearly explain how key measures were computed for each of these (e.g., precision, accuracy, reproduction bias).

      In the revised manuscript, we have expanded on descriptions of the source and nature of the data (behavioural and EEG), the different planes analyzed in the behavioural task, and how key metrics (e.g., precision) were computed.

      (2) Offer more insight into underlying data, including original ERP waveforms to aid interpretation of decoding results and the timing of effects. In particular, unpack the decoding temporal confound further.

      In the revised manuscript, we have considerably offered more insight into the decoding results, in particular, the nature of the temporal confound. We were unable to assess ERPs due to the rapid presentation design employed in the EEG experiment.

      (3) Justify arbitrary choices such as electrode selection for EEG decoding (e.g., limiting to parieto-occipital sensors), number of trials in meso scale, and the time terminology itself.

      In the revised manuscript, we have clarified the reasons for electrode selection.

      (3) Discuss deviations from literature: Several findings appear to contradict or diverge from previous literature (e.g., effects of serial dependence). These discrepancies could be discussed in more depth. 

      Upon re-analysis of the serial dependence bias and removal of the temporal confound, the results of the revised manuscript now align with those from previous literature, which has been acknowledged.

      Reviewer #1 (Recommendations for the authors):

      (1) would like to use my reviewer's prerogative to mention a couple of relevant publications. 

      Galluzzi et al (Journal of Vision, 2022) "Visual priming and serial dependence are mediated by separate mechanisms" suggests exactly that, which is relevant to this study.

      Xie et al. (Communications Psychology, 2025) "Recent, but not long-term, priors induce behavioral oscillations in peri-saccadic vision" also seems relevant to the issue of different mechanisms. 

      Thank you for bringing these studies to our attention. We agree that they are both relevant have referenced both appropriately in the revised version of the manuscript.

      Reviewer #2 (Recommendations for the authors): 

      (1) I find the discussion on attention and awareness (from line 127 onward) somewhat vague and requiring clarification.

      We agree that this statement was vague and referred to “awareness” without operationation. We have revised this statement to improve clarity.

      Line 135 - However, task-relatedness may amplify the bias towards making faster responses for repeat stimuli, by increasing attention to the identity of stimuli as either repeats or alternations (17).

      (2) Line 140: It's hard to argue that there are expectations that the image of an object on the retina is likely to stay the same, since retinal input is always changing. 

      We agree that retinal input is often changing, e.g., due to saccades, self-motion, and world motion. However, for a prediction to be useful, e.g., to reduce metabolic expenditure or speed up responses, it must be somewhat precise, so a prediction that retinal input will change is not necessarily useful, unless it can specify what it will change to. Given retinal input of x at time t, the range of possible values of x at time t+1 (predicting change) is infinite. By contrast, if we predict that x=x at time t+1 (no change), then we can make a precise prediction. There is, of course, other information that could be used to reduce the parameter space of predicted change from x at time t, e.g., the value of x at time t-1, and we think this drives predictions too. However, across the infinite distribution of changes from x, zero change will occur more frequently than any other value, so we think it’s reasonable to assert that the brain may be sensitive to this pattern.

      (3) Line 564: The gambler's fallacy usually involves sequences longer than just one event.

      Yes, we agree that this phenomenon is associated with longer sequences. This section of the manuscript was in regards to previous findings that were not directly relevant to the current study and has been removed in the revised version.

      (4) In the shared PDF, the light and dark cyan colors used do not appear clearly distinguishable. 

      I expect this is due to poor document processing or low-quality image embeddings. I will check that they are distinguishable in the final version.

      References: 

      Barbosa, J., Stein, H., Martinez, R. L., Galan-Gadea, A., Li, S., Dalmau, J., Adam, K. C. S., Valls-Solé, J., Constantinidis, C., & Compte, A. (2020). Interplay between persistent activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working memory. Nature Neuroscience, 23(8), Articolo 8. https://doi.org/10.1038/s41593-020-0644-4

      Bliss, D. P., Sun, J. J., & D'Esposito, M. (2017). Serial dependence is absent at the time of perception but increases in visual working memory. Scientific reports, 7(1), 14739. 

      Ceylan, G., Herzog, M. H., & Pascucci, D. (2021). Serial dependence does not originate from low-level visual processing. Cognition, 212, 104709. https://doi.org/10.1016/j.cognition.2021.104709

      Fischer, C., Kaiser, J., & Bledowski, C. (2024). A direct neural signature of serial dependence in working memory. eLife, 13. https://doi.org/10.7554/eLife.99478.1

      Fritsche, M., Mostert, P., & de Lange, F. P. (2017). Opposite effects of recent history on perception and decision. Current Biology, 27(4), 590-595. 

      Fritsche, M., Spaak, E., & de Lange, F. P. (2020). A Bayesian and efficient observer model explains concurrent attractive and repulsive history biases in visual perception. eLife, 9, e55389. https://doi.org/10.7554/eLife.55389

      Gekas, N., McDermott, K. C., & Mamassian, P. (2019). Disambiguating serial effects of multiple timescales. Journal of vision, 19(6), 24-24. 

      Luo, M., Zhang, H., Fang, F., & Luo, H. (2025). Reactivation of previous decisions repulsively biases sensory encoding but attractively biases decision-making. PLOS Biology, 23(4), e3003150. https://doi.org/10.1371/journal.pbio.3003150

      Ozkirli, A., Pascucci, D., & Herzog, M. H. (2025). Failure to replicate a superiority effect in crowding. Nature Communications, 16(1), 1637. https://doi.org/10.1038/s41467025-56762-5

      Sheehan, T. C., & Serences, J. T. (2022). Attractive serial dependence overcomes repulsive neuronal adaptation. PLoS biology, 20(9), e3001711. 

      Stewart, N. (2007). Absolute identification is relative: A reply to Brown, Marley, and

      Lacouture (2007).  Psychological  Review, 114, 533-538. https://doi.org/10.1037/0033-295X.114.2.533

      Treisman, M., & Williams, T. C. (1984). A theory of criterion setting with an application to sequential dependencies. Psychological review, 91(1), 68. 

      Zhang, G., & Luck, S. J. (2025). Assessing the impact of artifact correction and artifact rejection on the performance of SVM- and LDA-based decoding of EEG signals. NeuroImage, 316, 121304. https://doi.org/10.1016/j.neuroimage.2025.121304

    1. eLife Assessment

      Complementing previous work (Namiki et al, 2018), this study provides an important resource for the Drosophila community as it reports 500 lines targeting descending neurons (DN), in addition to compiling 306 existing DN lines from the literature. The compelling work characterizes 146 DNs and makes a critical link with the DNs identified in Electron microscopy (EM). The lines in this paper will be of interest to Drosophila neuroscientists who will be able to use the reported genetic drivers for further functional characterization of DNs and circuit mapping in conjunction with existing EM datasets.

    2. Reviewer #1 (Public review):

      Summary:

      This manuscript by Zung et al. describes a curated library of genetic lines labeling a class of important neurons called Descending Neurons in the fruit fly, Drosophila melanogaster. These neurons are especially important in their critical role in relaying information from the brain to motor circuits within the ventral nerve cord - the insect analogy of the vertebrate spinal cord. The authors screened through a vast resource of Gal4 lines to generate 500 new genetic lines that allow for the precise labeling of 190 (40%) of all Descending Neurons. The tools introduced here will allow researchers to perform precise circuit dissection of the exact roles these neurons play in linking the brain to the ventral nerve cord.

      Strengths:

      This manuscript represents an important follow-up to the author's 2018 paper in the extension of the genetic toolkit from 178 genetic lines that target 65 Descending Neuron (DN) classes to 806 lines that target 190 DN classes. The presentation of this toolkit is comprehensive with confocal images, informative classifications of lines based on specificity/consistency, and identification of the neuron types - when possible - in the EM dataset.

      Weaknesses:

      No weaknesses were identified by this reviewer.

    3. Reviewer #2 (Public review):

      Summary:

      Descending neurons (DNs) are critical nodes in the neural computation underlying sensorimotor transformation. Building on their earlier work, the authors have substantially expanded the genetic resources for labeling these cell types in D. melanogaster, offering a valuable public resource.

      Strengths:

      The authors identified 146 additional DN types and generated 500 new DN driver lines, expanding the genetic reagents from labeling 98 cell types to 244, representing approximately 50% of all DN types estimated by EM connectomes. While the EM connectomes offer unprecedented resolution of neuronal cell types and their connectivity, genetic access to these cell types remains essential for studying their functions and testing hypotheses. Given the broad interest in DNs, the reagents generated in this study will be of important value for addressing a wide range of questions in sensorimotor transformation.

      The organization of the dataset is overall intuitive and comprehensive. The authors also provided clear information and guidance on accessing the relevant resources, such as stack images and fly lines. In addition, the authors have thoughtfully handled the information updated from the earlier collection they generated (Namiki et al. 2018) and incorporated previously published DN lines, providing a consolidated and up-to-date resource for the DN community.

      Weaknesses:

      No weaknesses were identified by this reviewer.

    4. Reviewer #3 (Public review):

      Summary:

      This study provides the Drosophila community with a large collection of new split-Gal4 descending neuron genetic lines. They extend previous efforts to characterize and identify genetic lines for this important class of neurons by providing images of descending neurons and a metric for genetic lines based on specificity and consistency. Their discussion highlights several applications of this collection, for example, to understand the function of new descending neurons through optogenetic and/or physiological characterization. They also helpfully discuss caveats, encouraging users of this collection to validate expression patterns and to be careful when interpreting optogenetic experimental results, considering potential off-target labeling in the lines. Overall, members of the Drosophila community interested in understanding the function of descending neurons and their role in behavior will find this a helpful resource.

      Strengths:

      (1) The authors extend the previous genetic access of descending neurons in Drosophila to over 800 split-Gal4 lines and 190 cell types (nearly half of the known population of descending neurons). The authors update and at times correct the previous identification of descending neurons from a previous, large-scale analysis. The authors extend and, at times, correct previous efforts at characterizing these neurons.

      (2) Clear images of descending neurons labeled by new genetic lines are presented in the main figure papers for reference.

      (3) This study classifies lines labeling descending neurons using a quality score to indicate specificity and consistency. They provide this for the entire set of genetic lines, a valuable assessment for researchers interested in targeting these neurons for optogenetic or physiological characterization.

      Weaknesses:

      Although this paper represents a substantial effort and useful contribution to the Drosophila community, a few weaknesses, primarily regarding the specificity and reliability of genetic lines, remain:

      (1) The authors state that optogenetic activation of DN types using the new split-GAL4 lines is expected to reliably activate the target neurons with virtually no off-target effects in the rest of the central nervous system. More data supporting this conclusion, including both qualitative and quantitative anatomical evidence, would strengthen this claim.

      (2) The authors do recommend that researchers using these lines examine expression patterns themselves to evaluate line cleanliness and consistency, but some analysis by the authors would be useful, for example, providing guidelines for best practices to perform this evaluation.

      (3) Changes in expression patterns after several generations are noted by the authors, weakening confidence somewhat in the long-term usefulness of this collection of genetic lines.

    1. eLife Assessment

      This important study presents the development of a novel inhibitor for SARS-CoV-2 Mac1 that has potential utility both as an antiviral therapeutic and as a tool for probing the molecular mechanisms by which infection-induced ADP-ribosylation triggers robust host antiviral responses. Though minor gaps in understanding the compound's precise molecular mechanism of action and its ability to target Mac1 from other coronaviruses remain, the evidence for its effects on SARS-CoV-2 in relevant biological models is compelling.

    2. Reviewer #1 (Public review):

      SARS-CoV-2 encodes a macrodomain (Mac1) within the nsp3 protein that removes ADP-ribose groups from proteins. However, its role during infection is not well understood. Evidence suggests that Mac1 antagonizes the host interferon response by counteracting the wave of ADP ribosylation that occurs during infection. Indeed, several PARPs are interferon-stimulated genes. While multiple targets have been proposed, the mechanistic links between ADP ribosylation and a robust antiviral response remain unclear.

      Genetic inactivation of Mac1 abrogates viral replication in vivo, suggesting that small-molecule inhibitors of Mac1 could be developed into antivirals to treat COVID-19 and other emerging coronaviruses. The authors report a potent and selective small molecule inhibitor targeting Mac1 (AVI-4206) that demonstrates efficacy in human airway organoids and animal models of SARS-CoV-2 infection. While these results are compelling and provide proof of concept for the therapeutic targeting of Mac1, I am particularly intrigued by the potential of this compound as a probe to elucidate the mechanistic connections between infection-induced ADP ribosylation and the host antiviral response.

      The precise function of Mac1 remains unclear. Given its presence in multiple viruses, it likely acts on a fundamental host immune pathway(s). AVI-4206, while promising as a lead compound for the development of antivirals targeting coronaviruses, could also be a valuable tool for uncovering the function of the Mac1 domain. This may lead to fundamental insights into the host immune response to viral infection.

    3. Reviewer #2 (Public review):

      Summary:

      The authors describe the development of a novel inhibitor (AVI-4206) for the first macrodomains of the nsp3 protein of SARS-CoV-2 (Mac1). This involves both medical chemical synthesis, structural work as well as biochemical characterisation. Subsequently the authors present their finding of the efficacy of the inhibitor both on cell culture as well as animal models of SARS-CoV-2 infection. They find that despite high affinity for Mac1 and the known replicatory defects of catalytically inactive Mac1 only moderate beneficial effects can be observed in their chosen models.

      Strengths:

      The authors employ a variety of different assay to study the affinity, selectivity and potency of the novel inhibitor and thus the in vitro data are very compelling.<br /> Similarly, the authors use several cell culture and in vivo models to strengthen their findings. In addition, the authors address several aspects of the health impact of coronaviral infections from animal survival, over viral load to histological assessment of lung damage.

      Weaknesses:

      The selection of Targ1 and MacroD2 as off-target human macrodomains is sub-optimal as several studies have shown that the first macrodomains of PARP9 and PARP14 are much closer related to coronaviral macrodomains and both macrodomains are implicated in antiviral defence and immunity. However, the authors address this issue by providing modeling data that show clashes with AVI-4206 similarly to their models with MacroD2 and TARG1.

      Comments on revisions:

      While the authors have not addressed all my suggestions experimentally, I would like to nevertheless congratulate them on a significantly strengthened manuscript that will provide a valuable contribution to the field.

    4. Reviewer #3 (Public review):

      Summary:

      The authors were trying to validate SARS-CoV-2 Mac1 as a drug discovery target and by extension other viral macrodomains.

      Strengths:

      The medicinal chemistry and structure based optimization is exemplary. Macrodomains and ADPribosyl hydrolases have the reputation for being undruggable, yet the authors managed to optimize hits from a fragment screen using structure based approaches and fragment linking to make a 20nM inhibitor as a tool compound to validate the target.<br /> In addition, the in vivo work is also a strength. The ability to reduce the viral count at a rate comparable to nirmatrelvir is impressive. Tracking the cytokine expression levels also supports much of the genetic data and mechanism of action for macrodomains.

      Weaknesses:

      The main compound AVI-4206, while being very potent and selective is not appreciably orally bioavailable. The fact that they have to use high doses of the compound IP to see in vivo effects may lead to questions regarding off target effects. The authors acknowledge this and point it out as a potential avenue for further optimization.

      The cellular models are not as predictive of antiviral activity as one would expect. However, the authors had enough chutzpah to test the compound in vivo knowing that cellular models might not be an accurate representation of a living system with a fully functional immune system all of which is most likely needed in an antiviral response to test the importance of Mac1 as a target.

      Comments on revisions:

      All previous suggestions were addressed. I am satisfied with the author's modifications.

    5. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Recommendations for the authors):

      Although this study is rigorous and the paper is well-written, I have a few concerns that the authors should address before publication.

      (1) Cellular levels of protein ADP-ribosylation should be analyzed using anti-ADPR antibodies following infection, both with and without Mac1 and AVI-4206 treatment. While the authors have provided impressive in vivo data, these experiments could ideally be conducted in mice. However, I would be amenable to these analyses being performed in human airway organoids, as they demonstrate clear phenotypes following AVI-4206 treatment post-infection. For a more in-depth exploration, the authors could consider affinity purifying ADP-ribosylated proteins and identifying them via mass spectrometry. I would find it particularly compelling if this approach revealed components of the NF-kB signaling pathway, given the intriguing results presented in Fig. 5. I am also curious if there are differences in ADP ribosylated proteins when comparing Mac1 KO SARS-C0V-2 to AVI-4206 treatment.

      We note that despite the recent flurry of activity around Mac1, there is a surprising lack of public data on overall ADPr levels or targets. While we will address the literature precedence for PARP14 signals specifically below (Reviewer 2 point (h)) by immunofluorescence, we note that overall levels have not been characterized biochemically previously. Recent PARP14 papers and the ASAP AViDD preprint show changes by immunofluorescence only: and the evidence in that preprint is quite modest - see Figure 7B - https://pmc.ncbi.nlm.nih.gov/articles/PMC11370477/.

      We suspect the difficulty in tracking changes biochemically is due to multiple factors that influence the overall detectability and reproducibility. First, with regard to detectability - it is quite possible that only a small change in the ADPr status of a small number of targets is responsible for the phenotypes in vivo. Virus levels are very low in the organoid system and the variability in ADPr levels from tissue samples from in vivo experiments is high. Given the difficulty in translating back to cellular models, this problem is therefore magnified further. Second, with regard to reproducibility - we observe a great deal of reagent dependence on ADPr signals by Western blot+/- Mac1 expression in both cellular and tissue lysates (including when stimulated with H2O2, interferon, or during viral infection). Similarly, we do not observe reproducible proteins that pulldown with Mac1 when assayed by mass spectrometry. It is quite likely that these issues are a result of tissue/sample preparation that results in a loss of the ADPr modification during preparation (especially for acidic residue modifications). This also explains the reliance on IF assays in the PARP14 literature. A very good discussion of these issues is also contained in this paper: https://doi.org/10.1042/BSR20240986.

      Nonetheless we have attempted one final experiment. Here, we have measured ADPr modification of cellular lysates upon uninfected conditions as well as upon infection with either WT or N40D mutant virus. For all conditions, this was done with or without treatment of cells with 100 μM of AVI-4206. Measurement of ADPr modifications by western blot using a  pan-ADPr antibody revealed a single prominent band with a molecular weight of ~130kDa, that showed a uniform increase in signal upon treatment of cells with AVI-4206 regardless of infection status. While this general trend was also observed with the mono-ADPr antibody, it was not statistically significant in its regulation upon AVI-4206 treatment. We suspect that the major band observed in these western blots is PARP1, as upon enrichment of ADPr proteins from these lysates by Af1521 immunoprecipitation, we find PARP1 to be among the most abundant proteins detected within this molecular weight range. We note that there is a baseline increase in polyADPr detection upon infection of virus with WT Mac1 (relative to uninfected and virus with N40D) and further increase when treated with AVI-4206. This compound-dependent increase is paralleled in the uninfected and N40D conditions. The counterintuitive increase upon WT Mac1 virus infection, which should erase ADPr marks, and the compound-dependent increase in the uninfected condition suggest that there are many indirect effects on ADPr signalling dynamics in this experiment. These results are difficult to reconcile with the specificity profiling of AVI-4206 (Supplementary Figure5: Thermal proteome profiling in A549 cellular lysates). As mentioned above, the lack of consistent signal across reagents for ADPr detection and the timing of monitoring ADPr levels are additional complicating factors.

      We added to the results:

      “However, we observed no strong consistent signals of global pan-ADP-ribose (panADPr) or mono-ADP-ribose (monoADPr) accumulation in infected cells treated with AVI-4206 in immunoblot analyses (Supplementary Figure 8).”

      Methods for experiment:

      Calu3 cells were obtained from ATCC and cultured in Advanced DMEM (Gibco) supplemented with 2.5% FBS, 1x GlutaMax, and 1x Penicillin-Streptomycin at 37°C and 5% CO<sub>2</sub>. 5x10<sup>6</sup> cells were plated in 15-cm dishes and media was changed every 2-3 days until the cells were 80% confluent. The cells were treated with INFy 50 ng/mL (R&D Systems) w/without AVI-4206 100 μM. After 6 hours, the cells were infected with WA1 or WA1 NSP3 Mac1 N40D at a multiplicity of infection (MOI) of 1 for 36 hours. The cells were washed with PBS x 3 and scraped in Pierce IP Lysis Buffer (ThermoFisher) containing 1x HALT protease and phosphatase inhibitor mix (ThermoFisher) on ice. The lysate was stored at -80C until further processing.

      The cell lysate was incubated for 5 minutes at room temperature with recombinant benzonase. Following incubation, the lysate was centrifuged at 13,000 rpm at 4°C for 20 minutes, and the supernatant was collected. The samples were then boiled for 5 minutes at 95°C in 1x NuPAGE LDS sample buffer (Invitrogen) with a final concentration of 1X NuPAGE sample reducing agent (Invitrogen). For the detection of ADPr levels in whole-cell lysates, the samples were subjected to SDS-PAGE and Immunoblotting. All primary and secondary antibodies (pan-ADP-ribose antibody (MABE1016, Millipore), Mono-ADP-ribose antibody (AbD33204, Bio-Rad), HRP-conjugated (Cell signaling), used at a 1:1000 dilution were diluted in 5% non-fat dry milk in TBST. Signals were detected by chemiluminescence (Thermo) and visualized using the ChemiDoc XRS+ System (Bio-Rad). Densitometric analysis was performed using Image Lab (Bio-Rad). Quantification was normalized to Actin. The data are expressed as mean ± SD. Statistical differences were determined using an unpaired t-test in GraphPad Prism 10.3.1.

      (2) SARS-CoV-2 escape mutants for AVI-4206 should be generated, sequenced, and evaluated for both ADP-ribosyl hydrolase activity and their susceptibility to inhibition by AVI-4206.

      We thank the reviewer for this suggestion. These are indeed key experiments which are currently hampered by the lack of a cell line that is fully responsive to drug treatment. Although infected organoids and macrophages show an effect in response to AVI-4206, viral levels are ~3 logs lower than in cell lines and difficult to sequence. In the absence of a system that would allow meaningful screening for outgrowth of resistant viruses, we have conducted mass spectrometry studies that showed that Mac1 is the only significant hit for AVI-4206 (SupplementaryFigure 5). The suggested outgrowth experiments will be conducted once a responsive cell line model has been established.

      (3) Given that Mac1 is found in several coronaviruses, it would be insightful for the authors to test a selection of Mac1 homologs from divergent coronaviruses to assess whether AVI-4206 can inhibit their activity in vitro.

      As mentioned above, inconsistencies in ADPr staining limit our ability to directly measure cellular activity. As an alternative approach to measure AVI-4206 selectivity in cells, we have adapted our CETSA assay for SARS-1 and MERs macrodomain proteins and find evidence that AVI-4206 can shift the melting temperature of both proteins, albeit to a lesser degree than that seen for Mac1. In line with MERS being more structurally divergent than SARS-1 from SARS CoV2, the ΔTagg for SARS-1 and MERS are 4℃ and 1℃, respectively, compared to 9℃ for Mac1.  These data have been added as Supplementary Fig S3C. Development of broader spectrum pan-inhibitors is on our radar for future work which will more thoroughly assess homologs from divergent coronaviruses.

      We added the following sentence to the main results:

      “Encouragingly, we were also able to adapt our CETSA assay for SARS-1 and MERs macrodomain proteins and find that AVI-4206 can shift the melting temperature of both proteins, albeit to a lesser degree than that seen for Mac1 (Supplementary Figure 3C).”

      We also added this supplementary figure 3:

      Minor

      (1) Line 88, "respectively.heir potency"

      Fixed, thank you!

      (2) Line 149 add a period after proteome

      Fixed, thank you!

      Reviewer #2 (Recommendations for the authors):

      (a) The authors assess inhibition of MacroD2 and Targ1 as of-targets for AVI-4206. However, Mac1 belongs to the MacroD-type class of macrodomains of which MacroD1, MacroD2 and MOD1s of PARP9 and PARP14 are the human members. In contrast Targ1 belongs to the ALC1-like class, which is only very distantly related to Mac1. Furthermore, recent studies have shown that the first macrodomains of PARP9 and PARP4 (MOD1 of PARP9/14) are much closer related to Mac1 and PARP9/14 were implicated in antiviral immunity. As such the authors should include assays showing the activity of their compounds against MacroD1 and MOD1s of PARP9/14.

      We emphasize that we detect no significant shift for any protein other than Mac1 in A549 cells by CETSA-MS (Supplementary Figure 6). For Mac1 CESTA, we see an average of 6 PARP14 spectral counts across conditions and did not detect PARP9.  In addition, for separate work in MPro, we ran similar CETSA experiments where we observed an average of 2 PARP9 and 15 PARP14 spectral counts across conditions. Although PARP9 and PARP14 massively increase expression upon IFN treatment in A549 cells, both proteins have been detected by Western Blot in A549 cells previously at baseline.

      Nonetheless, we have included modeling of more diverse macrodomains as a supplemental figure and added to the text:

      Modeling of other diverse macrodomains, including those within human PARP9 and PARP14 further suggests that AVI-4206 is selective for Mac1 (Supplementary Figure 4)

      (b) In the context of SARS-CoV-2 superinfection are a known major complication of infections. These superinfections are associated with lung damage and therefore it would be good if the authors could assess lung damage, e.g. by histology, to see if their treatment has a positive impact on lung damage and thus may help to suppress complications.

      We performed histology and the results are inconclusive, but suggest that AVI-4206 treatment could lower apoptosis.There is no difference in pathology between the N40D cohort and vehicle with these markers. This could suggest that AVI-4206 provides an additional mechanism that results in protection.  We added to the results:

      Caspase 3 staining shows that AVI-4206 treatment reduces apoptosis in the lungs compared to vehicle controls. Additionally, Masson's Trichrome staining reveals  a significant reduction in collagen deposition, a surrogate for lung pathology, in the lungs of AVI-4206 treated animals.(Supplementary Figure 9).

      Histology:

      Mouse lung tissues were fixed in 4% PFA (Sigma Aldrich, Cat #47608) for 24 hours, washed three times with PBS and stored in 70% ethanol. All the stainings were performed at Histo-Tec Laboratory (Hayward, CA). Samples were processed, embedded in paraffin, and sectioned at 4μm. The slides were dewaxed using xylene and alcohol-based dewaxing solutions. Epitope retrieval was performed by heat-induced epitope retrieval (HIER) of the formalin-fixed, paraffin-embedded tissue using citrate-based pH 6 solution (Leica Microsystems, AR9961) for 20 mins at 95°C. The tissues were stained for H&E, caspase-3 (Biocare #CP229c 1:100), and trichrome, dried, coverslipped (TissueTek-Prisma Coverslipper), and visualized using Axioscan 7 slide scanner (ZEISS) at 40X. Image quantification was performed with Image J software and GraphPad Prism.

      (c) Fig. 1D labelling is wrong

      Thank you - fortunately the data were plotted correctly and it was just the inset table of values that was incorrect. This is now fixed!

      (d) Line 88: "T" missing at start of sentence

      Fixed, thank you!

      (e) Line 118: NudT5/AMP-Glo assay was developed in https://doi.org/10.1021/acs.orglett.8b01742

      We have added this foundational reference, thank you!

      (f) Line 147ff: It would be good if the authors could highlight that the TPP methodology has known limitations (e.g. detection of low abundance proteins and low thermal shift of some binders) and thus is not an absolute proof that AVI-4206 "engage with high specificity for Mac1"

      We added this important context to the concluding sentence of this paragraph:

      “While this assay may not be sensitive to detection of proteins with low abundance proteins or low thermal shift upon ligand binding, collectively, these results indicate that AVI-4206 can cross cellular membranes and engage with high specificity for Mac1.”

      (g) The authors use their well established in vitro Mac1 model as well as the SARS-CoV-2 WA strain. Given the ongoing diversification of SARS-CoV-2 and the current prevalence of the Omicron VOC it would be good if the authors could investigate whether alteration in Mac1 occurred or are detected which could influence the efficacy of their inhibitor. Similarly, it would be interesting to know how effective their drug is on other clinically relevant beta-CoV Mac1, e.g. from MERS or SARS1.

      We thank the reviewer for the suggestion. Mac1 is one of the more conserved areas of the SARS-CoV-2 genome as there has only been one nonsynonymous mutation V34L (Orf1a:V1056L) that recently emerged in the BA.2.86 lineage and is now in all of the JN.1 derivatives. Currently, the mutation is only ~80% penetrant in circulating SARS-CoV-2 sequences suggesting that it might revert to wild-type and is not associated with a fitness benefit. Based on our structural analysis (shown in Supplementary Figure4D above), we do not believe this mutation affects AVI-4206 binding, but we are including this variant in our future in vitro and in vivo studies as well as other beta-CoV.  For SARS and MERS, see response to Reviewer 1 using CETSA to show that these targets are engaged by AVI-4206.

      (h) As methods to detect PARP14-derived ADP-ribosylation are available and it was shown that Mac1 can reverse this modification in cells. It would be good if the authors could investigate the impact of AVI-4206 on ADP-ribosylation in vivo.

      To test this idea we adapted the IF assay used by others in the field and show an effect of AVI-4206. We have added to the text:

      Although the IFN response was not sufficient to control viral replication, it is possible that the changes in ADP-ribosylation, in particular marks catalyzed by PARP14, downstream of IFN treatment could serve as a marker for Mac1 efficacy  (Ribeiro et al. 2025). To investigate whether downstream signals from PARP14 were specifically erased by Mac1, we used an immunofluorescence assay that showed that Mac1 could remove IFN-γ-induced ADP-ribosylation that is mediated by PARP14 (Kar et al. 2024).  We stably expressed wild-type Mac1 and the N40D mutant Mac1 in A549 cells. The data showed that Mac1 expression decreased IFN-γ-induced ADP-ribosylation, whereas the Mac1-N40D mutant did not (Figure 3E, F), indicating that Mac1 mediates the hydrolysis of IFN-γ-induced ADP-ribosylation. The PARP14 inhibitor RBN012759 completely blocked IFN-γ-induced ADP-ribosylation (Figure 3E, F), further confirming that IFN-γ-induced ADP-ribosylation is mediated by PARP14. AVI-4206 reversed the Mac1-induced hydrolysis of ADP-ribosylation and enhanced the ADP-ribosylation signal in Mac1-overexpressing cells (Figure 3E, F), further demonstrating its ability to inhibit the hydrolase activity of Mac1. We further validated this result using different ADP-ribosylation antibodies for immunofluorescence (Supplementary Figure 7). However, we observed no strong consistent signals of global pan-ADP-ribose (panADPr) or mono-ADP-ribose (monoADPr) accumulation in infected cells treated with AVI-4206 in immunoblot analyses (Supplementary Figure 8). Collectively, these results provide further evidence that simple cellular models are insufficient to explore the effects of Mac1 inhibition and that monitoring specific PARP14-mediated ADP-ribosylation patterns can provide an accessible biomarker for the efficacy of Mac1 inhibition.

      A549 Mac1 expression cell construction

      Mac1 wild-type (Mac1) and N1062D mutant (Mac1 N1062D) gene fragments were loaded into pLVX-EF1α-IRES-Puro (empty vector, EV) using Gibson cloning kit (NEB E5510). Lentivirus was prepared as previously described (PMID: 30449619; DOI: 10.1016/j.cell.2018.10.024). Briefly, 15 million HEK293T cells were grown overnight on 15 cm poly-L-Lysine coated dishes and then transfected with 6 ug pMD2.G (Addgene plasmid # 12259 ; http://n2t.net/addgene:12259 ; RRID:Addgene_12259), 18 ug dR8.91 (since replaced by second generation compatible pCMV-dR8.2, Addgene plasmid #8455) and 24 ug pLVX-EF1α-IRES-Puro (EV, Mac1, Mac1-N1062D) plasmids using the lipofectamine 3000 transfection reagent per the manufacturer’s protocol (Thermo Fisher Scientific, Cat #L3000001). pMD2.G and dR8.91 were a gift from Didier Trono. The following day, media was refreshed with the addition of viral boost reagent at 500x as per the manufacturer’s protocol (Alstem, Cat #VB100). Viral supernatant was collected 48 hours post transfection and spun down at 300 g for 10 minutes, to remove cell debris. To concentrate the lentiviral particles, Alstem precipitation solution (Alstem, Cat #VC100) was added, mixed, and refrigerated at 4°C overnight. The virus was then concentrated by centrifugation at 1500 g for 30 minutes, at 4°C. Finally, each lentiviral pellet was resuspended at 100x of original volume in cold DMEM+10%FBS+1% penicillin-streptomycin and stored until use at -80°C. To generate Mac1 overexpressing cells, 2 million A549 cells were seeded in 10 cm dishes and transduced with lentivirus in the presence of 8 μg/mL polybrene (Sigma, TR-1003-G). The media was changed after 24h and, after 48 hours, media containing 2μg/ml puromycin was added. Cells were selected for 72 hours and then expanded without selection. The expression of Mac1 was confirmed by Western Blot.

      Immunofluorescence assay:

      To assess the effect of Mac1 on IFN-induced ADP-ribosylation. A549-pLVX-EV, A549-pLVX-Mac1 and A549-pLVX-Mac1-N1062D cells were seeded in 96-well plate (10,000 cells/well). Cells were pre-treated with medium or 100 unit/mL IFN-γ (Sigma, SRP3058) for 24 hours to induce the expression of ADP-ribosylation. These 3 cell lines were then treated the next day with the indicated concentrations of AVI-4206 or RBN012759 (Medchemexpress, HY-136979). After 24 hours of exposure to drugs, treated cells were fixed in pre-cooled methanol at -20°C for 20 min, blocked in 3% bovine serum albumin for 15 min, incubated with Poly/Mono-ADP Ribose (E6F6A) Rabbit mAb (CST, 83732S) or Poly/Mono-ADP Ribose (D9P7Z) Rabbit mAb (CST, 89190S) antibodies for 1 h, and then incubated with Goat anti-Rabbit IgG Secondary Antibody, Alexa Fluor 488 (ThermoFisher, A-11008) secondary antibodies for 30 min and stained with DAPI for 10 minutes. Fluorescent cells were imaged with an IN Cell Analyzer 6500 System (Cytiva) and analyzed using IN Carta software (Cytiva).

      Reviewer #3 (Recommendations for the authors):

      Just a couple of observations/details that might help strengthen the article:

      (1) The caco-1 data for AVI4206 would suggest that there is some sort of efflux going on, yet there is no mention of it in the paper. This might be useful in the optimization paradigm moving forward.

      We thank the reviewer for this observation and suggestion.  Indeed, we believe that efflux is behind the low oral bioavailability of AVI-4206.  We are working specifically to remove this liability in next-generation analogs, using the caco2 assay to guide this ongoing effort. Keep an eye out for a preprint on this soon!  We have added to the discussion:

      “In addition to dissecting such molecular mechanisms of macrodomain function and inhibition, future efforts will focus on improving pharmacokinetic properties, including a cellular efflux liability that results in low oral bioavailability of AVI-4206. ”

      (2) There are some spectroscopic anomalies/mistakes in the NMR data. The carbon NMR for 1-((8-amino-9H-pyrimido[4,5-b]indol-4-yl)amino)pyrrolidin-2-one should only have 14 unique carbons, but the authors report 15. The HNMR for AVI1500 should only have 19 H's, but the authors list 20. The HNMR data for AVI3762/3763 should have 16 H's, but the authors only report 13. The CNMR for AVI4206 should only have 19 unique carbons, but the authors report 20.

      Thank you for noting these inconsistencies regarding the reported NMR spectra. We have rectified them by more closely examining the spectra and in some cases acquiring new data. We identified one peak (47.9) in the 13C NMR of 1-((8-amino-9H-pyrimido[4,5-b]indol-4-yl)amino)pyrrolidin-2-one that is apparently an artifact of the automated peak picking in the data analysis software.  In the 1H NMR of AVI-1500, the triplet peak at 7.20 integrates to 1H, but was erroneously reported as 2H in the original manuscript.  This error has been corrected.  Spectra were re-acquired for AVI-3762, AVI-3763, and AVI-4206 with longer acquisition times, and/or on a 600 MHz spectrometer to afford the complete line lists now reported in the revised manuscript. Please note AVI-4206 has 18 distinct 13C resonances due to the equivalence of the gem-dimethyl methyl groups.

    1. eLife Assessment

      This study reanalyzed previously published scRNA-seq and TCR-seq data to examine the proportion and characteristics of dual-TCR-expressing Treg cells in mice, presenting some useful insights into TCR diversity and immune regulation. However, the evidence is incomplete, particularly with respect to data interpretation, statistical rigor, and the functionality of dual -TCR Treg cells. The study is potentially of interest to immunologists studying T-cell biology.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript, by Xu and Peng, et al. investigates whether co-expression of 2 T cell receptor (TCR) clonotypes can be detected in FoxP3+ regulatory CD4+ T cells (Tregs) and if it is associated with identifiable phenotypic effects. This paper presents data reanalyzing publicly available single-cell TCR sequencing and transcriptional analysis, convincingly demonstrating that dual TCR co-expression can be detected in Tregs, both in peripheral circulation as well as among Tregs in tissues. They then compare metrics of TCR diversity between single-TCR and dual TCR Tregs, as well as between Tregs in different anatomic compartments, finding the TCR repertoires to be generally similar though with dual TCR Tregs exhibiting a less diverse repertoire and some moderate differences in clonal expansion in different anatomic compartments. Finally, they examine the transcriptional profile of dual TCR Tregs in these datasets, finding some potential differences in expression of key Treg genes such as Foxp3, CTLA4, Foxo3, Foxo1, CD27, IL2RA, and Ikzf2 associated with dual TCR-expressing Tregs, which the authors postulate implies a potential functional benefit for dual TCR expression in Tregs.

      Strengths:

      This report examines an interesting and potentially biologically significant question, given recent demonstrations that dual TCR co-expression is a much more common phenomenon than previously appreciated (approximately 15-20% of T cells) and that dual TCR co-expression has been associated with significant effects on the thymic development and antigenic reactivity of T cells. This investigation leverages large existing datasets of single-cell TCRseq/RNAseq to address dual TCR expression in Tregs. The identification and characterization of dual TCR Tregs is rigorously demonstrated and presented, providing convincing new evidence of their existence.

      Weaknesses:

      The existence of dual TCR expression by Tregs has previously been demonstrated in mice and humans, limiting the novelty of the reported findings. The presented results should be considered in the context of these prior important findings. The focus on self-citation of their previous work, using the same approach to measure dual TCR expression in other datasets. limits the discussion of other more relevant and impactful published research in this area. Also, Reference #7 continues to list incorrect authors. The authors do not present a balanced or representative description of the available knowledge about either dual TCR expression by T cells or TCR repertoires of Tregs.

      The approach used follows a template used previously by this group for re-analysis of existing datasets generated by other research groups. The descriptions and interpretations of the data as presented are still shallow, lacking innovative or thoughtful approaches that would potentially be innovation or provide new insight.

      This demonstration of dual TCR Tregs is notable, though the authors do not compare the frequency of dual TCR co-expression by Tregs with non-Tregs. This limits interpreting the findings in the context of what is known about dual TCR co-expression in T cells. The response to this criticism in a previous review is considered non-responsive and does not improve the data or findings.

      Comparison of gene expression by single- and dual TCR Tregs is of interest, but as presented is difficult to interpret. The interpretations of the gene expression analyses are somewhat simplistic, focusing on single-gene expression of some genes known to have function in Tregs. However, the investigators continue to miss an opportunity to examine larger patterns of coordinated gene expression associated with developmental pathways and differential function in Tregs (Yang. 2015. Science. 348:589; Li. 2016. Nat Rev Immunol. Wyss. 2016. 16:220; Nat Immunol. 17:1093; Zenmour. 2018. Nat Immunol. 19:291). No attempt to define clusters is made. No comparison is made of the proportions of dual TCR cells in transcriptionally-defined clusters. The broad assessment of key genes by single- and dual TCR cells is conceptually interesting, but likely to be confounded by the heterogeneity of the Treg populations. This would need to be addressed and considered to make any analyses meaningful.

      The study design, re-analysis of existing datasets generated by other scientific groups, precludes confirmation of any findings by orthogonal analyses.

    3. Reviewer #3 (Public review):

      Summary:

      This study addressed the TCR pairing types and CDR3 characteristics of Treg cells. By analyzing scRNA and TCR-seq data, it claims that 10-20% of dual TCR Treg cells exist in mouse lymphoid and non-lymphoid tissues and suggests that dual TCR Treg cells in different tissues may play complex biological functions.

      Strengths:

      The study addresses an interesting question of how dual-TCR-expressing Treg cells play roles in tissues.

      Weaknesses:

      This study is inadequate, particularly regarding data interpretation, statistical rigor, and the discussion of the functional significance of Dual TCR Tregs.

      Comments on revisions:

      Although the authors have provided brief explanations in response to the reviewers' comments, they do not present any additional analyses that would address the fundamental concerns in a convincing manner.

      Moreover, the in silico analyses presented in the manuscript alone are insufficient to support the conclusions, and the functional experiments requested by the reviewers have not been conducted.

      In the current rebuttal, while some textual additions have been made to the manuscript, the only substantial revision to the figures appears to be the inclusion of statistical significance annotations (e.g., Fig. 1G, Fig. 3G). These changes do not adequately strengthen the overall data or address the core issues raised.

    4. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      (1) The use of single-cell RNA and TCR sequencing is appropriate for addressing potential relationships between gene expression and dual TCR.

      Thank you for your detailed review and suggestions. The main advantages of scRNA+TCR-seq are as follows: (1) It enables comparative analysis of features such as the ratio of single TCR paired T cells to dual TCR paired T cells at the level of a large number of individual T cells, through mRNA expression of the α and β chains. In the past, this analysis was limited to a small number of T cells, requiring isolation of single T cells, PCR amplification of the α and β chains, and Sanger sequencing; (2) While analyzing TCR paired T cell characteristics, it also allows examination of mRNA expression levels of transcription factors in corresponding T cells through scRNA-seq.

      (2) The data confirm the presence of dual TCR Tregs in various tissues, with proportions ranging from 10.1% to 21.4%, aligning with earlier observations in αβ T cells.

      Thank you very much for your detailed review and suggestions. Early studies on dual TCR αβ T cells have been very limited in number, with reported proportions of dual TCR T cells ranging widely from 0.1% to over 30%. In contrast, scRNA+TCR-seq can monitor over 5,000 single and paired TCRs, including dual paired TCRs, in each sample, enabling more precise examination of the overall proportion of dual TCR αβ T cells. It is important to note that our analysis focuses on T cells paired with functional α and β chains, while T cells with non-functional chain pairings and those with a single functional chain without pairing were excluded from the total cell proportion analysis. Previous studies generally lacked the ability to determine expression levels of specific chains in T cells without dual TCR pairings.

      (3) Tissue-specific patterns of TCR gene usage are reported, which could be of interest to researchers studying T cell adaptation, although these were more rigorously analyzed in the original works.

      Thank you very much for your detailed review and suggestions. T cell subpopulations exhibit tissue specificity; thus, we conducted a thorough investigation into Treg cells from different tissue sites. This study builds upon the original by innovatively analyzing the differences in VDJ rearrangement and CDR3 characteristics of dual TCR Treg cells across various tissues. This provides new insights and directions for the potential existence of “new Treg cell subpopulations” in different tissue locations. The results of this analysis suggest the necessity of conducting functional experiments on dual TCR Treg cells at both the TCR protein level and the level of effector functional molecules.

      (4) Lack of Novelty: The primary findings do not substantially advance our understanding of dual TCR expression, as similar results have been reported previously in other contexts.

      Thank you for your detailed review and suggestions. Early research on dual TCR T cells primarily relied on transgenic mouse models and in vitro experiments, using limited TCR alpha chain or TCR beta chain antibody pairings. Flow cytometry was used to analyze a small number of T cells to estimate dual TCR T cell proportion. No studies have yet analyzed dual TCR Treg cell proportion, V(D)J recombination, and CDR3 characteristics at high throughput in physiological conditions. The scRNA+TCR-seq approach offers an opportunity to conduct extensive studies from an mRNA perspective. With high-throughput advantages of single-cell sequencing technology, researchers can analyze transcriptomic and TCR sequence characteristics of all dual TCR Treg cells within a study sample, providing new ideas and technical means for investigating dual TCR T cell proportions, characteristics, and origins under different physiological and pathological states.

      (5) Incomplete Evidence: The claims about tissue-specific differences lack sufficient controls (e.g., comparison with conventional T cells) and functional validation (e.g., cell surface expression of dual TCRs).

      Thank you for your detailed review and suggestions. This study indeed only analyzed dual  TCR Treg cells from different tissue locations based on the original manuscript, without a comparative analysis of other dual TCR T cell subsets corresponding to these tissue locations. The main reason for this is that, in current scRNA+TCR-seq studies of different tissue locations, unless specific T cell subsets are sorted and enriched, the number of T cells obtained from each subset is very low, making a detailed comparative analysis impossible. In the results of the original manuscript, we observed a relatively high proportion of dual TCR Treg cell populations in various tissues, with differences in TCR composition and transcription factor expression. Following the suggestions, we have included additional descriptions in R1, citing the study by Tuovinen et al., which indicates that the proportion of dual TCR Tregs in lymphoid tissues is higher than other T cell types. This will help understand the distribution characteristics of dual TCR Treg cells in different tissues and provide a basis for mRNA expression levels to conduct functional experiments on dual TCR Treg cells in different tissue locations.

      (6) Methodological Weaknesses: The diversity analysis does not account for sample size differences, and the clonal analysis conflates counts and clonotypes, leading to potential misinterpretation.

      We thank you for your review and suggestions. In response to your question about whether the diversity analysis considered the sample size issue, we conducted a detailed review and analysis. This study utilized the inverse Simpson index to evaluate TCR diversity of Treg cells. A preliminary analysis compared the richness and evenness of single TCR Treg cell and dual TCR Treg cell repertoires. The two datasets analyzed were from four mouse samples with consistent processing and sequencing conditions. However, when analyzing single TCR Tregs and dual TCR Tregs from various tissues, differences in detected T cell numbers by sequencing cannot be excluded from the diversity analysis. Following recommendations, we provided additional explanations in R1: CDR3 diversity analysis indicates TCR composition of dual TCR Treg cells exhibits diversity, similar to single TCR Treg cells; however, diversity indices of single TCR Tregs and dual TCR Tregs are not suitable for statistical comparison. Regarding the "clonal analysis" you mentioned, we define clonality based on unique TCR sequences; cells with identical TCR sequences are part of the same clone, with ≥2 counts defined as expansion. For example, in Blood, there are 958 clonal types and 1,228 cells, of which 449 are expansion cells. In R1, we systematically verified and revised clonal expansion cells across all tissue samples according to a unified standard.

      (7) Insufficient Transparency: The sequence analysis pipeline is inadequately described, and the study lacks reproducibility features such as shared code and data.

      Thank you for your review and suggestions. Based on the original manuscript, we have made corresponding detailed additions in R1, providing further elaboration on the analysis process of shared data, screening methods, research codes, and tools. This aims to offer readers a comprehensive understanding of the analytical procedures and results.

      (8) Weak Gene Expression Analysis: No statistical validation is provided for differential gene expression, and the UMAP plots fail to reveal meaningful clustering patterns.

      Thank you very much for your review and suggestions. Based on your recommendations, we conducted an initial differential expression analysis of the top 10 mRNA molecules in single TCR Treg and dual TCR Treg cells using the DESeq2 R package in R1, with statistical significance determined by Padj < 0.05. Regarding the clustering patterns in the UMAP plots, since the analyzed samples consisted of isolated Treg cell subpopulations that highly express immune suppression-related genes, we did not perform a more detailed analysis of subtypes and expression gene differences. This study primarily aims to explore the proportions of single TCR and dual TCR Treg cells from different tissue sources, as well as the characteristics of CDR3 composition, with a focus on showcasing the clustering patterns of samples from different tissue origins and various TCR pairing types.

      (9) A quick online search reveals that the same authors have repeated their approach of reanalysing other scientists' publicly available scRNA-VDJ-seq data in six other publications,In other words, the approach used here seems to be focused on quick re-analyses of publicly available data without further validation and/or exploration.

      Thank you for your review and suggestions. Most current studies utilizing scRNA+TCR-seq overlook analysis of TCR pairing types and related research on single TCR and dual TCR T cell characteristics. Through in-depth analysis of shared scRNA+TCR-seq data from multiple laboratories, we discovered a significant presence of dual TCR T cells in high-throughput T cell research results that cannot be ignored. In this study, we highlight the higher proportion of dual TCR Tregs in different tissue locations, which exhibits a certain degree of tissue specificity, suggesting these cells may participate in complex functional regulation of Tregs. This finding provides new ideas and a foundation for further research into dual TCR Treg functions. However, as reviewers pointed out, findings from scRNA+TCR-seq at the mRNA level require additional functional experiments on dual TCR T cells at the protein level. We have supplemented our discussion in R1 based on these suggestions.

      Reviewer #2 (Public review):

      (1) The existence of dual TCR expression by Tregs has previously been demonstrated in mice and humans (Reference #18 and Tuovinen. 2006. Blood. 108:4063; Schuldt. 2017. J Immunol. 199:33, both omitted from references). The presented results should be considered in the context of these prior important findings.

      Thank you very much for your review and suggestions. Based on the original manuscript, we have supplemented our reading, understanding, and citation of closely related literature (Tuovinen, 2006, Blood, 108:4063 (line 44,line175 in R1); Schuldt, 2017, J Immunol, 199:33 (line 44,line178 in R1)). We once again appreciate the valuable comments from the reviewers, and we will refer to these in our subsequent dual TCR T cell research.

      (2) This demonstration of dual TCR Tregs is notable, though the authors do not compare the frequency of dual TCR co-expression by Tregs with non-Tregs. This limits interpreting the findings in the context of what is known about dual TCR co-expression in T cells.

      Thank you very much for your review and suggestions. This analysis is primarily based on the scRNA+TCR-seq study of sorted Treg cells, where we found the proportions and distinguishing features of dual TCR Treg cells in different tissue sites. Given the diversity and complexity of Treg function, conducting a comparative analysis of the origins of dual TCR Treg cells and non-T cells with dual TCRs will be a meaningful direction. Currently, peripheral induced Treg cells can originate from the conversion of non-Treg cells; however, little is known about the sources and functions of dual TCR Treg cell subsets in both central and peripheral sites. In R1, we have supplemented the discussion regarding the possible origins and potential applications of the "novel dual TCR Treg" subsets.

      (3) Comparison of gene expression by single- and dual TCR Tregs is of interest, but as presented is difficult to interpret. Statistical analyses need to be performed to provide statistical confidence that the observed differences are true.

      Thank you very much for your review and suggestions. Based on your recommendations, we performed an initial differential expression analysis of the top 10 mRNA molecules in single TCR Treg and dual TCR Treg cells using the DESeq2 R package in R1, with a statistical significance threshold of Padj<0.05 for comparisons.

      (4) The interpretations of the gene expression analyses are somewhat simplistic, focusing on the single-gene expression of some genes known to have a function in Tregs. However, the investigators miss an opportunity to examine larger patterns of coordinated gene expression associated with developmental pathways and differential function in Tregs (Yang. 2015. Science. 348:589; Li. 2016. Nat Rev Immunol. Wyss. 2016. 16:220; Nat Immunol. 17:1093; Zenmour. 2018. Nat Immunol. 19:291).

      Thank you for your review and suggestions. This study is based on publicly available scRNA+TCR-seq data from different organ sites generated by the original authors, focusing on sorted and enriched Treg cells within each tissue sample. However, there was no corresponding research on other cell types in each tissue sample, preventing analysis of other cells and factors involved in development and differentiation of single TCR Treg and dual TCR Treg. The literature suggested by the reviewer indicates that development, differentiation, and function of Treg cells have been extensively studied, resulting in significant advances. It also highlights complexity and diversity of Treg origins and functions. This research aims to investigate "novel dual TCR Treg cell subpopulations" that may exhibit tissuespecific differences found in the original authors' studies of Treg cells across different organ sites. This suggests further experimental research into their development, differentiation, origin, and functional gene expression as an important direction, which we have supplemented in the discussion section of R1.

      Reviewer #3 (Public review):

      (1) Definition of Dual TCR and Validity of Doublet Removal:This study analyzes Treg cells with Dual TCR, but it is not clearly stated how the possibility of doublet cells was eliminated. The authors mention using DoubletFinder for detecting doublets in scRNA-seq data, but is this method alone sufficient?We strongly recommend reporting the details of doublet removal and data quality assessment in the Supplementary Data.

      Thank you very much for your review and suggestions. In the analysis of the shared scRNA+TCR-seq data across multiple laboratories, as you mentioned, this study employed the DoubletFinder R package to exclude suspected doublets. Additionally, we used the nCount values of individual cells (i.e., the total sequencing reads or UMI counts for each cell) as auxiliary parameters to further optimize the assessment of cell quality. Generally, due to the possibility that doublet cells may contain gene expression information from two or more cells, their nCount values are often abnormally high. In this study, all cells included in the analysis had nCount values not exceeding 20,000. Among the five tissue sample datasets, we further utilized hashtag oligonucleotide (HTO) labeling (where HTO labeling provides each cell with a unique barcode to differentiate cells from different tissue sources. By analyzing HTO labels, doublets and negative cells can be accurately identified) to eliminate doublets and negative cells.After the removal of chimeric cells, all samples exhibited T cells that possessed two or more TCR clones. This phenomenon validates the reliability of the methodological approach employed in this study and indicates that the analytical results accurately reflect the proportion of dual TCR T cells. Based on the recommendations of the reviewers, we have supplemented and clarified the methods and discussion sections in the manuscript. It is particularly noteworthy that in our analysis, the discussed dual TCR Treg cells and single TCR Treg cells specifically refer to those T cells that possess both functional α and β chains, which are capable of forming TCR. We have excluded from this analysis any Treg cells that possess only a single functional α or β chain and do not form TCR pairs, as well as those Treg cells in which the α or β chains involved in TCR pairing are non-functional.

      (2) In Figure 3D, the proportion of Dual TCR T cells (A1+A2+B1+B2) in the skin is reported to be very high compared to other tissues. However, in Figure 4C, the proportion appears lower than in other tissues, which may be due to contamination by non-Tregs. The authors should clarify why it was necessary to include non-Tregs as a target for analysis in this study. Additionally, the sensitivity of scRNA-seq and TCR-seq may vary between tissues and may also be affected by RNA quality and sequencing depth in skin samples, so the impact of measurement bias should be assessed.

      We deeply appreciate your review and constructive comments. Based on the original manuscript, we have further supplemented and elaborated on the uniqueness and relative proportions of double TCR T cell pairs in skin tissue samples in Section R1. Due to the scarcity of T cells in skin samples, we included some non-Treg cells during single-cell RNA sequencing and TCR sequencing to obtain a sufficient number of cells for effective analysis. The presence of non-regulatory T cells may indeed impact the statistical representation of double TCR T cells as well as the related comparative analyses, as noted by the reviewer. T cells with A1+A2+B1+B2 type double TCR pairings are primarily found within the non-regulatory T cell population in the skin. In response to this point, we have provided a detailed explanation of this analytical result in the revised manuscript R1. Furthermore, concerning the two datasets included in the study, we conducted a comparative analysis in R1, exploring how factors such as sequencing depth at different tissue sites might introduce biases in our findings, which we have thoroughly elaborated upon in the discussion section. We thank you once again for your valuable suggestions. 

      (3) Issue of Cell Contamination:In Figure 2A, the data suggest a high overlap between blood, kidney, and liver samples, likely due to contamination. Can the authors effectively remove this effect? If the dataset allows, distinguishing between blood-derived and tissue-resident Tregs would significantly enhance the reliability of the findings. Otherwise, it would be difficult to separate biological signals from contamination noise, making interpretation challenging.

      We thank you for your review and suggestions. We have carefully verified data sources for tissues such as blood, kidneys, and liver. In the study by Oliver T et al., various techniques were employed to differentiate between leukocytes from blood and those from tissues, ensuring accurate identification of leukocytes from tissue samples. First, anti-CD45 antibody was injected intravenously to label cells in the vasculature, verifying that analyzed cells were indeed resident in the tissue. Second, prior to dissection and cell collection, authors performed perfusion on anesthetized mice to reduce contamination of tissue samples by leukocytes from the vasculature. Additionally, during single-cell sequencing, authors utilized HTO technology to avoid overlap between cells from different tissues.

      Analysis of the scRNA+TCR-seq data shared by the original authors revealed highly overlapping TCR sequences in blood, kidney, and liver, despite distinct cell labels associated with each tissue. While these techniques minimize overlap of cells from different sources, they cannot completely rule out the potential impact of this technical issue. As suggested, we have provided additional clarification in R1 of the manuscript regarding this phenomenon of high overlap in the kidney, liver, and blood, indicating that the possibility of Treg migration from blood to kidney and liver cannot be entirely excluded.

      (4) Inconsistency Between CDR3 Overlap and TCR Diversity:The manuscript states that Single TCR Tregs have a higher CDR3 overlap, but this contradicts the reported data that Dual TCR Tregs exhibit lower TCR diversity (higher 1/DS score). Typically, when TCR diversity is low (i.e., specific clones are concentrated), CDR3 overlap is expected to increase. The authors should carefully address this discrepancy and discuss possible explanations.

      Thank you for your review and suggestions. Regarding the potential relationship between CDR3 overlap and TCR diversity, in samples with consistent sequencing depth, lower diversity indeed corresponds to a higher proportion of CDR3 overlap. In our analysis of scRNA+TCR-seq data, we found that single TCR Tregs exhibit both higher diversity and CDR3 overlap, seemingly presenting contradictory analytical results (i.e., dual TCR Tregs show lower TCR diversity and CDR3 overlap). In R1, we supplemented the analysis of possible reasons: the presence of multiple TCR chains in dual TCR Treg cells may lead to a higher uniqueness of CDR3 due to multiple rearrangements and selections, resulting in lower CDR3 overlap; the lower diversity of dual TCR Tregs may be related to the number of T cells sequenced in each sample. The CDR3 diversity analysis in this study merely suggests that the TCR composition of dual TCR Treg cells is diverse, similar to that of single TCR Tregs. However, the diversity indices of single TCR Tregs and dual TCR Tregs are not suitable for statistical comparative analysis. A more in-depth and specific analysis of the diversity and overlap of the VDJ recombination mechanisms and CDR3 composition in dual TCR Tregs during development will be an important technical means to elucidate the function of dual TCR Treg cells.

      (5) Functional Evaluation of Dual TCR Tregs:This study indicates gene expression differences among tissue-resident Dual TCR T cells, but there is no experimental validation of their functional significance. Including functional assays, such as suppression assays or cytokine secretion analysis, would greatly enhance the study's impact.

      We sincerely appreciate your review and suggestions: In this analysis of scRNA+TCR-seq data, we innovatively discovered a higher proportion of dual TCR Treg cells in different tissue sites, which exhibited differences in tissue characteristics. Furthermore, we conducted a comparative analysis of the homogeneity and heterogeneity between single TCR Treg and dual TCR Treg cells. This result provides a foundation for further research on the origin and characteristics of dual TCR Treg cells in different tissue sites, offering new insights for understanding the complexity and functional diversity of Treg cells. Based on your suggestions, we have supplemented R1 with the feasibility of further exploring the functions of tissue-resident dual TCR T cells and the necessity for potential application research.

      (6) Appropriateness of Statistical Analysis:When discussing increases or decreases in gene expression and cell proportions (e.g., Figure 2D), the statistical methods used (e.g., t-test, Wilcoxon, FDR correction) should be explicitly described. They should provide detailed information on the statistical tests applied to each analysis.

      Thank you for your review and suggestions: Based on the original manuscript, we have supplemented the specific statistical methods for the differences in cell proportions and gene expression in R1.

    1. eLife Assessment

      This study proposes an important new approach to analyzing cell-count data, which are often undersampled and cannot be accurately assessed using traditional statistical methods. The case studies presented in the article provide compelling evidence of the superiority of the proposed methodology over existing approaches, which could promote the use of Bayesian statistics among neuroscientists. The authors have taken steps to make the methodology accessible, although some implementation difficulties are likely to remain.

    2. Reviewer #1 (Public review):

      Summary:

      This work proposes a new approach to analyse cell-count data from multiple brain regions. Collecting such data can be expensive and time-intensive, so, more often than not, the dimensionality of the data is larger than the number of samples. The authors argue that Bayesian methods are much better suited to correctly analyse such data compared to classical (frequentist) statistical methods. They define a hierarchical structure, partial pooling, in which each observation contributes to the population estimate to more accurately explain the variance in the data. They present two case studies in which their method proves more sensitive in identifying regions where there are significant differences between conditions, which otherwise would be hidden.

      Strengths:

      The model is presented clearly, and the advantages of the hierarchical structure are strongly justified. Two alternative ways are presented to account for the presence of zero counts. The first involves the use of a horseshoe prior, which is the more flexible option, while the second involves a modified Poisson likelihood, which is better suited to datasets with a large number of zero counts, perhaps due to experimental artifacts. The results show a clear advantage of the Bayesian method for both case studies.<br /> The code is freely available, and it does not require a high-performance cluster to execute for smaller datasets. As Bayesian statistical methods become more accessible in various scientific fields, the whole scientific community will benefit from the transition away from p-values. Hierarchical Bayesian models are an especially useful tool that can be applied to many different experimental designs. However, while conceptually intuitive, their implementation can be difficult. The authors provide a good framework with room for improvement.

      Weaknesses:

      As with any Bayesian model, the choice of prior can significantly influence the results. The authors explain how the methodology can be adapted to different data properties, though selecting an appropriate prior or likelihood may not always be straightforward. They propose a 'standard workflow' as an alternative to traditional approaches, which could and should be used alongside established methods while Bayesian techniques continue to evolve and improve.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      “Alternative possibilities are discussed regarding the prior and likelihood of the model. Given that the second case study inspired the introduction of the zero-inflation likelihood, it is not clear how applicable the general methodology is to various datasets. If every unique dataset requires a tailored prior or likelihood to produce the best results, the methodology will not easily replace more traditional statistical analyses that can be applied in a straightforward manner. Furthermore, the differences between the results produced by the two Bayesian models in case study 2 are not discussed. In specific regions, the models provide conflicting results (e.g., regions MH, VPMpc, RCH, SCH, etc.), which are not addressed by the authors. A third case study would have provided further evidence for the generalizability of the methodology.”

      We hope in this paper to propose a ‘standard workflow’ for these data; this standard workflow uses the horseshoe prior and we propose that this is the approach used to describe cell count data instead of the better established, but to our thinking, inefficient, t-testing approach.

      The horseshoe prior is robust and allows a partially-pooled model to used while weighing-up the contribution of different data points. This is an analogue of excluding outliers and, in any analysis it is normal to investigate further if there are points being excluded as outliers. Often this reveals a particular challenge with the data, in the case of the data here, there are a lot of zeros, indicating that some samples should be excluded because the preparation failed to tag cells rather than because there were no cells to tag. This idea behind the ZIP example is to show that the Bayesian method can allow for this sort of further investigation and, indeed, as the reviewer notes this sort of extended analysis is often bespoke, tailored to the data.

      We have clearly failed to explain that the ‘standard workflow’ we propose replace the more traditional methods is the first one we describe, with the horseshoe prior; this produces better results on both datasets than the traditional approach. However, we also feel it is useful to show how a more tailored follow-on can be useful; we need to make it clear that this is intended as an illustration of an ‘optional extra’ rather than a part of the more straightforward ‘standard workflow’.

      To make this clearer we have made altered the text in several locations:

      • end of Introduction: added clarifying sentence “Here, our aim is to introduce a ‘standard’ Bayesian model for cell count data. We illustrate the application of this model to two datasets, one related to neural activation and the other to developmental lineage. For the second dataset, we also demonstrate a second example extension Bayesian model.”

      • Section Hierarchical modeling: “Our goal in both cases is to quantify group differences in the data. We present a ‘standard’ hierarchical model. This model reflects the experimental features common to cell count experiments and reflects the hierarchical structure of cell count data; the standard model is designed to deal robustly and efficiently with noise. On some occasions, to reflect a specific hypotheses, the structure of a particular experiment or an observed source of noise, this model can be further refined or changed to target the analysis. We will give an example of this for our second dataset.”

      • Section Horseshoe prior: “The alternative is via a flexible prior such as the horseshoe Carvalho et al., 2010; Piironen and Vehtari, 2017. This more generic option may be suitable as a default ‘standard’ approach in the typical case where outliers are poorly understood.”

      • Discussion: word ‘standard’ added to sentence: “Our standard workflow uses a horseshoe prior, along with the partial pooling, this allows our model to deal effectively with outliers.”

      • Discussion: modified sentence “The horseshoe prior model workflow we have exhibited here is intended as a standard approach.”

      Indeed, because the horseshoe prior deals robustly with outliers, whereas the ZIP is intended to model the outliers, any substantial difference between the two should be examined carefully. The referee is right to point out that we have not explained this in any detail and has helpfully listed a few brain regions were there are differences. This is useful, particularly since the examples listed illustrate in a useful way the opportunities and hazards this sort of data presents. To address this, we have added a new version of Figure 6 to the revised manuscript

      Previously Figure 6 showed two example brain regions: MPN and TMd. We have now added MH and SCH to the figure, and new text commenting on the insights the plots provide, both in the Results and Discussion.

      Reviewer #2 (Public review):

      “A clearer link between the experimental data and model-structure terminology would be a benefit to the non-expert reader.”

      This is a very good point and we are acutely aware through our own work how difficult it can be moving between fields with different research goals, different scientific cultures and different technical vocabularies. Just as it can be difficult translating from one language to another without losing nuance and meaning, it can be a real challenge finding technical terms that are useful for the non-expert reader while retaining the precision the application requires! In the long run, we hope that, just as some of the very specialized vocabulary that surrounds frequentist statistics has become familiar to to the working experimental scientists, the precise terminology involved in Bayesian modelling will become familiar and transparent. However, in advance of that day, we have included a glossary of terms at the end of the main text, and have made numerous small tweaks to make sure that link between data and model terminology is clearer and better explained.

      Reviewer #1 (Recommendations fro the authors):

      (1) “I would strongly recommend that the authors include more case studies in the manuscript, and address the qualitative differences between the different versions of the model.”

      We agree that our method will only become established when it is applied to more datasets, we hope to contribute to further analysis and we know other people are already using the approach on their own data. We do, however, feel that adding more datasets to this paper will make it longer and more complex; the plan, instead, is to use the method on novel datasets to test specific hypotheses, so that the results will include novel scientific findings as well as adding another illustration of the Bayesian approach applied to data that is already well studied.

      (2) “Figure 6 is not discussed in the main text.”

      We had discussed the results presented in Figure 6 in the second paragraph of the section “Case study two – Ontogeny of inhibitory interneurons of the mouse thalamus”, however the reviewer is right in that we did not directly refer to the Figure – this was an oversight. In any case, in the revised manuscript we present a new version of Figure 6 (in response to above comment), which is now explicitly cited in the text.

      Revised Figure 6: Example data and inferences highlighting model discrepancies. On the left under ‘data’: boxplots with medians and interquartile ranges for the raw data for four example brain regions. The shape of each point pairs left and right hemisphere readings in each of the five animals. On the right under ‘inference’: HDIs and confidence intervals are plotted. Purple is the Bayesian horseshoe model, pink is the Bayesian ZIP model, and orange is the sample mean. The Bayesian estimates are not strongly influenced by the zero-valued observations (MPN, SCH, TMd) or large-valued outliers (MH) and have means close to the data median. This explains the advantage of the Bayesian results over the confidence interval.

      Reviewer #2 (Recommendations from the authors):

      (1) “This is a generally well-written methodology paper that also provides the underlying code as a resource. As a reviewer outside both cell-count modelling and hierarchical-Bayesian approaches (though with a general interest in the topics) I found the method a little difficult to follow and would have liked to have been left with a better understanding of how the method is applied to the data. For example, in Figure 1 we are introduced to brain region count, animal count, and “items”. Then in the next line: pooling, model, structure, population and etc in subsequent lines. It is not clear what the subscripts (the pools?) are referring to: are they different regions R or animals N? These terms need to be better linked to the data and/or trimmed. Having said that, the later results look like a solid contribution to the field with a significant reduction in uncertainty from the Bayesian approach over the frequentist one. A future version of the manuscript, therefore, would benefit from greater precision of language as well as an economy and greater focus of terms linking the method to the biology. This is particularly the case around the exposition parts in Figure 1, Figure 2, and the “Hierarchical modelling” section.”

      This is another important point. We have now made numerous small changes to tighten up the text in the paper, in response to both this point and the next point.

      (2) “Language throughout could be sharpened. Subjectivity like “surprising outliers” could be removed and quirky grammar like “often small, ten is a typical” improved. There are also typos “an rate” etc that should be tidied up.”

      As per previous response, we have made numerous tweaks and small improvements and feel that the paper is stronger in this respect.

      (3) “Figure 1 caption. “It is a spectrum that depends” Is spectrum the right word here? Also, “thicker stroke” what does this refer to? Wasn’t immediately clear. In A, why is the whole animal within the R bracket that signifies brain regions, and then the brain regions are within the N bracket that signifies whole animals? Apart from the teal colouring, what are the other coloured regions in the image referring to? Improving this first figure would greatly help a reader unfamiliar with the context of the approach.”

      We have replaced the word “spectrum” with “continuum”. We have replaced “ Observed quantities have been highlighted with a thicker stroke in the graphical model.” with “The observed data quantities, y<sub>i</sub> to y<sub>n</sub>, are highlighted with a thick line in the model diagrams”. We have added the following text to describe the red and green lines in panel A: “green and red lines indicate regions labeled as damaged”.

      (4) “On P2 there is no discussion of priors when running through the advantage of the Bayesian approach. Is this a choice or an oversight? Priors do have a role in the later analysis.”

      A short additional paragraph has been added to the introduction outlining the advantage of having a prior, but also noting that the obligation to pick a prior can be intimidating and that suggesting priors is one of the contributions of our paper: “A Bayesian model also includes a set of probability distributions, referred to as the prior, which represent those beliefs it is reasonable to hold about the statistical model parameters before actually doing the experiment. The prior can be thought of as an advantage, it allows us to include in our analysis our understanding of the data based on previous experiments. The prior also makes explicit in a Bayesian model assumptions that are often implicit in other approaches. However, having to design priors is often considered a challenge and here we hope to make this more straightforward by suggesting priors that are suitable for this class of data.”

      (5) “On P4 more explanation would help greatly. Formulas like 23*10*4 or 50*6+50*4 are presented without explanation. What are the various numbers being multiplied? Regions, animals? Again, a clearer link between biological data and model structure would be advantageous.”

      We have now modified this line to clearly state the numbers’ sources: “The index i runs over the full set of samples, which in this case comprises 23 brain regions ×10 animals ×4 groups ≈920 datapoints in the first study, and 50 brain regions × 6 HET animals + 50 brain regions × 4 KO animals ≈500 datapoints in the second.”

      (6) “P6 and Results. Is it possible to show examples of the data set sampled from? Perhaps an image or two for the two experiments. Both Figures 4 and 5 as they currently are could be made slightly smaller to provide space for a small explanatory sub-panel. This would help ground the results.”

      This is a good idea. We have now added heatmap visualisations of both entire datasets to revised versions of Figures 4 and 5 (assuming that this is what the reviewer was suggesting).

    1. eLife Assessment

      Using single-cell transcriptomic data from adult mouse inner ear hair cells, the authors identify the differences and similarities of the four hair cell types. They make an important finding: that vestibular hair cells can express many ciliary motility-related genes. Some hair cell kinocilia display motility, suggesting that the kinocilium of vestibular hair cells may function as an active force generator to increase sensitivity. The evidence is incomplete as to whether all kinocilia beat and what the function of kinocilia movement is.

    2. Reviewer #1 (Public review):

      Summary

      Xu et al. use transcriptomic comparisons of mouse cochlear and vestibular hair to show that the vestibular hair cells alone are enriched in gene expression for proteins necessary for cilia motility and to further argue that such motility is a normal function of the kinocilia.

      Background:

      Cilia are prominent in sensory receptors, including vertebrate photoreceptors, olfactory neurons, and mechanosensitive hair cells of the inner ear and lateral line. Cilia can be motile or nonmotile depending on their axonemal structure: motile cilia require dynein and the inner 2 singlet microtubules of the 9+2 array. Primary cilia, present early in development, are considered to have sensory functions and to be nonmotile (Mill et al., Nature Rev Gen 2023).

      In hair cells, the kinocilium anchors and polarizes the mechanosensitive hair bundle of specialized microvilli. The kinocilium matures from the primary cilium of a newborn hair cell; behind it, the bundle of mechanosensory microvilli rises in a descending staircase of rows. During maturation of the mammalian cochlea, all hair cells lose the kinocilium, though not the associated basal body. The consensus for many years has been that most vertebrate kinocilia, and especially mammalian kinocilia, are nonmotile, based largely on the lack of spontaneous motility in excised mammalian vestibular organs, but also on the impression that the rare examples of spontaneous beating motility even in non-mammalian hair cells are associated with deterioration of the preparation (Rüsch & Thurm 1990).

      Strengths

      In comparing RNA expression across the 4 major types of mouse hair cells - 2 cochlear and 2 vestibular - Xu et al. noted that some ciliary genes related to motility are expressed by vestibular but not cochlear hair cells. They curated the ciliary genes into types known to be associated with different aspects of beating motility, and also investigated the expression of genes typical of primary cilia, which are considered to have sensory and cell signaling functions and to be nonmotile. They add immunostaining to back up some of the RNA data, and also evaluate relative expression by neonatal mouse cochlear and vestibular hair cells from a published dataset. The focus on kinociliary genes is an appropriate use of the comparative expression data for cochlear and vestibular hair cells, and the paper overall is readable and interesting. The transcriptome data are rounded off by comparing the authors' results in adult hair cells with published neonatal mouse cochlear and vestibular transcriptomes.

      Weaknesses:

      (1) Data:

      a) The main weakness in the data is the lack of functional and anatomical data from mouse hair bundles. While the authors compensate in part for this difficulty with bullfrog crista bundles, those data are also fragmentary - one TEM and 2 exemplar videos. Much of the novelty of the EM depends on the different appearance of stretches of a single kinocilium - can we be sure of the absence of the central microtubule singlets at the ends?

      b) While it was a good idea to compare ciliary motility expression in published P2 datasets for mouse cochlear and vestibular hair cells for comparison with the authors' adult hair cell data, the presentation is too superficial to assess (Figure 6C-E; text from line 336) - it is hard to see the basis for concluding that motility genes are specifically lower in P2 cochlear hair cells than vestibular hair cells. Visually, it is striking that CHCs have much darker bands for about 10 motility-related genes.

      (2) Interpretation:

      The authors take the view that kinociliary motility is likely to be normally present but is rare in their observations because the conditions are not right. But while others have described some (rare) kinociliary motility in fish organs (Rusch & Thurm 1990), they interpreted its occurrence as a sign of pathology. Indeed, in this paper, it is not clear, or even discussed, how kinociliary motility would help with mechanosensitivity in mature hair bundles. Rather, the presence of an autonomous rhythm would actively interfere with generating temporally faithful representations of the head motions that drive vestibular hair cells.

      Could kinociliary beating play other roles, possibly during development - for example, by interacting with forming accessory structures (but see Whitfield 2020) or by activating mechanosensitivity cell-autonomously, before mature stimulation mechanisms are in place? Then a latent capacity to beat in mature vestibular hair cells might be activated by stressful conditions, as speculated regarding persistent Piezo channels that are normally silent in mature cochlear hair cells but may reappear when TMC channel gating is broken (Beurg and Fettiplace 2017). While these are highly speculative thoughts, there is a need in the paper for more nuanced consideration of whether the observed motility is normal and what good it would do.

    3. Reviewer #2 (Public review):

      Summary:

      In this study, the authors compared the transcriptomes of the various types of hair cells contained in the sensory epithelia of the cochlea and vestibular organs of the mouse inner ear. The analysis of their transcriptomic data led to novel insights into the potential function of the kinocilium.

      Strengths:

      The novel findings for the kinocilium gene expression, along with the demonstration that some kinocilia demonstrate rhythmic beating as would be seen for known motile cilia, are fascinating. It is possible that perhaps the kinocilium, known to play a very important role in the orientation of the stereocilia, may have a gene expression pattern that is more like a primary cilium early in development and later in mature hair cells, more like a motile cilium. Since the kinocilium is retained in vestibular hair cells, it makes sense that it is playing a different role in these mature cells than its role in the cochlea.

      Another major strength of this study, which cannot be overstated, is that for the transcriptome analysis, they are using mature mice. To date, there is a lot of data from many labs for embryonic and neonatal hair cells, but very little transcriptomic data on the mature hair cells. They do a nice job in presenting the differences in marker gene expression between the 4 hair cell types. This information is very useful to those labs studying regeneration or generation of hair cells from ES cell cultures. One of the biggest questions these labs confront is what type of hair cells develop in these systems. The more markers available, the better. These data will also allow researchers in the field to compare developing hair cells with mature hair cells to see what genes are only required during development and not in later functioning hair cells.

    4. Author response:

      Reviewer #1 (Public review):

      Weaknesses:

      (1) Data:

      a) The main weakness in the data is the lack of functional and anatomical data from mouse hair bundles. While the authors compensate in part for this difficulty with bullfrog crista bundles, those data are also fragmentary - one TEM and 2 exemplar videos. Much of the novelty of the EM depends on the different appearance of stretches of a single kinocilium - can we be sure of the absence of the central microtubule singlets at the ends?

      Our single-cell RNA-seq findings show that genes related to motile cilia are specifically expressed in vestibular hair cells. This has not been demonstrated before. We have also provided supporting evidence using electrophysiology and imaging from bullfrogs and mice. Although no ultrastructural images of mouse vestibular kinocilia were provided in our study, transmission electron micrograph of mouse vestibular kinocilia has been published (O’Donnell and Zheng, 2022). The mouse vestibular kinocilia have a “9+2” microtubule configuration with nine doublet microtubules surrounding two central singlet microtubules. This finding contrasts with a previous study, which demonstrated that the vestibular kinocilia from guinea pigs lack central singlet microtubules and inner dynein arms, whereas outer dynein arms and radial spokes are present (Kikuchi et al., 1989). The central pair of microtubules is absent at the end of the bullfrog saccular kinocilium (Fig. 7A).  We would like to point out that the dual identity of primary and motile cilia is not just based on the TEM images. The kinocilium has long been considered a specialized cilium, and its role as a primary cilium during development has been demonstrated before (Moon et al., 2020; Shi et al., 2022).  

      In most motile cilia, the central pair complex (CPC) does not originate directly from the basal body; instead, it begins a short distance above the transition zone, a feature that already illustrates variation in CPC assembly across systems (Lechtreck et al., 2013). The CPC can also show variation in its spatial extent: for example, in mammalian sperm axonemes, it can terminate before reaching the distal end of the axoneme (Fawcett and Ito, 1965). In addition, CPC orientation differs across organisms: in metazoans and Trypanosoma, the CPC is fixed relative to the outer doublets, whereas in Chlamydomonas and ciliates it twists within the axoneme (Lechtreck et al., 2013). Such variation has been described in multiple motile cilia and flagella and is therefore not unique to vestibular kinocilia. What appears more unusual in our data is the organization at the distal tip, where a distinct distal head is present, similar to cilia tip morphologies recently described in human islet cells (Polino et al., 2023). Although this feature is intriguing, we interpret it primarily as a structural signature rather than as evidence for a specialized motile adaptation, and we will moderate our interpretation accordingly in the revision.

      b) While it was a good idea to compare ciliary motility expression in published P2 datasets for mouse cochlear and vestibular hair cells for comparison with the authors' adult hair cell data, the presentation is too superficial to assess (Figure 6C-E; text from line 336) - it is hard to see the basis for concluding that motility genes are specifically lower in P2 cochlear hair cells than vestibular hair cells. Visually, it is striking that CHCs have much darker bands for about 10 motility-related genes.

      We aimed to show that kinocilia in neonatal cochlear and vestibular hair cells are largely similar, except that neonatal cochlear hair cells lack key genes and proteins required for the motile apparatus. While these genes (e.g., Dynll1, Dynll2, Dynlrb1, Cetn2, and Mdh1) appear more highly expressed in P2 cochlear hair cells, they are not uniquely associated with the axoneme. For example, Dynll1/2 and Dynlrb1 are components of the cytoplasmic dynein-1 complex (Pfister et al., 2006), Cetn2 has multiple basic cellular functions beyond cilia (e.g., centrosome organization, DNA repair), and Mdh1 encodes a cytosolic malate dehydrogenase involved in central metabolic pathways such as the citric acid cycle and malate–aspartate shuttle. This contrasts with axonemal dyneins, which are uniquely required for cilia motility. To avoid ambiguity, we will mark such cytoplasmic or multifunctional genes with stars in both Figure 5G and Figure 6D together with legend in the revised manuscript.

      Although those genes (i.e., Dynll1, Dynll2, Dynlrb1, Cetn2, and Mdh1) are highly expressed in neonatal cochlear hair cells, key genes for motile machinery are not detected. For example, Dnah6, Dnah5, and Wdr66 are not expressed in the P2 cochlear hair cells.  Dnah6 and Dnah5 encode axonemal dynein and are part of inner and outer dynein arms while Wdr66 is a component of radial spokes. Importantly, we did not detect the expression of CCDC39 and CCDC40 in kinocilia of P2 cochlear hair cells.  Axonemal CCDC39 and CCDC40 are the molecular rulers that organize the axonemal structure in the 96-nm repeating interactome and are required for the assembly of IDAs and N-DRC for ciliary motility (Becker-Heck et al., 2011; Merveille et al., 2011; Oda et al., 2014). We will modify Figure 6D to highlight the key difference between P2 cochlear and vestibular hair cells in the revised manuscript. We will also revise the text so that the key differences will clearly be described.

      (2) Interpretation:

      The authors take the view that kinociliary motility is likely to be normally present but is rare in their observations because the conditions are not right. But while others have described some (rare) kinociliary motility in fish organs (Rusch & Thurm 1990), they interpreted its occurrence as a sign of pathology. Indeed, in this paper, it is not clear, or even discussed, how kinociliary motility would help with mechanosensitivity in mature hair bundles. Rather, the presence of an autonomous rhythm would actively interfere with generating temporally faithful representations of the head motions that drive vestibular hair cells.

      Spontaneous flagella-like rhythmic beating of kinocilia in vestibular HCs in frogs and eels (Flock et al., 1977; Rüsch and Thurm, 1990) and in zebrafish early otic vesicle (Stooke-Vaughan et al., 2012; Wu et al., 2011) has been reported previously. Based on Rüsch and Thurm (1990), spontaneous kinocilia motility occurred under non-physiological conditions and was interpreted as a sign of cellular deterioration rather than a normal feature. We speculate that deterioration under non-physiological conditions may lead to the disruption of lateral links between the kinocilium and the stereociliary bundle, effectively unloading the kinocilium and allowing it to move more freely. Additionally, fluctuations in intracellular ATP levels may contribute, as ciliary motility is highly ATP-dependent; when ATP is depleted, beating ceases. Similar phenomena have been documented in respiratory epithelia, where ciliary activity can temporarily pause. Nevertheless, the fact that kinocilia can exhibit spontaneous motility under these conditions indicates that they possess the motile machinery necessary for such beating. Irrespective of the condition, cilia without the molecular machinery required for motility will not be able to move.

      We agree with the reviewer that, based on the present data, it is difficult to know the functional role of kinocilia and whether the presence of such autonomous rhythm would interfere with temporal fidelity. Spontaneous bundle motion, driven by the active process associated with mechanotransduction, was observed in bullfrog saccular hair cells (Benser et al., 1996; Martin et al., 2003). We will revise the discussion to clarify this important point of the reviewer. Specifically, we will emphasize that our observations of ciliary beating in the ex vivo conditions may not reflect its properties in the mature in vivo context, but rather a byproduct of motile machinery clearly present in the kinocilia. We speculate that this machinery in mature hair cells could operate in a more subtle mode—modulating the rigor state of dynein arms or related axonemal structures to influence kinociliary mechanics and, in turn, bundle stiffness in response to stimuli or signaling cues. Such a mechanism could either enhance sensitivity or introduce filtering properties, thereby contributing to the fine control of mechanosensory function without compromising temporal fidelity. Future studies using loss-of-function approach will be needed to reveal the unexplored role(s) of kinocilia for vestibular hair cells in vertebrates. 

      Could kinociliary beating play other roles, possibly during development - for example, by interacting with forming accessory structures (but see Whitfield 2020) or by activating mechanosensitivity cell-autonomously, before mature stimulation mechanisms are in place? Then a latent capacity to beat in mature vestibular hair cells might be activated by stressful conditions, as speculated regarding persistent Piezo channels that are normally silent in mature cochlear hair cells but may reappear when TMC channel gating is broken (Beurg and Fettiplace 2017). While these are highly speculative thoughts, there is a need in the paper for more nuanced consideration of whether the observed motility is normal and what good it would do.

      We thank the reviewer for these excellent suggestions. We agree that kinociliary motility could plausibly serve roles during development, for example by guiding hair bundle formation or by contributing to early mechanosensitivity and spontaneous activity before mature stimulation mechanisms are established. It is also possible that the motility machinery represents a latent capacity in mature vestibular hair cells that could be reactivated under stress or pathological conditions. We will revise the Discussion to address these possibilities and to provide a more nuanced consideration of whether the observed motility is normal and what potential functions it might serve.

      Reviewer #2 (Public review):

      Summary:

      In this study, the authors compared the transcriptomes of the various types of hair cells contained in the sensory epithelia of the cochlea and vestibular organs of the mouse inner ear. The analysis of their transcriptomic data led to novel insights into the potential function of the kinocilium.

      Strengths:

      The novel findings for the kinocilium gene expression, along with the demonstration that some kinocilia demonstrate rhythmic beating as would be seen for known motile cilia, are fascinating. It is possible that perhaps the kinocilium, known to play a very important role in the orientation of the stereocilia, may have a gene expression pattern that is more like a primary cilium early in development and later in mature hair cells, more like a motile cilium. Since the kinocilium is retained in vestibular hair cells, it makes sense that it is playing a different role in these mature cells than its role in the cochlea.

      Another major strength of this study, which cannot be overstated, is that for the transcriptome analysis, they are using mature mice. To date, there is a lot of data from many labs for embryonic and neonatal hair cells, but very little transcriptomic data on the mature hair cells. They do a nice job in presenting the differences in marker gene expression between the 4 hair cell types. This information is very useful to those labs studying regeneration or generation of hair cells from ES cell cultures. One of the biggest questions these labs confront is what type of hair cells develop in these systems. The more markers available, the better. These data will also allow researchers in the field to compare developing hair cells with mature hair cells to see what genes are only required during development and not in later functioning hair cells.

      We would like to thank reviewer 2 for his/her comments and hope that the datasets provided in this manuscript will be a useful resource for researchers in the auditory and vestibular neuroscience community.

      Joint Recommendations:

      We will make changes in the revision based on the joint recommendations of the two reviewers.

      References

      Becker-Heck, A., Zohn, I.E., Okabe, N., Pollock, A., Lenhart, K.B., Sullivan-Brown, J., McSheene, J., Loges, N.T., Olbrich, H., Haeffner, K., Fliegauf, M., Horvath, J., Reinhardt, R., Nielsen, K.G., Marthin, J.K., Baktai, G., Anderson, K.V., Geisler, R., Niswander, L., Omran, H., Burdine, R.D., 2011. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet 43, 79–84. https://doi.org/10.1038/ng.727

      Benser, M.E., Marquis, R.E., Hudspeth, A.J., 1996. Rapid, Active Hair Bundle Movements in Hair Cells from the Bullfrog’s Sacculus. J. Neurosci. 16, 5629–5643. https://doi.org/10.1523/JNEUROSCI.16-18-05629.1996

      Fawcett, D.W., Ito, S., 1965. The fine structure of bat spermatozoa. American Journal of Anatomy 116, 567–609. https://doi.org/10.1002/aja.1001160306

      Flock, Å., Flock, B., Murray, E., 1977. Studies on the Sensory Hairs of Receptor Cells in the Inner Ear. Acta Oto-Laryngologica 83, 85–91. https://doi.org/10.3109/00016487709128817

      Kikuchi, T., Takasaka, T., Tonosaki, A., Watanabe, H., 1989. Fine structure of guinea pig vestibular kinocilium. Acta Otolaryngol 108, 26–30.https://doi.org/10.3109/00016488909107388

      Lechtreck, K.-F., Gould, T.J., Witman, G.B., 2013. Flagellar central pair assembly in Chlamydomonas reinhardtii. Cilia 2, 15. https://doi.org/10.1186/2046-2530-2-15

      Martin, P., Bozovic, D., Choe, Y., Hudspeth, A.J., 2003. Spontaneous Oscillation by Hair Bundles of the Bullfrog’s Sacculus. J. Neurosci. 23, 4533–4548. https://doi.org/10.1523/JNEUROSCI.23-11-04533.2003

      Merveille, A.-C., Davis, E.E., Becker-Heck, A., Legendre, M., Amirav, I., Bataille, G., Belmont, J., Beydon, N., Billen, F., Clément, A., Clercx, C., Coste, A., Crosbie, R., de Blic, J., Deleuze, S., Duquesnoy, P., Escalier, D., Escudier, E., Fliegauf, M., Horvath, J., Hill, K., Jorissen, M., Just, J., Kispert, A., Lathrop, M., Loges, N.T., Marthin, J.K., Momozawa, Y., Montantin, G., Nielsen, K.G., Olbrich, H., Papon, J.-F., Rayet, I., Roger, G., Schmidts, M., Tenreiro, H., Towbin, J.A., Zelenika, D., Zentgraf, H., Georges, M., Lequarré, A.-S., Katsanis, N., Omran, H., Amselem, S., 2011. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet 43, 72–78. https://doi.org/10.1038/ng.726

      Moon, K.-H., Ma, J.-H., Min, H., Koo, H., Kim, H., Ko, H.W., Bok, J., 2020. Dysregulation of sonic hedgehog signaling causes hearing loss in ciliopathy mouse models. eLife 9, e56551. https://doi.org/10.7554/eLife.56551

      Oda, T., Yanagisawa, H., Kamiya, R., Kikkawa, M., 2014. A molecular ruler determines the repeat length in eukaryotic cilia and flagella. Science 346, 857–860. https://doi.org/10.1126/science.1260214

      O’Donnell, J., Zheng, J., 2022. Vestibular Hair Cells Require CAMSAP3, a Microtubule Minus-End Regulator, for Formation of Normal Kinocilia. Front Cell Neurosci 16, 876805. https://doi.org/10.3389/fncel.2022.876805

      Pfister, K.K., Shah, P.R., Hummerich, H., Russ, A., Cotton, J., Annuar, A.A., King, S.M., Fisher, E.M.C., 2006. Genetic Analysis of the Cytoplasmic Dynein Subunit Families. PLOS Genetics 2, e1. https://doi.org/10.1371/journal.pgen.0020001

      Polino, A.J., Sviben, S., Melena, I., Piston, D.W., Hughes, J.W., 2023. Scanning electron microscopy of human islet cilia. Proceedings of the National Academy of Sciences 120, e2302624120. https://doi.org/10.1073/pnas.2302624120

      Rüsch, A., Thurm, U., 1990. Spontaneous and electrically induced movements of ampullary kinocilia and stereovilli. Hearing Research 48, 247–263. https://doi.org/10.1016/0378-5955(90)90065-W

      Shi, H., Wang, H., Zhang, C., Lu, Y., Yao, J., Chen, Z., Xing, G., Wei, Q., Cao, X., 2022. Mutations in OSBPL2 cause hearing loss associated with primary cilia defects via sonic hedgehog signaling [WWW Document]. https://doi.org/10.1172/jci.insight.149626

      Stooke-Vaughan, G.A., Huang, P., Hammond, K.L., Schier, A.F., Whitfield, T.T., 2012. The role of hair cells, cilia and ciliary motility in otolith formation in the zebrafish otic vesicle. Development 139, 1777–1787. https://doi.org/10.1242/dev.079947

      Wu, D., Freund, J.B., Fraser, S.E., Vermot, J., 2011. Mechanistic Basis of Otolith Formation during Teleost Inner Ear Development. Developmental Cell 20, 271–278. https://doi.org/10.1016/j.devcel.2010.12.00

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary:

      The authors aim to explore the effects of the electrogenic sodium-potassium pump (Na<SUP>+</SUP>/K<SUP>+</SUP>ATPase) on the computational properties of highly active spiking neurons, using the weakly-electric fish electrocyte as a model system. Their work highlights how the pump's electrogenicity, while essential for maintaining ionic gradients, introduces challenges in neuronal firing stability and signal processing, especially in cells that fire at high rates. The study identifies compensatory mechanisms that cells might use to counteract these effects, and speculates on the role of voltage dependence in the pump's behavior, suggesting that Na<SUP>+</SUP>/K<SUP>+</SUP>-ATPase could be a factor in neuronal dysfunctions and diseases

      Strengths:

      (1) The study explores a less-examined aspect of neural dynamics-the effects of Na<SUP>+</SUP>/K<SUP>+</SUP>-ATPase electrogenicity. It offers a new perspective by highlighting the pump's role not only in ion homeostasis but also in its potential influence on neural computation.

      (2) The mathematical modeling used is a significant strength, providing a clear and controlled framework to explore the effects of the Na<SUP>+</SUP>/K<SUP>+</SUP>-ATPase on spiking cells. This approach allows for the systematic testing of different conditions and behaviors that might be difficult to observe directly in biological experiments.

      (3) The study proposes several interesting compensatory mechanisms, such as sodium leak channelsand extracellular potassium buffering, which provide useful theoretical frameworks for understanding how neurons maintain firing rate control despite the pump's effects.

      Weaknesses:

      (1) While the modeling approach provides valuable insights, the lack of experimental data to validate the model's predictions weakens the overall conclusions.

      (2)The proposed compensatory mechanisms are discussed primarily in theoretical terms without providing quantitative estimates of their impact on the neuron's metabolic cost or other physiological parameters.

      Comments on revisions:

      The revised manuscript is notably improved.

      We thank the reviewer for their concise and accurate summary and appreciate the constructive feedback on the article’s strengths and weaknesses. Experimental work is beyond the scope of our modeling-based study. However, we would like our work to serve as a framework for future experimental studies into the role of the electrogenic pump current (and its possible compensatory currents) in disease, and its role in evolution of highly specialized excitable cells (such as electrocytes).

      Quantitative estimates of metabolic costs in this study are limited to the ATP that is required to fuel the Na<SUP>+</SUP>/K<SUP>+</SUP> pump. By integrating the net pump current over time and dividing by one elemental charge, one can find the rate of ATP that is consumed by the Na<SUP>+</SUP>/K<SUP>+</SUP> pump for either compensatory mechanism. The difference in net pump current is thus proportional to ATP consumption, which allows for a direct comparison of the cost efficiency of the Na<SUP>+</SUP>/K<SUP>+</SUP> pump for each proposed compensatory mechanism. The Na<SUP>+</SUP>/K<SUP>+</SUP> pump is however not the only ATP-consuming element in the electrocyte, and some of the compensatory mechanisms induce other costs related to cell ‘housekeeping’ or presynaptic processes. We now added a section in the appendix titled ‘Considerations on metabolic costs of compensatory mechanisms’ (section 11.4), where we provide rough estimates on the influence of the compensatory mechanisms on the total metabolic costs of the cell and membrane space occupation. Although we argue that according these rough estimates, the impact of discussed compensatory mechanisms could be significant, due to the absence of more detailed experimental quantification, a plausible quantitative cost estimate on the whole cell level remains beyond the scope of this article.

      Reviewer #1 (Recommendations for the authors):

      I just have a few recommendations on the updated manuscript.

      (1) When exploring the different roles of Na<SUP>+</SUP>/K<SUP>+</SUP>-ATPase in the Results section, the authors employed many different models. For instance, the voltage equation on page 15, voltage equation (2) on page 22, voltage equation (12) on page 24, voltage equation (30) on page 32, and voltage equation (38) on page 35 are presented as the master equations for their respective biophysical models. Meanwhile, the phase models are presented on page 29 and page 33. I would recommend that the authors clearly specify which equations correspond to each subsection of the Results section and explicitly state which equations were used to generate the data in each figure. This would help readers more easily follow the connections between the models, the results, and the figures.

      We thank the reviewer for pointing out that the links of the different voltage equations to the results could be expressed more explicitly in the article. All simulations were done using the ‘master equation’  expressed in Eq. 2, and the other voltage equations that are specified in the article (in the new version of the article Eqs. 13, 31, and 39) are reformulations of Eq. 2 to analytically show different properties of the voltage equation (Eq. 2). This has now been mentioned in the article when formulating the voltage equations, and the equation for the total leak current (in the new version Eq. 3) has been added for completeness.

      (2) The authors may want to revisit their description and references concerning Eigenmannia virescens. For example, wave-type weakly electric fish (e.g., Eigenmannia) and pulse-type weakly electric fish (e.g., Gymnotus carapo) exhibit large differences, making references 52-55 may be inappropriate for subsection 4.3.1, as these studies focus on Gymnotus carapo. Additionally, even within wave-type species, chirp patterns vary. For example, Eigenmannia can exhibit short "pauses"-type chirps, whereas Apteronotus leptorhynchus (another waver-form fish) does not (https://pubmed.ncbi.nlm.nih.gov/14692494/).

      We thank the reviewer for pointing this out. The citations and phrasing in sections 4.3.1 and 4.3.2 have been updated to specifically refer to the weakly electric fish e. Virescens.

      (3) Table on page 21: Please explain why the parameter value (13.5mM) of [Na<SUP>^</SUP>+]_{in} is 10 timeslarger than its value (1.35mM) in reference [26]? How does this value (13.5mM) compare with the range of variable [Na<SUP>^</SUP>+]_{in} in equation (6)?

      The intracellular sodium concentration in reference [26] was reported to be 1.35 mM, but the authors also reported an extracellular sodium concentration of 120 mM, and a sodium reversal potential of 55 mV. Upon calculating the sodium reversal potential, we found that an intracellular sodium concentration of 1.35 mM would give a sodium reversal potential of 113 mV. An intracellular sodium concentration of 13.5 mM, on the other hand, leads to the reported and physiological reversal potential of 55 mV. This has now been clarified in the article, and the connection between this value and Eq. 6 (Eq. 7 in the new version) has also been clarified.

      Reviewer #2 (Public review):

      Summary:

      The paper by Weerdmeester, Schleimer, and Schreiber uses computational models to present the biological constraints under which electrocytes - specialized, highly active cells that facilitate electro-sensing in weakly electric fish-may operate. The authors suggest potential solutions that these cells could employ to circumvent these constraints.

      Electrocytes are highly active or spiking (greater than 300Hz) for sustained periods (for minutes to hours), and such activity is possible due to an influx of sodium and efflux of potassium ions into these cells after each spike. The resulting ion imbalance must be restored, which in electrocytes, as with many other biological cells, is facilitated by the Na-K pumps at the expense of biological energy, i.e., ATP molecules. For each ATP molecule the pump uses, three positively charged sodium ions from the intracellular space are exchanged for two positively charged potassium ions from the extracellular space. This creates a net efflux of positive ions into the extracellular space, resulting in hyperpolarized potentials for the cell over time. For most cells, this does not pose an issue, as their firing rate is much slower, and other compensatory mechanisms and pumps can effectively restore the ion imbalances. However, in the electrocytes of weakly electric fish, which spike at exceptionally high rates, the net efflux of positive ions presents a challenge. Additionally, these cells are involved in critical communication and survival behaviors, underscoring their essential role in reliable functioning.

      In a computational model, the authors test four increasingly complex solutions to the problem of counteracting the hyperpolarized states that occur due to continuous NaK pump action to sustain baseline activity. First, they propose a solution for a well-matched Na leak channel that operates in conjunction with the NaK pump, counteracting the hyperpolarizing states naturally. Their model shows that when such an orchestrated Na leak current is not included, quick changes in the firing rates could have unexpected side effects. Secondly, they study the implications of this cell in the context of chirps-a means of communication between individual fish. Here, an upstream pacemaking neuron entrains the electrocyte to spike, which ceases to produce a so-called chirp - a brief pause in the sustained activity of the electrocytes. In their model, the authors demonstrate that including the extracellular potassium buffer is necessary to obtain a reliable chirp signal. Thirdly, they tested another means of communication in which there was a sudden increase in the firing rate of the electrocyte, followed by a decay to the baseline. For this to occur reliably, the authors emphasize that a strong synaptic connection between the pacemaker neuron and the electrocyte is necessary. Finally, since these cells are energy-intensive, they hypothesize that electrocytes may have energy-efficient action potentials, for which their NaK pumps may be sensitive to the membrane voltages and perform course correction rapidly.

      Strengths:

      The authors extend an existing electrocyte model (Joos et al., 2018) based on the classical Hodgkin and Huxley conductance-based models of sodium and potassium currents to include the dynamics of the sodium-potassium (NaK) pump. The authors estimate the pump's properties based on reasonable assumptions related to the leak potential. Their proposed solutions are valid and may be employed by weakly electric fish. The authors explore theoretical solutions to electrosensing behavior that compound and suggest that all these solutions must be simultaneously active for the survival and behavior of the fish. This work provides a good starting point for conducting in vivo experiments to determine which of these proposed solutions the fish employ and their relative importance. The authors include testable hypotheses for their computational models.

      Weaknesses:

      The model for action potential generation simplifies ion dynamics by considering only sodium and potassium currents, excluding other ions like calcium. The ion channels considered are assumed to be static, without any dynamic regulation such as post-translational modifications. For instance, a sodium-dependent potassium pump could modulate potassium leak and spike amplitude (Markham et al., 2013).

      This work considers only the sodium-potassium (NaK) pumps to restore ion gradients. However, in many cells, several other ion pumps, exchangers, and symporters are simultaneously present and actively participate in restoring ion gradients. When sodium currents dominate action potentials, and thus when NaK pumps play a critical role, such as the case in Eigenmannia virescens, the present study is valid. However, since other biological processes may find different solutions to address the pump's non-electroneutral nature, the generalizability of the results in this work to other fast-spiking cell types is limited. For example, each spike could include a small calcium ion influx that could be buffered or extracted via a sodium-calcium exchanger.

      We thank the reviewer for the detailed summary and the updated identified strengths and weaknesses. The current article indeed focuses on and isolates the interplay between sodium currents, potassium currents, and sodium-potassium pump currents. As discussed in section 5.1, in excitable cells where these currents are the main players in action-potential generation, the results presented in this article are applicable. The contribution of post-translational effects of ion channels, other ionic currents, and other active transporters and pumps, could be exciting avenues for further studies

      .

      Reviewer #2 (Recommendations for the authors):

      Thank you for addressing my comments.

      All the figures are now consistent. The color schema used is clear.

      The methods and discussions expansions improve the paper.

      Including the model assumptions and simplifications is appreciated.

      Including internal references is helpful.

      The equations are clear, and the references have been fixed.

      I am content with the changes. I have updated my review accordingly.

      We thank the reviewer for their initial constructive comments that lead to the significant improvement of the article.

      Page : 3 Line : 113 Author : Unknown Author 07/24/2025 

      Although this is technically correct, the article is about electrocommunication signals and does not focus on sensing.

      Page : 3 Line : 153 Author : Unknown Author 07/24/2025

      electrocommunication

      Page : 4 Line : 164 Author : Unknown Author 07/24/2025 

      Judging from the cited article, I think this should be a sodium-dependent potassium current.

    2. Reviewer #2 (Public review):

      Summary:

      The paper by Weerdmeester, Schleimer, and Schreiber uses computational models to present the biological constraints under which electrocytes - specialized, highly active cells that facilitate electro-sensing in weakly electric fish-may operate. The authors suggest potential solutions that these cells could employ to circumvent these constraints.

      Electrocytes are highly active or spiking (greater than 300Hz) for sustained periods (for minutes to hours), and such activity is possible due to an influx of sodium and efflux of potassium ions into these cells after each spike. The resulting ion imbalance must be restored, which in electrocytes, as with many other biological cells, is facilitated by the Na-K pumps at the expense of biological energy, i.e., ATP molecules. For each ATP molecule the pump uses, three positively charged sodium ions from the intracellular space are exchanged for two positively charged potassium ions from the extracellular space. This creates a net efflux of positive ions into the extracellular space, resulting in hyperpolarized potentials for the cell over time. For most cells, this does not pose an issue, as their firing rate is much slower, and other compensatory mechanisms and pumps can effectively restore the ion imbalances. However, in the electrocytes of weakly electric fish, which spike at exceptionally high rates, the net efflux of positive ions presents a challenge. Additionally, these cells are involved in critical communication and survival behaviors, underscoring their essential role in reliable functioning.

      In a computational model, the authors test four increasingly complex solutions to the problem of counteracting the hyperpolarized states that occur due to continuous NaK pump action to sustain baseline activity. First, they propose a solution for a well-matched Na leak channel that operates in conjunction with the NaK pump, counteracting the hyperpolarizing states naturally. Their model shows that when such an orchestrated Na leak current is not included, quick changes in the firing rates could have unexpected side effects. Secondly, they study the implications of this cell in the context of chirps-a means of communication between individual fish. Here, an upstream pacemaking neuron entrains the electrocyte to spike, which ceases to produce a so-called chirp - a brief pause in the sustained activity of the electrocytes. In their model, the authors demonstrate that including the extracellular potassium buffer is necessary to obtain a reliable chirp signal. Thirdly, they tested another means of communication in which there was a sudden increase in the firing rate of the electrocyte, followed by a decay to the baseline. For this to occur reliably, the authors emphasize that a strong synaptic connection between the pacemaker neuron and the electrocyte is necessary. Finally, since these cells are energy-intensive, they hypothesize that electrocytes may have energy-efficient action potentials, for which their NaK pumps may be sensitive to the membrane voltages and perform course correction rapidly.

      Strengths:

      The authors extend an existing electrocyte model (Joos et al., 2018) based on the classical Hodgkin and Huxley conductance-based models of sodium and potassium currents to include the dynamics of the sodium-potassium (NaK) pump. The authors estimate the pump's properties based on reasonable assumptions related to the leak potential. Their proposed solutions are valid and may be employed by weakly electric fish. The authors explore theoretical solutions to electrosensing behavior that compound and suggest that all these solutions must be simultaneously active for the survival and behavior of the fish. This work provides a good starting point for conducting in vivo experiments to determine which of these proposed solutions the fish employ and their relative importance. The authors include testable hypotheses for their computational models.

    3. Reviewer #1 (Public review):

      Summary:

      The authors aim to explore the effects of the electrogenic sodium-potassium pump (Na+/K+-ATPase) on the computational properties of highly active spiking neurons, using the weakly-electric fish electrocyte as a model system. Their work highlights how the pump's electrogenicity, while essential for maintaining ionic gradients, introduces challenges in neuronal firing stability and signal processing, especially in cells that fire at high rates. The study identifies compensatory mechanisms that cells might use to counteract these effects, and speculates on the role of voltage dependence in the pump's behavior, suggesting that Na+/K+-ATPase could be a factor in neuronal dysfunctions and diseases

      Strengths:

      (1) The study explores a less-examined aspect of neural dynamics-the effects of Na+/K+-ATPase electrogenicity. It offers a new perspective by highlighting the pump's role not only in ion homeostasis but also in its potential influence on neural computation.

      (2) The mathematical modeling used is a significant strength, providing a clear and controlled framework to explore the effects of the Na+/K+-ATPase on spiking cells. This approach allows for the systematic testing of different conditions and behaviors that might be difficult to observe directly in biological experiments.

      (3) The study several interesting compensatory mechanisms, such as sodium leak channels and extracellular potassium buffering, which provide useful theoretical frameworks for understanding how neurons maintain firing rate control despite the pump's effects.

      Comments on revisions:proposes

      The revised manuscript is notably improved.

    4. eLife Assessment

      This important study provides new insights into the lesser-known effects of the sodium-potassium pump on how nerve cells process signals, particularly in highly active cells like those of weakly electric fish. The computational methods used to establish the claims in this work are compelling and can be used as a starting point for further studies.

    1. eLife Assessment

      This important study presents a sequence-based method for predicting drug-interacting residues in intrinsically disordered proteins (IDPs), addressing a significant challenge in understanding small-molecule:IDP interactions. The findings have solid support through examples underscoring the role of aromatic interactions. While predicted binding sites remain coarse, validation was done on a total of 10 IDPs at varying depths. The method builds on the authors' previous work and, with ad hoc modifications, is poised to benefit this emerging field.

    2. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors developed a sequence-based method to predict drug-interacting residues in IDP, based on their recent work, to predict the transverse relaxation rates (R2) of IDP trained on 45 IDP sequences and their corresponding R2 values. The discovery is that the IDPs interact with drugs mostly using aromatic residues that are easy to understand, as most drugs contain aromatic rings. They validated the method using several case studies, and the predictions are in accordance with chemical shift perturbations and MD simulations. The location of the predicted residues serves as a starting point for ligand optimization.

      Strengths:

      This work provides the first sequence-based prediction method to identify potential druginteracting residues in IDP. The validity of the method is supported by case studies. It is easy to use, and no time-consuming MD simulations and NMR studies are needed.

      Weaknesses:

      The method does not depend on the information of binding compounds, which may give general features of IDP-drug binding. However, due to the size and chemical structures of the compounds (for example, how many aromatic rings), the number of interacting residues varies, which is not considered in this work. Lacking specific information may restrict its application in compound optimization, aiming to derive specific and potent binding compounds.

      We fully recognize that different compounds may have different interaction propensity profiles along the IDP sequence. In future studies, we will investigate compound-specific parameter values. The limiting factor is training data, but such data are beginning to be available.

      Reviewer #2 (Public review):

      Summary:

      In this work, the authors introduce DIRseq, a fast, sequence-based method that predicts druginteracting residues (DIRs) in IDPs without requiring structural or drug information. DIRseq builds on the authors' prior work looking at NMR relaxation rates, and presumes that those residues that show enhanced R2 values are the residues that will interact with drugs, allowing these residues to be nominated from the sequence directly. By making small modifications to their prior tool, DIRseq enables the prediction of residues seen to interact with small molecules in vivo.

      Strengths:

      The preprint is well written and easy to follow

      Weaknesses:

      (1) The DIRseq method is based on SeqDYN, which itself is a simple (which I do not mean as a negative - simple is good!) statistical predictor for R2 relaxation rates. The challenge here is that R2 rates cover a range of timescales, so the physical intuition as to what exactly elevated R2 values mean is not necessarily consistent with "drug interacting". Presumably, the authors are not using the helix boost component of SeqDYN here (it would be good to explicitly state this). This is not necessarily a weakness, but I think it would behove the authors to compare a few alternative models before settling on the DIRseq method, given the somewhat ad hoc modifications to SeqDYN to get DIRseq.

      Actually, the factors that elevate R2 are well-established. These are local interactions and residual secondary structures (if any). The basic assumption of our method is that intra-IDP interactions that elevate R2 convert to IDP-drug interactions. This assumption was supported by our initial observation that the drug interaction propensity profiles predicted using the original SeqDYN parameters already showed good agreement with CSP profiles. We only made relatively small adjustments to the parameters to improve the agreement. Indeed we did not apply the helix boost portion of SeqDYN to DIRseq, and now state as such (p. 4, second last paragraph). We now also compare DIRseq with several alternative models, as summarized in new Table S2.

      Specifically, the authors previously showed good correlation between the stickiness parameter of Tesei et al and the inferred "q" parameter for SeqDYN; as such, I am left wondering if comparable accuracy would be obtained simply by taking the stickiness parameters directly and using these to predict "drug interacting residues", at which point I'd argue we're not really predicting "drug interacting residues" as much as we're predicting "sticky" residues, using the stickiness parameters. It would, I think, be worth the authors comparing the predictive power obtained from DIRseq with the predictive power obtained by using the lambda coefficients from Tesei et al in the model, local density of aromatic residues, local hydrophobicity (note that Tesei at al have tabulated a large set of hydrophobicity scores!) and the raw SeqDYN predictions. In the absence of lots of data to compare against, this is another way to convince readers that DIRseq offers reasonable predictive power.

      We now compare predictions of these various parameter sets, and report the results in Table S2.  In short, among all the tested parameter sets, DIRseq has the best performance as measured by (1) strong correlations between prediction scores and CSPs and (2) high true positives and low false positives (p. 7-9).

      (2) Second, the DIRseq is essentially SeqDYN with some changes to it, but those changes appear somewhat ad hoc. I recognize that there is very limited data, but the tweaking of parameters based on physical intuition feels a bit stochastic in developing a method; presumably (while not explicitly spelt out) those tweaks were chosen to give better agreement with the very limited experimental data (otherwise why make the changes?), which does raise the question of if the DIRseq implementation of SeqDYN is rather over-parameterized to the (very limited) data available now? I want to be clear, the authors should not be critiqued for attempting to develop a model despite a paucity of data, and I'm not necessarily saying this is a problem, but I think it would be really important for the authors to acknowledge to the reader the fact that with such limited data it's possible the model is over-fit to specific sequences studied previously, and generalization will be seen as more data are collected.

      We have explained the rationale for the parameter tweaks, which were limited to q values for four amino-acid types, i.e., to deemphasize hydrophobic interactions and slightly enhance electrostatic interactions (p. 4-5). We now add that these tweaks were motivated by observations from MD simulations of drug interactions with a-syn (ref 13). As already noted in the response to the preceding comment, we now also present results for the original parameter values as well as for when the four q values are changed one at a time.

      (3) Third, perhaps my biggest concern here is that - implicit in the author's assumptions - is that all "drugs" interact with IDPs in the same way and all drugs are "small" (motivating the change in correlation length). Prescribing a specific length scale and chemistry to all drugs seems broadly inconsistent with a world in which we presume drugs offer some degree of specificity. While it is perhaps not unexpected that aromatic-rich small molecules tend to interact with aromatic residues, the logical conclusion from this work, if one assumes DIRseq has utility, is that all IDRs bind drugs with similar chemical biases. This, at the very least, deserves some discussion.

      The reviewer raises a very important point. In Discussion, we now add that it is important to further develop DIRseq to include drug-specific parameters when data for training become available (p. 12-13). To illustrate this point, we use drug size as a simple example, which can be modeled by making the b parameter dependent on drug molecule size.

      (4) Fourth, the authors make some general claims in the introduction regarding the state of the art, which appear to lack sufficient data to be made. I don't necessarily disagree with the author's points, but I'm not sure the claims (as stated) can be made absent strong data to support them. For example, the authors state: "Although an IDP can be locked into a specific conformation by a drug molecule in rare cases, the prevailing scenario is that the protein remains disordered upon drug binding." But is this true? The authors should provide evidence to support this assertion, both examples in which this happens, and evidence to support the idea that it's the "prevailing view" and specific examples where these types of interactions have been biophysically characterized.

      We now cite nine studies showing that IDPs remain disordered upon drug binding.

      Similarly, they go on to say:

      "Consequently, the IDP-drug complex typically samples a vast conformational space, and the drug molecule only exhibits preferences, rather than exclusiveness, for interacting with subsets of residues." But again, where is the data to support this assertion? I don't necessarily disagree, but we need specific empirical studies to justify declarative claims like this; otherwise, we propagate lore into the scientific literature. The use of "typically" here is a strong claim, implying most IDP complexes behave in a certain way, yet how can the authors make such a claim? 

      Here again we add citations to support the statement.

      Finally, they continue to claim:

      "Such drug interacting residues (DIRs), akin to binding pockets in structured proteins, are key to optimizing compounds and elucidating the mechanism of action." But again, is this a fact or a hypothesis? If the latter, it must be stated as such; if the former, we need data and evidence to support the claim.

      We add citations to both compound optimization and mechanism of action.

      Reviewer #1 (Recommendations for the authors):

      (1) The authors should compare the sequences of the IDPs in the case studies with the 45 IDPs in training the SeqDYN model to make sure that they are not included in the training dataset or are highly homologous.

      Please note that the data used for training SeqDYN were R2 rates, which are independent of the property being studied here, i.e., drug interacting residues. Therefore whether the IDPs studied here were in the training set for SeqDYN is immaterial.

      (2) The authors manually tuned four parameters in SeqDYN to develop the model for predicting drug-interacting residues without giving strict testing or explanations. More explanations, testing of more values, and ablation testing should be given.

      As responded above, we now both expand the explanation and present more test results.

      (3) The authors changed the q values of L, I, and M to the value of V. What are the results if these values are not changed?

      These results are shown in Table S2 (entry named SeqDYN_orig).

      (4) Only one b value is chosen based on the assumption that a drug molecule interacts with 3-4 residues at a time. However, the number of interacting residues is related to the size of the drug molecule. Adjusting the b value with the size of the ligand may provide improvement. It is better to test the influence of adjusting b values. At least, this should be discussed.

      Good point! We now state that b potentially can be adjusted according to ligand size (p. 12-13). In addition, we also show the effect of varying b on the prediction results (Table S2; p. 8, last paragraph).

      (5) The authors add 12 Q to eliminate end effects. However, explanations on why 12 Qs are chosen should be given. How about other numbers of Q or using other residues (e.g., the commonly used residues in making links, like GS/PS or A?

      As we already explained, “Gln was selected because its 𝑞 value is at the middle of the 20 𝑞 values.” (p. 5, second paragraph). Also, 12 Qs are sufficient to remove any end effects; a higher number of Qs does not make any difference.

      Reviewer #2 (Recommendations for the authors):

      (1) The authors make reference to the "C-terminal IDR" in cMyc, but the region they note is found in the bHLH DNA binding domain (which falls from residue ~370-420).

      We now clarify that this region is disordered on its own but form a helix-loop-loop structure upon heterodimerization with Max (p. 11, last paragraph).

      (2) Given the fact that X-seq names are typically associated with sequencing-based methods, it's perhaps confusing to name this method DIRseq?

      We appreciate the reviewer’s point, but by now the preprint posted in bioRxiv is in wide circulation, and the DIRseq web server has been up for several months, so changing its name would cause a great deal of confusion.

      (3) I'd encourage the authors just to spell out "drug interacting residues" and retain an IDR acronym for IDRs. Acronyms rarely make writing clearer, and asking folks to constantly flip between IDR and DIR is asking a lot of an audience (in this reviewer's opinion, anyway).

      The reviewer makes a good point; we now spell out “drug-interacting residues”.

      (4) The assumption here is that CSPs result from direct drug:IDR interactions. However, CSPs result from a change in the residue chemical environment, which could in principle be an indirect effect (e.g., in the unbound state, residues A and B interact; in the bound state, residue A is now free, such that it experiences a CSP despite not engaging directly). While I recognize such assumptions are commonly made, it behoves the authors to explicitly make this point so the reader understands the relationship between CSPs and binding.

      We did add caveats of CSP in Introduction (p. 3, second paragraph).

      (5) On the figures, please label which protein is which figure, as well as provide a legend for the annotations on the figures (red line, blue bar, cyan region, etc.)

      We now label protein names in Fig. 1. For annotation of display items, it is also made in the Figs. 2 and 3 captions; we now add it to the Fig. 4 caption.

      (6) abstract: "These successes augur well for deciphering the sequence code for IDP-drug binding." - This is not grammatically correct, even if augur were changed to agree. Suggest rewriting.

      “Augur well” means to be a good sign (for something). We use this phrase here in this meaning.

      (6) page 5: "we raised the 𝑞 value of Asp to be the same as that of Glu" → suggested "increased" instead of raised.

      We have made the suggested change.

      (7) The authors should consider releasing the source code (it is available via the .js implementation on the server, but this is not very transferable/shareable, so I'd encourage the authors to provide a stand-alone implementation that's explicitly shareable).

      We have now added a link for the user to download the source code.

    3. Reviewer #2 (Public review):

      Summary:

      In this work, the authors introduce DIRseq, a fast, sequence-based method that predicts drug-interacting residues (DIRs) in IDPs without requiring structural or drug information. DIRseq builds on the authors' prior work looking at NMR relaxation rates, and presumes that those residues that show enhanced R2 values are the residues that will interact with drugs, allowing these residues to be nominated from the sequence directly. By making small modifications to their prior tool, DIRseq enables the prediction of residues seen to interact with small molecules in vivo.

      Strengths:

      The preprint is well written and easy to follow.

    4. Reviewer #1 (Public review):

      Summary:

      The authors developed a sequence-based method to predict drug-interacting residues in IDP, based on their recent work, to predict the transverse relaxation rates (R2) of IDP trained on 45 IDP sequences and their corresponding R2 values. The discovery is that the IDPs interact with drugs mostly using aromatic residues that are easy to understand, as most drugs contain aromatic rings. They validated the method using several case studies, and the predictions are in accordance with chemical shift perturbations and MD simulations. The location of the predicted residues serves as a starting point for ligand optimization.

      Strengths:

      This work provides the first sequence-based prediction method to identify potential drug-interacting residues in IDP. The validity of the method is supported by case studies. It is easy to use, and no time-consuming MD simulations and NMR studies are needed.

      Weaknesses:

      The method does not depend on the information of binding compounds, which may give general features of IDP-drug binding. However, due to the size and chemical structures of the compounds (for example, how many aromatic rings), the number of interacting residues varies, which is not considered in this work. Lacking specific information may restrict its application in compound optimization, aiming to derive specific and potent binding compounds.

      Comments on revised version:

      I'm satisfied with the authors' response and the public review does not need further changes.

    1. Author response:

      The following is the authors’ response to the current reviews.

      eLife Assessment

      The authors examine the effect of cell-free chromatin particles (cfChPs) derived from human serum or from dying human cells on mouse cells in culture and propose that these cfChPs can serve as vehicles for cell-to-cell active transfer of foreign genetic elements. The work presented in this paper is intriguing and potentially important, but it is incomplete. At this stage, the claim that horizontal gene transfer can occur via cfChPs is not well supported because it is only based on evidence from one type of methodological approach (immunofluorescence and fluorescent in situ hybridization (FISH)) and is not validated by whole genome sequencing.

      We disagree with the eLife assessment that our study is incomplete because we did not perform whole genome sequencing. Tens of thousands of genomes have been sequenced, and yet they have failed to detect the presence of the numerous “satellite genomes” that we describe in our paper. To that extent whole genome sequencing has proved to be an inappropriate technology. Rather, eLife should have commended us for the numerous control experiments that we have done to ensure that our FISH probes and antibodies are target specific and do not cross-react.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Horizontal gene transfer is the transmission of genetic material between organisms through ways other than reproduction. Frequent in prokaryotes, this mode of genetic exchange is scarcer in eukaryotes, especially in multicellular eukaryotes. Furthermore, the mechanisms involved in eukaryotic HGT are unknown. This article by Banerjee et al. claims that HGT occurs massively between cells of multicellular organisms. According to this study, the cell free chromatin particles (cfChPs) that are massively released by dying cells are incorporated in the nucleus of neighboring cells.

      The reviewer is mistaken. We do not claim that the internalized cfChPs are incorporated into the nucleus. We show throughout the paper that the cfChPs perform their novel functions autonomously outside the genome without being incorporated into the nucleus. This is clearly seen in all our chromatin fibre images, metaphase spreads and our video abstract. Occasionally, when the cfChPs fluorescent signal overlie the chromosomes, we have been careful to state that the cfChPs are associated with the chromosomes without implying that they have integrated.

      These cfChPs are frequently rearranged and amplified to form concatemers, they are made of open chromatin, expressed, and capable of producing proteins. Furthermore, the study also suggests that cfChPs transmit transposable elements (TEs) between cells on a regular basis, and that these TEs can transpose, multiply, and invade receiving cells. These conclusions are based on a series of experiments consisting in releasing cfChPs isolated from various human sera into the culture medium of mouse cells, and using FISH and immunofluorescence to monitor the state and fate of cfChPs after several passages of the mouse cell line.

      Strengths:

      The results presented in this study are interesting because they may reveal unsuspected properties of some cell types that may be able to internalize free-circulating chromatin, leading to its chromosomal incorporation, expression, and unleashing of TEs. The authors propose that this phenomenon may have profound impacts in terms of diseases and genome evolution. They even suggest that this could occur in germ cells, leading to within-organism HGT with long-term consequences.

      Again the reviewer makes the same mistake. We do not claim that the internalized cfChPs are incorporated into the chromosomes. We have addressed this issue above.

      We have a feeling that the reviewer has not understood our work – which is the discovery of “satellite genomes” which function autonomously outside the nuclear genome.

      Weaknesses:

      The claims of massive HGT between cells through internalization of cfChPs are not well supported because they are only based on evidence from one type of methodological approach: immunofluorescence and fluorescent in situ hybridization (FISH) using protein antibodies and DNA probes. Yet, such strong claims require validation by at least one, but preferably multiple, additional orthogonal approaches. This includes, for example, whole genome sequencing (to validate concatemerization, integration in receiving cells, transposition in receiving cells), RNA-seq (to validate expression), ChiP-seq (to validate chromatin state).

      We disagree with the reviewer that our study is incomplete because we did not perform whole genome sequencing. Tens of thousands of genomes have been sequenced, and yet they have failed to detect the presence of the numerous “satellite genomes” that we describe in our paper. To that extent whole genome sequencing has proved to be an inappropriate approach. Rather, the reviewer should have commended us for the numerous control experiments that we have done to ensure that our FISH probes and antibodies are target specific and do not cross-react.

      Should HGT through internalization of circulating chromatin occur on a massive scale, as claimed in this study, and as illustrated by the many FISH foci observed on Fig 3 for example, one would expect that the level of somatic mosaicism may be so high that it would prevent assembling a contiguous genome for a given organism. Yet, telomere-to-telomere genomes have been produced for many eukaryote species, calling into question the conclusions of this study.

      The reviewer has raised a related issue below and we have responded to both of them together.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      I thank the authors for taking my comments and those of the other reviewer into account and for adding new material to this new version of the manuscript. Among other modifications/additions, they now mention that they think that NIH3T3 cells treated with cfChPs die out after 250 passages because of genomic instability which might be caused by horizontal transfer of cfChPs DNA into the genome of treated cells (pp. 45-46, lines 725-731). However, no definitive formal proof of genomic instability and horizontal transfer is provided.

      We mention that the NIH3T3 cells treated with cfChPs die out after 250 passages in response to the reviewer’s earlier comment “Should HGT through internalization of circulating chromatin occur on a massive scale, as claimed in this study, and as illustrated by the many FISH foci observed in Fig 3 for example, one would expect that the level of somatic mosaicism may be so high that it would prevent assembling a contiguous genome for a given organism”.

      We have agreed with the reviewer and have simply speculated that the cells may die because of extreme genomic instability. We have left it as a speculation without diverting our paper in a different direction to prove genomic instability.

      The authors now refer to an earlier study they conducted in which they Illumina-sequenced NIH3T3 cells treated with cfChPs (pp. 48, lines. 781-792). This study revealed the presence of human DNA in the mouse cell culture. However, it is unclear to me how the author can conclude that the human DNA was inside mouse cells (rather than persisting in the culture medium as cfChPs) and it is also unclear how this supports horizontal transfer of human DNA into the genome of mouse cells. Horizontal transfer implies integration of human DNA into mouse DNA, through the formation of phosphodiester bounds between human nucleotides and mouse nucleotides. The previous Illumina-sequencing study and the current study do not show that such integration has occured. I might be wrong but I tend to think that DNA FISH signals showing that human DNA lies next to mouse DNA does not necessarily imply that human DNA has integrated into mouse DNA. Perhaps such signals could result from interactions at the protein level between human cfChPs and mouse chromatin?

      With due respect, our earlier genome sequencing study that the reviewer refers to was done on two single cell clones developed following treatment with cfChPs. So, the question of cfChPs lurking in the culture medium does not arise.

      The authors should be commended for doing so many FISH experiments. But in my opinion, and as already mentioned in my earlier review of this work, horizontal transfer of human DNA into mouse DNA should first be demonstrated by strong DNA sequencing evidence (multiple long and short reads supporting human/mouse breakpoints; discarding technical DNA chimeras) and only then eventually confirmed by FISH.

      As mentioned earlier, we disagree with the reviewer that our study is incomplete because we did not perform whole genome sequencing. Tens of thousands of genomes have been sequenced, and yet they have failed to detect the presence of the numerous “satellite genomes” that we describe in our paper. To that extent whole genome sequencing has proved to be an inappropriate approach. Rather, the reviewer should have commended us for the numerous control experiments that we have done to ensure that our FISH probes and antibodies are target specific and do not cross-react.

      Regarding my comment on the quantity of human cfChPs that has been used for the experiments, the authors replied that they chose this quantity because it worked in a previous study. Could they perhaps explain why they chose this quantity in the earlier study? Is there any biological reason to choose 10 ng and not more or less? Is 10 ng realistic biologically? Could it be that 10 ng is orders of magnitude higher than the quantity of cfChPs normally circulating in multicellular organisms and that this could explain, at least in part, the results obtained in this study?

      The reviewer again raises the same issue to which we have already addressed in our revised manuscript. To quote “We chose to use 10ng based on our earlier report in which we had obtained robust biological effects such as activation of DDR and activation of apoptotic pathways using this concentration of cfChPs (Mittra I et. al., 2015)”.

      It is also mentioned in the response that RNA-seq has been performed on mouse cells treated with cfChPs, and that this confirms human-mouse fusion (genomic integration). Since these results are not included in the manuscript, I cannot judge how robust they are and whether they reflect a biological process rather than technical issues (technical chimeras formed during the RNA-seq protocol is a well-known artifact). In any case, I do not think that genomic integration can be demonstrated through RNA-seq as junction between human and mouse RNA could occur at the RNA level (i.e. after transcription). RNA-seq could however show whether human-mouse chimeras that have been validated by DNA-sequencing are expressed or not.

      We did perform transcriptome sequencing as suggested earlier by the reviewer, but realized that the amount of material required to be incorporated into the manuscript to include “material and methods”, “results”, “discussion”, “figures” and “legends to figures” and “supplementary figures and tables” would be so massive that it will detract from the flow of our work and hijack it in a different direction. We have, therefore, decided to publish the transcriptome results as a separate manuscript.

      Given these comments, I believe that most of the weaknesses I mentioned in my review of the first version of this work still hold true.

      An important modification is that the work has been repeated in other cell lines, hence I removed this criticism from my earlier review.

      Additional changes made

      (1) We have now rewritten the “Abstract” to 250 words to fit in eLife’s instructions. (It was not possible to reduce the word count further.

      (2) We have provided the Video 1 as separate file instead of link.

      (3) Some of Figure Supplements (which were stand-alone) are now given as main figures. We have re-arranged Figures and Figure Supplements in accordance with eLife’s instructions.

      (4) We have now provided a list of the various cell lines used in this study, their tissue origin and procurement source in Supplementary File 3.


      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Horizontal gene transfer is the transmission of genetic material between organisms through ways other than reproduction. Frequent in prokaryotes, this mode of genetic exchange is scarcer in eukaryotes, especially in multicellular eukaryotes. Furthermore, the mechanisms involved in eukaryotic HGT are unknown. This article by Banerjee et al. claims that HGT occurs massively between cells of multicellular organisms. According to this study, the cell free chromatin particles (cfChPs) that are massively released by dying cells are incorporated in the nucleus of neighboring cells. These cfChPs are frequently rearranged and amplified to form concatemers, they are made of open chromatin, expressed, and capable of producing proteins. Furthermore, the study also suggests that cfChPs transmit transposable elements (TEs) between cells on a regular basis, and that these TEs can transpose, multiply, and invade receiving cells. These conclusions are based on a series of experiments consisting in releasing cfChPs isolated from various human sera into the culture medium of mouse cells, and using FISH and immunofluorescence to monitor the state and fate of cfChPs after several passages of the mouse cell line.

      Strengths:

      The results presented in this study are interesting because they may reveal unsuspected properties of some cell types that may be able to internalize free-circulating chromatin, leading to its chromosomal incorporation, expression, and unleashing of TEs. The authors propose that this phenomenon may have profound impacts in terms of diseases and genome evolution. They even suggest that this could occur in germ cells, leading to within-organism HGT with long-term consequences.

      Weaknesses:

      The claims of massive HGT between cells through internalization of cfChPs are not well supported because they are only based on evidence from one type of methodological approach: immunofluorescence and fluorescent in situ hybridization (FISH) using protein antibodies and DNA probes. Yet, such strong claims require validation by at least one, but preferably multiple, additional orthogonal approaches. This includes, for example, whole genome sequencing (to validate concatemerization, integration in receiving cells, transposition in receiving cells), RNA-seq (to validate expression), ChiP-seq (to validate chromatin state).

      We have responded to this criticism under “Reviewer #1 (Recommendations for the authors, item no. 1-4)”.

      Another weakness of this study is that it is performed only in one receiving cell type (NIH3T3 mouse cells). Thus, rather than a general phenomenon occurring on a massive scale in every multicellular organism, it could merely reflect aberrant properties of a cell line that for some reason became permeable to exogenous cfChPs. This begs the question of the relevance of this study for living organisms.

      We have responded to this criticism under “Reviewer #1 (Recommendations for the authors, item no. 6)”.

      Should HGT through internalization of circulating chromatin occur on a massive scale, as claimed in this study, and as illustrated by the many FISH foci observed in Fig 3 for example, one would expect that the level of somatic mosaicism may be so high that it would prevent assembling a contiguous genome for a given organism. Yet, telomere-to-telomere genomes have been produced for many eukaryote species, calling into question the conclusions of this study.

      The reviewer is right in expecting that the level of somatic mosaicism may be so high that it would prevent assembling a contiguous genome. This is indeed the case, and we find that beyond ~ 250 passages the cfChPs treated NIH3T3 cells begin to die out apparently become their genomes have become too unstable for survival. This point will be highlighted in the revised version (pp. 45-46, lines 725-731).

      Reviewer #2 (Public review):

      I must note that my comments pertain to the evolutionary interpretations rather than the study's technical results. The techniques appear to be appropriately applied and interpreted, but I do not feel sufficiently qualified to assess this aspect of the work in detail.

      I was repeatedly puzzled by the use of the term "function." Part of the issue may stem from slightly different interpretations of this word in different fields. In my understanding, "function" should denote not just what a structure does, but what it has been selected for. In this context, where it is unclear if cfChPs have been selected for in any way, the use of this term seems questionable.

      We agree. We have removed the term “function” wherever we felt we had used it inappropriately.

      Similarly, the term "predatory genome," used in the title and throughout the paper, appears ambiguous and unjustified. At this stage, I am unconvinced that cfChPs provide any evolutionary advantage to the genome. It is entirely possible that these structures have no function whatsoever and could simply be byproducts of other processes. The findings presented in this study do not rule out this neutral hypothesis. Alternatively, some particular components of the genome could be driving the process and may have been selected to do so. This brings us to the hypothesis that cfChPs could serve as vehicles for transposable elements. While speculative, this idea seems to be compatible with the study's findings and merits further exploration.

      We agree with the reviewer’s viewpoint. We have replaced the term “predatory genome” with a more realistic term “satellite genome” in the title and throughout the manuscript. We have also thoroughly revised the discussion section and elaborated on the potential role of LINE-1 and Alu elements carried by the concatemers in mammalian evolution. (pp. 46-47, lines 743-756).

      I also found some elements of the discussion unclear and speculative, particularly the final section on the evolution of mammals. If the intention is simply to highlight the evolutionary impact of horizontal transfer of transposable elements (e.g., as a source of new mutations), this should be explicitly stated. In any case, this part of the discussion requires further clarification and justification.

      As mentioned above, we have revised the “discussion” section taking into account the issues raised by the reviewer and highlighted the potential role of cfChPs in evolution by acting as vehicles of transposable elements.

      In summary, this study presents important new findings on the behavior of cfChPs when introduced into a foreign cellular context. However, it overextends its evolutionary interpretations, often in an unclear and speculative manner. The concept of the "predatory genome" should be better defined and justified or removed altogether. Conversely, the suggestion that cfChPs may function at the level of transposable elements (rather than the entire genome or organism) could be given more emphasis.

      As mentioned above, we have replaced the term “predatory genome” with “satellite genome” and revised the “discussion” section taking into account the issues raised by the reviewer.

      Reviewer #1 (Recommendations for the authors):

      (1) I strongly recommend validating the findings of this study using other approaches. Whole genome sequencing using both short and long reads should be used to validate the presence of human DNA in the mouse cell line, as well as its integration into the mouse genome and concatemerization. Breakpoints between mouse and human DNA can be searched in individual reads. Finding these breakpoints in multiple reads from two or more sequencing technologies would strengthen their biological origin. Illumina and ONT sequencing are now routinely performed by many labs, such that this validation should be straightforward. In addition to validating the findings of the current study, it would allow performance of an in-depth characterization of the rearrangements undergone by both human cfChPs and the mouse genome after internalization of cfChPs, including identification of human TE copies integrated through bona fide transposition events into the mouse genome. New copies of LINE and Alu TEs should be flanked by target site duplications. LINE copies should be frequently 5' truncated, as observed in many studies of somatic transposition in human cells.

      (2) Furthermore, should the high level of cell-to-cell HGT detected in this study occur on a regular basis within multicellular organisms, validating it through a reanalysis of whole genome sequencing data available in public databases should be relatively easy. One would expect to find a high number of structural variants that for some reason have so far gone under the radar.

      (3) Short and long-read RNA-seq should be performed to validate the expression of human cfChPs in mouse cells. I would also recommend performing ChIP-seq on routinely targeted histone marks to validate the chromatin state of human cfChPs in mouse cells.

      (4) The claim that fused human proteins are produced in mouse cells after exposing them to human cfChPs should be validated using mass spectrometry.

      The reviewer has suggested a plethora of techniques to validate our findings. Clearly, it is neither possible to undertake all of them nor to incorporate them into the manuscript. However, as suggested by the reviewer, we did conduct transcriptome sequencing of cfChPs treated NIH3T3 cells and were able to detect the presence of human-human fusion sequences (representing concatemerisation) as well as human-mouse fusion sequences (representing genomic integration). However, we realized that the amount of material required to be incorporated into the manuscript to include “material and methods”, “results”, “discussion”, “figures” and “legends to figures” and “supplementary figures and tables” would be so massive that it will detract from the flow of our work and hijack it in a different direction. We have, therefore, decided to publish the transcriptome results as a separate manuscript. However, to address the reviewer’s concerns we have now referred to results of our earlier whole genome sequencing study of NIH3T3 cells similarly treated with cfChPs wherein we had conclusively detected the presence of human DNA and human Alu sequences in the treated mouse cells. These findings have now been added as an independent paragraph (pp. 48, lines. 781-792).

      (5) It is unclear from what is shown in the paper (increase in FISH signal intensity using Alu and L1 probes) if the increase in TE copy number is due to bona fide transposition or to amplification of cfChPs as a whole, through mechanisms other than transposition. It is also unclear whether human TEs end up being integrated into the neighboring mouse genome. This should be validated by whole genome sequencing.

      Our results suggest that TEs amplify and increase their copy number due to their association with DNA polymerase and their ability to synthesize DNA (Figure 14a and b). Our study design cannot demonstrate transposition which will require real time imaging.

      The possibility of incorporation of TEs into the mouse genome is supported by our earlier genome sequencing work, referred to above, wherein we detected multiple human Alu sequences in the mouse genome (pp. 48, lines. 781-792).

      (6) In order to be able to generalize the findings of this study, I strongly encourage the authors to repeat their experiments using other cell types.

      We thank the reviewer for this suggestion. We have now used four different cell lines derived from four different species and demonstrated that horizontal transfer of cfChPs occur in all of them suggesting that it is a universal phenomenon. (pp. 37, lines 560-572) and (Supplementary Fig. S14a-d).

      We have also mentioned this in the abstract (pp. 3, lines 52-54).

      (7) Since the results obtained when using cfChPs isolated from healthy individuals are identical to those shown when using cfChPs from cancer sera, I wonder why the authors chose to focus mainly on results from cancer-derived cfChPs and not on those from healthy sera.

      Most of the experiments were conducted using cfChPs isolated from cancer patients because of our especial interest in cancer, and our earlier results (Mittra et al., 2015) which had shown that cfChPs isolated from cancer patients had significantly greater activity in terms of DNA damage and activation of apoptotic pathways than those isolated from healthy individuals. We have now incorporated the above justification on (pp. 6, lines. 124-128).

      (8) Line 125: how was the 10-ng quantity (of human cfChPs added to the mouse cell culture) chosen and how does it compare to the quantity of cfChPs normally circulating in multicellular organisms?

      We chose to use 10ng based on our earlier report in which we had obtained robust biological effects such as activation of DDR and apoptotic pathways using this concentration of cfChPs (Mittra I et. al. 2015). We have now incorporated the justification of using this dose in our manuscript (pp. 51-52, lines. 867-870).

      (9) Could the authors explain why they repeated several of their experiments in metaphase spreads, in addition to interphase?

      We conducted experiments on metaphase spreads in addition to those on chromatin fibres because of the current heightened interest in extra-chromosomal DNA in cancer, which have largely been based on metaphase spreads. We were interested to see how the cfChP concatemers might relate to the characteristics of cancer extrachromosomal DNA and whether the latter in fact represent cfChPs concatemers acquired from surrounding dying cancer cells. We have now mentioned this on pp. 7, lines 150-155.

      (10) Regarding negative controls consisting in checking whether human probes cross-react with mouse DNA or proteins, I suggest that the stringency of washes (temperature, reagents) should be clearly stated in the manuscript, such that the reader can easily see that it was identical for controls and positive experiments.

      We were fully aware of these issues and were careful to ensure that washing steps were conducted meticulously. The careful washing steps have been repeatedly emphasized under the section on “Immunofluorescence and FISH” (pp. 54-55, lines. 922-944).

      (11) I am not an expert in Immuno-FISH and FISH with ribosomal probes but it can be expected that ribosomal RNA and RNA polymerase are quite conserved (and thus highly similar) between humans and mice. A more detailed explanation of how these probes were designed to avoid cross-reactivity would be welcome.

      We were aware of this issue and conducted negative control experiment to ensure that the human ribosomal RNA probe and RNA polymerase antibody did not cross-react with mouse. Please see Supplementary Fig. S4c.

      (12) Finally, I could not understand why the cfChPs internalized by neighboring cells are called predatory genomes. I could not find any justification for this term in the manuscript.

      We agree and this criticism has also been made by #Reviewer 2. We have now replaced the term “predatory” genomes with “satellite” genomes.

      Reviewer #2 (Recommendations for the authors):

      (1) P2 L34: The term "role" seems to imply "what something is supposed to do" (similar to "function"). Perhaps "impact" would be more neutral. Additionally, "poorly defined" is vague-do you mean "unknown"?

      We thank the reviewer for this suggestion. We have now rephrased the sentence to read “Horizontal gene transfer (HGT) plays an important evolutionary role in prokaryotes, but it is thought to be less frequent in mammals.” (pp. 2, lines. 26-27).

      (2) P2 L35: It seems that the dash should come after "human blood."

      Thank you, we have changed the position of the dash (pp. 2, line. 29).

      (3) P2 L37: Must we assume these structures have a function? Could they not simply be side effects of other processes?

      We think this is a matter of semantics, especially since we show that cfChPs once inside the cell perform many functions such as replication, DNA synthesis, RNA synthesis, protein synthesis etc. We, therefore, think the word “function” is not inappropriate.

      (4) Abstract: After reading the abstract, I am unclear on the concept of a "predatory genome." Based on the summarized results, it seems one cannot conclude that these elements provide any adaptive value to the genome.

      We agree. We have now replaced the term “predatory” genomes with a more realistic term viz. “satellite” genomes.

      (5) Video abstract: The video abstract does not currently stand on its own and needs more context to be self-explanatory.

      Thank you for pointing this out. We have now created a new and much more professional video with more context which we hope will meet with the reviewer’s approval.

      (6) P4 L67: Again, I am uncertain that HGT should be said to have "a role" in mammals, although it clearly has implications and consequences. Perhaps "role" here is intended to mean "consequence"?

      We have now changed the sentence to read as follows “However, defining the occurrence of HGT in mammals has been a challenge” (pp. 4, line. 73).

      (7) P6 L111: The phrase "to obtain a new perspective about the process of evolution" is unclear. What exactly is meant by this statement?

      We have replaced this sentence altogether which now reads “The results of these experiments are presented in this article which may help to throw new light on mammalian evolution, ageing and cancer” (pp. 5-6, lines 116-118).

      (8) P38 L588: The term "predatory genome" has not been defined, making it difficult to assess its relevance.

      This issue has been addressed above.

      (9) P39 L604: The statement "transposable elements are not inherent to the cell" suggests that some TEs could originate externally, but this does not rule out that others are intrinsic. In other words, TEs are still inherent to the cell.

      This part of the discussion section has been rewritten and the above sentence has been deleted.

      (10) P39 L609: The phrase "may have evolutionary functions by acting as transposable elements" is unclear. Perhaps it is meant that these structures may serve as vehicles for TEs?

      This sentence has disappeared altogether in the revised discussion section.

      (11) P41 L643: "Thus, we hypothesize ... extensively modified to act as foreign genetic elements." This sentence is unclear. Are the authors referring to evolutionary changes in mammals in general (which overlooks the role of standard mutational processes)? Or is it being proposed that structural mutations (including TE integrations) could be mediated by cfChPs in addition to other mutational mechanisms?

      We have replaced this sentence which now reads “Thus, “within-self” HGT may occur in mammals on a massive scale via the medium of cfChP concatemers that have undergone extensive and complex modifications resulting in their behaviour as “foreign” genetic elements” (pp. 47, lines 763-766).

      (12) P41 L150: The paragraph beginning with "It has been proposed that extreme environmental..." transitions too abruptly from HGT to adaptation. Is it being proposed that cfChPs are evolutionary processes selected for their adaptive potential? This idea is far too speculative at this stage and requires clarification.

      We agree. This paragraph has been removed.

      (13) P43 L681: This summary appears overly speculative and unclear, particularly as the concept of a "predatory genome" remains undefined and thus cannot be justified. It suggests that cfChPs represent an alternative lifestyle for the entire genome, although alternative explanations seem far more plausible at this point.

      We have now replaced the term “predatory” genome with “satellite” genome. The relevant part of the summary section has also been partially revised (pp. 49-50, lines 817-831).

      Changes independent of reviewers’ comments.

      We have made the following additions / modifications.

      (1) The abstract has been modified and it’s “conclusion” section has been rewritten.

      (2) Section 1.14 has been newly added together with accompanying Figures 15 a,b and c.

      (3) The “Discussion” section has been greatly modified and parts of it has been rewritten.

    1. eLife Assessment

      This fundamental study reveals that aging in yeast leads to chromosome mis-segregation due to asymmetric partitioning of chromosomes, driven by disruption of the nuclear pore complex and pre-mRNA leakage. The findings are convincingly supported by carefully-designed experimental data with a combination of genetic, molecular biology and cell biology approaches.

    2. Reviewer #1 (Public review):

      Summary:

      In this study, the authors explore a novel mechanism linking aging to chromosome mis-segregation and aneuploidy in yeast cells. They reveal that, in old yeast mother cells, chromosome loss occurs through asymmetric partitioning of chromosomes to daughter cells, a process coupled with the inheritance of an old Spindle Pole Body. Remarkably, the authors identify that remodeling of the nuclear pore complex (NPC), specifically the displacement of its nuclear basket, triggers these asymmetric segregation events. This disruption also leads to the leakage of unspliced pre-mRNAs into the cytoplasm, highlighting a breakdown in RNA quality control. Through genetic manipulation, the study demonstrates that removing introns from key chromosome segregation genes is sufficient to prevent chromosome loss in aged cells. Moreover, promoting pre-mRNA leakage in young cells mimics the chromosome mis-segregation observed in old cells, providing further evidence for the critical role of nuclear envelope integrity and RNA processing in aging-related genome instability.

      Strengths:

      The findings presented are not only intriguing but also well-supported by robust experimental data, highlighting a previously unrecognized connection between nuclear envelope integrity, RNA processing, and genome stability in aging cells, deepening our understanding of the molecular basis of chromosome loss in aging.

      Weaknesses:

      The authors have satisfactorily addressed my concerns.

    3. Reviewer #2 (Public review):

      Summary:

      The authors make the interesting discovery of increased chromosome non-dysjunction in aging yeast mother cells. The phenotype is quite striking and well supported with solid experimental evidence. This is quite significant to a haploid cell (as used here) - loss of an essential chromosome leads to death soon thereafter. The authors then work to tie this phenotype to other age-associated phenotypes that have been previously characterized: accumulation of extrachromosomal rDNA circles that then correlate with compromised nuclear pore export functions, which correlates with "leaky" pores that permit unspliced mRNA messages to be inappropriately exported to the cytoplasm. They then infer that three intron containing mRNAs that encode portions in resolving sister chromatid separation during mitosis, are unspliced in this age-associated defect and thus lead to the non-dysjunction problem.

      Strengths:

      The discovery of age-associated chromosome non-dysjunction is an interesting discovery, and it is demonstrated in a convincing fashion with "classic" microscopy-based single cell fluorescent chromosome assays that are appropriate and seem robust. The correlation of this phenotype with other age-associated phenotypes - specifically extrachromosomal rDNA circles and nuclear pore dysfunction - is supported by in vivo genetic manipulations that have been well-characterized in the past.

      In addition, the application of the single cell mRNA splicing defect reporter showed very convincingly that general mRNA splicing is compromised in aged cells. Such a pleiotropic event certainly has big implications.

      Weaknesses:

      The authors have addressed my major concerns with experimentation or clarification.

    4. Reviewer #3 (Public review):

      Summary:

      Mirkovic et al explore the cause underlying development of aneuploidy during aging. This paper provides a compelling insight into the basis of chromosome missegregation in aged cells, tying this phenomenon to the established Nuclear Pore Complex architecture remodeling that occurs with aging across a large span of diverse organisms. The authors first establish that aged mother cells exhibit aberrant error correction during mitosis. As extrachromosomal rDNA circles (ERCs) are known to increase with age and lead to NPC dysfunction that can result in leakage of unspliced pre-mRNAs, Mirkovic et al search for intron-containing genes in yeast that may be underlying chromosome missegregation, identifying three genes in the aurora B-dependent error correction pathway: MCM21, NBL1, and GLC7. Interestingly, intron-less mutants in these genes suppress chromosome loss in aged cells, with a significant impact observed when all three introns were deleted (3x∆i). The 3x∆i mutant also suppresses the increased chromosome loss resulting from nuclear basket destabilization in a mlp1∆ mutant. The authors then directly test if aged cells do exhibit aberrant mRNA export, using RNA FISH to identify that old cells indeed leak intron-containing pre-mRNA into the cytoplasm, as well as a reporter assay to demonstrate translation of leaked pre-mRNA, and that this is suppressed in cells producing less ERCs. Mutants causing increased pre-mRNA leakage are sufficient to induce chromosome missegregation, which is suppressed by the 3x∆i.

      Strengths:

      The finding that deleting the introns of 3 genes in the Aurora B pathway can suppress age-related chromosome missegregation is highly compelling. Additionally, the rationale behind the various experiments in this paper is well-reasoned and clearly explained.

      Weaknesses:

      My main concerns have been thoroughly addressed by the authors.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      In this study, the authors explore a novel mechanism linking aging to chromosome mis-segregation and aneuploidy in yeast cells. They reveal that, in old yeast mother cells, chromosome loss occurs through asymmetric partitioning of chromosomes to daughter cells, a process coupled with the inheritance of an old Spindle Pole Body. Remarkably, the authors identify that remodelling of the nuclear pore complex (NPC), specifically the displacement of its nuclear basket, triggers these asymmetric segregation events. This disruption also leads to the leakage of unspliced pre-mRNAs into the cytoplasm, highlighting a breakdown in RNA quality control. Through genetic manipulation, the study demonstrates that removing introns from key chromosome segregation genes is sufficient to prevent chromosome loss in aged cells. Moreover, promoting pre-mRNA leakage in young cells mimics the chromosome mis-segregation observed in old cells, providing further evidence for the critical role of nuclear envelope integrity and RNA processing in aging-related genome instability. 

      Strengths: 

      The findings presented are not only intriguing but also well-supported by robust experimental data, highlighting a previously unrecognized connection between nuclear envelope integrity, RNA processing, and genome stability in aging cells, deepening our understanding of the molecular basis of chromosome loss in aging. 

      We thank the reviewer for this very positive assessment of our work

      Weaknesses: 

      Further analysis of yeast aging data from microfluidic experiments will provide important information about the dynamic features and prevalence of the key aging phenotypes, e.g. pre-mRNA leakage and chromosome loss, reported in this work. 

      We thank the reviewer for bringing this point, which we have addressed in the revised version of the manuscript.  In short, chromosome loss is an abrupt, late event in the lifespan of the cells. To examine its prevalence, we have quantified the combined loss frequency of two chromosomes when both are labelled in the same cell. Whereas single chromosomes are lost at a frequency of 10-15% per cell, less than 5% of the cells lose both at the same time.  Thus, the different chromosomes are lost largely but not fully independently from each other. Based on these data, and on the fact that yeast cells have 16 chromosomes, we evaluate that about half of the cells lose at least one chromosome in their final cell cycle.

      We also tried to estimate the prevalence of the pre-mRNA leakage phenotype, based on the increased mCherry to GFP ratio observed between 0h and 24 hours of aging for 146 individual cells. For this analysis, we compared the mCherry/GFP ratio at 0 and 24h for the same individual cell. This analysis indicates that 81% of the cells show a fold change strictly above 1 as they age. Furthermore, the data appears to be unimodal. Thus, we can conservatively conclude that a majority of the cells show premRNA leakage at 24 hours.  Since not all cells are at the end of their life at that time, this is possibly an underestimate.

      In addition, a discussion would be needed to clarify the relationship between "chromosome loss" in this study and "genomic missegregation" reported previously in yeast aging. 

      Genomic mis-segregation is characterized by the entry of both SPBs and all the chromosomes into the daughter cell compartment (PMID: 31714209).  We have observed these events in our movies as well.  However, the chromosome loss phenotype that we are focusing on affects only some chromosomes (as discussed above) and takes place under proper elongation of the spindle, with one SPB remaining in the mother cell whereas the other one goes to the bud, as shown in the manuscript’s Figure 2.  In our movies, chromosome loss is at least three-fold more frequent (for a single chromosome) than full genome mis-segregation (Sup Fig 1A-B). Furthermore, whereas chromosome loss is alleviated by the removal of the introns of MCM21, NBL1 and GLC7, genomic mis-segregation is not (Sup Fig 1B).  Thus, genomic mis-segregation mentioned by the reviewer is a process distinct from the chromosome loss that we report.  This discussion and the relevant data have been added to the manuscript.

      We thank the reviewer for bringing up the possible confusion between these two phenotypes, allowing us to clarify this point.

      Reviewer #2 (Public review): 

      Summary: 

      The authors make the interesting discovery of increased chromosome non-dysjunction in aging yeast mother cells. The phenotype is quite striking and well supported with solid experimental evidence. This is quite significant to a haploid cell (as used here) - loss of an essential chromosome leads to death soon thereafter. The authors then work to tie this phenotype to other age-associated phenotypes that have been previously characterized: accumulation of extrachromosomal rDNA circles that then correlate with compromised nuclear pore export functions, which correlates with "leaky" pores that permit unspliced mRNA messages to be inappropriately exported to the cytoplasm. They then infer that three intron containing mRNAs that encode portions in resolving sister chromatid separation during mitosis, are unspliced in this age-associated defect and thus lead to the non-dysjunction problem. 

      Strengths: The discovery of age-associated chromosome non-dysjunction is an interesting discovery, and it is demonstrated in a convincing fashion with "classic" microscopy-based single cell fluorescent chromosome assays that are appropriate and seem robust. The correlation of this phenotype with other age-associated phenotypes - specifically extrachromosomal rDNA circles and nuclear pore dysfunction - is supported by in vivo genetic manipulations that have been well-characterized in the past. 

      In addition, the application of the single cell mRNA splicing defect reporter showed very convincingly that general mRNA splicing is compromised in aged cells. Such a pleiotropic event certainly has big implications. 

      We thank the reviewer for this assessment of our work.  To avoid confusion, we would like to stress out, however, that our data do not show that splicing per se is defective in old cells.  Actually, we specifically show that the cells are unlikely to show splicing defect (last figure of the original and the revised version of the manuscript). Our data specifically show that unspliced mRNAs tend to leak out of the nucleus of old cells.

      Weaknesses: 

      The biggest weakness is "connecting all the dots" of causality and linking the splicing defect to chromosome disjunction. I commend the authors for making a valiant effort in this regard, but there are many caveats to this interpretation. While the "triple intron" removal suppressed the non-dysjunction defect in aged cells, this could simply be a kinetic fix, where a slowdown in the relevant aspects of mitosis, could give the cell time to resolve the syntelic attachment of the chromatids.  

      The possibility that intron-removal leads to a kinetic fix is an interesting idea that we have now considered.  In the revised manuscript, we now provide measurements of mitotic duration in the “triple intron” mutant compared to wild type cells and the duration of their last cell cycle (See supplementary figure 3A-D). There is no evidence that removing these introns slows down mitosis.  Thus, the kinetic fix hypothesis is unlikely to explain our observation about the effect of intron removal.

      To this point, I note that the intron-less version of GLC7, which affects the most dramatic suppression of the three genes, is reported by one of the authors to have a slow growth rate (Parenteau et al, 2008 - https://doi.org/10.1091/mbc.e07-12-1254)

      The reviewer is right, removing the intron of GLC7 reduces the expression levels of the gene product (PMID: 16816425) to about 50% of the original value and causes a slow growth phenotype.  However, the cells revert fairly rapidly through duplication of the GLC7-∆i gene (see supplementary Figure 3EF).  As a consequence, neither the GLC7-∆i nor the 3x∆i mutant strains show noticeable growth phenotypes by spot assays.  We now document these findings in supplementary figure 3.  

      Lastly, the Herculean effort to perform FISH of the introns in the cytoplasm is quite literally at the statistical limit of this assay. The data were not as robust as the other assays employed through this study. The data show either "no" signal for the young cells or a signal of 0, 1, or 2 FISH foci in the aged cells. In a Poisson distribution, which this follows, it is improbable to distinguish between these differences. 

      This is correct, this experiment was not the easiest of the manuscript... However, despite the limitations of the assay, the data presented in figure 7B are very clear.  300 cells aged by MEP were analysed, divided in the cohorts of 100 each, and the distribution of foci (nuclear vs cytoplasmic) in these aged cells were compared to the distribution in three cohorts of young cells.  For all 3 aged cohorts, over 70% of the visible foci were cytoplasmic, while in the young cells, this figure was around 3%.  A t-test was conducted to compare these frequencies between young and old cells (Figure 7B). The difference is highly significant.  Therefore, we are clearly not at the statistical limit.

      What the reviewer refers to is the supplementary Figure 4, where we were simply asking i) is the signal lost in cells lacking the intron of GLC7 (the response is unambiguously yes) and ii) what is the general number of dots per cell between young and old wild type cells (without distinguishing between nuclear and cytoplasmic) and the information to be taken from this last quantification is indeed that there is no clearly distinguishable difference between these two population of cells, as the reviewer rightly concludes.  In other word, the reason why there are more dots in the cytoplasm of the old cells in the Figure 7B is not because the old cells have much more dots in general (see supplementary Figure 4C).  We hope that these clarifications help understand the data better.  We have edited the manuscript to avoid confusion.

      Reviewer #3 (Public review): 

      Summary: 

      Mirkovic et al explore the cause underlying development of aneuploidy during aging. This paper provides a compelling insight into the basis of chromosome missegregation in aged cells, tying this phenomenon to the established Nuclear Pore Complex architecture remodelling that occurs with aging across a large span of diverse organisms. The authors first establish that aged mother cells exhibit aberrant error correction during mitosis. As extrachromosomal rDNA circles (ERCs) are known to increase with age and lead to NPC dysfunction that can result in leakage of unspliced pre-mRNAs, Mirkovic et al search for intron-containing genes in yeast that may be underlying chromosome missegregation, identifying three genes in the aurora B-dependent error correction pathway: MCM21, NBL1, and GLC7. Interestingly, intron-less mutants in these genes suppress chromosome loss in aged cells, with a significant impact observed when all three introns were deleted (3x∆i). The 3x∆i mutant also suppresses the increased chromosome loss resulting from nuclear basket destabilization in a mlp1∆ mutant. The authors then directly test if aged cells do exhibit aberrant mRNA export, using RNA FISH to identify that old cells indeed leak intron-containing pre-mRNA into the cytoplasm, as well as a reporter assay to demonstrate translation of leaked pre-mRNA, and that this is suppressed in cells producing less ERCs. Mutants causing increased pre-mRNA leakage are sufficient to induce chromosome missegregation, which is suppressed by the 3x∆i. 

      Strengths: 

      The finding that deleting the introns of 3 genes in the Aurora B pathway can suppress age-related chromosome missegregation is highly compelling. Additionally, the rationale behind the various experiments in this paper is well-reasoned and clearly explained. 

      We thank the reviewer for their very positive assessment of our work

      Weaknesses:  

      In some cases, controls for experiments were not presented or were depicted in other figures. 

      We are sorry about this confusion.  We have improved our presentation of the controls, bringing them back each time they are relevant.  We have also added those that were missing (such as those mentioned by reviewer 2, see above). Note that the frequencies of centromeric plasmid loss at 0h in Figure 1C is not meaningful and therefore not presented. Since the cells were grown on selective medium before loading on to the ageing chip, we cannot report a plasmid loss frequency here. The ageing experiments themselves were subsequently conducted in full medium, to allow for centromeric plasmid loss without killing the cell. We explain this in the materials and methods section.

      High variability was seen in chromosome loss data, leading to large error bars. 

      We thank the reviewer for this comment. The variance in those two figures (3A and 5D) comes from the suboptimal plotting of this data. This is now corrected as follows.  We divided the available data into 4 cohorts and then plotted the average loss frequency across these cohorts for the indicated age groups.  This filters out much of the noise and improves the statistical resolution.

      The text could have been more polished. 

      Thank you for this comment.  We have gone through the manuscript again in detail.

      Reviewer #1 (Recommendations for the authors):

      (1) A previous study (PMID: 31714209). showed that aging yeast cells undergo genomic missegregation in which material was abnormally segregated to the daughter cells, leading to cell cycle arrest. After that, the missegregation is either corrected by returning aberrantly segregated genetic material to the mother cells so that they can resume cell cycles, or if not corrected, the mother cells will terminally exist the cell cycle and eventually die. That paper also showed that this agedependent genomic missegregation is related to rDNA instability. Is the chromosome loss in this work related to the genomic missegregation reported before? Is it partially reversible like genomic missegregation? Are all the chromosomes lost in one cell division, like in the case of genomic missegregation? Some additional characterization and a discussion would be helpful. 

      As mentioned above, indeed the phenotype of full genome mis-segregation described by Crane et al. (2019) is observable in our data as well. At 24h ~3% of the cells segregate both SPBs to the bud, as they previously described (Supp Figure 1A and B).  This phenomenon is clearly distinct from asymmetric chromosome partition, where cells undergo anaphase, separate the SPBs and segregate one to the mother cell and one to the bud (Figure 2A).  Also, asymmetric chromosome partitioning affects only a subset of the chromosomes (see below), not the entire genome. Finally, unlike asymmetric chromosome partitioning, the frequency of genome mis-segregation in ageing was not alleviated by intron removal (Supp Figure 1B). Thus, these two processes are clearly distinct and driven by different mechanisms. Note that asymmetric chromosome partitioning appears 3 to 5 times more frequently than genomic mis-segregation.

      Supporting further the notion that these two processes are distinct, chromosome loss seals the end of the life of the cell, as we reported, indicating that this is not a reversible event.  Also, it does not involve all chromosomes at once. Cells that contain the labelled versions of both chromosome II and IV at the same time, the loss frequency of both chromosomes is less than 5%, whereas each chromosome is lost in 10-15% of the cells (Figure 1C). Thus, most cells lose one and keep the other. Furthermore, this indicates that there are many more cells losing at least one chromosome than the 15% that lose chromosome IV for example, probably 50% or more.  Thus, chromosome loss by asymmetric segregation is much more frequent than the partly transient transfer of the entire nucleus to the bud.

      (2) What percentage of aging WT cells undergo pre-mRNA leakage (using the GFP/mCherry reporter) during their entire lifespan? Is it a sporadic, reversible process or an accumulative, one-way deterioration? Previous studies (PMID: 32675375; PMID: 24332850; PMID: 36194205; PMID: 31291577) showed that only a fraction of yeast cells age with rDNA instability and ERC accumulation, as indicated by excessive rRNA transcription and nucleolar enlargement. Are they the same fraction of aging cells that undergo pre-mRNA leakage and chromosome loss? This information will indicate the prevalence of the key aging phenotypes reported in this work and should be readily obtainable from microfluidic experiments. In addition, a careful discussion would be helpful. 

      Pre-mRNA leakage is relatively widespread in the population, but it is difficult to put a precise number on it. Analysis of how the mCherry/GFP ratio changes in 146 individual cells between 0 and 24 hours and imaging in our microfluidics platform indicates that ~80% show an increase and 50% of the cells show an increase above 1.5-fold. Therefore, the frequencies of pre-mRNA leakage and chromosome loss are probably similar.  We have modified the discussion to account for these considerations.  This would be in the same range as the frequency of aging by ERC accumulation (mode 1) estimated by PMID: 32675375. 

      Reviewer #2 (Recommendations for the authors)

      The manuscript could use a bit of editing in places - please go through it once more. 

      Editing suggestions: 

      Line 80 – irrespective

      Corrected.

      Line 97 - these are not "rates" but frequencies. Please correct this error throughout. 

      Replaced “rate” with “frequency throughout the manuscript and the figures, when pertaining to chromosome loss

      Line 328 - increase in chromosome... 

      Corrected.

      Line 379 - tampering 

      Reviewer #3 (Recommendations for the authors):

      Specific Feedback to Authors 

      (a) Major Points 

      (i) While the proposed connection between ERC-mediated nuclear basket removal and erroneous error correction was clearly stated, this connection is correlative and was not directly tested. Specifically, although mutants impacting ERC levels were tested for missegregation, it was not directly tested if increased missegregation levels occurred due to ERC tethering to the NPC and subsequent nuclear basket removal. It is possible that the increased ERCs may be driving missegregation via a different pathway. Authors should consider experiments to strengthen this idea, such as looking at chromosome loss frequency in a sir2∆ 3x∆i double mutant, or a sir2∆ sgf73∆ double mutant. 

      This connection is addressed in the original version of the manuscript, where we show that preventing attachment of ERCs to the NPC, by removing the linker protein Sgf73, alleviates chromosome loss.  The link is further substantiated by the fact that removing the basket on its own promote chromosome loss and that in both cases, namely during normal aging, i.e., upon ERC accumulation, and upon basket removal the mechanism of chromosome loss is the same.  In both cases, it depends on the introns of the GLC7, MCM21 and NBL1 genes.  

      However, we acknowledge that the mutants tested have pleiotropic effects, making interpretation somewhat difficult, even when examining chromosome loss in multiple mutants that affect ERC formation and NPC remodelling, as we have done.  As recommended by the reviewer, we have characterized the phenotype of the sir2∆ 3x∆i mutant strain. Intron removal in the sir2∆ mutant cells largely rescued the elevated chromosome loss frequency of these cells and slightly extended their replicative lifespan (Figure 6D-E). We conclude that intron removal can remedy the chromosome loss phenotype of the sir2∆. Although clearly significant, the effect on the replicative lifespan was not very strong, likely due to the sir2∆ affecting other ageing processes.

      Touching on this question, we added a new set of experiments asking whether any accumulating DNA circle causes chromosome loss in an intron-dependent manner.  Thus, we have introduced a noncentromeric replicative plasmid in wild type and 3x∆i mutant strains carrying the labelled version of chromosome II (Figure 6A-C).  These studies show that these cells age much faster than wild type cells, as expected, and lose chromosomes at a higher frequency than non-transformed cells.  Finally, the effect is at least in part alleviated by removing the introns of NBL1, MCM21 and GLC7.

      Therefore, after adding this new and more direct test of the role of DNA circles in chromosome loss, we are confidently concluding that ERC-mediated basket removal is the trigger of chromosome loss in old cells.

      (b) Minor Points 

      (i) In Figure 1C, the text (lines 91-92) argues that chromosome loss happens abruptly as cells age; however the data only show loss at young and old time points, not an intermediate, which leaves open the possibility that chromosome loss is occurring gradually. While cells that lost chromosomes should fail to divide further, we don't know if these events happened and were simply excluded.

      We agree with the reviewer that formally the conclusion drawn in the lines 91-92 (of the original manuscript), namely that chromosome loss takes place abruptly as cells age, cannot be drawn from the Figure 1C alone but only from subsequent observations. However, since chromosome loss is lethal in haploid, as we mention in the text and the reviewer notes as well, it is difficult to envision how cells could lose chromosomes before the end of their lifespan and must therefore increase abruptly as the cells reach that point.  This is now underlined in the revised version of the manuscript. Accordingly, the frequency of chromosome loss per age group, which is depicted in Figure 3A, shows that the wild type cells that have budded less than 10 times show no chromosome loss. The chromosome loss frequency starts to ramp up only pass that point. Therefore, chromosome loss does not increase linearly with age.

      Additionally, cells that lost minichromosome should not arrest. We suggest that the interpretation of these data should be softened in the text, or that chromosome loss fraction could be more effectively portrayed as a Kaplan-Meier survival curve depicting cells that have not lost chromosomes, if these data are easily available. Or, chromosome loss at an intermediate time point could be depicted. 

      Since we cannot visualize more than 2 chromosomes at a time, it is not possible to plot the KaplanMeier curve of cells that have not lost chromosomes. However, as mentioned above, the chromosome loss frequencies at intermediate time points are depicted in Figure 3A and Figure 4B and shows that it increases with age.

      (ii) Also regarding Figure 1, it would be helpful to expound on the purpose of the minichromosomes, as well as how the Ubi-GFP minichromosome is constructed. 

      We now explained why we tested the loss of minichromosome, namely, as a mean to test whether the centromere is necessary and sufficient to drive the loss of the genetic material linked to it, i.e., chromosomes, in old cells.  Concerning the Ubi-GFP minichromosome, the Materials and methods section is now updated and reports plasmid construction, backbone used, primers as well as the plasmid sequence being available in the supplementary data.

      The purpose of the minichromosome initially appears to be the engineering of an eccDNA (ERC) with a CEN to demonstrate distinct behaviour, but it is unclear whether this was actually conducted or if the minichromosome are simply CEN plasmids and/or if this was the intended goal. Furthermore, lines 102-103 state that the presence of a centromere was necessary and sufficient for minichromosome loss. However, since no constructs lacking a centromere were tested, necessity cannot be concluded. Please clarify this in the text and include experimental details to help readers understand what was tested. 

      We apologize for having been too short here. The behaviour of the CEN-less version of this plasmid has been characterized in detail in previous studies (Shcheprova et al., 2008; Denoth-Lippuner 2014, Meinema et al 2022). Here we focused on the behaviour of the CEN+ version of an otherwise Identical plasmid.  We now clarify in the text that this plasmid is retained in the mother cell when CEN-less and cite the relevant literature. 

      (iii) It is unclear how cells at 0-3 budding events were identified in assays using the microfluidics platform. Can the authors clarify the known "age" of the cells once captured, i.e. how do the authors know how many divisions a cell has undergone prior to capture? 

      The reviewer is right; we do not know the exact age of these cells.  However, in any asynchronous population of yeast cells, which is what we start from, 50% of the cells are newborn daughters, 25% have budded once, 12.5 have budded twice, 6.25 % have budded three times…  Therefore, at the time of loading, 93% of the cells have budded between 0 and 3 times.  For this reason, we report to this population as cells age 0-3 CBE. We acknowledge that this is an approximation, but it remains a relatively safe one.  

      (iv) While the schematic in Figure 2D is generally helpful, a different depiction of the old and new SPBs would be beneficial in cases where the new SPB and TetR-GFP are depicted as colocalized, it is difficult to see that the red is fainter for the new SPB. 

      We have corrected this issue by completely separating the SPB and the Chromosome signals in the Figure 2D.

      (v) In Figure 2F, the grey colour of the 12h Ipl1-321 data bar did not have high enough contrast when the manuscript was printed-would recommend changing this to a darker shade. 

      We have corrected this issue by using a darker shade of grey.

      (vi) In Figure 3A, 'Budding' is misspelled on X-axis label  

      We have corrected this error.

      (vii) In Figure 4, the authors should clarify the differences between the analyses in panels B and C. The distinction is not immediately clear and may be difficult to grasp upon initial reading. 

      We have corrected this issue in the main text as well as figure legend.

      (viii) In Figure 5, It would aid comparisons to depict the 3x∆i only as well on panels B, D, and E. 

      We have added 3x∆i data to Figure 5,6 and 8.

      (ix) In Figure 6D, it is unclear why there was an appreciable level of unspliced RNA in the wild-type and sir2∆ young cells. Additionally, it is unclear why there is so much signal observed in the Merge image for the old wild-type cell, especially regarding the apparent bright spot. Is that nuclear signal? Please clarify. 

      The pre-mRNA processing reporter is not very efficiently spliced. It was selected as such during design (Sorenson et al 2014; DOI: 10.1261/rna.042663.113) to provide sensitivity. As for the bright spot occurring, translation of the unspliced reporter produces the N-terminal part of a ribosomal protein, a fraction of which forms some sort of nuclear aggregate in a fraction of the population. 

      (x) In Figure 6E, why does the sir2∆ exhibit higher mCherry/GFP than the wild-type and fob1∆ at "young age"? Is this due to disrupted proteostasis in the sir2∆, or a different pleiotropic effect of sir2∆? Please comment on this observation in the text.

      Indeed, as we have stated in the text the sir2∆ mutation already perturbs pre-mRNA processing in young cells. We do not know the reason of this but indeed it is most probably reflective of its pleiotropic function. Following the reviewer’s request, we now state this in the text. For example, Sir2 may regulate the acetylation state of the basket itself.  The genetic interactions observed between sir2∆ and quite a few nucleoporin mutations seem to support this possibility. 

      (xi) Throughout, the authors switch between depicting aging in Completed Budding Events versus hours, which made it difficult to compare data across figures

      Ideally, all the data in this manuscript should be plotted according to the CBE age of the cell. To ensure that the major findings are plotted in such a way, we have done so for over ~3000 combined cells and thousands of replicative divisions in Figures 3,5-7. All the measurements of chromosome loss at a specific CBE had to be done manually, due to the absence of algorithms that would be able to accurately detect chromosome loss and replicative age. Therefore, doing this for the entirety of our dataset, encompassing well over 50 ageing chips and tens of thousands of cells is not easily doable at this stage. 

      (xii) Typo on line 12 (Sindle Pole Body) 

      We have corrected this error.

      (xiii) The phrase should be 'chromosome partitioning' rather than 'chromosome partition', throughoutfor example, line 17 

      Replaced “chromosome partition” with “chromosome partitioning” throughout the text.

      (xiv) There are inconsistencies between plural and singular references throughout sentences-example, lines 35-37, and lines 44-45. 

      We carefully combed through the manuscript again and hope that we caught all inconsistencies.

    1. eLife Assessment

      This important study of artificial selection in microbial communities shows that the possibility of selecting a desired fraction of slow and fast-growing types is impacted by their initial fractions. The evidence, which relies on mathematical analysis and simulations of a stochastic model, is compelling. It highlights the tension between selection at the strain and the community level. This study should be of interest to researchers interested in ecology, both theoretical and experimental.

    2. Reviewer #1 (Public review):

      Summary:

      The authors demonstrate with a simple stochastic model that the initial composition of the community is important in achieving a target frequency during the artificial selection of a community.

      Strengths:

      To my knowledge, the intra-collective selection during artificial selection has not been seriously theoretically considered. However, in many cases, the species dynamics during the incubation of each selection cycle is important and relevant to the outcome of the artificial selection experiment. Stochasticity from birth and death (demographic stochasticity) plays a big role in these species' abundance dynamics. This work uses a simple framework to tackle this idea meticulously.

      This work may or may not be related to hysteresis (path dependency). If this is true, maybe it would be nice to have a discussion paragraph talking about how this may be the case. Then, this work would even attract the interest of people studying dynamical systems.

      Weaknesses:

      (1) Connecting structure and function.<br /> In typical artificial selection literature, most of them select the community based on collective function. Here in this paper, the authors are selecting a target composition. Although there is a schematic cartoon illustrating the relationship between collective function (y-axis) and the community composition in the main figure 1, there is no explicit explanation or justification of what may be the origin of this relationship. I think giving the readers a naïve idea about how this structure-function relationship arises in the introduction section would help. This is because the conclusion of this paper is that the intra-collective selection makes it hard to artificially select for a community that has an intermediate frequency of f (or s). If there is really evidence or theoretical derivation from this framework that indeed the highest function comes from the intermediate frequency of f, then the impact of this paper would increase because the conclusions of this stochastic model could allude to the reasons for the prevalent failures of artificial selection in literature.

      (2) Explain intra-collective and inter-collective selection better for readers.<br /> The abstract, the introduction, and the result section use these terms or intra-collective and inter-collective selection without much explanation. For the wide readership of eLife, a clear definition in the beginning would help the audience grasp the importance of this paper, because these concepts are at the core of this work.

      (3) Achievable target frequency strongly depending on the degree of demographic stochasticity.<br /> I would expect that the experimentalists would find these results interesting and would want to consider these results during their artificial selection experiments. The main figure 4 indicates that the Newborn size N0 is a very important factor to consider during the artificial selection experiment. This would be equivalent to how much bottleneck you impose on the artificial selection process in every iteration step (i.e., the ratio of serial dilution experiment). However, with a low population size, all target frequencies can be achieved, and therefore in these regimes, the initial frequency now does not matter much. It would be great for the authors to provide what the N0 parameter actually means during the artificial selection experiments. Maybe relative to some other parameter in the model. I know this could be very hard. But without this, the main result of this paper (initial frequency matters) cannot be taken advantage of by the experimentalists.

      (4) Consideration of environmental stochasticity.<br /> The success (gold area of Figure 2d) in this framework mainly depends on the size of the demographic stochasticity (birth-only model) during the intra-collective selection. However, during experiments, a lot of environmental stochasticity appears to be occurring during artificial selection. This may be out of the scope of this study. But it would definitely be exciting to see how much environmental stochasticity relative to the demographic stochasticity (variation in the Gaussian distribution of F and S) matters in succeeding in achieving the target composition from artificial selection.

      (5) Assumption about mutation rates<br /> If setting the mutation rates to zero does not change the result of the simulations and the conclusion, what is the purpose of having the mutation rates \mu? Also, is the unidirectional (S -> F -> FF) mutation realistic? I didn't quite understand how the mutations could fit into the story of this paper.

      (6) Minor points<br /> In Figure 3b, it is not clear to me how the frequency difference for the Intra-collective and the Inter-collective selection is computed.<br /> In Figure 5b, the gold region (success) near the FF is not visible. Maybe increase the size of the figure or have an inset for zoom-in. Why is the region not as big as the bottom gold region?

      Comments on revisions:

      I thank the authors for addressing many points raised by the reviewers. Overall, the readability of the manuscript has improved with more context provided around why they were solving this specific problem. However, I've found many of the responses to be too terse. It would have been nicer if there had been more discussion and description of the thought process that led up to the conclusions they made for each comment or question. Instead, many of the responses only showed the screenshot of the text they added.

      Most of my comments or questions were answered. Below are my comments on some of the authors' responses.

      (2) Explain intra-collective and inter-collective selection better for readers.<br /> In the Abstract and Introduction, you've added more sentences about the intra-collective or inter-collective selection. However, these are either making analogies to the waterfall or just describing the result of the intra/inter-collective selection. I would still appreciate a proper definition of those terms, which is paramount for readers to understand the entire paper.

      (4) Consideration of environmental stochasticity.<br /> I think providing the reason 'why' the paper focuses on demographic stochasticity and not environmental stochasticity will greatly justify the paper's work. For example, citing papers that actually performed artificial selection and pointing out that your model captures the stochasticity from those kinds of experiments would be great.

      (5) Assumption about mutation rates.<br /> It would be great if you could add a citation in the added sentence to support your claim: "This scenario is encountered in biotechnology: .....".

    3. Reviewer #3 (Public review):

      The authors address the process of community evolution under collective-level selection for a prescribed community composition. They mostly consider communities composed of two types that reproduce at different rates, and that can mutate one into the other. Due to such difference in 'fitness' and to the absence of density dependence, within-collective selection is expected to always favour the fastest grower, but collective-level selection can oppose this tendency, to a certain extent at least. By approximating the stochastic within-generation dynamics and solving it analytically, the authors show that not only high frequencies of fast growers can be reproducibly achieved, aligned with their fitness advantage. Small target frequencies can also be maintained, provided that the initial proportion of fast growers is sufficiently small. In this regime, similar to the 'stochastic corrector' model, variation upon which selection acts is maintained by a combination of demographic stochasticity and of sampling at reproduction. These two regions of achievable target compositions are separated by a gap, encompassing intermediate frequencies that are only achievable when the bottleneck size is small enough or the number of communities is (disproportionately) large.

      A similar conclusion, that stochastic fluctuations can maintain the system over evolutionary time far from the prevalence of the faster-growing type, is then confirmed by analyzing a three-species community, suggesting that the qualitative conclusions of this study are generalizable to more complex communities.

      I expect that these results will be of broad interest to the community of researchers who strive to improve community-level selection but are often limited to numerical explorations, with prohibitive costs for a full characterization of the parameter space of such embedded populations. The realization that not all target collective functions can be as easily achieved and that they should be adapted to the initial conditions and the selection protocol is also a sobering message for designing concrete applications.

      A major strength of this work is that the qualitative behaviour of the system is captured by an analytically solvable approximation so that the extent of the 'forbidden region' can be directly and generically related to the parameters of the selection protocol.

      The phenomenon the authors characterize is ecological in nature, though it is maintained even when switching between types is possible. Calling this dynamics community evolution reflects a widespread ambiguity in the field, not ascribable just to this work.

      Although different types compete for being represented in the next generation's propagules, within-generation ecology is here representative of exponential growth. As species interactions are commonly manifest in lab serial dilution experiments, it would be interesting if future work explores the extent of the robustness of these results to density-dependent demography.

    1. eLife Assessment

      In this important quantitative study of HIV-1 evolution in humans and rhesus macaques, selection coefficients are inferred at scale over the HIV genome. Selection coefficients are similar in humans and macaques, providing compelling evidence that these coefficients are representative of the fitness landscapes of these viruses within hosts. This work will be of interest to the community working on quantitative evolution and fitness landscape inference, and the finding that rapid fitness gains in the HIV population predict bNAb emergence has significant implications for HIV vaccine design.

    2. Reviewer #1 (Public review):

      Summary:

      The present work studies the coevolution of HIV-1 and the immune response in clinical patient data. Using the Marginal Path Likelihood (MPL) framework, they infer selection coefficients for HIV mutations from time-series data of virus sequences as they evolve in a given patient.

      Strengths:

      The authors analyze data from two human patients, consisting of HIV population sequence samples at various points in time during the infection. They inferred selection coefficients from the observed changes in sequence abundance using MPL. Most beneficial mutations appear in viral envelop proteins. The authors also analyze SHIV samples in rhesus macaques, and find selection coefficients that are compatible with those found in the corresponding human samples.

      The manuscript is well written and organized.

      Comments on revisions:

      In their revised version the authors have addressed most of these points satisfactorily.

    3. Reviewer #2 (Public review):

      This paper combines a biological topic of interest with the demonstration of important theoretical/methodological advances. Fitness inference is the foundation of the quantitative analysis of adapting systems. It is a hard and important problem and this paper highlights a compelling approach (MPL) first presented in (1) and refined in (2), roughly summarized in equation 3.

      The authors find that positive selection shapes the variable regions of env in shared patterns across two patient donors. The patterns of positive selection are interesting in and of themselves, they confirm the intuition that hyper-variation in env is the result of immune evasion rather than a broadly neutral landscape (flatness). They show that the immune evasion patterns due to CD8 T and naive B-cell selection are shared across patients. Furthermore, they suggest that a particular evolutionary history (larger flux to high fitness states) is associated with bNAb emergence. Mimicking this evolutionary pattern in vaccine design may help us elicit bNAbs in patients in the future.

      The fitness landscape of env in multiple hosts is immensely valuable especially because of how often SHIV has used as proxy for HIV. The strength of reversion-to-consensus selection is a known pattern of HIV post-infection populations but they are nicely quantified here. Agreement between SHIV and HIV evolution is shown. They find selection is larger for autologous antibodies than the bNAbs themselves (perhaps bNAbs are just too small a component of the host response to drive the bulk of selection?), and that big fitness increases precede antibody breadth in rhesus-macaques, suggesting that this fitness increase is the immune challenge required to draw forth a bNAb. All of high interest to HIV researchers.

      (1) Sohail, M. S., Louie, R. H., McKay, M. R. & Barton, J. P. Mpl resolves genetic linkage in fitness inference from complex evolutionary histories. Nature biotechnology 39, 472-479 (2021).

      (2) Shimagaki, K. & Barton, J. P. Bézier interpolation improves the inference of dynamical models from data. Physical Review E 107, 024116 (2023).

      Strength of evidence:

      Equation 3 is a beautiful and intuitive tool that accounts for linkage and can be solved precisely even in the presence of detailed mutational and selection models. They have addressed my earlier concerns the effects of incomplete observations of the frequency bias fitness inference on rare sites.

      Whether the fact that fitness increases occured before or after the presence of the bnab remains incompletely known. bNAb detection is different from bNAb presence and the possibility that fitness increases occurred after the bNAbs appeared remains. Still, their conclusion is plausible and fits in with the other observations which form a coherent and compelling picture.

      Overall this is a convincing paper. It is a valuable introduction to a practical method of fitness inference at the scale of the entire env gene and how this information can be leveraged to learn some interesting biology.

    4. Reviewer #3 (Public review):

      Summary:

      Shimagaki et al. investigate the virus-antibody coevolutionary processes that drive the development of broadly neutralizing antibodies (bnAbs). The study's primary goal is to characterize the evolutionary dynamics of HIV-1 within hosts that accompany the emergence of bnAbs, with a particular focus on inferring the landscape of selective pressures shaping viral evolution. To assess the generality of these evolutionary patterns, the study extends its analysis to rhesus macaques (RMs) infected with simian-human immunodeficiency viruses (SHIV) incorporating HIV-1 Env proteins derived from two human individuals.

      Strengths:

      A key strength of the study is its rigorous assessment of the similarity in evolutionary trajectories between humans and macaques. This cross-species comparison is particularly compelling, as it quantitatively establishes a shared pattern of viral evolution using a sophisticated inference method. The finding that similar selective pressures operate in both species adds robustness to the study's conclusions and suggests broader biological relevance. In the revised version, the Authors included a simple but clear explanation of the statistical method for inferring the model's parameters in the main text. Moreover, I find the potential implications of the methodology absent in the original submission very interesting.

      Conclusions:

      Overall, the study presents a compelling analysis of HIV-1 evolution and its parallels in SHIV-infected macaques.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The present work studies the coevolution of HIV-1 and the immune response in clinical patient data. Using the Marginal Path Likelihood (MPL) framework, they infer selection coefficients for HIV mutations from time-series data of virus sequences as they evolve in a given patient.

      Strengths:

      The authors analyze data from two human patients, consisting of HIV population sequence samples at various points in time during the infection. They infer selection coefficients from the observed changes in sequence abundance using MPL. Most beneficial mutations appear in viral envelop proteins. The authors also analyze SHIV samples in rhesus macaques, and find selection coefficients that are compatible with those found in the corresponding human samples.

      Weaknesses:

      The MPL method used by the authors considers only additive effects of mutations, thus ignoring epistasis.

      As suggested, we have now addressed this limitation by inferring epistatic fitness landscapes for CH505, CH848, SHIV.CH505, and SHIV.CH848. Indeed, the computational burden of the epistasis inference procedure was one constraint that motivated us to consider only additive fitness in the previous version of our paper. The original approach developed by Sohail et al. (2022) tested only sequences with <50 sites due to this limitation, far smaller than the ones we consider. Beyond this computational constraint, we also believed that 1) an additive fitness model may suffice to capture local fitness landscapes, and practically, 2) epistatic interactions are more challenging to validate than the effects of individual mutations, making the interpretation of the model more complex.

      However, after performing the analyses described in this paper, we developed a new approach for identifying epistatic interactions that can scale to much longer sequences (Shimagaki et al., Genetics, in press). We therefore applied this method to infer an epistatic fitness landscape for the HIV and SHIV data sets that we studied. As in that work, we focused on short-range (<50 bp) interactions which we could more confidently estimate from data. We have added a section in the SI describing the epistatic fitness model and our analysis. 

      Overall, we found substantial agreement between the epistatic and purely additive models in terms of the estimated fitness effects of individual mutations (new Supplementary Fig. 8) and overall fitness (Supplementary Fig. 9). Consistent with our prior work, we did not find substantial evidence for very strong epistatic interactions (Supplementary Fig. 10). This does not necessarily mean that strong epistatic interactions do not exist; rather, this shows that strong interactions don’t substantially improve the fit of the model to data, and thus many are regularized toward zero. While the biological validation of epistatic interactions is challenging, we found that the largest epistatic interactions, which we defined as the top 1% of all shortrange interactions, were modestly but significantly enriched in the CD4 binding site, V1 and V5 regions for CH505 and in the CD4 binding site, V4, and V5 for CH848. In addition, mutation pairs N280S/V281A and E275K/V281G, which confer resistance to CH235, ranked in the top 15% of all epistatic interactions in CH505.

      We have now included an additional section in the Results, “Robustness of inferred selection to changes in the fitness model and finite sampling”, which discusses our epistatic analyses (page 6, lines 415-464), along with the above Supplementary Figures and a technical section in the SI summarizing the epistasis inference approach.

      Although the evolution of broadly neutralizing antibodies (bnAbs) is a motivating question in the introduction and discussion sections (and the title), the relevance of the analysis and results to better understanding how bnAbs arise is not clear. The only result presented in direct connection to bnAbs is Figure 6.

      It is true that, while bnAb development is a major motivator of our study, our analysis focuses on HIV-1 and does not directly consider antibody evolution. We have now brought attention to this point as a limitation directly in the Discussion. Following the suggestion below in the “Recommendations for the authors,” we have edited our manuscript to place more emphasis on viral fitness and somewhat reduce the emphasis on bnAbs, though this remains an important motivating factor. Specifically, the Abstract now begins

      Human immunodeficiency virus (HIV)-1 evolves within individual hosts to escape adaptive immune responses while maintaining its capacity for replication. Coevolution between the HIV-1 and the immune system generates extraordinary viral genetic diversity. In some individuals, this process also results in the development of broadly neutralizing antibodies (bnAbs) that can neutralize many viral variants, a key focus of HIV-1 vaccine design. However, a general understanding of the forces that shape virusimmune coevolution within and across hosts remains incomplete. Here we performed a quantitative study of HIV-1 evolution in humans and rhesus macaques, including individuals who developed bnAbs.

      We have similarly modified the Discussion to focus first on viral fitness. In response to comments from Reviewer 3, we have also more clearly articulated how our work might contribute to the understanding of bnAb development in the Discussion.

      Questions or suggestions for further discussion:

      I list here a number of points for which I believe the paper would benefit if additional discussion/results were included.

      The MPL method used by the authors considers only additive effects of mutations, thus ignoring epistasis. In Sohail et al (2022) MBE 39(10), p. msac199  (https://doi.org/10.1093/molbev/msac199) an extension of MPL is developed allowing one to infer epistasis. Can the authors comment on why this was not attempted here?

      I presume one possible reason is that epistasis inference requires considerably more computational effort (and more data). However, since the authors find most beneficial mutations occurring in Env, perhaps restricting the analysis to Env genes only (e.g. the trimer shown in Figure 2) can lead to tractable inference of epistasis within this segment (instead of the full genome).

      As described above, we have now addressed this comment by inferring epistatic fitness landscapes for the data sets that we consider. Our overall results using the epistatic fitness model are consistent with the ones that we previously obtained with an additive model.

      Do the authors find correlations in the inferred selection coefficients of the two samples CH505 and CH848? I could not find any discussion of this in the manuscript. Only correlations between Humans and RM are discussed.

      To address this question, we compared the fitness values and individual selection coefficients across CH505 and CH848 data sets. We found little correlation between CH505 and CH848 fitness values (shown in a new Supplementary Fig. 6) or selection coefficients. We found only 199 common mutations between HIV-1 amino acid sequences from CH505 and CH848 out of 868 and 1,406 total mutations, respectively. Thus, we were not surprised to find no strong relationship between fitness estimates from CH505 and CH848 data sets. 

      Reviewer #2 (Public review):

      Summary:

      This paper combines a biological topic of interest with the demonstration of important theoretical/methodological advances. Fitness inference is the foundation of the quantitative analysis of adapting systems. It is a hard and important problem and this paper highlights a compelling approach (MPL) first presented in (1) and refined in (2), roughly summarized in equation 12.

      (1) Sohail, M. S., Louie, R. H., McKay, M. R. & Barton, J. P. Mpl resolves genetic linkage in fitness inference from complex evolutionary histories. Nature biotechnology 39, 472-479 (2021).

      (2) Shimagaki, K. & Barton, J. P. Bézier interpolation improves the inference of dynamical models from data. Physical Review E 107, 024116 (2023).

      The authors find that positive selection shapes the variable regions of env in shared patterns across two patient donors. The patterns of positive selection are interesting in and of themselves, they confirm the intuition that hyper-variation in env is the result of immune evasion rather than a broadly neutral landscape (flatness). They show that the immune evasion patterns due to CD8 T and naive B-cell selection are shared across patients. Furthermore, they suggest that a particular evolutionary history (larger flux to high fitness states) is associated with bNAb emergence. Mimicking this evolutionary pattern in vaccine design may help us elicit bNAbs in patients in the future.

      There is a lot of information to be found in the full fitness landscape of env. The enormous strength of reversion-to-consensus in the patterns is a known pattern of HIV post-infection populations but they are nicely quantified here. Agreement between SHIV and HIV evolution is shown. They find selection is larger for autologous antibodies than the bNAbs themselves (perhaps bNAbs are just too small a component of the host response to drive the bulk of selection?), and that big fitness increases precede antibody breadth in rhesus macaques, suggesting that this fitness increase is the immune challenge required to draw forth a bNAb. This is all of high interest to HIV researchers.

      Strength of evidence:

      One limitation is, of course, that the fitness model is constant in time when the immune challenge is variable and changing. This simplification may complicate some interpretations.

      We agree that this is a limitation of our current approach. In prior work, we have found that the constant fitness effects of mutations that we infer typically reflect the time-averaged fitness effect when the selection changes over time (Gao and Barton, PNAS 2025; Lee et al., Nat Commun 2025). It could be difficult, however, to capture changes in selection that fluctuate rapidly with underlying immune responses. We have added a new paragraph in the Discussion that more clearly sets out some of the limitations of our analysis, including our assumption of constant selection coefficients.

      There are additional methodological and technical limitations that should be considered in the interpretation of our results. Most notably, we assume that the viral fitness landscape is static in time. While we do not expect selection for effective replication (“intrinsic” fitness) to change substantially over time, pressure for immune escape could vary along with the immune responses that drive them. In prior work, we have found that constant selection coefficients typically reflect the average fitness effect of a mutation when its true contribution to fitness is time-varying [42,43]. This may not adequately description mutational effects that undergo large or rapid shifts in time. Future work should also examine temporal patterns in selection for individual mutations.

      Equation 12 in the methods is really a beautiful tool because it is so simple, but accounts for linkage and can be solved precisely even in the presence of detailed mutational and selection models. However, the reliance on incomplete observations of the frequency leads to complications that must be carefully (re)addressed here.

      For instance, the consistent finding of strong selection in hypervariable regions is biologically intuitive but so striking, that I worry that it might be the result of a bias for selection in high entropy regions. 

      Thank you for this suggestion. We agree that it is important to carefully interrogate these results. To assess the effects of general sequence variability on inferred selection, we first computed a position-specific entropy measure, H<sub >i</sub >, for each site i. We first defined the time-dependent entropy H<sub >i</sub >(t) = - ∑<sub >a</sub> x<sub>i</sub> (a, t) log x<sub>i</sub> (a, t)), where x<sub>i</sub> (a, t) represents the frequency of amino acid/nucleotide a at position i and time t, at each sample time. We then computed H<sub>i</sub> as the average of H<sub>i</sub>(t) across all sample times. A new Supplementary Fig. 1 plots the entropy against the inferred selection coefficients. Although some sequence variation must be observed in order for us to infer that a mutation is beneficial, we did not find a systematic bias toward larger (more beneficial) selection coefficients at more variable sites. Overall, we found only a modest correlation between inferred selection coefficients and entropy (Pearson’s r = 0.33 and 0.29 for CH505 and CH848, respectively), which appears to be partly driven by the tendency for mutations inferred to be significantly deleterious to occur at sites with low entropy. In addition to the new Supplementary Figure, we have added a reference to this analysis in the main text:

      To test whether our results might be biased by overall sequence variability, we examined the relationship between our inferred selection coefficients and entropy, a common measure of sequence variability. Overall, we found only a modest correlation between selection and entropy, suggesting that the signs of selection that we observe are not due to increased sequence variability alone (Supplementary Fig. 1).

      Mutational and covariance terms in equation 12 might be underestimated, due to finite sampling effect in highly diverse populations. Sampling effects lead to zeros in x(t) when actual frequency zeros might be rare at the population sizes of HIV viral loads and mutation rates. Both mutational flux and C underestimation will bias selection upward in eq. 12. 

      The prior papers (1) and (2) seem to show robustness to finite sampling effects, but, again, more care needs to be shown that this robustness transfers to the amino acid inference under these conditions. That synonymous sites are rarely selected for in the nucleotide level is a good sign, and it may be a matter of simply fully explaining the amino-acid level model.

      As above, we agree that these tests are important. To assess the robustness of our results to finite sampling, we performed bootstrap sampling on the viral sequences and inferred selection coefficients using the resampled sequences. Specifically, we resampled the same number of sequences as in the original data at each time point and repeated this for all time points across all HIV-1 and SHIV data sets. A new Supplementary Fig. 11 shows a typical comparison of the original selection coefficients vs. those obtained through bootstrap resampling. Overall, we observe a high degree of consistency between the selection coefficients in each case, which is surely aided by the long time series in these data sets. As pointed out by the reviewer, uncertainty in low-frequency mutations is a particular concern, though the effects on inferred selection are mitigated by regularization. 

      We have added a section in the Results, “Robustness of inferred selection to changes in the fitness model and finite sampling”, which includes this analysis:

      Finite sampling of sequence data could also affect our analyses. To further test the robustness of our results, we inferred selection coefficients using bootstrap resampling, where we resample sequences from the original ensemble, maintaining the same number of sequences for each time point and subject. The selection coefficients from the bootstrap samples are consistent with the original data (see Supplementary Fig. 11), with Pearson’s r values of around 0.85 for HIV-1 data sets and 0.95 for SHIV data sets, respectively.

      Uncertainty propagates to the later parts of the paper, eg. HIV and SIV shared patterns might be the result of shared biases in the method application. However, this worry does not extend to the apples-to-apples comparison of fitness trajectories across individuals (Figures 5 and 6) which I think are robust (for these sample sizes). 

      One way to address this uncertainty is to compare the fitness values and individual selection coefficients across CH505 and CH848 data sets, which was also requested by Reviewer 1. Overall, we found little correlation between CH505 and CH848 fitness values (shown in a new Supplementary Fig. 6) or selection coefficients. This suggests that similarities between HIV-1 and SHIV landscapes are not solely determined by potential biases in the inference approach. We have now added a reference to this point in the main text:

      In contrast, the inferred fitness landscapes of CH505 and CH848, which share few mutations in common, are poorly correlated (Supplementary Fig. 6). This suggests that the similarities between viral fitness values in humans and RMs are not artifacts of the model, but rather stem from similarities in underlying evolutionary drivers.

      The timing evidence is slightly weakened by the fact that bNAb detection is different from bNAb presence and the possibility that fitness increases occurred after the bNAbs appeared remains. Still, their conclusion is plausible and fits in with the other observations which form a coherent and compelling picture.

      Yes, we agree that this is a limitation of our analysis — bNAbs may have been present at low levels before they were detected, and we cannot definitively reject selection by bNAbs. Nonetheless, in at least one case (RM5695), rapid fitness gains were substantially separated in time from bNAb detection (roughly 2 weeks after infection vs. 16 weeks, respectively). We have now added this point in a new paragraph in the Discussion:

      While we found a strong relationship between viral fitness dynamics and the emergence of bnAbs, it may not be true that the former stimulates the latter. For example, bnAbs may have been present within each host before they were experimentally detected. Rapid viral fitness gains within hosts that developed broad antibody responses could then have been driven by undetected bnAb lineages. However, we did not find strong selection for known bnAb resistance mutations, and in at least one case (RM5695), rapid fitness gains (roughly 2 weeks after infection) substantially preceded bnAb detection (16 weeks). Still, given the limited size of the data set that we studied, it is unclear the extent to which our results will transfer to larger and broader data sets.

      Overall thisrpretations could provide valuable insights into the broader significance of these results. is a convincing paper, part of a larger admirable project of accurately inferring complete fitness landscapes.

      Reviewer #3 (Public review):

      Summary:

      Shimagaki et al. investigate the virus-antibody coevolutionary processes that drive the development of broadly neutralizing antibodies (bnAbs). The study's primary goal is to characterize the evolutionary dynamics of HIV-1 within hosts that accompany the emergence of bnAbs, with a particular focus on inferring the landscape of selective pressures shaping viral evolution. To assess the generality of these evolutionary patterns, the study extends its analysis to rhesus macaques (RMs) infected with simianhuman immunodeficiency viruses (SHIV) incorporating HIV-1 Env proteins derived from two human individuals.

      Strengths:

      A key strength of the study is its rigorous assessment of the similarity in evolutionary trajectories between humans and macaques. This cross-species comparison is particularly compelling, as it quantitatively establishes a shared pattern of viral evolution using a sophisticated inference method. The finding that similar selective pressures operate in both species adds robustness to the study's conclusions and suggests broader biological relevance.

      Weaknesses:

      However, the study has some limitations. The most significant weakness is that the authors do not sufficiently discuss the implications of the observed similarities. While the identification of shared evolutionary patterns (e.g., Figure 5) is intriguing, the study would benefit from a more explicit discussion of what these findings mean for instance, in the context of HIV vaccine design, immunotherapy, or fundamental viral-host interactions. Even speculative inte

      Thank you for this suggestion. We have now clarified the potential implications of our work in several areas. While speculative, one possible application is in vaccine design: it may be beneficial to design sequential immunogens to mimic the patterns of viral evolution associated with rapid fitness gains. This “population-based” design principle is different from typical approaches, which have focused on molecular details of virus surface proteins. 

      We have extended our discussion of our results in the context of viral evolution within and across hosts and related host species. Overall, our work suggests that there may be relatively few paths to significantly higher viral fitness in vivo. Evolutionary “contingencies” such as shifting immune pressure or epistatic interactions could influence the direction of evolution, but not so dramatically that the dynamics that we see in different hosts are not comparable. We have also connected our work more broadly to the literature in evolutionary parallelism in HIV-1 in different contexts.

      A secondary, albeit less critical, limitation is the placement of methodological details in the Supplementary Information. While it is understandable that the authors focus on results in the main text - especially since the methodology is not novel and has been previously described in earlier publications - some readers might benefit from a more thorough presentation of the method within the main paper.

      We have now modified the main text to add a new section, “Model overview,” that lays out the key steps of our approach. While we reserve technical details for the Methods, we believe that this new section provides more intuition about how our results were obtained (including a discussion of the important Eq. 12, now Eq. 3 in the main text) and our underlying assumptions.

      Conclusions:

      Overall, the study presents a compelling analysis of HIV-1 evolution and its parallels in SHIV-infected macaques. While the quantitative comparison between species is a notable contribution, a deeper discussion of its broader implications would strengthen the paper's impact.

      Reviewer #1 (Recommendations for the authors):

      I suggest de-emphasizing bnAbs and focusing on selection landscape inference, which seems to be the actual focus of the paper.

      While we do not directly study antibody development in this work, bnAb development is certainly an important motivating factor. As described in the responses above, we have now modified the Abstract and Discussion to place relatively more emphasis on fitness comparisons and to relatively less focus on bnAb development.  

      Reviewer #2 (Recommendations for the authors):

      Please make sure that the MPL method is defined in this paper and its limitations are at least partially repeated.

      As noted in responses above, we have now included more methodological details in the main text of the paper, which we hope will make the intuition and assumptions involved in our analysis clearer.

      I'd like the code to better show or describe the model, I could not figure out the model details by looking at the code. It seems mostly just to be csv exporting for use with preexisting MPL code. A longer code readme would be helpful.

      We have now updated the README on GitHub to include a conceptual overview of our inference approach, which references how each step is implemented in the code.

      Reviewer #3 (Recommendations for the authors):

      Try to give some more details (not necessarily giving the full mathematical derivation) on the statistical method utilized.

      As noted above, we have now expanded our discussion of the statistical methods and assumptions in the main text.

      Figures 3 and 4 are somewhat 'messy'. Although I do not have a constructive suggestion here, I feel that with a little more effort maybe the authors could come up with something more clean.

      It is true that the mutation frequency dynamics are somewhat “choppy” and difficult to follow intuitively. To attempt to make these figures easier to parse visually, we have increased the transparency on the lines and added exponential smoothing to the mutation frequencies, resulting in smoother trajectories. The trajectories without smoothing are retained in Supplementary Fig. 3. Here we also note that this smoothing is for visual purposes only; we use the original frequency trajectories for inference, rather than the smoothed ones.

    1. eLife Assessment

      This valuable study characterizes the emergence of the membrane-associated periodic cytoskeleton (MPS) in the axons of human motor neurons derived from induced pluripotent stem cells. Super-resolution imaging of beta-II spectrin provides convincing evidence for the patterned assembly of spectrin-poor gaps and spectrin-rich MPS in the medial region of the axons and its enhancement by the kinase inhibitor staurosporine. The data advocates against gap formation by cytoskeleton disassembly in a continuous MPS. Instead, a continuous MPS may result from nascent MPS patches and their maturation, a model that would benefit from live imaging for validation.

    2. Reviewer #1 (Public review):

      Summary:

      Ever since the surprising discovery of the membrane-associated Periodic Skeleton (MPS) in axons, a significant body of published work has been aimed at trying to understand its assembly mechanism and function. Despite this, we still lack a mechanistic understanding of how this amazing structure is assembled in neuronal cells. In this article, the authors report a "gap-and-patch" pattern of labelled spectrin in iPSC-derived human motor neurons grown in culture. The mid-sections of these axons exhibit patches with reasonably well-organized MPS that are separated by gaps lacking any detectable MPS and having low spectrin content. Further, they report that the intensity modulation of spectrin is correlated with intensity modulations of tubulin as well. However, neurofilament fluorescence does not show any correlation. Using DIC imaging, the authors show that often the axonal diameter remains uniform across segments, showing a patch-gap pattern. Gaps are seen more abundantly in the midsection of the axon, with the proximal section showing continuous MPS and the distal segment showing continuous spectrin fluorescence but no organized MPS. The authors show that spectrin degradation by caspase/calpain is not responsible for gap formation, and the patches are nascent MPS domains. The gap and patch pattern increases with days in culture and can be enhanced by treating the cells using the general kinase inhibitor staurosporine. Treatment with the actin depolymerizing agent Latrunculin A reduces gap formation. The reasons for the last two observations are not well understood/explained.

      Strengths:

      The claims made in the paper are supported by extensive imaging work and quantification of MPS. Overall, the paper is well written and the findings are interesting. Although much of the reported data are from axons treated with staurosporine, this may be a convenient system to investigate the dynamics of MPS assembly, which is still an open question.

      Weaknesses:

      Much of the analysis is on staurosporine-treated cells, and the effects of this treatment can be broad. The increase in patch-gap pattern with days in culture is intriguing, and the reason for this needs to be checked carefully. It would have been nice to have live cell data on the evolution of the patch and gap pattern using a GFP tag on spectrin. The evolution of individual patches and possible coalescence of patches can be observed even with confocal microscopy if live cell super-resolution observation is difficult.

      Some more comments:

      (1) Axons can undergo transient beading or regularly spaced varicosity formation during media change if changes in osmolarity or chemical composition occur. Such shape modulations can induce cytoskeletal modulations as well (the authors report modulations in microtubule fluorescence). The authors mention axonal enlargements in some instances. Although they present DIC images to argue that the axons showing gaps are often tubular, possible beading artefacts need to be checked. Beading can be transient and can be checked by doing media changes while observing the axons on a microscope.

      (2) Why do microtubules appear patchy? One would imagine the microtubule lengths to be greater than the patch size and hence to be more uniform.

      (3) Why do axons with gaps increase with days in culture? If patches are nascent MPS that progressively grow, one would have expected fewer gaps with increasing days in culture. Is this indicative of some sort of degeneration of axons?

      (4) It is surprising that Latrunculin A reduces gap formation induced by staurosporine (also seems to increase MPS correlation) while it decreases actin filament content. How can this be understood? If the idea is to block actin dynamics, have the authors tried using Jasplakinolide to stabilize the filaments?

      (5) The authors speculate that the patches are formed by the condensation of free spectrins, which then leaves the immediate neighborhood depleted of these proteins. This is an interesting hypothesis, and exploring this in live cells using spectrin-GFP constructs will greatly strengthen the article. Will the patch-gap regions evolve into continuous MPS? If so, do these patches expand with time as new spectrin and actin are recruited and merge with neighboring patches, or can the entire patch "diffuse" and coalesce with neighboring patches, thus expanding the MPS region?

    3. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Gazal et al. describe the presence of unique gaps and patches of BetaII-spectrin in medial sections of long human motor neuron axons. BII-spectrin, along with Alpha-spectrin, forms horizontal linkers between 180nm spaced F-actin rings in axons. These F-actin rings, along with the spectrin linkers, form membrane periodic structures (MPS) which are critical for the maintenance of the integrity, size, and function of axons. The primary goal of the authors was to address whether long motor axons, particularly those carrying familial mutations associated with the neurodegenerative disorder ALS, show defects in gaps and patches of BetaII-spectrin, ultimately leading to degradation of these neurons.

      Strengths:

      The experiments are well-designed, and the authors have used the right methods and cutting-edge techniques to address the questions in this manuscript. The use of human motor neurons and the use of motor neurons with different familial ALS mutations is a strength. The use of isogenic controls is a positive. The induction of gaps and patches by the kinase inhibitor staurosporine and their rescue by Latrunculin A is novel and well-executed. The use of biochemical assays to explore the role of calpains is appropriate and well-designed. The use of STED imaging to define the periodicity of MPS in the gaps and patches of spectrin is a strength.

      Weaknesses:

      The primary weakness is the lack of rigorous evaluation to validate the proposed model of spectrin capture from the gaps into adjacent patches by the use of photobleaching and live imaging. Another point is the lack of investigation into how gaps and patches change in axons carrying the familial ALS mutations as they age, since 2 weeks is not a time point when neurodegeneration is expected to start.

    4. Reviewer #3 (Public review):

      Summary:

      Gazal et al present convincing evidence supporting a new model of MPS formation where a gap-and-patch MPS pattern coalesces laterally to give rise to a lattice covering the entire axon shaft.

      Strengths:

      (1) This is a very interesting study that supports a change in paradigm in the model of MPS lattice formation.

      (2) Knowledge on MPS organization is mainly derived from studies using rat hippocampal neurons. In the current manuscript, Gazal et al use human IPS-derived motor neurons, a highly relevant neuron type, to further the current knowledge on MPS biology.

      (3) The quality of the images provided, specifically of those involving super-resolution, is of a high standard. This adequately supports the conclusions of the authors.

      Weaknesses:

      (1) The main concern raised by the manuscript is the assumption that staudosporine-induced gap and patch formation recapitulates the physiological assembly of gaps and patches of betaII-spectrin.

      (2) One technical challenge that limits a more compelling support of the new model of MPS formation is that fixed neurons are imaged, which precludes the observation of patch coalescence.

    5. Author response:

      Reviewer #1 (Public review)

      Summary:

      Ever since the surprising discovery of the membrane-associated Periodic Skeleton (MPS) in axons, a significant body of published work has been aimed at trying to understand its assembly mechanism and function. Despite this, we still lack a mechanistic understanding of how this amazing structure is assembled in neuronal cells. In this article, the authors report a "gap-and-patch" pattern of labelled spectrin in iPSC-derived human motor neurons grown in culture. The mid-sections of these axons exhibit patches with reasonably well-organized MPS that are separated by gaps lacking any detectable MPS and having low spectrin content. Further, they report that the intensity modulation of spectrin is correlated with intensity modulations of tubulin as well. However, neurofilament fluorescence does not show any correlation. Using DIC imaging, the authors show that often the axonal diameter remains uniform across segments, showing a patch-gap pattern. Gaps are seen more abundantly in the midsection of the axon, with the proximal section showing continuous MPS and the distal segment showing continuous spectrin fluorescence but no organized MPS. The authors show that spectrin degradation by caspase/calpain is not responsible for gap formation, and the patches are nascent MPS domains. The gap and patch pattern increases with days in culture and can be enhanced by treating the cells using the general kinase inhibitor staurosporine. Treatment with the actin depolymerizing agent Latrunculin A reduces gap formation. The reasons for the last two observations are not well understood/explained.

      We thank the reviewer for the detailed and accurate description of the data shown and its relevance to further our understanding of MPS assembly mechanism and function.

      Strengths:

      The claims made in the paper are supported by extensive imaging work and quantification of MPS. Overall, the paper is well written and the findings are interesting. Although much of the reported data are from axons treated with staurosporine, this may be a convenient system to investigate the dynamics of MPS assembly, which is still an open question.

      We thank the reviewer for the positive comments on the manuscript, the techniques used and the proposed model.

      Weaknesses:

      Much of the analysis is on staurosporine-treated cells, and the effects of this treatment can be broad. The increase in patch-gap pattern with days in culture is intriguing, and the reason for this needs to be checked carefully. It would have been nice to have live cell data on the evolution of the patch and gap pattern using a GFP tag on spectrin. The evolution of individual patches and possible coalescence of patches can be observed even with confocal microscopy if live cell super-resolution observation is difficult.

      We will consider the inclusion of live imaging experiments using the expressión of C-terminus-tagged human beta2-spectrin in the revised version of the manuscript. We are familiar with live-imaging and FRAP experiments and we will explore how to develop these experiments to generate data for inclusion in a revised submission.

      Some more comments:

      (1) Axons can undergo transient beading or regularly spaced varicosity formation during media change if changes in osmolarity or chemical composition occur. Such shape modulations can induce cytoskeletal modulations as well (the authors report modulations in microtubule fluorescence). The authors mention axonal enlargements in some instances. Although they present DIC images to argue that the axons showing gaps are often tubular, possible beading artefacts need to be checked. Beading can be transient and can be checked by doing media changes while observing the axons on a microscope.

      We don´t discard the presence of “nano beads” in these axons. It was recently suggested that the normal morphology of axons is indeed resembling “pearls-on-a-string” (Griswold et al., 2025), with “nano beads” separated by thin tubular "connectors" (also referred to as NSV, for non-synaptic varicosities). However, it is unlikely that the gap-patch pattern of beta2-spectrin can be attributed to such a morphology, given we used formaldehyde as fixative, and Griswold and colleagues show that the use of aldehyde-based fixatives do not preserve NSVs. We are able to see scattered axonal enlargements (“micro beads”), as we described in distal portions in Fig. 1C(C2) and E. However, the number, appearance and staining of these are not compatible with the gap-patch pattern in beta2-spectrin. Moreover, we would have expected to see these NSVs in our extensive STED imaging, yet we did not. We will discuss this further in the resubmission.

      (2) Why do microtubules appear patchy? One would imagine the microtubule lengths to be greater than the patch size and hence to be more uniform.

      Our stainings are for tubulin protein isoforms beta-III and alpha-II. That is, they would label microtubules, but free tubulin as well. The slight decrease in intensity for tubulin within gaps is indeed something to investigate, but we don´t interpret this as “patchy microtubules”. If the Reviewer refers to Fig. 2C-D, it is actually difficult to anticipate the slight decrease in intensity by the naked eye. To further support this, we will consider including stainings and quantitative analyses for microtubules in the resubmission. We are familiar with the use of permeabilizing conditions during fixation (in protocols known as “cytoskeletal fixation” to label microtubules (and not free tubulin).

      (3) Why do axons with gaps increase with days in culture? If patches are nascent MPS that progressively grow, one would have expected fewer gaps with increasing days in culture. Is this indicative of some sort of degeneration of axons?

      We agree with the apparent discrepancy. However, one has to take into account that these axons are still elongating even at 2 weeks in culture. Hence, at any time point, there is a new axonal compartment recently added, and hence, with low beta2-spectrin and no MPS. Also, the dynamical evolution of the MPS has to take into account beta2-spectrin supply. If supply is somehow lower than a given threshold, it is expected that there will be more gaps, given the new, more distant parts of the axons have a lower supply of beta2-spectrin . To explore this formally, we are working on simulations of these multifactorial dynamic systems to better understand this, that together with key experimental observations would enhance our understanding into overall MPS assembly in growing axons. However, findings for this project will be the subject of another manuscript.

      (4) It is surprising that Latrunculin A reduces gap formation induced by staurosporine (also seems to increase MPS correlation) while it decreases actin filament content. How can this be understood? If the idea is to block actin dynamics, have the authors tried using Jasplakinolide to stabilize the filaments?

      The results with the co-treatment with Latrunculin A and Staurosporine are indeed intriguing, and provide clear evidence that the gap-and-patch pattern arises from local assembly of the MPS, requiring new actin filaments. However, the fact that F-actin within the pre-formed MPS seems unaffected is not surprising. There are many different populations of F-actin in axons (i.e. MPS rings, longitudinal filaments, actin patches, actin trails). Latrunculin A affects filaments indirectly. The target of Latrunculin A is not actin filaments, but free monomers. It ultimately affects actin filaments as they end up losing monomers, and devoid of new monomers, filaments get shorter and eventually disappear. The drastic decrease in F-actin in our axons reflects that. The fact that F-actin in the MPS is preserved only speaks to the fact that these filaments are stable -if they are not losing monomers in the time frame of the treatment, the filament remains unaffected. We will support this with more observations and imaging and with a more extensive discussion summarizing the literature on the matter in the resubmission.

      On the other hand, the use of F-actin stabilizing drugs (like Jasplakinolide) would have a different effect. We will study how an experiment with these drugs could be informative of the process under investigation for the resubmission

      (5) The authors speculate that the patches are formed by the condensation of free spectrins, which then leaves the immediate neighborhood depleted of these proteins. This is an interesting hypothesis, and exploring this in live cells using spectrin-GFP constructs will greatly strengthen the article. Will the patch-gap regions evolve into continuous MPS? If so, do these patches expand with time as new spectrin and actin are recruited and merge with neighboring patches, or can the entire patch "diffuse" and coalesce with neighboring patches, thus expanding the MPS region?

      We agree with the reviewer's interpretation. A virtue of our experimental model and our interpretations of the observations in fixed cells is that it gives rise to informative questions such as the ones posed by the reviewer. As stated above, we will consider the inclusion of live imaging experiments using the expressión of C-terminus tagged human beta2-spectrin in the revised version of the manuscript. We are familiar with live-imaging and FRAP experiments and we think we can provide the evidence suggested.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Gazal et al. describe the presence of unique gaps and patches of BetaII-spectrin in medial sections of long human motor neuron axons. BII-spectrin, along with Alpha-spectrin, forms horizontal linkers between 180nm spaced F-actin rings in axons. These F-actin rings, along with the spectrin linkers, form membrane periodic structures (MPS) which are critical for the maintenance of the integrity, size, and function of axons. The primary goal of the authors was to address whether long motor axons, particularly those carrying familial mutations associated with the neurodegenerative disorder ALS, show defects in gaps and patches of BetaII-spectrin, ultimately leading to degradation of these neurons.

      We thank the reviewer for the detailed and accurate description of the data shown.

      Strengths:

      The experiments are well-designed, and the authors have used the right methods and cutting-edge techniques to address the questions in this manuscript. The use of human motor neurons and the use of motor neurons with different familial ALS mutations is a strength. The use of isogenic controls is a positive. The induction of gaps and patches by the kinase inhibitor staurosporine and their rescue by Latrunculin A is novel and well-executed. The use of biochemical assays to explore the role of calpains is appropriate and well-designed. The use of STED imaging to define the periodicity of MPS in the gaps and patches of spectrin is a strength.

      We thank the reviewer for the positive comments on the manuscript, the techniques used and the proposed model.

      Weaknesses:

      The primary weakness is the lack of rigorous evaluation to validate the proposed model of spectrin capture from the gaps into adjacent patches by the use of photobleaching and live imaging. Another point is the lack of investigation into how gaps and patches change in axons carrying the familial ALS mutations as they age, since 2 weeks is not a time point when neurodegeneration is expected to start.

      We will consider the inclusion of live imaging experiments using the expressión of tagged human beta2-spectrin in the revised version of the manuscript. We are familiar with live-imaging and FRAP experiments and we believe we can provide the evidence suggested. We don't discard the notion that axons carrying familial ALS mutations will show defects in MPS formation and/or stability when observed at longer culture times, or under culture conditions that promote neuronal aging (Guix et al., 2021). Thus, we will continue to work with these cells, but the goal of that project lies well beyond the primary message of the present manuscript, and we anticipate that the revised version will not include new data on this matter. 

      Reviewer #3 (Public review):

      Summary:

      Gazal et al present convincing evidence supporting a new model of MPS formation where a gap-and-patch MPS pattern coalesces laterally to give rise to a lattice covering the entire axon shaft.

      Strengths:

      (1) This is a very interesting study that supports a change in paradigm in the model of MPS lattice formation.

      (2) Knowledge on MPS organization is mainly derived from studies using rat hippocampal neurons. In the current manuscript, Gazal et al use human IPS-derived motor neurons, a highly relevant neuron type, to further the current knowledge on MPS biology.

      (3) The quality of the images provided, specifically of those involving super-resolution, is of a high standard. This adequately supports the conclusions of the authors.

      We thank the reviewer for the positive comments on the manuscript, the techniques used and the proposed model.

      Weaknesses:

      (1) The main concern raised by the manuscript is the assumption that staudosporine-induced gap and patch formation recapitulates the physiological assembly of gaps and patches of betaII-spectrin.

      We will further explore the inclusion of more measurements of other parameters and variables towards establishing whether these gaps-and-patches patterns are equivalent structures in control and staurosporine-treated cells. 

      (2) One technical challenge that limits a more compelling support of the new model of MPS formation is that fixed neurons are imaged, which precludes the observation of patch coalescence.

      As stated before regarding similar comments by other reviewers, we will consider the inclusion of live imaging experiments in the revised version of the manuscript.

      Nicolas Unsain, PhD, and Thomas Durcan, PhD.

      References

      Griswold, J.M., Bonilla-Quintana, M., Pepper, R. et al. Membrane mechanics dictate axonal pearls-on-a-string morphology and function. Nat Neurosci 28, 49–61 (2025). https://doi.org/10.1038/s41593-024-01813-1

      Guix F.X., Marrero Capitán A., Casadomé-Perales A., Palomares-Pérez .I, López Del Castillo I., Miguel V., Goedeke L., Martín M.G., Lamas S., Peinado H., Fernández-Hernando C., Dotti C.G. Increased exosome secretion in neurons aging in vitro by NPC1-mediated endosomal cholesterol buildup. Life Sci Alliance. 2021 Jun 28;4(8):e202101055. doi: 10.26508/lsa.202101055. Print 2021 Aug.

    1. eLife Assessment

      The effort is timely and the paper carries valuable insights into the function of UTR mutations. There are still significant concerns about both the quality of the screen data, and its ability to detect significant changes in translation and their direction. Therefore, the ability of the screen to support the extensive downstream statistical analysis is limited and leaves the paper incomplete.

    2. Reviewer #1 (Public review):

      The authors describe a massively parallel reporter assays (MPRA) screen focused at identifying polymorphisms in 5' and 3' UTRs that affect translation efficiency and thus might have a functional impact on cells. The topic is of timely interest, and indeed, several related efforts have recently been published and preprinted (e.g., https://pubmed.ncbi.nlm.nih.gov/37516102/ and https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635273/). This study has several major issues with the results and their presentation.

      Major comments:

      • The main issue remains that it appears that the screen has largely failed, and the reasons for that remain unclear, which make it difficult to interpret how useful is the resulting data. The authors mention batch effects as a potential contributor. The authors start with a library that includes ~6,000 variants, which makes it a medium-size MPRA. But then, only 483 pairs of WT/mutated UTRs yield high confidence information, which is already a small number for any downstream statistical analysis, particularly since most don't actually affect translation in the reporter screen setting (which is not unexpected). It is unclear why >90% of the library did not give high-confidence information. The profiles presented as base-case examples in Fig. 2B don't look very informative or convincing. All the subsequent analysis is done on a very small set of UTRs that have an effect, and it is unclear to this reviewer how these can yield statistically significant and/or biologically-relevant associations.

      • From the variants that had an effect, the authors go on to carry out some protein-level validations, and see some changes, but it is not clear if those changes are in the same direction was observed in the screen. In their rebuttal the authors explain that they largely can not infer directionality of changes form the screen, which further limits its utility.

      • It is particularly puzzling how the authors can build a machine learning predictor with >3,000 features when the dataset they use for training the model has just a few dozens of translation-shifting variants.

      Comments on revisions:

      It appears that the authors have extracted the information they could from the problematic dataset they obtained. Repeating the experiments in a cleaner setting, obtaining data for the >6000 UTRs they intended will allow the authors to achieve the goals they set out to achieve in establishing the screen.

    1. eLife Assessment

      In their study, Cummings et al. provide a valuable advance in understanding the hierarchical regulation of tubulin polyglycylation, demonstrating that TTLL8 initiates monoglycylation which is a prerequisite for TTLL10-mediated polyglycylation. The evidence supporting these mechanistic insights is solid, relying on a compelling combination of purified biochemical assays, mass spectrometry, and microscopy. The work is further valued for revealing an unexpected crosstalk between polyglycylation and polyglutamylation that ensures a balanced post-translational modification landscape for proper cilia function.

    2. Reviewer #1 (Public review):

      Summary:

      In their current study, Cummings et al have approached this fundamental biochemical problem using a combination of purified enzyme-substrate reactions, MS/MS and microscopy in vitro to provide key insights into the hierarchy of generating polyglycylation in cilia and flagella. They first establish that TTLL8 is a monoglycylase, with the potential to add multiple mono glycine residues on both α- and β-tubulin. They then go on to establish that the monoglycylation is essential for TTLL10 binding and catalytic activity, which progressively reduces as the level of polyglycylation increases. This provides an interesting mechanism of how level of polyglycylation is regulated in the absence of a deglycylase. Finally, the authors also establish that for efficient TTLL10 activity, it is not just monoglycylation, but also polyglutamylation that is necessary, giving a key insight into how both these modifications interact with each other to ensure there is a balanced level of PTMs on the axonemes for efficient cilia function.

      Strengths:

      The manuscript is well written, and experiments are succinctly planned and outlined. The experiments used provide the conclusions to what the authors were hypothesising and provide some new novel possible mechanistic insights into the whole process of regulation of tubulin glycylation in motile cilia.

      Weaknesses:

      There were some weaknesses in the initial submission of the manuscript, but the authors have addressed these in their revised version either by giving clear explanations in the text or through additional experiments.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      “In their current study, Cummings et al have approached this fundamental biochemical problem using a combination of purified enzyme-substrate reactions, MS/MS, and microscopy in vitro to provide key insights into the hierarchy of generating polyglycylation in cilia and flagella. They first establish that TTLL8 is a monoglycylase, with the potential to add multiple mono glycine residues on both α- and β-tubulin. They then go on to establish that monoglycylation is essential for TTLL10 binding and catalytic activity, which progressively reduces as the level of polyglycylation increases. This provides an interesting mechanism of how the level of polyglycylation is regulated in the absence of a deglycylase. Finally, the authors also establish that for efficient TTLL10 activity, it is not just monoglycylation, but also polyglutamylation that is necessary, giving a key insight into how both these modifications interact with each other to ensure there is a balanced level of PTMs on the axonemes for efficient cilia function.”

      Strengths: 

      The manuscript is well-written, and experiments are succinctly planned and outlined. The experiments were used to provide the conclusions to what the authors were hypothesising and provide some new novel possible mechanistic insights into the whole process of regulation of tubulin glycylation in motile cilia.”

      We thank the reviewer for their support of our study and recognition of its importance to understanding microtubule glycylation and its regulation.  

      “The initial part of the manuscript where the authors discuss about the requirement of monoglycylation by TTLL8 is not new. This was established back in 2009 when Rogowski et al (2009) showed that polyglycylation of tubulin by TTLL10 occurs only when co-expressed in cells with TTLL3 or TTLL8. So, this part of the study adds very little new information to what was known. “

      Our study provides the first in vitro evidence with purified recombinant components that human TTLL8 is exclusively a monoglycylase (Figure 1) and that polyglycylation by TTLL10 requires previous priming with monoglycylation (Figure 2). Studies with purified recombinant components are the gold standard for establishing the activity of an enzyme as cellular work can be obfuscated by the activity of other regulators. We did cite in our original submission the work by Rogowski, Gaertig and Janke from 2009 (reference 15 in the original submission) as well as that Ikegami and Setou 2009 work (reference 26 in the original submission) that established that TTLL10 polygyclylase activity requires co-expression with TTLL8 in cells. Specifically, we stated in our original submission and in the revised manuscript:

      “Cellular overexpression studies coupled with the use of antibodies that recognize mono- and polyglycylation indicate that TTLL8 is also a glycyl-initiase, while TTLL10 a glycyl-elongase (15, 26).  However, direct biochemical evidence with purified enzymes for segregated initiation and elongation activity for glyclases is still lacking as does knowledge of their substrate specificity and regulation.” 

      In addition to citing the Setou study, we now cite again the Rogowski, Gaertig and Janke 2009 study later in the manuscript when the cellular data are mentioned again.  Specifically, we state in the revised manuscript: 

      “This is consistent with cellular overexpression data which showed that polyglycylation signal was detected via antibody only in tubulin from cells that co-expressed TTLL8 and TTLL10, but not TTLL10 alone (15, 26).”

      “The study also fails to discuss the involvement of the other monoglycylase, TTLL3 in the entire study, which is a weakness as in vivo, in cells, both the monoglycylases act in concert and so, may play a role in regulating the activity of TTLL10. “

      We previously showed that purified recombinant TTLL3, like TTLL8, adds only monoglycines, with a preference for the b-tubulin tail (Garnham et al., PNAS 2017). Given that TTLL10 requires priming by monoglycylation, we expect that, similarly to TTLL8, TTLL3 will allow elongation of the initial monoglycyline chains by TTLL10. 

      (1) From the mass spec data, it appears that the Xaenopus Laevis TTLL10 can add up to 18 residues. However, the numbers indicated in Figure 2E seem to suggest that it is a maximum of 23 residues only at a particular position. Does this mean that the 13-18 residues observed are a collection of multiple short-chain polyglycylations or are there positions that the authors observed where there were chains of longer than 3 glycine residues? This would be an interesting point to note as when it was discovered in Paramecium, the polyglycyl chains were reported to be up to 34 residues (Redeker et al., Science 1994). If the authors could test the TTLL10 from Paramecium to observe if this is a consistent phenomenon across evolution or is there a biologically significant difference that is being developed, would be interesting to know.”

      Figure 2E shows a subset of the modified tails that we identified and where the position of the posttranslationally added glycine can be mapped to a specific position, or range of positions. Additional species exist. We note that the mass spectra in Figure 2B are intact LC/MS, while those in Figure 2E are MS/MS. The ionization of tubulin tail peptides with larger number of glycines is not as efficient as for shorter glycine chains, reducing the sensitivity of detection of species that have higher number of glycines. This is not as pronounced when the mass spectra are obtained from the intact protein (Figure 2B). In summary, our data supports the fact that TTLL10 elongates polyglycine chains at multiple positions in the tubulin tail (shown in Figure 2E), however, we cannot ascertain the maximum polyglycine chain length, only the total number of glycyines added.

      Testing the enzyme from Paramecium is an interesting proposal but outside the scope of this manuscript. 

      (2) While it is interesting to know that the TTLL10 binds to TTLL8-modified tubulin with a much higher affinity than unmodified tubulin, in vivo, the microtubules will be a mixture of both TTLL3- and TTLL8-modified tubulin. It would be good to see the binding of the enzyme to a tubulin that is modified by both TTLL3 and TTLL8 if the two have a greater influence on TTLL10 binding.”

      Our previous work showed that purified recombinant TTLL3 has purely monoglycylase activity, with a preference for b-tubulin (Garnham et al., PNAS 2017). The sites of monoglycylation by TTLL3 overlap with those introduced by TTLL8 on b-tubulin (the difference being mainly that TTLL3 is more selective towards b-tubulin and thus has lower activity on a-tubulin). TTLL8 introduces additional monoGlys on the a-tubulin tail. Therefore, it is unlikely that TTLL10 will have a different response to microtubules that carry similar numbers of Gly residues, regardless of whether introduced by TTLL8 or TTLL3 and 8. Our data show that TTLL10 binding increases with Gly number, but that the gains in affinity plateau as the density of glycine residues on the tails increases above a certain threshold, likely because one TTLL10 molecule recognizes one monoGly branch, and steric hindrance on the tubulin tail prevents further recruitment of additional TTLL10 molecules.  

      (3) The authors have always increased the number of monoglycines in beta-tubulin more than in alpha-tubulin. Is there a rationale for this? Since TTLL8 is known to predominantly modify alphatubulin (Rogowski et al., 2009; Gadadhar et al., 2017) why did the authors not check for the increased binding of the TTLL10 on dimers where the number of monoglycines on alpha-tubulin is higher than 1.1? Especially when they themselves observe in their mass spec that even on alphatubulin there are 1, 2, and 3 glycines added. I would like to see what happens if the ratio is high alpha-G + low beta-G”

      As our spectra in Figure 1 show, we find that TTLL8 is able to modify robustly in vitro both a- and b-tubulin but that it shows a slight preference for b-tubulin (Figure 1B). The work from the Janke group that the reviewer is referring to (Rogowski et al., 2009 and Gadahar et al., 2017) did not use recombinant, purified enzymes and unmodified microtubules as substrates and used axonemal tubulin (which carries many modifications), and so it is possible that the a-tubulin preference observed in that system when TTLL8 is overexpressed, is likely to other factors that do not reflect the biochemical property of the enzyme alone (for example, it could be because btubulin site are not available because they are already glutamylated). As can be seen from Figure 3D, the gain in affinity when increasing the number of glycines from one glycine is small, compared to the initial monoglycine added to the a- and the b-tubulin tail, likely reflecting that one tail cannot bind more than one TTLL10 at one time because of steric hindrance. Moreover, it is important here to note that glutamylation and glycylases compete for the same sites on the tubulin tails, as we have for example shown for TTLL3 and TTLL7 (Garnham et al., 2017), therefore the activity of these enzymes in vivo or with non-naïve substrates are context dependent and influences also what sites are available for TTLL10 to modify. In conclusion, by using recombinant enzymes and naïve tubulin we gain insight into the intrinsic property of these enzymes and therefore provide a framework for the interpretation of in vitro and in vivo observations. 

      (4) I wonder why the authors did not use the human TTLL10 to test if this also shows similar binding to the glycylated tubulin despite the fact that it is enzymatically inactive. If it does, then it would be interesting to see the kinetics of binding of this enzyme to see if the fall off of the enzyme from the tubulin is solely driven by the level of polyglycylation only, or if it has any other mechanism involved as well.”

      Work with human recombinant TTLL10, a TTLL10 homolog which was proposed to be inactive, will be an interesting future direction but outside the scope of this manuscript. We did note in our previous manuscript (Garnham et al., 2017, Figure S5) that the residues which are mutated in the human enzyme compared to other mammals are on the dorsal face of the enzyme, far away from the active site, raising an interesting question of how they inactivate the enzyme.   We need however to emphasize that our work clearly shows that it is polyglycylation on the microtubules that reduces binding of TTL10 to microtubules because experiments done in the absence of glycylating activity i.e. with enzyme that was incubated with microtubules that were pre-modified with polyglycline chains, but in the absence of glycyine substrate (precluding any glycylation activity during the binding assay) show that the binding decreases monotonically with the number of polyglycines  on the microtubule (Figures 4A, B).  

      (5) In Figure 5, the authors use monoglycylated tubulin that is either glutamylated or not to show that the activity of TTLL10 is enhanced by the extent of polyglutamylation present on the tubulin. However, there is no evidence of the enzyme binding to microtubules that are only glutamylated. It would be good to test this to determine if the binding is also dependent on both monoglycylation and glutamylation or is it only the enzyme activity.

      Figure 5E shows that TTLL10 binding increases with monoglycylation alone, and that glutamylation is additive and Figures 4A, B show that it is not the enzyme activity that affects the binding, but the glycylation state of the microtubule. We did not determine binding to microtubules that were only glutamylated, because TTLL10 would not be able to elongate polyglycine chains on those microtubules, even if it bound. 

      (6) The level of polyglycylation used in Figure 5 is quite low. It would be good to see how the length of the polyglycine chain impacts TTLL10 activity in the presence of polyglutamylation, and whether this has any cooperative effect leading to longer chain polyglycylation than what is seen with only monoglycylated tubulin.

      We expect longer chain polyglycylation to have an inhibitory effect as we show in Figure 4. 

      “(7) In the overall study, the authors fail to discuss whether the activity of both the glycylases at different sites on tubulin is sequential, or modifications at different residues happen all at once. If the authors were to do a sequential time course of the modification followed by MS/MS analysis, they could get some indications about this.”

      As the data in Figure 3D shows, the effect of adding more monoGly site on a tubulin tail has a muted effect on binding, indicating that the additional mono-Gly branches do not lead to more TTLL10 recruitment because of steric hindrance i.e. multiple TTLL10 enzymes cannot be accommodated on the same tail at the same time efficiently. This is consistent with the overall dimensions of the enzyme and the positions of its active site, which were modeled initially in our previous publication (Garnham et al., PNAS 2017).  The site of TTL10 action is pre-determined by the position of the mono-Gly branch introduced by TTLL3 or TTLL8. The length of the tubulin tail and the proximity of mono-Gly sites to each other precludes TTLL10 acting at multiple positions at once on the same tail.

      “(8) Do the modifications have any cooperative effect with respect to the sites of modification? Does modifying a particular site enhance the kinetics of modification of the other sites? Can the authors test this?”

      This would be an interesting line of future investigations.  

      “Minor points:

      (1’) The authors opine that the level of polyglycylation is regulated by the decreased binding of the TTLL10 to the polyglycylated tubulin. While this is an interesting argument, which could be a possibility based on the data they present, it would still not answer if this is a mechanism followed by TTLL10 of all species or not. If they could test the efficacy of TTLL10 from another species, to see the binding efficiency of that enzyme, it could potentially strengthen their argument of this possible mechanism.”

      The differences between the properties of TTLL10 from different organisms will be an interesting focus of future investigations, but outside the scope of this present study. However, we would like to point out that the level of sequence conservation between TTLL10 makes it unlikely that other TTLL10 do not follow a similar mechanism, albeit with possible differences in the extent of the response.  We also note that we have shown that polyglycylation also inhibits binding to the microtubule of the severing enzyme katanin (Szczesna et al., Dev. Cell 2022). Therefore, these studies suggests that polyglycylation might be a more general mechanism for reducing microtubule binding affinity since glycylation reduces the negative charge on the tubulin tails, which frequently interact with positively charged domains or interfaces in microtubule associated proteins.  

      “(2) The authors indicate that glycylases act on pre-glutamylated microtubules. However, in their assays, they use unmodified tubulin, which I would presume is also not glutamylated. If this is the case, how can they justify that the enzymes prefer pre-glutamylated microtubules? This is a bit unclear. Do they mean that their tubulin is already pre-glutamylated? Have they tested this?”

      The statement regarding the action of these enzymes on glutamylated microtubules refer to the in vivo situation where polyglycylated microtubules appear in cilia biogenesis after the microtubules in the axoneme are already glutamylated. In vitro, by using microtubules that are only monoglycylated and microtubules that are both glutamylated and monoglycylated, we show that glutamylation further increases recruitment of TTLL10 to microtubules that are monoglycyated. Therefore, glutamylated microtubules will be polyglycylated preferentially over those that are not glutamylated. 

      We state: “Axonemal microtubules are abundantly glutamylated. Glutamylation appears during cilia development first, followed by glycylation (12, 13), indicating that in this scenario glycylases act on pre-glutamylated microtubule substrates.”

      “(3) In continuation with the previous point, an immunoblot of their purified tubulin showing no reactivity to anti-glycylation or anti-glutamylation antibodies, which upon treatment with TTLL8 reacts to the anti-glycylation antibody would be confirmatory evidence to show that the isolated tubulin was indeed unmodified.”

      We have now included a Western blot of our TOG-purified tubulin as Figure S3 in our revised manuscript.  This shows a faint signal with the pep-G1 antibody and a very strong signal after TTLL8 treatment. We are not sure whether the low signal with the pep-G1 antibody for the unmodified tubulin is due to low bona fide monoglycylation-specific signal or a low affinity nonspecific interaction of this antibody (raised against mono-glycylated tubulin tail peptides) with the unmodified tubulin. We note that this signal is clearly visible only when loading at least 0.2 micrograms of the purified tubulin. At this loading level the signal for the glycylated species is saturated. It is also important to note that we have not detected glycylated species in this tubulin either by LC-MS or MS/MS. Therefore, our data strongly indicate that the tubulin purified from tsA201 cells is not glycylated or has at most extremely low levels of glycylation. Importantly, this potential trace level of monoglycylated tubulin does not affect any of the conclusions in this study. The Western blot also shows no detectable signal with the polyglycyation antibody in the unmodified tubulin and a very strong, saturated signal after the tubulin was treated with both TTLL8 and TTLL10.  We also added an additional Figure S8 that shows that the tSA201 tubulin does not give a detectable signal for glutamylation. Please see also Figure 3 from Vemu et al., Methods Enzymology 2017 where we also published a Western blot from our TOG-purified tubulin using anti-glutamylation antibodies. 

      “(4) In their study, the authors have used polyglycylation of up to 10-13 residues. This brings me to my first point that in the case of Paramecium, the number was identified to be up to 34, which would mean that this enzyme has higher binding or catalytic activity. I would like to know the authors' perspective on this, as to what could potentially determine the difference in the activities of TTLL10 across species.”

      The Xenopus TTLL10 enzyme can add more glycines than the 10-13 range that we show here if the enzyme is incubated for longer periods. The fact that glycine numbers as high as 34 were detected in Paramecium does not necessarily mean that the Paramecium enzyme is more active since there is no equivalent data to compare it with from Xenopus. The only way to address potential species differences in enzyme specific activity is to purify enzymes from different species and compare their activity side-by-side.  

      (5) How was the completion of the reaction of monoglycylation and polyglycylation determined? If the enzymes were left for more than 20 minutes, did TTLL8/ TTLL10 add more glycines? What is the reason for using less tubulin (1:20 enzyme:tubulin molar ratio) for monoglycylation by TTLL8, and more tubulin (1:50 enzyme:tubulin molar ratio) for polyglycylation by TTLL10?

      Yes, if the enzymes were incubated longer, they added more glycines. The extent of glycylation was determined from the LC-MS and the incubation time was varied to obtain samples with fewer or more glycines.   The lower ratio used for TTLL10 is because of the higher specific activity of that enzyme compared to TTLL8.  

      (6) Figure S2 A, b2 ion is not indicated in the peptide sequence, while it is shown in the m/z graph.

      We thank the reviewer for the careful reading. We have corrected this in our MS/MS spectrum. 

      Reviewer #2 (Public review):

      “In their manuscript, Cummings et al. focus on the enzymatic activities of TTLL3, TTLL8, and TTLL10, which catalyze the glycylation of tubulin, a crucial posttranslational modification for cilia maintenance and motility. The experiments are beautifully performed, with meticulous attention to detail and the inclusion of appropriate controls, ensuring the reliability of the findings. The authors utilized in vitro reconstitution to demonstrate that TTLL8 functions exclusively as a glycyl initiase, adding monoglycines at multiple positions on both α- and β-tubulin tails. In contrast, TTLL10 acts solely as a tubulin glycyl elongase, extending existing glycine chains. A notable finding is the differential substrate recognition between TTLL glycylases and TTLL glutamylases, highlighting a broader substrate promiscuity in glycylases compared to the more selective glutamylases. This observation aligns with the greater diversification observed among glutamylases. The study reveals a hierarchical mechanism of enzyme recruitment to microtubules, where TTLL10 binding necessitates prior monoglycylation by TTLL8. This binding is progressively inhibited by increasing polyglycine chain length, suggesting a self-regulatory mechanism for polyglycine chain length control. Furthermore, TTLL10 recruitment is enhanced by TTLL6mediated polyglutamylation, illustrating a complex interplay between different tubulin modifications. In addition, they uncover that polyglutamylation stimulates TTLL10 recruitment without necessarily increasing glycylation on the same tubulin dimer, due to the potential for TTLLs to interact with neighboring tubulin dimers. This mechanism could lead to an enrichment of glycylation on the same microtubule, contributing to the complexity of the tubulin code. The article also addresses a significant challenge in the field: the difficulty of generating microtubules with controlled posttranslational modifications for in vitro studies. By identifying the specific modification sites and the interplay between TTLL activities, the authors provide a valuable tool for creating differentially glycylated microtubules. This advancement will facilitate further studies on the effects of glycylation on microtubule-associated proteins and the broader implications of the tubulin code. In summary, this study substantially contributes to our knowledge of posttranslational enzymes and their regulation, offering new insights into the biochemical mechanisms underlying microtubule modifications. The rigorous experimental approach and the novel findings presented make this a pivotal addition to the field of cellular and molecular biology.”

      We thank the reviewer for their support of our work.

    1. eLife Assessment

      This study provides convincing evidence of coordinated spiking activity of neurons in the anterior cingulate cortex (ACC), and correlated activity in the CA1 subregion of the hippocampus, during observational learning. The authors also show coordinated ACC-CA1 neural activity during rest periods prior to the performance of the observationally learned task. The important findings significantly advance the field's understanding of neural mechanisms underlying social learning.

    2. Reviewer #1 (Public review):

      Summary:

      Mou and Ji investigate the relationship between firing rates in the anterior cingulate cortex (ACC) and CA1 neurons during observational learning. They found trajectory-selective responses in the ACC, coordinated activity between ACC and CA1 place cells for specific trajectories, and reactivation of these ensembles during sharp-wave ripples (SWRs), particularly during hippocampal replay events. The study is methodologically sound, the data are clearly presented, and the conclusions are well supported. The work is both novel and highly relevant to our understanding of social learning. Compared to the previous version of the paper, they have added substantial characterization of neuronal properties related to their firing during the task and replay events. I believe that the authors have therefore addressed most of my concerns and recommend the paper for publication as is.

      Strengths:

      The study is well designed, the data presented is very clear and the conclusions are appropriate regarding their results. The study is novel and of high relevance for the understanding of social learning.

      Weaknesses:

      All previous weaknesses have been addressed.

    3. Reviewer #2 (Public review):

      Summary:

      In the manuscript, Xiang Mou and Daoyun JI investigate how ACC neurons activated by observational learning communicate with the hippocampus. They assess this line of communication through a complex behavioral technique, in vivo electrophysiology, pharmacological approaches, and data analytical techniques. Firstly, authors find that observational performance is dependent on the ACC, and that the ACC possess neurons that show side selectivity (trajectory related) in both the observation box, when shuttling to reward, and during subsequent maze running, shuttling to the corresponding same side for reward. The side-selective activation appears stronger for correct trials compared to error trials specifically during observation of Demo rats. They compare how the CA1 of the hippocampus encodes these two environments and find that ACC side-selective neurons show correlation with side-selective CA1 ensembles during maze behavior, water consumption, and sharp-wave ripples.

      Strengths:

      Overall, the paper provides strong evidence that ACC neurons are activated by observational learning and that this activation seems to be correlated with CA1 activity.

      Weaknesses:

      Concerns, however, surround the strength of evidence that links ACC and CA1 activity during observational learning. Only weak correlations between the two regions are shown, and it is unclear if the ACC may lead CA1 activity or vice versa. It is possible that these processes reflect two parallel pathways. Without manipulation of ACC, it is difficult to assess whether ACC activity influences hippocampal replay.

      Comments on revisions:

      Lines 361-362: R and P values do not match that of Figure 5C.

    4. Reviewer #3 (Public review):

      Summary:

      Mou and Ji investigated neuro-computational mechanisms behind observational spatial learning in rats and reported several signs of functional coupling between the ACC and CA1 at the single neuron level. Using multi-site tetrode recording, they found that ACC cells encoding a path in a maze were activated while a rat observed another rat taking that path. This activation was also correlated with the activation of CA1 cells encoding the same path and facilitated their replay during sharp-wave ripples (SWRs) before the recording rat ran on the maze by itself. These activity patterns were associated with correct path choice during self-running and were absent in control conditions where the recording rat did not learn the correct choice through observations. Based on these findings, the authors argue that ACC cells capture the critical information during observation to organize hippocampal cell activity for subsequent spatial decisions.

      Strengths:

      The authors used multiple outcome measures to build a strong case for path-specific spike coordination between ACC and CA1 cells. The analyses were conducted carefully, and proper control measures were used to establish the statistical significance of the detected effects. The authors also demonstrated tight correlations between the spike coordination patterns and the successful use of observed information for future decisions.

      Weaknesses:

      (1) As evidence for the activation of path information in the ACC during observation, the authors showed positive correlations between firing rates during observation and those during self-running. This argument will be solidified if the authors use a decoding approach to demonstrate the activation of path-selective ACC ensemble activity patterns during observation. This approach will also open the door to uncovering how the activation of ACC path representation is related to the moment-to-moment position of the demonstrator rat and whether it is coupled with the timing of SWRs.

      (2) The authors argued that the ACC biases the content of awake replay in CA1 during SWRs in the observation period. The reviewer wonders if a similar bias also occurs during SWRs in the self-run period (i.e., water consumption after the correct choice). This analysis will help test whether the biased replay occurs due to the need to convert observed information into future choices.

      (3) Although the authors demonstrated the necessity of the ACC for the task, it remains to be determined whether firing coordination between the ACC and CA1 during observation is necessary for the correct path choice during self-runs. Some discussion on this point, along with future direction, would be beneficial for readers.

      Comments on revisions:

      The authors fully addressed my recommendations. I do not have any further comments.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Minor:

      (1) In Figure 2, only the right or left selective neurons are presented for the comparison, it would be helpful to also compare these with the neurons that are not selective for any of the sides and maybe include them in the supplemental materials

      We have included all non-selective neurons in Figure 2D and supplemental Figure 2B. Their differences in firing rate between left and right sides are quantified by their selective indices (SIs). 

      (2) The authors should provide controls of speed during NMDA infusion and vehicle.

      We have quantified and compared the duration of running laps, which is equivalent to speed.

      (3) In Figure 1d, the trend shows that even during NMDA infusion, the animals learn as shown by a higher proportion of correct trials in the 3rd compared to the 1st trial

      We thank the reviewer for pointing that out. We noticed that NMDAlesioned ACC animal showed a trend of improved performance in the track, and we believe this is due to re-learning of the task, which we point out in the main text. However, we emphasize that, compared to the Vehicle control, the overall performance of NMDA-lesioned animals was significantly impaired.

      (4) Clarify the implications of the NMDA experiments, as it is not straightforward to interpret that an interplay between ACC-CA1 is involved in this task as per this experiment.

      Rather than stating the involvement of ACC-CA1 interplay, we use the results of NMDA lesion experiment to demonstrate that ACC is also required, besides CA1, for the task.

      (5) In Figure 4b, there seems to be a lag between CA1 and ACC correlations; the authors could provide a quantification of this temporal delay between CA1 and ACC.

      Figure 4B shows the cross-correlation between one example ACC cell and its associated CA1 ensembles on the left and opposite sides. There was a broad peak around time lag 0. Our further investigation did not identify a significant, systemic delay for all ACC cells, which led us to quantify the correlation at time lag 0 in Figure 4C and D.

      (6) The example correlation provided in 5c for the opposite, doesn't seem representative of the population trend as shown in 5d, since both the Same and the Opposite for the demo show a positive trend. It would be best to choose an example that represents the population better.

      Following the reviewer’s suggestion, we have replaced the original plot with another ACC cell in Figure 5C.

      (7) Almost the same can be applied to Figure 6.

      Following the reviewer’s suggestion, we have replaced the original plot with another ACC cell in Figure 6E.

      (8) The results in Figure 7 are convincing, in my opinion, as they show that the trend is lost for the opposite side (contrary to the coactivation shown in Figures 5 and 6 that showed the same trends for the same and opposite during Demo). Do the authors have any interpretation of this? Is it due to co-activity reflecting other task-relevant features different than the spatial trajectory being observed?

      The correlation on the opposite side between CA1 and ACC shown in Figure 5C-D and Figure 6E-F is likely due to a general interaction between CA1 activities around SWRs with prefrontal cortical areas including ACC, as shown in previous studies (Jadhav et al., 2016; Remondes and Wilson, 2015).  We would like to point out that this correlation only quantifies the coactivation between CA1 ensemble firing rates and individual ACC cells’ firing rate. This raw correlation does not consider the content of spikes generated by CA1 ensembles, neglecting the sequential firing patterns of CA1 cells. The replay analysis in Fig. 7 examines the order of spikes generated by individual CA1 cells. The result in Fig. 7 shows that the sequential activation of CA1 place cells more accurately reflects the distinction between the same- and opposite-side trajectories. We consider Fig. 7 is more refined analysis than Figs. 5 and 6.

      (9) For all the figures regarding SWR activities, the authors should provide average PSTH for CA1 as well as ACC, perhaps also examples of neurons that are selectively active during one side or the opposite side runs.

      Following the reviewer’s suggestion, we have added data to show PSTH for CA1 and ACC cells surrounding SWR peaks (Figure S5E, F). 

      Reviewer #2 (Recommendations For The Authors):

      Below are additional notes for improvements.

      (1) Figure 1C. Unclear what Time 0 indicates.

      We specify it (OB's poke time) in the figure legend. 

      (2) Figure 2C. Unclear what the numbers above datapoints mean.

      Those numbers are selection indices (SIs), as specified in the legend. 

      (3) Figure 5: Line 374-375. Given the repetitive nature of the task, it is unclear whether SWRs are encoding upcoming or past spatial trajectories or whether they are encoding trajectories at all. The authors would need to show that SWRs-ACC communication is predictive of task outcome to claim it is specifically necessary for future outcomes rather than consolidating past trajectories.

      We agree with the reviewer and have made changes to reflect that the ACC-CA1 correlation in Fig.5 is specific to the same side of their selectivity, not exactly to future trajectories. Regarding the repetitive nature of the task (same-side rule), we have specifically addressed the advantage and limitation of this task design in the discussion. Regarding the observer's own past vs. future trajectories, our past publication (Mou et al., 2022) shows that the CA1 replay in SWRs more likely encode the correct, future trajectories. 

      (4) Figure 7. It appears that the correlation was conducted between ACC activity and CA1 replays recorded at distinct time windows (delay period vs. water consumption). It is unclear how ACC activity could influence CA1 replays when they occur hundreds of milliseconds apart or even longer.

      We thank the reviewer for raising this important question. We have shown that the higher same-side ACC activity during observation continues during water consumption. However, our added data in Fig.S5E show that this enhancement did not occur precisely within SWRs. We thus propose a possibility that the overall enhanced activity of same-side ACC cells during water consumption provides an overall, background excitation boost to same-side CA1 cells to enhance their replay within SWRs. We have revised the discussion section to present this model. 

      (5) Abstract: lines 24-25 Discussion: lines 475-476 Based on the data there is no certainty whether ACC biases or coordinates CA1 replays. The data simply shows that they are correlated with one another.

      We have modified those sentences to clarify the non-causal nature of the interaction.

      Reviewer #3 (Recommendations For The Authors):

      Please see below for the list of minor corrections and suggestions:

      (1) Line 136-143: On the data shown in Figure 1D, I recommend using two-way mixed ANOVA with sessions as a within-subjects factor and groups as a between-subjects factor.

      We thank the reviewer for this point. We indeed use two-way ANOVA for those comparisons. We have specified out in the text.

      (2) Line 219-228: I recommend expanding the explanation of two control conditions here. It was written in the method section, but the readers would appreciate the gist of these conditions in the result section. In particular, it was unclear how box SI was calculated in the Empty condition. Also, the plots of poke rates in the control conditions will be useful to show that rats did not learn the correct choice from observation in these control conditions.

      We have added more explanation of the two control conditions in the text. The quantifications of poke rates for Demo and two control conditions (Object, Empty) are provided in our previous publication (Mou et al., 2022).

      (3) Line 610: Please specify the number of three types of sessions each rat underwent and the order of these session types.

      We revise the texts in the Method section and provide the numbers.

      (4) In Figure 2c legend, please specify what the number (e.g., -0.41) indicates.

      Those numbers are selection indices (SIs), as specified in the legend.

    1. eLife Assessment

      This valuable study introduces a data augmentation approach based on generative unsupervised models to address data imbalance in immune receptor modeling. Support for the findings is solid, showing that the use of generated data increases the performance of downstream supervised prediction tasks, e.g., TCR-peptide interaction prediction. However, the validation, mainly relying on synthetic data, could be completed, especially regarding unseen epitopes, and given the exclusive focus on CDR3β. The results should be of interest to the communities working on immunology and biological sequence data analysis.

    2. Reviewer #1 (Public review):

      Summary:

      The manuscript presents a deep learning framework for predicting T cell receptor (TCR) binding to antigens (peptide-MHC) using a combination of data augmentation techniques to address class imbalance in experimental datasets, and introduces both peptide-specific and pan-specific models for TCR-MHC-I binding prediction. The authors leverage a large, curated dataset of experimentally validated TCR-MHC-I pairs and apply a data augmentation strategy based on generative modeling to generate new TCR sequences. The approach is evaluated on benchmark datasets, and the resulting models demonstrate improved accuracy and robustness.

      Strengths:

      The most significant contribution of the manuscript lies in its data augmentation approach to mitigate class imbalance, particularly for rare but immunologically relevant epitope classes. The authors employ a generative strategy based on two deep learning architectures:

      (1) a Restricted Boltzmann Machine (RBM) and

      (2) a BERT-based language model, which is used to generate new CDR3B sequences of TCRs that are used as synthetic training data for creating a class balance of TCR-pMHC binding pairs.

      The distinction between peptide-specific (HLA allele-specific) and pan-specific (generalized across HLA alleles) models is well-motivated and addresses a key challenge in immunogenomics: balancing specificity and generalizability. The peptide-specific models show strong performance on known HLA alleles, which is expected, but the pan-specific model's ability to generalize across diverse HLA types, especially those not represented in training, is critical.

      Weaknesses:

      The paper would benefit from a more rigorous analysis of the biological validity of the augmented data. Specifically, how do the synthetic CDR3B sequences compare to real CDR3B in terms of sequence similarity, motif conservation? The authors should provide a quantitative assessment (via t-SNE or UMAP projections) of real vs. augmented sequences, or by measuring the overlap in known motif positions, before and after augmentation. Without such validation, the risk of introducing "hallucinated" sequences that distort model learning remains a concern. Moreover, it would strengthen the argument if the authors demonstrated that performance gains are not merely due to overfitting on synthetic data, but reflect genuine generalization to unseen real data. Ultimately, this can only be performed through elaborate experimental wet-lab validation experiments, which may be outside the scope of this study.

      While generative modeling for sequence data is increasingly common, the choice of RBM, which is a relatively older architecture, could benefit from stronger justification, especially given the emergence of more powerful and scalable alternatives (e.g., ProGen, ESM, or diffusion-based models). While BERT was used, it will be valuable in the future to explore other architectures for data augmentation.

      The manuscript would be more compelling if the authors performed a deeper analysis of the pan-specific model's behavior across HLA supertypes and allele groups. Are the learned representations truly "pan" or merely a weighted average of the most common alleles? The authors should assess whether the pan-specific model learns shared binding motifs (anchor residue preferences) and whether these features are interpretable through attention maps. A failure to identify such patterns would raise concerns about the model's interpretability and biological relevance.

      The exclusive focus on CDR3β for TCR modeling is biologically problematic. TCRs are heterodimers composed of α and β chains, and both CDR1, CDR2, and CDR3 regions of both chains contribute to antigen recognition. The CDR3β loop is often more diverse and critical, but CDR3α and the CDR1/2 loops also play significant roles in binding affinity and specificity. By generating only CDR3B sequences and not modeling the full TCR αβ heterodimer, the authors risk introducing a systematic bias toward β-chain-dominated recognition, which will not reflect the full complexity of TCR-peptide-MHC interactions.

    3. Reviewer #2 (Public review):

      Summary:

      This paper presents a thoughtful and well-motivated strategy to address a major challenge in TCR-epitope binding prediction: data imbalance, particularly the scarcity of positive (binding) TCR, peptide pairs. The authors introduce a two-step pipeline combining data balancing, via undersampling and generative augmentation, and a supervised CNN-based classifier. Notably, the use of Restricted Boltzmann Machines (RBMs) and BERT-style transformer models to generate synthetic CDR3β sequences is shown to improve model performance. The proposed method is applied to both peptide-specific and pan-specific settings, yielding notable performance improvements, especially for in-distribution peptides. Generative augmentation also leads to measurable gains for out-of-distribution epitopes, particularly those with high sequence similarity to the training set.

      Strengths:

      (1) The authors tackle the well-known but under-addressed issue of class imbalance in TCR-epitope binding data, where negatives vastly outnumber positive (binding) pairs. This imbalance undermines classifier reliability and generalization.

      (2) The model is tested on both in-distribution (seen epitopes) and out-of-distribution (unseen epitopes) scenarios. Including a synthetic lattice protein benchmark allows the authors to dissect generalization behavior in a controlled environment.

      (3) The paper shows a measurable benefit of generative. For example, AUC improvements of up to +0.11 are observed for peptides closely related to those seen during training, demonstrating the method's practical impact.

      (4) A direct comparison between RBM- and Transformer-based sequence generators adds value, offering the community guidance on trade-offs between different generative architectures in TCR modeling applications.

      Weaknesses:

      (1) Generalization degrades with epitope dissimilarity

      The performance drops substantially as the test epitope becomes more dissimilar to the training set. This is expected, but it highlights an essential limitation of the generative models: they help only when the test epitope is similar to one already seen. Table 1 shows that the performance gain from generative augmentation decreases as the test epitope becomes more dissimilar to the training epitopes. For epitopes with a Levenshtein distance of 1 from the training set, the average AUC improvement is approximately +0.11. This gain drops to around +0.06 for epitopes at distance 2. It becomes minimal for those at distance 4, indicating an explicit limitation in the model's ability to generalize to more distant epitopes. The authors should quantify more explicitly how far the model can generalize effectively. What is the performance degradation threshold as a function of Levenshtein distance?

      (2) What is the minimal number of positive samples needed for data augmentation to help?

      The approach has an intrinsic catch-22: generative models require data to learn the underlying distribution and cannot be applied to epitopes with insufficient data. As a result, the method is unlikely to be effective for completely new epitopes. Could the authors quantify the minimum number of real binders needed for effective generative augmentation? This would be particularly relevant for zero-shot or few-shot prediction scenarios, where only 0-10 positive samples are available. Such experiments would help clarify the practical limits of the proposed strategy.

      (3) Lack of end-to-end evaluation on unseen epitopes as inputs

      The authors frame peptide-specific models as classification over a few known epitopes, a closed-set formulation. While this is useful for evaluating generation effects, it's not representative of the more practical open-set task of predicting binding to truly novel epitopes. A stronger test would include models that take peptides as input (e.g., pan-specific, peptide-conditioned classifiers), including unseen epitopes at test time. Could the authors attempt an evaluation on benchmarks like IMMREP25 or other datasets where test epitopes are excluded from training?

      (4) Focus on β-chain limits generalizability

      The current pipeline is trained exclusively on CDR3β sequences. However, the field is increasingly moving toward single-cell sequencing, which provides paired α/β TCR chain data. Understanding how the proposed approach performs when both chains are available would be valuable. Could the authors evaluate the performance gains on paired α/β information, even in a small subset of single-cell data?

      (5) Synthetic lattice proteins (LPs) have limited biological fidelity

      While the LP-based benchmark presented in Figure 5 is a clever and controlled tool for probing model generalization, it remains conceptually and biophysically distant from real TCR-peptide interactions. Its utility as a toy model is valid, but its limitations should be more explicitly acknowledged:

      a) Over-simplified binding landscape: The LP system is designed for tractability, with a simplified sequence-structure mapping and fixed lattice constraints. As shown in Figure 5c, the LP binding landscape is linearly separable, in stark contrast to the complex and often degenerate nature of real TCR-epitope interactions, where multiple structurally distinct TCRs can bind the same peptide and vice versa.

      b) Absence of immunological context: The LP model abstracts away key biological factors such as MHC restriction, α/β chain pairing, peptide presentation, and structural constraints of the TCR-pMHC complex. These are essential for understanding binding specificity in actual immune repertoires.

      c) Overestimation of generalization: While performance drops on more distant LP structures, even these are structurally and statistically more similar to the training data than truly novel biological epitopes. Thus, the LP benchmark likely underestimates the true difficulty of out-of-distribution generalization in real-world TCR prediction tasks.

      d) Simplified biophysics: The LP simulations rely on coarse-grained energy models and empirical potentials that do not capture conformational dynamics, side-chain flexibility, or realistic binding energetics of TCR-peptide interfaces.

      In summary, while the LP benchmark helps isolate specific generalization behaviors and for sanity-checking model performance under controlled perturbations, its biological relevance is limited. The authors should explicitly frame these assumptions and limitations to prevent overinterpreting results from this synthetic system.

    4. Reviewer #3 (Public review):

      Summary:

      The authors present a method to address class imbalance in T cell receptor (TCR)-epitope binding datasets by generating synthetic positive binding examples using generative models, specifically BERT-based architectures and Restricted Boltzmann Machines (RBMs). They hypothesize that improving class balance can enhance model performance in predicting TCR-peptide binding.

      Strengths:

      (1) Interesting biological as well as technical topic.

      (2) Solid technical foundations.

      Weaknesses:

      (1) Fundamental Biological Oversight:

      While the computational strategy of augmenting positive samples via generative models is technically interesting, the manuscript falls short in addressing key biological considerations. Specifically, the authors simulate and evaluate only CDR3β-peptide binding interactions. However, antigen recognition by T cells involves both the α- and β-chains of the TCR. The omission of CDR3α undermines the biological realism and limits the generalizability of the findings.

      (2) Validation of Simulated Data:

      The central claim of the manuscript is that simulated positive examples improve predictive performance. However, there is no rigorous validation of the biological plausibility or realism of the generated TCR sequences. Without independent evaluation (e.g., testing whether synthetic TCR-peptide pairs are truly binding), it remains unclear whether the performance gains are biologically meaningful or merely reflect artifacts of the generation process.

      (3) Risk of Bias and Overfitting:

      Training and evaluating models with generated data introduces a risk of circularity and bias. The observed improvements may not reflect better generalization to real-world TCR-epitope interactions but could instead arise from overfitting to synthetic patterns. Additional testing on independent, biologically validated datasets would help clarify this point.

    5. Author response:

      We would like to thank editors and reviewers for their time spent on our work, fair assessments and constructive criticism. We plan to address their concerns in the future revision as follows, detailed by topic.

      (1) Limitations of focusing on CDR3β only

      In its current state, our work tested the proposed pipeline of data augmentation for binding prediction on benchmark datasets limited to peptide+CDR3β sequence pairs only. As pointed out by all the reviewers, the TCR-peptide interaction is more complex and involves also other regions of the receptor (such as the CDR3α chain) and the MHC presenting the peptide as well. To investigate how the inclusion of additional information impacts results, we plan to apply our pipeline in a setting where the generative protocol is extended to generate paired α and β. The supervised classifier will then receive a concatenation of α+β chains as inputs. We will compare the performance of this classifier with the one using β chains only, and add this analysis to the revised manuscript.

      (1) Validation of generated sequences and interpretation of the features learned by the generative model

      The reliability of the generative model in augmenting the training set with biologically sensible sequences is a crucial assumption of our approach, and we agree with the reviewers raising this as a main concern. Before stating our strategy to improve the soundness of the method, let us first point out a few aspects already considered in the present manuscript:

      • The test set of the classifier is always composed of real sequences: in this way, an increase in performance due to data augmentation cannot be due to overfitting to synthetic, possibly unrealistic, sequences.

      • The generative protocol is initialized from real sequences, and used to generate sequences not too far from them. In this respect, it could be taken as a way to “regularize” the simplest strategy of data augmentation, random oversampling (taking multiple copies of sequences at random to rebalance the data). This procedure avoids generating “wildly hallucinated” sequences with unreliable models. We will better quantify this statement (see below).

      • The training protocol is tailored to push the generative model towards learning binding features between peptide and CDR3β sequences (and not merely fitting their local statistics separately). For example, in the pan-specific setting, during training of the generative model on peptide+CDR3β sequences, the masked language modeling task is modified to force the model to recover the missing amino acid using only the other sequence context.

      We will better stress these points in the revised manuscript. To further validate the generative protocol in the future revision, we will carry out additional sanity checks on the generated data to confirm that the synthetic sequences remain biologically plausible and comparable to real ones.

      (1) Assessment of the performance of the pan-specific protocol for out-of-distribution data:

      To better clarify how the degradation in performance of a classifier tested on out-of-distribution data is impacted by the dissimilarity between test and training data distribution, we will improve the synthetic analysis currently reported in Table 1, adding confidence intervals for accuracy, quantifying thresholds on the distance for the method to work, providing t-SNE embeddings of in- and out-of distribution data.

      (2) Quantification of the threshold for the number of examples per class in order to train the generative model and obtain a performance increase

      In the paper, we adopted an operative common-sense threshold of at least 100 sequences per class in order to apply our data augmentation pipeline. We will quantify this effect testing this threshold in the revised manuscript, in order to (i) emphasize the limits of this two-step generative protocol in the low-data regime and to (ii) assess if the generative model falls back to a random oversampling strategy (due to strong overfitting) when few data are available for training.

      (3) Motivation for the use of RBMs:

      While RBMs have known limitations, their use in our pipeline (together with the more modern TCR-BERT, that we also test) is mainly motivated by the fact that they provide measurable increases in performance with data augmentation despite their simple 2-layer architecture. We stress that simpler generative (profile) models are unable to show this increase, see Appendix 3. In this respect, the RBM provides a minimal generative model allowing us to augment data successfully, and a lower bound to the increase of performance with respect to more complex architectures trained on more data. We will report this point of view in the text.

      (4) Clarification on the role of lattice proteins as an oversimplified toy model for protein interaction

      We agree with the points raised by Reviewer #2 on the limitations of lattice proteins as a model for protein interaction. Indeed, we used it merely as a toy model for phenomenology, a strategy whose validity has been fairly acknowledged by the reviewer. We will report in the main text all the drastic simplifications and reasons why the reader should take the comparison to real data with great care.

    1. eLife Assessment

      This valuable study combines microscopy and CRISPR screening in two different cell lines to identify factors involved in global chromatin organization, using centromere clustering as a proxy. Follow-up cell cycle synchronisation studies confirm roles in centromere clustering in mitosis. However, incomplete characterisation of the cell lines used limits the interpretation of the findings. The study will interest researchers studying genome organisation in mitosis.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Guin and colleagues establish a microscopy-based CRISPR screen to find new factors involved in global chromatin organization. As a proxy of global chromatin organization, they use centromere clustering in two different cell lines. They find 52 genes whose CRISPR depletion leads to centromere clustering defects in both cell lines. Using cell cycle synchronisation, they demonstrate that centromeres-redistribution upon depletion of these hits necessitates cell cycle progression through mitosis.

      Strengths:

      This manuscript explores the mechanisms of global chromatin organization, which is a scale of chromatin organization that remains poorly understood. The imaging-based CRISPR screen is very elegant, and the use of appropriate positive and negative controls reinforces the solidity of the findings.

      Weaknesses:

      Although the data are generally solid and well interpreted, a control showing that protein depletion works properly in cell-cycle arrested cells is lacking, both when using siRNAs and degron-based depletion.

    3. Reviewer #2 (Public review):

      The authors begin by highlighting the importance of genome organisation in cellular compartmentalisation and identity. They focus their study on centromeres - key chromosomal features required for segregation-and aim to identify proteins responsible for their spatial distribution in interphase nuclei. However, none of the experimental data addresses broader aspects of genome architecture, such as individual chromosome territories or A/B compartments. As such, the title of the article may be misleading and would benefit from being more specific, for example: "Identification of factors influencing centromere positioning in interphase."

      Strengths:

      One of the strengths of the paper is the comprehensive CRISPR-based screening and the comparative analysis between two distinct cell lines.

      Including further investigation into factors that behave differently across these cell lines - particularly in relation to expression levels or the unique "inverted architecture" of RPE cells-would have added valuable depth.

      Weaknesses:

      The filtering strategy used in the screen imposes significant constraints, as it selects only for non-essential or functionally redundant genes. This is a critical point, as key regulators of chromatin organisation - such as components of the condensin and cohesin complexes-are typically essential for viability. Similarly, known effectors of centromere behaviour (e.g., work by the Fachinetti's lab) often lead to aneuploidy, micronuclei formation, and cell cycle arrest in G1. The implication of this selection criterion should be clearly discussed, as it fundamentally shapes the interpretation of the study's findings.

      A major limitation of the study is the lack of connection between centromere clustering and its biological significance. It remains unclear whether this clustering is a meaningful proxy for higher-order genome organisation. Additionally, the study does not explore potential links to cell identity or transcriptional landscapes. Readers may struggle to grasp the broader relevance of the findings: if gene knockouts that alter centromere positioning do not affect cell viability or cell cycle progression, does this imply that centromere clustering - and by extension, interphase genome organisation - is not biologically significant?

      Another point requiring clarification is the conclusion that the four identified genes represent independent pathways regulating centromere clustering. In reality, all of these proteins localise to centromeres. For example, SPC24 and NUF2 are components of the NDC80 complex; Ki-67, a chromosome periphery protein, has been mapped to centromeres; and CAP-Hs, a subunit of the condensin II complex that during G1 promotes CENP-A deposition. Given their shared localisation, it would be informative to assess aneuploidy indices following depletion of each factor. Chromosome-specific probes could help determine whether centromere dysfunction leads to general mis-segregation or reflects distinct molecular mechanisms. Additionally, exploring whether Ki-67 mutants that affect its surfactant-like properties influence centromere clustering could provide a more mechanistic insight.

      Finally, the additive effects observed in double knockdowns do not necessarily confirm pathway independence. It is possible that mild mis-segregation effects are amplified when two proteins within the same pathway are depleted. This possibility should be considered in the interpretation of the data.

    4. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Guin et al. use a CRISPR KO screen of ~1000 candidates in two human cell lines, along with high-throughput image analysis, to demonstrate that orderly progression through mitosis shapes centromere organization. They identify ~50 genes that perturb centromere clustering when depleted in both RPE1 and HCT116 cells and validate many of these hits using RNAi. They then use auxin-mediated acute depletion of four factors (NCAPH2, KI67, SPC24, and NUF2) to demonstrate that their effects on centromere clustering require passage through mitosis. They further suggest that the lack of these factors during mitosis leads to the disorganization of centromeres on the mitotic spindle, and these effects persist in the subsequent interphase. Overall, the manuscript is clear, well-written, the experiments performed are appropriate, and the data are interpreted accurately. In my opinion, the main strength of this manuscript is the discovery of several hits associated with altered centromere organization. These hits will serve as a solid foundation for future work investigating genome organization in human cells. On the other hand, how the changes in centromere organization relate to other aspects of interphase genome architecture (A/B compartments, chromosome territories, etc) remains unclear and represents the main shortcoming of this manuscript.

      Comments:

      (1) Given the authors' suggestion that disorderly mitotic progression underlies the changes in centromere clustering in the subsequent interphase, I think it would be beneficial to showcase examples of disorderly mitosis in the AID samples and perhaps even quantify the misalignment on the metaphase plate.

      (2) I don't quite agree with the description that centromeres cluster into chromocenters (p4 para 2, p17 para 1, and other instances in the manuscript). To the best of my knowledge, chromocenters primarily consist of clustered pericentromeric heterochromatin, while the centromeres are studded on the chromocenter surface. This has been beautifully demonstrated in mouse cells (Guenatri et al., JCB, 2004), but it is true in other systems like flies and plants as well.

    1. eLife Assessment

      This important study reports that two distinct waves of ovarian follicles contribute to oocyte production in mice. The paper provides large amounts of data that will benefit future studies, although the methods and analysis are considered incomplete at present. Justification for the criteria of wave 1 follicles would benefit from further explanation and discussion. This work will be of interest to ovarian biologists and physicians working on female infertility.

    2. Reviewer #1 (Public review):

      Multiple waves of follicles have been proven to exist in multiple species, and different waves of follicles contribute differently to oogenesis and fertility. This work characterizes the wave 1 follicles in mouse comprehensively and compares different waves of follicles regarding their cellular and molecular features. Elegant mouse genetics methods are applied to provide lineage tracing of the wave 1 folliculogenesis, together with sophisticated microscopic imaging and analyses. Single-cell RNA-seq is further applied to profile the molecular features of cells in mouse ovaries from week 2 until week 6. While extensive details about the wave 1 follicles, especially the atresia process, are provided, the authors also identified another group of follicles located in the medullary-cortical boundary, which could also be labeled by the FoxL2-mediated lineage tracing method. The "boundary" or "wave 1.5" follicles are proposed by the authors to be the earliest wave 2 follicles, which contribute to the early fertility of puberty mice, instead of the wave 1 follicles, which undergo atresia with very few oocytes generated. The wave 1 follicle atresia, which degrades most oocytes, on the other hand, expands the number of theca cells and generates the interstitial gland cells in the medulla, where the wave 1 follicles are located. These gland cells likely contribute to the generation of androgen and estrogen, which shape oogenesis and animal development. By comparing scRNA-seq data from cells collected from week 2 until week 6 ovaries, the author profiled the changes in numbers of different cells and identified key genes that differ between wave 1 and wave 2 follicles, which could potentially be another driver of different waves of folliculogenesis. In summary, the authors provide a high amount of new results with good quality that illustrate the molecular and cellular features of different waves of mouse follicles, which could be further reused by other researchers in related fields. The findings related to the boundary follicles could potentially bring many new findings related to oogenesis.

      This paper is overall well-written with solid and intriguing conclusions that are well supported. The reviewer only has some minor comments for the authors' consideration that could potentially help with the readability of the paper.

      (1) The authors identify the wave 1.5 follicles at the medullary-cortex boundary, which begin to develop shortly after 2 weeks. Since the authors already collected scRNA-seq data from week 2 until week 6, could any special gene expression patterns be identified that make wave 1.5 follicle cells different from wave 1 and wave 2?

      (2) Are Figures 1C and 1E Z projections from multiple IF slices? If so, please provide representative IF slice(s) from Figures 1C and 1E and clearly label wave 1 and wave 2 follicles to better illustrate how the wave 1 follicles are clarified and quantified.

      (3) For Figure 3D, please also provide an image showing the whole ovary section, like in Figures 3A and 3C, to better illustrate the localization and abundance of different cells.

      (4) In Figure 4H, expressions of HSD3B1 and PLIN1 seem to be detected in almost all medulla cells. Does this mean all medulla cells gain gland cell features? Or there is only a subset of the medulla cells that are actively expressing these 2 proteins. Please provide image(s) with higher magnification to show more clearly how the expression of these 2 proteins differs among different cells.

      (5) Figure 5: The authors discussed cell number changes for different types of cells from week 2 to week 6. A table, or some plots, visualizing numbers of different cell types, instead of just providing original clusters in Dataset S6, at different time points, would make the changes easier to observe.

      (6) Figure S7: It would be more helpful to directly show the number of wave 1 follicles.

      (7) Did the fluorescence cryosection staining (Line 587 - 595) use the same buffers as in the whole-mount staining (Line 575 - 586)? Please clarify.

      (8) In Line 618, what tissue samples were collected? Please point out clearly.

    3. Reviewer #2 (Public review):

      Summary:

      This study explores an important question concerning the developmental trajectory of wave 1 ovarian follicles, leveraging valuable tools such as lineage tracing and single-cell RNA sequencing. These approaches position the authors well to dissect early follicle dynamics. The study would benefit from more in-depth analysis, including quantification using the lineage-traced ovaries, and comparison of wave 1 and 2 follicular cells per stage within the single cell dataset.

      Strengths:

      This study aims to address an important question regarding the developmental trajectories of wave 1 ovarian follicles and how they differ from wave 2 follicles that contribute to long-term fertility. This is an important topic, as many studies on ovarian follicle development rely on samples collected at perinatal timepoints in the mouse, which primarily represent wave 1 follicles, to infer later fertility. The research group has the tools and expertise necessary to tackle these questions.

      Weaknesses:

      Wave 1 follicles are quantified based on the criteria of oocytes larger than 20 µm located within the medullary region, using whole-mount staining. However, the boundary between the medulla and cortex appears somewhat arbitrary. Quantification using FOXL2-lineage-traced ovaries provides a more reliable method for identifying wave 1 follicles. As the developmental trajectory of wave 1 follicles has been well described in Zhang et al. 2013, it would be valuable to provide a more detailed quantification of both labeled and unlabeled follicles by specific follicle stages. In fact, in Zhang et al. 2013, the authors demonstrated that lineage-labeled primordial follicles can be found at the cortex-medulla boundary, suggesting that the observation of labeled "border follicles" is not unexpected. Quantification by follicle stage would provide greater insight into the timing and development of these follicles.

      Similarly, the analysis of wave 1 follicle loss should be performed on lineage-traced ovaries using cell death markers to demonstrate the loss of oocytes and granulosa cells, while confirming the preservation of theca and interstitial cells. In particular, granulosa cell loss should be assessed directly with cell death markers in lineage-traced ovaries, rather than from the loss of tamoxifen-labeled cells, as labeling efficiency varies between follicles (Figure 2G).

      Single-cell RNA sequencing presents a valuable dataset capturing the development of first-wave follicles. The use of a 40µm cell strainer during cell collection for the 10x platform may explain the exclusion of larger oocytes. However, it is still surprising that no oocytes were captured at all. The central question, how wave 1 follicular cells differ from wave 2 cells, should be investigated in more depth, with results validated on FOXL2-lineage-traced ovaries (i.e., Wnt4 staining in wave 1 antral follicles versus wave 2 using lineage-traced ovaries). This analysis should span all stages of follicle development. It also appears to be a missed opportunity that the single-cell sequencing analysis was not performed on lineage-traced ovaries, which would have enabled more definitive identification of wave 1-derived cells.

      Finally, this study does not directly assess fertility outcomes and should therefore refrain from drawing conclusions about the fertility potential of wave 1 follicles.

    4. Author response:

      The eLife assessment states that our manuscript is important only as a source of data for others to use in the future. Our methods and analysis of wave 1 follicles were said to be "incomplete" because one of two reviewers claimed we did not prove that 80% of wave 1 oocytes turn over by 5 wk.

      We believe that this assessment is simply wrong because critical supporting data already present in the existing manuscript was not understood by one reviewer. Wave 1 follicular oocyte turnover was said to be unproven and to remain uncertain because evidence of death was based only on a lack of Ddx4 staining. New experiments documenting expression of cell death markers, were said to be needed to show the oocytes died. However, our work was not based on the analysis of sectioned material, but used whole mount 3D reconstruction microscopy of cleared ovary preparations. Oocyte death was determined by the absence of an oocyte in fully reconstructed follicles and its replacement with an empty cavity, not just the absence of antibody staining. We included images and complete 3D reconstruction movies documenting these methods. The paper also documents that the holes frequently still contained zona pellucida remnants indicating the former presence of an oocyte. Moreover, we observed many intermediates of oocyte death- shrunken and deformed oocytes- and deformations of follicle structures due to the presence of the empty cavities. Controls showed that Ddx4 staining in the context of 3D imaging always revealed an obvious giant labeled oocyte in 100% of wave 1 follicles prior to death, and in wave 1.5 and wave 2 follicles at all stages. Thus, our methodology is already fully reliable. The reviewer is correct that the entire program of wave 1 development including their programmed turnover would be interesting to explore further. We already provided a large amount of new gene expression information, and documented the first examples of wave 1-specific gene expression. Further studies are not needed for the major conclusions of the paper and can wait for a follow up study.

      Secondly, the existence of wave 1.5 is not "speculative," as stated by the reviewing editor. We extensively validated and quantified the existence of wave 1.5 primordial follicles following Foxl2-cre activation at E16.5, and analysis at 2 wks in multiple experiments. Additionally, we showed wave 1.5 follicles were present at the medullar/cortex border at 2 wks even after activation of Foxl2-cre at E14.5. Our paper also connected for the first time wave 1.5 follicles to a population of non-growing, "poised" primordial follicles at this identical location near the medulla/cortex boundary by Meinsohn et al. in 2021. These follicles had not started to develop yet, and their ultimate fate was not known. We followed the development of these follicles and determined several differences in wave 1.5 follicle gene expression compared to wave 1. As noted in the assessment, our findings on wave 1.5 are now already being extended to other systems such as primate ovaries (adopting our name "wave 1.5" from our bioRxiv manuscript). The simultaneous claims that our discovery of wave 1.5 exists is speculative, and also that other people are finding wave 1.5 follicles in the species they are studying are logically incompatible.

      Response to reviewer 2:

      Line 239-245: Please note that Zhang et al. 2013 also show that lineage-labeled primordial follicles can be found at the cortex-medulla boundary (see their Figure 1B).

      The single image in the Zheng et al. 2014 paper may or may not show mosaic primordial follicles, but it would not be surprising since the experiment was identical to experiments in the paper. However, that single picture is only meaningful in the context of our subsequent work reported in the current manuscript. There was no mention of these follicles in the text of Zheng et al. 2014, no documentation or quantitation of their numbers, and no discussion or understanding of their significance. The incorrect conclusions of the paper were that wave 1 follicles- meaning rapidly developing follicles in the medulla- give rise to most early offspring. This conclusion reversed the previously accepted (and essentially correct) view that wave 1 follicles did not contribute significantly to fertility.

      "Finally, this study does not directly assess fertility outcomes and should therefore refrain from drawing conclusions about the fertility potential of wave 1 follicles." 

      We showed by lineage marking that only about 25 of about 200 wave 1 follicles survive even to wk 5. This clearly does prove our conclusion that the great majority of wave 1 follicles do not contribute to fertility.

    1. eLife Assessment

      This important study reports that higher genetically predicted BMI is associated with a modestly increased risk of head and neck cancer. The convincing evidence is supported by rigorous Mendelian Randomization approaches, using multiple genetic instruments and models that reduce sensitivity to pleiotropy. However, results from pleiotropy-robust analyses were less consistent, which limits the strength of causal inference. The work will be of interest to researchers studying cancer risk factors and genetic epidemiology.

    2. Reviewer #1 (Public review):

      Summary:

      The authors have conducted the largest to date Mendelian Randomization (MR) analysis of the association between genetically predicted measures of adiposity and risk of head and neck cancer (HNC) overall and by subsites within HNC. MR uses genetic predictors of an exposure, such as gene variants associated with high BMI or tobacco use, rather than data from individual physical exams or questionnaires and if it can be done in its idealized state, there should be no problems with confounding. Traditional epidemiologic studies have reported a variety of associations between BMI (and a few other measures of adiposity) and risk of HNC that typically differs by the smoking status of the subjects. Those findings are controversial given the complex relationship between tobacco and both BMI and HNC risk. Tobacco smokers are often thinner than no-smokers so this could create an artificial ('confounded') association that may not be fully adjusted away in risk models. The findings of a BMI-HNC association are often attributed to residual confounding and this seems ripe for an MR approach if suitable genetic instrumental variables can be created. Here the authors built a variety of genetic instrumental variables for BMI and other measures of adiposity as well as two instrumental variables for smoking habits and then tested their hypotheses in a large case-controls set of HNC and controls with genetic data.

      The authors found that the genetic model for BMI was associated with HNC risk in simple models, but this association disappeared when using models that better accounted for pleiotropy, the condition when genetic variants are associated with more than one trait such as both BMI and tobacco use. When they used both adiposity and tobacco use genetic instruments in a single model, there was a strong association with genetically predicted tobacco use (as is expected) but there was no remaining association with genetic predictors of adiposity. They conclude that high BMI/adiposity is not a risk factor for HNC.

      Strengths:

      The primary strength was the expansive use of a variety of different genetic instruments for BMI/adiposity/body size along with employing a variety of MR model types, several of which are known to be less sensitive to pleiotropy. They also used the largest case-control sample size to date.

      Weaknesses:

      The lack of pleiotropy is an unconfirmable assumption of MR and the addition of those models is therefore quite important as this is a primary weakness of the MR approach. Given that concern, I read the sensitivity analyses using pleiotropy-robust models as the main result and in that case, they are more limited in their ability to test their hypothesis as these models do not show a robust BMI instrumental variable association.

      Comments on the revised manuscript:

      After the first round of review, the authors have improved the manuscript by (1) adding the requested power calculations and adding text to help the reader integrate that additional information; (2) adding the main effects for the tobacco instruments; (3) updating the comparison of their results to the prior literature; (4) and some other edits to the text. They have declined to include the smoking stratified estimates and provide a rationale for this decision that references the potential for collider bias. While true that yet another bias might be introduced, that gets added to the list and the careful reader would know that. Many important questions in cancer etiology can only be addressed via observational approaches and each observational approach has the potential for a long list of biases. The best inference comes from integrating the totality of the data and realizing that most conclusions are subject to updating as we conduct more work and learn more.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Joint Public Review:

      Weaknesses:

      The lack of pleiotropy is an unconfirmable assumption of MR, and the addition of those models is therefore quite important, as this is a primary weakness of the MR approach. Given that concern, I read the sensitivity analyses using pleiotropy-robust models as the main result, and in that case, they can't test their hypotheses as these models do not show a BMI instrumental variable association. The other weakness, which might be remedied, is that the power of the tests here is not described. When a hypothesis is tested with an under-powered model, the apparent lack of association could be due to inadequate sample size rather than a true null. Typically, when a statistically significant association is reported, power concerns are discounted as long as the study is not so small as to create spurious findings. That is the case with their primary BMI instrumental variable model - they find an association so we can presume it was adequately powered. But the primary models they share are not the pleiotropy-robust methods MR-Egger, weighted median, and weighted mode. The tests for these models are null, and that could mean a couple of things: (1) the original primary significant association between the BMI genetic instrument was due to pleiotropy, and they therefore don't have a robust model to explore the effects of the tobacco genetic instrument. (2) The power for the sensitivity analysis models (the pleiotropy-robust methods) is inadequate, and the authors share no discussion about the relative power of the different MR approaches. If they do have adequate power, then again, there is no need to explore the tobacco instrument.

      Reviewing Editor Comments:

      We suggest that the authors add power estimates to assess whether the sample size is sufficient, given the strength and variability of the genetic instruments. It would also be helpful to present effect estimates for the tobacco instruments alone, to clarify their independent contribution and improve the interpretation of the joint models. In addition, the role of pleiotropy should be addressed more clearly, including which model is considered primary. Stratified analyses by smoking status are encouraged, as prior studies indicate that BMI-HNC associations may differ between smokers and non-smokers. Finally, the comparison with previous studies should be revised, as most reported null findings without accounting for tobacco instruments. If this study finds an association, it should not be framed as a replication

      We would like to highlight that post-hoc power calculations are often considered redundant since the statistical power estimated for an observed association is directly related to its p-value[1]. In other words, the uncertainty of the association is already reflected in its 95% confidence interval. However, we understand power calculations may still be of interest to the reader, so we have incorporated them in the revised manuscript. We have edited the text as follows (lines 151-155):“Consequently, we used the total R<sup>2</sup> values to examine the statistical power in our study[42]. However, we acknowledge that the value of post-hoc power calculations is limited, since the statistical power estimated for an observed association is already reflected in the 95% confidence interval presented alongside the point estimate[43].” We have also added supplementary figures 1 and 2.

      We can see that when using the latest HEADSpAcE data we were able to detect BMI-HNC ORs as small as 1.16 with 80% power, while the GAME-ON dataset only permitted the detection of ORs as small as 1.26 using the same BMI instruments (Figure B). We have explained these figures in the results section as follows (lines 257-263): “Using the BMI genetic instruments (total R<sup>2</sup>= 4.8%) and an α of 0.05, we had 80% statistical power to detect an OR as small as 1.16 for HNC risk (Supplementary Figure 1). For WHR (total R<sup>2</sup>= 3.1%) and WC (total R<sup>2</sup>= 4.4%), we could detect odds ratios (ORs) as small as 1.20 and 1.17, respectively. This is an improvement in terms of statistical power compared to the GAME-ON analysis published by Gormley et al.[28], for which there was 80% power to detect an OR as small as 1.26 using the same BMI genetic instruments (Supplementary Figure 2).”

      The reason we use inverse variance weighted (IVW) Mendelian randomization (MR) to obtain our main results rather than the pleiotropy-robust methods mentioned by the reviewer/editors (i.e., MR-Egger, weighted median and weighted mode) is that the former has greater statistical power than the latter[2]. Hence, instead of focussing on the statistical significance of the pleiotropy-robust analyses, we consider it is of more value to compare the consistency of the effect sizes and direction of the effect estimates across methods. Any evidence of such consistency increases our confidence in our main findings, since each method relies on different assumptions. As we cannot be sure about the presence and nature of horizontal pleiotropy, it is useful to compare results across methods even though they are not equally powered. It is true that our results for the genetically predicted effects of body mass index (BMI) on the risk of head and neck cancer (HNC) differ across methods. This is precisely what led us to question the validity of our main finding (suggesting a positive effect of BMI on HNC risk). We have now clarified this in the methods section of the revised manuscript as advised. Lines 165-171:

      “Because the IVW method assumes all genetic variants are valid instruments[44], which is unlikely the case, three pleiotropy-robust two-sample MR methods (i.e., MR-Egger[45], weighted median[46] and weighted mode[47]) were used in sensitivity analyses. When the magnitude and direction of effect estimates are consistent across methods that rely on different assumptions, the main findings are more convincing. As we cannot be sure about the presence and nature of horizontal pleiotropy, it is useful to compare results across methods even if they are not equally powered.”

      We understand that the reviewer/editors are concerned that we do not have a robust model to explore the role of tobacco consumption in the link between BMI and HNC. However, we have a different perspective on the matter. If indeed, the main IVW finding for BMI and HNC is due to pleiotropy (since some of the pleiotropy-robust methods suggest conflicting results), then the IVW multivariable MR method is a way to explore the potential source of this bias[3]. We were particularly interested in exploring the role of smoking in the observed association because smoking and adiposity are known to influence each other [4-9] and share a genetic basis[10, 11].

      We agree that it would be useful to present the univariable MR effect estimates for smoking behaviour and HNC risk along those obtained using multivariable MR. We have now included the univariable MR estimates for both smoking behaviour variables as a note under Supplementary Table 11 and in the manuscript (lines 316-318): “In univariable IVW MR, both CSI and SI were linked to an increased risk of HNC (CSI OR=4.47 per 1-SD higher CSI, 95%CI 3.31–6.03, p<0.001; SI OR=2.07 per 1-SD higher SI 95%CI 1.60–2.68, p<0.001) (Additional File 2: note in Supplementary Table 11).”

      We understand the appeal of conducting stratified MR analyses by smoking status. However, we anticipate such analyses would hinder the interpretation of our findings as they can induce collider bias which could spuriously lead to different effect estimates across strata[12, 13].

      We thank the reviewer/editors for their comment regarding the way we frame of our findings. We have now edited the discussion section to highlight our study results are different to those obtained in studies that do not account for smoking behaviour. Lines 398-401: “With a much larger sample (N=31,523, including 12,264 cases), our IVW MR analysis suggested BMI may play a role in HNC risk, in contrast to previous studies. However, our sensitivity analyses implied that causality was uncertain.”

      Reviewer #1 (Recommendations for the authors):

      The authors do share a table of the percent variance explained of the different genetic instruments, which vary widely, and that table is very welcome because we can get some sense of their utility. The problem is that they don't translate that into a power estimate for the case-control study size that they use. They say that it is the biggest to date, which is good, but without some formal power estimate, it is not particularly reassuring. A framework for MR study power estimates was reported in PMID: 19174578, but that was using very simple MR constructs in use in 2009, and it isn't clear to me if that framework can be used here. That power paper suggests that weak genetic instruments need very large sample sizes, far larger than what is used in the current manuscript. I am unable to estimate the true strength of the instruments used here, and so I am unsure of whether power is an issue or not.

      We have now included power calculations in our manuscript to address the reviewer’s concerns. Nevertheless, as mentioned above, post-hoc power calculations are of limited value, as statistical power is already reflected in the uncertainty around the point estimates (the 95% confidence intervals). Hence, it is important to avoid drawing conclusions regarding the likelihood of true effects or false negatives based on these calculations.

      Although the hypothesis here is that smoking accounts for the apparent BMI association previously reported for HNC, it would have been preferable to see the estimates for their 2 genetic instruments for tobacco alone. The current results only show the BMI instruments alone and then with the tobacco instruments. I would like to see what the risk estimates are for the tobacco instrument alone, so that I can judge for myself what happens in the joint models. As presented, one can only do that for the BMI instruments.

      We thank the reviewer for this comment. The univariable IVW MR estimate of smoking initiation was OR=2.07 (95%CI 1.60 to 2.68, p<0.001), while the one for comprehensive smoking index was OR=4.47 (95%CI 3.31 to 6.03, p<0.001). We have included this information in the manuscript as requested (please see response to reviewing editor above).

      On line 319, they write that "We did not find evidence against bias due to correlated pleiotropy..." I find this difficult to parse, but I think it means that they should believe that correlated pleiotropy remains a problem. So again, they seem to see their primary model as compromised, and so do I. This limitation is again stated by the authors on lines 351-352.

      We apologise if the wording of the sentence was not easy to understand. When using the CAUSE method, we did not find evidence to reject the null hypothesis that the sharing (correlated pleiotropy) model fits the data at least as well as the causal model. In other words, our CAUSE finding and the inconsistencies observed across our other sensitivity analyses led us to believe that our main IVW MR estimate for BMI-HNC was likely biased by correlated pleiotropy. We believe it is important to explore the source of this bias, which is why we used multivariable MR to investigate the direct effect of BMI on HNC risk while accounting for smoking behaviour.

      In the following paragraphs (lines 358-369), the authors state that their findings are consistent with prior reports, but that doesn't seem to be the case if we take their primary BMI instrument as representing the outcome of this manuscript. Here, they find an association between the BMI instrument and HNC risk, but in each of the other papers they present the primary finding was null without the extensive model changes or the aim of accounting for tobacco with another instrument. I don't see that as replication.

      This is a good point. We have now edited the discussion of our manuscript to avoid giving the impression that our findings replicate those from studies that do not account for smoking behaviour in their analyses. We have edited lines 384-401 as follows:

      “Previous MR studies suggest adiposity does not influence HNC risk[27-29]. Gormley et al.[28] did not find a genetically predicted effect of adiposity on combined oral and oropharyngeal cancer when investigating either BMI (OR=0.89 per 1-SD, 95% CI 0.72–1.09, p=0.26), WHR (OR=0.98 per 1-SD, 95% CI 0.74–1.29, p=0.88) or waist circumference (OR=0.73 per 1-SD, 95% CI 0.52–1.02, p=0.07) as risk factors. Similarly, a large two-sample MR study by Vithayathil et al.[29] including 367,561 UK Biobank participants (of which 1,983 were HNC cases) found no link between BMI and HNC risk (OR=0.98 per 1-SD higher BMI, 95% CI 0.93–1.02, p=0.35). Larsson et al.[27] meta-analysed Vithayathil et al.’s[29] findings with results obtained using FinnGen data to increase the sample size even further (N=586,353, including 2,109 cases), but still did not find a genetically predicted effect of BMI on HNC risk (OR=0.96 per 1-SD higher BMI, 95% CI 0.77–1.19, p=0.69). With a much larger sample (N=31,523, including 12,264 cases), our IVW MR analysis suggested BMI may play a role in HNC risk, in contrast to previous studies. However, our sensitivity analyses implied that causality was uncertain.”

      We also deleted part of a sentence in the discussion section, so lines 416-418 now look as follows: “An important strength of our study was that the HEADSpAcE consortium GWAS used had a large sample size which conferred more statistical power to detect effects of adiposity on HNC risk compared to previous MR analyses[27-29].”

      On lines 384-386 they note a strength is that this is the largest study to date, but I would reiterate that larger and more powerful does not equate to adequately powered.

      This is true. We have included power calculations in the manuscript as requested.

      It's well known that different HNC subsites have different etiologies, as they mention on lines 391-392, and it is implicit in their use of data on HPV positive and negative oropharyngeal cancer. They say that they did not find evidence for heterogeneity in this study, but that would only be true for the null BMI instrument. The effect sizes for their smoking instruments are strikingly different between the subsites.

      We agree and are sorry for the confusion we may have caused by the way we worded our findings. We have edited the text to clarify that the lack of subsite heterogeneity only applied to our results for BMI/WHC/WC-HNC risk. Lines 418-424 now read as follows:

      “Furthermore, the availability of data on more HNC subsites, including oropharyngeal cancers by HPV status, allowed us to investigate the relationship between adiposity and HNC risk in more detail than previous MR studies which limited their subsite analyses to oral cavity and overall oropharyngeal cancers[28, 68]. This is relevant because distinct HNC subsites are known to have different aetiologies[69], although we did not find evidence of heterogeneity across subsites in our analyses investigating the genetically predicted effects of BMI, WHR and WC on HNC risk.”

      Finally, the literature on mutational patterns gives us strong reason to believe that HNC caused by tobacco are biologically distinct from tumors not caused by tobacco. The authors report in the introduction that traditional observational studies of BMI and HNC have reported different findings in smokers versus never smokers, so I would assume there is a possibility that the BMI instrument could have different associations with tumors of the tobacco-induced phenotype and tumors with a non-tobacco induced phenotype. I would assume that authors have access to the data on self-reported tobacco use behavior, even if they can't separate these tumors by molecular types. Stratifying their analysis by tobacco users or not might reveal different results with the BMI instrument.

      We appreciate the reviewer’s comment. We agree that it would have been interesting to present stratified analyses by smoking status along our main findings. However, we decided against this because of the risk of inducing collider bias in our MR analyses i.e., where stratifying on smoking status may induce spurious associations between the adiposity instruments and confounding factors. Multivariable MR is considered a better way of investigating the direct effects of an exposure (adiposity) on an outcome (HNC) accounting for a third variable (smoking)[14], which is why we opted for this method instead.

      References:

      (1) Heinsberg LW, Weeks DE: Post hoc power is not informative. Genet Epidemiol 2022, 46(7):390-394.

      (2) Burgess S, Butterworth A, Thompson SG: Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 2013, 37(7):658-665.

      (3) Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, Hartwig FP, Kutalik Z, Holmes MV, Minelli C et al: Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res 2019, 4:186.

      (4) Morris RW, Taylor AE, Fluharty ME, Bjorngaard JH, Asvold BO, Elvestad Gabrielsen M, Campbell A, Marioni R, Kumari M, Korhonen T et al: Heavier smoking may lead to a relative increase in waist circumference: evidence for a causal relationship from a Mendelian randomisation meta-analysis. The CARTA consortium. BMJ Open 2015, 5(8):e008808.

      (5) Taylor AE, Morris RW, Fluharty ME, Bjorngaard JH, Asvold BO, Gabrielsen ME, Campbell A, Marioni R, Kumari M, Hallfors J et al: Stratification by smoking status reveals an association of CHRNA5-A3-B4 genotype with body mass index in never smokers. PLoS Genet 2014, 10(12):e1004799.

      (6) Taylor AE, Richmond RC, Palviainen T, Loukola A, Wootton RE, Kaprio J, Relton CL, Davey Smith G, Munafo MR: The effect of body mass index on smoking behaviour and nicotine metabolism: a Mendelian randomization study. Hum Mol Genet 2019, 28(8):1322-1330.

      (7) Asvold BO, Bjorngaard JH, Carslake D, Gabrielsen ME, Skorpen F, Smith GD, Romundstad PR: Causal associations of tobacco smoking with cardiovascular risk factors: a Mendelian randomization analysis of the HUNT Study in Norway. Int J Epidemiol 2014, 43(5):1458-1470.

      (8) Carreras-Torres R, Johansson M, Haycock PC, Relton CL, Davey Smith G, Brennan P, Martin RM: Role of obesity in smoking behaviour: Mendelian randomisation study in UK Biobank. BMJ 2018, 361:k1767.

      (9) Freathy RM, Kazeem GR, Morris RW, Johnson PC, Paternoster L, Ebrahim S, Hattersley AT, Hill A, Hingorani AD, Holst C et al: Genetic variation at CHRNA5-CHRNA3-CHRNB4 interacts with smoking status to influence body mass index. Int J Epidemiol 2011, 40(6):1617-1628.

      (10) Thorgeirsson TE, Gudbjartsson DF, Sulem P, Besenbacher S, Styrkarsdottir U, Thorleifsson G, Walters GB, Consortium TAG, Oxford GSKC, consortium E et al: A common biological basis of obesity and nicotine addiction. Transl Psychiatry 2013, 3(10):e308.

      (11) Wills AG, Hopfer C: Phenotypic and genetic relationship between BMI and cigarette smoking in a sample of UK adults. Addict Behav 2019, 89:98-103.

      (12) Coscia C, Gill D, Benitez R, Perez T, Malats N, Burgess S: Avoiding collider bias in Mendelian randomization when performing stratified analyses. Eur J Epidemiol 2022, 37(7):671-682.

      (13) Hamilton FW, Hughes DA, Lu T, Kutalik Z, Gkatzionis A, Tilling K, Hartwig FP, Davey Smith G: Non-linear Mendelian randomization: evaluation of effect modification in the residual and doubly-ranked methods with simulated and empirical examples. Eur J Epidemiol 2025.

      (14) Sanderson E, Davey Smith G, Windmeijer F, Bowden J: An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int J Epidemiol 2019, 48(3):713-727.

    1. eLife Assessment

      This important work examines how microexons contribute to brain activity, structure, and behavior. The authors find that loss of microexon sequences generally has subtle impacts on these metrics in larval zebrafish, with few exceptions. The evidence is solid, using modern high-throughput phenotyping methodology in zebrafish. Overall, this work will be of interest to neuroscientists and generate further studies of interest to the field.

    2. Reviewer #1 (Public review):

      Summary:

      The authors use high-throughput gene editing technology in larval zebrafish to address whether microexons play important roles in the development and functional output of larval circuits. They find that individual microexon deletions rarely impact behavior, brain morphology, or activity, and raise the possibility that behavioral dysregulation occurs only with more global loss of microexon splicing regulation. Other possibilities exist: perhaps microexon splicing is more critical for later stages of brain development, perhaps microexon splicing is more critical in mammals, or perhaps the behavioral phenotypes observed when microexon splicing is lost are associated with loss of splicing in only a few genes.

      Strengths:

      - The authors provide a qualitative analysis of microexon inclusion during early zebrafish development

      - The authors provide comprehensive phenotyping of microexon mutants, addressing the role of individual microexons in the regulation of brain morphology, activity, and behavior.

    3. Reviewer #3 (Public review):

      Summary:

      This paper sought to understand how microexons influence early brain function. By selectively deleting a large number of conserved microexons and then phenotyping the mutants with a behavior and brain activity assays, the authors find that most microexons have minimal effects on the global brain activity and broad behaviors of the larval fish-- although a few do have phenotypes.

      Strengths:

      The work takes full advantage of the scale that is afforded in zebrafish, generating a large mutant collection that is missing microexons and systematically phenotyping them with high throughput behaviour and brain activity assays. The work lays an important foundation for future studies that seek to uncover the likely subtle roles that single microexons will play in shaping development and behavior.

      Weaknesses:

      Although the manuscript includes evidence for many mutants that microexon deletion has minimal effect on full length transcript levels, some of the microexon loss does alter transcript levels. Since the mutations usually yielded no phenotype, these effects on full-length transcripts are unlikely to be a major confound. For mircoexon mutants displaying phenotypes, future work will have to tease apart whether secondary effects on the transcripts are contributing to the phenotype.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors use high-throughput gene editing technology in larval zebrafish to address whether microexons play important roles in the development and functional output of larval circuits. They find that individual microexon deletions rarely impact behavior, brain morphology, or activity, and raise the possibility that behavioral dysregulation occurs only with more global loss of microexon splicing regulation. Other possibilities exist: perhaps microexon splicing is more critical for later stages of brain development, perhaps microexon splicing is more critical in mammals, or perhaps the behavioral phenotypes observed when microexon splicing is lost are associated with loss of splicing in only a few genes.

      A few questions remain:

      (1) What is the behavioral consequence for loss of srrm4 and/or loss-of-function mutations in other genes encoding microexon splicing machinery in zebrafish?

      It has been established that srrm4 mutants exhibit no overt morphological phenotypes and are not visually impaired (Ciampi et al., 2022). We are coordinating our publication with Lopez-Blanch et al. (https://doi.org/10.1101/2024.10.23.619860), which shows that srrm4 mutants also have minimal behavioral phenotypes. In contrast, srrm3 mutants have severe vision loss, early mortality, and numerous neural and behavioral phenotypes (Ciampi et al., 2022; Lopez-Blanch et al., 2024). We now point out the phenotypes of srrm3/srrm4 mutants in the manuscript.

      We chose not to generate and characterize the behavior and brain activity of srrm3/srrm4 mutants for two reasons: 1) we were aware of two other labs in the zebrafish community that had generated srrm3 and/or srrm4 mutants (Ciampi et al., 2022 and Gupta et al., 2024, https://doi.org/10.1101/2024.11.29.626094; Lopez-Blanch et al., 2024, https://doi.org/10.1101/2024.10.23.619860), and 2) we were far more interested in determining the importance of individual microexons to protein function, rather than loss of the entire splicing program. Microexon inclusion can be controlled by different splicing regulators, such as srrm3 (Ciampi et al., 2022) and possibly other unknown factors. Genetic compensation in srrm4 mutants could also result in microexons still being included through actions of other splicing regulators, complicating the analysis of these regulators. We mention srrm4 in the manuscript to point out that some selected microexons are adjacent to regulatory elements expected of this pathway. We did not, however, choose microexons to mutate based on whether they were regulated by Srrm4, making the characterization of srrm3/srrm4 mutants disconnected from our overarching project goal.

      We have edited the Introduction as follows to clarify our goal: “Studies of splicing regulators such as srrm4 impact the entire splicing program, making it impossible to determine the importance of individual microexons to protein function. Further, microexons could still be differentially included in a regulatory mutant via compensation by other splicing factors ...”

      (2) What is the consequence of loss-of-function in microexon splicing genes on splicing of the genes studied (especially those for which phenotypes were observed).

      We are unclear whether “microexon splicing genes” refers to the splicing regulators srrm3/srrm4, which we choose not to study in this work (see response to point #1 above), or the genes that contain microexons. The severe visual phenotypes of srrm3 mutants confounds the study of microexon splicing in this line because altered splicing levels could be due to downstream changes in this significantly different developmental context. A detailed discussion of splicing consequences on removal of microexons from microexoncontaining genes is in the response to point #4 below.

      (3) For the microexons whose loss is associated with substantial behavioral, morphological, or activity changes, are the same changes observed in loss-of-function mutants for these genes?

      In the first version of the manuscript, we had included two explicit comparisons of microexon loss with a standard loss-of-function allele, one with a phenotype and one without, in Figure S1 (now Figures S3 and S4) of this manuscript. Beyond the two pairs we had included, Lopez-Blanch et al. (https://doi.org/10.1101/2024.10.23.619860) described mild behavioral phenotypes for a microexon removal for kif1b, and we showed developmental abnormalities for the kif1b loss-of-function allele (now Figure S3). We have now added a predicted protein-truncating allele for ppp6r3. This new line has phenotypes that are similar but slightly stronger in brain activity and structure than the mutant that lacks only the microexon. The prior Figure S1 (now Figures S3 and S4) was only briefly mentioned in the first version of the manuscript, and we now clarify this point in the Results: “Protein-truncating mutations in eleven additional genes that contain microexons revealed developmental and neural phenotypes in zebrafish (Figure S3, Figure S4), indicating that the genes themselves are involved in biologically relevant pathways. Three of these genes– tenm4, sptan1, and ppp6r3 – are also in our microexon line collection.”

      Additionally, we can draw expected conclusions from the literature, as some genes with our microexon mutations have been studied as typical mutants in zebrafish or mice. We have modified our manuscript to include a discussion of both loss-of-function zebrafish and mouse mutants. See the response to below point #4.

      (4) Do "microexon mutations" presented here result in the precise loss of those microexons from the mRNA sequence? E.g. are there other impacts on mRNA sequence or abundance?

      We acknowledge that unexpected changes to the mRNA of the tested mutants could occur following microexon removal. In particular, all regulatory elements should be removed from the region surrounding the microexon, as any remaining elements could drive the inclusion of unexpected exons that result in premature stop codons.

      First, we have clarified our generated mutant alleles by adding a figure (Figure S1) that details the location of the gRNA cut sites in relation to the microexon, its predicted regulatory elements, and its neighboring exons.

      Second, we have experimentally determined whether the mRNA was modified as expected for a subset of mutants with phenotypes. In all eight tested lines (Figure S2), the microexon was precisely eliminated without causing any other effects on the sequence of the transcript in the neighboring region. We did, however, observe an effect on transcript abundance for one homozygous mutant (vav2). It is possible that complex forms of genetic regulation are occurring that are not induced by unexpected isoforms or premature stop codons. Interestingly, Lopez-Blanch et al. (https://doi.org/10.1101/2024.10.23.619860) eliminated a different microexon in vav2 and also observed a subtle well center preference. If their allele from an entirely different intronic region also results in transcript downregulation, it would support the hypothesis of genetic compensation through atypical pathways. If not, it is likely this phenotype is due specifically to removal of the microexon protein sequence. Not all mutants with phenotypes could be assessed with qRT-PCR because some were no longer present in the lab. All lines were generated in a similar way, however, removing both the microexon and neighboring regulatory elements while avoiding the neighboring exons. Accordingly, we now also explicitly point out those where the clean loss of the microexon was confirmed (eif4g3b, ppp6r3, sptan1, vti1a, meaf6, nrxn1a, tenm3) and those with possibly interesting phenotypes that were not confirmed (ptprd-1, ptprd-2, rapgef2, dctn4, dop1a, mapk8ip3).

      Third, we have further emphasized in the manuscript that these observed phenotypes are extremely mild compared to those observed in over one hundred protein-truncating mutations we have assessed in previous (Thyme et al., 2019; Capps et al., 2024) and unpublished ongoing work. We showed data for one mutant, tcf7l2, which we consider to have moderately strong neural phenotypes, and we have extended this comparison in the revision (new Figure 3G). Additionally, loss-of-function alleles for some microexoncontaining genes have strong developmental phenotypes, as we showed in Figure S1 (now Figures S3 and S4) of this manuscript in addition to our published work (Thyme et al., 2019; Capps et al., 2024). It is known from the literature that the loss-of-function mutants for mapk8ip3 are stronger than we observed here (Tuttle., et al., 2019), suggesting that only the microexon is removed in our line. The microexons in Ptprd are also well-studied in mice, and we expect that only the microexon was removed in our lines. Both Dctn4 and Rapgef2 are completely lethal prior to weaning in mice (the International Mouse Phenotyping Consortium).

      (5) Microexons with a "canonical layout" (containing TGC / UC repeats) were selected based on the likelihood that they are regulated by srrm4. Are there other parallel pathways important for regulating the inclusion of microexons? Is it possible to speculate on whether they might be more important in zebrafish or in the case of early brain development?

      The microexons were not selected based on the likelihood that they were regulated by Srrm4. We have clarified the manuscript regarding this point. There are parallel pathways that can control the inclusion of microexons, such as Srrm3 (Ciampi et al., 2022). It is wellknown that loss of srrm3 has a stronger impact on zebrafish development than srrm4 (Ciampi et al., 2022). The goal of our work was not to investigate these splicing regulators but instead to determine the individual importance of these highly conserved protein changes.

      Strengths:

      (1) The authors provide a qualitative analysis of splicing plasticity for microexons during early zebrafish development.

      (2) The authors provide comprehensive phenotyping of microexon mutants, addressing the role of individual microexons in the regulation of brain morphology, activity, and behavior.

      We thank the reviewer for their support. The pErk brain activity mapping method is highly sensitive, significantly minimizing the likelihood that the field has simply not looked hard enough for a neural phenotype in these microexon mutants. In our published work (Thyme et al., 2019), we show that brain activity can be drastically impacted without manifesting in differences in those behaviors assessed in a typical larval screen (e.g., tcf4, cnnm2, and more).

      Weaknesses:

      (1) It is difficult to interpret the largely negative findings reported in this paper without knowing how the loss of srrm4 affects brain activity, morphology, and behavior in zebrafish.

      See response to point 1.

      (2) The authors do not present experiments directly testing the effects of their mutations on RNA splicing/abundance.

      See response to point 4.

      (3) A comparison between loss-of-function phenotypes and loss-of-microexon splicing phenotypes could help interpret the findings from positive hits.

      See response to points 3 and 4.

      Reviewer #2 (Public review):

      Summary:

      The manuscript from Calhoun et al. uses a well-established screening protocol to investigate the functions of microexons in zebrafish neurodevelopment. Microexons have gained prominence recently due to their enriched expression in neural tissues and misregulation in autism spectrum disease. However, screening of microexon functionality has thus far been limited in scope. The authors address this lack of knowledge by establishing zebrafish microexon CRISPR deletion lines for 45 microexons chosen in genes likely to play a role in CNS development. Using their high throughput protocol to test larval behaviour, brain activity, and brain structure, a modest group of 9 deletion lines was revealed to have neurodevelopmental functions, including 2 previously known to be functionally important.

      Strengths:

      (1) This work advances the state of knowledge in the microexon field and represents a starting point for future detailed investigations of the function of 7 microexons.

      (2) The phenotypic analysis using high-throughput approaches is sound and provides invaluable data.

      We thank the reviewer for their support.

      Weaknesses:

      (1) There is not enough information on the exact nature of the deletion for each microexon.

      To clarify the nature of our mutant alleles, we have added a figure (Figure S1) that details the location of the microexon in relation to its predicted neighboring exons, deletion boundaries, guide RNAs, and putative regulatory elements.

      (2) Only one deletion is phenotypically analysed, leaving space for the phenotype observed to be due to sequence modifications independent of the microexon itself.

      We have determined whether the mRNA is impacted in unanticipated ways for a subset of mutants with mild phenotypes (see point #4 responses to Reviewer 1 for details). Our findings for three microexon mutants (ap1g1, vav2, and vti1a) are corroborated by LopezBlanch et al. (https://doi.org/10.1101/2024.10.23.619860). We have also already compared the microexon removal to a loss-of-function mutant for two lines (Figures S3 and S4), and we have made this comparison more obvious as well as increasing the discussion of the expected phenotypes from typical loss-of-function mutants (see point #3 response to reviewer 1).

      Unlike protein-coding truncations, clean removal of the microexon and its regulatory elements is unlikely to yield different phenotypic outcomes if independent lines are generated (with the exception of genetic background effects). When generating a proteintruncating allele, the premature stop codon can have different locations and a varied impact on genetic compensation. In previous work (Capps et al., 2024), we have observed different amounts of nonsense-mediated decay-induced genetic compensation (El-Brolosy, et al., 2019) depending on the location of the mutation. As they lack variable premature stop codons (the expectation of a clean removal), two mutants for the same microexons should have equivalent impacts on the mRNA.

      We now address the concern of subtle genetic background effects in the Methods: “Even with using sibling controls and collecting multiple biological replicates from individual parents, the possibility remains that linked genetic variation may have contributed to the mild phenotypes we observed, as only a single line was generated.”

      Reviewer #3 (Public review):

      Summary:

      This paper sought to understand how microexons influence early brain function. By selectively deleting a large number of conserved microexons and then phenotyping the mutants with behavior and brain activity assays, the authors find that most microexons have minimal effects on the global brain activity and broad behaviors of the larval fish-- although a few do have phenotypes.

      Strengths:

      The work takes full advantage of the scale that is afforded in zebrafish, generating a large mutant collection that is missing microexons and systematically phenotyping them with high throughput behaviour and brain activity assays. The work lays an important foundation for future studies that seek to uncover the likely subtle roles that single microexons will play in shaping development and behavior.

      We thank the reviewer for their support.

      Weaknesses:

      The work does not make it clear enough what deleting the microexon means, i.e. is it a clean removal of the microexon only, or are large pieces of the intron being removed as well-- and if so how much? Similarly, for the microexon deletions that do yield phenotypes, it will be important to demonstrate that the full-length transcript levels are unaffected by the deletion. For example, deleting the microexon might have unexpected effects on splicing or expression levels of the rest of the transcript that are the actual cause of some of these phenotypes.

      To clarify the nature of our mutant alleles, we have added a figure (Figure S1) that details the location of the microexon in relation to its predicted neighboring exons, deletion boundaries, guide RNAs, and putative regulatory elements. We have determined whether the mRNA is impacted in unanticipated ways for a subset of mutants with mild phenotypes (see point #4 responses to Reviewer 1 for details).

      Reviewer #1 (Recommendations for the authors):

      (1) For most ME mutations, 4 guide sequences are provided. More description / a diagram could be helpful to interpret how ME mutations were generated.

      We have added diagrams to the Supplementary Materials (new Figure S1) to show where the guide RNAs, cut sites, and putative regulatory elements are in relationship to the microexon and its neighboring exons. We have also added the following point to the text: “Four guide RNAs were used, two on each side of the microexon (Table S2, Figure S1).”

      (2) Figure 1 indicates that there are 45 microexons (MEs) but the text initially indicates that there are 44 that exist in a canonical layout (the text later indicates there are 45). This could be made more clear.

      The 45 refers to the mutants that were generated, not the microexons with putative Srrm4 regulatory elements. We did not choose microexons to mutate based on whether they were regulated by Srrm4. We have clarified these points in the manuscript as follows: “Of these 95 microexons, 42 exist in a canonical layout in the zebrafish genome, with both a UGC and UC repeat – or similar polypyrimidine tract – directly upstream of the alternatively spliced exon (Gonatopoulos-Pournatzis et al., 2018) (Table S1), indicating that Srrm4 likely controls their inclusion. Of the remaining microexons, 44 are organized similarly to the canonical layout, typically with either a UGC or UC repeat. Thus, they may also be regulated by Srrm4.” and “Using CRISPR/Cas9, we generated lines that removed 45 conserved microexons  (Table S2) and assayed larval brain activity, brain structure, and behavior (Figure 1A). Four guide RNAs were used, two on each side of the microexon (Table S2, Figure S1). For microexons with upstream regulatory elements that are likely important for splicing, these elements were also removed (Figure S1).”

      (3) The description of the "canonical layout" as containing TGC / UC repeats could be rewritten as either "containing a UGC motif and UC repeats" or "containing a TGC motif and TC repeats."

      This error has been corrected.

      (4) Why was tcf7l2 selected as a control for MAP mapping?

      The mutant for tcf7l2 is an example of a moderately strong phenotype from a recent study we completed (Capps et al., 2025). This mutant was selected because it has both increased and decreased activity and structure and is ideal for setting the range of the graph. We now include a comparison to additional mutants from this study of autism genes (Capps et al., 2025) to further demonstrate how mild the phenotypes are in the microexon removal mutants (new Figure 3G). We also include the activity and structure maps of tcf7l2 mutants in Supplementary Figures 9 and 11.

      (5) What does it mean that of the remaining microexons, most are similar to canonical layout?

      Typically, they would have one of the two regulatory elements instead of both or the location of the possible elements would be slightly farther away than expected. We have clarified this point in the manuscript as follows: “Of these 95 microexons, 42 exist in a canonical layout in the zebrafish genome, with both a UGC and UC repeat  or similar polypyrimidine tract – directly upstream of the alternatively spliced exon (Gonatopoulos-Pournatzis et al., 2018) (Table S1), indicating that Srrm4 likely controls their inclusion. Of the remaining microexons, 44 are organized similarly to the canonical layout, typically with either a UGC or UC repeat. Thus, they may also be regulated by Srrm4.”

      (6) Figure 2A is very difficult to see - most are either up or down - suggest splitting into 2 figures - one = heat map, second can summarize values that were both up and down.

      We prefer to retain this information for accuracy. The bubble location is offset to effectively share the box between the orange (decreased) and purple (increased) measures. For example, and as noted in the methods and now expanded upon, a measure can change between 4 and 6 dpf or a measure such as bout velocity could be increased while the distance traveled is decreased (both are magnitude measures). The offset of the bubbles is consistently 0.2 data units in x and y from the center of the box.

      (7) The authors apply rigorous approaches to testing the importance of microexons. I especially appreciate the inclusion of separate biological replicates in the main figures!

      We thank the reviewer for their positive feedback.

      (8) Page 5 line 5 - suggest "compared to homozygous mutants".

      The change has been made.

      (9) For Eif5g3b dark flash phenotype, it's not clear what "p-values are not calculated for response plots" means. A p-value is provided in the plot for ppp6r3 response freq.

      The eif4g3b plot is the actual response trace measuring through pixel changes whereas the ppp6r3 is the frequency of response. While informative, the response plot is time-based data with a wide dynamic range, making the average signal across the entire time window meaningless. We include the p-values for a related measure, the latency for the first 10 dark flashes in block 1 (day6dpfdf1a_responselatency) in the legend.

      (10) The ptprd phenotype in 2D is not described in the text.

      The change has been made.

      (11) Page 7 line 7: "mild" is repeated.

      This error has been corrected.

      Reviewer #2 (Recommendations for the authors):

      Specific points for needed improvement:

      (1) The title should be adjusted to more accurately describe the results. The term 'minimal' is under-representing the findings. 9/45 (20%) of targets in their screen have some phenotype, indicating that a significant number have indeed an important function. Moreover, the phenotypic analysis is limited, leaving space for missed abnormalities (as discussed by the authors). I would therefore suggest a more neutral title such as 'Systematic genetic deletion of microexons uncovers their roles in zebrafish brain development and larval behaviour'.

      While some microexon mutants do have repeatable phenotypes, these phenotypes are far milder than phenotypes observed in other mutant sets. We now include a comparison to additional mutants from this study of autism genes (Capps et al.,2025) to further demonstrate how mild the phenotypes are in the microexon removal mutants (new Figure 3G). The title states that these microexons have a minimal impact on larval zebrafish brain morphology and function, leaving room for the possibility of adult phenotypes. Thus, we prefer to retain this title.

      (2) Do the 45 chosen microexons correspond to the 44 with a canonical layout with TGC and UC repeats? If so, it needs to be explicitly stated in the text that exons were chosen for mutation based on the potential for SRRM4 regulation. If not, then the rationale for the choice of the 45 mutants from the 95 highly conserved events needs to be explained further.

      The 45 refers to the mutants that were generated, not the microexons with putative Srrm4 regulatory elements. We did not choose microexons to mutate based on whether they were regulated by Srrm4. We have clarified these points in the manuscript as follows: “Of these 95 microexons, 42 exist in a canonical layout in the zebrafish genome, with both a UGC and UC repeat – or similar polypyrimidine tract – directly upstream of the alternatively spliced exon (Gonatopoulos-Pournatzis et al., 2018) (Table S1), indicating that Srrm4 likely controls their inclusion. Of the remaining microexons, 44 are organized similarly to the canonical layout, typically with either a UGC or UC repeat. Thus, they may also be regulated by Srrm4.” and “Using CRISPR/Cas9, we generated lines that removed 45 conserved microexons (Table S2) and assayed larval brain activity, brain structure, and behavior (Figure   1A). Four guide RNAs were used, two on each side of the microexon (Table S2, Figure S1). For microexons with upstream regulatory elements that are likely important for splicing, these elements were also removed (Figure S1).”

      There was no clear rationale for those that were selected. We attempted to generate all 95 and some mutants were not successfully generated in our initial attempt. As we found minimal phenotypes, we elected to not continue to make the remaining ones on the list.

      (3) More detail regarding the design of guides for CRISPR is required in the text in the methods section. From Table S2, 4 guides were used per microexon. Were these designed to flank the microexon? How far into the intronic sequence were the guides designed? Were the splicing regulatory sequences (polypyrimidine tract, branchpoint) also removed? The flanking sequences of each of the 45 deletion lines need to be provided.

      We have added diagrams to the Supplementary Materials (new Figure S1) to show where the guide RNAs, cut sites, and putative regulatory elements are in relationship to the microexon and its neighboring exons. We removed the microexon and the surrounding area that contains the putative regulatory elements.

      (4) Following on from the previous point, to ascertain that the phenotype observed is truly due to lack of microexon (rather than other event linked to removed intronic sequences) - for the 7 exons newly identified as functionally important, at least one added deletion line has to be shown, presenting the same phenotype. If making 7 more lines can't be achieved in a reasonable time (we are aware this is a big ask), a MO experiment blocking microexon splicing needs to be provided (may not be ideal for analysis at 6 dpf). For the existing mutants and the new ones (or morphants), sequencing of the mRNAs for the 7 genes in mutants and siblings also needs to be added to check any possible change in other variants.

      Unlike protein-coding truncations, clean removal of the microexon and its regulatory elements is unlikely to yield different phenotypic outcomes if independent lines are generated (with the exception of genetic background effects). When generating a protein-truncating allele, the premature stop codon can have different locations and a varied impact on genetic compensation. In previous work (Capps et al., 2024), we have observed different amounts of nonsense-mediated decay-induced genetic compensation (El-Brolosy, et al., 2019) depending on the location of the mutation. As they lack variable premature stop codons (the expectation of a clean removal), two mutants for the same microexons should have equivalent impacts on the mRNA. We acknowledge that we inadequately described the generation of these alleles, and we now provide Figure S1 to show the microexon’s relationship to possible regulatory elements that impact splicing in unexpected ways if they remain.

      We now acknowledge the concern of subtle genetic background effects in the Methods: “Even with using sibling controls and collecting multiple biological replicates from individual parents, the possibility remains that linked genetic variation may have contributed to the mild phenotypes we observed, as only a single line was generated.”

      Given the caveats of MOs and transient microinjection for the study of 6 dpf phenotypes, we disagree that this suggested experiment would provide value. The phenotypic assays we use are highly sensitive, and we would not even trust CRISPANTs to yield reliable data. We have added an additional loss-of-function allele for ppp6r3 from the Sanger knockout project, which has a similar but stronger size change to the ppp6r3 microexon-removal line. In addition, our findings for three microexon mutants (ap1g1, vav2, and vti1a) are corroborated by Lopez-Blanch et al. (https://doi.org/10.1101/2024.10.23.619860).

      To support that these we generated clean removal of these microexons, we experimentally determined whether the mRNA is impacted in unanticipated ways for a subset of mutants with mild phenotypes (see the point #4 public response to Reviewer 1). We also have already compared the microexon removal to a loss-offunction mutant for two lines (Figure S1), and we have made that outcome more obvious as well as increasing the discussion of the expected phenotypes from typical loss-of-function mutants (see point #3 public response to Reviewer 1).

      (5) Figure 3: An image of control tcf7l2 mutant brain activity as a reference should be included.

      We now include the activity and structure maps of tcf7l2 mutants in Supplementary Figures 9 and 11.

      (6) Figure 3a/b. The gene names on the y-axis of the pERK and structure comparisons should be reordered to be alphabetical so that phenotypes can be compared by the reader for the same microexon across the two assays.

      These data are clustered so that any similarities between maps can be recognized. We prefer to retain the clustering to compare lines to each other.

      (7) Figure S6 legend. Including graph titles like "day3msdf_dpix_numberofbouts_60" is not comprehensible to the reader so should be replaced with more descriptive text. As should jargon such as "combo plot" and"habituation_day5dpfhab1post_responsefrequency_1_a1f1000d5p" etc.

      The legend has been edited to describe the experiments. Subsections of the prior names are maintained in parentheses to enable the reader to connect the plots in this figure to the specific image and underlying data in Zenodo.

      (8) Page 2 line 21 "to enable proper".

      The change has been made.

      (9) Page 7 line 7. Repeatable phenotypes were mild mild.

      This error has been corrected.

      Reviewer #3 (Recommendations for the authors):

      (1) Figure 1B is confusingly laid out.

      We are unclear how to modify Figure 1B, as it is a bar plot. We have modified several figures to improve clarity.

      (2) Figure 1E-there are some pictures of zebrafish but to what end? They aren't labelled. The dark "no expression" looks really similar to the dark green, "high expression".

      The zebrafish images represent the ages assessed for microexon inclusion. We have added labels to clarify this point.

      (3) The main text says "microexons were removed by Crispr" but there is no detail in the main text about this at all-- and barely any in the methods. What does it mean to be removed? Cleanly? Or including part of the introns on either side? Etc. How selected, raised, etc? I can glean some of this from the Table S2 if I do a lot of extra work, but at least some notes about this would be important.

      We have added diagrams to the Supplementary Materials (new Figure S1) to show where the guide RNAs, cut sites, and putative regulatory elements are in relationship to the microexon and its neighboring exons. We removed the microexon and the surrounding area that contains the putative regulatory elements.

      (4) Figure 2 - There are no Ns, at least for the plots on the right. The reader shouldn't have to dig deep in Table S2 to find that. It is also unclear why heterozygous fish are not included in these analyses, since there are sibling data for all. Removed for readability of the plots might be warranted, but this should be made explicitly clear.

      The Ns for these plots have been added to the legend. The legend was also modified as follows: “Comparisons to the heterozygous larvae are removed for clarity and available in the Supplementary Materials, as they often have even milder phenotypes than homozygous.”

      (5) Needed data: for those with phenotypes, some evidence should be presented that the full-length transcripts that encode proteins without the microexons are still expressed at the same level and without splicing errors/NMD. Otherwise, some of these phenotypes that were found could be due to knockdown or LOF (or I suppose even overexpression) of the targeted gene.

      We have added a new Supplementary Figure S2 confirming clean removal of the microexons with RT-PCR for a subset of mutants with phenotypes. This figure also includes qRT-PCR for the same subset. We now discuss these findings: Results: “For eight mutant lines, we confirmed that the microexon was eliminated from the transcripts as expected (Figure S2). Although our genomic deletion did not yield unexpected isoforms, qRT-PCR on these eight lines revealed significant downregulation for the homozygous vav2 mutant (Figure S2), indicating possibly complex genetic regulation.”

    1. eLife Assessment

      This fundamental study explores a novel cellular mechanism underlying the degeneration of locus coeruleus neurons during chronic restraint stress. The evidence supporting the overexcitation of LC neurons after chronic stress is compelling. The topic is timely, the proposed mechanistic pathway is innovative, and the findings have translational relevance, particularly regarding therapeutic strategies targeting α2A-AR internalization in neurodegenerative diseases.

    2. Reviewer #1 (Public review):

      This study aims to elucidate the mechanisms by which stress-induced α2A-adrenergic receptor (α2A-AR) internalization leads to cytosolic noradrenaline (NA) accumulation and subsequent neuronal dysfunction in the locus coeruleus (LC). While the manuscript presents an interesting but ambitious model involving calcium dynamics, GIRK channel rundown, and autocrine NA signaling, several key limitations undermine the strength of the conclusions.

      First, the revision does not include new experiments requested by reviewers to validate core aspects of the mechanism. Specifically, there is no direct measurement of cytosolic NA levels or MAO-A enzymatic activity to support the link between receptor internalization and neurochemical changes. The authors argue that such measurements are either not feasible or beyond the scope of the study, leaving a significant gap in the mechanistic chain of evidence.

      Second, the behavioral analysis remains insufficient to support claims of cognitive impairment. The use of a single working memory test following an anxiety test is inadequate to verify memory dysfunction behaviors. Additional cognitive assays, such as the Morris Water Maze or Novel Object Recognition, are recommended but not performed.

      Third, concerns regarding the lack of rigor in differential MAO-A expression in fluorescence imaging were not addressed experimentally. Instead of clarifying the issue, the authors moved the figure to supplementary data without providing further evidence (e.g., an enzymatic assay or quantitative reanalysis of Western blot, or re-staining of IF for MAO-A) to support their interpretation.

      Fourth, concerns regarding TH staining remain unresolved. In Figure S7, the α2A-AR signal appears to resemble TH staining, and vice versa, raising the possibility of labeling errors. It is recommended that the authors re-examine this issue by either double-checking the raw data or repeating the immunostaining to validate the staining.

      Overall, the manuscript offers a potentially interesting framework but falls short in providing the experimental rigor necessary to establish causality. The reliance on indirect reasoning and reorganizing existing data, rather than generating new evidence, limits the overall impact and interpretability of the study.

    3. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates the mechanism by which chronic stress induces degeneration of locus coeruleus (LC) neurons. The authors demonstrate that chronic stress leads to the internalization of α2A-adrenergic receptors (α2A-ARs) on LC neurons, causing increased cytosolic noradrenaline (NA) accumulation and subsequent production of the neurotoxic metabolite DOPEGAL via monoamine oxidase A (MAO-A). The study suggests a mechanistic link between stress-induced α2A-AR internalization, disrupted autoinhibition, elevated NA metabolism, activation of asparagine endopeptidase (AEP), and Tau pathology relevant to Alzheimer's disease (AD). The conclusions of this paper are well-supported mainly by the data, but some aspects of image acquisition require further examination.

      Strengths:

      This study clearly demonstrates the effects of chronic stimulation on the excitability of LC neurons using electrophysiological techniques. It also elucidates the role of α2-adrenergic receptor (α2-AR) internalization and the associated upstream and downstream signaling pathways of GIRK-1, using a range of pharmacological agents, highlighting the innovative nature of the work. Additionally, the study identifies the involvement of the MAO-A-DOPEGAL-AEP pathway in this process. The topic is timely, the proposed mechanistic pathway is compelling, and the findings have translational relevance, particularly in relation to therapeutic strategies targeting α2A-AR internalization in neurodegenerative diseases.

      Weaknesses:

      (1) The manuscript reports that chronic stress for 5 days increases MAO-A levels in LC neurons, leading to the production of DOPEGAL, activation of AEP, and subsequent tau cleavage into the tau N368 fragment, ultimately contributing to neuronal damage. However, the authors used wild-type C57BL/6 mice, and previous literature has indicated that AEP-mediated tau cleavage in wild-type mice is minimal and generally insufficient to cause significant behavioral alterations. Please clarify and discuss this apparent discrepancy.

      (2) It is recommended that the authors include additional experiments to examine the effects of different durations and intensities of stress on MAO-A expression and AEP activity. This would strengthen the understanding of stress-induced biochemical changes and their thresholds.

      (3) Please clarify the rationale for the inconsistent stress durations used across Figures 3, 4, and 5. In some cases, a 3-day stress protocol is used, while in others, a 5-day protocol is applied. This discrepancy should be addressed to ensure clarity and experimental consistency.

      (4) The abbreviation "vMAT2" is incorrectly formatted. It should be "VMAT2," and the full name (vesicular monoamine transporter 2) should be provided at first mention.

      Comments on revisions:

      The authors have addressed all of the reviewers' comments.

    4. Reviewer #3 (Public review):

      Summary:

      The authors present a technically impressive dataset showing that repeated excitation or restraint stress internalises somatodendritic α2A adrenergic autoreceptors (α2A ARs) in locus coeruleus (LC) neurons. Loss of these receptors weakens GIRK-dependent autoinhibition, raises neuronal excitability, and is accompanied by higher MAO A, DOPEGAL, AEP, and tau N368 levels. The work combines rigorous whole-cell electrophysiology with barbadin-based trafficking assays, qPCR, Western blotting, and immunohistochemistry. The final schematic is appealing and, in principle, could explain early LC hyperactivity followed by degeneration in ageing and Alzheimer's disease.

      Strengths:

      - Multi-level approach - The study integrates electrophysiology, pharmacology, mRNA quantification, and protein-level analysis.

      -Use of barbadin to block β-arrestin/AP-2-dependent internalisation is both technically precise and mechanistically informative

      -Well-executed electrophysiology

      -translation relevance

      -converges to a model that peers discussed (scientists can only discuss models - not data!)

      Weaknesses:

      Nevertheless, the manuscript currently reads as a sequence of discrete experiments rather than a single causal chain.

    5. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer # 1 (Public review)

      This study aims to elucidate the mechanisms by which stress-induced α2A-adrenergic receptor (α2A-AR) internalization leads to cytosolic noradrenaline (NA) accumulation and subsequent neuronal dysfunction in the locus coeruleus (LC). While the manuscript presents an interesting but ambitious model involving calcium dynamics, GIRK channel rundown, and autocrine NA signaling, several key limitations undermine the strength of the conclusions. 

      (1) First, the revision does not include new experiments requested by reviewers to validate core aspects of the mechanism. Specifically, there is no direct measurement of cytosolic NA levels or MAO-A enzymatic activity to support the link between receptor internalization and neurochemical changes. The authors argue that such measurements are either not feasible or beyond the scope of the study, leaving a significant gap in the mechanistic chain of evidence. 

      Although the reviewer #1 commented that “The authors argue that such measurements are either not feasible or beyond the scope of the study, leaving a significant gap in the mechanistic chain of evidence”, we believe that this comment may be unfair. 

      It may be unfair for the reviewer #1 to neglect our responses to the original reviewer comments regarding the direct measurement of cytosolic NA levels. It is true that none of the recommended methods to directly measure cytosolic NA levels are not feasible as described in the original authors’ response (see the original authors’ response to the comment raised by the Reviewer #1 as Recommendations for the authors (2)). To measure extracellular NA with GRAB-NE photometry, α2A-ARs must be expressed in the cell membrane. GRAB-NE photometry is not applicable unless α2A-ARs are expressed, whereas increases in cytosolic NA levels are caused by internalization of α2A-ARs in our study.

      In our study, we elaborated to detect the change in MAO-A protein with Western blot method, instead of examining MAO-A enzymatic activity. Because the relative quantification of active AEP and Tau N368 proteins by Western blot analysis should accurately reflect the change in the MAO-A enzymatic activity, enzymatic assay may not be necessarily required while we admit the necessity of enzymatic assay to better demonstrate the MAO-A activities as discussed in the previously revised manuscript (R1, page 10, lines 314-315). 

      We used the phrase “beyond the scope of the current study” for “the mechanism how Ca<sup>2+</sup> activates MAO-A” as described in the original authors’ responses (see the original authors’ response to the comment raised by the Reviewer #1 as Weakness (3)). We do not think that this mechanism must be investigated in the present study because the Ca<sup>2+</sup> dependent nature of MAO-A activity is already known (Cao et al., 2007). 

      On the other hand, because it is not possible to measure cytosolic NA levels with currently available methods, the quantification of the connection between α2A-AR internalization and increased cytosolic NA levels must be considered outside the scope of the study. However, our study demonstrated the qualitative relationship between α2A-AR internalization and active-AEP/TauN-368 reflecting increased cytosolic NA levels, leaving “a small gap in the mechanistic chain of evidence.” Therefore, it may be unreasonable to criticize our study as “leaving a significant gap in the mechanistic chain of evidence” with the phrase “beyond the scope of the current study.” 

      (2) Second, the behavioral analysis remains insufficient to support claims of cognitive impairment. The use of a single working memory test following an anxiety test is inadequate to verify memory dysfunction behaviors. Additional cognitive assays, such as the Morris Water Maze or Novel Object Recognition, are recommended but not performed.

      As described in the original authors’ response (see the original authors’ response to the comment raised by the Reviewer #1 as Weakness (4)), we had already done another behavioral test using elevated plus maze (EPM) test. By combining the two tests, it may be possible to more accurately evaluate the results of Y-maze test by differentiating the memory impairment from anxiety. However, the results obtained by these behavioral tests showed that chronic RS mice displayed both anxiety-like and memory impairment-like behaviors. Accordingly, we have softened the implication of anxiety and memory impairment (page 13, lines 396-399) and revised the abstract (page 2, line 59) in the revised manuscript (R2).  

      (3) Third, concerns regarding the lack of rigor in differential MAO-A expression in fluorescence imaging were not addressed experimentally. Instead of clarifying the issue, the authors moved the figure to supplementary data without providing further evidence (e.g., an enzymatic assay or quantitative reanalysis of Western blot, or re-staining of IF for MAO-A) to support their interpretation.

      Because the quantification of MAO-A expression can be performed with greater accuracy by means of Western blot than by immunohistochemistry, we have moved the immunohistochemical results (shown in Figure 5) to the supplemental data (Figure S8) following the suggestion made by the Reviewer #3. As the relative quantification of active AEP and Tau N368 proteins by Western blot analysis may accurately reflect changes in the MAO-A enzymatic activity which is consistent with the result of Western blot analysis of MAO-A, enzymatic assay or re-staining of immunofluorescence for MAO-A may not be necessarily required. We do not think that a new experiment of Western blot analysis is necessary to re-evaluate MAO-A just because of the lack of the less-reliable quantification of immunohistochemical staining.

      (4) Fourth, concerns regarding TH staining remain unresolved. In Figure S7, the α2A-AR signal appears to resemble TH staining, and vice versa, raising the possibility of labeling errors. It is recommended that the authors re-examine this issue by either double-checking the raw data or repeating the immunostaining to validate the staining.

      The reviewer #3 is misunderstanding Figure S7. In Figure S7, there are two types of α2A-AR expressing neurons; one is TH-positive LC neuron and the other is TH-negative neuron in mesencephalic trigeminal nucleus (MTN). This clearly indicates that TH staining is specific. Furthermore, α2A-AR staining was much more extensive in MTN neurons than in LC neurons. Thus, α2A-AR signal is not similar to TH signal and there are no labeling errors, which is also evident in the merged image (Figure S7C).

      (5) Overall, the manuscript offers a potentially interesting framework but falls short in providing the experimental rigor necessary to establish causality. The reliance on indirect reasoning and reorganizing of existing data, rather than generating new evidence, limits the overall impact and interpretability of the study.

      Overall, the reviewer #1 was not satisfied with our revision regardless of the authors’ responses. As detailed above in our responses to the replies (1)~(4), we believe that in the original authors’ responses and in the above-described responses we effectively responded to the criticisms by the reviewer #1.

      Reviewer #2 (Public review): 

      Comments on revisions: 

      The authors have addressed all of the reviewers' comments.

      We appreciate constructive and helpful comments made by the reviewer #2.

      Reviewer #3 (Public review): 

      Weaknesses:  

      Nevertheless, the manuscript currently reads as a sequence of discrete experiments rather than a single causal chain. Below, I outline the key points that should be addressed to make the model convincing.

      Please see the responses to the recommendation for the authors made by reviewer #3.

      Reviewer #3 (Recommendations for the authors):

      (1) Causality across the pathway  

      Each step (α2A internalisation, GIRK rundown, Ca<sup>2+</sup> rise, MAO-A/AEP upregulation) is demonstrated separately, but no experiment links them in a single preparation. Consider in vivo Ca<sup>2+</sup> or GRAB NE photometry during restraint stress while probing α2A levels with i.p. clonidine injection or optogenetic over excitation coupled to biochemical readouts. Such integrated evidence would help to overcome the correlational nature of the manuscript to a more mechanistic study. 

      Authors response: It is not possible to measure free cytosolic NA levels with GRAB NE photometry when α2A AR is internalized as described above (see the response to the comment made by reviewer #1 as the recommendation for the authors).

      The core idea behind my comment, as well as that of Reviewer 1, was to encourage integrating your individual findings into a more cohesive in vivo experiment. Using GRAB-NE to measure extracellular NA could serve as an indirect readout of NA uptake via NAT, and ultimately, cytosolic NA levels. Connecting these experiments would significantly strengthen the manuscript and enhance its overall impact. 

      It may be true that the measurement of extracellular NA could serve as an indirect readout of NA uptake via NAT, and ultimately cytosolic NA levels. However, the reviewer #3 is still misunderstanding the applicability of GRAB-NE method to detect NE in our study. As described in the original authors’ response, there appeared to be no fluorescence probe to label cytosolic NA at present. Especially, the GRAB-NE method recommended by the reviewers #1 and #3 is limited to detect NA only when α2A-AR is expressed in the cell membrane.Therefore, when increases in cytosolic NA levels are caused by internalization of α2A-ARs, NA measurement with GRAB-NE photometry is not applicable.

      (2) Pharmacology and NE concentration  

      The use of 100 µM noradrenaline saturates α and β adrenergic receptors alike. Please provide ramp measurements of GIRK current in dose-response at 1-10 µM NE (blocked by atipamezole) to confirm that the rundown really reflects α2A activity rather than mixed receptor effects. 

      Authors response: It is true that 100 µM noradrenaline activates both α and β adrenergic receptors alike. However, it was clearly showed that enhancement of GIRK-I by 100 µM noradrenaline was completely antagonized by 10 µM atipamezole and the Ca<sup>2+</sup> dependent rundown of NA-induced GIRK-I was prevented by 10 µM atipamezole. Considering the Ki values of atipamezole for α2A AR (=1~3 nM) (Vacher et al., 2010, J Med Chem) and β AR (>10 µM) (Virtanen et al., 1989, Arch Int Pharmacodyn Ther), these results really reflect α2A AR activity but not β AR activity (Figure S5). Furthermore, because it is already well established that NA-induced GIRK-I was mediated by α2A AR activity in LC neurons (Arima et al., 1998, J Physiol; Williams et al., 1985, Neuroscience), it is not necessarily need to re-examine 1-10 µM NA on GIRK-I.

      While the milestone papers by Williams remain highly influential, they should be re-evaluated in light of more recent findings, given that they date back over 40 years. Advances in our understanding now allow for a more nuanced interpretation of some of their results. For example, see McKinney et al. (eLife, 2023). This study demonstrates that presynaptic β-adrenergic receptors-particularly β2-can enhance neuronal excitability via autocrine mechanisms. This suggests that your post-activation experiments using atipamezole may not fully exclude a contribution of β-adrenergic signaling. Such a role might become apparent when conducting more detailed titration experiments.

      The reviewer #3 may be misunderstanding the report by McKinney et al. (eLife, 2013). This paper did not demonstrate that presynaptic β-adrenergic receptors-particularly β2- can enhance neuronal excitability via autocrine mechanisms. It is impossible for LC neurons to increase their excitability by activating β-adrenergic receptors, as we have clearly shown that enhancement of GIRK-I by 100 µM noradrenaline was completely antagonized by 10 µM atipamezole. Considering the difference in Ki values of atipamezole for α2-AR (= 2~4 nM) (Vacher et al., 2010, J Med Chem) and β-AR (>10 µM) (Virtanen et al., 1989, Arch Int Pharmacodyn Ther), such a complete antagonization (of 100 µM NA-induced GIRK-I) by 10 µM atipamezole really reflect α2A-AR activity but not β-AR activity (Figure S5). Furthermore, it is already well established that NA-induced GIRK-I was mediated by α2-AR activity in LC neurons (Arima et al., 1998, J Physiol). McKinney et al. (eLife, 2023) have just found the absence of lateral inhibition on adjacent LC neurons by NA autocrine caused respective spike activity. This has nothing to do with autoinhibition.

      (4) Age mismatch and disease claims 

      All electrophysiology and biochemical data come from juvenile (< P30) mice, yet the conclusions stress Alzheimer-related degeneration. Key endpoints need to be replicated in adult or aged mice, or the manuscript should soften its neurodegenerative scope. 

      Authors response: As described in the section of Conclusion, we never stress Alzheimer-related degeneration, but might give such an impression. To avoid such a misunderstanding, we have added a description “However, the present mechanism must be proven to be valid in adult or old mice, to validate its involvement in the pathogenesis of AD.” (R1, page 14, lines 448-450).

      It would be great to see this experiment performed in aged mice-you are the one who has everything in place to do it right now! 

      In our future separate studies, we would like to prove that the present mechanism is valid in aged mice, to validate its involvement in the pathogenesis of AD. This is partly because the patch-clamp study in aged mice is extremely difficult and takes much time.

      Authors response: In the abstract, you suggest that internalization of α2A-adrenergic receptors could represent a therapeutic target for Alzheimer's disease. "...Thus, it is likely that internalization of α2A-AR increased cytosolic NA, as reflected in AEP increases, by facilitating reuptake of autocrine-released NA. The suppression of α2A-AR internalization may have a translational potential for AD treatment."

      α2A-AR internalization was involved in the degeneration of LC neurons. Because we confirmed that spike-frequency adaptation reflecting α2A-AR-mediated autoinhibition can be induced in adult mice as prominently as in juvenile mice (Figure S10), it is not inadequate to suggest that the suppression of α2A-AR internalization may have a translational potential for anxiety/AD treatment (see Discussion; R2, page 14, lines 445-449).

      (6) Quantitative histology  

      Figure 5 presents attractive images, but no numerical analysis is provided. Please provide ROI-based fluorescence quantification (with n values) or move the images to the supplement and rely on the Western blots. 

      Author response: We have moved the immunohistochemical results in Fig. 5 to the supplement, as we believe the quantification of immunohistochemical staining is not necessarily correct.   

      What do you mean by that " ...immunohistochemical staining is not necessarily correct."  

      It is evident that in terms of quantification, Western blot analysis is a more accurate method than immunohistochemical staining. In this sense, it is the contention of our study that the ROI-based fluorescence quantification of immunohistochemical staining is not necessarily an accurate or correct procedure, compared to the quantification by Western blot analysis.

    1. eLife Assessment

      The analysis of neural morphology across Heliconiini butterfly species revealed brain area-specific changes associated with new foraging behaviours. While the volume of the centre for learning and memory, the mushroom bodies, was known to vary widely across species, new, valuable results show conservation of the volume of a center for navigation, the central complex. The presented evidence is convincing for both volumetric conservation in the central complex and fine neuroanatomical differences associated with pollen feeding, delivered by experimental approaches that are applicable to other insect species. This work will be of interest to evolutionary biologists, entomologists, and neuroscientists.

    2. Reviewer #1 (Public review):

      The authors previously reported that Heliconius, one genus of the Heliconiini butterflies, evolved to be efficient foragers to feed pollen of specific plants and have massively expanded mushroom bodies. Using the same image dataset, the authors segmented the central complex and associated brain regions and found that the volume of the central complex relative to the rest of the brain is largely conserved across the Heliconiini butterflies. By performing immunostaining to label a specific subset of neurons, the authors found several potential sites of evolutionary divergence in the central complex neural circuits, including the number of GABAergic ellipsoid body ring neurons and the innervation patterns of Allatostatin A expressing neurons in the noduli. These neuroanatomical data will be helpful to guide future studies to understand the evolution of the neural circuits for vector-based navigation.

      Strengths:

      The authors used a sufficiently large scale of dataset from 307 individuals of 41 species of Heliconiini butterflies to solidify the quantitative conclusions and present new microscopy data for fine neuroanatomical comparison of the central complex.

      Weaknesses:

      (1) Although the figures display a concise summary of anatomical findings, it would be difficult for non-experts to learn from this manuscript to identify the same neuronal processes in the raw confocal stacks. It would be helpful to have instructive movies to show a step-by-step guide for identification of neurons of interest, segmentations, and 3D visualizations (rotation) for several examples, including ER neurons (to supplement texts in line 347-353) and Allatostatin A neurons.

      (2) Related to (1), it was difficult for me to assess if the data in Figure 7 support the author's conclusions that ER neuron number increased in Heliconius Melpomene. By my understanding, the resolution of this dataset isn't high enough to trace individual axons and therefore authors do not rule out that the portion of "ER ring neurons" in Heliconius may not innervate the ER, as stated in Line 635 "Importantly, we also found that some ER neurons bypass the ellipsoid body and give rise to dense branches within distinct layers in the fan-shaped body (ER-FB)". If they don't innervate the ellipsoid body, why are they named as "ER neurons"?

      (3) Discussions around the lines 577-584 require the assumption that each ellipsoid body (EB) ring neuron typically arborises in a single microglomerulus to form a largely one-to-one connection with TuBu neurons within the bulb (BU), and therefore, the number of BU microglomeruli should provide an estimation of the number of ER neurons. Explain this key assumption or provide an alternative explanation.

      (4) The details of antibody information are missing in the Key resource table. Instead of citing papers, list the catalogue numbers and identifier for commercially available antibodies, and describe the antigen, and whether they are monoclonal or polyclonal. Are antigens conserved across species?

      (5) I did not understand why authors assume that foraging to feed on pollens is a more difficult cognitive task than foraging to feed on nectar. Would it be possible that they are equally demanding tasks, but pollen feeding allows Heliconius to pass more proteins and nucleic acids to their offspring and therefore they can develop larger mushroom bodies?

    3. Reviewer #2 (Public review):

      Summary:

      In this study, Farnsworth et al. ask whether the previously established expansion of mushroom bodies in the pollen foraging Heliconius genus of Heliconiini butterflies co-evolved with adaptations in the central complex. Heliconius trap line foraging strategies to acquire pollen as a novel resource require advanced spatial memory mediated by larger mushroom bodies, but the authors show that related navigation circuits in the central complex are highly conserved across the Heliconiini tribe, with a few interesting exceptions. Using general immunohistochemical stains and 3D reconstruction, the authors compared volumes of central complex regions, and unlike the mushroom bodies, there was no evidence of expansion associated with pollen feeding. However, a second dataset of neuromodulator and neuropeptide antibody labeling reveals more subtle differences between pollen and non-pollen foragers and highlights sub-circuits that may mediate species-specific differences in behavior. Specifically, the authors found an expansion of GABAergic ER neurons projecting to the fan-shaped body in Heliconius, which may enhance their ability to path-integrate. They also found differences in Allatostatin A immunoreactivity, particularly increased expression in the noduli associated with pollen feeding. These differences warrant closer examination in future studies to determine their functional implication on navigation and foraging behaviors.

      Strengths:

      The authors leveraged a large morphological data set from the Heliconiini to achieve excellent phylogenetic coverage across the tribe with 41 species represented. Their high-quality histology resolves anatomical details to the level of specific, identifiable tracts and cell body clusters. They revealed differences at a circuit level, which would not be obvious from a volumetric comparison. The discussion of these adaptations in the context of central complex models is useful for generating new hypotheses for future studies on the function of ER-FB neurons and the role of Allatostatin A modulation in navigation.

      The conclusions drawn in this paper are measured and supported by rigorous statistics and evidence from micrographs.

      Weaknesses:

      The majority of results in this study do not reveal adaptations in the central complex associated with pollen foraging. However, reporting conserved traits is useful and illustrates where developmental or functional constraints may be acting. The implied hypothesis in the introduction is that expansion of mushroom bodies in Heliconius co-evolved with central complex adaptations, so it may be helpful to set up the alternate hypotheses in the beginning.

      In the main text, the authors describe differences in GABAergic neurons "across several species" but only one Heliconius and one outgroup species seem to be represented in the figures. ER numbers in Figure 7H are only compared for these two species. If this data is available for other species, it would strengthen the paper to add them to the analysis, since this was one of the most intriguing findings in the study. I would want to know if the increased ER number is a trend in Heliconius or specific to H. melpomene.

    4. Author response:

      We thank the two reviewers for their constructive criticisms which we will address in the coming weeks, and we are confident doing so will benefit the manuscript.

      We will aim to address all comments, but there are two main areas in particular that we highlight here:

      (1)  Both reviewers make important suggestions to improve the readers’ understanding of the anatomical complexities and raw files we provide. We will generate annotated confocal stacks and simplify the nomenclature to better guide the reader through the more complex details of the anatomy of the central complex, and the neuron types we characterized more closely.

      (2)  Both reviewers also pointed to several parts of our interpretations and discussion that should be clarified. We will do so by improving the language we use at certain sections to offer more precision, and by offering alternative explanations where possible.

    1. eLife Assessment

      This study offers a valuable theoretical framework for quantifying molecular transport across interfaces between coexisting liquid phases, emphasizing interfacial resistance as a central factor governing transport kinetics. The mathematical derivations are solid. To enhance the paper's relevance and broaden its appeal, it would be helpful to clarify how the key equations connect to existing literature and to elucidate the physical mechanisms underlying scenarios that give rise to substantial interfacial resistance.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors theoretically address the topic of interface resistance between a phase-separated condensate and the surrounding dilute phase. In a nutshell, "interface resistance" occurs if material in the dilute phase can only slowly pass through the interface region to enter the dense phase. There is some evidence from FRAP experiments that such a resistance may exist, and if it does, it could be biologically relevant insofar as the movement of material between dense and dilute phases can be rate-limiting for biological processes, including coarsening. The current study theoretically addresses interface resistance at two levels of description: first, the authors present a simple way of formulating interface resistance for a sharp interface model. Second, they derive a formula for interface resistance for a finite-width interface and present two scenarios where the interface resistance might be substantial.

      Strengths:

      The topic is of broad relevance to the important field of intracellular phase separation, and the work is overall credible.

      Weaknesses:

      There are a few problems with the study as presented - mainly that the key formula for the latter section has already been derived and presented in Reference 6 (notably also in this journal), and that the physical basis for the proposed scenarios leading to a large interface resistance is not clearly supported.

      (1) As noted, Equation 32 of the current study is entirely equivalent to Equation 8 of Reference 6, with a very similar derivation presented in Appendix 1 of that paper. In fact, Equation 8 in Reference 6 takes one more step by combining Equations 32 and 35 to provide a general expression for the interface resistance in an integral form. These prior results should be properly cited in the current work - the existing citations to Reference 6 do not make this overlap apparent.

      (2) The authors of the current study go on to examine cases where this shared equation (here Equation 32) might imply a large interface resistance. The examples are mathematically correct, but physically unsupported. In order to produce a substantial interface resistance, the current authors have to suppose that in the interface region between the dense and dilute phases, either there is a local minimum of the diffusion coefficient or a local minimum of the density. I am not aware of any realistic model that would produce either of these minima. Indeed, the authors do not present sufficient examples or physical arguments that would support the existence of such minima.

      In my view, these two issues limit the general interest of the latter portion of the current manuscript. While point 1 can be remedied by proper citation, point 2 is not so simple to address. The two ways the authors present to produce a substantial interface resistance seem to me to be mathematical exercises without a physical basis. The manuscript will improve if the authors can provide examples or compelling arguments for a minimum of either diffusion coefficient or density between the dense and dilute phases that would address point 2.

    3. Reviewer #2 (Public review):

      Summary:

      This work provides a general theoretical framework for understanding molecular transport across liquid-liquid phase boundaries, focusing on interfacial resistance arising from deviations from local equilibrium. By bridging sharp and continuous interface descriptions, the authors demonstrate how distinct microscopic mechanisms can yield similar effective kinetics and propose practical experimental validation strategies.

      Strengths:

      (1) Conceptually rich and physically insightful interface resistance formulation in sharp and continuous limits.

      (2) Strong integration of non-equilibrium thermodynamics with biologically motivated transport scenarios.

      (3) Thorough numerical and analytical support, with thoughtful connection to current and emerging experimental techniques.

      (4) Relevance to various systems, including biomolecular condensates and engineered aqueous two-phase systems.

      Weaknesses:

      (1) The work remains theoretical, mainly, with limited direct comparison to quantitative experimental data.

      (2) The biological implications are only briefly explored; further discussion of specific systems where interface resistance might play a functional role would enhance the impact.

      (3) Some model assumptions (e.g., symmetric labeling or idealized diffusivity profiles) could be further contextualized regarding biological variability.

    4. Reviewer #3 (Public review):

      The manuscript investigated the kinetics of molecule transport across interfaces in phase-separated mixtures. Through the development of a theoretical approach for a binary mixture in a sharp interface limit, the authors found that interface resistance leads to a slowdown in interfacial movement. Subsequently, they extended this approach to multiple molecular species (incorporating both labeled and unlabeled molecules) and continuous transport models. Finally, they proposed experimental settings in vitro and commented on the necessary optical resolution to detect signatures of interfacial kinetics associated with resistance.

      The investigation of transport kinetics across biomolecular condensate interfaces holds significant relevance for understanding cellular function and dysfunction mechanisms; thus, the topic is important and timely. However, the current manuscript presentation requires improvement. Firstly, the inclusion of numerous equations in the main text substantially compromises readability, and relocation of a part of the formulae and derivations to the Appendix would be more appropriate. Secondly, the manuscript would benefit from more comprehensive comparisons with existing theoretical studies on molecular transport kinetics. The text should also be written to be more approachable for a general readership. Modifications and sufficient responses to the specific points outlined below are recommended.

      (1) The authors introduced a theoretical framework to study the kinetics of molecules across an interface between two coexisting liquid phases and found that interface resistance leads to a slowdown in interfacial movement in a binary mixture and a decelerated molecule exchange between labeled and unlabeled molecules across the phase boundary. However, these findings appear rather expected. The work would be strengthened by a more thorough discussion of the kinetics of molecule transport across interfaces (such as the physical origin of the interface resistance and its specific impact on transport kinetics).

      (2) The formulae in the manuscript should be checked and corrected. Notably, Equation 10 contains "\phi_2\ln\phi_2" while Eq. 11b shows "n^{-1}\ln\phi_2", suggesting a missing factor of "n^{-1}". Similarly, Equation 18 obtained from Equation 11: the logarithmic term in Eq.11a is "n^{-1}\ln phi_1-\ln(1-\phi)" but the pre-exponential factor in Equation 18a is just "\phi_1/(1-\phi*)", where is "n^{-1}"? Additionally, there is a unit inconsistency in Equation 36, where the unit of \rho (s/m) does not match that of the right-hand side expression (s/m^2).

      (3) The authors stated that the numerical solutions are obtained using a custom finite difference scheme implemented in MATLAB in the Appendix. The description of numerical methods is insufficiently detailed and needs to be expanded, including specific equations or models used to obtain specific figures, the introduction of initial and boundary conditions, the choices of parameters and their reasons in terms of the biology.

      (4) The authors claimed that their framework naturally extends to multiple molecular species, but only showed the situation of labeled and unlabeled molecules across a phase boundary. How about three or more molecular species? Does this framework still work? This should be added to strengthen the manuscript and confirm the framework's general applicability.

    5. Author response:

      Reviewer #1 (Public review): 

      Summary: 

      In this manuscript, the authors theoretically address the topic of interface resistance between a phase-separated condensate and the surrounding dilute phase. In a nutshell, "interface resistance" occurs if material in the dilute phase can only slowly pass through the interface region to enter the dense phase. There is some evidence from FRAP experiments that such a resistance may exist, and if it does, it could be biologically relevant insofar as the movement of material between dense and dilute phases can be rate-limiting for biological processes, including coarsening. The current study theoretically addresses interface resistance at two levels of description: first, the authors present a simple way of formulating interface resistance for a sharp interface model. Second, they derive a formula for interface resistance for a finite-width interface and present two scenarios where the interface resistance might be substantial. 

      Strengths: 

      The topic is of broad relevance to the important field of intracellular phase separation, and the work is overall credible. 

      Weaknesses: 

      There are a few problems with the study as presented - mainly that the key formula for the latter section has already been derived and presented in Reference 6 (notably also in this journal), and that the physical basis for the proposed scenarios leading to a large interface resistance is not clearly supported. 

      (1) As noted, Equation 32 of the current study is entirely equivalent to Equation 8 of Reference 6, with a very similar derivation presented in Appendix 1 of that paper. In fact, Equation 8 in Reference 6 takes one more step by combining Equations 32 and 35 to provide a general expression for the interface resistance in an integral form. These prior results should be properly cited in the current work - the existing citations to Reference 6 do not make this overlap apparent. 

      We agree and will make the overlap explicit, acknowledging priority and clarifying what is new here. The initial version of the preprint of Zhang et al. (2022) (https://www.biorxiv.org/content/10.1101/2022.03.16.484641v1) lacked the derivation (it referenced a Supplementary Note not yet available); it was added during the eLife submission. We worked from the preprint and missed this update, which we will now correct.

      (2) The authors of the current study go on to examine cases where this shared equation (here Equation 32) might imply a large interface resistance. The examples are mathematically correct, but physically unsupported. In order to produce a substantial interface resistance, the current authors have to suppose that in the interface region between the dense and dilute phases, either there is a local minimum of the diffusion coefficient or a local minimum of the density. I am not aware of any realistic model that would produce either of these minima. Indeed, the authors do not present sufficient examples or physical arguments that would support the existence of such minima. 

      We respectfully disagree with the reviewer on the physical plausibility of these scenarios there is both concrete experimental and theoretical evidence for the scenarios we discussed.

      Experimental: Strom et al. (2017) (our reference 11) describes a substantially reduced protein diffusion coefficient at an in vivo phase boundary, while Hahn et al. (2011a) and Hahn et al. (2011b) (our references 27 and 28) describe transient accumulation of molecules at a phase boundary, which they attribute to the Donnan potential, but conceivably a lowered mobility could play a role.

      Theoretical: Recent work (e.g., Majee et al. (2024)) shows that charged layers could form at phase boundaries, which could either repel or attract incoming molecules, depending on their charge, thus altering the local volume fraction, resulting in a trough or peak. Arguably, the model put forth by Zhang et al. (2024) could be mapped to a potential wall, where particles are reflected, unless in a certain state. We will add sentences to the corresponding results section, as well as the discussion to make this plausibility more apparent.

      In my view, these two issues limit the general interest of the latter portion of the current manuscript. While point 1 can be remedied by proper citation, point 2 is not so simple to address. The two ways the authors present to produce a substantial interface resistance seem to me to be mathematical exercises without a physical basis. The manuscript will improve if the authors can provide examples or compelling arguments for a minimum of either diffusion coefficient or density between the dense and dilute phases that would address point 2. 

      We believe we will be able to address both issues.

      Reviewer #2 (Public review): 

      Summary: 

      This work provides a general theoretical framework for understanding molecular transport across liquid-liquid phase boundaries, focusing on interfacial resistance arising from deviations from local equilibrium. By bridging sharp and continuous interface descriptions, the authors demonstrate how distinct microscopic mechanisms can yield similar effective kinetics and propose practical experimental validation strategies. 

      Strengths: 

      (1) Conceptually rich and physically insightful interface resistance formulation in sharp and continuous limits. 

      (2) Strong integration of non-equilibrium thermodynamics with biologically motivated transport scenarios. 

      (3) Thorough numerical and analytical support, with thoughtful connection to current and emerging experimental techniques. 

      (4) Relevance to various systems, including biomolecular condensates and engineered aqueous two-phase systems. 

      Weaknesses: 

      (1) The work remains theoretical, mainly, with limited direct comparison to quantitative experimental data. 

      We agree with the reviewer, an experimental manuscript is in progress.

      (2) The biological implications are only briefly explored; further discussion of specific systems where interface resistance might play a functional role would enhance the impact.

      We thank the reviewer for this comment. We will add several such scenarios to the discussion, including the possibility to use interface resistance as a way of ordering biochemical reactions in time, as well as their potential to exclude molecules from condensates for long time periods, which, while not effective in the long-time limit, could help on cellular timescales of minutes to hours to respond to transient events.

      (3) Some model assumptions (e.g., symmetric labeling or idealized diffusivity profiles) could be further contextualized regarding biological variability. 

      The treatment of labelled and unlabelled molecules as physically identical is well supported by our experiments. Droplets under typical experimental conditions, i.e. when bleaching is not too strong, do not markedly change size or volume fraction of molecules, which would be expected if the physical properties like molecular volume or interaction strength were significantly changed. However, we do agree that in more extreme bleaching regimes the bleach step itself will change the droplet properties, but this can be avoided by tuning the FRAP laser power and dwell times accordingly.

      Our diffusivity profiles are chosen in the simplest possible way to handle typical experimental constraints (large D outside, lower D inside, potentially lowered D at the boundary) and allow for a mean-field treatment. To the best of our knowledge, the precise make-up and concentration profiles of phase boundaries in biomolecular condensates are not currently known, due to limitations in optical resolution.

      Reviewer #3 (Public review): 

      The manuscript investigated the kinetics of molecule transport across interfaces in phase-separated mixtures. Through the development of a theoretical approach for a binary mixture in a sharp interface limit, the authors found that interface resistance leads to a slowdown in interfacial movement. Subsequently, they extended this approach to multiple molecular species (incorporating both labeled and unlabeled molecules) and continuous transport models. Finally, they proposed experimental settings in vitro and commented on the necessary optical resolution to detect signatures of interfacial kinetics associated with resistance. 

      The investigation of transport kinetics across biomolecular condensate interfaces holds significant relevance for understanding cellular function and dysfunction mechanisms; thus, the topic is important and timely. However, the current manuscript presentation requires improvement. Firstly, the inclusion of numerous equations in the main text substantially compromises readability, and relocation of a part of the formulae and derivations to the Appendix would be more appropriate. Secondly, the manuscript would benefit from more comprehensive comparisons with existing theoretical studies on molecular transport kinetics. The text should also be written to be more approachable for a general readership. Modifications and sufficient responses to the specific points outlined below are recommended. 

      (1) The authors introduced a theoretical framework to study the kinetics of molecules across an interface between two coexisting liquid phases and found that interface resistance leads to a slowdown in interfacial movement in a binary mixture and a decelerated molecule exchange between labeled and unlabeled molecules across the phase boundary. However, these findings appear rather expected. The work would be strengthened by a more thorough discussion of the kinetics of molecule transport across interfaces (such as the physical origin of the interface resistance and its specific impact on transport kinetics). 

      We thank the reviewer for this comment and will discuss possible mechanisms and how they map to our meanfield model in more detail, both in the corresponding results section, and in the discussion, as also outlined in our response to Reviewer #1.

      (2) The formulae in the manuscript should be checked and corrected. Notably, Equation 10 contains "\phi_2\ln\phi_2" while Eq. 11b shows "n^{-1}\ln\phi_2", suggesting a missing factor of "n^{-1}". Similarly, Equation 18 obtained from Equation 11: the logarithmic term in Eq.11a is "n<sup>^</sup>{-1}\ln phi_1-\ln(1-\phi)" but the pre-exponential factor in Equation 18a is just "\phi_1/(1-\phi*)", where is "n<sup>^</sup>{-1}"? Additionally, there is a unit inconsistency in Equation 36, where the unit of \rho (s/m) does not match that of the right-hand side expression (s/m<sup>^</sup>2). 

      We thank the reviewer. We identified that the error originates in the inline definition of the exchange chemical potential, already before equation 11. We inadvertently dropped a prefactor of n, which then shows up in the following equation as an exponent to (1-phi<sup>^</sup>*). Very importantly this means the main result eq. 25 still holds, and in the revised manuscript we will correct the ensuing typographical mistakes.

      (3) The authors stated that the numerical solutions are obtained using a custom finite difference scheme implemented in MATLAB in the Appendix. The description of numerical methods is insufficiently detailed and needs to be expanded, including specific equations or models used to obtain specific figures, the introduction of initial and boundary conditions, the choices of parameters and their reasons in terms of the biology.

      We will substantially expand the Appendix for the numerical solutions and add an explanatory file to the repository to make clear how the code can be run, as well as its dependencies.

      (4) The authors claimed that their framework naturally extends to multiple molecular species, but only showed the situation of labeled and unlabeled molecules across a phase boundary. How about three or more molecular species? Does this framework still work? This should be added to strengthen the manuscript and confirm the framework's general applicability. 

      We have shown in Bo et al. (2021) that the labelling approach can be carried over to multi-component systems. Each species may, for example, encounter its own interface resistance. We will discuss this in more detail in the revised manuscript.

    1. eLife Assessment

      This valuable work advances our understanding of the relation between multimodal MRI, cognition, and mental health. Convincing use of statistical learning techniques in UK Biobank data shows that 48% of the variance between an 11-task derived g-factor and imaging data can be explained. Overall, this paper contributes to the study of brain-behaviour relations and will be of interest for both its methods and its findings on how much variance in g can be explained.

      [Editorial note: a previous version was reviewed by Biological Psychiatry]

    2. Reviewer #1 (Public review):

      Summary:

      The authors aimed to examine how the covariation between cognition (represented by a g-factor based on 12 features of 11 cognitive tasks) and mental health (represented by 133 diverse features) is reflected in MR-based neural markers of cognition, as measured through multimodal neuroimaging (structural, rsfMRI, and diffusion MR). To integrate multiple neuroimaging phenotypes across MRI modalities, they used a so-called stacking approach, which employs two levels of machine learning. First, they built a predictive model from each neuroimaging phenotype to predict a target variable. Next, in the stacking level, they used predicted values (i.e., cognition predicted from each neuroimaging phenotype) from the first level as features to predict the target variable. To quantify the contribution of the neural indicators of cognition explaining the relationship between cognition and mental health, they conducted commonality analyses. Results showed that when they stacked neuroimaging phenotypes within dwMRI, rsMRI, and sMRI, they captured 25.5%, 29.8%, and 31.6% of the predictive relationship between cognition and mental health, respectively. By stacking all 72 neuroimaging phenotypes across three MRI modalities, they enhanced the explanation to 48%. Age and sex shared substantial overlapping variance with both mental health and neuroimaging in explaining cognition, accounting for 43% of the variance in the cognition-mental health relationship.

      Strengths:

      (1) A big study population (UK Biobank with 14000 subjects).

      (2) The description of the methods (including Figure 1) is helpful in understanding the approach.

      (3) This revised manuscript is much improved compared to the previous version.

      Weaknesses:

      (1) Although the background and reason for the study are better described in this version of the manuscript, the relevance of the question is, in my opinion, still questionable. The authors aimed to determine whether neural markers of cognition explain the covariance between cognition and mental health and which of the 72 MRI-based features contribute to explaining most of the covariance. I would like to invite the authors to make a stronger case for the relevance, keeping the clinical and scientific relevance in mind (what would you explain to the clinician, what would you explain to the people with lived experience, and how can this knowledge contribute to innovation in mental health care?).

      (2) The discussion on the interpretation of the positive and negative PLRS loadings is not very convincing, and the findings are partly counterintuitive. For example (1) how to explain that distress has a positive loading and anxiety/trauma has a negative loading?; (2) how to explain that mental health features like wellbeing and happiness load in the same direction as psychosis and anxiety/trauma? From both a clinical and a neuroscientific perspective, this is hard to interpret.

      (3) The analysis plan has not been preregistered (e.g. at OSF).

      Note: the computational aspects of the methods fall beyond my expertise.

    3. Reviewer #2 (Public review):

      Summary:

      The goal of this manuscript was to examine whether neural indicators explain the relationship between cognition and mental health. The authors achieved this aim by showing that the combination of MRI markers better predicted the cognition-mental health covariation.

      Strengths:

      The evidence supporting the conclusions is compelling. There is a large sample (UK biobank data) and a clear description of advanced analyses.

      Weaknesses:

      In the previous version of the paper, it was not completely clear what it means to look at the overlap between cognition and mental health. The authors have addressed this in the current version.

    4. Author response:

      Notes to Editors

      We previously received comments from three reviewers at Biological Psychiatry, which we have addressed in detail below. The following is a summary of the reviewers’ comments along with our responses.

      Reviewers 1 and 2 sought clearer justification for studying the cognition-mental health overlap (covariation) and its neuroimaging correlates. In the revised manuscripts, we expanded the Introduction and Discussion to explicitly outline the theoretical implications of investigating this overlap with machine learning. We also added nuance to the interpretation of the observed associations.

      Reviewer 1 raised concerns about the accessibility of the machine learning methodology for readers without expertise in this field. We revised the Methods section to provide a clearer, step-by-step explanation of our machine learning approach, particularly the two-level machine learning through stacking. We also enhanced the description of the overall machine learning design, including model training, validation, and testing.

      In response to Reviewer 2’s request for deeper interpretation of our findings and stronger theoretical grounding, we have expanded our discussion by incorporating a thorough interpretation of how mental health indices relate to cognition, material that was previously included only in supplementary materials due to word limit constraints. We have further strengthened the theoretical justification for our study design, with particular emphasis on the importance of examining shared variance between cognition and mental health through the derivation of neural markers of cognition. Additionally, to enhance the biological interpretation of our results, we included new analyses of feature importance across neuroimaging modalities, providing clearer insights into which neural features contribute most to the observed relationships.

      Notably, Reviewer 3 acknowledged the strength of our study, including multimodal design, robust analytical approach, and clear visualization and interpretation of results. Their comments were exclusively methodological, underscoring the manuscript’s quality.

      Reviewer 1:

      The authors try to bridge mental health characteristics, global cognition and various MRI-derived (structural, diffusion and resting state fMRI) measures using the large dataset of UK Biobank. Each MRI modality alone explained max 25% of the cognitionmental health covariance, and when combined together 48% of the variance could be explained. As a peer-reviewer not familiar with the used methods (machine learning, although familiar with imaging), the manuscript is hard to read and I wonder what the message for the field might be. In the end of the discussion the authors state '... we provide potential targets for behavioural and physiological interventions that may affect cognition', the real relevance (and impact) of the findings is unclear to me.

      Thank you for your thorough review and practical recommendations. We appreciate your constructive comments and suggestions and hope our revisions adequately address your concerns.

      Major questions

      (1) The methods are hard to follow for people not in this specific subfield, and therefore, I expect that for readers it is hard to understand how valid and how useful the approach is.

      Thank you for your comment. To enhance accessibility for readers without a machine learning background, we revised the Methods section to clarify our analyses while retaining important technical details needed to understand our approach. Recognizing that some concepts may require prior knowledge, we provide detailed explanations of each analysis step, including the machine learning pipeline in the Supplementary Methods.

      Line 188: “We employed nested cross-validation to predict cognition from mental health indices and 72 neuroimaging phenotypes (Fig. 1). Nested cross-validation is a robust method for evaluating machine-learning models while tuning their hyperparameters, ensuring that performance estimates are both accurate and unbiased. Here, we used a nested cross-validation scheme with five outer folds and ten inner folds.

      We started by dividing the entire dataset into five outer folds. Each fold took a turn being held out as the outerfold test set (20% of the data), while the remaining four folds (80% of the data) were used as an outer-fold training set. Within each outer-fold training set, we performed a second layer of cross-validation – this time splitting the data into ten inner folds. These inner folds were used exclusively for hyperparameter tuning: models were trained on nine of the inner folds and validated on the remaining one, cycling through all ten combinations.

      We then selected the hyperparameter configuration that performed best across the inner-fold validation sets, as determined by the minimal mean squared error (MSE). The model was then retrained on the full outer-fold training set using this hyperparameter configuration and evaluated on the outer-fold test set, using four performance metrics: Pearson r, the coefficient of determination ( R<sup>2</sup>), the mean absolute error (MAE), and the MSE. This entire process was repeated for each of the five outer folds, ensuring that every data point is used for both training and testing, but never at the same time. We opted for five outer folds instead of ten to reduce computational demands, particularly memory and processing time, given the substantial volume of neuroimaging data involved in model training. Five outer folds led to an outer-fold test set at least n = 4 000, which should be sufficient for model evaluation. In contrast, we retained ten inner folds to ensure robust and stable hyperparameter tuning, maximising the reliability of model selection.

      To model the relationship between mental health and cognition, we employed Partial Least Squares Regression (PLSR) to predict the g-factor from 133 mental health variables. To model the relationship between neuroimaging data and cognition, we used a two-step stacking approach [15–17,61] to integrate information from 72 neuroimaging phenotypes across three MRI modalities. In the first step, we trained 72 base (first-level) PLSR models, each predicting the g-factor from a single neuroimaging phenotype. In the second step, we used the predicted values from these base models as input features for stacked models, which again predicted the g-factor. We constructed four stacked models based on the source of the base predictions: one each for dwMRI, rsMRI, sMRI, and a combined model incorporating all modalities (“dwMRI Stacked”, “rsMRI Stacked”, “sMRI Stacked”, and “All MRI Stacked”, respectively). Each stacked model was trained using one of four machine learning algorithms – ElasticNet, Random Forest, XGBoost, or Support Vector Regression – selected individually for each model (see Supplementary Materials, S6).

      For rsMRI phenotypes, we treated the choice of functional connectivity quantification method – full correlation, partial correlation, or tangent space parametrization – as a hyperparameter. The method yielding the highest performance on the outer-fold training set was selected for predicting the g-factor (see Supplementary Materials, S5).

      To prevent data leakage, we standardized the data using the mean and standard deviation derived from the training set and applied these parameters to the corresponding test set within each outer fold. This standardization was performed at three key stages: before g-factor derivation, before regressing out modality-specific confounds from the MRI data, and before stacking. Similarly, to maintain strict separation between training and testing data, both base and stacked models were trained exclusively on participants from the outer-fold training set and subsequently applied to the corresponding outer-fold test set.

      To evaluate model performance and assess statistical significance, we aggregated the predicted and observed g_factor values from each outer-fold test set. We then computed a bootstrap distribution of Pearson’s correlation coefficient (_r) by resampling with replacement 5 000 times, generating 95% confidence intervals (CIs) (Fig. 1). Model performance was considered statistically significant if the 95% CI did not include zero, indicating that the observed associations were unlikely to have occurred by chance.”

      (2) If only 40% of the cognition-mental health covariation can be explained by the MRI variables, how to explain the other 60% of the variance? And related to this %: why do the author think that 'this provides us confidence in using MRI to derive quantitative neuromarkers of cognition'?

      Thank you for this insightful observation. Using the MRI modalities available in the UK Biobank, we were able to account for 48% of the covariation between cognition and mental health. The remaining 52% of unexplained variance may arise from several sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research from our group and others has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank.

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the Research Domain Criteria (RDoC) framework, brain circuits represent only one level of neurobiological analysis relevant to cognition. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. We have now incorporated these considerations into the Discussion section.

      Line 658: “Although recent debates [18] have challenged the predictive utility of MRI for cognition, our multimodal marker integrating 72 neuroimaging phenotypes captures nearly half of the mental health-explained variance in cognition. We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.

      The remaining unexplained variance in the relationship between cognition and mental health likely stems from multiple sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank [15,17,61,69,114,142,151].

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition [14]. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. Ultimately, our findings validate brain-based neural markers as a fundamental neurobiological unit of analysis, advancing our understanding of mental health through the lens of cognition.”

      Regarding our confidence in using MRI to derive neural markers for cognition, we base this on the predictive performance of MRI-based models. As we note in the Discussion (Line 554: “Consistent with previous studies, we show that MRI data predict individual differences in cognition with a medium-size performance (r ≈ 0.4) [15–17, 28, 61, 67, 68].”), the medium effect size we observed (r ≈ 0.4) agrees with existing literature on brain-cognition relationships, confirming that machine learning leads to replicable results. This effect size represents a moderate yet meaningful association in neuroimaging studies of aging, consistent with reports linking brain to behaviour in adults (Krämer et al., 2024; Tetereva et al., 2022). For example, a recent meta-analysis by Vieira and colleagues (2022) reported a similar effect size (r = 0.42, 95% CI [0.35;0.50]). Our study includes over 15000 participants, comparable to or more than typical meta-analyses, allowing us to characterise our work as a “mega-analysis”. And on top of this predictive performance, we found our neural markers for cognition to capture half of the cognition-mental health covariation, boosting our confidence in our approach.

      Krämer C, Stumme J, da Costa Campos L, Dellani P, Rubbert C, Caspers J, et al. Prediction of cognitive performance differences in older age from multimodal neuroimaging data. GeroScience. 2024;46:283–308.

      Tetereva A, Li J, Deng JD, Stringaris A, Pat N. Capturing brain cognition relationship: Integrating task‐based fMRI across tasks markedly boosts prediction and test‐retest reliability. NeuroImage. 2022;263:119588.

      (3) Imagine that we can increase the explained variance using multimodal MRI measures, why is it useful? What does it learn us? What might be the implications?

      We assume that by variance, Reviewer 1 referred to the cognition-mental health covariation mentioned in point 2) above.

      If we can increase the explained cognition-mental health covariation using multimodal MRI measures, it would mean that we have developed a reasonable neuromarker that is close to RDoC’s neurobiological unit of analysis for cognition. RDoC treats cognition as one of the main basic functional domains that transdiagnostically underly mental health. According to RDoC, mental health should be studied in relation to cognition, alongside other domains such as negative and positive valence systems, arousal and regulatory systems, social processes, and sensorimotor functions. RDoC further emphasizes that each domain, including cognition, should be investigated not only at the behavioural level but also through its neurobiological correlates. This means RDoC aims to discover neural markers of cognition that explain the covariation between cognition and mental health. For us, we approach the development of such neural markers using multimodal neuroimaging. We have now explained the motivation of our study in the first paragraph of the Introduction.

      Line 43: “Cognition and mental health are closely intertwined [1]. Cognitive dysfunction is present in various mental illnesses, including anxiety [2, 3], depression [4–6], and psychotic disorders [7–12]. National Institute of Mental Health’s Research Domain Criteria (RDoC) [13,14] treats cognition as one of the main basic functional domains that transdiagnostically underly mental health. According to RDoC, mental health should be studied in relation to cognition, alongside other domains such as negative and positive valence systems, arousal and regulatory systems, social processes, and sensorimotor functions. RDoC further emphasizes that each domain, including cognition, should be investigated not only at the behavioural level but also through its neurobiological correlates. In this study, we aim to examine how the covariation between cognition and mental health is reflected in neural markers of cognition, as measured through multimodal neuroimaging.”

      More specific issues:

      Introduction

      (4) In the intro the sentence 'in some cases, altered cognitive functioning is directly related to psychiatric symptom severity' is in contrast to the next sentence '... are often stable and persist upon alleviation of psychiatric symptoms'.

      Thank you for pointing this out. The first sentence refers to cases where cognitive deficits fluctuate with symptom severity, while the second emphasizes that core cognitive impairments often remain stable even during symptom remission. To avoid this confusion, we have removed these sentences.

      (5) In the intro the text on the methods (various MRI modalities) is not needed for the Biol Psych readers audience.

      We appreciate your comment. While some members of our target audience may have backgrounds in neuroimaging, machine learning, or psychiatry, we recognize that not all readers will be familiar with all three areas. To ensure accessibility for those who are not familiar with neuroimaging, we included a brief overview of the MRI modalities and quantification methods used in our study to provide context for the specific neuroimaging phenotypes. Additionally, we provided background information on the machine learning techniques employed, so that readers without a strong background in machine learning can still follow our methodology.

      (6) Regarding age of the study sample: I understand that at recruitment the subjects' age ranges from 40 to 69 years. At MRI scanning the age ranges between about 46 to 82. How is that possible? And related to the age of the population: how did the authors deal with age in the analyses, since age is affecting both cognition as the brain measures?

      Thank you for noticing this. In the Methods section, we first outline the characteristics of the UK Biobank cohort, including the age at first recruitment (40-69 years). Table 1 then shows the characteristics of participant subsamples included in each analysis. Since our study used data from Instance 2 (the second in-person visit), participants were approximately 5-13 years older at scanning, resulting in the age range of 46 to 82 years. We clarified the Table 1 caption as follows:

      Line 113: “Table 1. Demographics for each subsample analysed: number, age, and sex of participants who completed all cognitive tests, mental health questionnaires, and MRI scanning”

      We acknowledge that age may influence cognitive and neuroimaging measures. In our analyses, we intentionally preserved age-related variance in brain-cognition relationships across mid and late adulthood, as regressing out age completely would artificially remove biologically meaningful associations. At the same time, we rigorously addressed the effects of age and sex through additional commonality analyses quantifying age and sex contributions to the relationship between cognition and mental health.

      As noted by Reviewer 1 and illustrated in Figure 8, age and sex shared substantial overlapping variance with both mental health and neuroimaging phenotypes in explaining cognitive outcomes. For example, in Figure 8i, age and sex together accounted for 43% of the variance in the cognition-mental health relationship:

      (2.76 + 1.03) / (2.76 + 1.03 + 3.52 + 1.45) ≈ 0.43

      Furthermore, neuromarkers from the all-MRI stacked model explained 72% of this age/sexrelated variance:

      2.76 / (2.76 + 1.03) ≈ 0.72

      This indicates that our neuromarkers captured a substantial portion of the cognition-mental health covariation that varied with age and sex, highlighting their relevance in age/sex-sensitive cognitive modeling.

      In the Methods, Results, and Discussion, we say:

      Methods

      Line 263: “To understand how demographic factors, including age and sex, contribute to this relationship, we also conducted a separate set of commonality analyses treating age, sex, age2, age×sex, and age2×sex as an additional set of explanatory variables (Fig. 1).”

      Results

      Line 445: “Age and sex shared substantial overlapping variance with both mental health and neuroimaging in explaining cognition, accounting for 43% of the variance in the cognition-mental health relationship. Multimodal neural marker of cognition based on three MRI modalities (“All MRI Stacked”) explained 72% of this age and sex-related variance (Fig. 8i–l and Table S21).”

      Discussion

      Line 660: “We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.”

      (7) Regarding the mental health variables: where characteristics with positive value (e.g. happiness and subjective wellbeing) reversely scored (compared to the negative items, such as anxiety, addition, etc)?

      We appreciate you noting this. These composite scores primarily represent standard clinical measures such as the GAD-7 anxiety scale and N-12 neuroticism scale. We did not reverse the scores to keep their directionality, therefore making interpretability consistent with the original studies the scores were derived from (e.g., Davis et al., 2020; Dutt et al., 2022). Complete descriptive statistics for all mental health indices and detailed derivation procedures are provided in the Supplementary Materials (S2). On Page 6, Supplementary Methods, we say:

      Line 92: “Composite mental health scores included the Generalized Anxiety Disorder (GAD-7), the Posttraumatic Stress Disorder (PTSD) Checklist (PCL-6), the Alcohol Use Disorders Identification Test (AUDIT), the Patient Health Questionnaire (PHQ-9) [12], the Eysenck Neuroticism (N-12), Probable Depression Status (PDS), and the Recent Depressive Symptoms (RDS-4) scores [13, 14]. To calculate the GAD-7, PCL-6, AUDIT, and PHQ-9, we used questions introduced at the online follow-up [12]. To obtain the N-12, PDS, and RDS-4 scores [14], we used data collected during the baseline assessment [13, 14].

      We subcategorized depression and GAD based on frequency, current status (ever had depression or anxiety and current status of depression or anxiety), severity, and clinical diagnosis (depression or anxiety confirmed by a healthcare practitioner). Additionally, we differentiated between different depression statuses, such as recurrent depression, depression triggered by loss, etc. Variables related to self-harm were subdivided based on whether a person has ever self-harmed with the intent to die.

      To make response scales more intuitive, we recorded responses within the well-being domain such that the lower score corresponded to a lesser extent of satisfaction (“Extremely unhappy”) and the higher score indicated a higher level of happiness (“Extremely happy”). For all questions, we assigned the median values to “Prefer not to answer” (-818 for in-person assessment and -3 for online questionnaire) and “Do not know” (-121 for in-person assessment and -1 for online questionnaire) responses. We excluded the “Work/job satisfaction” question from the mental health derivatives list because it included a “Not employed” response option, which could not be reasonably coded.

      To calculate the risk of PTSD, we used questions from the PCL-6 questionnaire. Following Davis and colleagues [12], PCL-6 scores ranged from 6 to 29. A PCL-6 score of 12 or below corresponds to a low risk of meeting the Clinician-Administered PTSD Scale diagnostic criteria. PCL-6 scores between 13 and 16 and between 17 and 25 are indicative of an increased risk and high risk of PTSD, respectively. A score of above 26 is interpreted as a very high risk of PTSD [12, 15]. PTSD status was set to positive if the PCL-6 score exceeded or was equal to 14 and encompassed stressful events instead of catastrophic trauma alone [12].

      To assess alcohol consumption, alcohol dependence, and harm associated with drinking, we calculated the sum of the ten questions from the AUDIT questionnaire [16]. We additionally subdivided the AUDIT score into the alcohol consumption score (questions 1-3, AUDIT-C) and the score reflecting problems caused by alcohol (questions 4-10, AUDIT-P) [17]. In questions 2-10 that followed the first trigger question (“Frequency of drinking alcohol”), we replaced missing values with 0 as they would correspond to a “Never” response to the first question.

      An AUDIT score cut-off of 8 suggests moderate or low-risk alcohol consumption, and scores of 8 to 15 and above 15 indicate severe/harmful and hazardous (alcohol dependence or moderate-severe alcohol use disorder) drinking, respectively [16, 18]. Subsequently, hazardous alcohol use and alcohol dependence status correspond to AUDIT scores of ≥ 8 and ≥ 15, respectively. The “Alcohol dependence ever” status was set to positive if a participant had ever been physically dependent on alcohol. To reduce skewness, we logx+1-transformed the AUDIT, AUDIT-C, and AUDIT-P scores [17].”

      Davis KAS, Coleman JRI, Adams M, Allen N, Breen G, Cullen B, et al. Mental health in UK Biobank – development, implementation and results from an online questionnaire completed by 157 366 participants: a reanalysis. BJPsych Open. 2020;6:e18.

      Dutt RK, Hannon K, Easley TO, Griffis JC, Zhang W, Bijsterbosch JD. Mental health in the UK Biobank: A roadmap to selfreport measures and neuroimaging correlates. Hum Brain Mapp. 2022;43:816–832.  

      (8) In the discussion section (page 23, line 416-421), the authors refer to specific findings that are not described in the results section > I would add these findings to the main manuscript (including the discussion / interpretation).

      We appreciate your careful reading. We agree that our original Results section did not explicitly describe the factor loadings for mental health in the PLSR model, despite discussing their implications later in the paper. We needed to include this part of the discussion in the Supplementary Materials to meet the word limit of the original submission. However, in response to your suggestion, we have now added the results regarding factor loadings to the Results section. We also moved the discussion of the association between mental health features and general cognition from the Supplementary Material to the manuscript’s Discussion.

      Results

      Line 298: “On average, information about mental health predicted the g-factor at  R<sup>2</sup><sub>mean</sub> = 0.10 and r<sub>mean</sub> \= 0.31 (95% CI [0.291, 0.315]; Fig. 2b and 2c and Supplementary Materials, S9, Table S12). The magnitude and direction of factor loadings for mental health in the PLSR model allowed us to quantify the contribution of individual mental health indices to cognition. Overall, the scores for mental distress, alcohol and cannabis use, and self-harm behaviours relate positively, and the scores for anxiety, neurological and mental health diagnoses, unusual or psychotic experiences, happiness and subjective well-being, and negative traumatic events relate negatively to cognition.”

      Discussion

      Line 492: “Factor loadings derived from the PLSR model showed that the scores for mental distress, alcohol and cannabis use, and self-harm behaviours related positively, and the scores for anxiety, neurological and mental health diagnoses, unusual or psychotic experiences, happiness and subjective well-being, and negative traumatic events related negatively to the g-factor. Positive PLSR loadings of features related to mental distress may indicate greater susceptibility to or exaggerated perception of stressful events, psychological overexcitability, and predisposition to rumination in people with higher cognition [72]. On the other hand, these findings may be specific to the UK Biobank cohort and the way the questions for this mental health category were constructed. In particular, to evaluate mental distress, the UK Biobank questionnaire asked whether an individual sought or received medical help for or suffered from mental distress. In this regard, the estimate for mental distress may be more indicative of whether an individual experiencing mental distress had an opportunity or aspiration to visit a doctor and seek professional help [73]. Thus, people with better cognitive abilities and also with a higher socioeconomic status may indeed be more likely to seek professional help.

      Limited evidence supports a positive association between self-harm behaviours and cognitive abilities, with some studies indicating higher cognitive performance as a risk factor for non-suicidal self-harm. Research shows an inverse relationship between cognitive control of emotion and suicidal behaviours that weakens over the life course [73,74]. Some studies have found a positive correlation between cognitive abilities and the risk of nonsuicidal self-harm, suicidal thoughts, and suicidal plans that may be independent of or, conversely, affected by socioeconomic status [75,76]. In our study, the magnitude of the association between self-harm behaviours and cognition was low (Fig. 2), indicating a weak relationship.

      Positive PLSR loadings of features related to alcohol and cannabis may also indicate the influence of other factors. Overall, this relationship is believed to be largely affected by age, income, education, social status, social equality, social norms, and quality of life [79–80]. For example, education level and income correlate with cognitive ability and alcohol consumption [79,81–83]. Research also links a higher probability of having tried alcohol or recreational drugs, including cannabis, to a tendency of more intelligent individuals to approach evolutionary novel stimuli [84,85]. This hypothesis is supported by studies showing that cannabis users perform better on some cognitive tasks [86]. Alternatively, frequent drinking can indicate higher social engagement, which is positively associated with cognition [87]. Young adults often drink alcohol as a social ritual in university settings to build connections with peers [88]. In older adults, drinking may accompany friends or family visits [89,90]. Mixed evidence on the link between alcohol and drug use and cognition makes it difficult to draw definite conclusions, leaving an open question about the nature of this relationship.

      Consistent with previous studies, we showed that anxiety and negative traumatic experiences were inversely associated with cognitive abilities [90–93]. Anxiety may be linked to poorer cognitive performance via reduced working memory capacity, increased focus on negative thoughts, and attentional bias to threatening stimuli that hinder the allocation of cognitive resources to a current task [94–96]. Individuals with PTSD consistently showed impaired verbal and working memory, visual attention, inhibitory function, task switching, cognitive flexibility, and cognitive control [97–100]. Exposure to traumatic events that did not reach the PTSD threshold was also linked to impaired cognition. For example, childhood trauma is associated with worse performance in processing speed, attention, and executive function tasks in adulthood, and age at a first traumatic event is predictive of the rate of executive function decline in midlife [101,102]. In the UK Biobank cohort, adverse life events have been linked to lower cognitive flexibility, partially via depression level [103].

      In agreement with our findings, cognitive deficits are often found in psychotic disorders [104,105]. We treated neurological and mental health symptoms as predictor variables and did not stratify or exclude people based on psychiatric status or symptom severity. Since no prior studies have examined isolated psychotic symptoms (e.g., recent unusual experiences, hearing unreal voices, or seeing unreal visions), we avoid speculating on how these symptoms relate to cognition in our sample.

      Finally, negative PLSR loadings of the features related to happiness and subjective well-being may be specific to the study cohort, as these findings do not agree with some previous research [107–109]. On the other hand, our results agree with the study linking excessive optimism or optimistic thinking to lower cognitive performance in memory, verbal fluency, fluid intelligence, and numerical reasoning tasks, and suggesting that pessimism or realism indicates better cognition [110]. The concept of realism/optimism as indicators of cognition is a plausible explanation for a negative association between the g-factor and friendship satisfaction, as well as a negative PLSR loading of feelings that life is meaningful, especially in older adults who tend to reflect more on the meaning of life [111]. The latter is supported by the study showing a negative association between cognitive function and the search for the meaning of life and a change in the pattern of this relationship after the age of 60 [112]. Finally, a UK Biobank study found a positive association of happiness with speed and visuospatial memory but a negative relationship with reasoning ability [113].”

      (9) In the discussion section (page 24, line 440-449), the authors give an explanation on why the diffusion measure have limited utility, but the arguments put forward also concern structural and rsfMRI measures.

      Thank you for this important observation. Indeed, the argument about voxel-averaged diffusion components (“… these metrics are less specific to the properties of individual white matter axons or bundles, and instead represent a composite of multiple diffusion components averaged within a voxel and across major fibre pathways”) could theoretically apply across other MRI modalities. We have therefore removed this point from the discussion to avoid overgeneralization. However, we maintain our central argument about the biological specificity of conventional tractography-derived diffusion metrics as their particular sensitivity to white matter microstructure (e.g., axonal integrity, myelin content) may make them better suited for detecting neuropathological changes than dynamic cognitive processes. This interpretation aligns with the mixed evidence linking these metrics to cognitive performance, despite their established utility in detecting white matter abnormalities in clinical populations (e.g., Bergamino et al., 2021; Silk et al., 2009). We clarify this distinction in the manuscript.

      Line 572: “The somewhat limited utility of diffusion metrics derived specifically from probabilistic tractography in serving as robust quantitative neuromarkers of cognition and its shared variance with mental health may stem from their greater sensitivity and specificity to neuronal integrity and white matter microstructure rather than to dynamic cognitive processes. Critically, probabilistic tractography may be less effective at capturing relationships between white matter microstructure and behavioural scores cross-sectionally, as this method is more sensitive to pathological changes or dynamic microstructural alterations like those occurring during maturation. While these indices can capture abnormal white matter microstructure in clinical populations such as Alzheimer’s disease, schizophrenia, or attention deficit hyperactivity disorder (ADHD) [117–119], the empirical evidence on their associations with cognitive performance is controversial [114, 120–126].”

      Bergamino M, Walsh RR, Stokes AM. Free-water diffusion tensor imaging improves the accuracy and sensitivity of white matter analysis in Alzheimer’s disease. Sci Rep. 2021;11:6990.

      Silk TJ, Vance A, Rinehart N, Bradshaw JL, Cunnington R. White-matter abnormalities in attention deficit hyperactivity disorder: a diffusion tensor imaging study. Hum Brain Mapp. 2009;30:2757–2765.

      Reviewer 2:

      This is an interesting study combining a lot of data to investigate the link between cognition and mental health. The description of the study is very clear, it's easy to read for someone like me who does not have a lot of expertise in machine learning.

      We thank you for your thorough review and constructive feedback. Your insightful comments have helped us identify conceptual and methodological aspects that required improvement in the manuscript. We have incorporated relevant changes throughout the paper, and below, we address each of your points in detail.

      Comment 1: My main concern with this manuscript is that it is not yet clear to me what it exactly means to look at the overlap between cognition and mental health. This relation is r=0.3 which is not that high, so why is it then necessary to explain this overlap with neuroimaging measures? And, could it be that the relation between cognition and mental health is explained by third variables (environment? opportunities?). In the introduction I miss an explanation of why it is important to study this and what it will tell us, and in the discussion I would like to read some kind of 'answer' to these questions.

      Thank you. It’s important to clarify why we investigated the relationship between cognition and mental health, and what we found using data from the UK Biobank.

      Conceptually, our work is grounded in the Research Domain Criteria (RDoC; Insel et al., 2010) framework. RDoC conceptualizes mental health not through traditional diagnostic categories, but through core functional domains that span the full spectrum from normal to abnormal functioning. These domains include cognition, negative and positive valence systems, arousal and regulatory systems, social processes, and sensorimotor functions. Within this framework, cognition is considered a fundamental domain that contributes to mental health across diagnostic boundaries. Meta-analytic evidence supports a link between cognitive functioning and mental health (Abramovitch, et al., 2021; East-Richard, et al., 2020). In the context of a large, population-based dataset like the UK Biobank, this implies that cognitive performance – as measured by various cognitive tasks – should be meaningfully associated with available mental health indicators.

      However, because cognition is only one of several functional domains implicated in mental health, we do not expect the covariation between cognition and mental health to be very high. Other domains, such as negative and positive valence systems, arousal and regulatory systems, or social processing, may also play significant roles. Theoretically, this places an upper bound on the strength of the cognition-mental health relationship, especially in normative, nonclinical samples.

      Our current findings from the UK Biobank reflect this. Most of the 133 mental health variables showed relatively weak individual correlations with cognition (mean r \= 0.01, SD = 0.05, min r \= –0.08, max r \= 0.17; see Figure 2). However, using a PLS-based machine learning approach, we were able to integrate information across all mental-health variables to predict cognition, yielding an out-of-sample correlation of r = 0.31 [95% CI: 0.29, 0.32].  

      We believe this estimate approximates the true strength of the cognition-mental health relationship in normative samples, consistent with both theoretical expectations and prior empirical findings. Theoretically, this aligns with the RDoC view that cognition is one of several contributing domains. Empirically, our results are consistent with findings from our previous mega-analysis in children (Wang et al., 2025). Moreover, in the field of gerontology, an effect size of r = 0.31 is not considered small. According to Brydges (2019), it falls around the 70th percentile of effect sizes reported in gerontological studies and approaches the threshold for a large effect (r \= 0.32). Given that most studies report within-sample associations, our out-of-sample results are likely more robust and generalizable (Yarkoni & Westfall, 2017).

      To answer, “why is it then necessary to explain this overlap with neuroimaging measures”, we again draw on the conceptual foundation of the RDoC framework. RDoC emphasizes that each functional domain, such as cognition, should be studied not only at the behavioural level but also across multiple neurobiological units of analysis, including genes, molecules, cells, circuits, physiology, and behaviour.

      MRI-based neural markers represent one such level of analysis. While other biological systems (e.g., genetic, molecular, or physiological) also contribute to the cognition-mental health relationship, neuroimaging provides unique insights into the brain mechanisms underlying this association – insights that cannot be obtained from behavioural data alone.

      In response to the related question, “Could the relationship between cognition and mental health be explained by third variables (e.g., environment, opportunities)?”, we note that developing a neural marker of cognition capable of capturing its relationship with mental health is the central aim of this study. Using the MRI modalities available in the UK Biobank, we were able to account for 48% of the covariation between cognition and mental health.

      The remaining 52% of unexplained variance may stem from several sources. According to the RDoC framework, neuromarkers could be further refined by incorporating additional neuroimaging modalities (e.g., task-based fMRI, PET, ASL, MEG/EEG, fNIRS) and integrating other units of analysis such as genetic, molecular, cellular, and physiological data.

      Once more comprehensive neuromarkers are developed, capturing a greater proportion of the cognition-mental health covariation, they may also lead to new research direction – to investigate how environmental factors and life opportunities influence these markers. However, exploring those environmental contributions lies beyond the scope of the current study.

      We discuss these considerations and explain the motivation of our study in the revised Introduction and Discussion.

      Line 481: “Our analysis confirmed the validity of the g-factor [31] as a quantitative measure of cognition [31], demonstrating that it captures nearly half (39%) of the variance across twelve cognitive performance scores, consistent with prior studies [63–68]. Furthermore, we were able to predict cognition from 133 mental health indices, showing a medium-sized relationship that aligns with existing literature [69,70]. Although the observed mental health-cognition association is lower than within-sample estimates in conventional regression models, it aligns with our prior mega-analysis in children [69]. Notably, this effect size is not considered small in gerontology. In fact, it falls around the 70th percentile of reported effects and approaches the threshold for a large effect at r = 0.32 [71]. While we focused specifically on cognition as an RDoC core domain, the strength of its relationship with mental health may be bounded by the influence of other functional domains, particularly in normative, non-clinical samples – a promising direction for future research.”

      Line 658: “Although recent debates [18] have challenged the predictive utility of MRI for cognition, our multimodal marker integrating 72 neuroimaging phenotypes captures nearly half of the mental health-explained variance in cognition. We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.

      The remaining unexplained variance in the relationship between cognition and mental health likely stems from multiple sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank [15,17,61,69,114,142,151].

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition [14]. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. Ultimately, our findings validate brain-based neural markers as a fundamental neurobiological unit of analysis, advancing our understanding of mental health through the lens of cognition.”

      Introduction

      Line 43: “Cognition and mental health are closely intertwined [1]. Cognitive dysfunction is present in various mental illnesses, including anxiety [2, 3], depression [4–6], and psychotic disorders [7–12]. National Institute of Mental Health’s Research Domain Criteria (RDoC) [13,14] treats cognition as one of the main basic functional domains that transdiagnostically underly mental health. According to RDoC, mental health should be studied in relation to cognition, alongside other domains such as negative and positive valence systems, arousal and regulatory systems, social processes, and sensorimotor functions. RDoC further emphasizes that each domain, including cognition, should be investigated not only at the behavioural level but also through its neurobiological correlates. In this study, we aim to examine how the covariation between cognition and mental health is reflected in neural markers of cognition, as measured through multimodal neuroimaging.”

      Discussion

      Line 481: “Our analysis confirmed the validity of the g-factor [31] as a quantitative measure of cognition [31], demonstrating that it captures nearly half (39%) of the variance across twelve cognitive performance scores, consistent with prior studies [63–68]. Furthermore, we were able to predict cognition from 133 mental health indices, showing a medium-sized relationship that aligns with existing literature [69,70]. Although the observed mental health-cognition association is lower than within-sample estimates in conventional regression models, it aligns with our prior mega-analysis in children [69]. Notably, this effect size is not considered small in gerontology. In fact, it falls around the 70th percentile of reported effects and approaches the threshold for a large effect at r = 0.32 [71]. While we focused specifically on cognition as an RDoC core domain, the strength of its relationship with mental health may be bounded by the influence of other functional domains, particularly in normative, non-clinical samples – a promising direction for future research.”

      Line 658: “Although recent debates [18] have challenged the predictive utility of MRI for cognition, our multimodal marker integrating 72 neuroimaging phenotypes captures nearly half of the mental health-explained variance in cognition. We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.

      The remaining unexplained variance in the relationship between cognition and mental health likely stems from multiple sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank [15,17,61,69,114,142,151].

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition [14]. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. Ultimately, our findings validate brain-based neural markers as a fundamental neurobiological unit of analysis, advancing our understanding of mental health through the lens of cognition.”

      Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. AJP. 2010;167:748–751.

      Abramovitch, A., Short, T., & Schweiger, A. (2021). The C Factor: Cognitive dysfunction as a transdiagnostic dimension in psychopathology. Clinical Psychology Review, 86, 102007.

      East-Richard, C., R. -Mercier, A., Nadeau, D., & Cellard, C. (2020). Transdiagnostic neurocognitive deficits in psychiatry: A review of meta-analyses. Canadian Psychology / Psychologie Canadienne, 61(3), 190–214.

      Wang Y, Anney R, Pat N. The relationship between cognitive abilities and mental health as represented by cognitive abilities at the neural and genetic levels of analysis. eLife. 2025.14:RP105537.

      Brydges CR. Effect Size Guidelines, Sample Size Calculations, and Statistical Power in Gerontology. Innovation in Aging. 2019;3(4):igz036.

      Yarkoni T, Westfall J. Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspect Psychol Sci. 2017;12(6):1100-1122.

      Comment 2 Title: - Shouldn't it be "MRI markers" (plural)?

      We used the singular form (“marker”) intentionally, as it refers to the composite neuroimaging marker derived from all three MRI modalities in our stacked model. This multimodal marker represents the combined predictive power of all modalities and captures the highest proportion of the mental health-cognition relationship in our analyses.

      Comment 3: Introduction - I miss an explanation of why it is useful to look at cognition-mental health covariation

      We believe we have sufficiently addressed this comment in our response to Reviewer 2, comment 1 above.

      Comment 4: - "Demonstrating that MRI-based neural indicators of cognition capture the covariation between cognition and mental health will thereby support the utility of such indicators for understanding the etiology of mental health" (page 4, line 56-58) - how/why?

      Previous research has largely focused on developing MRI-based neural indicators that accurately predict cognitive performance (Marek et al., 2022; Vieira et al., 2020). Building on this foundation, our findings further demonstrate that the predictive performance of a neural indicator for cognition is closely tied to its ability to explain the covariation between cognition and mental health. In other words, the robustness of a neural indicator – its capacity to capture individual differences in cognition – is strongly associated with how well it reflects the shared variance between cognition and mental health.

      This insight is particularly important within the context of the RDoC framework, which seeks to understand the etiology of mental health through functional domains (such as cognition) and their underlying neurobiological units of analysis (Insel et al., 2010). According to RDoC, for a neural indicator of cognition to be informative for mental health research, it must not only predict cognitive performance but also capture its relationship with mental health.

      Furthermore, RDoC emphasizes the integration of neurobiological measures to investigate the influence of environmental and developmental factors on mental health. In line with this, our neural indicators of cognition may serve as valuable tools in future research aimed at understanding how environmental exposures and developmental trajectories shape mental health outcomes. We discuss this in more detail in the revised Discussion.

      Line 481: “Our analysis confirmed the validity of the g-factor [31] as a quantitative measure of cognition [31], demonstrating that it captures nearly half (39%) of the variance across twelve cognitive performance scores, consistent with prior studies [63–68]. Furthermore, we were able to predict cognition from 133 mental health indices, showing a medium-sized relationship that aligns with existing literature [69,70]. Although the observed mental health-cognition association is lower than within-sample estimates in conventional regression models, it aligns with our prior mega-analysis in children [69]. Notably, this effect size is not considered small in gerontology. In fact, it falls around the 70th percentile of reported effects and approaches the threshold for a large effect at r = 0.32 [71]. While we focused specifically on cognition as an RDoC core domain, the strength of its relationship with mental health may be bounded by the influence of other functional domains, particularly in normative, non-clinical samples – a promising direction for future research.”

      Line 658: “Although recent debates [18] have challenged the predictive utility of MRI for cognition, our multimodal marker integrating 72 neuroimaging phenotypes captures nearly half of the mental health-explained variance in cognition. We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.

      The remaining unexplained variance in the relationship between cognition and mental health likely stems from multiple sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank [15,17,61,69,114,142,151].

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition [14]. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. Ultimately, our findings validate brain-based neural markers as a fundamental neurobiological unit of analysis, advancing our understanding of mental health through the lens of cognition.”

      Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022;603:654–660.

      Vieira S, Gong QY, Pinaya WHL, et al. Using Machine Learning and Structural Neuroimaging to Detect First Episode Psychosis: Reconsidering the Evidence. Schizophr Bull. 2020;46(1):17-26.

      Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. AJP. 2010;167:748–751.

      Comment 5: - The explanation about the stacking approach is not yet completely clear to me. I don't understand how the target variable can be the dependent variable in both step one and two. Or are those different variables? It would be helpful to also give an example of the target variable in line 88 on page 5

      Thank you for this excellent question. In our stacking approach, the same target variable, the g-factor, is indeed used across both modeling stages, but with a key distinction in how predictions are generated and integrated.

      In the first-level models, we trained separate Partial Least Squares Regression (PLSR) models for each of the 72 neuroimaging phenotypes, each predicting the g-factor independently. The predicted values from these 72 models were then used as input features for the second-level stacked model, which combined them to generate a final prediction of the g-factor. This twostage framework enables us to integrate information across multiple imaging modalities while maintaining a consistent prediction target.

      To avoid data leakage, both modeling stages were conducted entirely within the training set for each cross-validation fold. Only after the second-level model was trained was it applied to the outer-fold test participants who were not involved in any part of the model training process.

      To improve accessibility, we have revised the Methods section (see Page 10) to clarify this approach, ensuring that the description remains technically accurate while being easier to follow.

      Line 188: “We employed nested cross-validation to predict cognition from mental health indices and 72 neuroimaging phenotypes (Fig. 1). Nested cross-validation is a robust method for evaluating machine-learning models while tuning their hyperparameters, ensuring that performance estimates are both accurate and unbiased. Here, we used a nested cross-validation scheme with five outer folds and ten inner folds.

      We started by dividing the entire dataset into five outer folds. Each fold took a turn being held out as the outerfold test set (20% of the data), while the remaining four folds (80% of the data) were used as an outer-fold training set. Within each outer-fold training set, we performed a second layer of cross-validation – this time splitting the data into ten inner folds. These inner folds were used exclusively for hyperparameter tuning: models were trained on nine of the inner folds and validated on the remaining one, cycling through all ten combinations.

      We then selected the hyperparameter configuration that performed best across the inner-fold validation sets, as determined by the minimal mean squared error (MSE). The model was then retrained on the full outer-fold training set using this hyperparameter configuration and evaluated on the outer-fold test set, using four performance metrics: Pearson r, the coefficient of determination ( R<sup>2</sup>), the mean absolute error (MAE), and the MSE. This entire process was repeated for each of the five outer folds, ensuring that every data point is used for both training and testing, but never at the same time. We opted for five outer folds instead of ten to reduce computational demands, particularly memory and processing time, given the substantial volume of neuroimaging data involved in model training. Five outer folds led to an outer-fold test set at least n = 4 000, which should be sufficient for model evaluation. In contrast, we retained ten inner folds to ensure robust and stable hyperparameter tuning, maximising the reliability of model selection.

      To model the relationship between mental health and cognition, we employed Partial Least Squares Regression (PLSR) to predict the g-factor from 133 mental health variables. To model the relationship between neuroimaging data and cognition, we used a two-step stacking approach [15–17,61] to integrate information from 72 neuroimaging phenotypes across three MRI modalities. In the first step, we trained 72 base (first-level) PLSR models, each predicting the g-factor from a single neuroimaging phenotype. In the second step, we used the predicted values from these base models as input features for stacked models, which again predicted the g-factor. We constructed four stacked models based on the source of the base predictions: one each for dwMRI, rsMRI, sMRI, and a combined model incorporating all modalities (“dwMRI Stacked”, “rsMRI Stacked”, “sMRI Stacked”, and “All MRI Stacked”, respectively). Each stacked model was trained using one of four machine learning algorithms – ElasticNet, Random Forest, XGBoost, or Support Vector Regression – selected individually for each model (see Supplementary Materials, S6).

      For rsMRI phenotypes, we treated the choice of functional connectivity quantification method – full correlation, partial correlation, or tangent space parametrization – as a hyperparameter. The method yielding the highest performance on the outer-fold training set was selected for predicting the g-factor (see Supplementary Materials, S5).

      To prevent data leakage, we standardized the data using the mean and standard deviation derived from the training set and applied these parameters to the corresponding test set within each outer fold. This standardization was performed at three key stages: before g-factor derivation, before regressing out modality-specific confounds from the MRI data, and before stacking. Similarly, to maintain strict separation between training and testing data, both base and stacked models were trained exclusively on participants from the outer-fold training set and subsequently applied to the corresponding outer-fold test set.

      To evaluate model performance and assess statistical significance, we aggregated the predicted and observed gfactor values from each outer-fold test set. We then computed a bootstrap distribution of Pearson’s correlation coefficient (r) by resampling with replacement 5 000 times, generating 95% confidence intervals (CIs) (Fig. 1). Model performance was considered statistically significant if the 95% CI did not include zero, indicating that the observed associations were unlikely to have occurred by chance.”

      Comment 6: Methods - It's not clear from the text and Figure 1 which 12 scores from 11 tests are being used to derive the g-factor. Figure 1 shows only 8 bullet points with 10 scores in A and 13 tests under 'Cognitive tests' in B. Moreover, Supplement S1 describes 12 tests and 14 measures (Prospective Memory test is in the text but not in Supplementary Table 1).

      Thank you for identifying this discrepancy. In the original Figure 1b and in the Supplementary Methods (S1), the “Prospective Memory” test was accidentally duplicated, while it was present in the Supplementary Table 1 (Line 53, Supplementary Table 1). We have now corrected both figures for consistency. To clarify: Figure 1a presents the global mental health and cognitive domains studied, while Figure 1b now accurately lists 1) the 12 cognitive scores from 11 tests used to derive the g-factor (with the Trail Making Test contributing two measures – numeric and alphabetic trails) and 2) the three main categories of mental health indices used as machine learning features.

      We also corrected the Supplementary Materials to remove the duplicate test from the first paragraph. In Supplementary Table 1, there were 11 tests listed, and for the Trail Making test, we specified in the “Core measures” column that this test had 2 derivative scores: duration to complete the numeric path (Trail 1) and duration to complete the alphabetic path (Trail 2).

      Supplementary Materials, Line 46: “We used twelve scores from the eleven cognitive tests that represented the following cognitive domains: reaction time and processing speed (Reaction Time test), working memory (Numeric Memory test), verbal and numerical reasoning (Fluid Intelligence test), executive function (Trail Making Test), non-verbal fluid reasoning (Matrix Pattern Completion test), processing speed (Symbol Digit Substitution test), vocabulary (Picture Vocabulary test), planning abilities (Tower Rearranging test), verbal declarative memory (Paired Associate Learning test), prospective memory (Prospective Memory test), and visual memory (Pairs Matching test) [1].”

      Comment 7: - For the mental health measures: If I understand correctly, the questionnaire items were used individually, but also to create composite scores. This seems counterintuitive, because I would assume that if the raw data is used, the composite scores would not add additional information to that. When reading the Supplement, it seems like I'm not correct… It would be helpful to clarify the text on page 7 in the main text.

      You raise an excellent observation regarding the use of both individual questionnaire items and composite scores. This dual approach was methodologically justified by the properties of Partial Least Squares Regression (PLSR), our chosen first-level machine learning algorithm, which benefits from rich feature sets and can handle multicollinearity through dimensionality reduction. PLSR transforms correlated features into latent variables, meaning both individual items and composite scores can contribute unique information to the model. We elaborate on PLSR's mathematical principles in Supplementary Materials (S5).

      To directly address this concern, we conducted comparative analyses showing that the PLSR model (a single 80/20% training/test split), incorporating all 133 mental health features (both items and composites), outperformed models using either type alone. The full model achieved superior performance (MSE = 0.458, MAE = 0.537, \= 0.112, Pearson r = 0.336, p-value = 6.936e-112) compared to using only composite scores (93 features; MSE = 0.461, MAE = 0.538, R<sup>2</sup> = 0.107, Pearson r = 0.328, p-value = 5.8e-106) or only questionnaire items (40 features; MSE = 0.499, MAE = 0.561, R<sup>2</sup> = 0.033, Pearson r = 0.184, p-value = 2.53e-33). These results confirm that including both data types provide complementary predictive value. We expand on these considerations in the revised Methods section.

      Line 123: “Mental health measures encompassed 133 variables from twelve groups: mental distress, depression, clinical diagnoses related to the nervous system and mental health, mania (including bipolar disorder), neuroticism, anxiety, addictions, alcohol and cannabis use, unusual/psychotic experiences, traumatic events, selfharm behaviours, and happiness and subjective well-being (Fig. 1 and Tables S4 and S5). We included both selfreport questionnaire items from all participants and composite diagnostic scores computed following Davis et al. and Dutt et al. [35,36] as features in our first-level (for explanation, see Data analysis section) Partial Least Squares Regression (PLSR) model. This approach leverages PLSR’s ability to handle multicollinearity through dimensionality reduction, enabling simultaneous use of granular symptom-level information and robust composite measures (for mental health scoring details, see Supplementary Materials, S2). We assess the contribution of each mental health index to general cognition by examining the direction and magnitude of its PLSR-derived loadings on the identified latent variables”

      Comment 8: - Results - The colors in Figure 4 B are a bit hard to differentiate.

      We have updated Figure 4 to enhance colour differentiation by adjusting saturation and brightness levels, improving visual distinction. For further clarity, we split the original figure into two separate figures.

      Comment 9: - Discussion - "Overall, the scores for mental distress, alcohol and cannabis use, and self-harm behaviours relate positively, and the scores for anxiety, neurological and mental health diagnoses, unusual or psychotic experiences, happiness and subjective well-being, and negative traumatic events relate negatively to cognition," - this seems counterintuitive, that some symptoms relate to better cognition and others relate to worse cognition. Could you elaborate on this finding and what it could mean?

      We appreciate you highlighting this important observation. While some associations between mental health indices and cognition may appear counterintuitive at first glance, these patterns are robust (emerging consistently across both univariate correlations and PLSR loadings) and align with previous literature (e.g., Karpinski et al., 2018; Ogueji et al., 2022). For instance, the positive relationship between cognitive ability and certain mental health indicators like help-seeking behaviour has been documented in other population studies (Karpinski et al., 2018; Ogueji et al., 2022), potentially reflecting greater health literacy and access to care among cognitively advantaged individuals. Conversely, the negative associations with conditions like psychotic experiences mirror established neurocognitive deficits in these domains.

      As was initially detailed in Supplementary Materials (S12) and now expanded in our Discussion, these findings likely reflect complex multidimensional interactions. The positive loadings for mental distress indicators may capture: (1) greater help-seeking behaviour among those with higher cognition and socioeconomic resources, and/or (2) psychological overexcitability and rumination tendencies in high-functioning individuals. These interpretations are particularly relevant to the UK Biobank's assessment methods, where mental distress items focused on medical help-seeking rather than symptom severity per se (e.g., as a measure of mental distress, the UK Biobank questionnaire asked whether an individual sought or received medical help for or suffered from mental distress).

      Line 492: “Factor loadings derived from the PLSR model showed that the scores for mental distress, alcohol and cannabis use, and self-harm behaviours related positively, and the scores for anxiety, neurological and mental health diagnoses, unusual or psychotic experiences, happiness and subjective well-being, and negative traumatic events related negatively to the g-factor. Positive PLSR loadings of features related to mental distress may indicate greater susceptibility to or exaggerated perception of stressful events, psychological overexcitability, and predisposition to rumination in people with higher cognition [72]. On the other hand, these findings may be specific to the UK Biobank cohort and the way the questions for this mental health category were constructed. In particular, to evaluate mental distress, the UK Biobank questionnaire asked whether an individual sought or received medical help for or suffered from mental distress. In this regard, the estimate for mental distress may be more indicative of whether an individual experiencing mental distress had an opportunity or aspiration to visit a doctor and seek professional help [73]. Thus, people with better cognitive abilities and also with a higher socioeconomic status may indeed be more likely to seek professional help.

      Limited evidence supports a positive association between self-harm behaviours and cognitive abilities, with some studies indicating higher cognitive performance as a risk factor for non-suicidal self-harm. Research shows an inverse relationship between cognitive control of emotion and suicidal behaviours that weakens over the life course [73,74]. Some studies have found a positive correlation between cognitive abilities and the risk of nonsuicidal self-harm, suicidal thoughts, and suicidal plans that may be independent of or, conversely, affected by socioeconomic status [75,76]. In our study, the magnitude of the association between self-harm behaviours and cognition was low (Fig. 2), indicating a weak relationship.

      Positive PLSR loadings of features related to alcohol and cannabis may also indicate the influence of other factors. Overall, this relationship is believed to be largely affected by age, income, education, social status, social equality, social norms, and quality of life [79–80]. For example, education level and income correlate with cognitive ability and alcohol consumption [79,81–83]. Research also links a higher probability of having tried alcohol or recreational drugs, including cannabis, to a tendency of more intelligent individuals to approach evolutionary novel stimuli [84,85]. This hypothesis is supported by studies showing that cannabis users perform better on some cognitive tasks [86]. Alternatively, frequent drinking can indicate higher social engagement, which is positively associated with cognition [87]. Young adults often drink alcohol as a social ritual in university settings to build connections with peers [88]. In older adults, drinking may accompany friends or family visits [89,90]. Mixed evidence on the link between alcohol and drug use and cognition makes it difficult to draw definite conclusions, leaving an open question about the nature of this relationship.

      Consistent with previous studies, we showed that anxiety and negative traumatic experiences were inversely associated with cognitive abilities [90–93]. Anxiety may be linked to poorer cognitive performance via reduced working memory capacity, increased focus on negative thoughts, and attentional bias to threatening stimuli that hinder the allocation of cognitive resources to a current task [94–96]. Individuals with PTSD consistently showed impaired verbal and working memory, visual attention, inhibitory function, task switching, cognitive flexibility, and cognitive control [97–100]. Exposure to traumatic events that did not reach the PTSD threshold was also linked to impaired cognition. For example, childhood trauma is associated with worse performance in processing speed, attention, and executive function tasks in adulthood, and age at a first traumatic event is predictive of the rate of executive function decline in midlife [101,102]. In the UK Biobank cohort, adverse life events have been linked to lower cognitive flexibility, partially via depression level [103].

      In agreement with our findings, cognitive deficits are often found in psychotic disorders [104,105]. We treated neurological and mental health symptoms as predictor variables and did not stratify or exclude people based on psychiatric status or symptom severity. Since no prior studies have examined isolated psychotic symptoms (e.g., recent unusual experiences, hearing unreal voices, or seeing unreal visions), we avoid speculating on how these symptoms relate to cognition in our sample.

      Finally, negative PLSR loadings of the features related to happiness and subjective well-being may be specific to the study cohort, as these findings do not agree with some previous research [107–109]. On the other hand, our results agree with the study linking excessive optimism or optimistic thinking to lower cognitive performance in memory, verbal fluency, fluid intelligence, and numerical reasoning tasks, and suggesting that pessimism or realism indicates better cognition [110]. The concept of realism/optimism as indicators of cognition is a plausible explanation for a negative association between the g-factor and friendship satisfaction, as well as a negative PLSR loading of feelings that life is meaningful, especially in older adults who tend to reflect more on the meaning of life [111]. The latter is supported by the study showing a negative association between cognitive function and the search for the meaning of life and a change in the pattern of this relationship after the age of 60 [112]. Finally, a UK Biobank study found a positive association of happiness with speed and visuospatial memory but a negative relationship with reasoning ability [113].”

      Karpinski RI, Kinase Kolb AM, Tetreault NA, Borowski TB. High intelligence: A risk factor for psychological and physiological overexcitabilities. Intelligence. 2018;66:8–23.

      Ogueji IA, Okoloba MM. Seeking Professional Help for Mental Illness: A Mixed-Methods Study of Black Family Members in the UK and Nigeria. Psychol Stud. 2022;67:164–177.

      Comment 10: - All neuroimaging factors together explain 48% of the variance in the cognition-mental health relationship. However, this relationship is only r=0.3 - so then the effect of neuroimaging factors seems a lot smaller… What does it mean?

      Thank you for raising this critical point. We have addressed this point in our response to Reviewer 1, comment 2, Reviewer 1, comment 3 and Reviewer 2, comment 1.

      Briefly, cognition is related to mental health at around r = 0.3 and to neuroimaging phenotypes at around r = 0.4. These levels of relationship strength are consistent to what has been shown in the literature (e.g., Wang et al., 2025 and Vieira et al., 2020). We discussed the relationship between cognition and mental health in our response to Reviewer 2, comment 1 above. In short, this relationship reflects just one functional domain – mental health may also be associated with other domains such as negative and positive valence systems, arousal and regulatory systems, social processes, and sensorimotor functions. Moreover, in the context of gerontology research, this effect size is considered relatively large (Brydges et al., 2019).

      We conducted a commonality analysis to investigate the unique and shared variance of mental health and neuroimaging phenotypes in explaining cognition.  As we discussed in our response to Reviewer 1, comment 2, we were able to account for 48% of the covariation between cognition and mental health using the MRI modalities available in the UK Biobank. The remaining 52% of unexplained variance may arise from several sources.

      One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research from our group and others has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank (Tetereva et al., 2025).

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      We have now incorporated these considerations into the Discussion section.

      Line 481: “Our analysis confirmed the validity of the g-factor [31] as a quantitative measure of cognition [31], demonstrating that it captures nearly half (39%) of the variance across twelve cognitive performance scores, consistent with prior studies [63–68]. Furthermore, we were able to predict cognition from 133 mental health indices, showing a medium-sized relationship that aligns with existing literature [69,70]. Although the observed mental health-cognition association is lower than within-sample estimates in conventional regression models, it aligns with our prior mega-analysis in children [69]. Notably, this effect size is not considered small in gerontology. In fact, it falls around the 70th percentile of reported effects and approaches the threshold for a large effect at r = 0.32 [71]. While we focused specifically on cognition as an RDoC core domain, the strength of its relationship with mental health may be bounded by the influence of other functional domains, particularly in normative, non-clinical samples – a promising direction for future research.”

      Line 658: “Although recent debates [18] have challenged the predictive utility of MRI for cognition, our multimodal marker integrating 72 neuroimaging phenotypes captures nearly half of the mental health-explained variance in cognition. We demonstrate that neural markers with greater predictive accuracy for cognition also better explain cognition-mental health covariation, showing that multimodal MRI can capture both a substantial cognitive variance and nearly half of its shared variance with mental health. Finally, we show that our neuromarkers explain a substantial portion of the age- and sex-related variance in the cognition-mental health relationship, highlighting their relevance in modeling cognition across demographic strata.

      The remaining unexplained variance in the relationship between cognition and mental health likely stems from multiple sources. One possibility is the absence of certain neuroimaging modalities in the UK Biobank dataset, such as task-based fMRI contrasts, positron emission tomography, arterial spin labeling, and magnetoencephalography/electroencephalography. Prior research has consistently demonstrated strong predictive performance from specific task-based fMRI contrasts, particularly those derived from tasks like the n-Back working memory task and the face-name episodic memory task, none of which is available in the UK Biobank [15,17,61,69,114,142,151].

      Moreover, there are inherent limitations in using MRI as a proxy for brain structure and function. Measurement error and intra-individual variability, such as differences in a cognitive state between cognitive assessments and MRI acquisition, may also contribute to the unexplained variance. According to the RDoC framework, brain circuits represent only one level of neurobiological analysis relevant to cognition [14]. Other levels, including genes, molecules, cells, and physiological processes, may also play a role in the cognition-mental health relationship.

      Nonetheless, neuroimaging provides a valuable window into the biological mechanisms underlying this overlap – insights that cannot be gleaned from behavioural data alone. Ultimately, our findings validate brain-based neural markers as a fundamental neurobiological unit of analysis, advancing our understanding of mental health through the lens of cognition.”

      Wang Y, Anney R, Pat N. The relationship between cognitive abilities and mental health as represented by cognitive abilities at the neural and genetic levels of analysis. eLife. 2025.14:RP105537.

      Vieira S, Gong QY, Pinaya WHL, et al. Using Machine Learning and Structural Neuroimaging to Detect First Episode Psychosis: Reconsidering the Evidence. Schizophr Bull. 2020;46(1):17-26.

      Brydges CR. Effect Size Guidelines, Sample Size Calculations, and Statistical Power in Gerontology. Innovation in Aging. 2019;3(4):igz036.

      Tetereva A, Knodt AR, Melzer TR, et al. Improving Predictability, Reliability and Generalisability of Brain-Wide Associations for Cognitive Abilities via Multimodal Stacking. Preprint. bioRxiv. 2025;2024.05.03.589404.

      Reviewer 3:

      Buianova et al. present a comprehensive analysis examining the predictive value of multimodal neuroimaging data for general cognitive ability, operationalized as a derived g-factor. The study demonstrates that functional MRI holds the strongest predictive power among the modalities, while integrating multiple MRI modalities through stacking further enhances prediction performance. The inclusion of a commonality analysis provides valuable insight into the extent to which shared and unique variance across mental health features and neuroimaging modalities contributes to the observed associations with cognition. The results are clearly presented and supported by highquality visualizations. Limitations of the sample are stated clearly.

      Thank you once more for your constructive and encouraging feedback. We appreciate your careful reading and valuable methodological insights. Your expertise has helped us clarify key methodological concepts and improve the overall rigour of our study.

      Suggestions for improvement:

      (1) The manuscript would benefit from the inclusion of permutation testing to evaluate the statistical significance of the predictive models. This is particularly important given that some of the reported performance metrics are relatively modest, and permutation testing could help ensure that results are not driven by chance.

      Thank you, this is an excellent point. We agree that evaluating the statistical significance of our predictive models is essential.

      In our original analysis, we assessed model performance by generating a bootstrap distribution of Pearson’s r, resampling the data with replacement 5,000 times (see Figure 3b). In response to your feedback, we have made the following updates:

      (1) Improved Figure 3b to explicitly display the 95% confidence intervals.

      (2) Supplemented the results by reporting the exact confidence interval values.

      (3) Clarified our significance testing procedure in the Methods section.

      We considered model performance statistically significant when the 95% confidence interval did not include zero, indicating that the observed associations are unlikely to have occurred by chance.

      We chose bootstrapping over permutation testing because, while both can assess statistical significance, bootstrapping additionally provides uncertainty estimates in the form of confidence intervals. Given the large sample size in our study, significance testing can be less informative, as even small effects may reach statistical significance. Bootstrapping offers a more nuanced understanding of model uncertainty.

      Line 233: “To evaluate model performance and assess statistical significance, we aggregated the predicted and observed g-factor values from each outer-fold test set. We then computed a bootstrap distribution of Pearson’s correlation coefficient (r) by resampling with replacement 5 000 times, generating 95% confidence intervals (CIs) (Fig. 1). Model performance was considered statistically significant if the 95% CI did not include zero, indicating that the observed associations were unlikely to have occurred by chance.”

      (2) Applying and testing the trained models on an external validation set would increase confidence in generalisability of the model.

      We appreciate this excellent suggestion. While we considered this approach, implementing it would require identifying an appropriate external dataset with comparable neuroimaging and behavioural measures, along with careful matching of acquisition protocols and variable definitions across sites. These challenges extend beyond the scope of the current study, though we fully agree that this represents an important direction for future research.

      Our findings, obtained from one of the largest neuroimaging datasets to date with training and test samples exceeding most previous studies, align closely with existing literature: the predictive accuracy of each neuroimaging phenotype and modality for cognition matches the effect size reported in meta-analyses (r ≈ 0.4; e.g., Vieira et al., 2020). The ability of dwMRI, rsMRI and sMRI to capture the cognition-mental health relationship is, in turn, consistent with our previous work in pediatric populations (Wang et al., 2025; Pat et al., 2022).

      Vieira S, Gong QY, Pinaya WHL, et al. Using Machine Learning and Structural Neuroimaging to Detect First Episode Psychosis: Reconsidering the Evidence. Schizophr Bull. 2020;46(1):17-26.

      Wang Y, Anney R, Pat N. The relationship between cognitive abilities and mental health as represented by cognitive abilities at the neural and genetic levels of analysis. eLife. 2025.14:RP105537.

      Pat N, Wang Y, Anney R, Riglin L, Thapar A, Stringaris A. Longitudinally stable, brain-based predictive models mediate the relationships between childhood cognition and socio-demographic, psychological and genetic factors. Hum Brain Mapp. 2022;43:5520–5542.

      (3) The rationale for selecting a 5-by-10-fold cross-validation scheme is not clearly explained. Clarifying why this structure was preferred over more commonly used alternatives, such as 10-by-10 or 5-by-5 cross-validation, would strengthen the methodological transparency.

      Thank you for this important methodological question. Our choice of a 5-by-10-fold crossvalidation scheme was motivated by the need to balance robust hyperparameter tuning with computational efficiency, particularly memory and processing time. Retaining five outer folds allowed us to rigorously assess model performance across multiple data partitions, leading to an outer-fold test set at least n = 4 000 and providing a substantial amount of neuroimaging data involved in model training. In contrast, employing ten inner folds ensured robust and stable hyperparameter tuning that maximizes the reliability of model selection. Thus, the 5-outer-fold with our large sample provided sufficient out-of-sample test set size for reliable model evaluation and efficient computation, while 10 inner folds enabled robust hyperparameter tuning. We now provide additional rationale for this design decision on Page 10.

      Line 188: “We employed nested cross-validation to predict cognition from mental health indices and 72 neuroimaging phenotypes (Fig. 1). Nested cross-validation is a robust method for evaluating machine-learning models while tuning their hyperparameters, ensuring that performance estimates are both accurate and unbiased. Here, we used a nested cross-validation scheme with five outer folds and ten inner folds.

      We started by dividing the entire dataset into five outer folds. Each fold took a turn being held out as the outerfold test set (20% of the data), while the remaining four folds (80% of the data) were used as an outer-fold training set. Within each outer-fold training set, we performed a second layer of cross-validation – this time splitting the data into ten inner folds. These inner folds were used exclusively for hyperparameter tuning: models were trained on nine of the inner folds and validated on the remaining one, cycling through all ten combinations.

      We then selected the hyperparameter configuration that performed best across the inner-fold validation sets, as determined by the minimal mean squared error (MSE). The model was then retrained on the full outer-fold training set using this hyperparameter configuration and evaluated on the outer-fold test set, using four performance metrics: Pearson r, the coefficient of determination ( R<sup>2</sup>), the mean absolute error (MAE), and the MSE. This entire process was repeated for each of the five outer folds, ensuring that every data point is used for both training and testing, but never at the same time. We opted for five outer folds instead of ten to reduce computational demands, particularly memory and processing time, given the substantial volume of neuroimaging data involved in model training. Five outer folds led to an outer-fold test set at least n = 4 000, which should be sufficient for model evaluation. In contrast, we retained ten inner folds to ensure robust and stable hyperparameter tuning, maximising the reliability of model selection.”

      (4) A more detailed discussion of which specific brain regions or features within each neuroimaging modality contributed most strongly to the prediction of cognition would enhance neurobiological relevance of the findings.

      Thank you for this thoughtful suggestion. To address this point, we have included feature importance plots for the top-performing neuroimaging phenotypes within each modality (Figure 5 and Figures S2–S4), demonstrating the relative contributions of individual features to the predictive models. While we maintain our primary focus on cross-modality performance comparisons in the main text, as this aligns with our central aim of evaluating multimodal MRI markers at the integrated level, we outline the contribution of neuroimaging features with the highest predictive performance for cognition in the revised Results and Discussion.

      Methods

      Line 255: “To determine which neuroimaging features contribute most to the predictive performance of topperforming phenotypes within each modality, while accounting for the potential latent components derived from neuroimaging, we assessed feature importance using the Haufe transformation [62]. Specifically, we calculated Pearson correlations between the predicted g-factor and scaled and centred neuroimaging features across five outer-fold test sets. We also examined whether the performance of neuroimaging phenotypes in predicting cognition per se is related to their ability to explain the link between cognition and mental health. Here, we computed the correlation between the predictive performance of each neuroimaging phenotype and the proportion of the cognition-mental health relationship it captures. To understand how demographic factors, including age and sex, contribute to this relationship, we also conducted a separate set of commonality analyses treating age, sex, age<sup>2</sup>, age×sex, and age<sup>2</sup>×sex as an additional set of explanatory variables (Fig. 1).”

      Results

      dwMRI

      Line 331: “Overall, models based on structural connectivity metrics performed better than TBSS and probabilistic tractography (Fig. 3). TBSS, in turn, performed better than probabilistic tractography (Fig. 3 and Table S13). The number of streamlines connecting brain areas parcellated with aparc MSA-I had the best predictive performance among all dwMRI neuroimaging phenotypes (R<sup>2</sup><sub>mean</sub> = 0.052, r<sub>mean</sub> = 0.227, 95% CI [0.212, 0.235]). To identify features driving predictions, we correlated streamline counts in aparc MSA-I parcellation with the predicted g_factor values from the PLSR model. Positive associations with the predicted _g-factor were strongest for left superior parietal-left caudal anterior cingulate, left caudate-right amygdala, and left putamen-left hippocampus connections. The most marked negative correlations involved left putamen-right posterior thalamus and right pars opercularis-right caudal anterior cingulate pathways (Fig. 5 and Supplementary Fig. S2).”

      rsMRI

      Line 353: “Among RSFC metrics for 55 and 21 ICs, tangent parameterization matrices yielded the highest performance in the training set compared to full and partial correlation, as indicated by the cross-validation score. Functional connections between the limbic (IC10) and dorsal attention (IC18) networks, as well as between the ventral attention (IC15) and default mode (IC11) networks, displayed the highest positive association with cognition. In contrast, functional connectivity between the limbic (IC43, the highest activation within network) and default mode (IC11) and limbic (IC45) and frontoparietal (IC40) networks, between the dorsal attention (IC18) and frontoparietal (IC25) networks, and between the ventral attention (IC15) and frontoparietal (IC40) networks, showed the highest negative association with cognition (Fig. 5 and Supplementary Fig. S3 and S4)”

      sMRI

      Line 373: “FreeSurfer subcortical volumetric subsegmentation and ASEG had the highest performance among all sMRI neuroimaging phenotypes (R<sup>2</sup><sub>mean</sub> = 0.068, r<sub>mean</sub> = 0.244, 95% CI [0.237, 0.259] and R<sup>2</sup><sub>mean</sub> = 0.059, r<sub>mean</sub> = 0.235, 95% CI [0.221, 0.243], respectively). In FreeSurfer subcortical volumetric subsegmentation, volumes of all subcortical structures, except for left and right hippocampal fissures, showed positive associations with cognition. The strongest relations were observed for the volumes of bilateral whole hippocampal head and whole hippocampus (Fig. 5 and Supplementary Fig. S5 for feature importance maps). Grey matter morphological characteristics from ex vivo Brodmann Area Maps showed the lowest predictive performance (R<sup>2</sup><sub>mean</sub> = 0.008, r<sub>mean</sub> = 0.089, 95% CI [0.075, 0.098]; Fig. 3 and Table S15).”

      Discussion

      dwMRI

      Line 562: “Among dwMRI-derived neuroimaging phenotypes, models based on structural connectivity between brain areas parcellated with aparc MSA-I (streamline count), particularly connections with bilateral caudal anterior cingulate (left superior parietal-left caudal anterior cingulate, right pars opercularis-right caudal anterior cingulate), left putamen (left putamen-left hippocampus, left putamen-right posterior thalamus), and amygdala (left caudate-right amygdala), result in a neural indicator that best reflects microstructural resources associated with cognition, as indicated by predictive modeling, and more importantly, shares the highest proportion of the variance with mental health-g, as indicated by commonality analysis.”

      rsMRI

      Line 583: “We extend findings on the superior performance of rsMRI in predicting cognition, which aligns with the literature [15, 28], by showing that it also explains almost a third of the variance in cognition that mental health captures. At the rsMRI neuroimaging phenotype level, this performance is mostly driven by RSFC patterns among 55 ICA-derived networks quantified using tangent space parameterization. At a feature level, these associations are best captured by the strength of functional connections among limbic, dorsal attention and ventral attention, frontoparietal and default mode networks. These functional networks have been consistently linked to cognitive processes in prior research [127–130].”

      sMRI

      Line 608: “Integrating information about brain anatomy by stacking sMRI neuroimaging phenotypes allowed us to explain a third of the link between cognition and mental health. Among all sMRI neuroimaging phenotypes, those that quantified the morphology of subcortical structures, particularly volumes of bilateral hippocampus and hippocampal head, explain the highest portion of the variance in cognition captured by mental health. Our findings show that, at least in older adults, volumetric properties of subcortical structures are not only more predictive of individual variations in cognition but also explain a greater portion of cognitive variance shared with mental health than structural characteristics of more distributed cortical grey and white matter. This aligns with the Scaffolding Theory that proposes stronger compensatory engagement of subcortical structures in cognitive processing in older adults [138–140].”

      (5) The formatting of some figure legends could be improved for clarity - for example, some subheadings were not formatted in bold (e.g., Figure 2 c)

      Thank you for noticing this. We have updated the figures to enhance clarity, keeping subheadings plain while bolding figure numbers and MRI modality names.

    1. eLife Assessment

      This valuable paper investigates how fish avoid thermal disturbances that occur on fast timescales. The authors use a creative experimental approach that quickly creates a vertical thermal interface, which they combine with careful behavioral analyses. The evidence supporting their results is solid, but there is a potential confounding factor between temperature and vertical positioning, and characterization of the thermal interface would greatly assist in interpreting the results.

    2. Reviewer #1 (Public review):

      Summary:

      The experiment is interesting and well executed and describes in high detail fish behaviour in thermally stratified waters. The evidence is strong but the experimental design cannot distinguish between temperature and vertical position of the treatments.

      Strengths:

      High statistical power, solid quantification of behaviour.

      Weaknesses:

      A major issue with the experimental design is the vertical component of the experiment. Many thermal preference and avoidance experiments are run using horizontal division in shuttlebox systems or in annular choice flumes. These remove the vertical stratification component so that hot and cold can be compared equally, without the vertical layering as a confounding factor. The method chosen, with its vertical stratification, is inherently unable to control for this effect because warm water is always above, and cold water is always below. This complicates the interpretations.

    3. Reviewer #2 (Public review):

      The paper by Naudascher et al., investigates an interesting question: How do fish react to and avoid thermal disturbances from the optimum that occur on fast timescales. Previous work has identified potential strategies of warm avoidance in fish on short timescales while strategies for cold avoidance are far more elusive. The work combines a clever experimental paradigm with careful analysis to show that trout parr avoid cold water by limiting excursions across a warm-cold thermal interface. While direct measurements of the interface are lacking, thermal dynamics simulations suggest that trout parr avoid the warm-cold interface in the absence of gradient information.

      The authors assume that the thermal interface triggers the upward turning behavior, possibly leading to the formation of an associative memory. However, an alternative explanation is that exposure to cold water during initial excursions increases the tendency for upward turns. In other words, exposure to a cold interface changes the behavioral state leading to increases in gravity controlled upward turning. This could be an adaptive strategy since for temperatures > 4C swimming upwards is a good strategy to reach warmer water. That being said, the vertical design offers new insight and is ecologically relevant.

    1. eLife Assessment

      This important study uses the delay line axon model in the chick brainstem auditory circuit to examine the interactions between oligodendrocytes and axons in the formation of internodal distances. This is a significant and actively studied topic, and the authors have used this preparation to support the hypothesis that regional heterogeneity in oligodendrocytes underlies the observed variation in internodal length. In a solid series of experiments, the authors have used enhanced tetanus neurotoxin light chains, a genetically encoded silencing tool, to inhibit vesicular release from axons and support the hypothesis that regional heterogeneity among oligodendrocytes may underlie the biased nodal spacing pattern in the sound localization circuit.

      [Editors' note: this paper was reviewed by Review Commons.]

    2. Reviewer #2 (Public review):

      Summary:

      Egawa et al describe the developmental timeline of the assembly of nodes of Ranvier in the chick brainstem auditory circuit. In this unique system, the spacing between nodes varies significantly in different regions of the same axon from early stages, which the authors suggest is critical for accurate sound localization. Egawa et al set out to determine which factors regulate this differential node spacing. They do this by using immunohistological analyses to test the correlation of node spacing with morphological properties of the axons, and properties of oligodendrocytes, glial cells that wrap axons with the myelin sheaths that flank the nodes of Ranvier. They find that axonal structure does not vary significantly, but that oligodendrocyte density and morphology varies in the different regions traversed by these axons, which suggests this is a key determinant of the region-specific differences in node density and myelin sheath length. They also find that differential oligodendrocyte density is partly determined by secreted neuronal signals, as (presumed) blockage of vesicle fusion with tetanus toxin reduced oligodendrocyte density in the region where it is normally higher. Based on these findings, the authors propose that oligodendrocyte morphology, myelin sheath length, and consequently nodal distribution are primarily determined by intrinsic oligodendrocyte properties rather than neuronal factors such as activity.

      Major comments:

      (1) The authors should test the efficiency of TeNT to validate that vesicular release is indeed inhibited from expressing neurons. Additionally, the authors should clarify if their TeNT expression system results in the whole tract being silenced, or results in sparse vesicular release inhibition in only a few neurons.

      (2) The authors should revise their statistical analyses throughout, and supply additional information to explain the rationale for the statistical tests used, including e.g. data normality, paired sampling, number of samples/independent biological replicates.

      (3) The main finding of the study is that the density of nodes differs between two regions of the chicken auditory circuit, probably due to morphological differences in the respective oligodendrocytes. Can the authors discuss if this finding is likely to be specific to the avian auditory circuit?

      (4) The study shows a correlation between node spacing and oligodendrocyte density, but the authors did not manipulate oligodendrocyte density per se (i.e. cell-autonomously). The authors should either include such experiments, or discuss their value in supporting the interpretation of their results.

      (5) The authors should discuss very pertinent prior studies, in particular to contextualize their findings with (a) known neuron-autonomous modes of node formation prior to myelination, (b) known effects of vesicular fusion directly on myelinating capacity and oligodendrogenesis, (c) known correlation of myelin length and thickness with axonal diameter, (d) regional heterogeneity in the oligodendrocyte transcriptome.

      Significance:

      In our view the study tackles a fundamental question likely to be of interest to a specialized audience of cellular neuroscientists. This descriptive study is suggestive that in the studied system, oligodendrocyte density determines the spacing between nodes of Ranvier, but further manipulations of oligodendrocyte density per se are needed to test this convincingly.

    3. Reviewer #3 (Public review):

      Summary:

      The authors have investigated the myelination pattern along the axons of chick avian cochlear nucleus. It has already been shown that there are regional differences in the internodal length of axons in the nucleus magnocellularis. In the tract region across the midline, internodes are longer than in the nucleus laminaris region. Here the authors suggest that the difference in internodal length is attributed to heterogeneity of oligodendrocytes. In the tract region oligodendrocytes would contribute longer myelin internodes, while oligodendrocytes in the nucleus laminaris region would synthesize shorter myelin internodes. Not only length of myelin internodes differs, but also along the same axon unmyelinated areas between two internodes may vary. This is an interesting contribution since all these differences contribute to differential conduction velocity regulating ipsilateral and contralateral innervation of coincidence detector neurons. However, the demonstration falls rather short of being convincing.

      Major comments:

      (1) The authors neglect the possibility that nodal cluster may be formed prior to myelin deposition. They have investigated stages E12 (no nodal clusters) and E15 (nodal cluster plus MAG+ myelin). Fig. 1D is of dubious quality. It would be important to investigate stages between E12 and E15 to observe the formation of pre-nodes, i.e., clustering of nodal components prior to myelin deposition.

      (2) The claim that axonal diameter is constant along the axonal length need to be demonstrated at the EM level. This would also allow to measure possible regional differences in the thickness of the myelin sheath and number of myelin wraps.

      (3) The observation that internodal length differs is explain by heterogeneity of sources of oligodendrocyte is not convincing. Oligodendrocytes a priori from the same origin remyelinate shorter internode after a demyelination event.

      Significance:

      The authors suggest that the difference in internodal length is attributed to heterogeneity of oligodendrocytes. In the tract region oligodendrocytes would contribute longer myelin internodes, while oligodendrocytes in the nucleus laminaris region would synthesize shorter myelin internodes. Not only length of myelin internodes differs, but also along the same axon unmyelinated areas between two internodes may vary. This is an interesting contribution since all these differences contribute to differential conduction velocity regulating ipsilateral and contralateral innervation of coincidence detector neurons.

      Comments on revised version:

      This revised version is in large improved and the responses to reviewers' comments are generally relevant. However, the response regarding pre-nodes is not satisfactory. I understand that the authors prefer to avoid further experimentations, but I think this is an important point that needs to be clarified. Exploring stages between E12 and E15 are therefore of importance. When carefully examining some of the figures (Fig. 1E or 2D) I think that at E15 they may well be pre-nodes formation prior to myelin deposition, on structure the authors considered to be heminodes. To be convincing they should use double or triple labeling with, in addition to the nodal proteins (ankG and/or Nav pan), a good myelin marker such as antiPLP. The rat monoclonal developed by late Pr Ikenaka would give a sharper staining than the anti MAG they used. (I assume the clone must still be available in Okazaki ).

    4. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1:

      Evidence, reproducibility and clarity

      The manuscript by Egawa and colleagues investigates differences in nodal spacing in an avian auditory brain stem circuit. The results are clearly presented and data are of very high quality. The authors make two main conclusions:

      (1) Node spacing, i.e. internodal length, is intrinsically specified by the oligodendrocytes in the region they are found in, rather than axonal properties (branching or diameter).

      (2) Activity is necessary (we don't know what kind of signaling) for normal numbers of oligodendrocytes and therefore the extent of myelination.

      These are interesting observations, albeit phenomenon. I have only a few criticisms that should be addressed:

      (1) The use of the term 'distribution' when describing the location of nodes is confusing. I think the authors mean rather than the patterns of nodal distribution, the pattern of nodal spacing. They have investigated spacing along the axon. I encourage the authors to substitute node spacing or internodal length for node distribution.

      Thanks for your suggestion to avoid confusion. We used the phrase "nodal spacing" instead of "nodal distribution" throughout the revised manuscript.

      (2) In Seidl et al. (J Neurosci 2010) it was reported that axon diameter and internodal length (nodal spacing) were different for regions of the circuit. Can the authors help me better understand the difference between the Seidl results and those presented here?

      As a key distinction, our study focuses specifically on the main trunk of the contralateral projection of NM axons. This projection features a sequential branching structure known as the delay line, where collateral branches form terminal arbors and connect to the ventral dendritic layer of NL neurons. This structural organization plays a critical role in influencing the dynamic range of ITD detection by regulating conduction delays along the NM axon trunk.

      The study by Seidl et al. (2010) is a pioneering work that measured diameter of NM axon using electron microscopy, providing highly reliable data. However, due to the technical  limitations of electron microscopy, which does not allow for the continuous tracing of individual axons, it is not entirely clear whether the axons measured in the ventral NL region correspond to terminal arbors of collateral branches or the main trunk of NM axons (see Figure 9E, F in their paper). Instead, they categorized axon diameters based on their distance from NL cell layer, showing that axon diameter increases distally (see Figure 9G in their paper). Notably, the diameters of ventral axons located more than 120 μm away from the NL cell layer is almost identical to those in the midline.

      As illustrated in our Figure 4D and Supplementary Video 2, the main trunk of the contralateral NM projection is predominantly located in these distal regions. Therefore, our findings complement those of Seidl et al. (2010) rather than contradicting them. We made this point as clear as possible in text (page 7, line 3).

      (3) The authors looked only in very young animals - are the results reported here applicable only to development, or does additional refinement take place with aging?

      In this study, we examined chick embryos from E9 to just before hatching (E21) and post-hatch chicks up to P9. Chickens begin to perceive sound around E12 and possess sound localization abilities at the time of hatching (Grier et al., 1967) (added to page 4, line 9). Therefore, by E21, the sound localization circuit is largely established.

      On the other hand, additional refinement of the circuit with aging is certainly possible. A key cue for sound localization, interaural time difference (ITD), depends on the distance between the two ears, which increases as the animal grows. As shown in Figure 2G, internodal length increased by approximately 20% between E18 and P9 while maintaining regional differences. Given that NM axons are nearly fully myelinated by E21 (Figure 4D, 6C), this suggests that myelin extends in proportion to the overall growth of the head and brain volume. We described this possibility in text (page 5, line 21)

      Thus, our study covers not only the early stages of myelination but also the post-functional maturation in the sound localization circuit.

      (4) The fact that internodal length is specified by the oligodendrocyte suggests that activity may not modify the location of nodes of Ranvier - although again, the authors have only looked during early development. This is quite different than this reviewer's original thoughts - that activity altered internodal length and axon diameter. Thus, the results here argue against node plasticity. The authors may choose to highlight this point or argue for or against it based on results in adult birds?

      In this study, we demonstrated that although vesicular release did not affect internodal length, it selectively promoted oligodendrogenesis, thereby supporting the full myelination and hence the pattern of nodal spacing along the NM axons. We believe that this finding falls within the broader scope of 'activity-dependent plasticity' involving oligodendrocytes and nodes.

      As summarized in the excellent review by Bonetto et al. (2021), activity-dependent plasticity in oligodendrocytes encompasses a wide range of phenomena, not limited to changes in internodal length but also including oligodendrogenesis. Moreover, the effects of neuronal activity are not uniform but likely depend on the diversity of both neurons and oligodendrocytes. For example, in the mouse visual cortex, activity-dependent myelination occurs in interneurons but not in excitatory neurons (Yang et al., 2020). Additionally, expression of TeNT in axons affected myelination heterogeneously in zebrafish; some axons were impaired in myelination and the others were not affected at all (Koudelka et al., 2016). In the mouse corpus callosum, neuronal activity influences oligodendrogenesis, which in turn facilitates adaptive myelination (Gibson et al., 2014).

      Thus, rather than refuting the role of activity-dependent plasticity in nodal spacing, our findings emphasize the diversity of underlying regulatory mechanisms. We described these explicitly in text (page 10, line 18).

      Significance

      This paper may argue against node plasticity as a mechanism for tuning of neural circuits. Myelin plasticity is a very hot topic right now and node plasticity reflects myelin plasticity. this seems to be a circuit where perhaps plasticity is NOT occurring. That would be interesting to test directly. One limitation is that this is limited to development.

      This paper does not argue against node plasticity, but rather demonstrates that oligodendrocytes in the NL region exhibit a form of plasticity; they proliferate in response to vesicular release from NM axons, yet do not undergo morphological changes, ensuring adequate oligodendrocyte density for the full myelination of the auditory circuit. Thus, activity-dependent plasticity involving oligodendrocytes would contributes in various ways to each neural circuit, which is presumably attributed to the fact that myelination is driven by complex multicellular interactions between diverse axons and oligodendrocytes. Oligodendrocytes are known to exhibit heterogeneity in morphology, function, responsiveness, and gene profiles (Foerster et al., 2019; Sherafat et al., 2021; Osanai et al., 2022; Valihrach et al., 2022), but functional significance of this heterogeneity remains largely unclear. This paper also provides insight into how oligodendrocyte heterogeneity may contribute to the fine-tuning of neural circuit function, adding further value to our findings. Importantly, our study covers the wide range of development in the sound localization circuit, from the pre-myelination (E9) to the postfunctional maturation (P9), revealing how the nodal spacing pattern along the axon in this circuit emerges and matures.

      Reviewer #2:

      Evidence, reproducibility and clarity

      Egawa et al describe the developmental timeline of the assembly of nodes of Ranvier in the chick brainstem auditory circuit. In this unique system, the spacing between nodes varies significantly in different regions of the same axon from early stages, which the authors suggest is critical for accurate sound localization. Egawa et al set out to determine which factors regulate this differential node spacing. They do this by using immunohistological analyses to test the correlation of node spacing with morphological properties of the axons, and properties of oligodendrocytes, glial cells that wrap axons with the myelin sheaths that flank the nodes of Ranvier. They find that axonal structure does not vary significantly, but that oligodendrocyte density and morphology varies in the different regions traversed by these axons, which suggests this is a key determinant of the region-specific differences in node density and myelin sheath length. They also find that differential oligodendrocyte density is partly determined by secreted neuronal signals, as (presumed) blockage of vesicle fusion with tetanus toxin reduced oligodendrocyte density in the region where it is normally higher. Based on these findings, the authors propose that oligodendrocyte morphology, myelin sheath length, and consequently nodal distribution are primarily determined by intrinsic oligodendrocyte properties rather than neuronal factors such as activity.

      Major points, detailed below, need to be addressed to overcome some limitations of the study.

      Major comments:

      (1) It is essential that the authors validate the efficiency of TeNT to prove that vesicular release is indeed inhibited, to be able to make any claims about the effect of vesicular release on oligodendrogenesis/myelination.

      eTeNT is a widely used genetically encoded silencing tool and constructs similar to the one used in this study have been successfully applied in primates and rodents to suppress target behaviors via genetic dissection of specific pathways (Kinoshita et al., 2012; Sooksawate et al., 2013). However, precisely quantifying the extent of vesicular release inhibition from NM axons in the brainstem auditory circuit is technically problematic.

      One major limitation is that while A3V efficiently infects NM neurons, its transduction efficiency does not reach 100%. In electrophysiological evaluations, NL neurons receive inputs from multiple NM axons, meaning that responses may still include input from uninfected axons. Additionally, failure to evoke synaptic responses could either indicate successful silencing or failure to stimulate NM axons, making a clear distinction difficult. Furthermore, unlike in motor circuits, we cannot assess the effect of silencing by observing behavioral outputs.

      Thus, we instead opted to quantify the precise expression efficiency of GFP-tagged eTeNT in the cell bodies of NM neurons. The proportion of NM neurons expressing GFP-tagged eTeNT was 89.7 ± 1.6% (N = 6 chicks), which is consistent with previous reports evaluating A3V transduction efficiency in the brainstem auditory circuit (Matsui et al., 2012). These results strongly suggest that synaptic transmission from NM axons was globally silenced by eTeNT at the NL region. We described these explicitly in text (page 8, line 2).

      (2) Related to 1, can the authors clarify if their TeNT expression system results in the whole tract being silenced? It appears from Fig. 6 that their approach leads to sparse expression of TeNT in individual neurons, which enables them to measure myelination parameters. Can the authors discuss how silencing a single axon can lead to a regional effect in oligodendrocyte number?

      Figure 6D depicts a representative axon selected from a dense population of GFP-positive axons in a 200-μm-thick slice after A3V-eTeNT infection to bilateral NM. As shown in Supplementary Video 1 and 2, densely labeled GFP-positive axons can be traced along the main trunk. To prevent any misinterpretation, we have revised the description of Figure 6 in the main text and Figure legend (page 31, line 9), and stated the A3V-eTeNT infection efficiency was 89.7 ± 1.6% in NM neurons, as mentioned above. Based on this efficiency, we interpreted that the global occlusion of vesicular release from most of the NM axons altered the pericellular microenvironment of the NL region, which led to the regional effect on the oligodendrocyte density.

      On the other hand, your question regarding whether sparse expression of eTeNT still has an effect is highly relevant. As we also discussed in our reply to comment 4 by Reviewer #1, the relationship between neuronal activity and oligodendrocytes is highly diverse. In some types of axons, vesicular release is essential for normal myelination, and this process was disrupted by TeNT (Koudelka et al., 2016), suggesting that direct interaction with oligodendrocytes via vesicle release may actively promote myelination in these types of axons.

      To clarify whether the phenotype observed in Figure 6 arises from changes in the pericellular microenvironment at the NL region or from the direct suppression of axon-oligodendrocyte interactions, we included a new Supplementary Figure (Figure 6—figure supplement 1). In this figure, we evaluated the node formation on the axon sparsely expressing eTeNT by electroporation into the unilateral NM. The results showed that sparse eTeNT expression did not increase the percentages of heminodes or unmyelinated segments. This finding supports our conclusion that the increased unmyelinated segments by A3V-eTeNT resulted from impaired synaptic transmission at NM terminals and subsequent alterations of  pericellular microenvironment at the NL region.

      (3) The authors need to fully revise their statistical analyses throughout and supply additional information that is needed to assess if their analyses are adequate:

      Thank you for your valuable suggestions to improve the rigor of our statistical analyses. We have reanalyzed all statistical tests using R software. In the revised Methods section and Figure Legends, we have clarified the rationale for selecting each statistical test, specified which test was used for each figure, and explicitly defined both n and N. After reevaluation with the Shapiro-Wilk test, we adjusted some analyses to non-parametric tests where appropriate. However, these adjustments did not alter the statistical significance of our results compared to the original analyses.

      (3.1) the authors use a variety of statistical tests and it is not always obvious why they chose a particular test. For example, in Fig. 2G they chose a Kruskal-Wallis test instead of a two-way ANOVA or MannWhitney U test, which are much more common in the field. What is the rationale for the test choice?

      We have revised the explanation of our statistical test choices to provide greater clarity and precision. For example, in Figure 2G, we first assessed the normality of the data in each of the four groups using the Shapiro-Wilk test, which revealed that some datasets did not follow a normal distribution. Given this, we selected the Kruskal-Wallis test, a commonly used non-parametric test for comparisons across three or more groups. Since the Kruskal-Wallis test indicated a significant difference, we conducted a post hoc Steel-Dwass test to determine which specific group comparisons were statistically significant.

      (3.2) in some cases, the choice of test appears wholly inappropriate. For example, in Fig. 3H-K, an unpaired t-test is inappropriate if the two regions were analysed in the same samples. In Fig. 5, was a ttest used for comparisons between multiple groups in the same dataset? If so, an ANOVA may be more appropriate.

      In the case of Figures 3H-K, we compared oligodendrocyte morphology between regions. However, since the number of sparsely labeled oligodendrocytes differs both between regions and across individual samples, there is no strict correspondence between paired measurements. On the other hand, in Figures 5B, C, and E, we compared the density of labeled cells between regions within the same slice, establishing a direct correspondence between paired data points. For these comparisons, we appropriately used a paired t-test.

      (3.3) in some cases, the authors do not mention which test was used (Fig 3: E-G no test indicated, despite asterisks; G/L/M - which regression test that was used? What does r indicate?)

      We have specified the statistical tests used for each figure in the Methods section and Figure Legends for better clarity. Additionally, we have revised the descriptions for Figure 4G, L, and M and their corresponding Figure Legends to explicitly indicate that Spearman’s rank correlation coefficient (rₛ) was used for evaluation.

      (3.4) more concerningly, throughout the results, data may have been pseudo-replicated. t-tests and ANOVAs assume that each observation in a dataset is independent of the other observations. In figures 1-4 and 6 there is a very large "n" number, but the authors do not indicate what this corresponds to. This leaves it open to interpretation, and the large values suggest that the number of nodes, internodal segments, or cells may have been used. These are not independent experimental units, and should be averaged per independent biological replicate - i.e. per animal (N).

      We have now clarified what “n” represents in each figure, as well as the number of animals (N) used in each experiment, in the Figure Legends.

      In this study, developmental stages of chick embryos were defined by HH stage (Hamburger and Hamilton, 1951), minimizing individual variability. Additionally, since our study focuses on the distribution of morphological characteristics of individual cells, averaging measurements per animal would obscure important cellular-level variability and potentially mislead interpretation of data. Furthermore, we employed a strategy of sparse genetic labeling in many experiments, which naturally results in variability in the number of measurable cells per animal. Given the clear distinctions in our data distributions, we believe that averaging per biological replicate is not essential in this case.

      To further ensure the robustness of our statistical analysis, data presented as boxplots were preliminarily assessed using PlotsOfDifferences, a web-based application that calculates and visualizes effect sizes and 95% confidence intervals based on bootstrapping (https://huygens.science.uva.nl/PlotsOfDifferences/; https://doi.org/10.1101/578575). Effect sizes can serve as a valuable alternative to p-values (Ho, 2018; https://www.nature.com/articles/s41592019-0470-3). The significant differences reported in our study are also supported by clear differences in effect sizes, ensuring that our conclusions remain robust regardless of the statistical approach used.

      If requested, we would be happy to provide PlotsOfDifferences outputs as supplementary source data files, similar to those used in eLife publications, for each figure.

      (3.5) related to the pseudo-replication issue, can the authors include individual datapoints in graphs for full transparency, per biological replicates, in addition or in alternative to bar-graphs (e.g. Fig. 5 and 6).

      We have now incorporated individual data points into the bar graphs in Figures 5 and 6.

      (4) The main finding of the study is that the density of nodes differs between two regions of the chicken auditory circuit, probably due to morphological differences in the respective oligodendrocytes. Can the authors discuss if this finding is likely to be specific to the bird auditory circuit?

      The morphological differences of oligodendrocytes between white and gray matter are well established (i.e. shorter myelin at gray matter), but their correspondence with the nodal spacing pattern along the long axonal projections of cortical neurons is not well understood. Future research may find similarities with our findings. Additionally, as mentioned in the final section of the Discussion, the mammalian brainstem auditory circuit is functionally analogous to the avian ITD circuit. Regional differences in nodal spacing along axons have also been observed in the mammalian system, raising the important question of whether these differences are supported by regional heterogeneity in oligodendrocytes. Investigating this possibility will facilitate our understanding of the underlying logic and mechanisms for determining node spacing patterns along axons, as well as provide valuable insights into evolutionary convergence in auditory processing mechanisms. We described these explicitly in text (page 11, line 34).

      (5) Provided the authors amend their statistical analyses, and assuming significant differences remain as shown, the study shows a correlation (but not causation) between node spacing and oligodendrocyte density, but the authors did not manipulate oligodendrocyte density per se (i.e. cell-autonomously). Therefore, the authors should either include such experiments, or revise some of their phrasing to soften their claims and conclusions. For example, the word "determine" in the title could be replaced by "correlate with" for a more accurate representation of the work. Similar sentences throughout the main text should be amended.

      As you summarized in your comment, our results demonstrated that A3V-eTeNT suppressed oligodendrogenesis in the NL region, leading to a reduction in oligodendrocyte density (Figures 6L, M), which caused the emergence of unmyelinated segments. While this is an indirect manipulation of oligodendrocyte density, it nonetheless provides evidence supporting a causal relationship between oligodendrocyte density and nodal spacing.

      The emergence of unmyelinated segments at the NL region further suggests that the myelin extension capacity of oligodendrocytes differs between regions, highlighting regional differences in intrinsic properties of oligodendrocyte as the most prominent determinant of nodal spacing variation. However, as you correctly pointed out, our findings do not establish direct causation.

      In the future, developing methods to artificially manipulate myelin length could provide a more definitive demonstration of causality. Given these considerations, we have modified the title to replace "determine" with "underlie", ensuring that our conclusions are presented with appropriate nuance.

      (6) The authors fail to introduce, or discuss, very pertinent prior studies, in particular to contextualize their findings with:

      (6.1) known neuron-autonomous modes of node formation prior to myelination, e.g. Zonta et al (PMID 18573915); Vagionitis et al (PMID 35172135); Freeman et al (PMID 25561543)

      (6.2) known effects of vesicular fusion directly on myelinating capacity and oligodendrogenesis, e.g. Mensch et al (PMID 25849985)

      (6.3) known correlation of myelin length and thickness with axonal diameter, e.g. Murray & Blakemore (PMID 7012280); Ibrahim et al (PMID 8583214); Hildebrand et al (PMID 8441812).

      (6.4) regional heterogeneity in the oligodendrocyte transcriptome (page 9, studies summarized in PMID 36313617)

      Thank you for your insightful suggestions. We have incorporated the relevant references you provided and revised the manuscript accordingly to contextualize our findings within the existing literature.

      Minor comments:

      (7) Can the authors amend Fig. 1G with the correct units of measurement, not millimetres.

      Response: 

      Thank you for your suggestion. We have corrected the units in Figure 1G to µm

      (8) The Olig2 staining in Fig 2C does not appear to be nuclear, as would be expected of a transcription factor and as is well established for Olig2, but rather appears to be excluded from the nucleus, as it is in a ring or donut shape. Can the authors comment on this?

      Oligodendrocytes and OPCs have small cell bodies, often comparable in size to their nuclei. The central void in the ring-like Olig2 staining pattern appears too small to represent the nucleus. Additionally, a similar ring-like appearance is observed in BrdU labeling (Figure 5G), suggesting that this staining pattern may reflect nuclear morphology or other structural features.

      Significance

      In our view the study tackles a fundamental question likely to be of interest to a specialized audience of cellular neuroscientists. This descriptive study is suggestive that in the studied system, oligodendrocyte density determines the spacing between nodes of Ranvier, but further manipulations of oligodendrocyte density per se are needed to test this convincingly.

      The main finding of our study is that the primary determinant of the biased nodal spacing pattern in the sound localization circuit is the regional heterogeneity in the morphology of oligodendrocytes due to their intrinsic properties (e.g., their ability to produce and extend myelin sheaths) rather than the density of the cells. This was based on our observations that a reduction of oligodendrocyte density by A3V-eTeNT expression caused unmyelinated segments but did not increase internodal length (Figure 6), further revealing the importance of oligodendrocyte density in ensuring full myelination for the axons with short internodes. Thus, we think that our study could propose the significance of oligodendrocyte heterogeneity in the circuit function as well as in the nodal spacing using experimental manipulation of oligodendrocyte density. 

      Reviewer #3:

      Evidence, reproducibility and clarity

      The authors have investigated the myelination pattern along the axons of chick avian cochlear nucleus. It has already been shown that there are regional differences in the internodal length of axons in the nucleus magnocellularis. In the tract region across the midline, internodes are longer than in the nucleus laminaris region. Here the authors suggest that the difference in internodal length is attributed to heterogeneity of oligodendrocytes. In the tract region oligodendrocytes would contribute longer myelin internodes, while oligodendrocytes in the nucleus laminaris region would synthesize shorter myelin internodes. Not only length of myelin internodes differs, but also along the same axon unmyelinated areas between two internodes may vary. This is an interesting contribution since all these differences contribute to differential conduction velocity regulating ipsilateral and contralateral innervation of coincidence detector neurons. However, the demonstration falls rather short of being convincing. I have some major concerns:

      (1) The authors neglect the possibility that nodal cluster may be formed prior to myelin deposition. They have investigated stages E12 (no nodal clusters) and E15 (nodal cluster plus MAG+ myelin). Fig. 1D is of dubious quality. It would be important to investigate stages between E12 and E15 to observe the formation of pre-nodes, i.e., clustering of nodal components prior to myelin deposition.

      Thank you for your insightful comment regarding the potential role of pre-nodal clusters in determining internodal length. Indeed, studies in zebrafish have suggested that pre-nodal clustering of node components prior to myelination may prefigure internodal length (Vagionitis et al., 2022). We have incorporated a discussion on whether such pre-nodal clusters could contribute to regional differences in nodal spacing in our manuscript (page 9, line 35).

      Whether pre-nodal clusters are detectable before myelination appears to depend on neuronal subpopulation (Freeman et al., 2015). To investigate the presence of pre-nodal clusters along NM axons in the brainstem auditory circuit, we previously attempted to visualize AnkG signals at E13 and E14. However, we did not observe clear structures indicative of pre-nodal clusters; instead, we only detected sparse fibrous AnkG signals with weak Nav clustering at their ends, consistent with hemi-node features. This result does not exclude the possibility of pre-nodal clusters on NM axons, as the detection limit of immunostaining cannot be ruled out. In brainstem slices, where axons are densely packed, nodal molecules are expressed at low levels across a wide area, leading to a high background signal in immunostaining, which may mask weak pre-nodal cluster signals prior to myelination. Regarding the comment on Figure 1D, we assume you are referring to Figure 2D based on the context. The lack of clarity in the high-magnification images in Figure 2D results from both the high background signal and the limited penetration of the MAG antibody. Furthermore, we are unable to verify Neurofascin accumulation at pre-nodal clusters, as there is currently no commercially available antibody suitable for use in chickens, despite our over 20 years of efforts to identify one for AIS research. Therefore, current methodologies pose significant challenges in visualizing pre-nodal clusters in our model. Future advancements, such as exogenous expression of fluorescently tagged Neurofascin at appropriate densities or knock-in tagging of endogenous molecules, may help overcome these limitations.

      However, a key issue to be discussed in this study is not merely the presence or absence of prenodal clusters, but rather whether pre-nodal clusters—if present—would determine regional differences in internodal length. To address this possibility, we have added new data in Figure 6I, measuring the length of unmyelinated segments that emerged following A3V-eTeNT expression.

      If pre-nodal clusters were fixed before myelination and predetermined internodal length, then the length of unmyelinated segments should be equal to or a multiple of the typical internodal length. However, our data showed that unmyelinated segments in the NL region were less than half the length of the typical NL internodal length, contradicting the hypothesis that fixed pre-nodal clusters determine internodal length along NM axons in this region.

      (2) The claim that axonal diameter is constant along the axonal length need to be demonstrated at the EM level. This would also allow to measure possible regional differences in the thickness of the myelin sheath and number of myelin wraps.

      As mentioned in our reply to comment 2 by Reviewer #1, the diameter of NM axons was already evaluated using electron microscopy (EM) in the pioneering study by Seidl et al., (2010). Additionally, EM-based analysis makes it difficult to clearly distinguish between the main trunk of NM axons and thin collateral branches at the NL region. Accordingly, we did not do the EM analysis in this revision. 

      In Figure 4, we used palGFP, which is targeted to the cell membrane, allowing us to measure axon diameter by evaluating the distance between two membrane signal peaks. This approach minimizes the influence of the blurring of fluorescence signals on diameter measurements. Thus, we believe that our method is sufficient to evaluate the relative difference in axon diameters between regions and hence to show that axon diameter is not the primary determinant of the 3-fold difference in internodal length between regions. 

      (3) The observation that internodal length differs is explain by heterogeneity of sources of oligodendrocyte is not convincing. Oligodendrocytes a priori from the same origin remyelinate shorter internode after a demyelination event.

      The heterogeneity in oligodendrocyte morphology would reflect differences in gene profiles, which, in turn, may arise from differences in their developmental origin and/or pericellular microenvironment of OPCs. We made this point as clear as possible in Discussion (page 9, line 21).

      Significance

      The authors suggest that the difference in internodal length is attributed to heterogeneity of oligodendrocytes. In the tract region oligodendrocytes would contribute longer myelin internodes, while oligodendrocytes in the nucleus laminaris region would synthesize shorter myelin internodes. Not only length of myelin internodes differs, but also along the same axon unmyelinated areas between two internodes may vary. This is an interesting contribution since all these differences contribute to differential conduction velocity regulating ipsilateral and contralateral innervation of coincidence detector neurons.

    1. eLife Assessment

      This important study combines electrocardiographic (ECG) and heart/torso anatomy data from subjects included in the UK Biobank to analyze sex-specific differences in relationships between those two characteristics. The study has several compelling strengths, including the development of an open-source pipeline for reconstruction and analysis of heart/torso geometry from a large cohort. Nevertheless, technical analysis of the data as presented is incomplete, specifically as it pertains to assessment of co-linearity between regressed parameters, interpretation of regression coefficients for sex and/or presence of myocardial infarction, and discussion of potential roles played by underlying electrophysiological derangements. With improvements to these aspects of the analysis, the paper would be of interest to the cardiovascular research community, especially those studying highly relevant health and treatment disparities arising from sex differences.

    2. Reviewer #1 (Public review):

      Summary:

      The electrocardiogram (ECG) is routinely used to diagnose and assess cardiovascular risk. However, its interpretation can be complicated by sex-based and anatomical variations in heart and torso structure. To quantify these relationships, Dr. Smith and colleagues developed computational tools to automatically reconstruct 3D heart and torso anatomies from UK Biobank data. Their regression analysis identified key sex differences in anatomical parameters and their associations with ECG features, particularly post-myocardial infarction (MI). This work provides valuable quantitative insights into how sex and anatomy influence ECG metrics, potentially improving future ECG interpretation protocols by accounting for these factors.

      Strengths:

      (1) The study introduces an automated pipeline to reconstruct heart and torso anatomies from a large cohort (1,476 subjects, including healthy and post-MI individuals).

      (2) The 3-stage reconstruction achieved high accuracy (validated via Dice coefficient and error distances).

      (3) Extracted anatomical features enabled novel analyses of disease-dependent relationships between sex, anatomy, and ECG metrics.

      (4) Open-source code for the pipeline and analyses enhances reproducibility.

      Weaknesses:

      (1) The linear regression approach, while useful, may not fully address collinearity among parameters (e.g., cardiac size, torso volume, heart position). Although left ventricular mass or cavity volume was selected to mitigate collinearity, other parameters (e.g., heart center coordinates) could still introduce bias.

      (2) The study attributes residual ECG differences to sex/MI status after controlling for anatomical variables. However, regression model errors could distort these estimates. A rigorous evaluation of potential deviations (e.g., variance inflation factors or alternative methods like ridge regression) would strengthen the conclusions.

      (3) The manuscript's highly quantitative presentation may hinder readability. Simplifying technical descriptions and improving figure clarity (e.g., separating superimposed bar plots in Figures 2-4) would aid comprehension.

      (4) Given established sex differences in QTc intervals, applying the same analytical framework to explore QTc's dependence on sex and anatomy could have provided additional clinically relevant insights.

    3. Reviewer #2 (Public review):

      Summary:

      Missed diagnosis of myocardial ischemia (MI) is more common in women, and treatment is typically less aggressive. This diagnosis stems from the fact that women's ECGs commonly exhibit 12 lead ECG biomarkers that are less likely to fall within the traditional diagnostic criteria. Namely, women have shorter QRS durations and lower ST junction and T wave amplitudes, but longer QT intervals, than men. To study the impact, this study aims to quantify sex differences in heart-torso anatomy and ECG biomarkers, as well as their relative associations, in both pre- and post-MI populations. A novel computational pipeline was constructed to generate torso-ventricular geometries from cardiac magnetic resonance imaging. The pipeline was used to build models for 425 post-myocardial infarction subjects and 1051 healthy controls from UK Biobank clinical images to generate the population.

      Strengths:

      This study has a strength in that it utilizes a large patient population from the UK Biobank (425 post-MI and 1051 healthy controls) to analyze sex-based differences. The computational pipeline is state-of-the-art for constructing torso-ventricular geometries from cardiac MR and is clinically viable. It draws on novel machine learning techniques for segmentation, contour extraction, and shape modeling. This pipeline is publicly available and can help in the large-scale generation of anatomies for other studies. This allows computation of various anatomical factors (torso volume, cavity volume, etc), and subsequent regression analysis on how these factors are altered before and after MI from the 12-lead ECG.

      Weaknesses:

      Major weaknesses stem from the fact that, while electrophysiological factors appear to play a role across many leads, both post-MI and healthy, the electrophysiological factors are not stated or discussed. The computational modeling pipeline is validated for reconstructing torso contours; however, potential registration errors stemming from ventricular-torso construction are not addressed within the context of anatomical factors, such as the tilt and rotation of the heart. This should be discussed as the paper's claims are based on these results. Further analysis and explanation are needed to understand how these sex-specific results impact the ECG-based diagnosis of MI in men and women, as stated as the primary reason for the study at the beginning of the paper. This would provide a broader impact within the clinical community. Claims about demographics do not appear to be supported within the main manuscript but are provided in the supplements. Reformatting the paper's structure is required to efficiently and effectively present and support the findings and outcomes of this work.

    1. eLife Assessment

      This valuable study investigates the self-assembly activity of death-fold domains. The data collected using advanced microscopy and distributed amphifluoric FRET-based flow cytometry methods provide solid evidence for the conclusions, although the interpretations based on these conclusions remain speculative in some cases. This paper is broad interest to those studying a variety of biological pathways involved in inflammatory responses and various forms of cell death.

    2. Reviewer #1 (Public review):

      Summary:

      This is a high-quality and extensive study that reveals differences in the self-assembly properties of the full set of 109 human death fold domains (DFDs). Distributed amphifluoric FRET (DAmFRET) is a powerful tool that reveals the self-assembly behaviour of the DFDs, in non-seeded and seeded contexts, and allows comparison of the nature and extent of self-assembly. The nature of the barriers to nucleation is revealed in the transition from low to high AmFRET. Alongside analysis of the saturation concentration and protein concentration in the absence of seed, the subset of proteins that exhibited discontinuous transitions to higher-order assemblies was observed to have higher concentrations than DFDs that exhibited continuous transitions. The experiments probing the ~20% of DFDs that exhibit discontinuous transition to polymeric form suggest that they populate a metastable, supersaturated form in the absence of cognate signal. This is suggestive of a high intrinsic barrier to nucleation.

      Strengths:

      The differences in self-assembly behaviour are significant and likely identify mechanistic differences across this large family of signalling adapter domains. The work is of high quality, and the evidence for a range of behaviours is strong. This is an important and useful starting point since the different assembly mechanisms point towards specific cellular roles. However, understanding the molecular basis for these differences will require further analysis.

      An impressive optogenetic approach was engineered and applied to initiate self-assembly of CASP1 and CASP9 DFDs, as a model for apoptosome initiation in these two DFDs with differing continuous or discontinuous assembly properties. This comparison revealed clear differences in the stability and reversibility of the assemblies, supporting the hypothesis that supersaturation-mediated DFD assembly underlies signal amplification in at least some of the DFDs.

      The study reveals interesting correlations between supersaturation of DFD adapters in short- and long-lived cells, suggestive of a relationship between the mechanism of assembly and cellular context. Additionally, the comprehensive nature of the study provides strong evidence that the interactions are almost all homomeric or limited to members of the same DFD subfamily or interaction network. Similar approaches with bacterial proteins from innate immunity operons suggest that their polymerisation may be driven by similar mechanisms.

      Weaknesses:

      Only a limited investigation of assembly morphology was conducted by microscopy. There was a tendency for discontinuous structures to form fibrillar structures and continuous to populate diffuse or punctate structures, but there was overlap across all categories, which is not fully explored. The methodology used to probe oligomeric assembly and stability (SDD-AGE) does not justify the conclusions drawn regarding stability and native structure within the assemblies.

      The work identifies important differences between DFDs and clearly different patterns of association. However, most of the detailed analysis is of the DFDs that exhibit a discontinuous transition, and important questions remain about the majority of other DFDs and why some assemblies should be reversible and others not, and about the nature of signalling arising from a continuous transition to polymeric form.

      Some key examples of well-studied DFDs, such as MyD88 and RIPK,1 deserve more discussion, since they display somewhat surprising results. More detailed exploration of these candidates, where much is known about their structures and the nature of the assemblies from other work, could substantiate the conclusions here and transform some of the conclusions from speculative to convincing.

      The study concludes with general statements about the relationship between stochastic nucleation and mortality, which provide food for thought and discussion but which, as they concede, are highly speculative. The analogies that are drawn with batteries and privatisation will likely not be clearly understood by all readers. The authors do not discuss limitations of the study or elaborate on further experiments that could interrogate the model.

    3. Reviewer #2 (Public review):

      Summary:

      The manuscript from Rodriguez Gama et al. proposes several interesting conclusions based on different oligomerization properties of Death-Fold Domains (DFDs) in cells, their natural abundance, and supersaturation properties. These ideas are:<br /> (1) DFDs broadly store the cell's energy by remaining in a supersaturated state;<br /> (2) Cells are constantly in a vulnerable state that could lead to cell death;<br /> (3) The cell's lifespan depends on the supersaturation levels of certain DFDs.

      Overall, the evidence supporting these claims is not completely solid. Some concerns were noted.

      Strengths:

      Systematic analysis of DFD self-assembly and its relationship with protein abundance, supersaturation, cell longevity, and evolution.

      Weaknesses

      (1) On page 2, it is stated, "Nucleation barriers increase with the entropic cost of assembly. Assemblies with large barriers, therefore, tend to be more ordered than those without. Ordered assembly often manifests as long filaments in cells," as a way to explain the observed results that DFDs assemblies that transitioned discontinuously form fibrils, whereas those that transitioned continuously (low-to-high) formed spherical or amorphous puncta. It is unlikely to be able to differentiate between amorphous and structured puncta by conventional confocal microscopy. Some DFDs self-assemble into structured puncta formed by intertwined fibrils. Such fibril nets are more structured and thus should be associated with a higher entropic cost. Therefore, the results in Figure 1B do not seem to agree with the reasoning described.

      (2) Errors for the data shown in Figure 1B would have been very useful to determine whether the population differences between diffuse, punctate, and fibrillar for the continuous (low-to-high) transition are meaningful.

      (3) A main concern in the data shown in Figure 1B and F is that the number of counts for discontinuous compared to continuous is small. Thus, the significance of the results is difficult to evaluate in the context of the broad function of DFDs as batteries, as stated at the beginning of the manuscript.

      (4) The proteins or domains that are self-seeded (Figure 1F) should be listed such that the reader has a better understanding of whether domains or full-length proteins are considered, whether other domains have an effect on self-seeding (which is not discussed), and whether there is repetition.

      (5) The authors indicate an anticorrelation between transcript abundance and Csat based on the data shown in Figure 2B; however, the data are scattered. It is not clear why an anticorrelation is inferred.

      (6) It would be useful to indicate the expected range of degree centrality. The differences observed are very small. This is specifically the case for the BC values. The lack of context and the small differences cast doubts on their significance. It would be beneficial to describe these data in the context of the centrality values of other proteins.

      (7) Page 3 section title: "Nucleation barriers are a characteristic feature of inflammatory signalosome adaptors." This title seems to contradict the results shown in Figure 2D, where full-length CARD9 and CARD11 are classified as sensors, but it has been reported that they are adaptor proteins with key roles in the inflammatory response. Please see the following references as examples: The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nat Immunol 8, 619-629 (2007), and Mechanisms of Regulated and Dysregulated CARD11 Signaling in Adaptive Immunity and Disease. Front Immunol. 2018 Sep 19;9:2105.

      However, both CARD9 and CARD11 show discontinuous to continuous behavior for the individual DFDs versus full-length proteins, respectively, in contrast to the results obtained for ASC, FADD, etc. FADD plays a key role in apoptosis but shows the same behavior as BCL10 and ASC. However, the manuscript indicates that this behavior is characteristic of inflammatory signalosomes. What is the explanation for adaptor proteins behaving in different ways? This casts doubts about the possibility of deriving general conclusions on the significance of these observations, or the subtitles in the results section seem to be oversimplifications.

      (8) IFI16-PYD displays discontinuous behavior according to Figure S1H; however, it is not included in Figure 2D, but AIM 2 is.

      (9) To demonstrate that "Nucleation barriers facilitate signal amplification in human cells," constructs using APAF1 CARD, NLRC4 CARD, caspase-9 CARD, and a chimera of the latter are used to create what the authors refer to as apoptsomes. Even though puncta are observed, referring to these assemblies as apoptosomes seems somewhat misleading. In addition, it is not clear why the activity of caspase-9 was not measured directly, instead of that of capsae-3 and 7, which could be activated by other means. The polymerization of caspase-1 CARD with NLRC4 CARD, leading to irreversible puncta, could just mean that the polymers are more stable. In fact, not all DFDs form equally stable or identical complexes, which does not necessarily imply that a nucleation barrier facilitates signal amplification. Could this conclusion be an overstatement?

      (10) To demonstrate that "Innate immune adaptors are endogenously supersaturated," it is stated on page 5 that ASC clusters continue to grow for the full duration of the time course and that AIM2-PYD stops growing after 5 min. The data shown in Figure 4F indicate that AIM2-PYD grows after 5 mins, although slowly, and ASC starts to slow down at ~ 13 min. Because ASC has two DFDs, assemblies can grow faster and become bigger. How is this related to supersaturation?

    4. Author response:

      We appreciate constructive feedback from both reviewers. Reviewer 1 provided a very positive assessment and helpful suggestions for clarity, which we will incorporate.

      We also thank Reviewer 2 for their detailed comments. In some instances, their public review raised concerns about specific data or interpretations that are, in fact, already presented and justified in the original manuscript. This feedback has highlighted a need to improve the clarity of our presentation. 

      In our revised manuscript, we will make key information more prominent to prevent further misunderstandings. We will also provide additional statistical validation for our conclusions, additional data from the optogenetic experiments and high throughput imaging, and further elaborate on the behaviors of specific proteins (FADD, MyD88, and RIPK1). We are confident that these revisions will make our findings more transparent and accessible to readers, and we look forward to submitting our revised manuscript.

    1. eLife Assessment

      During the development of the unicellular eukaryote Dictyostelium discoideum, cells aggregate into mounds, which then form protrusions called tips, and the tips then become the front of migrating slugs and the top of fruiting bodies. This valuable study identifies a protein called adenosine deaminase-related growth factor (ADGF) as a key regulator of tip formation, and the authors convincingly show that ADGF catalyses the formation of ammonia from adenosine, allowing ammonia to initiate tip formation, and they then elucidate pathways upstream and downstream from ADGF. The authors discuss the intriguing possibility that mammalian ADGF may also regulate development in a similar manner.

    2. Reviewer #1 (Public review):

      Summary:

      This work shows that a specific adenosine deaminase protein in Dictyostelium generates the ammonia that is required for tip formation during Dictyostelium development. Cells with an insertion in the adgf gene aggregate but do not form tips. A remarkable result, shown by several different ways, is that the adgf mutant can be rescued by exposing the mutant to ammonia gas. The authors also describe other phenotypes of the adgf mutant such as increased mound size, altered cAMP signaling, and abnormal cell type differentiation. It appears that the adgf mutant has defects the expression of a large number of genes, resulting in not only the tip defect but also the mound size, cAMP signaling, and differentiation phenotypes.

      Strengths:

      The data and statistics are excellent.

      Weaknesses:

      The key weakness is understanding why the cells bother to use a diffusible gas like ammonia as a signal to form a tip and continue development. The rescue of the mutant by adding ammonia gas to the entire culture indicates that ammonia conveys no positional information within the mound. By the time the cells have formed a mound, the cells have been starving for several hours, and desperately need to form a fruiting body to disperse some of themselves as spores, and thus need to form a tip no matter what. One can envision that the local ammonia concentration is possibly informing the mound that some minimal number of cells are present (assuming that the ammonia concentration is proportional to the number of cells), but probably even a miniscule fruiting body would be preferable to the cells compared to a mound. This latter idea could be easily explored by examining the fate of the adgf cells in the mound - do they all form spores? Do some form spores? Or perhaps the ADGF is secreted by only one cell type, and the resulting ammonia tells the mound that for some reason that cell type is not present in the mound, allowing some of the cells to transdifferentiate into the needed cell type. Thus elucidating if all or some cells produce ADGF would greatly strengthen this puzzling story.

      Comments on revisions:

      Looks better, but I think you answered my questions (listed as weaknesses in the public review) in the reply to the reviewer but not in the paper. I'd suggest carefully thinking about my questions and addressing them in the Discussion. You did however do all of the things in the paper that were listed as "Recommendations for the authors"

    3. Reviewer #2 (Public review):

      Summary:

      The paper describes new insights into the role of adenosine deaminase-related growth factor (adgf), an enzyme that catalyses the breakdown of adenosine into ammonia and inosine, in tip formation during Dictyostelium development. The adgf null mutant has a pre-tip mound arrest phenotype, which can be rescued by external addition of ammonia. Analysis suggests that the phenotype involves changes in cAMP signaling possibly involving a histidine kinase dhkD, but details remain to be resolved.

      Strengths:

      The generation of an adgf mutant showed a strong mound arrest phenotype and successful rescue by external ammonia. Characterisation of significant changes in cAMP signaling components, suggesting low cAMP signaling in the mutant and identification of the histidine kinase dhkD as a possible component of the transduction pathway. Identification of a change in cell-type differentiation towards prestalk fate

      Weaknesses:

      Lack of details on developmental time course of adgf activity and cell-type-specific differences in adgf expression. Absence of measurements to show that ammonia addition to the null mutant can rescue the proposed defects in cAMP signaling. No direct measurements in the dhkD mutant to show that it acts upstream of sdgf in the control of changes in cAMP signaling and tip formation.

      Comments on revisions:

      The revised version of the paper has improved significantly in terms of structure and clarity. The additional data on rescue of total cAMP production by ammonia (Fig. 7C) in the adgf- mutant and the 5-fold increased prespore expression of adgf RNA compared to prestalk cells (Fig 9) are useful data additions.

      The link between changes in cAMP signaling (lower aca expression) and wave geometry ( concentric waves rather than spiral waves) remains speculative.

      I noted that Fig 6 contains different images than the previous version (Fig 7).

      The statement "Interestingly, Klebsiella pneumoniae physically separated from the Dictyostelium adgf mutants in a partitioned dish, also rescues the mound arrest phenotype suggesting a cross-kingdom interaction that drives development" in the summary is rather overdone. All experiments were performed with axenic strains (no bacteria).

      as is the sentence "Remarkably, in higher vertebrates, adgf expression is elevated during gastrulation and thus adenosine deamination may be a conserved process driving organizer development in different organisms"<br /> The data supporting this in the supplementary information is hardly legible and poorly presented. What is shown is ADA expression in different tissues, not at different stages. I would suggest taking these figures out and concentrating the summary on the key mechanistic findings of the paper.

    4. Author Response :

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This work shows that a specific adenosine deaminase protein in Dictyostelium generates the ammonia that is required for tip formation during Dictyostelium development. Cells with an insertion in the ADGF gene aggregate but do not form tips. A remarkable result, shown in several different ways, is that the ADGF mutant can be rescued by exposing the mutant to ammonia gas. The authors also describe other phenotypes of the ADGF mutant such as increased mound size, altered cAMP signalling, and abnormal cell type differentiation. It appears that the ADGF mutant has defects in the expression of a large number of genes, resulting in not only the tip defect but also the mound size, cAMP signalling, and differentiation phenotypes.

      Strengths:

      The data and statistics are excellent.

      Weaknesses

      (1) The key weakness is understanding why the cells bother to use a diffusible gas like ammonia as a signal to form a tip and continue development.

      Ammonia can come from a variety of sources both within and outside the cells and this can be from dead cells also. Ammonia by increasing cAMP levels, trigger collective cell movement thereby establishing a tip in Dictyostelium. A gaseous signal can act over long distances in a short time and for instance ammonia promotes synchronous development in a colony of yeast cells (Palkova et al., 1997; Palkova and Forstova, 2000). The slug tip is known to release ammonia probably favouring synchronized development of the entire colony of Dictyostelium. However, after the tips are established ammonia exerts negative chemotaxis probably helping the slugs to move away from each other ensuring equal spacing of the fruiting bodies (Feit and Sollitto, 1987).

      It is well known that ammonia serves as a signalling molecule influencing both multicellular organization and differentiation in Dictyostelium (Francis, 1964; Bonner et al., 1989; Bradbury and Gross, 1989). Ammonia by raising the pH of the intracellular acidic vesicles of prestalk cells (Poole and Ohkuma, 1981; Gross et al, 1983), and the cytoplasm, is known to increase the speed of chemotaxing amoebae (Siegert and Weijer, 1989; Van Duijn and Inouye, 1991), inducing collective cell movement (Bonner et al., 1988, 1989), favoring tipped mound development.

      Ammonia produced in millimolar concentrations during tip formation (Schindler and Sussman, 1977) could ward off other predators in soil. For instance, ammonia released by Streptomyces symbionts of leaf-cutting ants is known to inhibit fungal pathogens (Dhodary and Spiteller, 2021). Additionally, ammonia may be recycled back into amino acids, as observed during breast cancer proliferation (Spinelli et al., 2017). Such a process may also occur in starving Dictyostelium cells, supporting survival and differentiation. These findings suggest that ammonia acts as both a local and long-range regulatory signal, integrating environmental and cellular cues to coordinate multicellular development.

      (2) The rescue of the mutant by adding ammonia gas to the entire culture indicates that ammonia conveys no positional information within the mound.

      Ammonia reinforces or maintains the positional information by elevating cAMP levels, favoring prespore differentiation (Bradbury and Gross, 1989; Riley and Barclay, 1990; Hopper et al., 1993). Ammonia is known to influence rapid patterning of Dictyostelium cells confined in a restricted environment (Sawai et al., 2002). In adgf mutants that have low ammonia levels, both neutral red staining (a marker for prestalk and ALCs) (Figure. S3) and the prestalk marker ecmA/ ecmB expression (Figure. 7D) are higher than the WT and the mound arrest phenotype can be reversed by exposing the adgf mutant mounds to ammonia.

      Prestalk cells are enriched in acidic vesicles, and ammonia, by raising the pH of these vesicles and the cytoplasm (Davies et al 1993; Van Duijn and Inouye 1991), plays an active role in collective cell movement during tip formation (Bonner et al., 1989).

      (3) By the time the cells have formed a mound, the cells have been starving for several hours, and desperately need to form a fruiting body to disperse some of themselves as spores, and thus need to form a tip no matter what.

      Exposure of adgf mounds to ammonia, led to tip development within 4 h (Figure. 5). In contrast, adgf controls remained at the mound stage for at least 30 h. This demonstrates that starvation alone is not the trigger for tip development and ammonia promotes the transition from mound to tipped mound formation.

      Many mound arrest mutants are blocked in development and do not proceed to form fruiting bodies (Carrin et al., 1994). Further, not all the mound arrest mutants tested in this study were rescued by ADA enzyme (Figure. S4A), and they continue to stay as mounds.

      (4) One can envision that the local ammonia concentration is possibly informing the mound that some minimal number of cells are present (assuming that the ammonia concentration is proportional to the number of cells), but probably even a minuscule fruiting body would be preferable to the cells compared to a mound. This latter idea could be easily explored by examining the fate of the ADGF cells in the mound - do they all form spores? Do some form spores?

      Or perhaps the ADGF is secreted by only one cell type, and the resulting ammonia tells the mound that for some reason that cell type is not present in the mound, allowing some of the cells to transdifferentiate into the needed cell type. Thus, elucidating if all or some cells produce ADGF would greatly strengthen this puzzling story.

      A fraction of adgf mounds form bulkier spore heads by the end of 36 h as shown in Figure. 2H. This late recovery may be due to the expression of other ADA isoforms. Mixing WT and adgf mutant cell lines results in a chimeric slug with mutants occupying the prestalk region (Figure. 8) and suggests that WT ADGF favours prespore differentiation. However, it is not clear if ADGF is secreted by a particular cell type, as adenosine can be produced by both cell types, and the activity of three other intracellular ADAs may vary between the cell types. To address whether adgf expression is cell type-specific, prestalk and prespore cells will be separated by fluorescence activated cell sorter (FACS), and thereafter, adgf expression will be examined in each population.

      Reviewer #1 (Recommendations for the authors):

      (1) Lines: 47,48 - "The gradient of these morphogens along the slug axis determines the cell fate, either as prestalk (pst) or as prespore (psp) cells." - many workers have shown that this is not true - intrinsic factors such as cell cycle phase drive cell fate.

      Thank you for pointing this out. We have removed the line and rephrased as “Based on cell cycle phases, there exists a dichotomy of cell types, that biases cell fate as prestalk or prespore (Weeks and Weijer, 1994; Jang and Gomer, 2011).

      (2) Line 48 - PKA - please explain acronyms at first use.

      Corrected

      (3) Line 56 - The relationship between adenosine deaminase and ADGF is a bit unclear, please clarify this more.

      Adenosine deaminase (ADA) is intracellular, whereas adenosine deaminase related growth factor (ADGF) is an extracellular ADA and has a growth factor activity (Li and Aksoy, 2000; Iijima et al., 2008).

      (4) Figure 1 - where are these primers, and the bsr cassette, located with respect to the coding region start and stop sites?

      The primer sequences are mentioned in the supplementary table S2. The figure legend is updated to provide a detailed description.

      (5) Line 104 - 37.47% may be too many significant figures.

      Corrected

      (6) Line 123 - 1.003 Å may be too many significant figures.

      Corrected

      (7) Line 128 - Since the data are in the figure, you don't need to give the numbers, also too many significant figures.

      Corrected

      (8) Figure 3G - did the DCF also increase mound size? It sort of looks like it did.

      Yes, the addition of DCF increases the mound size (now Figure. 2G).

      (9) Figure 3I - the spore mass shown here for ADGF - looks like there are 3 stalks protruding from it; this can happen if a plate is handled roughly and the spore masses bang into each other and then merge

      Thank you for pointing this out. The figure 3I (now Figure. 2I) is replaced.

      (10) Lines 160-162 - since the data are in the figure, you don't need to give the numbers, also too many significant figures.

      Corrected.

      (11) Line 165 - ' ... that are involved in adenosine formation' needs a reference.

      Reference is included.

      (12) Line 205 - 'Addition of ADA to the CM of the mutant in one compartment.' - might clarify that the mutant is the ADGF mutant

      Yes, revised to 'Addition of ADA to the CM of the adgf mutant in one compartment.

      (13 Lines 222-223 need a reference for caffeine acting as an adenosine antagonist.

      Reference is included.

      (14) Figure 8B - left - use a 0-4 or so scale so the bars are more visible.

      Thank you for the suggestion. The scale of the y-axis is adjusted to 0-4 in Figure. 7B to enhance the visibility of the bars.

      Reviewer #2 (Public review):

      Summary:

      The paper describes new insights into the role of adenosine deaminase-related growth factor (ADGF), an enzyme that catalyses the breakdown of adenosine into ammonia and inosine, in tip formation during Dictyostelium development. The ADGF null mutant has a pre-tip mound arrest phenotype, which can be rescued by the external addition of ammonia. Analysis suggests that the phenotype involves changes in cAMP signalling possibly involving a histidine kinase dhkD, but details remain to be resolved.

      Strengths:

      The generation of an ADGF mutant showed a strong mound arrest phenotype and successful rescue by external ammonia. Characterization of significant changes in cAMP signalling components, suggesting low cAMP signalling in the mutant and identification of the histidine kinase dhkD as a possible component of the transduction pathway. Identification of a change in cell type differentiation towards prestalk fate

      (1) Weaknesses: Lack of details on the developmental time course of ADGF activity and cell type type-specific differences in ADGF expression.

      adgf expression was examined at 0, 8, 12, and 16 h (Figure. 1), and the total ADA activity was assayed at 12 and 16 h (Figure. 3). Previously, the 12 h data was not included, and it’s been added now (Figure. 3A). The adgf expression was found to be highest at 16 h and hence, the ADA assay was carried out at that time point. Since the ADA assay will also report the activity of other three isoforms, it will not exclusively reflect ADGF activity.

      Mixing WT and adgf mutant cell lines results in a chimeric slug with mutants occupying the prestalk region (Figure. 8) suggesting that WT adgf favours prespore differentiation. To address whether adgf expression is cell type-specific, prestalk and prespore cells will be separated by fluorescence activated cell sorter (FACS), and thereafter, adgf expression will be examined in each population.

      (2) The absence of measurements to show that ammonia addition to the null mutant can rescue the proposed defects in cAMP signalling.

      The adgf mutant in comparison to WT has diminished acaA expression (Fig. 6B) and reduced cAMP levels (Fig. 6A) both at 12 and 16 h of development. The cAMP levels were measured at 8 h and 12 h in the mutant.

      We would like to add that ammonia is known to increase cAMP levels (Riley and Barclay, 1990; Feit et al., 2001) in Dictyostelium. Exposure to ammonia increases acaA expression in WT (Figure. 7B) and is likely to increase acaA expression/ cAMP levels in the mutant also (Riley and Barclay, 1990; Feit et al., 2001) thereby rescuing the defects in cAMP signalling. Based on the comments, cAMP levels will also be measured in the mutant after the rescue with ammonia.

      (3) No direct measurements in the dhkD mutant to show that it acts upstream of adgf in the control of changes in cAMP signalling and tip formation.

      cAMP levels will be quantified in the dhkD mutant after treatment with ammonia. The histidine kinases dhkD and dhkC are reported to modulate phosphodiesterase RegA activity, thereby maintaining cAMP levels (Singleton et al., 1998; Singleton and Xiong, 2013). By activating RegA, dhkD ensures proper cAMP distribution within the mound, which is essential for the patterning of prestalk and prespore cells, as well as for tip formation (Singleton and Xiong, 2013). Therefore, ammonia exposure to dhkD mutants is likely to regulate cAMP signalling and thereby tip formation.

      Reviewer #2 (Recommendations for the authors):

      The paper describes new insights into the role of ADGF, an enzyme that catalyses the breakdown of adenosine in ammonia and inosine, in tip formation in Dictyostelium development.

      A knockout of the gene results in a tipless mound stage arrest and the mounds formed are somewhat larger in size. Synergy experiments show that the effect of the mutation is non-cell autonomous and further experiments show that the mound arrest phenotype can be rescued by the provision of ammonia vapour. These observations are well documented. Furthermore, the paper contains a wide variety of experiments attempting to place the observed effects in known signalling pathways. It is suggested that ADGF may function downstream of DhkD, a histidine kinase previously implicated in ammonia signalling. Ammonia has long been described to affect different aspects, including differentiation of slug and culmination stages of Dictyostelium development, possibly through modulating cAMP signalling, but the exact mechanisms of action have not yet been resolved. The experiments reported here to resolve the mechanistic basis of the mutant phenotype need focusing and further work.

      (1) The paper needs streamlining and editing to concentrate on the main findings and implications.

      The manuscript will be revised extensively.

      Below is a list of some more specific comments and suggestions.

      (2) Introduction: Focus on what is relevant to understanding tip formation and the role of nucleotide metabolism and ammonia (see https://doi.org/10.1016/j.gde.2016.05.014).leading). This could lead to the rationale for investigating ADGF.

      The manuscript will be revised extensively

      (3) Lines 36-38 are not relevant. Lines 55-63 need shortening and to focus on ADGF, cellular localization, and substrate specificity.

      The manuscript will be revised accordingly. Lines 36-38 will be removed, and the lines 55-63 will be shortened.

      In humans, two isoforms of ADA are known including ADA1 and ADA2, and the Dictyostelium homolog of ADA2 is adenosine deaminase-related growth factor (ADGF). Unlike ADA that is intracellular, ADGF is extracellular and also has a growth factor activity (Li and Aksoy, 2000; Iijima et al., 2008). Loss-of-function mutations in ada2 are linked to lymphopenia, severe combined immunodeficiency (SCID) (Gaspar, 2010), and vascular inflammation due to accumulation of toxic metabolites like dATP (Notarangelo, 2016; Zhou et al., 2014).

      (4) Results: This section would benefit from better streamlining by a separation of results that provide more mechanistic insight from more peripheral observations.

      The manuscript will be revised and the peripheral observations (Figure. 2) will be shifted to the supplementary information.

      (5) Line 84 needs to start with a description of the goal, to produce a knockout.

      Details on the knockout will be elaborated in the revised manuscript. Line number 84 (now 75). Dictyostelium cell lines carrying mutations in the gene adgf were obtained from the genome wide Dictyostelium insertion (GWDI) bank and were subjected to further analysis to know the role of adgf during Dictyostelium development.

      (6) Knockout data (Figure 1) can be simplified and combined with a description of the expression profile and phenotype Figure 3 F, G, and Figure 5. Higher magnification and better resolution photographs of the mutants would be desirable.

      Thank you, as suggested the data will be simplified (section E will be removed) and combined with a description of the expression profile and, the phenotype images of Figure 3 F, G, and Figure 5 ( now Figure. 2 F, G, and Figure. 4) will be replaced with better images/ resolution.

      (7) It would also be relevant to know which cells actually express ADGF during development, using in-situ hybridisation or promoter-reporter constructs.

      To address whether adgf expression is cell type-specific, prestalk and prespore cells will be separated by fluorescence activated cell sorter (FACS), and thereafter, adgf expression will be examined in each population.

      (8) Figure 2 - Information is less directly relevant to the topic of the paper and can be omitted (or possibly in Supplementary Materials).

      Figure. 2 will be moved to supplementary materials.

      (9) Figures 4A, B - It is shown that as could be expected ada activity is somewhat reduced and adenosine levels are slightly elevated. However, the fact that ada levels are low at 16hrs could just imply that differentiation of the ADGF- cells is blocked/delayed at an earlier time point. To interpret these data, it would be necessary to see an ada activity and adenosine time course comparison of wt and mutant, or to see that expression is regulated in a celltype specific manner that could explain this (see above). It would be good to combine this with the observation that ammonia levels are lower in the ADGF- mutant than wildtype and that the mutant phenotype, mound arrest can be rescued by an external supply of ammonia (Figure 6).

      In Dictyostelium four isoforms of ADA including ADGF are present, and thus the time course of total ADA activity will also report the function of other isoforms. Further, a number of pathways, generate adenosine (Dunwiddie et al., 1997; Boison and Yegutkin, 2019). ADGF expression was examined at 0, 8, 12 and 16 h (Fig 1) and the ADA activity was assayed at 12 h, the time point where the expression gradually increases and reaches a peak at 16 h. Earlier, we have not shown the 12 h activity data which will be included in the revised version. ADGF expression was found to be highly elevated at 16 h and adenosine/ammonia levels were measured at the two points indicated in the mutant.

      (10) Panel 4C could be combined with other measurements trying to arrive at more insight in the mechanisms by which ammonia controls tip formation.

      Panel 4C (now 3C) illustrates the genes involved in the conversion of cAMP to adenosine. Since Figure. 3 focuses on adenosine levels and ADA activity in both WT and adgf mutants, we have retained Panel 3C in Figure. 3, for its relevance to the experiment.

      (11) There is a large variety of experiments attempting to link the mutant phenotype and its rescue by ammonia to cAMP signalling, however, the data do not yet provide a clear answer.

      It is well known that ammonia increases cAMP levels (Riley and Barclay, 1990; Feit et al., 2001) and adenylate cyclase activity (Cotter et al., 1999) in D. discoideum, and exposure to ammonia increases acaA expression (Fig 7B) suggesting that ammonia regulates cAMP signaling. To address the concerns, cAMP levels will be quantified in the mutant after ammonia treatment.

      (12) The mutant is shown to have lower cAMP levels at the mound stage which ties in with low levels of acaA expression (Figures 7A and B), also various phosphodiesterases, the extracellular phosphodiesterase pdsa and the intracellular phosphodiesterase regA show increased expression. Suggesting a functional role for cAMP signalling is that the addition of di cGMP, a known activator of acaA, can also rescue the mound phenotype (Figure 7E). There appears to be a partial rescue of the mound arrest phenotype level by the addition of 8Br-cAMP (fig 7C), suggesting that intracellular cAMP levels rather than extracellular cAMP signalling can rescue some of the defects in the ADGF- mutant. Better images and a time course would be helpful.

      The relevant images will be replaced and a developmental time course after 8-Br-cAMP treatment will be included in the revised manuscript (Figure. 6D).

      (13) There is also the somewhat surprising observation that low levels of caffeine, an inhibitor of acaA activation also rescues the phenotype (Figure 7F).

      With respect to caffeine action on cAMP levels, the reports are contradictory. Caffeine has been reported to increase adenylate cyclase expression thereby increasing cAMP levels (Hagmann, 1986) whereas Alvarez-Curto et al., (2007) found that caffeine reduced intracellular cAMP levels in Dictyostelium. Caffeine, although is a known inhibitor of ACA, is also known to inhibit PDEs (Nehlig et al., 1992; Rosenfeld et al., 2014). Therefore, if caffeine differentially affects ADA and PDE activity, it may potentially counterbalance the effects and rescue the phenotype.

      (14) The data attempting to asses cAMP wave propagation in mounds (Fig 7H) are of low quality and inconclusive in the absence of further analysis. It remains unresolved how this links to the rescue of the ADGF- phenotype by ammonia. There are no experiments that measure any of the effects in the mutant stimulated with ammonia or di-cGMP.

      The relevant images will be replaced (now Figure. 6H). Ammonia by increasing acaA expression (Figure. 7B), and cAMP levels (Figure. 7C) may restore spiral wave propagation, thereby rescuing the mutant.

      (15) A possible way forward could also come from the observation that ammonia can rescue the wobbling mound arrest phenotype from the histidine kinase mutant dhkD null mutant, which has regA as its direct target, linking ammonia and cAMP signalling. This is in line with other work that had suggested that another histidine kinase, dhkC transduces an ammonia signal sensor to regA activation. A dhkC null mutant was reported to have a rapid development phenotype and skip slug migration (Dev. Biol. (1998) 203, 345). There is no direct evidence to show that dhkD acts upstream of ADGF and changes in cAMP signalling, for instance, measurements of changes in ADA activity in the mutant.

      cAMP levels will be quantified in the dhkD mutant after ammonia treatment and accordingly, the results will be revised.

      (16) The paper makes several further observations on the mutant. After 16 hrs of development the adgf- mutant shows increased expression of the prestalk cell markers ecmA and ecmB and reduced expression of the prespore marker pspA. In synergy experiments with a majority of wildtype, these cells will sort to the tip of the forming slug, showing that the differentiation defect is cell autonomous (Fig 9). This is interesting but needs further work to obtain more mechanistic insight into why a mutant with a strong tip/stalk differentiation tendency fails to make a tip. Here again, knowing which cells express ADGF would be helpful.

      The adgf mutant shows increased prestalk marker expression in the mound but do not form a tip. It is well known that several mound arrest mutants form differentiated cells but are blocked in development with no tips (Carrin et al., 1994). This is addressed in the discussions (539). To address whether adgf expression is cell type-specific, prestalk and prespore cells will be separated by fluorescence activated cell sorter (FACS), and thereafter, adgf expression will be examined in each population.

      (17) The observed large mound phenotype could as suggested possibly be explained by the low ctn, smlA, and high cadA and csA expression observed in the mutant (Figure 3). The expression of some of these genes (csA) is known to require extracellular cAMP signalling. The reported low level of acaA expression and high level of pdsA expression could suggest low levels of cAMP signalling, but there are no actual measurements of the dynamics of cAMP signalling in this mutant to confirm this.

      The acaA expression was examined at 8 and 12 h (Figure. 6B) and cAMP levels were measured at 12 and 16 h in the adgf mutants (Figure. 6A). Both acaA expression and cAMP levels were reduced, suggesting that cells expressing adgf regulate acaA expression and cAMP levels. This regulation, in turn, is likely to influence cAMP signaling, collective cell movement within mounds, ultimately driving tip development. Exposure to ammonia led to increased acaA expression (Figure. 7B) in in WT. Based on the comments above, cAMP levels will be measured in the mutant before and after rescue with ammonia.

      (18) Furthermore, it would be useful to quantify whether ammonia addition to the mutant reverses mound size and restores any of the gene expression defects observed.

      Ammonia treatment soon after plating or six hours after plating, had no effect on the mound size (Figure. 5G).

      (19) There are many experimental data in the supplementary data that appear less relevant and could be omitted Figure S1, S3, S4, S7, S8, S9, S10.

      Figure S8, S9, S10 are omitted. We would like to retain the other figures

      Figure S1 (now Figure. S2): It is widely believed that ammonia comes from protein (White and Sussman, 1961; Hames and Ashworth, 1974; Schindler and Sussman, 1977) and RNA (Walsh and Wright, 1978) catabolism. Figure. S2 shows no significant difference in protein and RNA levels between WT and adgf mutant strains, suggesting that adenosine deaminaserelated growth factor (ADGF) activity serves as a major source of ammonia and plays a crucial role in tip organizer development in Dictyostelium. Thus, it is important to retain this figure.

      Figure S3 (now Figure. S4): The figure shows the treatment of various mound arrest mutants and multiple tip mutants with ADA enzyme and DCF, respectively, to investigate the pathway through which adgf functions. Additionally, it includes the rescue of the histidine kinase mutant dhkD with ammonia, indicating that dhkD acts upstream of adgf via ammonia signalling. Therefore, it is important to retain this figure.

      Figure S4 (now Figure. S5): This figure represents the developmental phenotype of other deaminase mutants. Unlike adgf mutants, mutations in other deaminases do not result in complete mound arrest, despite some of these genes exhibiting strong expression during development. This underscores the critical role of adenosine deamination in tip formation. Therefore, let this figure be retained.

      Figure S7 (now Figure. S8): Figure S8 presents the transcriptomic profile of ADGF during gastrulation and pre-gastrulation stages across different organisms, indicating that ADA/ADGF is consistently expressed during gastrulation in several vertebrates (Pijuan-Sala et al., 2019; Tyser et al., 2021). Notably, the process of gastrulation in higher organisms shares remarkable similarities with collective cell movement within the Dictyostelium mound (Weijer, 2009), suggesting a previously overlooked role of ammonia in organizer development. This implies that ADA may play a fundamental role in regulating morphogenesis across species, including Dictyostelium and vertebrates. Therefore, we would like to retain this figure.

      (20) Given the current state of knowledge, speculation about the possible role of ADGF in organiser function in amniotes seems far-fetched. It is worth noting that the streak is not equivalent to the organiser. The discussion would benefit from limiting itself to the key results and implications.

      The discussion is revised accordingly by removing the speculative role of ADGF in organizer function in amniotes. The lines “It is likely that ADA plays a conserved, fundamental role in regulating morphogenesis in Dictyostelium and other organisms including vertebrates” have been removed.

    1. eLife Assessment

      This study provides a valuable examination of the social discrimination abilities of a jumping spider, Phippidus regius, based on visual cues. Behavioral essays yielded solid evidence that these spiders discriminate between familiar and unfamiliar individuals on the basis of visual cues, however the experimental support for individual recognition and long-term memory is incomplete. While the results supply evidence of discrimination, additional experiments would be needed to verify the evidence of individual recognition.

    2. Reviewer #1 (Public review):

      Summary:

      The paper sets out to examine the social recognition abilities of a 'solitary' jumping spider species. It demonstrates that based on vision alone spiders can habituate and dishabituate to the presence of conspecifics. The data support the interpretation that these spiders can distinguish between conspecifics on the basis of their appearance.

      Strengths:

      The study presents two experiments. The second set of data recapitulates the findings of the first experiment with a independent set of spiders, highlighting the strength of the results. The study also uses a highly quantitative approach to measuring relative interest between pairs of spiders based on their distance.

      Weaknesses:

      The study design is overly complicated, while missing key controls, and the data presented in the figures are not clearly connected to study. The discussion is challenging to understand and appears to make unsupported conclusions.

      (1) Study design: The study design is rather complicated and as a result it is difficult to interpret the results. The spiders are presented with the same individual twice in a row, called a habituation trial. Then a new individual is presented twice in a row. The first of these is a dishabituation trial and the second another habituation trial (but now habituating to a second individual). This done with three pairings and then this entire structure is repeated over three sessions. The data appear to show the strong effects of differences between habituation and dishabituation trials in the first session. The decrease in differential behavior between the so-called habituation and dishabituation trials in sessions 2 and 3 are explained as a consequence of the spiders beginning to habituate in general to all of the individuals. The claim that the spiders remember specific individuals is somewhat undercut because all of the 'dishabituation' trials in session 2 are toward spiders they already met for 14 minute previously but seemingly do not remember in session 2. In session 3 it is ambiguous what is happening because the spiders no longer differentiate between the trial types. This could be due to fatigue or familiarity. A second experiment is done to show that introducing a totally novel individual, recovers a large dishabituation response, suggesting that the lack of differences between 'habituation' and 'dishabituation' trials in session 3 is the result of general habituation to all of the spiders in the session rather than fatigue. As mentioned before, these data do support the claim that the spiders differentiate among individuals.

      The data from session 1 are easy to interpret. The data from sessions 2 and 3 are harder to understand, but these are the trials in which they meet an individual again after a substantial period of separation. Other studies looking at recognition in ants and wasps (cited by the authors) have done a 4 trial design in which focal animal A meets B in the first trial, then meet C in the second trial, meets B again in the third trial, and then meets D in the last trial. In that scenario trials 1, 2 and 4 are between unfamiliar individuals and trial 3 is between potentially familiar individuals. In both the ants and wasps, high aggression is seen in species with and without recognition on trial 1, with low aggression specifically for trials with familiar individuals in species with recognition. Across different tests, species or populations that lack recognition have shown a general reduction in aggression towards all individuals that becomes progressively less aggressive over time (reminiscent of the session 2 and 3 data) while others have maintained modest levels of aggression across all individuals. The 4 session design used in those other studies provides an unambiguous interpretation of the data, while controlling for 'fatigue'. That all trials in sessions 2 and 3 are always with familiar individuals make it challenging to understand how much the spiders are habituating to each other versus having some kind of associative learning of individual identity and behavior.

      The data presentation is also very complicated. How is it the case that a negative proportion of time is spent? The methods reveal that this metric is derived by comparing the time individuals spent in each region relative to the previous time they saw that individual. At the very least, data showing the distribution of distances from the wall would be much easier to interpret for the reader.

      (2) "Long-term social memory": It is not entirely clear what is meant by the authors when they say 'long-term social memory', though typically long-term memory refers to a form of a memory that require protein synthesis. While the precise timing of memory formation varies across species and contexts, a general rule is that long term memory should last for > 24 hours (e.g., Dreier et al 2007 Biol Letters). The longest time that spider are apart in this trial set up is something like an hour. There is no basis to claim that spiders have long term social memory as they are never asked to remember anyone after a long time apart. The odd phrasing of the 'long-term dishabutation' trial makes it seem that it is testing a long-term memory, but it is not. The spiders have never met. The fact that they are very habituated to one set of stimuli and then respond to a new stimulus is not evidence of long-term memory. To clearly test memory (which is the part really lacking from the design), the authors would need to show that spiders - upon the first instance of re-encountering a previously encountered individual are already 'habituated' to them but not to some other individuals. The current data suggest this may be the case, but it is just very hard to interpret given the design does not directly test memory of individuals in a clear and unambiguous manner.

      (3) Lack of a functional explanation and the emphasis on 'asociality': It is entirely plausible that recognition is pleitropic byproduct of the overall visual cognition abilities in the spiders. However, the discussion that discounts territoriality as a potential explanation is not well laid out. First, many species that are 'asocial' nevertheless defend territories. It is perhaps best to say such species are not group living, but they have social lives because they encounter conspecifics and need to interact with them. Indeed, there are many examples of solitary living species that show the dear enemy effect, a form of individual recognition, towards familiar territorial neighbors. The authors in this case note that territorial competition is mediated by the size of color of the chelicerae (seemingly a trait that could be used to distinguish among individuals). Apparently because previous work has suggested that territorial disputes can be mediated by a trait in the absence of familiarity has led them to discount the possibility that keeping track of the local neighbors in a potentially cannibalistic species could be a sufficient functional reason. In any event, the current evidence presented certainly does not warrant discounting that hypothesis.

      Comments on Revision:

      The authors have not actually addressed my points and their comments conflate discrimination with recognition. The extensive discussion about how babies are tested for discrimination tasks in their rebuttal misses the point. I believe that the data do show that the spiders discriminate between individuals but whether individuals are recognized (i.e., remembered) is less clear. The authors defend their convoluted study design, but it is overly complex and challenging to interpret the data as a result.

      The main issue with the design is that they do not actually test for any kind of memory of specific individuals after a substantial time of separation. Instead they show that a new individuals is still surprising/dishabituating. That is nice evidence for discrimination but does not show memory in a clear and unambiguous way.

      My comments and critique are unchanged since they didn't really change the paper. New experiments were needed and they didn't do any. Perhaps it is hard to get the spiders where they are? I don't really understand why they didn't do additional experiments as part of this revision.

    3. Reviewer #3 (Public review):

      Summary:

      Jumping spiders (family Salticidae) have extraordinarily good eyesight, but little is known about how sensitive these small animals might be to the identity of other individuals that they see. Here, experiments were carried out using Phidippus regius, a salticid spider from North America. There were three steps in the experiments; first, a spider could see another spider; then its view of the other spider was blocked; and then either the same or a different individual spider came into view. Whether it was the same or a different individual that came into view in the third step had a significant effect on how close together or far apart the spiders positioned themselves. It has been demonstrated before that salticids can discriminate between familiar and unfamiliar individuals while relying on chemical cues, but this new research on P. regius provides the first experimental evidence that a spider can discriminate by sight between familiar and unfamiliar individuals.

      Clark RJ, Jackson RR (1995) Araneophagic jumping spiders discriminate between the draglines of familiar and unfamiliar conspecifics. Ethology, Ecology and Evolution 7:185-190

      Strengths:

      This work is a useful step toward a fuller understanding of the perceptual and cognitive capacities of spiders and other animals with small nervous systems. By providing experimental evidence for a conclusion that a spider can, by sight, discriminate between familiar and unfamiliar individuals, this research will be an important milestone. We can anticipate a substantial influence on future research.

      Weaknesses:

      (1) The conclusions should be stated more carefully.

      (2) It is not clearly the case that the experimental methods are based on 'habituation (learning to ignore; learning not to respond). Saying 'habituation' seems to imply that certain distances are instances of responding and other distances are instances of not responding but, as a reasonable alternative, we might call distance in all instances a response. However, whether all distances are responses or not is a distracting issue because being based on habituation is not a necessity.

      (3) Besides data related to distances, other data might have been useful. For example, salticids are especially well known for the way they communicate using distinctive visual displays and, unlike distance, displaying is a discrete, unambiguous response.

      (4) Methods more aligned with salticids having extraordinarily good eyesight would have useful. For example, with salticids, standardising and manipulating stimuli in experiments can be achieved by using mounts, video playback and computer-generated animation.

      (5) An asocial-versus-social distinction is too imprecise, and it may have been emphasised too much. With P. regius, irrespective of whether we use the label asocial or social, the important question pertains to the frequency of encounters between the same individuals and the consequences of these encounters.

      (6) Hypotheses related to not-so-strictly adaptive factors are discussed and these hypotheses are interesting, but these considerations are not necessarily incompatible with more strictly adaptive influences being relevant as well.

      Comments on Revision:

      The authors have responded reasonably to the comments I made. There is nothing else that I wish to add.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The paper sets out to examine the social recognition abilities of a 'solitary' jumping spider species. It demonstrates that based on vision alone spiders can habituate and dishabituate to the presence of conspecifics. The data support the interpretation that these spiders can distinguish between conspecifics on the basis of their appearance.

      We appreciate the reviewer’s summary. We indeed aimed at investigating the social recognition abilities of the solitary jumping spider (Phidippus regius), using visual cues alone. By employing a habituation-dishabituation paradigm, well-established in developmental psychology, we found support for the interpretation that these spiders can distinguish between conspecifics based on their appearance, as the reviewer noted.

      Strengths:

      The study presents two experiments. The second set of data recapitulates the findings of the first experiment with an independent set of spiders, highlighting the strength of the results. The study also uses a highly quantitative approach to measuring relative interest between pairs of spiders based on their distance.

      We appreciate the reviewer's acknowledgement of the strengths of our study. The second set of data underscores the robustness and reliability of the results. Additionally, however, the second experiment served the purpose of disentangling whether the habituation effect observed over sessions was caused by ‘physical’ or ‘cognitive’ fatigue by employing ‘long-term’ dishabituation trials at the end of Session 3. These trials are critical in our study as they help to differentiate between recognition of individual identities versus recognition of familiar individuals (as opposed to unfamiliar ones) and to determine if the observed effects are due to ‘general habituation’ or ‘specific recognition’. We will elaborate on this further below in this revision.

      As stated by the reviewer, we employed a highly quantitative approach to measure relative interest between pairs of spiders based on their distance, providing precise and objective data to support our conclusions.

      Weaknesses:

      The study design is overly complicated, missing key controls, and the data presented in the figures are not clearly connected to the study. The discussion is challenging to understand and appears to make unsupported conclusions.

      While we acknowledge that the study design is indeed complex, this complexity is essential for conducting a well-controlled and balanced experiment regarding the experimental conditions.  

      The habituation-dishabituation paradigm is a well-established paradigm in developmental psychology with non-verbal infants. It is understood that during the habituation phase, an individual's attention to a repeated stimulus decreases as they engage in information processing and form a mental representation of it. As the stimulus becomes familiar, it loses its novelty and interest. When a new stimulus is introduced, a recovery of attention suggests that the individual has compared this new stimulus to the stored memory of the habituation stimulus and detected a difference. This process suggests that the individual not only remembered the original stimulus but also recognized the new one as distinct (for a review Kavšek & Bornstein, 2010).

      This paradigm has also been extensively applied in animal research, where, like infants, nonverbal subjects rely on recognition and discrimination processes to demonstrate their cognitive abilities. The use of this paradigm dates back to seminal studies such as Humphrey (1974), which explored the perceptual world of monkeys, illustrating how species and individuals are perceived and recognized. In another previous study (Dahl, Logothetis, and Hoffman, 2007), we utilized an even more complex experimental design that incorporated dedicated baseline trials for both habituation and dishabituation phases, which was well-received despite its complexity. In the current study, we contrast dishabituation and habituation trials directly, creating a sequential cascade where each trial is evaluated against the preceding one as its baseline.

      On the basis of these arguments, we respectfully decline the claim that this paradigm is inappropriate or lacks key controls. Our study design, though complex, is rigorously grounded in established methodologies and offers a robust framework for exploring individual recognition in Phidippus regius.

      However, we take the reviewer’s comments seriously and are committed to identifying and addressing the aspects in our manuscript that may have led to misunderstandings. We clarify these areas in our revision of the manuscript. Modifications were made in the Introduction, Methods, and Discussion sections.

      Dahl, C. D., Logothetis, N. K., & Hoffman, K. L. (2007). Individuation and holistic processing of faces in rhesus monkeys. Proceedings of the Royal Society B: Biological Sciences, 274(1622), 2069-2076.

      Humphrey, N. K. (1974). Species and individuals in the perceptual world of monkeys. Perception, 3(1), 105-114.

      Kavšek, M., & Bornstein, M. H. (2010). Visual habituation and dishabituation in preterm infants: A review and meta-analysis. Research in developmental disabilities, 31(5), 951-975.

      (1) Study design: The study design is rather complicated and as a result, it is difficult to interpret the results. The spiders are presented with the same individual twice in a row, called a habituation trial. Then a new individual is presented twice in a row. The first of these is a dishabituation trial and the second is another habituation trial (but now habituating to a second individual). This is done with three pairings and then this entire structure is repeated over three sessions. 

      While we acknowledge that the design is complex, this complexity is essential for conducting a well-controlled experiment, as described earlier. As the reviewer noted, our design involves presenting the same individual to the focal spider twice in a row (habituation trial), followed by a new individual (dishabituation trial), and then repeating this structure. This approach is fundamental to the habituation-dishabituation paradigm, which allows us to systematically compare the responses to a familiar individual with those elicited by a novel one. If the spiders exhibit different behaviours in terms of the distance they maintain when encountering the same individual versus a new one, it indicates that they are processing the stimuli differently, consistent with recognition memory. This differential response is a key indicator that the spiders can distinguish between familiar and unfamiliar individuals, demonstrating not only a decrease in interest or engagement due to repeated exposure but also a cognitive process where the lack of a matching memory template triggers a distinct behavioural response when confronted with novel stimuli.

      By repeating this sequence two more times (Session 2 and 3), we aim to assess the consistency of this recognition process over time. If the focal spider does not remember the individuals from the previous session (one hour ago), we expect consistent behavioural responses across sessions. Conversely, if there is a decrease in response magnitude but the overall response patterns are maintained, we can infer that the focal spider recognizes the previously presented individuals and exhibits habituation, reflected in reduced response intensity. In other words, over sessions and repeated exposure to the same individuals, the memory traces become more firmly established, leading to a situation where a dishabituation trial introduces less novelty, as the spider's recognition of previously encountered individuals becomes more robust and consistent to the point where “habituation” and “dishabituation” trials become indistinguishable, as observed in Session 3. This method allows us to assess the duration of identity recognition in these spiders, indicating how long the memory of specific individuals persists. 

      All of these outcomes were anticipated before we began Experiment 1. Given that the results aligned with our predictions, we then sought to determine whether the observed reduction in the magnitude of the effect (i.e., the difference between habituation and dishabituation trials) was due to a physical fatigue effect, where the spiders might simply be getting tired, or a cognitive fatigue effect, where the spiders recognized the individuals and as a result did not exhibit any novelty response. To address this, we replicated the experiment with a new group of spiders and introduced special (long-term dishabituation) trials at the end, where the focal spider was presented with a novel spider. 

      These extra trials allowed us to disentangle the nature of the diminishing response across repeated sessions: a lack of dishabituation (remaining distant) would suggest general physical fatigue, whereas a strong dishabituation response (approaching closely) to the novel spider would indicate cognitive fatigue, thereby confirming that the spiders were indeed recognizing the familiar individuals throughout the experiment. 

      In light of these considerations, we believe that the complexity of our design is not only justified but absolutely necessary to rigorously test the cognitive capabilities of the spiders. Nonetheless, we understand the need for clarity in presenting our findings and are committed to refining our manuscript to better communicate the rationale and results of our study.

      The data appear to show the strong effects of differences between habituation and dishabituation trials in the first session. The decrease in differential behavior between the socalled habituation and dishabituation trials in sessions 2 and 3 is explained as a consequence of the spiders beginning to habituate in general to all of the individuals. 

      The key question, as mentioned above, is to determine the underlying cause of this general habituation across sessions. Specifically, we aim to differentiate between two potential causes: physical fatigue, where the spiders may simply become less responsive due to the demands of the three-hour testing period, or cognitive fatigue, where the repeated exposure to the same individuals leads to a decreased response because the spiders have started to recognize these individuals over multiple repetitions.

      To address this, we replicated the experiment and introduced each focal spider to a new individual in what we termed "long-term dishabituation" trials. By comparing the spiders' responses to these novel individuals with their responses in earlier trials, we sought to better understand the underlying mechanisms of habituation and the duration of individual recognition. The strong dishabituation response observed in these trials is indicative of cognitive fatigue, supporting the presence of recognition memory rather than a general physical fatigue effect.

      The claim that the spiders remember specific individuals is somewhat undercut because all of the 'dishabituation' trials in session 2 are toward spiders they already met for 14 minutes previously but seemingly do not remember in session 2. 

      We appreciate the reviewer’s comment regarding the claim that spiders do not remember specific individuals. This assessment does not align with the rationale of our experiment. The reviewer noted that the dishabituation trials in session 2 involved spiders previously encountered and suggested that the lack of a clear memory response might undercut the claim of specific individual recognition. 

      However, as we explained earlier, we expect habituation in Session 2 relative to Session 1 precisely because spiders recognize each other in Session 2. If there were no such habituation in Sessions 2 or 3, it would suggest that the spiders’ recognition memory does not persist beyond one hour. 

      Additionally, it is important to correct the timing noted by the reviewer: each individual spider reencounters the same spider exactly one hour later, not 14 minutes. This is detailed in Table 2 of the manuscript, which outlines that each trial lasts 7 minutes, with a 3-minute visual separation between trials. With six trials per session, this totals to 1 hour per session. Thus, every pair of spiders re-encounters exactly 1 hour after their last interaction.

      Again, it is important to clarify that the observed decrease in differential behaviour is not indicative of a failure to remember specific individuals. Rather, it reflects a systematic pattern of habituation, which is a common and expected outcome in such paradigms. This systematic decrease in response strength suggests that the spiders recognize the previously encountered individuals and becoming less responsive over repeated exposures, consistent with the process of habituation. In different terms, the repeated exposure to the same individuals leads to more firmly established memory traces, leading to a situation where a dishabituation trial introduces less novelty, as the spider's recognition of previously encountered individuals becomes more robust and consistent.

      Based on the explanations provided above, we respectfully reject the claim that “the spiders remember specific individuals is somewhat undercut […]”. In contrast, this claim is incorrect, as the exact opposite is true. The very strength of our study lies in demonstrating that spiders possess robust recognition memory, as evidenced by a clear dissociation of habituation and dishabituation trials in Session 1, followed by a gradually diminishing effect over Session 2 and 3 as the spiders are increased exposed to the same individuals: Furthermore, the strong rebound from habituation observed in long-term dishabituation trials, where the spiders were exposed to novel individuals. 

      This misunderstanding suggests that we should take additional care in the revised manuscript to clarify our explanations and provide more detail, ensuring that the rationale behind our experimental design and findings are communicated effectively.

      In session 3 it is ambiguous what is happening because the spiders no longer differentiate between the trial types. This could be due to fatigue or familiarity. 

      The reviewer proposes that the absence of differentiation between 'habituation' and 'dishabituation' trials in Session 3 might be attributed to either fatigue or familiarity. We interpret "fatigue" as what we have termed the “physical fatigue effect” and "familiarity" as “cognitive fatigue effect.” In this context, we concur with the reviewer’s observation, and this very line of reasoning prompted us to conduct a further experiment following the outcome of Experiment 1.

      A second experiment is done to show that introducing a totally novel individual, recovers a large dishabituation response, suggesting that the lack of differences between 'habituation' and 'dishabituation' trials in session 3 is the result of general habituation to all of the spiders in the session rather than fatigue. As mentioned before, these data do support the claim that spiders differentiate among individuals.

      As the reviewer rightly noted, we addressed these possibilities in our second experiment by introducing a completely novel individual to the spiders, which resulted in a strong dishabituation response. This outcome suggests that the lack of differentiation in Session 3 is more likely due to cognitive habituation rather than physical fatigue. The robust response to novel individuals demonstrates that the spiders are capable of distinguishing between familiar and unfamiliar individuals, suggesting that the reduced differentiation is a consequence of habituation from repeated encounters with the same individuals. 

      We appreciate the reviewer's recognition that these findings support the conclusion that spiders are capable of differentiating between individual conspecifics.

      Additionally, it is important to clarify the structure of our sessions. Each of the 6 trials lasts 7 minutes with a 3-minute visual separation, resulting in a total of 1 hour per session. This ensures that each pair of spiders is encountered exactly one hour later, which controls for the timing and allows us to evaluate the spiders' recognition memory over repeated sessions.

      In summary, while the data show a decrease in differential behaviour between habituation and dishabituation trials in Session 2 and 3, the results from our second experiment support the interpretation that this is due to ‘cognitive habituation’ (familiarization) rather than ‘physical fatigue’ (general habituation). This habituation effect underscores the spiders' ability to recognize and become familiar with specific individuals over time, reinforcing our conclusion that they can differentiate among individuals.

      The data from session 1 are easy to interpret. The data from sessions 2 and 3 are harder to understand, but these are the trials in which they meet an individual again after a substantial period of separation. 

      The data from Session 1 are straightforward to interpret, showing clear differences between habituation and dishabituation trials. However, the data from Sessions 2 and 3 are more complex, as these sessions involve the spiders re-encounter individuals after a 1-hour period of separation. Importantly, the outcome is not an artefact in our experiment, but the consequence of a deliberate choice in the experimental design to assess whether spiders can recognise each other after this duration. We believe that this complexity aligns with our expectations, based on the assumption that spiders can recognise each other after one hour. The observed pattern of habituation in Sessions 2 and 3 suggests that the spiders retain memory of the individuals, leading to decreased responsiveness upon repeated encounters. This interpretation is further supported by the Experiment 2, which introduced a novel individual and elicited a strong dishabituation response. This finding confirms that the reduced differentiation in later sessions is due to cognitive habituation rather than physical fatigue, supporting the conclusion that recognition memory last at least one hour.

      We hope this explanation clarifies our findings and the rationale behind our relatively complex experimental design choice. 

      Other studies looking at recognition in ants and wasps (cited by the authors) have done a 4 trial design in which focal animal A meets B in the first trial, then meets C in the second trial, meets B again in the third trial, and then meets D in the last trial. In that scenario trials 1, 2, and 4 are between unfamiliar individuals and trial 3 is between potentially familiar individuals. In both the ants and wasps, high aggression is seen in species with and without recognition on trial 1, with low aggression specifically for trials with familiar individuals in species with recognition. Across different tests, species or populations that lack recognition have shown a general reduction in aggression towards all individuals that become progressively less aggressive over time (reminiscent of the session 2 and 3 data) while others have maintained modest levels of aggression across all individuals. The 4 session design used in those other studies provides an unambiguous interpretation of the data while controlling for 'fatigue'. 

      We acknowledge that there are multiple ways to design experiments to test recognition memory. In fact, we considered using the paradigm similar to the one proposed by the reviewer and used in studies like Dreier et al., which involves a series of trials with unfamiliar and familiar individuals over extended intervals. We then, however, opted for a more complex design to rigorously assess how habituation and recognition memory develop over repeated sessions with shorter intervals.

      In the following, we would like to describe the advantages and disadvantages of both paradigms and outline how we ended up using the more complex version:

      Advantages of our paradigm: 

      As pointed out, by repeating the sequence in exactly similar manner (every same pair of spiders reoccurs after exactly 1 and 2 hours), we can comprehensively evaluate the effect of habituation over multiple exposures. This allows us to assess the extent of the spiders’ memory, when a spider shows stronger habituation to individuals that were novel in Session 1 but “familiar” by the time they encounter them again in Session 2. To achieve this, we need to ensure that each trial and visual separation is precisely timed, ensuring consistent intervals between encounters. As a consequence, each individual spider undergoes the exact same experimental protocol. Most critically, however, are the novel individuals presented after Session 3 (long-term dishabituation trials) that help differentiate between cognitive habituation and physical fatigue.  Disadvantages of our paradigm:

      The sequences of habituation and dishabituation trials may make the design more complex, as pointed out by the reviewer. As a consequence, the interpretation will become more difficult. However, the data perfectly align with our predictions, and the outcomes were as anticipated in two independently run experiments with two groups of spiders. This highlights the reliability of our experimental design and robustness of our findings.

      Advantages of the 4-trial paradigm proposed by the reviewer:

      Clearly, the structure of the proposed design is simpler, making interpretation easier. The paradigm also accommodates longer intervals between trials (e.g., 24 hours). Longer intervals could theoretically have been applied in our study. (However, we chose not to leave the spiders in the experimental box longer than necessary, opting instead to return them to their home containers for the night to ensure their well-being. And, a 24-hour interval targets a different phase in the process of long-term memory, but more to this topic further below.)

      Disadvantages of the 4-trial paradigm proposed by the reviewer:

      Strictly replicating the 4-trial design would result in one familiar encounter versus three unfamiliar ones. This imbalance might introduce bias and limit the robustness of the measurements. Additionally, the design provides less data overall, as the focal individual will be confronted with three other individuals, who will then be excluded from further testing as focal subjects themselves. In contrast, our design ensures a balanced number of familiar0020(habituation) and novel encounters (dishabituation) for each focal individual, allowing for more efficient and comprehensive data collection without excluding individuals from further testing.

      Given the aforementioned considerations, we determined that the advantages of our experimental design, in particular the assessment of a cognitive fatigue effect when encountering the same individuals again, outweigh those of the proposed 4-trial design. The mentioned limitations of the 4-trial design, such as the potential for bias and less comprehensive data collection, do not justify re-running the study, especially when the best case scenario is fewer insights than our already existing findings. Our current paradigm yielded results that align perfectly with our predictions, offering a thorough and reliable understanding of recognition memory and habituation in spiders. Therefore, we believe our approach provides a more complete and robust answer to our research questions.

      However, we acknowledge that there might be insufficient information in the manuscript addressing the rationale behind our design choices, and we will revise the manuscript to provide a clearer explanation of why our approach is well suited to answering the research questions at hand.

      That all trials in sessions 2 and 3 are always with familiar individuals makes it challenging to understand how much the spiders are habituating to each other versus having some kind of associative learning of individual identity and behavior.

      We understand the reviewer's concern that having all trials in Sessions 2 and 3 involve familiar individuals could make it challenging to distinguish between general habituation and associative learning of individual identities. In our study, we contrast habituation and dishabituation trials: If general habituation were occurring, we would expect uniformly reduced responses (around the zero line) to all individuals over time, indicating that the spiders are getting used to any individual regardless of their specific identity. However, this is not the case. Our data show that while the responses in Session 2 are reduced in effect size compared to Session 1, they are not flat (around the zero line). This indicates that the spiders still differentiate between a repetition of a spider identity (habituation trials) and two different spider identities (dishabituation trials), albeit with a reduced response strength. The systematicity in the data suggests that the spiders are not merely habituating to any individual, but are instead retaining some level of recognition between specific individuals.

      Only by Session 3 do the spiders fully habituate to the point where the responses to habituation and dishabituation trials converge, indicating a complete habituation effect. The introduction of novel individuals in our long-term dishabituation trials further supports the idea that the spiders are recognizing specific individuals rather than exhibiting general habituation. If the spiders were experiencing general habituation, we would not expect the strong dishabituation response observed in our study.

      The data presentation is also very complicated. How is it the case that a negative proportion of time is spent? The methods reveal that this metric is derived by comparing the time individuals spent in each region relative to the previous time they saw that individual. 

      We understand the reviewer's concern regarding the complexity of the data presentation and the calculation of the negative proportion of time. Regarding the complexity of the design, we have already justified our choice of a more intricate experimental setup. This complexity is necessary for accurately assessing recognition memory and habituation over repeated sessions. 

      The metric is derived by comparing the time individuals spent in each region (relative to the transparent front panel) in the current trial (n) relative to the previous trial (n-1). With multiple trials, this results in a cascade of trials and conditions. This method was established in

      Humphrey’s and our previous study (Humphrey, 1974; Dahl, Logothetis, Hoffman, 2007), where we demonstrated its effectiveness in assessing individuation of faces in macaque monkeys.  

      Also in our current experimental design, each current trial is contrasted with the preceding one, allowing us to compare distributions of distances taken in two trials. In this context, every preceding trial serves as baseline for every current trial. 

      Figure 1 of the manuscript, illustrates the structure and analysis of the trials,

      Panel a depicts the baseline, habituation, and dishabituation trials, where spiders are exposed to different conspecifics.

      Baseline (left panel, red): When two spiders are visually exposed to each other for the first time, it is expected that they will explore each other closely, exhibiting high levels of proximity (initial exploratory behaviour).

      Habituation (centre panel, green): When the same spiders are reintroduced in a subsequent round of exposure, it is anticipated that they will exhibit reduced exploratory behaviour and maintain a greater distance compared to the baseline trial, if they recognize each other from the previous encounter (indicative of habituation).

      Panel b (upper and middle panels; red and green): Demonstrates the theoretical assumptions and expected changes in behaviour:

      By subtracting the distribution of distances in the baseline trial from the habituation trial, we generate a delta distribution. This delta distribution reveals negative values near the transparent panel (indicating reduced proximity in the habituation trial) and positive values at mid- to fardistances (indicating increased distancing behaviour). This delta distribution is also what is reported in Figure 2. 

      Dishabituation: In this trial, a new spider (different from the one in the habituation trial) is introduced. The dishabituation trial will be considered in contrast to the habituation trial described above. If the spider recognizes the new individual as different, it is expected to show increased exploratory behaviour and reduced distance, similar to the initial baseline trial.

      By subtracting the distribution of distances in the habituation trial from the dishabituation trial, we obtain another delta distribution. This delta distribution should reveal positive values near the transparent panel (indicating increased proximity in the dishabituation trial) and negative values at mid- to far-distances (indicating decreased proximity compared to the habituation trial).

      We hope this clarifies the rationale behind our data presentation and the methodological approach we employed. We have revised the figure to enhance its clarity and make it more intuitive for the reader.

      Dahl, C. D., Logothetis, N. K., & Hoffman, K. L. (2007). Individuation and holistic processing of faces in rhesus monkeys. Proceedings of the Royal Society B: Biological Sciences, 274(1622), 2069-2076.

      Humphrey, N. K. (1974). Species and individuals in the perceptual world of monkeys. Perception, 3(1), 105-114.

      At the very least, data showing the distribution of distances from the wall would be much easier to interpret for the reader.

      We understand the reviewer's concern that data showing the distribution of distances from the wall would be much easier to interpret for the reader. We initially consider that but came to the conclusion that this approach is not straightforward. For instance, if both spiders are positioned at the very front but in different corners, the distance to the panel would be very small, but the distance between the spiders would be large. Thus, using distances from the wall could misrepresent the actual spatial distribution between the spiders.

      (2) "Long-term social memory": It is not entirely clear what is meant by the authors when they say 'long-term social memory', though typically long-term memory refers to a form of a memory that requires protein synthesis.  

      To address this conceptually, we used the term "long-term social memory" to describe the spiders' ability to recognize and remember individual conspecifics over multiple experimental sessions. While social memory refers to the ability of an individual to recognize other individuals within a social context, long-term memory typically involves the retention of information over extended periods. Recognizing that the term “long-term social memory” is not commonly used, we have revised the manuscript to use the more standard term “long-term memory.”

      While the precise timing of memory formation varies across species and contexts, a general rule is that long-term memory should last for > 24 hours (e.g., Dreier et al 2007 Biol Letters). The longest time that spiders are apart in this trial setup is something like an hour. There is no basis to claim that spiders have long-term social memory as they are never asked to remember anyone after a long time apart.

      We appreciate the reviewer’s feedback regarding the term "long-term social memory." The statement "long-term memory should last for > 24 hours" is a generalisation in discussions about memory. It oversimplifies a more complex topic. That is, long-term memory is typically distinguished from short-term memory by its persistence over time, often lasting from hours to a lifetime. However, the exact duration that qualifies memory as "long-term" varies depending on the context, model species, and type of memory. In studies involved in synaptic plasticity (LTP), the object might indeed be to look at memory that persists for at least 24 hours as a criterion for long-term memory. In studies of cellular and/or molecular mechanisms where the stabilization and consolidation of memory traces over time are key areas of interest this 24-hour interval is very common. But, defining long-term memory strictly by a 24-hour duration is by no means universally accepted nor does it apply across all fields of study.

      To clarify, long-term memory is a process involving consolidation starting within minutes to hours after learning. Clearly, full consolidation can take longer, while memory persisting 24 hours is considered fully consolidated. But this does not mean that memory lasting less than 24 hours are not part of long-term memory. 

      In fact, Atkinson and Shiffrin (1969) proposed that information entering short-term memory remains there for about 20 to 30 seconds before being displaced due to space limitations. During this brief interval, initial encoding processes begin transferring information to long-term memory, establishing an initial memory trace. This transfer is not indicative of full consolidation but represents the initial "laying down" of the memory trace (encoding). In our study, the focal spider’s brain forms initial memory traces of the individuals it encounters. This process continues during the period of visual separation. Upon re-encountering the same individual a few minutes later, the spider accesses the initial memory trace stored in long-term memory. This trace is fragile and not fully consolidated. The re-encounter acts as a rehearsal, reactivating specific memory traces and potentially strengthening them through additional encoding processes, allowing the spider to recognize the individual even an hour later.

      According to Markowitsch (2013), initial encoding in long-term memory begins within seconds to minutes. It is also important to note that we argue for identity recognition rather than identity recall. Recognition involves correctly identifying a stimulus when it is presented again, while recall requires the volitional generation of information without an external stimulus. Thus, recall may rely on deeper forms of memory consolidation than recognition.

      Is protein synthesis required for long-term memory? 

      The role of protein synthesis in long-term memory has been extensively studied. According to Castellucci et al. (1978), explicit memory comprises a short-term phase that does not require protein synthesis and a long-term phase that does. Hebbian learning in its initial phase (early LTP) does not necessarily require protein synthesis. This phase involves the rapid strengthening of synapses through existing proteins and signaling pathways, such as the activation of NMDA receptors and the influx of Ca2+ ions. For the changes to persist (late LTP), protein synthesis is important. This phase involves the production of new proteins that contribute to long-term structural changes at the synapse, such as the growth of new synaptic connections or the stabilization of existing ones.

      This differentiation between the early and late phases of LTP highlights that long-term memory can begin forming without immediate protein synthesis. Our study focuses on this early phase of memory encoding, which involves the initial formation of memory traces that do not yet depend on protein synthesis. 

      It is however worth noting that recent research suggests that there is an early phase of protein synthesis (within minutes to hours) through the activation of immediate early genes (IEGs) and transcription factors. In this context, protein synthesis supports initial synaptic modifications. What the reviewer refers to is the consolidation phase (late phase), where continued synthesis of proteins induces structural changes at synapses, leading to the formation of new synaptic connections. In our study, it is plausible to assume that an early form of protein synthesis may contribute to stabilizing the initial memory traces during the encoding phase. However, whether or not protein synthesis occurred in our spiders is beyond the scope of this investigation and was not specifically addressed.

      The critical aspect of our study is that the information transitioned from short-term memory to long-term memory during an early encoding phase, allowing recall after an hour. Due to the inherent limitations and transient nature of the short-term memory, it is implausible for spiders to retain these memory representations solely within the short-term memory for such durations. Our findings suggest that the initial encoding processes were robust enough to transfer these experiences into long-term memory, where they were stabilized and could be accessed later. 

      In sum, it is important to note that long-term memory is a dynamic process, and while testing after 24 hours is a convention in some studies, this timing is arbitrary and not universally applicable to all contexts or species. The more critical consideration here is that we are dealing with a species where no prior evidence of long-term memory exists. Debating a 24-hour delay or the specifics of protein synthesis, while potentially interesting for future studies, detracts from the true significance of our findings. Our study is the first to show something akin to long-term memory representations in this species and this should remain in our focus.

      Shiffrin, R. M., & Atkinson, R. C. (1969). Storage and retrieval processes in long-term memory. Psychological review, 76(2), 179. 

      Markowitsch, H. J. (2013). Memory and self–Neuroscientific landscapes. International Scholarly Research Notices, 2013(1), 176027.

      Castellucci, V. F., Carew, T. J., & Kandel, E. R., 1978. Cellular analysis of long-term habituation of the gill-withdrawal reflex of Aplysia californica. Science, 202(4374), 1306-1308.

      The odd phrasing of the 'long-term dishabutation' trial makes it seem that it is testing a longterm memory, but it is not. The spiders have never met. The fact that they are very habituated to one set of stimuli and then respond to a new stimulus is not evidence of long-term memory. To clearly test memory (which is the part really lacking from the design), the authors would need to show that spiders - upon the first instance of re-encountering a previously encountered individual are already 'habituated' to them but not to some other individuals. The current data suggest this may be the case, but it is just very hard to interpret given the design does not directly test the memory of individuals in a clear and unambiguous manner.

      While we appreciate the reviewer's feedback, we believe there may have been some misunderstanding regarding the term “long-term dishabituation.” The introduction of novel individuals at the end of Session 3 was not intended to test long-term memory by having spiders recognize these novel individuals. Instead, it aimed to investigate the nature of the habituation observed over the three sessions.

      The novel individuals introduced at the end of Session 3 serve the purpose to differentiate between general habituation (a decline in response due to repeated exposure to any stimuli) and specific habituation (recognition and reduced response to previously encountered individuals). The novel spiders have never been encountered before, so the focal spiders cannot have prior representations of them. Thus, the strong dishabituation response to these novel individuals indicates that the habituation observed earlier is not due to a general fatigue effect or loss of interest but rather a specific habituation effect to the familiar individuals. By showing such strong and increased response to novel individuals, the study demonstrates that the spiders' increasingly reduced responses in Sessions 2 and 3 are not merely due to a general decrease in responsiveness but suggest cognitive habituation. This cognitive habituation implies that the spiders remember the familiar individuals (as each of them occurred three times across the three sessions), a process that relies on long-term memory. Therefore, while the novel spiders themselves are not a direct test of long-term memory, the use of these novel spiders helps us infer that the habituation observed over the three sessions is indeed due to the formation of long-term memory traces.

      In other words, the organism detects and processes the novel stimulus as different from the habituated one. In our study, if a spider showed a strong dishabituation response to a novel individual introduced at the end of Session 3, it would indicate that the spider had formed specific representations of the individuals they encountered during the three sessions. These representations allow the spiders to recognise the novel individuals as different, leading to renewed interest and a stronger behavioural response. It is the absence of a prior representation for the novel spiders that triggers this dishabituation response. Since the novel spider does not match any stored representations of the previously encountered spiders, the focal spider responds more strongly.

      The introduction of novel individuals at the end of Session 3 helps clarify that the increasing habituation observed in Session 2 and 3 is specific to familiar individuals, indicating cognitive habituation. This supports the presence of long-term memory processes in the spiders, as they can distinguish between previously encountered individuals and new ones. The habituationdishabituation paradigm thus effectively demonstrates the spiders' ability to form and reactivate encoded memory traces, providing clear evidence of recognition memory. 

      For these reasons, we are convinced that our interpretation is accurate and hope this clarification renders the additional request for an entirely new experiment unnecessary.

      (3) Lack of a functional explanation and the emphasis on 'asociality': It is entirely plausible that recognition is a pleitropic byproduct of the overall visual cognition abilities in the spiders. 

      We agree with the reviewer that it is essential to consider the broader context of individual recognition and its potential adaptive significance. The possibility that recognition in jumping spiders could be a pleiotropic byproduct of their advanced visual cognition abilities is indeed a plausible explanation and has been discussed in our manuscript.

      However, the discussion that discounts territoriality as a potential explanation is not well laid out. First, many species that are 'asocial' nevertheless defend territories. It is perhaps best to say such species are not group living, but they have social lives because they encounter conspecifics and need to interact with them.

      The reviewer also correctly points out that many 'asocial' species still defend territories and have social interactions. Our use of the term 'asocial' was meant to indicate that jumping spiders do not live in cohesive social groups, but we acknowledge that they do have social lives in terms of interactions with conspecifics. It is more accurate to describe these spiders as non-groupliving, yet socially interactive species. A better term is “non-social” to refer to the jumping spider as a species that do not live in stable social groups and do not exhibit associated behaviours, such as cooperative behaviours. This also would imply that individuals still interact with conspecifics, especially in contexts like mating, territorial disputes or aggression. We, thus, change the term from “asocial” to “non-social” in the manuscript.  

      Indeed, there are many examples of solitary living species that show the dear enemy effect, a form of individual recognition, towards familiar territorial neighbors. The authors in this case note that territorial competition is mediated by the size or color of the chelicerae (seemingly a trait that could be used to distinguish among individuals). Apparently, because previous work has suggested that territorial disputes can be mediated by a trait in the absence of familiarity has led them to discount the possibility that keeping track of the local neighbors in a potentially cannibalistic species could be a sufficient functional reason. In any event, the current evidence presented certainly does not warrant discounting that hypothesis.

      The “dear enemy effect”, where solitary living species recognize and show reduced aggression towards familiar territorial neighbors, is a relevant consideration. This effect demonstrates that individual recognition can have significant functional implications even in species that are not group-living. We will elaborate on this effect in the revised manuscript to provide a more comprehensive discussion.

      The reviewer mentioned that territorial disputes can be mediated by the size or color of the chelicerae, potentially serving as a feature for individual recognition. Our intention was not to discount the role of such traits but to highlight that the level of identity recognition we observed represents subordinate classification. This is different from the basic-level classification, such as distinguishing between male and female based on chelicerae colour. While we acknowledge that colour can be an important feature for identity discrimination, our findings suggest that individual recognition in jumping spiders goes beyond simple colour differentiation. 

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors investigated whether a salticid spider, Phidippus regius, recognizes other individuals of the same species. The authors placed each spider inside a container from which it could see another spider for 7 minutes, before having its view of the other spider occluded by an opaque barrier for 3 minutes. The spider was then either presented with the same individual again (habituation trial) or a different individual (dishabituation trial). The authors recorded the distance between the two spiders during each trial. In habituation trials, the spiders were predicted to spend more time further away from each other and, in dishabituation trials, the spiders were predicted to spend more time closer to each other. The results followed these predictions, and the authors then considered whether the spiders in habituation trials were generally fatigued instead of being habituated to the appearance of the other spider, which may have explained why they spent less time near the other individual. The authors presented the spiders with a different (novel) individual after a longer period of time (which they considered to be a long-term dishabituation trial), and found that the spiders switched to spending more time closer to the other individual again during this trial. This suggested that the spiders had recognized and had habituated to the individual that they had seen before and that they became dishabituated when they encountered a different individual.

      We appreciate the reviewer's detailed summary of our study. The reviewer's summary accurately captures the essence of our experimental design, predictions, and findings.

      Strengths:

      It is interesting to consider individual recognition by Phidippus regius. Other work on individual recognition by an invertebrate has been, for instance, known for a species of social wasp, but Phidippus regius is a different animal. Importantly and more specifically, P. regius is a salticid spider, and these spiders are known to have exceptional eyesight for animals of their size, potentially making them especially suitable for studies on individual recognition. In the current study, the results from experiments were consistent with the authors' predictions, suggesting that the spiders were recognizing each other by being habituated to individuals they had encountered before and by being dishabituated to individuals they had not encountered before. This is a good start in considering individual recognition by this species.

      We appreciate the reviewer's positive summary and acknowledgment of the strengths of our study. We would like to point out some more details: 

      While the exceptional eyesight of salticid spiders is indeed a significant factor, our study reaches deeper in terms of processing. We do not argue at the level of sensation rather than at the level of perception. Even more, identity recognition is a higher-level perceptual process. This distinction is crucial: we are not merely examining the spiders' sensory capabilities (such as good eye sight), but rather how their brains interpret and represent what they “see”. This involves a cognitive process where the sensory input (sensation) is processed and integrated into meaningful constructs (perception) and memorised in form of representations. 

      Our study also suggests that P. regius engages in “higher-level” perceptual processes. This most-likely involves complex representations of individual conspecifics, which in mammalian brains are associated with regions such as the central inferior temporal (cIT) and anterior inferior temporal (aIT) areas. We provide evidence that these spiders do not just sense visual stimuli but interpret and recognize individual identities, indicating sophisticated perceptual and cognitive abilities. In other words, the spiders do not merely respond to visual stimuli in a reflexive manner, but rather engage in sophisticated perceptual and cognitive processes that allow them to recognize and distinguish between individual identities. This indicates that the spiders are not simple Braitenberg vehicles reacting to stimuli, but are thinking organisms capable of complex mental representations. This resonates with current trends in animal cognition research, which increasingly recognize some level of consciousness and advanced cognitive abilities across a wide range of animal species. Moreover, this aligns with the growing interest and recognition of spider cognition, where research begins to provide evidence for the cognitive complexity and perceptual capabilities of these often underestimated creatures (Jackson and Cross, 2011). 

      Jackson, R. R., & Cross, F. R. (2011). Spider cognition. Advances in insect physiology, 41, 115174.

      Weaknesses:

      The experiments in this manuscript (habituation/dishabituation trials) are a good start for considering whether individuals of a salticid species recognize each other. I am left wondering, however, what features the spiders were specifically paying attention to when recognizing each other. The authors cited Sheehan and Tibbetts (2010) who stated that "Individual recognition requires individuals to uniquely identify their social partners based on phenotypic variation." Also, recognition was considered in a paper on another salticid by Tedore and Johnsen (2013).

      Tedore, C., & Johnsen, S. (2013). Pheromones exert top-down effects on visual recognition in the jumping spider Lyssomanes viridis. The Journal of Experimental Biology, 216, 1744-1756. doi: 10.1242/jeb.071118 

      In this elegant study, the authors presented spiders with manipulated images to find out what features matter to these spiders when recognizing individuals.

      The reviewer raises an important point regarding the specific features that Phidippus regius might be paying attention to when recognizing individual conspecifics. Our study indeed cited Sheehan and Tibbetts (2010) to highlight the importance of phenotypic variation in individual recognition. Additionally, we referenced the work by Tedore and Johnsen (2013) on visual recognition in another salticid species, which suggests that multiple sensory modalities, including visual and pheromonal cues, may be involved in the recognition process. While our current study focused on demonstrating that Phidippus regius can recognize individual conspecifics, we acknowledge that it does not specifically identify the phenotypic features involved in this recognition. 

      Part of the problem with using two living individuals in experiments is that the behavior of one individual can influence the behavior of the other, and this can bias the results.  

      We appreciate the reviewer's observation regarding the potential bias introduced by using two living individuals in experiments, as the behaviour of one individual can indeed influence the behaviour of the other. We shared this concern initially; however, the consistency of the data with our hypotheses suggests that this potential bias did not adversely affect the validity of our findings, rendering the concern largely illusory at least in the context of our study.

      We opted for the living-individual paradigm for the following reasons:

      There is a growing trend in ethological as well as animal cognition research towards more ecologically valid and biologically relevant settings, while simultaneously advancing the precision and quantification of the data collected. This is referred to as computational ethology.

      This approach advocates for assessing behaviour in environments that more closely resemble natural conditions, rather than relying solely on sterile and artificial experimental setups. The rationale is that such naturalistic arenas allow animals to exhibit a broader range of behaviours and interactions, providing a more accurate reflection of their cognitive and social abilities. The challenge, however, lies in navigating the inherent tradeoff between the strict control offered by standardized procedures and the ecological validity of more naturalistic interactions.

      By allowing two spiders to confront each other, we aimed to capture authentic behavioural responses while maintaining a degree of experimental standardization through the use of a controlled setup. Our approach ensures that the behaviours observed are not merely artifacts of an artificial environment but are representative of genuine social interactions. Also, to minimize potential biases arising from mutual behavioural influences, we employed a controlled and repeatable experimental environment. 

      We believe that the chosen approach provides a meaningful balance (in the above-mentioned trade-off) between ecological validity and experimental rigour. By combining a standardized environment with the naturalistic interaction of real spiders, we ensured that our findings are both scientifically robust and biologically relevant.

      However, this issue can be readily avoided because salticids are well known, for example, to be highly responsive to lures (e.g. dead prey glued in lifelike posture onto cork disks) and to computer animation. 

      While it is true that salticid spiders are responsive to lures and computer animations, we carefully considered the most appropriate and ecologically valid approach for our study. Our aim was to capture genuine behavioural patterns in a context that closely mimics the natural encounters these spiders experience.

      Additionally, creating comparable video stimuli of spiders presents its own set of challenges: Video recordings or computer animations may not fully capture the nuanced behaviours and subtle variations that occur during real-life interactions. There is also a risk that such stimuli could be perceived differently by the spiders, potentially introducing new biases or confounding factors.

      Scientific progress is not made by merely relying on previously established paradigms, especially when they may not be suitable for the specific context of a study. While alternative methods like lures or computer animations can be valuable in certain situations, our approach was deliberately chosen to best capture the naturalistic and interactive aspects of spider behaviour.

      These methods have already been successful and helpful for standardizing the different stimuli presented during many different experiments for many different salticid spiders, and they would be helpful for better understanding how Phidippus regius might recognize another individual on the basis of phenotypic variation. There are all sorts of ways in which a salticid might recognize another individual. Differences in face or body structure, or body size, or all of these, might have an important role in recognition, but we won't know what these are using the current methods alone. Also, I didn't see any details about whether body size was standardized in the current manuscript.

      As mentioned previously, the goal of our study was to demonstrate that identity recognition occurs in spiders. This alone is of significant importance, as it challenges existing assumptions about the cognitive capabilities of small-brained animals. We did not aim at providing a proximate explanation (mechanism) for identity recognition in spiders.

      The problem with what the reviewer suggested is this: As long as we do not have conclusive evidence that spiders recognize individual conspecifics, any attempt to design and manipulate stimuli would lack a solid foundation. Without understanding whether spiders have this capability, we cannot make informed decisions about which features or characteristics to manipulate in stimuli. In other words, this uncertainty means we lack a starting point for our assumptions, making it nearly impossible to create stimuli that would be useful or relevant in testing identity recognition.

      Additionally, it is nearly impossible to artificially generate a stimulus set that encompasses the natural variance in features that spiders use for visual individuation. There is no guarantee that artificial stimuli, such as lures or computer animations, would capture the relevant features that spiders use in natural interactions.

      In other words, the question how Phidippus regius recognizes another individual will be subject of further investigation. In this study, we focus on whether or not they individuate others.  

      For another perspective, my thoughts turn to a paper by Cross et al.

      Cross, F. R., Jackson, R. R., & Taylor, L. A. (2020). Influence of seeing a red face during the male-male encounters of mosquito-specialist spiders. Learning & Behavior, 48, 104-112. doi: 10.3758/s13420-020-00411-y

      These authors found that males of Evarcha culicivora, another salticid species that is known to have a red face, become less responsive to their own mirror images after having their faces painted with black eyeliner than if their faces remained red. In all instances, the spiders only saw their own mirror images and never another spider, and these results cannot be interpreted on the basis of habituation/dishabituation because the spiders were not responding differently when they simply saw their mirror image again. Instead, it was specifically the change to the spider's face which resulted in a change of behavior. The findings from this paper and from Tedore and Johnsen can help give us additional perspectives that the authors might like to consider. On the whole, I would like the authors to further consider the features that P. regius might use to discern and recognize another individual.

      We acknowledge that identifying the specific features used by P. regius for identity recognition is a valuable direction for future research. However, we must emphasise that without first establishing whether spiders are capable of individuating each other, it would be premature and challenging to determine the specific features they rely on for this process. A lack of response to certain features could either suggest that those features are not relevant or, more critically, that the spider does not recognize individual identities at all. Thus, our initial focus on demonstrating identity recognition is essential before delving into the specific cues or characteristics involved.

      While the call for addressing the proximate causation of identity recognition in jumping spiders is valid, we need to also reiterate the significance of our findings and why they stand on their own merit:

      Our study demonstrates for the first time that Phidippus regius can systematically individuate conspecifics, showing habituation within short intervals (10 minutes) and over longer intervals (1 hour). This behaviour is not due to general habituation or physical fatigue but is a result of cognitive habituation, as illustrated by the spiders' response to novel individuals introduced after repeated encounters with familiarized ones. 

      What are the implications of this? Our findings indicate that these spiders possess long-term memory and form representations that can be reactivated after an hour. While this is most-likely not fully consolidated memory formation (see our reply to Reviewer 1), it represents an encoded long-term memory. This implies that small-brained animals can remember, represent, and potentially build internal mental images, which are crucial for sophisticated cognitive processing. 

      Reviewer #3 (Public Review):

      Summary:

      Jumping spiders (family Salticidae) have extraordinarily good eyesight, but little is known about how sensitive these small animals might be to the identity of other individuals that they see. Here, experiments were carried out using Phidippus regius, a salticid spider from North America. There were three steps in the experiments; first, a spider could see another spider; then its view of the other spider was blocked; and then either the same or a different individual spider came into view. Whether it was the same or a different individual that came into view in the third step had a significant effect on how close together or far apart the spiders positioned themselves. It has been demonstrated before that salticids can discriminate between familiar and unfamiliar individuals while relying on chemical cues, but this new research on P. regius provides the first experimental evidence that a spider can discriminate by sight between familiar and unfamiliar individuals.

      Clark RJ, Jackson RR (1995) Araneophagic jumping spiders discriminate between the draglines of familiar and unfamiliar conspecifics. Ethology, Ecology and Evolution 7:185-190

      We appreciate the reviewer's comprehensive summary and acknowledgment of the significance of our findings.

      Strengths:

      This work is a useful step toward a fuller understanding of the perceptual and cognitive capacities of spiders and other animals with small nervous systems. By providing experimental evidence for a conclusion that a spider can, by sight, discriminate between familiar and unfamiliar individuals, this research will be an important milestone. We can anticipate a substantial influence on future research.

      We appreciate the reviewer’s recognition of the strengths and significance of our study. We are pleased that the reviewer considers our research an important milestone. Our findings indeed suggest that even animals with relatively simple nervous systems can perform complex cognitive tasks, which has substantial implications for the broader study of animal cognition.

      As pointed out by the reviewer, we also hope that our study will have a substantial influence on future research. By establishing a methodology and providing clear evidence of visual discrimination, we aim to encourage further investigations into the cognitive abilities of jumping spiders and other arthropods. Future research can build on our findings to explore the specific visual cues and mechanisms involved in individual recognition (as Reviewer 2 pointed out), as well as the ecological and evolutionary implications of these abilities.

      Weaknesses:

      (1) The conclusions should be stated more carefully.

      We agree that clarity in our conclusions is paramount. We will revise the manuscript to ensure that our conclusions are presented with precision and appropriately reflect the data. Specifically, we will emphasize the evidence supporting our findings of visual individual recognition and clarify the limitations and scope of our conclusions to avoid any potential overstatements.

      (2) It is not clearly the case that the experimental methods are based on 'habituation (learning to ignore; learning not to respond). Saying 'habituation' seems to imply that certain distances are instances of responding and other distances are instances of not responding but, as a reasonable alternative, we might call distance in all instances a response. However, whether all distances are responses or not is a distracting issue because being based on habituation is not a necessity.

      We appreciate the reviewer's feedback and understand the concern regarding the use of the term 'habituation.' We agree that all distances maintained by the spiders are active responses and reflect their behavioral decisions based on perception and recognition of the other individual. We recognize that all distances are responses and interpret these as the spiders’ “active decisions”, modulated by their recognition of the same or different individuals. 

      The terms 'habituation' and 'dishabituation' are used to label trial types for ease of discussion and to describe the expected behavioural modulation.

      (3) Besides data related to distances, other data might have been useful. For example, salticids are especially well known for the way they communicate using distinctive visual displays and, unlike distance, displaying is a discrete, unambiguous response.

      We appreciate the reviewer’s suggestion to incorporate data on visual displays, which are indeed well-known communication methods among salticids. We agree that visual displays are discrete and unambiguous responses that could provide additional insights into the spiders' recognition abilities.

      Our primary focus on distance measurements was driven by the need to quantify behaviour in a continuous and scalable manner, that is, how spiders modulate their proximity based on familiarity with other individuals.

      We acknowledge the potential value of including visual display measurments; however, in our study, we aimed to establish a foundational understanding of recognition behaviour through proximity measures first. Also, capturing diplays requires a different experimental paradigm, where the displays are clearly visible and analyzable. 

      (4) Methods more aligned with salticids having extraordinarily good eyesight would be useful. For example, with salticids, standardising and manipulating stimuli in experiments can be achieved by using mounts, video playback, and computer-generated animation.

      There is no doubt that salticids have excellent eyesight. However, our study focuses on higherlevel perceptual processes that require complex brain analysis, not just visual acuity. The goal was to investigate whether spiders can individuate and recognize conspecifics, which involves interpreting visual information and forming long-term representations.

      Clearly, methods like video playback and computer animations are useful in controlled settings, where the spider is mounted, but they pose challenges for our specific research question. At this stage of research, we lack precise knowledge of which visual features are critical for individual recognition in spiders, making it difficult to design effective artificial stimuli. 

      Our primary objective was to determine if spiders can individuate others. Before exploring the proximate mechanisms of how they individuate others, it was essential to establish that they have this capability. This foundational question needed to be addressed before delving into more detailed mechanistic studies.

      (5) An asocial-versus-social distinction is too imprecise, and it may have been emphasised too much. With P. regius, irrespective of whether we use the label asocial or social, the important question pertains to the frequency of encounters between the same individuals and the consequences of these encounters.

      Our intent was to convey that P. regius does not live in cohesive social groups but does engage in individual interactions that can have significant behavioral consequences. We will revise the manuscript to reduce the emphasis on the asocial-versus-social distinction. As discussed above, we also will change the term “asocial” to “non-social” in the manuscript.

      (6) Hypotheses related to not-so-strictly adaptive factors are discussed and these hypotheses are interesting, but these considerations are not necessarily incompatible with more strictly adaptive influences being relevant as well.

      We appreciate the reviewer's observation regarding the discussion of hypotheses related to notso-strictly adaptive factors. We agree that our considerations of these factors do not preclude the relevance of more strictly adaptive influences.

      We will revise the manuscript to explicitly discuss how our findings can be interpreted in the context of adaptive hypotheses. This will provide a more comprehensive understanding of the evolutionary significance of individual recognition in P. regius. Modifications were made in the Discussion section.

      In the following, we comment on issues not mentioned in the “public reviews” section.

      Reviewer #1 (Recommendations For The Authors):

      (1) I would suggest conducting experiments that actually test for recognition memory, as this seems to be a claim that the authors make. Following the ant studies by Dreier cited in this manuscript would be sufficient to test for memory. Given the relative simplicity of the measures being taken (location of spiders), this would seem like a very simple addition that would provide a much stronger and more readily interpreted dataset.

      As previously explained in our detailed responses (public reviews), we believe that the current design effectively addresses the questions at hand. Our approach, using a habituationdishabituation paradigm, provides robust evidence for recognition memory within the framework of early long-term memory.

      Additionally, we have explained why using the distance to the panel as a measure is not appropriate in this context. Specifically, using such a measure can misrepresent the actual interests of the spiders in each other.

      While we acknowledge the merits of the ant studies by Dreier, our current design allows for a detailed understanding of the spiders' recognition capabilities over short (10 min) and slightly longer intervals (up to one hour). This is sufficient to demonstrate the presence of recognition memory without the necessity of further experiments. The observed patterns of habituation and dishabituation responses in our study clearly indicate that the spiders can distinguish between familiar and novel individuals, which supports our claims.

      Given these points, we respectfully maintain that the current data and experimental design are adequate to support our findings and provide a comprehensive understanding of recognition memory in Phidippus regius.

      (2) The writing is rather impenetrable. The results explain the basic finding in terms of statistical variables rather than simply stating the results. A clear and straightforward statement such as 'the spiders showed reduced interest upon habituation trials, indicating xyz' (and then citing the stats) is preferable to the introduction of results as a statistical model. The statistical model is a means of assessing the results. It is not the result. Describe the data.

      We tried to improve that in the current version.

      (3) Showing more straightforward data such as distance from the joint barrier would make the paper much easier to understand.

      This paper has been on bioRxiv for some time and my guess is that it has ended up here because it is having trouble in review. Collecting new data that more directly test the question at hand, presenting the data in a more direct manner, and more critically evaluating your own claims will improve the paper.

      While it is true that the paper has been on bioRxiv for a while, this submission marks the first instance where it has undergone peer review. Prior to this, the manuscript was submitted to other journals but was not reviewed.

      We hope the explanations provided in the “public reviews” section, along with the revised manuscript, sufficiently clarify our study and its conclusions. We believe the current data robustly address the research questions, and as outlined in our detailed responses, we have critically evaluated our claims and presented the data clearly. Given these clarifications, we do not see the necessity for new experiments as the existing data adequately support our findings. We trust that these revisions and explanations will clarify any misunderstandings.

      I am totally sold that the spiders are paying attention to identity at some level. The key now is to understand what that actually means in terms of recognition (i.e. memory of individuals) not just habituation.

      We appreciate the reviewer’s emphasis on the distinction between habituation and memorybased individual recognition. As detailed in the preceding discussion, we have taken great care to clarify how our paradigm distinguishes simple habituation effects from true memory for individual identity. We trust that the preceding sections make clear how our findings go beyond simple habituation to establish genuine individual recognition.

      Reviewer #2 (Recommendations For The Authors):

      Aside from the comments in the public review, I have some additional comments that the authors may wish to consider.

      Numerous times in the manuscript, the authors mentioned that recognizing individuals requires recognition memory. This seems rather obvious, and I wonder if the authors could instead be more precise about what they mean by 'recognition memory'?

      Recognition memory refers to the cognitive ability to identify a previously encountered stimulus, an individual, or events as familiar. It involves both encoding and retrieval processes, allowing an organism to distinguish between novel and familiar stimuli. This form of memory is a fundamental component of cognitive functioning and is supported by neural mechanisms that, in the mammal brain, involve the hippocampus and other brain regions associated with memory processing. 

      In our study, we aimed to test whether Phidippus regius recognizes conspecifics, or, in other words, utilizes recognition memory to distinguish between familiar and unfamiliar conspecifics. With the habituation - dishabituation paradigm, we assessed the spiders' ability to recognize previously encountered individuals and demonstrate memory retention over short (10 min) and extended periods (1 hour).

      Encoding: In the initial trial, when a spider encounters an individual for the first time (Figure 1A, “Baseline” or “Dishabituation” for every following trial), it encodes the visual information related to that specific individual. This encoding process involves creating a memory trace of the individual's phenotypic characteristics.

      Storage: During the visual separation period, this encoded information is stored in the spider's memory system. The memory trace, though initially fragile, starts to stabilize over the separation period. Whether or not this leads to some form of consolidated memory remains unaddressed. This aspect was highlighted by the first reviewer, but our focus is on the early process rather than on late processes, such as consolidation. 

      Retrieval: In the subsequent trial, when the same individual is presented again, the spider retrieves the stored memory trace. If the spider recognizes the individual, its behaviour reflects habituation, indicating memory retrieval. Conversely, when a novel individual is introduced, the lack of stored memory trace triggers a different behavioural response, indicating dishabituation. This differential response demonstrates the spider's ability to distinguish between familiar and unfamiliar individuals. This differential response is also key to understanding the nature of habituation over the three sessions, as introducing novel spiders leads to a significant dishabituation response after the three sessions in Experiment 2.

      In Line 39, the authors state that they used "a naturalistic experimental procedure". I would like to know how this experiment is 'naturalistic'. The authors' use of an arena does not appear naturalistic, or something the spiders would encounter in the wild.

      We appreciate the reviewer's comment regarding our use of the term 'naturalistic'. We acknowledge that the experimental arena itself does not replicate the conditions found in the wild. Our approach aimed to incorporate elements of natural behaviour by allowing two spiders to freely move and interact within the controlled environment. This approach aligns with principles from computational ethology, which seeks to balance the trade-off between repeatability/standardization and observing free, naturalistic behaviour. By using this paradigm, we aimed to capture behaviours that closely resemble those exhibited in their natural habitat. This setup was chosen to balance the need for ecological validity with the requirements for standardized data collection. 

      Also, and this point has been raised above, by observing the spiders' natural interactions without restraining them or using artificial stimuli like computer animations, we aimed to capture behaviours that closely resemble their natural responses to conspecifics. In contrast, we would not have any clear expectations regarding responses to arbitrarily designed artificial stimuli. This method provides a more ecologically valid assessment of the spiders' recognition abilities.

      There are a few details wrong in Line 41. 'Salticidae' is a family name and shouldn't be italicized. Also, the sentence suggests that there is a spider called a 'jumping spider' in the family Salticidae, which is technically called Phidippus regius. To clarify, all spiders in the family Salticidae are known as jumping spiders, and one species of jumping spiders is called Phidippus regius.

      We will correct this in the manuscript to accurately reflect the classification and terminology. Thank you for pointing out these inaccuracies.

      A manuscript on individual recognition by a salticid should include citations to earlier papers that have already considered individual recognition by salticids. As well as the paper by Tedore and Johnsen (2013), the authors should be aware of the following papers.

      Clark, R. J., & Jackson, R. R. (1994). Portia labiata, a cannibalistic jumping spider, discriminates between its own and foreign egg sacs. International Journal of Comparative Psychology, 7, 3843.

      Clark, R. J., & Jackson, R. R. (1994). Self-recognition in a jumping spider: Portia labiata females discriminate between their own draglines and those of conspecifics. Ethology, Ecology & Evolution, 6, 371-375.

      Clark, R. J., & Jackson, R. R. (1995). Araneophagic jumping spiders discriminate between the draglines of familiar and unfamiliar conspecifics. Ethology, Ecology & Evolution, 7, 185-190.

      We appreciate the reviewer's suggestion to include citations to these earlier papers. We will add the recommended references to provide a comprehensive background.

      In Line 203, I would not consider "interaction with human caretakers and experimenters" to be a form of behavioral enrichment. This kind of interaction has the potential to be stressful for the spiders, rather than enriching. I suggest deleting that part of the sentence.

      We appreciate the reviewer's feedback and agree that interactions with human caretakers and experimenters might not always be enriching and could potentially be stressful for the spiders. We will remove that part of the sentence to better reflect the intended meaning.

      Reviewer #3 (Recommendations For The Authors):

      This manuscript is useful and interesting, and I predict that it will be influential, but more attention should be given to stating the objective and conclusion accurately and clearly. As I understand it, the objective was to investigate a specific hypothesis: that Phidippus regius has a capacity to identify conspecific individuals as particular individuals (i.e., individual identification). Strong evidence supporting this hypothesis being true would be especially remarkable because I am unaware of any published work having shown evidence of a spider expressing this specific perceptual capacity.

      Thank you for recognizing the significance and potential influence of our manuscript. We agree that clearly stating the objective and conclusions is essential for conveying the importance of our findings. Our results provide robust evidence supporting the hypothesis that Phidippus regius can recognize and remember individual conspecifics. We will revise the manuscript to more clearly highlight the objective and our conclusions, emphasizing the novel evidence for individual identification in these spiders.

      Based on reading this manuscript and based on my understanding of the meaning of 'individual identification', it seems to me that the hypothesis that P. regius has a capacity for individual identification might or might not be true, and the experiments in this manuscript cannot tell us which is the case. 

      We respectfully disagree with the reviewer's assessment. Our experiments were carefully designed to test whether P. regius has the capacity for individual identification, and our results provide clear evidence supporting this hypothesis. The systematic differences in the spiders' behaviour when encountering familiar versus novel individuals indicate that they can recognize and remember specific conspecifics. We will revise the manuscript to ensure that the evidence and conclusions are stated more clearly to address any potential misunderstandings.

      Determining which is the case would have required research that made better use of the literature, and displayed more critical thinking. addressed credible alternative hypotheses and adopted experimental methods that focused more strictly on individual identification. 

      The distinction between whether P. regius has a capacity for individual identification is not ambiguous in our study. Our findings clearly demonstrate this capacity through systematic behavioural responses to familiar versus novel individuals. As pointed out above, the experimental procedure might be complex, but results are systematic despite this complexity. The experiments were designed to directly address the hypothesis of individual identification, and the data robustly support our conclusions. While considering alternative hypotheses is important, the results we present provide a coherent and compelling case for individual identification in P. regius. We will ensure our manuscript clearly articulates this narrative and the supporting evidence.

      At the same time, I also appreciate that asking for all of that at once would be asking for too much. As I see it, this manuscript tells us about research that moves us closer to a clear focus on the details and questions that will matter in the context of considering a hypothesis that is strictly about individual identification. More importantly, I think this research reveals a perceptual capacity that is remarkable even if it is not strictly a capacity for individual identification.

      We understand the desire for a more focused exploration of individual identification with paradigms more familiar to the reviewers and we acknowledge that further detailed studies could enhance our understanding of this capacity. However, our findings do indeed suggest that Phidippus regius exhibits a remarkable perceptual capacity for recognizing and remembering individual conspecifics. The systematic behavioural responses observed in our experiments strongly indicate that these spiders possess the ability for individual recognition. While our study may not have explored every potential detail (e.g. which features are most crucial for the memory matching processes), the evidence we present robustly supports the conclusion of individual identification.

      We acknowledge that it is indeed valuable to follow established paradigms and build upon the frameworks that have been used successfully in similar species and studies. These paradigms provide a solid foundation for scientific inquiry and allow for comparability across different research efforts. However, it is equally important to acknowledge and explore alternative approaches. Scientific progress is driven not only by replication but also by innovation. By employing new paradigms, researchers can uncover novel insights and push the boundaries of current understanding. The paradigm we used in our study, while different from those traditionally applied to similar research, is not an invention but a well-established method in various domains. It represents an innovative application in the context of our specific research questions, offering a fresh perspective and contributing to the advancement of the field.

      As I understand it, 'individual identification' means identifying another individual as being a particular individual instead of a member of a larger set (or 'class') of individuals. An 'individual' is a set containing a single individual. Interesting examples of identifying members of larger sets include discriminating between familiar and unfamiliar individuals. In the context of the specific experiments in this manuscript, familiar-unfamiliar discrimination means discriminating between recently-seen and not-so-recently-seen individuals. My impression is that the experiments in this manuscript have given us a basis for concluding that P. regius has a capacity for familiarunfamiliar (recently seen versus not so recently seen) discrimination. If this is the case, then I think this is the conclusion that should be emphasised. This would be an important conclusion.

      I appreciate that, depending on how we use the words, familiar-unfamiliar discrimination might be construed as being 'individual identification'. An individual is identified as 'the individual recently seen'. As a casual way of speaking, it can be reasonable to call this 'individual identification'. The difficulty comes from the way calling this 'individual identification' can suggest something more than has been demonstrated. To navigate through this difficulty, we need an expression to use for a capacity that goes beyond familiar-unfamiliar discrimination. In the context of this manuscript about P. regius, we need expressions that will make it easy to consider two things. One of these things is a capacity for familiar-unfamiliar discrimination. The other is the capacity to identify another individual as being a particular individual.

      We appreciate the reviewer's insightful comments on the distinction between familiar-unfamiliar discrimination and individual identity recognition. Our study indeed focuses on demonstrating that Phidippus regius can recognize and remember individual conspecifics, providing evidence for individual identity recognition.

      Two specific behavioural hallmarks that speak against familiarity recognition:

      First, the significant dishabituation response to novel individuals introduced after multiple sessions underscores the specificity of the recognition. This shows that the spiders' habituation is not general but specific to familiar individuals. 

      Second, the pattern of habituation over the sessions provides further evidence: We observed the strongest systematic modulation in Session 1, a reduced modulation in Session 2, and a further diminished effect in Session 3. If the spiders were only responding based on familiarity, we would expect a more drastic decrease, resulting in a washed-out non-effect by Session 2. However, the continued, though diminishing, differentiation between habituation and dishabituation trials across sessions indicates that the spiders are not merely responding to a general sense of familiarity but are engaging in individual recognition. In other words, the spiders' ability to distinguish between familiar and novel individuals even after repeated exposures suggests that they are not just recognizing a familiar status but are identifying specific individuals.

      Things people do might help clarify what this means. People have an extraordinary capacity for identifying other individuals as particular individuals. Often this is based on giving each other names. Imagine we are letting somebody see photographs and asking them to identify who they see. The answer might be, 'somebody familiar' or 'somebody I saw recently' (familiar-unfamiliar discrimination); or the question might be answered by naming a particular individual (individual identification).

      We appreciate the reviewer's efforts to clarify the distinction between familiar-unfamiliar discrimination and individual recognition using human examples. However, we believe this comparison might not fully capture the complexity of individual recognition in non-human animals. 

      Familiarity recognition refers to recognizing someone as having been seen or encountered before without necessarily distinguishing them from others in the same category. On the other hand, identity recognition involves recognizing a specific individual based on unique characteristics (or features). In humans, this often involves naming, but more critically, like in most animals, it involves recognizing visual, auditory, chemical or other sensory cues. In animals, including spiders, individual recognition does not involve and let alone rely on naming but on the ability to distinguish between individuals based on sensory cues and learnt associations. This is a valid and well-documented form of individual recognition across many species.

      Individual recognition does not require naming or the assignment of a referential label. Animals can distinguish between specific individuals based on previously perceived and stored features and characteristics. Naming is the exception rather than the rule in the animal kingdom. Only a few species, such as humans and maybe certain cetaceans, use naming for identity recognition. This is an evolutionary rarity and not the standard mechanism for individual recognition, which primarily relies on sensory cues and learnt associations. Furthermore, the mechanism of recognition in both humans and animals involves a complex process of matching incoming sensory and perceptual information with stored memory representations. Naming is merely a tool for communication, allowing us to convey which individual we are referring to. It is not the mechanism by which recognition occurs. The core of individual recognition is this matching process, where sensory cues (visual, auditory, chemical, etc.) are compared to memory traces of previously encountered individuals. Therefore, the suggestion that individual identification necessitates naming misrepresents the actual cognitive processes involved. 

      We can think of individual identification being based on more fine-grained discrimination (with this, set size = one), with familiar-unfamiliar discrimination being more coarse-grained discrimination (with this, set size can be more than one). Restricting the expression 'individual identification' to instances of having the capacity to identify another individual as being a particular individual (set size = one) is better aligned with normal usage of this expression.

      Absolutely, the distinction between fine-grained and coarse-grained discrimination aligns with the concept of different category levels, such as basic and subordinate levels, put forward by Eleanor Rosch (e.g. Rosch, 1973). In the context of individual recognition, fine-grained discrimination (where set size = one) refers to the ability to identify a specific individual based on unique characteristics. This is referred to as subordinate level categorization. Coarse-grained discrimination (where set size can be more than one) refers to recognizing someone as familiar without distinguishing them from others in the same category, more similar to basic level categorization. 

      Rosch, E.H. (1973). "Natural categories". Cognitive Psychology. 4 (3): 328–50.doi:10.1016/0010-0285(73)90017-0

      There is a strong emphasis on an asocial-social distinction in this manuscript. It seems to me that this needs to be focused more clearly on the specific factors that would make a capacity for individual identification beneficial. In the context of this manuscript, the term 'social' may suggest too much. It seems to me that the issue that matters the most is whether individuals live in situations where important encounters occur frequently between the same individuals. Irrespective of whether other notions of the meaning of 'social' also apply, there are salticids that live in aggregated situations where they frequently have important encounters with each other. This is the case with Phidippus regius in the field in Florida, but I realize that there may not be much published information about the natural history of this salticid. Even so, there are salticids to which the word 'social' has been applied in published literature.

      We appreciate the reviewer's comments on the asocial-social distinction and we agree that this terminology might need refinement. Our intent was not to categorize Phidippus regius rigidly but to explore the contextual factors influencing the benefits of individual identification. The critical factor in our study is indeed the frequency and importance of encounters between individuals, rather than a broader social structure. We will revise the manuscript to reflect this more nuanced perspective, focusing on the ecological validity of our experimental design and the adaptive significance of individual recognition in environments where repeated encounters can occur.

    1. eLife Assessment

      This important study uses data on over 56 million articles to examine the dynamics of interdisciplinarity and international collaborations in research journals. The data analytics used to quantify disciplinary and national diversity are convincing, and support the claims that journals have become more diverse in both aspects.

    2. Reviewer #1 (Public review):

      Summary:

      The authors aim to explore how interdisciplinarity and internationalization-two increasingly prominent characteristics of scientific publishing-have evolved over the past century. By constructing entropy-based indices from a large-scale bibliometric dataset (OpenAlex), they examine both long-term trends and recent dynamics in these two dimensions across a selection of leading disciplinary and multidisciplinary journals. Their goal is to identify field-specific patterns and structural shifts that can inform our understanding of how science has become more globally collaborative and intellectually integrated.

      Strengths and Weaknesses:

      The paper's primary strength lies in its comprehensive temporal scope and use of a rich, openly available dataset covering over 56 million articles. The interdisciplinary and internationalization indices are well-founded and allow meaningful comparisons across fields and time. Moreover, the distinction between disciplinary and multidisciplinary journals adds valuable nuance. However, some methodological choices, such as the use of a 5-year sliding window to compute trend values, are insufficiently justified and under-explained. The paper also does not fully address disparities in data coverage across disciplines and time, which may affect the reliability of historical comparisons. Finally, minor issues in grammar and clarity reduce the overall polish of the manuscript.

      Evaluation of Findings:

      Overall, the authors have largely succeeded in achieving their stated aims. The findings-such as the sharp rise in internationalization in fields like Physics, and the divergence in interdisciplinarity trends across disciplines-are clearly presented and generally well-supported by the data. The authors effectively demonstrate that scientific journals have not followed a uniform trajectory in terms of structural evolution. However, greater clarity in trend estimation methods and better acknowledgment of dataset limitations would help to further substantiate the conclusions and enhance their generalizability.

      Impact and Relevance:

      This study makes a timely and meaningful contribution to the fields of scientometrics, sociology of science, and science policy. Its combination of scale, historical depth, and field-level comparison offers a useful framework for understanding changes in scientific publishing practices. The entropy-based indicators are simple yet flexible, and the use of open bibliometric data enhances reproducibility and accessibility for future research. Policymakers, journal editors, and researchers interested in publication dynamics will likely find this work informative, and its methods could be applied or extended to other structural dimensions of scholarly communication.

    3. Reviewer #2 (Public review):

      Summary:

      This paper uses large-scale publication data to examine the dynamics of interdisciplinarity and international collaborations in research journals. The main finding is that interdisciplinarity and internationalism have been increasing over the past decades, especially in prestigious general science journals.

      Strengths:

      The paper uses a state-of-the-art large-scale publication database to examine the dynamics of interdisciplinarity and internationalism. The analyses span over a century and in major scientific fields in natural sciences, engineering, and social sciences. The study is well designed and has provided a range of robustness tests to enhance the main findings. The writing is clear and well organized.

      Weaknesses:

      While the research provides interesting perspectives for the reader to learn about the trends of journal preferences, I have a few points for the authors to consider that might help strengthen their work.

      The first thing that comes to mind is the epistemic mechanism of the study. Why should there be a joint discussion combining internationalism and interdisciplinarity? While internationalism is the tendency to form multinational research teams to work on research projects, interdisciplinarity refers to the scope and focus of papers that draw inspiration from multiple fields. These concepts may both fall into the realm of diversity, but it remains unclear if there is any conceptual interplay that underlies the dynamics of their increase in research journals.

      It is also unclear why internationalization is increasing. Although the authors have provided a few prominent examples in physics, such as CERN and LIGO, which are complex and expensive experimental facilities that demand collective efforts and investments from the global scientific community, whether some similar concerns or factors drive the growth of internationalism in other fields remains unknown. I can imagine that these concerns do not always apply in many fields, and the authors need to come up with some case studies in diverse fields with some sociological theory to support their empirical findings.

      The authors use Shannon entropy as a measure of diversity for both internationalism and interdisciplinarity. However, entropy may fail to account for the uneven correlations between fields, and the range of value chances when the number of categories changes. The science of science and scientometrics community has proposed a range of diversity indicators, such as the Rao-Stirling index and its derivatives. One obvious advantage of the RS index is that it explicitly accounts for the heterogeneous connections between fields, and the value ranges from 0 to 1. Using more state-of-the-art metrics to quantify interdisciplinarity may help strengthen the data analytics.

    1. eLife Assessment

      This important study combines imaginative and innovative experiments with a finite element modelling to demonstrate the relevance of poroelasticity in the mechanical properties of cells across physiologically relevant time and length scales. The authors present convincing evidence that cytosolic flows and pressure gradients can persist in cells with permeable membranes, generating spatially segregated influx and outflux zones. These findings are of interest to the cell biology and biophysics communities.

    2. Reviewer #1 (Public review):

      Summary:

      This work investigated whether cytoplasmic poroelastic properties play an important role in cellular mechanical response over length scales and time scales relevant to cell physiology. Overall, the manuscript concludes that intracellular cytosolic flows and pressure gradients are important for cell physiology and that they act of time- and length-scales relevant to mechanotransduction and cell migration.

      Strengths:

      Their approach integrates both computational and experimental methods. The AFM deformation experiments combined with measuring z-position of beads is a challenging yet compelling method to determine poroelastic contributions to mechanical realization.

      The work is quite interesting and will be of high value to the field of cell mechanics and mechanotransduction.

      Weaknesses:

      The weaknesses I noted earlier were adequately addressed in the revised version.

    3. Reviewer #2 (Public review):

      Summary:

      Malboubi et al. present an experimental framework to investigate the rheological properties of the cell cytoplasm. Their findings support a model where the cytoplasm behaves as a poroelastic material governed by Darcy's law. They demonstrate that this poroelastic behavior delays the equilibration of hydrostatic pressure gradients within the cytoplasm over timescales of 1 to 10 seconds following a perturbation, likely due to fluid-solid friction within the cytoplasmic matrix. Furthermore, under sustained perturbations such as depressurization, they reveal that pressure gradients can persist for minutes, which they propose might potentially influence physiological processes like mechanotransduction or cell migration typically happening on these timescales.

      Strengths:

      This article holds significant value within the ongoing efforts of the cell biology and biophysics communities to quantitatively characterize the mechanical properties of cells. The experiments are innovative and thoughtfully contextualized with quantitative estimates and a finite element model that supports the authors' hypotheses.

      Comments & Questions:

      The authors have successfully addressed the questions and comments raised in my previous review, significantly improving the manuscript's depth. Regarding my last question on the predicted saturation of the time lag, the authors propose the interesting hypothesis that the cell cortex becomes dominant at distances beyond 30 microns and plan to test this hypothesis at a later stage.

    4. Reviewer #3 (Public review):

      Summary:

      In this delightful study, the authors use local indentation of the cell surface combined with out-of-focus microscopy to measure the rates of pressure spread in the cell and to argue that the results can be explained with the poroelastic model. Osmotic shock that decreases cytoskeletal mesh size supports this notion. Experiments with water injection and water suction further support it, and also, together with a mechanical model and elegant measurements of decreasing fluorescence in the cell 'flashed' by external flow, demonstrate that the membrane is permeable, and that steady flow and pressure gradient can exist in a cell with water source/sink in different locations. Use of blebs as indicators of the internal pressure further supports the notion of differential cytoplasmic pressure.

      Strengths:

      The study is very imaginative, interesting, novel and important.

      Weaknesses: I have two broad critical comments:

      (1) I sense that the authors are correct that the best explanation of their results is the passive poroelastic model. Yet, to be thorough, they have to try to explain the experiments with other models and show why their explanation is parsimonious. For example, one potential explanation could be some mechanosensitive mechanism that does not involve cytoplasmic flow; another could be viscoelastic cytoskeletal mesh, again not involving poroelasticity. I can imagine more possibilities. Basically, be more thorough in the critical evaluation of your results. Besides, discuss potential effect of significant heterogeneity of the cell.

      (2) The study is rich in biophysics but a bit light on chemical/genetic perturbations. It could be good to use low levels of chemical inhibitors for, for example, Arp2/3, PI3K, myosin etc, and see the effect and try to interpret it. Another interesting question - how adhesive strength affects the results. A different interesting avenue - one can perturb aquaporins. Etc. At least one perturbation experiment would be good.

      Comments on revisions: I am satisfied with the revisions

    1. eLife Assessment

      In flies defective for axonal transport of mitochondria, the authors report the upregulation of one subunit, the beta subunit, of the heterotrimeric eIF2 complex via mass spectroscopy proteomics. Neuronal overexpression of eIF2β phenocopied aspects of neuronal dysfunction observed when axonal transport of mitochondria was compromised. Conversely, lowering eIF2β expression suppressed aspects of neuronal dysfunction. While these are intriguing and useful observations, technical weaknesses limit the interpretation. On balance, the evidence supporting the current claims is suggestive but incomplete, especially concerning the characterization of the eIF2 heterotrimer and the data regarding translational regulation.

    2. Reviewer #1 (Public review):

      The study presents significant findings on the role of mitochondrial depletion in axons and its impact on neuronal proteostasis. It effectively demonstrates how the loss of axonal mitochondria and elevated levels of eIF2β contribute to autophagy collapse and neuronal dysfunction. The use of Drosophila as a model organism and comprehensive proteome analysis adds robustness to the findings.

      In this revision, the authors have responded thoughtfully to previous concerns. In particular, they have addressed the need for a quantitative analysis of age-dependent changes in eIF2β and eIF2α. By adding western blot data from multiple time points (7 to 63 days), they show that eIF2β levels gradually increase until middle age, then decline. In milton knockdown flies, this pattern appears shifted, supporting the idea that mitochondrial defects may accelerate aging-related molecular changes. These additions clarify the temporal dynamics of eIF2β and improve the overall interpretation.

      Other updates include appropriate corrections to figures and quantification methods. The authors have also revised some of their earlier mechanistic claims, presenting a more cautious interpretation of their findings.

      Overall, this work provides new insights into how mitochondrial transport defects may influence aging-related proteostasis through eIF2β. The manuscript is now more convincing, and the revisions address the main points raised earlier. I find the updated version much improved.

    3. Reviewer #2 (Public review):

      In the manuscript, the authors aimed to elucidate the molecular mechanism that explains neurodegeneration caused by the depletion of axonal mitochondria. In Drosophila, starting with siRNA depletion of milton and Miro, the authors attempted to demonstrate that the depletion of axonal mitochondria induces the defect in autophagy. From proteome analyses, the authors hypothesized that autophagy is impacted by the abundance of eIF2β and the phosphorylation of eIF2α. The authors followed up the proteome analyses by testing the effects of eIF2β overexpression and depletion on autophagy. With the results from those experiments, the authors proposed a novel role of eIF2β in proteostasis that underlies neurodegeneration derived from the depletion of axonal mitochondria, which they suggest accelerates age-dependent changes rather than increasing their magnitude.

      Strong caution is necessary regarding the interpretation of translational regulation resulting from the milton KD. The effect of milton KD on translation appears subtle, if present at all, in the puromycin incorporation experiments in both the initial and revised versions. Additionally, the polysome profiling data in the revised manuscript lack the clear resolution for ribosomal subunits, monosomes, and polysomes that is typically expected in publications.

    4. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      The authors observed a decline in autophagy and proteasome activity in the context of Milton knockdown. Through proteomic analysis, they identified an increase in the protein levels of eIF2β, subsequently pinpointing a novel interaction within eIF subunits where eIF2β contributes to the reduction of eIF2α phosphorylation levels. Furthermore, they demonstrated that overexpression of eIF2β suppresses autophagy and leads to diminished motor function. It was also shown that in a heterozygous mutant background of eIF2β, Milton knockdown could be rescued. This work represents a novel and significant contribution to the field, revealing for the first time that the loss of mitochondria from axons can lead to impaired autophagy function via eIF2β, potentially influencing the acceleration of aging.

      Thank you so much for your review and comments.

      Reviewer #2 (Public Review):

      In the manuscript, the authors aimed to elucidate the molecular mechanism that explains neurodegeneration caused by the depletion of axonal mitochondria. In Drosophila, starting with siRNA depletion of Milton and Miro, the authors attempted to demonstrate that the depletion of axonal mitochondria induces the defect in autophagy. From proteome analyses, the authors hypothesized that autophagy is impacted by the abundance of eIF2β and the phosphorylation of eIF2α. The authors followed up the proteome analyses by testing the effects of eIF2β overexpression and depletion on autophagy. With the results from those experiments, the authors proposed a novel role of eIF2β in proteostasis that underlies neurodegeneration derived from the depletion of axonal mitochondria.

      The manuscript has several weaknesses. The reader should take extra care while reading this manuscript and when acknowledging the findings and the model in this manuscript.

      The defect in autophagy by the depletion of axonal mitochondria is one of the main claims in the paper. The authors should work more on describing their results of LC3-II/LC3-I ratio, as there are multiple ways to interpret the LC3 blotting for the autophagy assessment. Lysosomal defects result in the accumulation of LC3-II thus the LC3-II/LC3-I ratio gets higher. On the other hand, the defect in the early steps of autophagosome formation could result in a lower LC3-II/LC3-I ratio. From the results of the actual blotting, the LC3-I abundance is the source of the major difference for all conditions (Milton RNAi and eIF2β overexpression and depletion).

      Thank you so much for your review and comments. As the reviewer pointed out, LC3-II/LC3- I ratio changes do not necessarily indicate autophagy defects. However, since p62 accumulation (Figure 2B, 2E, 3E, Figure 8C, Figure 9C), these results collectively suggest that autophagy is lowered.

      As the reviewer pointed out and we described in v2, milton knockdown, eIF2β overexpression and heterozygosity increase LC3-I abundance. We do not know how these conditions increase LC3-I at this moment. We will investigate the cause of the increase in LC3-I by milton knockdown and how it contribute to impaired autophagy. We added this discussion as:

      Lines 388-393; ‘Our results also suggest that milton knockdown and overexpression of eIF2β affect autophagy via increased LC3-I abundance (Figures 2 and 7), suggesting an unconventional mechanism of autophagy suppression. To our knowledge, the roles of eIF2β in aging and autophagy independent of ISR have not been reported. Our results revealed a novel function of eIF2β to maintain proteostasis during aging, while further investigation is required to elucidate underlying mechanisms.’

      Another main point of the paper is the up-regulation of eIF2β by depleting the axonal mitochondria leads to the proteostasis crisis. This claim is formed by the findings from the proteome analyses. The authors should have presented their proteomic data with much thorough presentation and explanation. As in the experiment scheme shown in Figure 4A, the author did two proteome analyses: one from the 7-day-old sample and the other from the 21-day-old sample. The manuscript only shows a plot of the result from the 7-day-old sample, but that of the result from the 21-day-old sample. For the 21-day-old sample, the authors only provided data in the supplemental table, in which the abundance ratio of eIF2β from the 21-day-old sample is 0.753, meaning eIF2β is depleted in the 21-day-old sample. The authors should have explained the impact of the eIF2β depletion in the 21-day-old sample, so the reader could fully understand the authors' interpretation of the role of eIF2β on proteostasis.

      Thank you for pointing it out. Plots of the 21-day-old proteome results was included in the main figure (Figure 4C) in v2. In this revision, we further analyzed age-dependent changes of eIF2β levels by western blotting (Figure 4G). We found that eIF2β levels increased during aging until 49-day-old then reduced at 63-day-old (Figure 4G in the revised manuscript). At the young age, eIF2β levels were higher in milton knockdown brain compared to the control , and eIF2β levels were lower in milton knockdown brains than those in the control. These results suggest that milton knockdown accelerates age-dependent changes in eIF2β. We added these results and discussion in the revised manuscript.

      Lines 240-243: ‘We also investigated age-dependent changes in eIF2β by western blotting of control flies at 7-, 21-, 35-, and 49-, and 63-day-old. eIF2β levels increased during aging until 49-day-old (Figure 4G). These results suggest that upregulation of eIF2β in milton knockdown fly brain reflects early an onset of age-dependent increase of eIF2β levels.’

      Lines 363-368: ‘We also found that eIF2β protein levels increase in an age-dependent manner until 49-day-old and reduces after that (Figure 4G). In the brains with neuronal knockdown of milton, eIF2β levels were higher at 7-day-old than those in control and lower at the 21-day-old (Figure 4D and Supplementary table). These results suggest that milton knockdown is likely accelerating age-dependent changes rather than increasing their magnitude.’Our new data indicate that eIF2β levels increase during aging in control flies until 49-day-old, then reduce at 63-day-old (included as Figure 4G in the revised manuscript). These age- dependent changes might explain the reduction in eIF2β levels in Milton knockdown compared to the control in middle age: higher eIF2β levels in milton knockdown flies at a young age than control and lower eIF2β levels in the middle-aged flies may reflect premature aging.

      We included these sentences in the discussion section:

      Lines 240-243:‘We also investigated age-dependent changes in eIF2β by western blotting of control flies at 7-, 21-, 35-, and 49-, and 63-day-old. eIF2β levels increased during aging until 49-day-old (Figure 4G). These results suggest that upregulation of eIF2β in milton knockdown fly brain reflects early an onset of age-dependent increase of eIF2β levels.’

      Lines 359-371: ‘Our results suggest that the loss of axonal mitochondria is an event upstream of proteostasis collapse during aging. The number of puncta of ubiquitinated proteins was higher in milton knockdown at 14-day-old, but there was no significant difference at 30-day-old (Figure 1). Proteome analyses also showed that age-related pathways, such as immune responses, are enhanced in young flies with milton knockdown (Table 2). We also found that eIF2β protein levels increase in an age-dependent manner until 49-day-old and reduces after that (Figure 4G). In the brains with neuronal knockdown of milton, eIF2β levels were higher at 7-day-old than those in control and lower at the 21-day-old (Figure 4D and Supplementary table). These results suggest that milton knockdown is likely accelerating age-dependent changes rather than increasing their magnitude. Disruption of proteostasis is expected to contribute neurodegeneration38 , and it would be interesting to analyze the sequence of protein accumulation and axonal degeneration in milton knockdown (24,29 and Figure 1) in detail with higher time resolution.’


      With our new data, we revised some of our responses to the first round of reviewer’s comments.

      Reviewer #1 (Public Review):

      The authors observed a decline in autophagy and proteasome activity in the context of Milton knockdown. Through proteomic analysis, they identified an increase in the protein levels of eIF2β, subsequently pinpointing a novel interaction within eIF subunits where eIF2β contributes to the reduction of eIF2α phosphorylation levels. Furthermore, they demonstrated that overexpression of eIF2β suppresses autophagy and leads to diminished motor function. It was also shown that in a heterozygous mutant background of eIF2β, Milton knockdown could be rescued. This work represents a novel and significant contribution to the field, revealing for the first time that the loss of mitochondria from axons can lead to impaired autophagy function via eIF2β, potentially influencing the acceleration of aging. To further support the authors' claims, several improvements are necessary, particularly in the methods of quantification and the points that should be demonstrated quantitatively. It is crucial to investigate the correlation between aging and the proteins eIF2β and eIF2α.

      Thank you so much for your review and comments. We included analyses of protein levels of eIF2α, eIF2β, and eIF2γ at 7 days and 21 days (Figure 4D). The manuscript was revised as below;

      Lines 246-249 ‘As for the other subunits of eIF2 complex, proteome analysis did not detect a significant difference in the protein levels of eIF2α and eIF2γ between milton knockdown and control flies at 7 and 21 days (Figure 4D).’

      NEW TEXT: We analyzed age-dependent changes of eIF2β levels in more detail by western blotting (Figure 4G). We found that eIF2β levels increased during aging until 49-day-old then reduced at 63-day-old (Figure 4G in the revised manuscript). At the young age, eIF2β levels were higher in milton knockdown brain compared to the control , and eIF2β levels were lower in milton knockdown brains than those in the control. These results suggest that Milton knockdown accelerates age-dependent changes in eIF2β.. We added these results and discussion in the revised manuscript.

      NEW TEXT: Lines 240-243: ‘We also investigated age-dependent changes in eIF2β by western blotting of control flies at 7-, 21-, 35-, and 49-, and 63-day-old. eIF2β levels increased during aging until 49-day-old (Figure 4G). These results suggest that upregulation of eIF2β in milton knockdown fly brain reflects early an onset of age-dependent increase of eIF2β levels.’

      NEW TEXT: Lines 363-368: ‘We also found that eIF2β protein levels increase in an age-dependent manner until 49-day-old and reduces after that (Figure 4G). In the brains with neuronal knockdown of milton, eIF2β levels were higher at 7-day-old than those in control and lower at the 21-day-old (Figure 4D and Supplementary table). These results suggest that milton knockdown is likely accelerating age-dependent changes rather than increasing their magnitude.’

      Reviewer #2 (Public Review):

      In the manuscript, the authors aimed to elucidate the molecular mechanism that explains neurodegeneration caused by the depletion of axonal mitochondria. In Drosophila, starting with siRNA depletion of Milton and Miro, the authors attempted to demonstrate that the depletion of axonal mitochondria induces the defect in autophagy. From proteome analyses, the authors hypothesized that autophagy is impacted by the abundance of eIF2β and the phosphorylation of eIF2α. The authors followed up the proteome analyses by testing the effects of eIF2β overexpression and depletion on autophagy. With the results from those experiments, the authors proposed a novel role of eIF2β in proteostasis that underlies neurodegeneration derived from the depletion of axonal mitochondria.

      The manuscript has several weaknesses. The reader should take extra care while reading this manuscript and when acknowledging the findings and the model in this manuscript.

      The defect in autophagy by the depletion of axonal mitochondria is one of the main claims in the paper. The authors should work more on describing their results of LC3-II/LC3-I ratio, as there are multiple ways to interpret the LC3 blotting for the autophagy assessment. Lysosomal defects result in the accumulation of LC3-II thus the LC3-II/LC3-I ratio gets higher. On the other hand, the defect in the early steps of autophagosome formation could result in a lower LC3-II/LC3-I ratio. From the results of the actual blotting, the LC3-I abundance is the source of the major difference for all conditions (Milton RNAi and eIF2β overexpression and depletion). In the text, the authors simply state the observation of their LC3 blotting. The manuscript lacks an explanation of how to evaluate the LC3-II/LC3-I ratio. Also, the manuscript lacks an elaboration on what the results of the LC3 blotting indicate about the state of autophagy by the depletion of axonal mitochondria.

      Thank you for pointing it out, and we apologize for an insufficient description of the result. We included quantitation of the levels of LC3-I and LC3-II in Figures 2A, 2D, 3D, 7B (Figure 6B in the previous version), and 8B (Figure 7B in the previous version). As the reviewer pointed out, LC3-II/LC3-I ratio changes do not necessarily indicate autophagy defects. However, since p62 accumulation (Figure 2B, 2E, 3E, 7C (Figure 6C in the previous version), 8C (Figure 7C in the previous version)), these results collectively suggest that autophagy is lowered. We revised the manuscript to include this discussion as below:

      Lines 174-186 ‘During autophagy progression, LC3 is conjugated with phosphatidylethanolamine to form LC3-II, which localizes to isolation membranes and autophagosomes. LC3-I accumulation occurs when autophagosome formation is impaired, and LC3-II accumulation is associated with lysosomal defects31,32. p62 is an autophagy substrate, and its accumulation suggests autophagic defects31,32. We found that milton knockdown increased LC3-I, and the LC3-II/LC3-I ratio was lower in milton knockdown flies than in control flies at 14-day-old (Figure 2A). We also analyzed p62 levels in head lysates sequentially extracted using detergents with different stringencies (1% Triton X-100 and 2% SDS). Western blotting revealed that p62 levels were increased in the brains of 14-day-old of milton knockdown flies (Figure 2B). The increase in the p62 level was significant in the Triton X-100- soluble fraction but not in the SDS-soluble fraction (Figure 2B), suggesting that depletion of axonal mitochondria impairs the degradation of less-aggregated proteins.’

      Line 189-190: 'At 30 day-old, LC3-I was still higher, and the LC3-II/LC3-I ratio was lower, in milton knockdown compared to the control (Figure 2D).’

      Line 202-203: ‘However, in contrast with milton knockdown, Pfk knockdown did not affect the levels of LC3-I, LC3-II or the LC3-II/LC3-I ratio (Figure 3D).’

      Line 279-285: ‘Neuronal overexpression of eIF2β increased LC3-II, while the LC3-II/LC3-I ratio was not significantly different (Figure 7A and B). Overexpression of eIF2β significantly increased the p62 level in the Triton X-100-soluble fraction (Figure 7C, 4-fold vs. control, p <0.005 (1% Triton X-100)) but not in the SDS-soluble fraction (Figure 7C, 2-fold vs. control, p\= 0.062 (2% SDS)), as observed in brains of milton knockdown flies (Figure 2B). These data suggest that neuronal overexpression of eIF2β accumulates autophagic substrates.’

      Line 311-319: ‘Neuronal knockdown of milton causes accumulation of autophagic substrate p62 in the Triton X-100-soluble fraction (Figure 2B), and we tested if lowering eIF2β ameliorates it. We found that eIF2β heterozygosity caused a mild increase in LC3-I levels and decreases in LC3-II levels, resulting in a significantly lower LC3-II/LC3-I ratio in milton knockdown flies (Figure 8B). eIF2β heterozygosity decreased the p62 level in the Triton X- 100-soluble fraction in the brains of milton knockdown flies (Figure 8C). The p62 level in the SDS-soluble fraction, which is not sensitive to milton knockdown (Figure 2B), was not affected (Figure 8C). These results suggest that suppression of eIF2β ameliorates the impairment of autophagy caused by milton knockdown.’

      Another main point of the paper is the up-regulation of eIF2β by depleting the axonal mitochondria leads to the proteostasis crisis. This claim is formed by the findings from the proteome analyses. The authors should have presented their proteomic data with much thorough presentation and explanation. As in the experiment scheme shown in Figure 4A, the author did two proteome analyses: one from the 7-day-old sample and the other from the 21-day-old sample. The manuscript only shows a plot of the result from the 7-day-old sample, but that of the result from the 21-day-old sample. For the 21-day-old sample, the authors only provided data in the supplemental table, in which the abundance ratio of eIF2β from the 21-day-old sample is 0.753, meaning eIF2β is depleted in the 21-day-old sample. The authors should have explained the impact of the eIF2β depletion in the 21-day-old sample, so the reader could fully understand the authors' interpretation of the role of eIF2β on proteostasis.

      NEW TEXT: Thank you for pointing it out. We included plots of the 21-day-old proteome results as a part of the main figure (Figure 4C). As the reviewer pointed out, eIF2β protein levels are lower in milton knockdown background at the 21-day-old compared to the control. Since a reduction in the eIF2_β_ ameliorated milton knockdown-induced locomotor defects in aged flies (Figure 7D), the reduction in eIF2β observed in the 21-day-old milton knockdown flies is not likely to negatively contribute to milton knockdown-induced defects. Our new data indicate that eIF2β levels increase during aging in control flies until 49-day-old, then reduce at 63-day-old (included as Figure 4G in the revised manuscript). These age-dependent changes might explain the reduction in eIF2β levels in Milton knockdown compared to the control in middle age: higher eIF2β levels in milton knockdown flies at a young age than control and lower eIF2β levels in the middle-aged flies may reflect premature aging.

      NEW TEXT: We included these sentences in the discussion section:

      NEW TEXT: Lines 240-243:‘We also investigated age-dependent changes in eIF2β by western blotting of control flies at 7-, 21-, 35-, and 49-, and 63-day-old. eIF2β levels increased during aging until 49-day-old (Figure 4G). These results suggest that upregulation of eIF2β in milton knockdown fly brain reflects early an onset of age-dependent increase of eIF2β levels.’

      NEW TEXT: Lines 359-371: ‘Our results suggest that the loss of axonal mitochondria is an event upstream of proteostasis collapse during aging. The number of puncta of ubiquitinated proteins was higher in milton knockdown at 14-day-old, but there was no significant difference at 30-day-old (Figure 1). Proteome analyses also showed that age-related pathways, such as immune responses, are enhanced in young flies with milton knockdown (Table 2). We also found that eIF2β protein levels increase in an age-dependent manner until 49-day-old and reduces after that (Figure 4G). In the brains with neuronal knockdown of milton, eIF2β levels were higher at 7-day-old than those in control and lower at the 21-day-old (Figure 4D and Supplementary table). These results suggest that milton knockdown is likely accelerating age-dependent changes rather than increasing their magnitude. Disruption of proteostasis is expected to contribute neurodegeneration38 , and it would be interesting to analyze the sequence of protein accumulation and axonal degeneration in milton knockdown (24,29 and Figure 1) in detail with higher time resolution.’

      The manuscript consists of several weaknesses in its data and explanation regarding translation.

      (1) The authors are likely misunderstanding the effect of phosphorylation of eIF2α on translation. The P-eIF2α is inhibitory for translation initiation. However, the authors seem to be mistaken that the down-regulation of P-eIF2α inhibits translation.

      We are sorry for our insufficient explanation in the previous version. As the reviewer pointed out, it is well known that the phosphorylated form of eIF2α inhibits translation initiation. Neuronal knockdown of milton caused a reduction in p-eIF2α (Figure 5D and E (Figure 4J and K in the previous version)), and it also lowered translation (Figure 6 (Figure 5 in the previous version)); the relationship between these two events is currently unclear. We do not think that a reduction in the p-eIF2α suppressed translation; rather, we propose that the unbalance of expression levels of the components of eIF2 complexes negatively affects translation. We revised discussion sections to describe our interpretation more in detail as below:

      Line 374-384: ‘eIF2β is a component of eIF2, which meditates translational regulation and ISR initiation. When ISR is activated, phosphorylated eIF2α suppresses global translation and induces translation of ATF4, which mediates transcription of autophagy-related genes39,40. Since ISR can positively regulate autophagy, we suspected that suppression of ISR underlies a reduction in autophagic protein degradation. We found neuronal knockdown of milton reduced phosphorylated eIF2α, suggesting that ISR is reduced (Figure 5). However, we also found that global translation was reduced (Figure 6). Increased levels of eIF2β might disrupt the eIF2 complex or alter its functions. The stoichiometric mismatch caused by an imbalance of eIF2 components may inhibit ISR induction. Supporting this model, we found that eIF2β upregulation reduced the levels of p-eIF2α (Figure 7).’We have revised the graphical abstract and removed the eIF2 complex since its role in the loss of proteostasis caused by milton knockdown has not been elucidated yet.

      (2) The result of polysome profiling in Figure 4H is implausible. By 10%-25% sucrose density gradient, polysomes are not expected to be observed. The authors should have used a gradient with much denser sucrose, such as 10-50%.

      Thank you for pointing it out. It was a mistake of 10-50%, and we apologize for the oversight. It was corrected (Figure 6 (Figure 5 in the previous version)).

      (3) Also on the polysome profiling, as in the method section, the authors seemed to fractionate ultra-centrifuged samples from top to bottom and then measured A260 by a plate reader. In that case, the authors should have provided a line plot with individual data points, not the smoothly connected ones in the manuscript.

      Thank you for pointing it out. We revised the graph (Figure 6 (Figure 5 in the previous version)).

      (4) For both the results from polysome profiling and puromycin incorporation (Figure 4H and I), the difference between control siRNA and Milton siRNA are subtle, if not nonexistent. This might arise from the lack of spatial resolution in their experiment as the authors used head lysate for these data but the ratio of Phospho-eIF2α/eIF2α only changes in the axons, based on their results in Figure 4E-G. The authors could have attempted to capture the spatial resolution for the axonal translation to see the difference between control siRNA and Milton siRNA.

      Thank you for your comment. We agree that it would be an interesting experiment, but it will take a considerable amount of time to analyze axonal translation with spatial resolution. We will try to include such analyses in the future. For this manuscript, we revised the discussion section to include the reviewer's suggestion as below;

      Lines 355-357: ‘Further analyses to dissect the effects of milton knockdown on proteostasis and translation in the cell body and axon by experiments with spatial resolution would be needed.’

      Recommendations for the authors:

      From the Reviewing Editor:

      As the Reviewing Editor, I have read your manuscript and the associated peer reviews. I have concerns about publishing this work in its current form. I think that your manuscript cannot claim to have found a novel function of eIF2beta because of technical uncertainties and conceptual problems that should be addressed.

      Thank you so much for your review and comments. We addressed all the concerns raised by the reviewers. Point-by-point responses are listed below.

      First, your manuscript is based partly on what appears to be a mistaken understanding of the mechanistic basis of the ISR. Specifically, eIF2 is a heterotrimeric complex of alpha, beta, and gamma subunits. When eIF2a is phosphorylated, the heterotrimer adopts a new conformation. This conformation directly binds and inhibits eIF2B, the decameric GEF that exchanges the GDP bound to the gamma subunit of the eIF2 complex for GTP. Unless I misunderstood your paper, you seem to propose that decreasing levels of phospho-eIF2a will inhibit translation, but this is backward from what we know about the ISR.

      Thank you for your insightful comment, and we are sorry for the confusion. We did not mean to propose that decreasing levels of phospho-eIF2_a_ inhibits translation. We apologize for our insufficient explanation, which might have caused a misunderstanding (Lines 312-318 in the original version). We agree with the reviewer that ‘mismatch due to elevated eIF2-beta could change the behavior of the ISR’. We revised the text in the result section as follows:

      Lines 263-268 (in the Result section) ‘Phosphorylation of eIF2α induces conformational changes in the eIF2 complex and inhibits global translation36. To analyze the effects of milton knockdown on translation, we performed polysome gradient centrifugation to examine the level of ribosome binding to mRNA. Since p-eIF2α was downregulated, we hypothesized that milton knockdown would enhance translation. However, unexpectedly, we found that milton knockdown significantly reduced the level of mRNAs associated with polysomes (Figure 6A and B).’

      Lines 374-384 (in the Discussion section): ‘eIF2β is a component of eIF2, which meditates translational regulation and ISR initiation. When ISR is activated, phosphorylated eIF2α suppresses global translation and induces translation of ATF4, which mediates transcription of autophagy-related genes39,40. Since ISR can positively regulate autophagy, we suspected that suppression of ISR underlies a reduction in autophagic protein degradation. We found neuronal knockdown of milton reduced phosphorylated eIF2α, suggesting that ISR is reduced (Figure 5). However, we also found that global translation was reduced (Figure 6). Increased levels of eIF2β might disrupt the eIF2 complex or alter its functions. The stoichiometric mismatch caused by an imbalance of eIF2 components may inhibit ISR induction. Supporting this model, we found that eIF2β upregulation reduced the levels of p-eIF2α (Figure 7).’

      It may be possible that a stoichiometric mismatch due to elevated eIF2-beta could change the behavior of the ISR, but your paper doesn't adequately address the expression levels of all three eIF2 subunits: alpha, beta, and gamma. The proteomic data shown in Fig 4B is unconvincing on its own because the changes in the beta subunit are subtle. The Western blot in Figure 4C suggests that the KD changes the mass or mobility of the beta subunit, and most importantly, there are no Western blots measuring the levels of eIF2a, eIF2a-phospho, or eIF2-gamma.

      We appreciate the reviewer’s comment and agree that the stoichiometric mismatch due to elevated eIF2β may interfere with ISR. We found overexpression of eIF2β lowered p-eIF2 alpha (Figure S2 in V1), which supports this model. We included this data in the main figure in the revised manuscript (Figure 7D) and revised the text as below:

      Lines 286-289: ‘Since milton knockdown reduced the p-eIF2α level (Figure 5E), we asked whether an increase in eIF2β affects p-eIF2α. Neuronal overexpression of eIF2β did not affect the eIF2α level but significantly decreased the p-eIF2α level (Figure 7D and E).’

      Expression data of eIF2α and eIF2γ from proteomic analyses has been extracted from proteome analyses and included as a table (Figure 4D). Western blots of phospho-eIF2a (Figure S1 in V1) in the main figure (Figure 5B). The result section was revised as below;

      Lines 246-249: ‘As for the other subunits of eIF2 complex, proteome analysis did not detect a significant difference in the protein levels of eIF2α and eIF2γ between milton knockdown and control flies at 7 and 21 days (Figure 4D).’

      NEW TEXT: We also analyzed age-dependent changes of eIF2β by western blotting and found that eIF2β increased during aging until 49-day-old. We included this result as Figure 4G and added these sentences in the result section:

      NEW TEXT: Line 240-243: ‘We also investigated age-dependent changes in eIF2β by western blotting of control flies at 7-, 21-, 35-, and 49-, and 63-day-old. eIF2β levels increased during aging until 49-day-old (Figure 4G). These results suggest that upregulation of eIF2β in milton knockdown fly brain reflects early an onset of age-dependent increase of eIF2β levels.

      Reviewer #1 (Recommendations For The Authors):

      L125-128: In this section, while the efficiency of Milton knockdown is referenced from a previous publication, it is necessary to also mention that the Miro knockdown has been similarly reported in the literature. Additionally, the Methods section lacks details on the Miro RNAi line used, and Table 2 does not include the genotype for Miro RNAi. This information should be included for clarity and completeness.

      Thank you for pointing it out. Knockdown efficiency with this strain has been reported (Iijima- Ando et al., PLoS Genet, 2012). We revised the text to include citation and knockdown efficiency as follows:

      Lines 136-147: ‘There was no significant increase in ubiquitinated proteins in milton knockdown flies at 1-day old, suggesting that the accumulation of ubiquitinated proteins caused by milton knockdown is age-dependent (Figure S1). We also analyzed the effect of the neuronal knockdown of Miro, a partner of milton, on the accumulation of ubiquitin-positive proteins. Since severe knockdown of Miro in neurons causes lethality, we used UAS-Miro RNAi strain with low knockdown efficiency, whose expression driven by elav-GAL4 caused 30% reduction of Miro mRNA in head extract24. Although there was a tendency for increased ubiquitin- positive puncta in Miro knockdown brains, the difference was not significant (Figure 1B, p>0.05 between control RNAi and Miro RNAi). These data suggest that the depletion of axonal mitochondria induced by milton knockdown leads to the accumulation of ubiquitinated proteins before neurodegeneration occurs.’

      L132-L136: The current phrasing in this section suggests an increase in ubiquitinated proteins for both Milton and Miro knockdowns. However, since there is no significant difference noted for Miro, it is incorrect to state an increase in ubiquitin-positive puncta. Furthermore, combining the results of Milton knockdown to claim an increase in ubiquitinated proteins prior to neurodegeneration is misleading. At the very least, the expression here needs to be moderated to accurately reflect the findings.

      Thank you for pointing it out. We revised the text as above.

      L137-L141: Results in Figure 1 indicate that Milton knockdown leads to an increase in ubiquitinated proteins at 14 days, while Miro knockdown shows no difference from the control at either 14 or 30 days. Conversely, both the control and Miro exhibit an increase in ubiquitinated proteins with aging, but this trend does not seem to apply to Milton knockdown. This observation suggests that Milton KD may not affect the changes in protein quality control associated with aging. It implies that Milton's function might be more related to protein homeostasis in younger cells, or that changes due to aging might overshadow the effects of Milton knockdown. These interpretations should be included in the Results or Discussion sections for a more comprehensive analysis.

      NEW TEXT: Thank you for your insightful comment. As you mentioned, the accumulation of ubiquitinated proteins significantly increases only in young flies. Age-related pathways, such as immune responses, are highlighted in young milton knockdown flies but not in the aged flies. Our new result indicates that eIF2β increases during aging in control flies (included as Figure 4G in the revised manuscript), and upregulation of eIF2β in milton knockdown is only observed at a young age. These results suggest that milton knockdown does not increase the magnitude of age-dependent changes but accelerates their onset. We revised the text to include those points as follows:

      NEW TEXT: Lines 152-153: ‘These results suggest that depletion of axonal mitochondria may have more impact on proteostasis in young neurons than in old neurons.’

      NEW TEXT: Lines 359-371: ‘Our results suggest that the loss of axonal mitochondria is an event upstream of proteostasis collapse during aging. The number of puncta of ubiquitinated proteins was higher in milton knockdown at 14-day-old, but there was no significant difference at 30-day- old (Figure 1). Proteome analyses also showed that age-related pathways, such as immune responses, are enhanced in young flies with milton knockdown (Table 2). We also found that eIF2β protein levels increase in an age-dependent manner until 49-day-old and reduces after that (Figure 4G). In the brains with neuronal knockdown of milton, eIF2β levels were higher at 7-day-old than those in control and lower at the 21-day-old (Figure 4 and Supplementary table). These results suggest that milton knockdown is likely accelerating age-dependent changes rather than increasing their magnitude. Disruption of proteostasis is expected to contribute neurodegeneration38 , and it would be interesting to analyze the sequence of protein accumulation and axonal degeneration in milton knockdown (24,29 and Figure 1) in detail with higher time resolution.’

      L143 : Please remove the erroneously included quotation mark.

      Thank you for pointing it out. We corrected it.

      L145-L147:

      While it is understood that Milton knockdown results in a reduction of mitochondria in axons, as reported previously and seemingly indicated in Figure 1E, this paper repeatedly refers to axonal depletion of mitochondria. Therefore, it would be beneficial to quantitatively assess the number of mitochondria in the axonal terminals located in the lamina via electron microscopy. Such quantification would robustly reinforce the argument that mitochondrial absence in axons is a consequence of Milton knockdown.

      Thank you for pointing it out. We included quantitation of the number of mitochondria in the synaptic terminals (Figure 1E).

      The text and figure legend was revised accordingly:

      Lines 156-157: ‘As previously reported24, the number of mitochondria in presynaptic terminals decreased in milton knockdown (Figure 1E).’

      The knockdown of Milton is known to reduce mitochondrial transport from an early stage, but what about swelling? By observing swelling at 1 day and 14 days, it may be possible to confirm the onset of swelling and discuss its correlation with the accumulation of ubiquitinated proteins.

      Quantitation of axonal swelling has also been included (Figure 1F).

      We appreciate the reviewer's comments on the correlation between the accumulation of ubiquitinated proteins and axonal swelling. Axonal swelling was not observed at 3-days-old (Iijima-Ando et al., PLoS Genetics, 2012), indicating that axonal swelling is an age-dependent event. Dense materials are found in swollen axons more often than in normal axons, suggesting a positive correlation between disruption of proteostasis and axonal damage. It would be interesting to analyze the time course of events further; however, we feel it is beyond the scope of this manuscript. We revised the text to include this discussion as:

      Lines 157-160: ‘The swelling of presynaptic terminals, characterized by the enlargement and roundness, was not reported at 3-day-old24 but observed at this age with about 4% of total presynaptic terminals (Figure 1F, asterisks).’

      Lines 162-167: ‘Dense materials are rarely found in age-matched control neurons, indicating that milton knockdown induces abnormal protein accumulation in the presynaptic terminals (Figure 1G and H). In milton knockdown neurons, dense materials are found in swollen presynaptic terminals more often than in presynaptic terminals without swelling, suggesting a positive correlation between the disruption of proteostasis and axonal damage (Figure 1G).’

      Lines 369-371: ‘Disruption of proteostasis is expected to contribute neurodegeneration38 , and it would be interesting to analyze the sequence of protein accumulation and axonal degeneration in milton knockdown (24,29 and Figure 1) in detail with higher time resolution.’

      L147-L151: Though Figures 1F and 1G provide qualitative representations, it is advisable to quantitatively assess whether dense materials significantly accumulate. Such quantitative analysis would be required to verify the accumulation of dense materials in the context of the study.

      Thank you for pointing it out. We included quantitation of the number of neurons with dense material (Figure 1G). We revised the manuscript as follows:

      Line 162-164: ‘Dense materials are rarely found in age-matched control neurons, indicating that milton knockdown induces abnormal protein accumulation in the presynaptic terminals (Figure 1G and H).’

      Regarding Figure 1B, C:

      Even though the count of puncta in the whole brain appears to be fewer than 400, the magnification of the optic lobe suggests a substantial presence of puncta. Please clarify in the Methods section what constitutes a puncta and whether the quantification in the whole brain is based on a 2D or 3D analysis. Detail the methodology used for quantification.

      Thank you for your comment. We revised the method section to include more details as below:

      Lines 440-443: ‘Quantitative analysis was performed using ImageJ (National Institutes of Health) with maximum projection images derived from Z-stack images acquired with same settings. Puncta was identified with mean intensity and area using ImageJ.’

      What about 1-day-old specimens? Does Milton knockdown already show an increase in ubiquitinated protein accumulation at this early stage? Investigating whether ubiquitin-protein accumulation is involved in aging promotion or is already prevalent during developmental stages is a necessary experiment.

      Thank you for your comment. We carried out immunostaining with an anti-ubiquitin antibody in the brains at 1-day-old. No significant difference was detected between the control and milton knockdown. This result has been included as Figure S1 in the revised manuscript. The result section was revised as below:

      Line 136-139 ‘There was no significant increase in ubiquitinated proteins in milton knockdown flies at 1-day old, suggesting that the accumulation of ubiquitinated proteins caused by milton knockdown is age-dependent (Figure S1).’

      For Figure 1E: In the Electron Microscopy section of the Methods, define how swollen axons were identified and describe the quantification methodology used.

      Thank you for your comment. Swollen axons are, unlike normal axons, round in shape and enlarged. We revised the text as below;

      Lines 157-160: ‘The swelling of presynaptic terminals, characterized by the enlargement and roundness, was not reported at 3-day-old24 but observed at this age with about 4% of total presynaptic terminals (Figure 1F, asterisks).’

      Lines 689-691, Figure 1 legend: ‘Swollen presynaptic terminals (asterisks in (F)), characterized by the enlargement and higher circularity, were found more frequently in milton knockdown neurons.’

      L218-L219: Throughout the text, the expression 'eIF2β is "upregulated" in response to Milton knockdown' is frequently used. However, considering the presented results, it might be more accurate to interpret that under the condition of Milton knockdown, eIF2β is not undergoing degradation but rather remains stable.

      Thank you for pointing it out. We replaced ‘upregulated’ with ‘increased’ throughout the text.

      L234-L235: On what basis is the conclusion drawn that there is a reduction? Given that three experiments have been conducted, it would be possible and more convincing to quantify the results to determine if there is a significant decrease.

      Thank you for pointing it out. We quantified the AUC of polysome fraction and carried out a statistical analysis. There is a significant decrease in polysome in milton knockdown, and this result has been included in Figure 5B. We revised the figure and the legend accordingly.

      L236: 5H-> 4H

      Thank you for pointing it out, and we are sorry for the confusion. We corrected it.

      L238-L239: Since there is no significant difference observed, it may not be accurate to interpret a reduction in puromycin incorporation.

      Thank you for pointing it out. As described above, quantification of polysome fractions showed that milton knockdown significantly reduced polysome (Figure 6B (Figure 5B in the previous version)). We revised the manuscript as below;

      Lines 267-268: ‘However, unexpectedly, we found that milton knockdown significantly reduced the level of mRNAs associated with polysomes (Figure 6A and B).’

      Figure 5D and Figure 6D: Climbing assays have been conducted, but I believe experiments should also be performed to examine whether overexpression or heterozygous mutants of eIF2β induce or suppress degeneration.

      Thank you for pointing it out. We analyzed the eyes with eIF2β overexpression for neurodegeneration. Although there was a tendency of elevated neurodegeneration in the retina with eIF2β overexpression, the difference between control and eIF2β overexpression did not reach statistical significance (Figure S2). This result has been included as Figure S2 in the revised manuscript, and the following sentences have been included in the text:

      Lines 292-297: ‘We asked if eIF2β overexpression causes neurodegeneration, as depletion of axonal mitochondria in the photoreceptor neurons causes axon degeneration in an age- dependent manner24. eIF2β overexpression in photoreceptor neurons tends to increase neurodegeneration in aged flies, while it was not statistically significant (p>0.05, Figure S2).’

      L271-L272: The results in Figure 6B are surprising. I anticipated a greater increase compared to the Milton knockdown alone. While p62 appears to be reduced, it is not clear why these results lead to the conclusion that lowering eIF2β rescues autophagic impairment. Please add a discussion section to address this point.

      Thank you for pointing it out. We apologize for the unclear description of the result. Milton knockdown flies show p62 accumulation (Figure 2), and deleting one copy of eIF2beta in milton knockdown background reduced p62 accumulation (Figure 8C (Figure 7C in the previous version)). We revised the text as below:

      Lines 311-319: ‘Neuronal knockdown of milton causes accumulation of autophagic substrate p62 in the Triton X-100-soluble fraction (Figure 2B), and we tested if lowering eIF2β ameliorates it. We found that eIF2β heterozygosity caused a mild increase in LC3-I levels and decreases in LC3-II levels, resulting in a significantly lower LC3-II/LC3-I ratio in milton knockdown flies (Figure 8B). eIF2β heterozygosity decreased the p62 level in the Triton X-100-soluble fraction in the brains of milton knockdown flies (Figure 8C). The p62 level in the SDS-soluble fraction, which is not sensitive to milton knockdown (Figure 2B), was not affected (Figure 8C). These results suggest that suppression of eIF2β ameliorates the impairment of autophagy caused by milton knockdown.’

      L369: Please specify the source of the anti-ubiquitin antibody used.

      Thank you for pointing it out. We included the antibody information in the method section.

      Figure 7: While the relationship between Milton knockdown and the eIF2β and eIF2α proteins has been elucidated through the authors' efforts, I would like to see an investigation into whether eIF2β is upregulated and eIF2α phosphorylation is reduced in simply aged Drosophila. This would help us understand the correlation between aging and eIF2 protein dynamics.

      Thank you for your comment. We agree that it is an important question, and we are working on it. However, we feel that it is beyond the scope of the current manuscript.

      L645-L646: If the mushroom body is identified using mito-GFP, then include mito-GFP in the genotype listed in Supplementary Table 2.

      We are sorry for the oversight. We corrected it in Supplementary Table 2.

      Additionally, while it is presumed that the mito-GFP signal decreases in axons with Milton RNAi, how was the lobe tips area accurately selected for analysis? Please include these details along with a comprehensive description of the quantification methodology in the Methods section.

      Thank you for your comment. Although the mito-GFP signal in the axon is weak in the milton knockdown neurons, it is sufficient to distinguish the mushroom body structure from the background. We revised the method section to include this information in the method section:

      Line 443-447: ‘For eIF2α and p-eIF2α immunostaining, the mushroom body was detected by mitoGFP expression.’

    1. eLife Assessment

      This study provides valuable results on how entorhinal and hippocampal activity may support human thinking in perceptual spaces. It replicates the hexagonal symmetry of fMRI activity in the entorhinal cortex, reports novel findings on 3-fold symmetry in both behavioral performance and hippocampal fMRI activity, and links these results within a computational model. However, the methods while potentially creative and interesting are not fully justified or explained, and the conclusions remain incomplete. With further explanation, justification, and interpretation, this work could represent a significant step forward in understanding how cognitive maps are utilized.

    2. Reviewer #1 (Public review):

      Summary:

      Zhang and colleagues examine neural representations underlying abstract navigation in the entorhinal cortex (EC) and hippocampus (HC) using fMRI. This paper replicates a previously identified hexagonal modulation of abstract navigation vectors in abstract space in EC in a novel task involving navigating in a conceptual Greeble space. In HC, the authors claim to identify a three-fold signal of the navigation angle. They also use a novel analysis technique (spectral analysis) to look at spatial patterns in these two areas and identify phase coupling between HC and EC. Finally, the authors propose an EC-HPC PhaseSync Model to understand how the EC and HC construct cognitive maps. While the wide array of techniques used is impressive and their creativity in analysis is admirable, overall, I found the paper a bit confusing and unconvincing. I recommend a significant rewrite of their paper to motivate their methods and clarify what they actually did and why. The claim of three-fold modulation in HC, while potentially highly interesting to the community, needs more background to motivate why they did the analysis in the first place, more interpretation as to why this would emerge in biology, and more care taken to consider alternative hypotheses seeped in existing models of HC function. I think this paper does have potential to be interesting and impactful, but I would like to see these issues improved first.

      General comments:

      (1) Some of the terminology used does not match the terminology used in previous relevant literature (e.g., sinusoidal analysis, 1D directional domain).

      (2) Throughout the paper, novel methods and ideas are introduced without adequate explanation (e.g., the spectral analysis and three-fold periodicity of HC).

    3. Reviewer #2 (Public review):

      The authors report results from behavioral data, fMRI recordings, and computer simulations during a conceptual navigation task. They report 3-fold symmetry in behavioral and simulated model performance, 3-fold symmetry in hippocampal activity, and 6-fold symmetry in entorhinal activity (all as a function of movement directions in conceptual space). The analyses are thoroughly done, and the results and simulations are very interesting.

    4. Author response:

      Reviewer #1, Comment (1): Terminology

      We fully acknowledge the importance of terminological consistency and will align our usage with established literature. Specifically, we will revise as follows, 

      (1) Replace “sinusoidal analysis” with either “sinusoidal modulation” (Doeller et al., 2010; Bao et al., 2019; Raithel et al., 2023) or “GLM with sinusoidal (cos/sin) regressors” (Constantinescu et al., 2016). 

      (2) Replace “1D directional domain” with either “angular domain of movement directions (0–360°)” or “directional modulation analysis”.

      Reviewer #1, Comment (2): Spectral analysis and 3-fold periodicity

      We agree that the presentation of our spectral analysis and the theoretical motivation underlying our expectation of a three-fold periodicity within hippocampal data requires further clarification.

      In our revised manuscript, we will:<br /> (1) Clearly articulate the theoretical motivation for anticipating a three-fold signal, explicitly linking it to the known hexagonal grid structure encoded by the entorhinal cortex.

      (2) Clarify our methodological rationale for using Fourier analysis (FFT).

      a) FFT allows unbiased exploration of multiple candidate periodicities (e.g., 3–7-fold) without predefined assumptions.

      b) FFT results cross-validate our sinusoidal modulation results, providing complementary evidence supporting the 6-fold periodicity in EC and 3-fold periodicity in HPC.

      c) FFT uniquely facilitates analysis of periodicities in behavioral performance data, which is not feasible via standard sinusoidal GLM approaches. This consistency allows us to directly compare periodicities across neural and behavioral data.

      (3) Further, we will expand our discussion to provide:

      a) A deeper interpretation of potential biological bases for the observed hippocampal three-fold periodicity.

      b) A careful examination of alternative explanations within existing hippocampal modeling frameworks.

      Reference:

      Doeller, C. F., Barry, C., & Burgess, N. (2010). Evidence for grid cells in a human memory network. Nature, 463(7281), 657-661.

      Constantinescu, A. O., O'Reilly, J. X., & Behrens, T. E. J. (2016). Organizing conceptual knowledge in humans with a gridlike code. Science, 352(6292), 1464-1468.

      Bao, X., Gjorgieva, E., Shanahan, L. K., Howard, J. D., Kahnt, T., & Gottfried, J. A. (2019). Grid-like neural representations support olfactory navigation of a two-dimensional odor space. Neuron, 102(5), 1066-1075.

      Raithel, C. U., Miller, A. J., Epstein, R. A., Kahnt, T., & Gottfried, J. A. (2023). Recruitment of grid-like responses in human entorhinal and piriform cortices by odor landmark-based navigation. Current Biology, 33(17), 3561-3570

    1. eLife Assessment

      By combining the 'pinging' technique with fMRI-based multivariate pattern analysis, this important study provides compelling evidence for a dual-format representation of attention during the preparatory period. The findings help reconcile the debate between sensory-like and non-sensory accounts of attentional templates and shed light on how the brain flexibly deploys different forms of templates to guide attention. This work will be of broad interest to researchers in psychology, vision science, and cognitive neuroscience.

    2. Reviewer #1 (Public review):

      Summary:

      The aim of the experiment reported in this paper is to examine the nature of the representation of a template of an upcoming target. To this end, participants were presented with compound gratings (consisting of tilted to the right and tilted to the left lines) and were cued to a particular orientation - red left tilt or blue right tilt (counterbalanced across participants). There two directly compared conditions: (i) no ping: where there was a cue, that was followed by a 5.5-7.5s delay, then followed by a target grating in which the cued orientation deviated from the standard 45 degrees; and (ii) ping condition in which all aspects were the same with the only difference that a ping (visual impulse presented for 100ms) was presented after the 2.5 seconds following the cue. There was also a perception task in which only the 45 degrees to the right or to the left lines were presented. It was observed that during the delay, only in the ping condition, were the authors able to decode orientation of the to be reported target using the cross-task generalization. Attention decoding, on the other hand, was decoded in both ping and non-ping conditions. It is concluded that the visual system has two different functional states associated with a template during preparation: a predominantly non-sensory representation for guidance and a latent sensory-like for prospective stimulus processing.

      Strengths:

      There is so much to be impressed with in this report. The writing of the manuscript is incredibly clear. The experimental design is clever and innovative. The analysis is sophisticated and also innovative -the cross-task decoding, the use of Mahalanobis distance as a function of representational similarity, the fact that the question is theoretically interesting, the excellent figures.

      Comments on revisions:

      I have no further comments.

    3. Reviewer #3 (Public review):

      This paper discusses how non-sensory and latent, sensory-like attentional templates are represented during attentional preparation. Using multivariate pattern analysis, they found that visual impulses can enhance the decoding generalization from perception to attention tasks in the preparatory stage in the visual cortex. Furthermore, the emergence of the sensory-like template coincided with enhanced information connectivity between V1 and frontoparietal areas and was associated with improved behavioral performance. It is an interesting paper with supporting evidence for the latent, sensory-like attentional template.

      Comments on revisions:

      I appreciate the authors' thoughtful revisions, which have addressed my earlier concerns. I have no further comments.

    4. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      I am impressed with the thoroughness with which the authors addressed my concerns. I don't have any further concerns and think that this paper makes an interesting and significant contribution to our understanding of VWM. I would only suggest adding citations to the newly added paragraph where the authors state "It could be argued that preparatory attention relies on the same mechanisms as working memory maintenance." They could cite work by Bettencourt and Xu, 2016; and Sheremata, Somers, and Shomstein (2018).

      We thank the reviewer for the positive feedback. We have now cited the referenced work in the manuscript (Page. 19, Line 371).

      Reviewer #2 (Public review):

      Overall, I think that the authors' revision has addressed most, if not all, of my major concerns noted in my previous comments. The results appear convincing and I do not have additional comments.

      We thank the reviewer for the positive feedback and are pleased that the revision addressed the major concerns.

      Reviewer #3 (Public review):

      (1) The authors addressed most of my previous concerns and provided additional data analysis. They conducted further analyses to demonstrate that the observed changes in network communication are associated with behavioral RTs, supporting the idea that the impulse-driven sensory-like template enhances informational connectivity between sensory and frontoparietal areas, and relates to behavior.

      We are pleased that the revision addressed the major concerns.

      (2) I would like to further clarify my previous points regarding the definition of the two types of templates and the evidence for their coexistence. The authors stated that the sensory-like template likely existed in a latent state and was reactivated by visual pings, proposing that sensory and non-sensory templates coexist. However, it remains unclear whether this reflects a dynamic switch between formats or true coexistence. If the templates are non-sensory in nature, what exactly do they represent? Are they meant to be abstract or conceptual representations, or, put simply, just "top-down attentional information"? If so, why did the generalization analysestraining classifiers on activity during the stimulus selection period and testing on preparatory activity-fail to yield significant results? While the stimulus selection period necessarily encodes both target and distractor information, it should still contain attentional information. I would appreciate more discussion from this perspective.

      We thank the reviewer for the helpful clarification of previous comments. Since we addressed similar comments from Reviewer 2 (Point 2) in the previous round, our response below may appear somewhat repetitive. First, regarding whether our findings reflect a dynamic switch between non-sensory and sensory-like template, or the ‘coexistence’ of two template formats, we acknowledge that the temporal limitations of fMRI prevent us from directly testing dynamic representations. However, several aspects of our data favor the latter interpretation: (1) our key findings remained consistent in the subset of participants (N=14) who completed both No-Ping and Ping sessions in counterbalanced order. This makes it unlikely that participants systematically switched cognitive strategies (e.g., using non-sensory templates in the No-Ping session versus sensory-like templates in the Ping session) in response to the taskirrelevant, uninformative visual impulse; (2) while we agree that the temporal dynamics between the two templates remain unclear, it is difficult to imagine that orientation-specific templates observed in the Ping session emerged de novo from purely non-sensory templates and an exogenous ping. In other words, if there is no orientation information at all to begin with, how does it come into being from an orientation-less external ping? A more parsimonious explanation is that orientation information was already present in a latent format and was activated by the ping, in line with the models of “activity-silent” working memory. However, since the detailed circuit-level mechanism underlying such reactivation remain unclear, we acknowledge that this interpretation warrants direct investigation in future studies. This point is discussed in the main texts (Page 19-20, Line 389-402). 

      Second, while our data cannot definitively determine the nature of the non-sensory template, we consider categorical coding a plausible candidate based on prior visual search studies. For instance, categorical attributes (e.g., left-tilted vs. right-tilted) have been shown to effectively guide attention in orientation search tasks (Wolfe et al., 1992), similar to our paradigm. Further, categorical templates are more tolerant of stimulus variability, making them well-suited to our task, which involved trial-by-trial variations in target orientation around a reference (see Page 21, Line 427- 437 for more detailed discussions).

      Third, the lack of generalization from stimulus selection to preparatory attention in the Ping session may relate to the limited overlap in shared information between these two periods. Neural activity during stimulus selection encodes sensory information about both orientations, along with sensory-like attentional signals (as indicated by the attention decoding and crosstask generalization from perception task to the stimulus-selection period). In contrast, preparatory activity likely involves a dominant non-sensory template, a latent sensory-like template, and residual sensory effects from the impulse stimulus. The limited overlap in sensory-like attentional signals may therefore be insufficient to support generalization across the two periods.

      Reviewer #2 ( Recommendations for the authors)

      I think the central prediction of greater pattern similarity between 'attend leftward' and 'perceived leftward' in the ping session in comparison to the no-ping session (the same also holds for 'attend rightward' and 'perceived rightward' could be directly examined by a two-way ANOVA (session × the attend orientation is the same/different from the perceived orientation) for each ROI (V1 and EVC). A three-way ANOVA might complicate readers' intuitive understanding of the implications of the statistical results.

      We thank the reviewer for the suggestion. Following the reviewer’s suggestion, we defined a new condition label based on orientation consistency between attended and perceived orientations: (1) same orientation: averaging “attend leftward/perceive leftward” and “attend rightward/perceive rightward”; and (2) different orientation: averaging “attend leftward/perceive rightward” and “attend rightward/perceive leftward”. A two-way mixed ANOVA (session × orientation consistency) on Mahalanobis distance revealed a main effect of orientation consistency in V1 (F(1,38) = 4.21, p = 0.047, η<sub>p</sub><sup>2</sup> = 0.100), indicating that activity patterns were more similar when attended and perceived orientations matched. No significant main effect of session was found (p = 0.923). Importantly, a significant interaction was found in V1 (F(1,38) = 5.00, p = 0.031, η<sub>p</sub><sup>2</sup> = 0.116), suggesting that visual impulse enhanced the similarity between preparatory attentional template and the perception of corresponding orientation. In EVC, the same analysis revealed only a main effect of orientation consistency (F(1,38) = 5.87, p = 0.020, η<sub>p</sub><sup>2</sup> = 0.134), with no significant other effects (ps > 0.240). The interaction results were consistent with those reported in the original three-way ANOVA. We have now replaced the previous analysis with the new one in the main texts (Page 11-12, Line 231-242).

    1. eLife Assessment

      The article presents important findings on the impact of climate change on odonates, integrating phenological and range shifts to broaden our understanding of biodiversity change. The study leverages extensive natural history data, offering a convincing analysis of temporal trends in phenology and range limit and their potential drivers.

    2. Reviewer #1 (Public review):

      Summary:

      This study evaluates whether species can shift geographically, temporally, or both ways in response to climate change. It also teases out the relative importance of geographic context, temperature variability, and functional traits in predicting the shifts. The study system is large occurrence datasets for dragonflies and damselflies split between two time periods and two continents. Results indicate that more species exhibited both shifts than one or the other (or neither), and that geographic context and temperature variability were more influential than traits. The results have implications for future analyses (e.g. incorporating habitat availability) and for choosing winner and loser species under climate change. The results also seem to support climate vulnerability assessments for species that rely on geographic range size and geospatial climate data layers rather than more detailed information (like demographic rates, abundances, or traits) that may not be so readily available. The methodology would be useful for other taxa and study regions with strong participatory ("citizen") science and extensive occurrence data.

      Strengths:

      This is an organized and well written paper that builds on a popular topic and moves it forward. It has the right idea and approach, and the results are useful answers to the predictions and for conservation planning (i.e. identifying climate winners and losers). There is technical proficiency and analytical rigor driven by an understanding of the data and its limitations.

    3. Reviewer #2 (Public review):

      Summary:

      This paper explores a highly interesting question regarding how species migration success relates to phenology shifts, and it finds a positive relationship. The findings are significant, and the strength of the evidence is solid. However, there are substantial issues with the writing, presentation, and analyses that need to be addressed. First, I disagree with the conclusion that species that don't migrate are "losers" - some species might not migrate simply because they have broad climatic niches and are less sensitive to climate change. Second, the results concerning species' southern range limits could provide valuable insights. These could be used to assess whether sampling bias has influenced the results. If species are truly migrating, we should observe northward shifts in their southern range limits. However, if this is an artifact of increased sampling over time, we would expect broader distributions both north and south. Finally, Figure 1 is missed panel B, which needs to be addressed.

      Comments on revised version:

      The revision has substantially improved the paper.

    4. Reviewer #3 (Public review):

      Summary:

      In their article "Range geography and temperature variability explain cross-continental convergence in range and phenology shifts in a model insect taxon" the authors rigorously investigate the spatial and temporal trends in the occurrence of odonate species and their potential drivers. Specifically, they examine whether species shift their geographic ranges poleward or alter their phenology to cope with changing conditions. Leveraging opportunistic observations of European and North American odonates, they find that species showing significant range shifts also exhibited shifts to earlier emergence. Considering a broad range of potential predictors, their results reveal that geographical factors, but not functional traits, are associated with these shifts.

      Strengths:

      The article addresses an important topic in ecology and conservation that is particularly timely in the face of reports of substantial insects declines in North America and Europe over the past decades. Through data integration the authors leverage the rich natural history record for odonates, broadening the taxonomic scope of analyses of temporal trends in phenology and distribution. The combination of phenological and range shifts in one framework presents an elegant way to reconcile previous findings and informs about the drivers of biodiversity loss.

      Weaknesses:

      To better understand whether species shifting both their ranges and phenology are more successful, or as stated here are 'clear winners', and hence whether those that do neither are more vulnerable would require integrating population trends alongside the discussed response. The ~10% species that have not shifted their distribution or phenology might have not declined in abundance, if they have rapidly adapted to local changes in climatic conditions (i.e. they might show a plastic response). These species might be the real 'winners', while species that have recently shifted their ranges or phenology may eventually reach hard limits. The authors are discussing this limitation but might want to adapt their wording, given the potential for misinterpretation. The finding that species with more northern ranges showed lesser northward shifts would speak to the fact that some species have already reached such a geographical range limit.

      Achievements and impact:

      The results support broad differences in the response of odonate species to climate change, and the prediction that range geography and temperature seasonality are more important predictors of these changes than functional traits. Simultaneously addressing range and phenological shifts highlights that most species exhibit coupled responses but also identifies a significant portion of species that do not respond in these ways that are of critical conservation concern. These results are important for improving forecasts of species' responses to climate change and identifying species of particularly conservation concern. Although not exhaustive regarding abundance trends, the study presents an important step towards a general framework for investigating the drivers of multifaceted species responses.

    5. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #2 (Recommendations for the authors):

      Line 364-370: This paragraph is not very clear to me.

      Thank you for pointing this out, we agree our point could have been made clearer. We have clarified as follows:

      “The geographic positions of species’ ranges determine the local pressures and environmental factors to which they are exposed (MacLean and Beissinger, 2017; Pacifici et al., 2020), potentially masking or confounding the effects of traits that evolved under conditions determined by range geography (Schuetz et al., 2019). This process could cause trait-related trends to differ across levels of biological organization (Srivastava et al., 2021), from local populations (where traits might be critical) to biogeographical extents (where traits might be unrelated to range or phenological shifts; Grewe et al., 2013; Gutiérrez and Wilson, 2021; Sunday et al., 2015; Zografou et al., 2021).” (Lines 370-377).

      Reviewer #3 (Recommendations for the authors):

      L313: '...higher population growth' compared to what? Does this mean that species shifting to earlier emergence really show higher population growth over time?

      Thank you for this suggestion, we have clarified as follows: “Earlier seasonal timing allows species to stay within their climatic limits and maintain population growth rates (Macgregor et al., 2019), although earlier emergence could expose individuals to early season weather extremes (McCauley et al., 2018).” (Lines 316-319).

      L336: Same here. Please refer to your comparative counterpart in such statements. Does 'plasticity may enable higher population growth' mean higher than for species shifting range or phenology or higher compared to the previous level for a given species. In many cases it seems you are referring to an overall baseline, so that the 'higher' means 'lesser decline'. Wouldn't plasticity maintain population growth at similar levels as before? The current wording suggests that plasticity results in species exceeding their previous population growth. Please rephrase.

      We agree it was confusing with no comparative counterpart, so we changed the sentence as follows: “Adaptive evolution and plasticity may enable high population growth rates in newly-colonized areas (Angert et al., 2020; Usui et al., 2023), but this possibility can only be directly tested with long term population trend data.” (Lines 341-343).

      L307: The term 'universal winners' appears too strong and not well justified given the lack of the crucial third dimension of response. In fact, changes in phenology are less indicative than abundance trends. Combined with range shifts they would tell a story of success or failing, while phenological shifts would rather help to understand how species adapted. I am not saying the insight cannot stand alone, but it is important to adapt the wording in this regard.

      Thank you for this comment, we have clarified the text as follows: “These results suggest that some species may have an advantage with respect to climate change: they demonstrate the flexibility to respond both temporally and spatially to the onset of rapid climate change.” (Lines 310-313).

      We also softened language around winners and losers on line 388: “It remains unclear if range and phenology shifts relate to trends in abundance, but our results suggest that there may be ‘winners’ and ‘losers’ under climate change (Figure 4).” (Lines 387-388).

      L326-240: I agree with line 330 that abundance trends are needed to clarify the situation of species shifting or not shifting ranges and phenology. However, this abstract should clarify that this is particularly important to understand whether non shifting species are really the 'losers'. If these species show adapted evolution or plasticity, we would expect they do not decline in abundance. Even without shifts in range or phenology they would be the 'ultimate winners' as you call it.

      Thank you for this comment, we agree that abundance trends are necessary to understand potential winners and losers. We have made this addition to the abstract as follows: “Species shifting in both space and time may be more resilient to extreme conditions, although further work integrating abundance data is needed.” (Lines 16-18).

    1. eLife assessment

      This paper provides valuable insights into the consequences of hydrogen sulfide (H2S) exposure on the behavior and physiology of the nematode C. elegans. While solid evidence supports most of the paper's findings, the evidence that H2S is detected by the nervous system to mediate behavioral avoidance is incomplete. The paper provides a wide range of intriguing observations that could serve as a foundation for future work to synthesize these disparate results or provide insight into the mechanisms of H2S detection in C. elegans.

    2. Reviewer #3 (Public review):

      Summary:

      The manuscript explores behavioral responses of C. elegans to hydrogen sulfide, which is known to exert remarkable effects on animal physiology in a range of contexts. The possibility of genetic and precise neuronal dissection of responses to H2S motivates the study of responses in C. elegans. The revised manuscript does not seem to have significantly addressed what was lacking in the initial version.

      The authors have added further characterization of possible ASJ sensing of H2S by calcium imaging but ASJ does not appear to be directly involved. Genetic and parallel analysis of O2 and CO2 responsive pathways do not reveal further insights regarding potential mechanisms underlying H2S sensing. Gene expression analysis extends prior work. Finally, the authors have examined how H2S-evoked locomotory behavioral responses are affected in mutants with altered stress and detoxification response to H2S, most notably hif-1 and egl-9. These data, while examining locomotion, are more suggestive that observed effects on animal locomotion are secondary to altered organismal toxicity as opposed to specific behavioral responedse

      Overall, the manuscript provides a wide range of intriguing observations, but mechanistic insight or a synthesis of disparate data is lacking.

    3. Reviewer #4 (Public review):

      Summary:

      The authors establish a behavioral paradigm for avoidance of H2S and conduct a large candidate screen to identify genetic requirements. They follow up by genetically dissecting a large number of implicated pathways - insulin, TGF-beta, oxygen/HIF-1, and mitochondrial ROS, which have varied effects on H2S avoidance. They additionally assay whole-animal gene expression changes induced by varying concentrations and durations of H2S exposure.

      Strengths:

      The implicated pathways are tested extensively through mutants of multiple pathway molecules. The authors address previous reviewer concerns by directly testing the ability of ASJ to respond to H2S via calcium imaging. This allows the authors to revise their previous conclusion and determine that ASJ does not directly respond to H2S and likely does not initiate the behavioral response.

      Weaknesses:

      Despite the authors focus on acute perception of H2S, I don't think the experiments tell us much about perception. I think they indicate pathways that modulate the behavior when disrupted, especially because most manipulations used broadly affect physiology on long timescales. For instance, genetic manipulation of ASJ signaling, oxygen sensing, HIF-1 signaling, mitochondrial function, as well as starvation are all expected to constitutively alter animal physiology, which could indirectly modulate responses to H2S. The authors rule out effects on general locomotion in some cases, but other physiological changes could relatively specifically modulate the H2S response without being involved in its perception.

      I am actually not convinced that H2S is directly perceived by the C. elegans nervous system at all. As far as I can tell, the avoidance behavior could be a response to H2S-induced tissue damage rather than the gas itself.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Summary: 

      This paper sets out to achieve a deeper understanding of the effects of hydrogen sulfide on C. elegans behavior and physiology, with a focus on behavior, detection mechanism(s), physiological responses, and detoxification mechanisms.

      Strengths: 

      The paper takes full advantage of the experimental tractability of C. elegans, with thorough, welldesigned genetic analyses. 

      Some evidence suggests that H<SUB>2</SUB>S may be directly detected by the ASJ sensory neurons.  The paper provides interesting and convincing evidence for complex interactions between responses to different gaseous stimuli, particularly an antagonistic role between H<SUB>2</SUB>S and O2 detection/response.  Intriguing roles for mitochondria and iron homeostasis are identified, opening the door to future studies to better understand the roles of these components and processes. 

      We thank the reviewer for the supportive comments.

      Weaknesses: 

      The claim that worms' behavioral responses to H<SUB>2</SUB>S are mediated by direct detection is incompletely supported. While a role for the chemosensory neuron ASJ is implicated, it remains unclear whether this reflects direct detection. Other possibilities, including indirect effects of ASJ and the guanylyl cyclase daf-11 on O2 responses, are also consistent with the authors' data. 

      We thank the reviewer for the insightful comment and agree that the role of ASJ neurons in H<SUB>2</SUB>S detection was not clear. We included new experiments and revised our text to make it clearer.

      Since our initial analyses suggest a role of ASJ neurons in H<SUB>2</SUB>S-evoked locomotory responses (Figure 2F and G), We thought that this would offer us a starting point to dissect the neuronal circuit involved in H<SUB>2</SUB>S responses. Expression of the tetanus toxin catalytic domain in ASJ, which blocks neurosecretion, inhibited H<SUB>2</SUB>S-evoked locomotory speed responses (Figure 2H), suggesting that neurosecretion from ASJ promotes H<SUB>2</SUB>S-evocked response (Lines 162–165). We then performed calcium imaging of ASJ neurons in response to H<SUB>2</SUB>S exposure. However, while we observed CO<SUB>2</SUB>-evoked calcium transients in ASJ using GCaMP6s, we did not detect any calcium response to H<SUB>2</SUB>S, under several conditions, including animals on food, off food, and with different H<SUB>2</SUB>S concentrations and exposure times (Figure2—Figure supplement 2E and F) (Lines 166–170). Since signaling from ASJ neurons regulates developmental programs that modify sensory functions in C. elegans (Murakami et al., 2001), the involvement of ASJ neurons is not specific to H<SUB>2</SUB>S and ASJ neurons are unlikely to serve as the primary H<SUB>2</SUB>S sensor (Discussed in Line 449–458). Therefore, the exact sensory neuron, circuit and molecular triggers mediating acute H<SUB>2</SUB>S avoidance remain to be elucidated.

      Our subsequent investigation on mitochondrial components suggests that a burst of mitochondrial ROS production may be the trigger for H<SUB>2</SUB>S avoidance, as transient exposure to rotenone substantially increases baseline locomotory speed (Figure 7E) (Line 391–396). However, to initiate avoidance behavior to H<SUB>2</SUB>S, mitochondrial ROS could potentially target multiple neurons and cellular machineries, making it challenging to pinpoint specific sites of action. Nevertheless, we agree that further dissection of the neural circuits and mitochondrial signaling in H<SUB>2</SUB>S avoidance will be important and should be explored in future studies.

      The role of H<SUB>2</SUB>S-mediated damage in behavioral responses, particularly when detoxification pathways are disrupted, remains unclear. 

      We thank the reviewer for the insightful comment and fully agree with the concern raised. The same issue was also noted by the other reviewers. We agree that decreased locomotory responses in H<SUB>2</SUB>S-sensitized animals can arise from distinct causes, either systemic toxicity or behavioral adaptation, and distinguishing between these is critical. We have included new experiments and revised the text to clarify this issue.

      Our data suggest that increased initial omega turns and a rapid loss of locomotion in hif-1 and detoxification-defective mutants including sqrd-1 and ethe-1 likely reflect an enhanced sensitivity to H<SUB>2</SUB>S toxicity due to their failure to induce appropriate adaptative responses (Figure 5D–F, Figure 5J–L, Figure 5—Figure supplement 1F–P).  Supporting this, hif-1 mutants become less responsive to unrelated stimuli (near-UV light) after 30 minutes of H<SUB>2</SUB>S exposure (Figure 5I).

      In contrast, egl-9 and SOD-deficient animals show reduced initial omega-turn and reduced speed responses (Figure 5B, Figure 7G, Figure 5—Figure supplement 1A and B, and Figure 7—Figure supplement 1F and G), although both egl-9 and sod mutants respond normally to the other stimuli prior or after H<SUB>2</SUB>S exposure (Figure 5I, Figure 5—Figure supplement 1C, and Figure 7—Figure supplement 1H). Since disrupting egl-9 stabilizes HIF-1 and upregulates the expression of numerous genes involved in cellular defense against H<SUB>2</SUB>S toxicity, the enhanced detoxification capacity in egl-9 mutants likely increases animals’ tolerance to H<SUB>2</SUB>S, thereby reducing avoidance to otherwise toxic H<SUB>2</SUB>S levels. Similarly, persistently high ROS in SOD deficient animals activates a variety of stress-responsive signaling pathways, including HIF-1, NRF2/SKN-1 and DAF-16/ FOXO signaling (Lennicke & Cocheme, 2021; Patten et al., 2010), facilitating cellular adaptation to redox stress and reducing animals’ responsiveness to toxic H<SUB>2</SUB>S levels. Taken together, these findings support the view that reduced locomotory speed during H<SUB>2</SUB>S exposure can arise from distinct mechanisms: early systemic toxicity in hif-1 and detoxificationdefective mutants, versus enhanced cellular adaptation in egl-9 and SOD mutants. We have integrated the relevant information across the result section and discussed this in Lines 485-536. 

      The findings of the paper are somewhat disjointed, such that a clear picture of the relationships between H<SUB>2</SUB>S detection, detoxification mechanisms, mitochondria, and iron does not emerge from these studies. Most importantly, the relative roles of H<SUB>2</SUB>S detection and integration, vs. general and acute mitochondrial crisis, in generating behavioral responses are not convincingly resolved.  

      We thank the reviewer for this comment and agree that our presentation did not fully connect different findings into a cohesive picture. To address this, we have acquired new data, and revised the abstract, results and discussion sections to clarify two phases of H<SUB>2</SUB>S-evoked responses: an initial avoidance behavior upon H<SUB>2</SUB>S exposure, followed by a later phase of adaption and detoxification when the escape is not successful.

      In brief, we began with the basic characterization of H<SUB>2</SUB>S-induced locomotory speed response, followed by a candidate gene screen to identify key molecules and pathways involved in initial speed response to H<SUB>2</SUB>S. Subsequently, we focused on three major intersecting pathways that contributed to the acute behavioral response to H<SUB>2</SUB>S. These include cGMP signaling, which led to the identification of ASJ neurons; nutrient-sensitive pathways that modulate behavioral responses to both H<SUB>2</SUB>S and CO2; and O2sensing signaling, whose activation inhibits responses to H<SUB>2</SUB>S. However, the molecules and neurons in these pathways, including ASJ, likely play modulatory roles and are unlikely to serve as the primary H<SUB>2</SUB>S sensors. Our subsequent analysis, however, suggests that mitochondria play a critical role in triggering avoidance behavior upon H<SUB>2</SUB>S exposure. Brief treatment with rotenone, a potent inducer of ROS, led to marked increase in locomotory speed (Figure 7E). This suggests the possibility that a burst of ROS production triggered toxic levels of H<SUB>2</SUB>S (Jia et al., 2020) may initiate the avoidance behavior.

      When the initial avoidance fails, H<SUB>2</SUB>S detoxification programs are induced as a long-term survival strategy. The induction of detoxification programs appears to enhance tolerance to H<SUB>2</SUB>S exposure and contributes to the gradual decrease of locomotory speed in H<SUB>2</SUB>S. We now provide a clearer image of how different pathways modulate H<SUB>2</SUB>S detoxification and adaptation (see our responses to other comments). Briefly, mutants defective in detoxification, such as hif-1 and other detoxification-defective mutants, showed stronger initial omega-turn response and a rapid loss of locomotion. This loss of locomotion is likely caused by early cellular toxicity as the mutants failed to respond to other unrelated stimuli (nearUV light) after 30 minutes of H<SUB>2</SUB>S exposure (Figure 5I). Likewise, smf-3 mutants and BP-treated animals were hypersensitive to H<SUB>2</SUB>S (Figure 6D and E, and Figure 6—Figure supplement 1G and I), likely due to impaired H<SUB>2</SUB>S detoxification under low iron conditions, as iron is a co-factor required for the activity of the H<SUB>2</SUB>S detoxification enzyme ETHE-1 (Figure 5K and Figure 5—Figure supplement 1E).

      In contrast, reduced locomotion and response in other contexts such as egl-9 mutants and SODdeficient animals reflect H<SUB>2</SUB>S-induced adaptive mechanism rather than toxicity as they remain responsive to the other stimuli after H<SUB>2</SUB>S exposure. Since disrupting egl-9 stabilizes HIF-1 and upregulates the expression of numerous genes involved in cellular defense against H<SUB>2</SUB>S toxicity, the enhanced detoxification capacity in egl-9 mutants likely increases animals’ tolerance to H<SUB>2</SUB>S, thereby reducing avoidance to otherwise toxic H<SUB>2</SUB>S levels. Similarly, persistently high ROS in SOD deficient animals activates a variety of stress-responsive signaling pathways, including HIF-1, NRF2/SKN-1 and DAF-16/ FOXO signaling (Lennicke & Cocheme, 2021; Patten et al., 2010), facilitating cellular adaptation to redox stress and reducing animals’ responsiveness to toxic H<SUB>2</SUB>S levels. Therefore, different animals decline their locomotory speed to the effects of H<SUB>2</SUB>S through distinct mechanisms. We have integrated the relevant information across the result section and discussed this in Lines 485-536.

      Reviewer #2 (Public Review): 

      Summary: 

      H<SUB>2</SUB>S is a gas that is toxic to many animals and causes avoidance in animals such as C. elegans. The authors show that H<SUB>2</SUB>S increases the frequency of turning and the speed of locomotion. The response was shown to be modulated by a number of neurons and signaling pathways as well as by ambient oxygen concentrations. The long-term adaptation involved gene expression changes that may be related to iron homeostasis as well as the homeostasis of mitochondria. 

      Strengths: 

      Overall, the authors provide many pieces that will be important for solving how H<SUB>2</SUB>S signals through neuronal circuits to change gene expression and physiological programs. The experiments rely mostly on a behavioral assay that measures the increase of locomotion speed upon exposure to H<SUB>2</SUB>S. This assay is then combined with manipulations of environmental factors, different wild-type strains, and mutants. The mutants analyzed were obtained as candidates from the literature and from transcriptional profiling that the authors carried out in worms that were exposed to H<SUB>2</SUB>S. These studies imply several genetic signaling pathways, some neurons, and metabolism-related factors in the response to H<SUB>2</SUB>S. Hence the data provided should be useful for the field.  

      We thank the reviewer for the supportive comments.

      Weaknesses: 

      On the other hand, many important aspects of the underlying mechanisms remain unsolved and the reader is left with many loose ends. For example, it is not clear how H<SUB>2</SUB>S is actually sensed, how sensory neurons are activated and signal to downstream circuits, and what the role of ciliated and RMG neurons is in this circuit. It remains unclear how signals lead to gene expression and physiological changes such as metabolic rewiring. Solving all this would clearly be beyond the scope of a single manuscript. Yet, the manuscript also does not focus on understanding one of these central aspects and rather is all over the place, which makes it harder to understand for readouts that are not in this core field. Multiple additional methods and approaches exist to dig deeper into these mechanisms in the future, such as neuronal calcium imaging, optogenetics, and metabolic analysis. To generate a story that will be interesting to a broad readership substantial additional experimentation would be required. Further, in the current manuscript, it is often difficult to understand the rationales of the experiments, why they were carried out, and how to place them into a context. This could be improved in terms of documentation, narration/explanation, and visualization.  

      We thank the reviewer for the comment, which has also been raised by the other reviewers. We agree that our initial submission was poorly presented. We also acknowledge the fact that some aspects, such as detailed neural circuit and sensory transduction, still remain unresolved. We have now included additional experiments and revised the manuscript to clarify the logic of our experiments, provided better context for our findings, and improved both the narrative flow and data visualization to make the manuscript more accessible to readers. We now provide a clearer image of how different pathways interact to modulate the initial avoidance response, and the H<SUB>2</SUB>S detoxification and behavioral habituation during prolonged H<SUB>2</SUB>S exposure. The following response is similar to the one for reviewer #1.

      In brief, we began with the basic characterization of H<SUB>2</SUB>S-induced locomotory speed response, followed by a candidate gene screen to identify key molecules and pathways involved in initial speed response to H<SUB>2</SUB>S. Subsequently, we focused on three major intersecting pathways that contributed to the acute behavioral response to H<SUB>2</SUB>S. These include cGMP signaling, which led to the identification of ASJ neurons; nutrient-sensitive pathways that modulate behavioral responses to both H<SUB>2</SUB>S and CO2; and O2sensing signaling, whose activation inhibits responses to H<SUB>2</SUB>S. However, the molecules and neurons in these pathways, including ASJ, likely play modulatory roles and are unlikely to serve as the primary H<SUB>2</SUB>S sensors. Our subsequent analysis, however, suggests that mitochondria play a critical role in triggering avoidance behavior upon H<SUB>2</SUB>S exposure. Brief treatment with rotenone, a potent inducer of ROS, led to marked increase in locomotory speed (Figure 7E). This suggests the possibility that a burst of ROS production triggered toxic levels of H<SUB>2</SUB>S (Jia et al., 2020) may initiate the avoidance behavior.

      When the initial avoidance fails, H<SUB>2</SUB>S detoxification programs are induced as a long-term survival strategy. The induction of detoxification programs appears to enhance tolerance to H<SUB>2</SUB>S exposure and contributes to the gradual decrease of locomotory speed in H<SUB>2</SUB>S. We now provide a clearer image of how different pathways modulate H<SUB>2</SUB>S detoxification and adaptation (see our responses to other comments). Briefly, mutants defective in detoxification, such as hif-1 and other detoxification-defective mutants, showed stronger initial omega-turn response and a rapid loss of locomotion. This loss of locomotion is likely caused by early cellular toxicity as the mutants failed to respond to other unrelated stimuli (nearUV light) after 30 minutes of H<SUB>2</SUB>S exposure (Figure 5I). Likewise, smf-3 mutants and BP-treated animals were hypersensitive to H<SUB>2</SUB>S (Figure 6D and E, and Figure 6—Figure supplement 1G and I), likely due to impaired H<SUB>2</SUB>S detoxification under low iron conditions, as iron is a co-factor required for the activity of the H<SUB>2</SUB>S detoxification enzyme ETHE-1 (Figure 5K and Figure 5—Figure supplement 1E).

      In contrast, reduced locomotion and response in other contexts such as egl-9 mutants and SODdeficient animals reflect H<SUB>2</SUB>S-induced adaptive mechanism rather than toxicity as they remain responsive to the other stimuli after H<SUB>2</SUB>S exposure. Since disrupting egl-9 stabilizes HIF-1 and upregulates the expression of numerous genes involved in cellular defense against H<SUB>2</SUB>S toxicity, the enhanced detoxification capacity in egl-9 mutants likely increases animals’ tolerance to H<SUB>2</SUB>S, thereby reducing avoidance to otherwise toxic H<SUB>2</SUB>S levels. Similarly, persistently high ROS in SOD deficient animals activates a variety of stress-responsive signaling pathways, including HIF-1, NRF2/SKN-1 and DAF-16/ FOXO signaling (Lennicke & Cocheme, 2021; Patten et al., 2010), facilitating cellular adaptation to redox stress and reducing animals’ responsiveness to toxic H<SUB>2</SUB>S levels. Therefore, different animals decline their locomotory speed to the effects of H<SUB>2</SUB>S through distinct mechanisms. We have integrated the relevant information across the result section and discussed this in Lines 485-536.

      Reviewer #3 (Public Review): 

      Summary: 

      The manuscript explores the behavioral responses of C. elegans to hydrogen sulfide, which is known to exert remarkable effects on animal physiology in a range of contexts. The possibility of genetic and precise neuronal dissection of responses to H<SUB>2</SUB>S motivates the study of responses in C. elegans. The manuscript is well-written in communicating the complex physiology around C. elegans behavioral responses to H<SUB>2</SUB>S and in appropriately citing prior and related relevant work. 

      There are three parts to the manuscript.

      In the first, an immediate behavioral response-increased locomotory rate-upon exposure to H<SUB>2</SUB>S is characterized. The experimental conditions are critical, and data are obtained from exposure of animals to 150ppm H<SUB>2</SUB>S at 7% O2. The authors provide evidence that this is a chemosensory response to H<SUB>2</SUB>S, showing a requirement for genes encoding components of the cilia apparatus and implicating a role for tax-4 and daf-11. Neuron-specific rescue in the ASJ neurons suggests the ASJ neurons contribute to the response to H<SUB>2</SUB>S. One caveat is that previous work has shown that the dauer-constitutive phenotype of daf-11 mutants can be suppressed by ASJ ablation, suggesting that there may be pervasive changes in animal nervous system signaling that are ASJ-dependent in daf-11 mutants, which may indirectly alter chemosensory responses to H<SUB>2</SUB>S. More direct methods to assess whether ASJ senses H<SUB>2</SUB>S, e.g. using calcium imaging, would better assess a direct role for the ASJ neurons in a behavioral response to H<SUB>2</SUB>S. The authors also point out interesting parallels between the response to H<SUB>2</SUB>S and CO2 though provide some genetic data separating the two responses. Importantly, the authors note that when aerotaxis (O2sensing and movement) in the presence of bacterial food is intact, as in npr-1 215F animals, the response to H<SUB>2</SUB>S is abrogated. Mutation in gcy-35 in the npr-1 215F background restores the H<SUB>2</SUB>S chemosensory response. 

      There is a second part of the paper that conducts transcriptional profiling of the response to H<SUB>2</SUB>S that corroborates and extends prior work in this area. 

      The final part of the paper is the most intriguing, but for me, also the most problematic. The authors examine how H<SUB>2</SUB>S-evoked locomotory behavioral responses are affected in mutants defective in the stress and detoxification response to H<SUB>2</SUB>S, most notably hif-1. Prior genetic studies have established the pathways leading to HIF-1 activation/stabilization, as well as potential downstream mechanisms. The authors conduct logical genetic analysis to complement studies of the hif-1 mutant and in part motivated by their transcriptional profiling studies, examine the role of iron sequestration/free iron in the locomotory response to H<SUB>2</SUB>S, and further speculate on how the behavior of mutants defective in mitochondrial function might be affected by exposure to H<SUB>2</SUB>S. 

      In some regard, this part of the manuscript is interesting because the analysis begins to connect how the behavior of an animal to a toxic compound is affected by mutations that affect sensitivity to the toxic compound. However, what is unclear is what is being studied at this point. In the context, of noting that H<SUB>2</SUB>S at 150ppm is known to be lethal, its addition to mutants clearly sensitized to its effects would be anticipated to have pervasive effects on animal physiology and nervous system function. The authors note that the continued increased locomotion of wild-type animals upon H<SUB>2</SUB>S exposure might be due to the byproducts of detoxification or the detrimental effects of H<SUB>2</SUB>S. The latter explanation seems much more likely, in which case what one may be observing is the effects of general animal sickness, or even a bit more specifically, neuronal dysfunction in the presence of a toxic compound, on locomotion. As such, what is unclear is what conclusions can be taken away from this part of the work.  

      Strengths: 

      (1) Characterization of a motor behavior response to H<SUB>2</SUB>S 

      (2) Transcriptional profiling of the response to H<SUB>2</SUB>S corroborating prior work.  

      We thank the reviewer for the supportive comments.

      Weaknesses: 

      Unclear significance and experimental challenges regarding the study of locomotory responses to animals sensitized to the toxic effects of H<SUB>2</SUB>S under exposure to H<SUB>2</SUB>S. 

      We thank the reviewer for the comment, which has also been raised by the other reviewers. We agree that our initial submission left several important questions open, and we acknowledge the fact that some aspects, such as detailed neural circuit and sensory transduction, still remain unresolved. Nevertheless, we acquired new data and revised our text, aiming to clarify the distinct mechanisms underlying the reduced locomotion in different mutants during prolonged H<SUB>2</SUB>S exposure.

      Our data suggest that increased initial omega turns and a rapid loss of locomotion in hif-1 and detoxification-defective mutants including sqrd-1 and ethe-1 likely reflect an enhanced sensitivity to H<SUB>2</SUB>S toxicity due to their failure to induce appropriate adaptative responses (Figure 5D–F, Figure 5J–L, Figure 5—Figure supplement 1F–P).  Supporting this, hif-1 mutants become less responsive to unrelated stimuli (near-UV light) after 30 minutes of H<SUB>2</SUB>S exposure (Figure 5I).

      In contrast, egl-9 and SOD-deficient animals show reduced initial reorientation and reduced speed responses (Figure 5B, Figure 7G, Figure 5—Figure supplement 1A and B, and Figure 7—Figure supplement 1F and G), although both egl-9 and sod mutants respond normally to the other stimuli prior or after H<SUB>2</SUB>S exposure (Figure 5I, Figure 5—Figure supplement 1C, and Figure 7—Figure supplement 1H). Since disrupting egl-9 stabilizes HIF-1 and upregulates the expression of numerous genes involved in cellular defense against H<SUB>2</SUB>S toxicity, the enhanced detoxification capacity in egl-9 mutants likely increases animals’ tolerance to H<SUB>2</SUB>S, thereby reducing avoidance to otherwise toxic H<SUB>2</SUB>S levels. Similarly, constant high ROS in SOD deficient animals activates a variety of stress-responsive signaling pathways, including HIF-1, NRF2/SKN-1 and DAF-16/ FOXO signaling (Lennicke & Cocheme, 2021; Patten et al., 2010), facilitating cellular adaptation to redox stress and reducing animals’ responsiveness to toxic H<SUB>2</SUB>S levels. Taken together, these findings support the view that reduced locomotory speed during H<SUB>2</SUB>S exposure can arise from distinct mechanisms: early systemic toxicity in hif-1 and detoxification-defective mutants, versus enhanced cellular adaptation in egl-9 and SOD mutants. We have integrated the relevant information across the result section and discussed this in Lines 485-536.

      Reviewer #1 (Recommendations For The Authors): 

      To better substantiate a role for H<SUB>2</SUB>S detection, it would be useful for the authors to image Ca responses to H<SUB>2</SUB>S in ASJ in WT and unc-13, and to rule out the possibility that the requirement for daf-11 in ASJ reflects a role in O2 rather than H<SUB>2</SUB>S detection. 

      We thank the reviewer for this comment. As suggested, we performed calcium imaging of ASJ neurons using GCaMP6s. As previously described, 3% CO<SUB>2</SUB> evoked a calcium transient in ASJ (Figure 2—figure supplement 2F). To investigate whether H<SUB>2</SUB>S evoked a calcium transient in ASJ neurons, we tested several conditions, including animals on food or off food, with different H<SUB>2</SUB>S concentrations (~75 or ~150ppm), and different exposure time (4 or 8 mins). However, we did not detect a calcium response to H<SUB>2</SUB>S in ASJ under any of the conditions tested (Figure2—figure supplement 2E) (Lines 166–168). Given that neuronspecific rescue of daf-11 or tax-4 mutants pointed to a role of ASJ neurons in promoting H<SUB>2</SUB>S responses, we sought to determine how ASJ neurons were involved. Expression of the tetanus toxin catalytic domain in ASJ neurons, which blocks neurosecretion, inhibited H<SUB>2</SUB>S-evoked locomotory speed responses (Figure 2H), similar to the phenotypes observed in daf-11 and daf-7 mutants (Figure 2C and D) (Lines 162–165). These results confirm that ASJ activity and neurosecretion contribute to the H<SUB>2</SUB>S responses, although ASJ is unlikely to serve as the primary H<SUB>2</SUB>S sensor. One potential explanation is that DAF-7 released by ASJ controls the starvation program, which in turn modulates the animal’s response to H<SUB>2</SUB>S. We also discussed this in Lines 449–458.

      The paper would be significantly strengthened by testing the possibility (as the authors acknowledge in lines 348-52) that disruption of detoxification mechanisms reduces sustained behavioral responses to H<SUB>2</SUB>S because of physiological damage. Authors use acute exposure to high O2 for this purpose earlier in the paper, but not to probe the consequences of loss of hif-1 and detoxification factors.  

      We thank the reviewer for the valuable suggestion. As the reviewer highlighted, we attributed the brief locomotory speed responses to H<SUB>2</SUB>S observed in hif-1 mutants to the lack of detoxification response, leading to the rapid intoxication of the animals. Several lines of evidence support this conclusion. First, we observed that hif-1 and the detoxification mutants displayed a stronger initial reorientation response (omega turns) and a more rapid decline in speed and reversals compared to wild type (Figure 5 D–F). Second, to test if hif-1 mutants were indeed more susceptible to H<SUB>2</SUB>S toxicity, we exposed WT and hif-1 animals to H<SUB>2</SUB>S for 30 mins and subsequently tested their ability to respond to near-UV light. Unlike WT animals, the speed response to near-UV light was inhibited in hif-1 mutants (Figure 5I), suggesting that exposure to H<SUB>2</SUB>S for 30 min causes a stronger toxicity in animals deficient of HIF-1 signaling. Third, hif-1 and detoxification mutants displayed a sustained high speed in response to 1% O<SUB>2</SUB> , suggesting the specific impairment of H<SUB>2</SUB>S response. The data were presented in Lines 318–347, and were further discussed this in Lines 485–508.

      To better understand whether mitochondrial damage has a role in H<SUB>2</SUB>S-evoked behavior, it might be useful for the authors to determine whether general ROS response pathways are important for H<SUB>2</SUB>S behavioral responses.

      We thank the reviewer for this insightful comment. As suggested, we investigated whether ROS detoxification pathways contribute to H<SUB>2</SUB>S-evoked locomotory speed responses by analyzing mutants in the superoxide dismutase (SOD) family. These experiments, together with other observations, suggest that mitochondrial ROS play a dual role in H<SUB>2</SUB>S-evoked locomotion. The relevant results were presented in Lines 401–425, and were further discussed in Lines 509–536.

      First, we found that increased mitochondrial ROS formation, either induced pharmacologically by rotenone or genetically in mitochondrial electron transport chain (ETC) mutants (Ishii et al., 2013; Ochi et al., 2016; Ramsay & Singer, 1992; Yang & Hekimi, 2010; Zorov, Juhaszova, & Sollott, 2014), suppressed the behavioral response to toxic H<SUB>2</SUB>S (Figure 7A–E). This indicates that mitochondrial ROS plays a significant role in H<SUB>2</SUB>S-evoked responses. One likely explanation is that high ROS formation may dampen the H<SUB>2</SUB>S-triggered ROS spike, or may impair other H<SUB>2</SUB>S signaling processes required to initiate avoidance. Second, consistent with previous reports (Onukwufor et al., 2022), we observed that shortterm rotenone exposure (<1 hour) significantly increased baseline locomotory speed. Given that toxic H<SUB>2</SUB>S levels promote ROS formation (Jia et al., 2020), our findings suggest that acute mitochondrial ROS production by toxic levels of H<SUB>2</SUB>S exposure may serve as a trigger for the avoidance response.

      In contrast, animals with sustained mitochondrial ROS production do not have an increased baseline locomotory speed. This effect was observed after 2 hours of rotenone exposure, in mitochondrial ETC mutants, and in animals lacking all SOD enzymes (Figures 7A–K). A likely explanation for the reduced basal locomotory speed during sustained mitochondrial ROS production is the activation of ROSresponsive signaling pathways including HIF-1, NRF2/SKN-1, and DAF-16/FOXO (Lennicke & Cocheme, 2021; Patten, Germain, Kelly, & Slack, 2010), which may promote adaptation to prolonged oxidative stress (Figure 7H). Notably, unlike hif-1 mutants, SOD-deficient animals remained as responsive as WT to other stimuli after 30 minutes of H<SUB>2</SUB>S exposure (Figure 7—figure supplement 1H), indicating that elevated ROS levels do not compromise overall viability or the ability to detoxify H<SUB>2</SUB>S.

      Taken together, these results support a model in which mitochondrial ROS exerts a biphasic effect on H<SUB>2</SUB>S-induced avoidance. It enhances detection and avoidance under acute stress but contributes to locomotory suppression when ROS levels remain elevated chronically.

      Reviewer #2 (Recommendations For The Authors):

      The way the manuscript is presented could be improved without much effort by rewriting/editing. For the reader, it is hard at present to understand the rationales of the experiments, why they were carried out, and how to place them into a context. This could be improved on three levels:

      (1) Documentation 

      (2) Narration/Explanation 

      (3) Visualization 

      (1) Documentation

      Not all of the results in the text are well documented. The results should be described with more details in the written text and improved documentation and quantification of the results. Example: 

      Turning behavior is mentioned as an important aspect of the response to H<SUB>2</SUB>S. There is no citation given but this effect is not well documented. The authors image the animals and could provide video footage of the effect, could quantify eg turning/pirouettes, and provide the data. At the moment the manuscript largely relies on measuring the increase in speed, but the reader is left wondering what other behavioral effects occur and how this is altered in all of the mutant and other conditions tested. Just quantifying speed reduces the readout and seems like an oversimplification to characterize the behavioral response.  

      We are grateful for this comment. We now provide a video footage of the H<SUB>2</SUB>S effects (Figure 1—Video 1). As suggested, we analyzed the recordings to extract reorientation (omega-turns) and reversals. These analyses are now included in the Supplemental file 1 with representative panels displayed in Figure 5 and supplements to Figures 2, 3, 5, 6 and 7. Even though the mutant effects on omega-turns were often subtle, and reversal responses showed considerable variability (likely due to differences in population density, food availability, or animals’ physiological state prior to the assay), this analysis has proven valuable for distinguishing mutants that exhibit adaptation from those that display hypersensitivity to H<SUB>2</SUB>S toxicity. For instance, although both SOD-deficient and BP-treated animals failed to increase their locomotory speed in H<SUB>2</SUB>S (Figure 6E and Figure 7G), they exhibited distinct omega-turn responses (Figure 6—figure supplement 1I and Figure 7—figure supplement 1F), suggesting that different mechanisms likely underlie the locomotory defects of these two animals. We have integrated the omega-turn and reversal data into the text and discussed under relevant contexts.

      (2) Narration/Description.

      Generally, the description of the results part is very brief and it is often not clear why a certain experiment was carried out and how. Surely it is possible to check the methods but this interrupts the flow of reading and it would be easier for the reader to be guided through the results with more information what the initial motivation for an experiment is, what the general experimental outline is, and what specific experiments are carried out. 

      We apologize for the lack of clarity and logical structure in the initial submission. In the revised manuscript, we have thoroughly revised the text to improve its organization and readability.

      Examples: 

      Line 97ff: The authors performed a candidate screen yet it is not described why which genes were chosen. Are there also pathways that were tested that turned out to not be involved? 

      We thank the reviewer for the suggestion. To address this, we have added a new section, explaining the rationale for selecting genes and pathways in our candidate screen. Briefly, we focused on genes known or predicted to be involved in sensory responses to gaseous stimuli in C. elegans and mammals, including globins and guanylate cyclases (21% O<SUB>2</SUB> sensing), potassium channels (acute hypoxia), and nutrientsensitive pathways (CO<SUB>2</SUB> responses). We also included mutants defective in sensory signal transduction and neurotransmission. In addition, mitochondrial mutants were analyzed because mitochondria play a central role in H<SUB>2</SUB>S detoxification. The pathways that contributed to the acute H<SUB>2</SUB>S response included cGMP, insulin, and TGF-β signaling, as well as mitochondrial components. In contrast, globins, potassium channels, and biogenic amine signaling did not appear to play significant roles under our assay conditions. The results of the candidate screen are described in Lines 106–138 and summarized in Supplementary File 1.

      line 262ff: the paragraph starts with explaining ferritin genes that are important for iron control but the reader does not yet know why. Then it is explained that a ferritin gene is DE in the H<SUB>2</SUB>S transcriptomes. then a motivation to look into the labile iron pool is described. Why not first explain what genes are strongly regulated and why they are selected based on their DE? Then explain what is known about these genes and pathways, and then motivate a set of experiments. 

      We agree with the reviewer that our initial description could have been more logically organized. We reframed this section to first present the RNA-seq data, followed by an explanation of their known biological functions and the motivation for the subsequent experiments (Lines 350–357).

      nhr-49 appears suddenly in the results part and it is not clear why it was tested and how the result links. Is nhr-49 a key transcription factor that is activated by H<SUB>2</SUB>S sensory or physiological response, and does it control the signaling or protective changes induced by H<SUB>2</SUB>S?  

      We thank the reviewer for the comment. As suggested, we revised the text to present the information more clearly. In our candidate gene screen, a set of mutants exhibiting reduced speed responses to H<SUB>2</SUB>S has previously been shown to be defective in response to CO<SUB>2</SUB> stimulation (Hallem & Sternberg, 2008). These included animals deficient in nutrient-sensitive pathways, including insulin, TGF-beta, and NHR49, which were reported by Sternberg’s lab to exhibit dampened responses to CO<SUB>2</SUB> (Hallem & Sternberg, 2008) (Lines 173–179). We also included a simply cartoon to further illustrate this (Figure 3C).

      The nuclear hormone receptor NHR-49 has been implicated in a variety of stress responses, including starvation (Van Gilst, Hadjivassiliou, & Yamamoto, 2005), bacterial pathogen (Naim et al., 2021; Wani et al., 2021), and hypoxia (Doering et al., 2022). The nhr-49 mutants exhibited a rapid decline in locomotory speed during H<SUB>2</SUB>S exposure, implicating a role in sustaining high speed in the presence of H<SUB>2</SUB>S. Furthermore, we observed that fmo-2, a well-characterized target gene of NHR-49, was significantly upregulated after 1 hour of exposure to 50 and 150 ppm H<SUB>2</SUB>S (Supplementary file 2), suggesting that NHR-49 signaling is rapidly activated by H<SUB>2</SUB>S exposure. Exactly how NHR-49 contributes to H<SUB>2</SUB>S response requires further investigation.

      (3) Visualization 

      Adding a model/cartoon summary that describes the pathways tested and their interaction would be helpful in some of the figures for the reader to keep an overview of the pathways that were tested. Also, a final summary cartoon that integrates all the puzzle pieces into one larger picture would be helpful. Such a final cartoon overview could also point to the key open questions of the underlying mechanisms. 

      We thank the reviewer for this suggestion. We have added a series of models/cartoons to illustrate the different pathways and their interactions. These include starvation regulatory mechanisms (Figure 3C), 21% O<SUB>2</SUB> sensing mechanisms (Figure 3G), HIF-1 signaling and detoxification (Figure 5—figure supplement 1E), HIF-1 signaling and the regulation of labile iron (Figure 6H), as well as ROS signaling and regulation (Figure 7L). To help interpretation and to elaborate on these models, we have also included explanatory sentences in the corresponding figure legends.

      Other comments: 

      Introduction and line 93: The authors mention that 50 ppm H<SUB>2</SUB>S has beneficial effects on lifespan yet does not have a detectable phenotype." Are there any concentrations of H<SUB>2</SUB>S that cause attraction of C. elegans and what is the preferred range if it exists? Could this be measured in an H<SUB>2</SUB>S gradient? 

      We thank the reviewer for the insightful comment. We performed an H<SUB>2</SUB>S gradient assay, which suggests that wild type animals are attracted toward low concentrations of H<SUB>2</SUB>S around 40 ppm (Figure 1G and H) (Lines 95–104). These results suggest that H<SUB>2</SUB>S acts as a strong repellent for C. elegans at high concentrations but as an attractant at low levels. This dual role may be ecologically relevant, as wild C. elegans lives in complex and dynamic environments where H<SUB>2</SUB>S levels likely fluctuate over short distances (Adams, Farwell, Pack, & Bamesberger, 1979; Budde & Roth, 2011; Morra & Dick, 1991; Patange, Breen, Arsuffi, & Ruvkun, 2025; Rodriguez-Kabana, Jordan, & Hollis, 1965; Romanelli-Cedrez, Vairoletti, & Salinas, 2024).

      Line 146: "Local H<SUB>2</SUB>S concentrations could also be significantly higher in decomposing substances where wild C. elegans thrives" please provide a citation.

      As suggested, we included a set of references that have described the H<SUB>2</SUB>S enrichment in the natural environment in early field studies (Adams et al., 1979; Morra & Dick, 1991; Rodriguez-Kabana et al., 1965), as well as references that have discussed and implied this in C. elegans studies (Budde & Roth, 2011; Patange et al., 2025; Romanelli-Cedrez et al., 2024). They can be found in the introduction (Lines 59–62) and in the result (Lines 197–199).

      Line 311 "Wild C. elegans isolates thrive in the decomposing matters, where the local concentrations of O2 are low while the levels of CO2 and H<SUB>2</SUB>S could be high. These animals have adapted their behavior in such an environment, displaying increased sensitivity to high O2 exposure but dampened responses to CO2." Please provide citations for these statements.  

      As suggested, we cited the relevant articles or books describing the variation of O<SUB>2</SUB> and CO<SUB>2</SUB> levels in the decomposing matters including several C. elegans papers that mentioned this in Lines 197–199 (Bretscher, Busch, & de Bono, 2008; Gea, Barrena, Artola, & Sanchez, 2004; Hallem & Sternberg, 2008; Oshins, Michel, Louis, Richard, & Rynk, 2022), and the above-mentioned articles for H<SUB>2</SUB>S (Adams et al., 1979; Budde & Roth, 2011; Morra & Dick, 1991; Patange et al., 2025; Rodriguez-Kabana et al., 1965; Romanelli-Cedrez et al., 2024).

      For C. elegans’ sensitivity to O2 and CO2, these articles were cited in Lines 201–203 (Beets et al., 2020; Bretscher et al., 2008; Carrillo, Guillermin, Rengarajan, Okubo, & Hallem, 2013; Hallem & Sternberg, 2008; Kodama-Namba et al., 2013; McGrath et al., 2009).

      Reviewer #3 (Recommendations For The Authors): 

      More work could be conducted establishing the neuronal circuitry involved in the initial, tractable response to H<SUB>2</SUB>S. 

      We thank the reviewer for the insightful comment. Since our initial analyses suggest a role of ASJ neurons in H<SUB>2</SUB>S-evoked locomotory responses (Figure 2F and G), We thought that this would offer us an entry point to dissect the neuronal circuit involved in H<SUB>2</SUB>S responses. Expression of the tetanus toxin catalytic domain in ASJ, which blocks neurosecretion, inhibited H<SUB>2</SUB>S evoked locomotory responses (Figure 2H), suggesting that neurosecretion from ASJ promotes the speed response to H<SUB>2</SUB>S (Lines 162– 165). We then performed calcium imaging of ASJ neurons in response to H<SUB>2</SUB>S exposure. However, while we observed CO<SUB>2</SUB> -evoked calcium transients in ASJ using GCaMP6s, we did not detect any calcium response to H<SUB>2</SUB>S, under several conditions, including animals on food, off food, and with different H<SUB>2</SUB>S concentrations and exposure times (Figure2—Figure supplement 2E and 2F) (Lines 166–168). Since signaling from ASJ neurons regulates developmental programs that modify sensory functions in C. elegans, including CO<SUB>2</SUB> and O<SUB>2</SUB> responses (Murakami, Koga, & Ohshima, 2001), the involvement of ASJ neurons is not specific to H<SUB>2</SUB>S responses and ASJ neurons are unlikely to serve as a primary H<SUB>2</SUB>S sensor (Discussed in Line 449–458). Therefore, the exact sensory neuron, circuit and molecular triggers mediating acute H<SUB>2</SUB>S avoidance behavior remain to be elucidated.

      Our subsequent investigation on mitochondrial components suggests that a burst of mitochondrial ROS production may be the trigger for H<SUB>2</SUB>S avoidance, as transient exposure to rotenone substantially increases baseline locomotory activity (Figure 7E) (Line 391–396). However, mitochondrial ROS could potentially target multiple neurons and cellular machineries to initiate avoidance behavior to H<SUB>2</SUB>S, making it challenging to pinpoint specific sites of action. Nevertheless, we agree that further dissection of the neural circuits and mitochondrial signaling in H<SUB>2</SUB>S avoidance will be important and should be explored in future studies. We discussed this in Lines 509–536. 

      I am not sure how to overcome the challenges involved in reaching conclusions from the decreased locomotory responses of animals that are sensitized to the effects of H<SUB>2</SUB>S. Perhaps this conundrum could be discussed in more detail in the text. 

      We thank the reviewer for this important comment. We agree that decreased locomotory speed during H<SUB>2</SUB>S exposure can arise from distinct causes, either systemic toxicity or adaptation, and distinguishing between these is critical. We have included new experiments and revised the text to clarify this issue.

      Our data suggest that increased initial omega turns and a rapid loss of locomotion in hif-1 and detoxification-defective mutants including sqrd-1 and ethe-1 likely reflect an enhanced sensitivity to H<SUB>2</SUB>S toxicity due to their failure to induce appropriate adaptative responses (Figure 5D–F, Figure 5J–L, Figure 5—Figure supplement 1F–P).  Supporting this, hif-1 mutants become less responsive to unrelated stimuli (near-UV light) after 30 minutes of H<SUB>2</SUB>S exposure (Figure 5I).

      In contrast, egl-9 and SOD-deficient animals show reduced initial reorientation and reduced speed responses (Figure 5B, Figure 7G, Figure 5—Figure supplement 1A and B, and Figure 7—Figure supplement 1F and G), although both egl-9 and sod mutants respond normally to the other stimuli prior or after H<SUB>2</SUB>S exposure (Figure 5I, Figure 5—Figure supplement 1C, and Figure 7—Figure supplement 1H). Since disrupting egl-9 stabilizes HIF-1 and upregulates the expression of numerous genes involved in cellular defense against H<SUB>2</SUB>S toxicity, the enhanced detoxification capacity in egl-9 mutants likely increases animals’ tolerance to H<SUB>2</SUB>S, thereby reducing avoidance to otherwise toxic H<SUB>2</SUB>S levels. Similarly, persistently high ROS in SOD deficient animals activates a variety of stress-responsive signaling pathways, including HIF-1, NRF2/SKN-1 and DAF-16/ FOXO signaling (Lennicke & Cocheme, 2021; Patten et al., 2010), facilitating cellular adaptation to redox stress and reducing animals’ responsiveness to toxic H<SUB>2</SUB>S levels. Taken together, these findings support the view that reduced locomotory speed during H<SUB>2</SUB>S exposure can arise from distinct mechanisms: early systemic toxicity in hif-1 and detoxificationdefective mutants, versus enhanced cellular adaptation in egl-9 and SOD mutants. We have integrated the relevant information across the result section and discussed this in Lines 485–536. 

      References

      Adams, D. F., Farwell, S. O., Pack, M. R., & Bamesberger, W. L. (1979). Preliminary Measurements of Biogenic Sulfur-Containing Gas Emissions from Soils. Journal of the Air Pollution Control Association, 29(4), 380-383. doi:Doi 10.1080/00022470.1979.10470805

      Beets, I., Zhang, G., Fenk, L. A., Chen, C., Nelson, G. M., Felix, M. A., & de Bono, M. (2020). NaturaL Variation in a Dendritic Scaffold Protein Remodels Experience-Dependent Plasticity by Altering Neuropeptide Expression. Neuron, 105(1), 106-121 e110. doi:10.1016/j.neuron.2019.10.001  

      Bretscher, A. J., Busch, K. E., & de Bono, M. (2008). A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 105(23), 8044-8049. doi:10.1073/pnas.0707607105

      Budde, M. W., & Roth, M. B. (2011). The response of Caenorhabditis elegans to hydrogen sulfide and hydrogen cyanide. Genetics, 189(2), 521-532. doi:10.1534/genetics.111.129841

      Carrillo, M. A., Guillermin, M. L., Rengarajan, S., Okubo, R. P., & Hallem, E. A. (2013). O-2-Sensing Neurons Control CO2 Response in C. elegans. Journal of Neuroscience, 33(23), 9675-9683. doi:10.1523/Jneurosci.4541-12.2013  

      Doering, K. R. S., Cheng, X., Milburn, L., Ratnappan, R., Ghazi, A., Miller, D. L., & Taubert, S. (2022). Nuclear hormone receptor NHR-49 acts in parallel with HIF-1 to promote hypoxia adaptation in Caenorhabditis elegans. Elife, 11. doi:10.7554/eLife.67911

      Gea, T., Barrena, R., Artola, A., & Sanchez, A. (2004). Monitoring the biological activity of the composting process: Oxygen uptake rate (OUR), respirometric index (RI), and respiratory quotient (RQ). Biotechnol Bioeng, 88(4), 520-527. doi:10.1002/bit.20281

      Hallem, E. A., & Sternberg, P. W. (2008). Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 105(23), 8038-8043. doi:10.1073/pnas.0707469105

      Ishii, T., Miyazawa, M., Onouchi, H., Yasuda, K., Hartman, P. S., & Ishii, N. (2013). Model animals for the study of oxidative stress from complex II. Biochim Biophys Acta, 1827(5), 588-597. doi:10.1016/j.bbabio.2012.10.016

      Jia, J., Wang, Z., Zhang, M., Huang, C., Song, Y., Xu, F., . . . Cheng, J. (2020). SQR mediates therapeutic effects of H(2)S by targeting mitochondrial electron transport to induce mitochondrial uncoupling. Sci Adv, 6(35), eaaz5752. doi:10.1126/sciadv.aaz5752  

      Kodama-Namba, E., Fenk, L. A., Bretscher, A. J., Gross, E., Busch, K. E., & de Bono, M. (2013). Crossmodulation of homeostatic responses to temperature, oxygen and carbon dioxide in C. elegans. PLoS Genet, 9(12), e1004011. doi:10.1371/journal.pgen.1004011

      Lennicke, C., & Cocheme, H. M. (2021). Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell, 81(18), 3691-3707. doi:10.1016/j.molcel.2021.08.018

      McGrath, P. T., Rockman, M. V., Zimmer, M., Jang, H., Macosko, E. Z., Kruglyak, L., & Bargmann, C. I. (2009). Quantitative mapping of a digenic behavioral trait implicates globin variation in C. elegans sensory behaviors. Neuron, 61(5), 692-699. doi:10.1016/j.neuron.2009.02.012

      Morra, M. J., & Dick, W. A. (1991). Mechanisms of h(2)s production from cysteine and cystine by microorganisms isolated from soil by selective enrichment. Appl Environ Microbiol, 57(5), 14131417. doi:10.1128/aem.57.5.1413-1417.1991

      Murakami, M., Koga, M., & Ohshima, Y. (2001). DAF-7/TGF-beta expression required for the normal larval development in C-elegans is controlled by a presumed guanylyl cyclase DAF-11. Mechanisms of Development, 109(1), 27-35. doi:Doi 10.1016/S0925-4773(01)00507-X

      Naim, N., Amrit, F. R. G., Ratnappan, R., DelBuono, N., Loose, J. A., & Ghazi, A. (2021). Cell nonautonomous roles of NHR-49 in promoting longevity and innate immunity. Aging Cell, 20(7). doi:ARTN e13413 10.1111/acel.13413

      Ochi, R., Dhagia, V., Lakhkar, A., Patel, D., Wolin, M. S., & Gupte, S. A. (2016). Rotenone-stimulated superoxide release from mitochondrial complex I acutely augments L-type Ca2+ current in A7r5 aortic smooth muscle cells. Am J Physiol Heart Circ Physiol, 310(9), H1118-1128. doi:10.1152/ajpheart.00889.2015  

      Onukwufor, J. O., Farooqi, M. A., Vodickova, A., Koren, S. A., Baldzizhar, A., Berry, B. J., . . . Wojtovich, A. P. (2022). A reversible mitochondrial complex I thiol switch mediates hypoxic avoidance behavior in C. elegans. Nat Commun, 13(1), 2403. doi:10.1038/s41467-022-30169-y

      Oshins, C., Michel, F., Louis, P., Richard, T. L., & Rynk, R. (2022). Chapter 3 - The composting process. In R. Rynk (Ed.), The Composting Handbook (pp. 51-101): Academic Press.  

      Patange, O., Breen, P., Arsuffi, G., & Ruvkun, G. (2025). Hydrogen sulfide mediates the interaction between C. elegans and Actinobacteria from its natural microbial environment. Cell Reports, 44(1), 115170. doi:10.1016/j.celrep.2024.115170

      Patten, D. A., Germain, M., Kelly, M. A., & Slack, R. S. (2010). Reactive oxygen species: stuck in the middle of neurodegeneration. J Alzheimers Dis, 20 Suppl 2, S357-367. doi:10.3233/JAD-2010100498

      Ramsay, R. R., & Singer, T. P. (1992). Relation of superoxide generation and lipid peroxidation to the inhibition of NADH-Q oxidoreductase by rotenone, piericidin A, and MPP+. Biochem Biophys Res Commun, 189(1), 47-52. doi:10.1016/0006-291x(92)91523-s

      Rodriguez-Kabana, R., Jordan, J. W., & Hollis, J. P. (1965). Nematodes: Biological Control in Rice Fields: Role of Hydrogen Sulfide. Science, 148(3669), 524-526. doi:10.1126/science.148.3669.524

      Romanelli-Cedrez, L., Vairoletti, F., & Salinas, G. (2024). Rhodoquinone-dependent electron transport chain is essential for Caenorhabditis elegans survival in hydrogen sulfide environments. J Biol Chem, 300(9), 107708. doi:10.1016/j.jbc.2024.107708

      Van Gilst, M. R., Hadjivassiliou, H., & Yamamoto, K. R. (2005). A Caenorhabditis elegans nutrient response system partially dependent on nuclear receptor NHR-49. Proc Natl Acad Sci U S A, 102(38), 13496-13501. doi:10.1073/pnas.0506234102

      Wani, K. A., Goswamy, D., Taubert, S., Ratnappan, R., Ghazi, A., & Irazoqui, J. E. (2021). NHR- 49/PPAR-α and HLH-30/TFEB cooperate for   host defense via a flavin-containing monooxygenase. Elife, 10. doi:ARTN e62775 10.7554/eLife.62775

      Yang, W., & Hekimi, S. (2010). A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol, 8(12), e1000556. doi:10.1371/journal.pbio.1000556

      Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev, 94(3), 909-950. doi:10.1152/physrev.00026.2013

    1. eLife Assessment

      This study presents significant and novel insights into the roles of zinc in mammalian meiosis/fertilization events. These findings are useful to our understanding of these processes. The evidence presented is solid, with experiments being well-designed, carefully described, and interpreted with appropriate rigor. The main limitation of lack of mechanistic insight needs to be acknowledged.

    2. Reviewer #1 (Public review):

      The revised manuscript addresses several reviewer concerns, and the study continues to provide useful insights into how ZIP10 regulates zinc homeostasis and zinc sparks during fertilization in mice. The authors have improved the clarity of the figures, shifted emphasis in the abstract more clearly to ZIP10, and added brief discussion of ZIP6/ZIP10 interactions and ZIP10's role in zinc spark-calcium oscillation decoupling. However, some critical issues remain only partially addressed.

      (1) Oocyte health confound: The use of Gdf9-Cre deletes ZIP10 during oocyte growth, meaning observed defects could result from earlier disruptions in zinc signaling rather than solely from the absence of zinc sparks at fertilization. The authors acknowledge this and propose transcriptome profiling as a future direction. However, since mRNA levels often do not accurately reflect protein levels and activity in oocytes, transcriptomics may not be particularly informative in this context. Proteomic approaches that directly assess the molecular effects of ZIP10 loss seem more promising. Although current sensitivity limitations make proteomics from small oocyte samples challenging, ongoing improvements in this area may soon allow for more detailed mechanistic insights.

      (2) ZIP6 context and focus: The authors clarified the abstract to emphasize ZIP10, enhancing narrative clarity. This revision is appropriate and appreciated.

      (3) Follicular development effects: The biological consequences of ZIP6 and ZIP10 knockout during folliculogenesis are still unknown. The authors now say these effects will be studied in the future, but this still leaves a major mechanistic gap unaddressed in the current version.

      (4) Zinc spark imaging and probe limitations: The addition of calcium imaging enhances the clarity of Figure 3. However, zinc fluorescence remains inadequate, and the authors depend solely on FluoZin-3AM, a dye known for artifacts and limited ability to detect subcellular labile zinc. The suggestion that C57BL/6J mice may differ from CD1 in vesicle appearance is plausible but does not fully address concerns about probe specificity and resolution. As the authors acknowledge, future studies with more selective probes would increase confidence in both the spatial and quantitative analysis of zinc dynamics.

      (5) Mechanistic insight remains limited: The revised discussion now recognizes the lack of detailed mechanistic understanding but does not significantly expand on potential signaling pathways or downstream targets of ZIP10. The descriptive data are useful, but the inability to pinpoint how ZIP10 mediates zinc spark regulation remains a key limitation. Again, proteomic profiling would probably be more informative than transcriptomic analysis for identifying ZIP10-dependent pathways once technical barriers to low-input proteomics are overcome.

      Overall, the authors have reasonably revised and clarified key points raised by reviewers, and the manuscript now reads more clearly. However, the main limitation, lack of mechanistic insight and the inability to distinguish between developmental and fertilization-stage roles of ZIP10, remains unresolved. These should be explicitly acknowledged when framing the conclusions.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      The authors investigated the role of the zinc transporter ZIP10 in regulating zinc sparks during fertilization in mice. By utilizing oocyte-specific Zip6 and Zip10 conditional knockout mice, the authors effectively demonstrate the importance of ZIP10 in zinc homeostasis, zinc spark generation, and early embryonic development. The study is overall useful as it identifies ZIP10 as an important component of oocyte processes that support embryo development, thus opening the door for further investigations. While the study provides solid evidence for the requirement of ZIP10 in the regulation of zinc sparks and zinc homeostasis, it falls short of revealing the underlying mechanism of how ZIP10 exerts this important function.

      This report is the first to clarify the role of the zinc transporters ZIP10 expressed in oocytes, which was previously unknown, and does not focus on the detailed mechanism. As you pointed out, we believe that the mechanism will also be important information in the field of fertilization and embryogenesis research, and we believe that it is necessary to consider this issue in the future.

      (1) The zinc transporters the authors are knocking out are expressed in mouse oocytes through follicular development, and the Gdf9-cre driver used means these oocytes were grown in the absence of appropriate Zinc signaling. Thus, it would be difficult to assert that the lack of fertilization associated with zinc sparks is solely responsible for the failure of embryo development. Spindle morphology and other meiotic parameters do not necessarily report oocyte health, so normalcy of these features may not be a strong argument when it comes to metabolic issues.

      As you rightly observe, the results of this study do not entirely exclude the possibility of oocyte health in the absence of adequate zinc homeostasis during oocyte growth. However, evidence has been presented demonstrating that spindle formation does occur in Zip10<sup>d/d</sup> mouse oocytes (Fig.2 C), that fertilization occurs despite the absence of zinc spark (Fig.3 and Fig. 4A), and that some embryos develop to blastocysts (Fig. 4 B). We believe that future studies should evaluate the transcriptome profile of Zip10<sup>d/</sup> mouse oocytes.

      (2) While comparing ZIP6 and ZIP10 in the abstract provides context, focusing more on ZIP10 would improve reader comprehension, as ZIP10 is the primary focus of the study. Emphasizing the specific role of ZIP10 will help the reader grasp the core findings more clearly.

      Thank you for your valuable input. We have revised the summary to focus more on ZIP10 by removing the section in the summary that mentions ZIP6 (P.1-2 Line 34-52).

      (3) Zinc transporters ZIP6 and ZIP10 are expressed during follicular development, but the biological significance of the observation is not clearly addressed. The authors should investigate whether the ZIP6 and ZIP10 knockout affects follicular development and discuss the potential implications.

      Thank you for your valuable input. As you mentioned, we have not been able to clarify the effects of ZIP6 and ZIP10 knockout on follicle formation. However, this report clarifies the role of ZIP-mediated zinc ions in their inclusion. The effect of ZIP knockout on follicle formation will be discussed in the future.

      (4) In Figure 3, the zinc fluorescence images are unclear, making it difficult for readers to interpret the data. Including snapshot images of calcium and zinc spikes as part of the main figure would improve clarity. Moreover, adding more comparative statements and a deeper explanation of why Zip10 KO mice exhibit normal calcium oscillations but lack zinc sparks would strengthen the manuscript.

      Thank you for your suggestion. We have also added images of calcium elevation after fertilization to Fig. 3 and Fig. S3. In addition, the figure legends have been changed (P.29 Line 937-939, P.34 Line 1104-1106). As to why Zip10 KO mice show normal calcium oscillations but lack zinc spikes, as mentioned in Discussion (P. 10 Line 299-300), we speculate that zinc ions existed in Zip10d/d mouse oocytes induce Ca2+ release without compromising IP3R1 sensitivity. We also assume that the lack of zinc spark is due to low accumulation of zinc ion levels in the oocytes via ZIP10, as described in Discussion (P.10 Line 300-302).

      (5) While the study identifies the role of ZIP10 in zinc spark generation, it lacks a clear mechanistic insight. The topic itself is interesting, but without providing a more detailed explanation of the underlying mechanisms, the study leaves an important gap. Further discussion on the signaling pathways potentially involved in zinc spark regulation would add depth to the findings.

      Thank you for your input. This report is the first to clarify the role of the zinc transporters ZIP6 and ZIP10 expressed in oocytes, which was previously unknown, and does not focus on the detailed mechanism. As you pointed out, we believe that the mechanism and signaling pathways will also be important information, and we believe that it is necessary to research this issue in the future.

      Reviewer #2 (Public review):

      Summary:

      In this important study, the authors examine the role of two zinc uptake transporters, Zip6 and Zip10, which are important during the maturation of oocytes, and are critical for both successful fertilization and early embryogenesis.

      Strengths:

      The authors report that oocytes from Zip10 knockout mice exhibit lower labile zinc content during oocyte maturation, decreased amounts of zinc exocytosis during fertilization, and affect the rate of blastocyst generation in fertilized eggs relative to a control strain. They do not observe these changes in their Zip6 knockout animals. The authors present clear and well-documented results from a broad range of experimental modalities in support of their conclusions.

      Thank you for your positive comments.

      Weaknesses:

      (1) The authors' statement that Zip10 is not expressed in the oocyte nuclei (line 252). Furthermore, in that study, ZIP10 was detected in the nuclear/nucleolar positions of oocytes of all follicular stages (Chen et al., 2023), which we did not observe. This is not supported by Figure 1, where some Zip10 signal is apparent in the primordial, primary, and secondary follicle oocytes. This statement should be corrected.

      Thank you for pointing this out. Our results of ISH staining (Fig. 1A) and immunofluorescence staining (Fig. 1B) showed that it was not detected at the nucleus/nucleolus location. In other words, they could not be detected at the mRNA and protein levels. Based on the results of ISH staining and immunofluorescence staining, we conclude that it is expressed in the plasma membrane.

      (2) Based on the FluoZin-3AM data, there appears to be less labile zinc in the Zip10d/d oocyte, eggs, and embryos; however, FluoZin-3AM has a number of well-known artifacts and does not accurately capture the localization of labile zinc pools. The patterns do not correspond to the well-documented zinc-containing cortical vesicles. Another zinc probe, such as ZinPyr-4 or ZincBY-1 should be used to visualize the zinc vesicles and confirm that there is less labile zinc in these locations as well.

      Thank you for your suggestion. Previous studies (Lisle et al., 2013, Reproduction) and our report (Kageyama et al., 2022, Animal Science Journal) have shown that it is possible to examine the presence of labile zinc ions in oocytes and embryos. In addition, mouse oocytes (embryos) reported in previous studies are from CD1 (ICR) mice, whereas our study was conducted using C57BL/6J mice. In our report (Kageyama et al., 2024, Journal of Reproduction and Development), we reported that the appearance of zinc vesicles in the oocytes observed by Fluozin-3AM staining in CD1 and C57BL/6J mice is different, and we believe that this appearance of cortical vesicles in C57BL/6J mice is not a problem. As you say, we have not used other zinc probes and will consider this in the future.

      (3) Line 268 The results indicate that ZIP10 is mostly responsible for the uptake of zinc ions in mouse oocytes. The situation seems a bit more complicated given that the differences in labile zinc content between oocytes from the WT and Zip10d/d animals are small (only 20-30 %) and that the zinc spark is diminished but still apparent at a low level in the Zip10d/d oocytes. Clearly, other factors are involved in zinc uptake at these stages. A variety of studies have suggested that Zip6 and Zip10 work together, perhaps even functioning as a heterodimer in some systems. The double KO would address this more clearly, but if it is not available, it might be more prudent to state that Zip10 plays some role in uptake of zinc in mouse oocytes while the role of Zip6 remains uncertain.

      We would like to express our gratitude for the comments received. The phenotype of double knockout mice for ZIP6 and ZIP10 will be discussed at a future date. We have also added to the text that the role of ZIP6 remains uncertain (P. 11 Line 353-354).

      (4) Zip6d/d oocytes did not have changes in labile zinc, nor did the lack of Zip6 have an impact on the zinc spark. However, Figure S1 does show a small amount of detectable Zip6 in the western blot. It is possible that this small amount could compensate for the complete lack of Zip6. Can ZIP6 be found in immunofluorescence of GV oocytes or MII eggs from the Zip6d/d animals? Additionally, it is possible that Zip6's role is only supplementary to that of Zip10. The authors should discuss this possibility. It would also be interesting to see if the Zip6/Zip10 double knockout displays greater defects compared to the Zip10 knockout when considering previous studies.

      Thank you for your input. The mice are deficient in the gene so that ZIP6 is not functional. It is our notion that the results of WB analysis are not indicative of protein structural functionality, even in cases where the ZIP6 antibody detects a small amount of protein. Since the role of ZIP6 was not elucidated in this study, we added a statement to that effect in the text (P. 11 Line 353-354). In addition, studies using ZIP6/Zip10 double knockout mice will be discussed in the future.

      Recommendations for the authors: please note that you control which revisions to undertake from the public reviews and recommendations for the authors.

      We have revised the text based on the reviewerʼs suggestions.

      Reviewer #1 (Recommendations for the authors):

      (1) In lines 133-136, it seems that the authors would like to aim to emphasize the lack of research on oocytes compared to other tissues and cells. However, the inclusion of unrelated contexts, such as the role of ZIP10 in cancer and skin, appears unnecessary and detracts from the focus on oocyte-specific mechanisms. Removing these unrelated sentences would help maintain clarity and relevance in the introduction.

      *As you indicated, we removed the sentence that is not related to oocytes (P.4 Line 120-125). Further, they reported that targeted disruption using Zip6- and Zip10- specific morpholino injection or antibody incubation induced alteration of the intracellular labile zinc content, spontaneous resumption of meiosis from the PI arrest and premature arrest at a telophase I-like state (Kong et al., 2014). It is clear from these reports that ZIP6 and ZIP10 are involved in zinc transport in oocytes, but the function is not elucidated.”

      (2) Ensure that all video files are properly labeled to enhance understanding.

      Improved video labels for clarity (Movie 1-8, Movie S1-S4)

      (3) Correct mislabeling issues, such as the one in line 209.

      Corrected as follows: Zip10<sup>d/d</sup> mouse oocytes can be fertilized but were unlikely to develop to blastocysts (P. 6-7 Line 196-197).

      (4) In Figure 4D, the amount of ZIP2 appears to increase relative to actin. Including quantification would make the data more robust. Similarly, in Figure 4F, JUNO levels appear increased in Zip10 KO. Please provide quantification.

      The WB band images in Fig. 4D were quantified and their graphs were added to lower part of Fig. 4D. Furthermore, the Juno of Immunofluorescent images in Figure 4F were quantified and their graphs were added to Fig. S4. Figure legends and text were corrected and added.P. 30 Line 975-979: Expression level of β-actin serves as a protein loading control and quantified the expression level of ZP2. Molecular mass is indicated at the left. Statistical differences were calculated according to the one-way ANOVA. Different letters represent significant differences (p < 0.05).

      P. 35 Line: Fig. S4 Comparison of JUNO expression in Zip10<sup>f/f</sup> and Zip10<sup>d/d</sup> mouse MII oocytes. To measure JUNO-immunofluorescence intensity, oocytes images were selected as regions of interest (ROIs) and measured using ImageJ. Statistical differences were calculated according to student’s t-test (p > 0.05; no significant difference).P.7 Line 206-209: As for the expression of JUNO, it had the same expression than between null and control oocytes (Fig. S4) and the temporal dynamics of its disappearance from the cortex after fertilization was similar for both Zip10<sup>f/f</sup> and Zip10<sup>d/d</sup> groups (Fig. 4F).

      (5) Some of the sentences lack proper references.

      The entire text was reviewed and references inserted where necessary.

      P.7 Line 221, P.7 Line222-223, P.8 Line 253-254, P.12 Line 358-360 and P.24 Line 698-699.

      Reviewer #2 (Recommendations for the authors):

      Revisions are warranted in order to address the issues noted in the Weaknesses section of the Public Review. 

      Thank you for your comments, we have individually addressed the areas you pointed out in the Weaknesses section. The following text has also been corrected and edited.

      (1) Line 247 "In primordial follicles, the ooplasmic staining of ZIP10 we anticipate corresponds to ooplasmic vesicular sites. 

      The text of P. 8 Line 230-232 was revised as follows.

      "In primordial follicles, the ooplasm staining of ZIP10 we anticipate corresponds to ooplasmic vesicular sites.

      (2) Line 926 "ZP2 was not stained in primordial follicle, but primary, secondary, and antral follicles stained. FOXL2 was observed in granulosa cells in 928 of all stage follicles. The scale bar represents 20 μm of primordial-secondary follicle and 150 μm of antral follicle." All three sentences have grammar issues that should be fixed. 

      The text of p.28 Line 908-911 was revised as follows.

      It was observed that ZP2 was not present in the primordial follicle; however, it was present in the primary, secondary and antral follicles. Furthermore, FOXL2 was observed at granulosa cells of all stage follicles. Scale bar: 20 µm (primordial, primary and secondary follicle); 150 µm (antral follicle).

    1. eLife Assessment

      This study in the Drosophila antennal lobe, which contains multiple non-equivalent sensory channels, provides valuable new insight into how early-life sensory experience can produce lasting, cell-type-specific changes in neural circuit function. The work convincingly demonstrates that glial-mediated pruning during a defined developmental window leads to persistent suppression of odor responses in one olfactory neuron type, while sparing another. The evidence is solid and supported by multiple complementary approaches, although some mechanistic interpretations remain speculative and would benefit from additional functional testing.

    2. Reviewer #1 (Public review):

      Summary:

      This study builds on earlier work showing that early-life odor exposure can trigger glial-mediated pruning of specific olfactory neuron terminals in Drosophila. Moving from indirect to direct functional imaging, the authors show that pruning during a narrow developmental window leads to long-lasting suppression of odor responses in one neuron type (Or42a) but not another (Or43b). The combination of calcium and voltage imaging with connectomic analysis is a strength, though the voltage imaging results are less straightforward to interpret and may not reflect synaptic output changes alone.

      Strengths:

      Biologically, one of the main strengths of this work is the direct comparison between two odor-responsive OSN types that differ in their long-term adaptation to early-life odor exposure. While Or42a OSNs undergo pruning and remain persistently suppressed into late adulthood, Or43b OSNs, which also respond to the same odor, show little lasting change. This contrast not only underscores the cell-type specificity of critical-period plasticity but also points to a potential role of inhibitory network architecture in determining susceptibility. The persistence of the Or42a suppression well beyond the developmental window provides compelling evidence that early glia-mediated pruning can imprint a stable, life-long functional state on selected sensory channels. By situating these functional outcomes within the context of detailed connectomic data, the study offers a framework for linking structural connectivity to long-term sensory coding stability or vulnerability.

      Weaknesses:

      The narrative begins with the absence of changes in PN dendrites and axons. While this establishes specificity, it is a relatively weak starting point compared to the novel OSN functional results. Calcium imaging with GCaMP, though widely used, is an indirect measure of synaptic function, and reduced signals could reflect changes in non-synaptic calcium influx as well as release probability. The interpretation of the voltage imaging results is also unclear: if suppression were solely due to impaired synaptic release, one might expect action potential-evoked voltage signals to remain unchanged. The reported changes raise the possibility of deficits in action potential initiation or propagation, which would shift the mechanistic explanation.

      The difference between Or42a and Or43b OSNs is attributed to varying inhibitory input densities from connectome data, but this remains speculative without functional tests such as manipulating GABA receptor expression in OSNs. In Or43b, there is essentially no strong phenotype, making it premature to ascribe the absence of suppression solely to inhibitory connectivity. Finally, the study does not connect circuit-level changes to behavioral outcomes; assays of odor-guided attraction or discrimination could place the findings in an organismal context. Some introduction material overlaps with the authors' 2024 paper, and the novelty of the present study could be signposted more clearly.

    3. Reviewer #2 (Public review):

      Recent work from the authors identified the synaptic changes and glial reaction that occur during exposure of a Drosophila odorant receptor neuron population to continued exposure of a stimulating odorant. This work markedly advanced our understanding of cellular response to critical periods. This current Advance manuscript carries that work forward and examines the non-autonomous responses to constant odorant exposure. The authors discover that the changes to ORN populations are not accompanied by changes to either PN dendrite or PN axon volume, nor are they concurrent with changes in postsynaptic PN structures. These changes are, however, notable, accompanied by changes in Ca2+ and voltage responses in ORNs. Importantly, this set of responses is specific to the Or42a ORNs (that are highly sensitive to the odorant in question, ethyl butyrate) and not the Or43b ORNs (which respond to ethyl butyrate, but not as drastically). Finally, the authors include connectomics analyses showing that Or43b and Or42a ORNs differ in their synaptic input/output relationships.

      This is an excellent use of the Advance mechanism for the journal, as these are important follow-up findings for the parent story. The non-autonomous effects (or lack thereof) on PNs is an important part of the story, as is the functional response of Or42a ORNs and the differing response of similarly (but not identically) sensitive Or43b ORNs. The experiments are well-conceived, controlled, and conducted. Where the story falters a bit, though, is with the connectomics analysis. The authors show distinct differences between Or43b and Or42b ORN input-output relationships, and suggest that those differences may underlie the differences observed in their response to ethyl butyrate exposure during the critical period. This is certainly a possibility, but as it stands now, it is too disconnected to offer significant proof. There would have to be additional experiments to address this. Right now, the inclusion of the connectomics work feels like a distraction at best, and a complete non sequitur at worst. To be clear, the connectomics work is well done and I have no issues with its validity, but it is not helpful to the central thesis of the work. I would suggest the authors either remove it entirely or strongly rethink how it fits into the paper.

      Major Concerns:

      (1) The examination of PN axon terminals in the MB and LH is interesting, but it is only one possibility. Oftentimes, the volume of neurons remains constant with perturbation, while the synapse number is affected. Figure 1C and E would be greatly helped by examining synapse number (via Brp or Brp-Short) in the PN axons.

      (2) The use of dlg1[4K] is a strong use of a new tool, but the result is surprising. The presynaptic ORN synapse number onto the PNs is notably changed, but that is not reflected in a postsynaptic PSD-95 change. That suggests a compensatory mechanism that the authors might explore. A good proportion of PN puncta should be postsynaptic to those ORNs, so why aren't they adjusted?

    1. eLife Assessment

      The authors used three genetically diverse mouse models to investigate the impact of genome diversity on metabolic disease outcomes, such as obesity and glucose tolerance. This study is important because it integrates comprehensive metabolic analyses and multi-tissue phenotyping across sexes to reveal pathways relevant to obesity and its complications; the data are convincing and uncover several pathways that advance understanding of disease etiology while suggesting potential therapeutic avenues to prevent obesity-related health risks. There are limitations, such as a limited number of mouse strains used in the work, the 9-week feeding regime may be too short to capture full metabolic remodeling, and the mechanisms by which the immune-adipose axis impacts the broader phenotype are not fully described. Overall, the study is compelling, but the manuscript could be improved by justifying the strain selection, addressing the concern about the feeding duration, and providing stronger mechanistic support or discussion.

    2. Reviewer #1 (Public review):

      Summary:

      The authors performed an in-depth analysis of three mouse strains with different levels of susceptibility to metabolic disease. Transcriptomics analyses of relevant deep tissues revealed many strain-specific differences in response to diet. They used gene set enrichment analysis to highlight possible biological pathways that may be involved in obesity and its metabolic consequences. These results were then confirmed using public data in both mice and humans.

      Strengths:

      Overall, this is an interesting study into the biological basis of differing phenotypic outcomes in response to metabolic challenges. The findings uncover several pathways that may shed light on the etiology of obesity and the associated health risks, as well as offer potential therapeutic avenues to prevent them.

      Weaknesses:

      While the experimental design and analysis are mostly good, some aspects of the present paper could be improved.

      (1) Most results are insufficiently described. P-values are almost entirely absent in the main text. Sometimes the significance is indicated in the figures, and other times it is missing. For example, strains are sometimes described as having a higher XYZ, something that is never shown in the plots, and no p-value is ever given.

      (2) While the biological methods are meticulously described, statistical methods are barely mentioned in the methods section. For example, line 578, "multiple comparisons (...) were performed using the glht function of the multcomp package". What is this? What method does it use? And how was mediation analysis done? Line 575 mentions that models were compared, with no description of how this was done. Mentioning the package (or even function) is not sufficient. The package and function are an implementation; they are not the method. The actual method needs to be clearly mentioned and (at least minimally) described, in addition to having the reference for methods that are not ubiquitous (i.e., the Benjamin-Hochberg method is well-enough established to forgo this).

      (3) The methods should also be briefly introduced in the results section before describing the results of those methods.

      (4) The role of immune signaling pathways and associated phenotypes (e.g., monocyte fraction) is over-interpreted. While the differences shown are convincing, they do not convincingly show a role in either obesity or disease. The parsimonious explanation is that such changes happen as a consequence of dyslipidemia rather than a cause. It is possible that these pathways play a more direct role in this, but the authors do not present compelling evidence of this, and, failing this, the language in the text needs to be toned down.

    3. Reviewer #2 (Public review):

      This study investigated changes in metabolic health across three genetically diverse mouse strains (NZO/HlLtJ, C57BL/6J mice, CAST/EiJ) that were fed either control or high-fat high-sucrose diets. The strength of this study is the depth of metabolic phenotyping, the use of both male and female mice, and the multi-tissue metabolic analysis, including metabolic and gene expression analysis in pancreatic islets, kidney, muscle, heart, liver, and adipose tissue.

      Weaknesses include that only three mouse strains were included in this comparison, particularly given that similar comparisons have been published in the past and that the Jax lab has access to a wide range of mouse strains with diverse genetic backgrounds. Why were CAST mice included over (for example) BALB/c mice that are more commonly used in metabolic studies and are well known to show protection against diet-induced metabolic disease? Furthermore, the feeding regime was limited to 9 weeks, which may not be sufficient to evoke pronounced metabolic remodelling.

      NZO mice are well known to develop obesity. However, only approximately 50% develop type 2 diabetes and beta-cell dysfunction. How were these mice selected in the study? The results state 'Most of the male NZO mice and a few female mice displayed overt diabetes', suggesting that all mice were included irrespective of their diabetic phenotype. More information on the rationale for this is required.

      The transcriptomics data are presented in a convoluted way. As a reader, the main interest would be to determine the differences in diet-induced adaptations within each strain (e.g., why are CAST mice resistant to diet-induced metabolic defects?). However, the way Figure 4 is currently presented does not allow for this. Instead, the data are 'compressed' by looking at general changes in metabolic pathways between tissues in all three mouse strains. In addition, Figure 4E does not show the directionality of the responses within each pathway. For example, are the metabolism and inflammation pathways suppressed or activated? While more data is shown for adipose tissue, this is not sufficient.

      Currently, the metabolic cage data are separated by diet within the main figures. However, given that the diet effect is the major comparison, this needs to be rearranged, and strain differences within each diet could be shown within the supplement.

      The graphs lack labelling throughout to specify which lines/bars represent which strains and diets. This is particularly the case in the metabolic cage analysis.

    4. Reviewer #3 (Public review):

      Summary:

      Using three strains of mice that are founders of the Diversity Outbred Population of mice, this paper attempts to identify key genetic drivers of obesity and metabolic dysfunction. Through a series of in-depth phenotyping experiments, the authors describe substantial differences in the propensity of these strains to develop obesity and complications associated with obesity. The key here was the careful selection of these strains, as they mostly spanned the spectrum of minor susceptibility (C57BL/6J), major susceptibility (NZO/HILtJ), and complete resistance to diet-induced obesity (CAST/EiJ). This was done in the setting of both a normal diet and a high-fat diet. These studies identified that one of the most transcriptionally activated tissues in this setting across the strains was adipose tissue. Furthermore, a critical pathway in adipose tissue that inferred protection against obesity in the CAST strain was related to immune infiltration. Subsequently, the authors extended their studies into this phenotype using their existing access to the vast array of genetic information from the DO datasets. From this analysis, it was identified that a key region on Chr19 had a significant influence on this phenotype, and subsequent work investigated the potentially causal genes. Overall, this study encompasses an impressive amount of in vivo and genetic work and identifies some new gene regulators associated with obesity complications, which warrant further investigation.

      Strengths:

      This study engages multiple mouse lines with diet intervention, as well as powerful genetic mapping tools to isolate genetic drivers of various obesity related phenotypes. The animal studies are thorough and well performed, and they also include detailed omics analysis of several tissues. Subsequent genetic mapping uses some of the world's most powerful preclinical genetic approaches, and findings identify some novel genes associated with obesity.

      Weaknesses:

      These mouse lines and hybrid genetic screens in this paper have been used for some years now to map similar phenotypes, so in that sense, the approach is not overly novel. Moreover, the most compelling and exciting part of the study, in this reviewer's opinion, is the DO mapping of the immune phenotype in adipose tissue. In some ways, the authors could have potentially come to this same conclusion without the need to perform the mouse studies in the three different strains (other than the nice storytelling of finding the phenotype initially in CAST). Likewise, with this being the most novel aspect of the study, it was a shame that the genes identified at Chr19 were not investigated in more detail in the manuscript, other than just some associative outcomes in mice and humans. It would have been pleasing to see some attempt to validate one of these genes in a mouse model, linking it to either obesity or immune phenotypes in WAT.

    1. eLife Assessment

      This work provides an important resource identifying 72 proteins as novel candidates for plasma membrane and/or cell wall damage repair in budding yeast, and describes the temporal coordination of exocytosis and endocytosis during the repair process. The data are convincing; however, additional experimental validation will better support the claim that repair proteins shuttle between the bud tip and the damage site.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Yamazaki et al. conducted multiple microscopy-based GFP localization screens, from which they identified proteins that are associated with PM/cell wall damage stress response. Specifically, the authors identified that bud-localized TMD-containing proteins and endocytotic proteins are associated with PM damage stress. The authors further demonstrated that polarized exocytosis and CME are temporally coupled in response to PM damage, and CME is required for polarized exocytosis and the targeting of TMD-containing proteins to the damage site. From these results, the authors proposed a model that CME delivers TMD-containing repair proteins between the bud tip and the damage site.

      Strengths:

      Overall, this is a well-written manuscript, and the experiments are well-conducted. The authors identified many repair proteins and revealed the temporal coordination of different categories of repair proteins. Furthermore, the authors demonstrated that CME is required for targeting of repair proteins to the damage site, as well as cellular survival in response to stress related to PM/cell wall damage. Although the roles of CME and bud-localized proteins in damage repair are not completely new to the field, this work does have conceptual advances by identifying novel repair proteins and proposing the intriguing model that the repairing cargoes are shuttled between the bud tip and the damaged site through coupled exocytosis and endocytosis.

      Weaknesses:

      While the results presented in this manuscript are convincing, they might not be sufficient to support some of the authors' claims. Especially in the last two result sessions, the authors claimed CME delivers TMD-containing repair proteins from the bud tip to the damage site. The model is no doubt highly possible based on the data, but caveats still exist. For example, the repair proteins might not be transported from one localization to another localization, but are degraded and resynthesized. Although the Gal-induced expression system can further support the model to some extent, I think more direct verification (such as FLIP or photo-convertible fluorescence tags to distinguish between pre-existing and newly synthesized proteins) would significantly improve the strength of evidence.

      Major experiment suggestions:

      (1) The authors may want to provide more direct evidence for "protein shuttling" and for excluding the possibility that proteins at the bud are degraded and synthesized de novo near the damage site. For example, if the authors could use FLIP to bleach bud-localized fluorescent proteins, and the damaged site does not show fluorescent proteins upon laser damage, this will strongly support the authors' model. Alternatively, the authors could use photo-convertible tags (e.g., Dendra) to differentiate between pre-existing repair proteins and newly synthesized proteins.

      (2) In line with point 1, the authors used Gal-inducible expression, which supported their model. However, the author may need to show protein abundance in galactose, glucose, and upon PM damage. Western blot would be ideal to show the level of full-length proteins, or whole-cell fluorescence quantification can also roughly indicate the protein abundance. Otherwise, we cannot assume that the tagged proteins are only expressed when they are growing in galactose-containing media.

      (3) Similarly, for Myo2 and Exo70 localization in CME mutants (Figure 4), it might be worth doing a western or whole-cell fluorescence quantification to exclude the caveat that CME deficiency might affect protein abundance or synthesis.

      (4) From the authors' model in Figure 7, it looks like the repair proteins contribute to bud growth. Does laser damage to the mother cell prevent bud growth due to the reduction of TMD-containing repair proteins at the bud? If the authors could provide evidence for that, it would further support the model.

      (5) Is the PM repair cell-cycle-dependent? For example, would the recruitment of repair proteins to the damage site be impaired when the cells are under alpha-factor arrest?

    3. Reviewer #2 (Public review):

      This paper remarkably reveals the identification of plasma membrane repair proteins, revealing spatiotemporal cellular responses to plasma membrane damage. The study highlights a combination of sodium dodecyl sulfate (SDS) and lase for identifying and characterizing proteins involved in plasma membrane (PM) repair in Saccharomyces cerevisiae. From 80 PM, repair proteins that were identified, 72 of them were novel proteins. The use of both proteomic and microscopy approaches provided a spatiotemporal coordination of exocytosis and clathrin-mediated endocytosis (CME) during repair. Interestingly, the authors were able to demonstrate that exocytosis dominates early and CME later, with CME also playing an essential role in trafficking transmembrane-domain (TMD) containing repair proteins between the bud tip and the damage site.

      Weaknesses/limitations:

      (1) Why are the authors saying that Pkc1 is the best characterized repair protein? What is the evidence?

      (2) It is unclear why the authors decided on the C-terminal GFP-tagged library to continue with the laser damage assay, exclusively the C-terminal GFP-tagged library. Potentially, this could have missed N-terminal tag-dependent localizations and functions and may have excluded functionally important repair proteins.

      (3) The use of SDS and laser damage may bias toward proteins responsive to these specific stresses, potentially missing proteins involved in other forms of plasma membrane injuries, such as mechanical, osmotic, etc.). SDS stress is known to indirectly induce oxidative stress and heat-shock responses.

      (4) It is unclear what the scale bars of Figures 3, 5, and 6 are. These should be included in the figure legend.

      (5) Figure 4 should be organized to compare WT vs. mutant, which would emphasize the magnitude of impairment.

      (6) It would be interesting to expand on possible mechanisms for CME-mediated sorting and retargeting of TMD proteins, including a speculative model.

    4. Reviewer #3 (Public review):

      Summary:

      This work aims to understand how cells repair damage to the plasma membrane (PM). This is important, as failure to do so will result in cell lysis and death. Therefore, this is an important fundamental question with broad implications for all eukaryotic cells. Despite this importance, there are relatively few proteins known to contribute to this repair process. This study expands the number of experimentally validated PM from 8 to 80. Further, they use precise laser-induced damage of the PM/cell wall and use live-cell imaging to track the recruitment of repair proteins to these damage sites. They focus on repair proteins that are involved in either exocytosis or clathrin-mediated endocytosis (CME) to understand how these membrane remodeling processes contribute to PM repair. Through these experiments, they find that while exocytosis and CME both occur at the sites of PM damage, exocytosis predominates in the early stages of repairs, while CME predominates in the later stages of repairs. Lastly, they propose that CME is responsible for diverting repair proteins localized to the growing bud cell to the site of PM damage.

      Strengths:

      The manuscript is very well written, and the experiments presented flow logically. The use of laser-induced damage and live-cell imaging to validate the proteome-wide screen using SDS-induced damage strengthens the role of the identified candidates in PM/cell wall repair.

      Weaknesses:

      (1) Could the authors estimate the fraction of their candidates that are associated with cell wall repair versus plasma membrane repair? Understanding how many of these proteins may be associated with the repair of the cell wall or PM may be useful for thinking about how these results are relevant to systems that do or do not have a cell wall. Perhaps this is already in their GO analysis, but I don't see it mentioned in the manuscript.

      (2) Do the authors identify actin cable-associated proteins or formin regulators associated with sites of PM damage? Prior work from the senior author (reference 26) shows that the formin Bnr1 relocalizes to sites of PM damage, so it would be interesting if Bnr1 and its regulators (e.g., Bud14, Smy1, etc) are recruited to these sites as well. These may play a role in directing PM repair proteins (see more below).

      (3) Do the authors suspect that actin cables play a role in the relocalization of material from the bud tip to PM damage sites? They mention that TMD proteins are secretory vesicle cargo (lines 134-143) and that Myo2 localizes to damage sites. Together, this suggests a possible role for cable-based transport of repair proteins. While this may be the focus of future work, some additional discussion of the role of cables would strengthen their proposed mechanism (steps 3 and 4 in Figure 7).

      (4) Lines 248-249: I find the rationale for using an inducible Gal promoter here unclear. Some clarification is needed.

    1. eLife Assessment

      This important manuscript presents a novel application of the SANDI (Soma and Neurite Density Imaging) model to study microstructural alterations in the basal ganglia of individuals with Huntington's disease (HD). The compelling methods, to our understanding, the first application of SANDI to neurodegenerative diseases, provide strong evidence for HD-related neurodegeneration in the striatum, account significantly for striatal atrophy, and correlate with motor impairments. The integration of novel diffusion acquisition and modelling methods with multimodal behavioural data are both of high value in their own right, and create a framework for future studies.

    2. Reviewer #1 (Public review):

      (1) In this study, the authors aimed at characterizing Huntington's Disease (HD) - related microstructural abnormalities in the basal ganglia and thalami as revealed using Soma and Neurite Density Imaging (SANDI) indices (apparent soma density, apparent soma size, extracellular water signal fraction, extracellular diffusivity, apparent neurite density, fractional anisotropy and mean diffusivity).

      (2) The study implements a novel biophysical diffusion model that extends up-to-date methodologies and presents a significant potential for quantifying neurodegenerative processes of the grey matter of the human brain in vivo. The authors comment on the usefulness of this technique in other pathologies, but they exemplify it only with multiple sclerosis. Further development of this, building evidence, should be provided.

      (3) The study found that HD-related neurodegeneration in the striatum accounted significantly for striatal atrophy and correlated with motor impairments. HD was associated with reduced soma density, increased apparent soma size, and extracellular signal fraction in the basal ganglia, but not in the thalami. Additionally, these effects were larger at the manifest stage.

      (4) The results of this work demonstrate the impact of HD on the basal ganglia and thalami, which can be further explored as a non-invasive biomarker of disease progression. Additionally, the study shows that SANDI can be used to explore grey matter microstructure in a variety of neurological conditions.

    3. Reviewer #2 (Public review):

      Summary:

      The authors aimed to investigate whether advanced microstructural diffusion MRI modeling using the SANDI framework could reveal clinically relevant tissue alterations in the subcortical structures of individuals with Huntington's disease (HD). Specifically, they sought to determine if SANDI-derived parameters-such as soma density, soma size, and extracellular diffusivity-could detect abnormalities in both manifest and premanifest HD stages, complement standard MRI biomarkers (e.g., volume, MD), and correlate with disease burden and motor impairment. Through this, they hoped to demonstrate the feasibility and added biological specificity of SANDI for early detection and characterization of HD pathology.

      Strengths:

      (1) Novelty and relevance:

      This is, to the best of my knowledge, the first clinical deployment of SANDI in HD, offering more biophysically interpretable and specific imaging biomarkers than standard DTI or volumetric features.

      (2) More specific microstructural insight: Traditional approaches have used volumetric features (e.g., striatal volume loss) or DTI metrics (like FA and MD), which are indirect and non-specific markers. They can indicate something is "wrong" but not what is wrong.

      (3) SANDI parameters permit establishing clearer links with microstructure:

      o Apparent soma density (fis): proxy for neuronal/glial cell body density.

      o Apparent soma size (rs): reflects possible gliagl hypertrophy or neuronal shrinkage.

      o Neurite density (fin): linked to dendritic/axonal integrity.

      o Extracellular fraction and diffusivity: sensitive to edema, gliosis, and tissue loss.

      In this way, a decrease in soma density can be related to neural loss (e.g., medium spiny neurons), and an increase in soma size and extracellular fraction could be related to glial reactivity (astrocytes, microglia). This enables differentiating between atrophy due to neuron loss vs reactive gliosis, which volumetrics or DTI cannot do.

      (4) Integration of modalities: The inclusion of motor impairment (Q-Motor), HD-ISS staging, and multi-compartment diffusion modeling is a methodological strength.

      (5) Early detection potential: SANDI metrics showed abnormalities in premanifest HD, sometimes even when volume loss was mild or absent. This suggests the potential for earlier, more sensitive biomarkers of disease progression.

      (6) Predictive power: Regression models showed that SANDI metrics explained up to 63% of the variance in striatal volumes in HD. And this correlated strongly with motor impairment and disease burden (CAP100). This shows they are not just redundant with volume or DTI, but they are complementary and potentially more mechanistically meaningful.

      Weaknesses:

      Certain aspects of the study would benefit from clarification:

      (1) Scanner and acquisition consistency: While HD data are from the WAND study, it is not clear whether controls were scanned on the same scanner or protocol. Given the use of model-derived metrics (especially SANDI), differences in scanner or acquisition could introduce confounds. Also, although it offers novel and biologically informative markers, widespread clinical translation still faces hurdles. For instance, the study used a 3T Connectom scanner (300mT/m gradients), which is not widely available. Reproduction of these results in standard 3T clinical scanners would be a great addition, in scenarios with lower resolution, less precise parameter recovery, and longer scans if SNR needs to be maintained.

      (2) HD-ISS staging and group comparisons:<br /> a) Only 26-27 out of 56 gene-positive participants could be assigned HD-ISS stages, and none were classified into stages 0 or 4.

      b) Visual overlap between stages 1 and 2 in behavioral and imaging features suggests that staging-based group separation may not be robust.

      c) The above may lead to claims based on progression across HD-ISS stages to be overinterpreted or underpowered

      (3) Regression modeling choices:<br /> a) SANDI metrics included in the models differ between HC and HD groups, reducing comparability.

      b) The potential impact of multicollinearity (e.g., between fis and rs) is not discussed.

      c) Beta coefficients could reflect model instability or parameter degeneracy rather than true biological effects.

      These issues do not undermine the study's main conclusions, which effectively demonstrate the feasibility and initial clinical relevance of applying SANDI to HD. Nonetheless, addressing them more thoroughly would enhance the clarity and interpretability of the manuscript.

    4. Reviewer #3 (Public review):

      Summary:

      Ioakeimidis and colleagues studied microstructural abnormalities in N=56 Huntington's disease (HD) patients compared to N=57 normative controls. The authors used a powerful MRI Connectom scanner and applied the SANDI model to estimate the soma size, neurite size, soma density, and extracellular fraction in key subcortical nuclei related to HD. In the striatum, they found decreased soma density and increased soma size, which also seemed to become more pronounced in advanced HD individuals in the final exploratory analyses. The authors conducted important analyses to find whether the SANDI measures correlate with clinical scores (i.e., QMotor) and whether the variance of the striatal volume is explained by the SANDI measures. They found a relationship between SANDI measures for both.

      Strengths:

      The study is both innovative and of high interest for the HD community. The authors provide a rich pool of statistical analyses and results that anticipate the questions that may emerge in the HD research community. Statistics are carefully chosen and image processing is done with state-of-the-art methods and tools. The sample size gives sufficient credibility to the findings. Altogether, I think this study sets a milestone in the attempts of the HD community to understand neuropathological processes with non-invasive methods, and extends the current knowledge of microstructural anomalies identified in HD with diffusion MRI. More importantly, the newly identified anomalies in soma size and soma density open new avenues for studying these biological effects further and perhaps developing these biomarkers for use in clinical trials.

      Weaknesses:

      (1) An important question is whether the SANDI measures, which require an expensive scanner and elaborate processing, are better biomarkers than the more traditional DTI measures. Can the authors compare the effect size of FA/MD with SANDI measures? In some of the plots and tables, FA/MD seem to have comparable, if not higher, correlations with QMotor or CAP scores. On the same vein, it is unclear whether DTI measures were included in hierarchical stepwise regression. I wonder if the stepwise models may have picked up FA/MD instead of SANDI measures if they are given a chance. Overall, I hope the authors can discuss their findings also in this light of cost vs. benefit of adopting SANDI in future studies, which is an important topic for clinical trials.

      (2) Similar to the above point, it is very important to consider how strong the biomarking signal is from SANDI measures compared to the good old striatal volume. Some plots seem to indicate that volumes still have the highest correlation with QMotor and the highest effect size in group comparisons. It would be helpful for the community to know where the new SANDI measures stand compared to the most typically used volumes in terms of effect size.

      (3) The diffusion measures are inevitably correlated to some degree. Please provide a correlation matrix in the supplementary material, including all DWI measures, to enable readers to better understand how similar SANDI measures are to each other or vs. other DTI measures. Perhaps adding volumes to this correlation matrix may also be a good future reference.

      (4) ISS stages:

      a) The online ISS calculator requires cut-offs derived from the longitudinal Freesurfer pipeline, while the authors do not have longitudinal data. Thus, the ISS classification might be inaccurate to some degree if the authors used the FS cross-sectional pipeline. Please review this issue and see if updated cut-offs should be used to classify participants.

      b) Were there really no participants with ISS 0 among the 56 HD individuals? Please clarify in the manuscript.

      (5) A note on terminology that might be confusing to some readers. According to the creators of ISS, the ISS stages are created for research only; they are not used or applied in the clinic. On the other hand, the terms "premanifest" and "manifest" have a clinical meaning, typically based on the diagnostic confidence level. The assignment of ISS0-1 to premanifest and ISS2-3 to manifest may create some non-trivial confusion, if not opposition, in some segments of the HD community. The authors can keep their current terminology, but will need to at least clarify to the reader that this assignment is speculative, does not fully match the clinically-based categories, and should not be confused with similarly named groups in the previous literature.

    5. Author response:

      Response to Reviewer 1:

      Ad (2) Clinical applications of SANDI have primarily focused on Multiple Sclerosis. However, since the preparation of the manuscript, one study has been published reporting reductions in apparent soma density and white and grey matter differences in apparent soma size in amyotrophic lateral sclerosis (ALS) (https://doi.org/10.1016/j.ejrad.2025.111981). We will include this paper in our revised manuscript.

      Responses to Reviewer 2:

      Strength:

      Ad (3) SANDI cannot directly differentiate between neural and glia cells but the pattern of differences in the SANDI parameters we observed in Huntington’s disease (HD) are consistent with the known pathology in HD.

      Weaknesses:

      Ad (1) With regards to the question about scanner and acquisition consistency, we can confirm that all diffusion data of individuals with HD and healthy controls from the WAND study were acquired with the same multi-shell High Angular Resolution Diffusion Imaging (HARDI) protocol on the 3T Connectom scanner at CUBRIC. Thus, all diffusion data analysed and reported in this manuscript were acquired with the same protocol on the same strong gradient MRI system for harmonization and consistency purposes.

      We agree that for clinical adoption it is important to demonstrate that HD-related SANDI differences do not require ultra-strong gradient imaging and can be detected on standard clinical MRI systems. While we have not collected such data in people with HD, we and others have demonstrated the feasibility of modelling SANDI metrics from multi-shell diffusion-weighted imaging data acquired with maximum b-value 3,000 s/mm2 on clinical 3T MRI system in typical adults and people with MS or ALS (https://doi.org/10.1002/hbm.26416, https://doi.org/10.1038/s41598-024-60497-6, https://doi.org/10.1016/j.ejrad.2025.111981). These studies have demonstrated that it is feasible to characterise brain microstructural differences with SANDI on clinical scanners and that comparable patterns of results can be observed across different MRI systems. It should also be noted that there is presently a move towards stronger gradient implementation in clinical systems as demonstrated by the release of the Siemens Cima.X system which will allow higher b-value diffusion scanning on clinical systems. 

      ad (2) We agree that due to the small number of HD participants with HD-ISS staging the exploratory comparisons between ISS stages need to be interpreted with caution. We hope to gain access to some of the missing ISS information and plan to include these in the revised paper.

      Ad (3) With regards to the queries about the regression modelling choices:

      (1) As SANDI metrics differed between HC and HD groups, and hence may not be directly comparable, separate regression models for HC and HD data were conducted without formal comparisons between slopes. Only descriptive exploratory comparisons of the observed pattern were included.

      (2) We will provide cross-correlational analyses between all SANDI parameters in the supplements of the revised version of the paper to check for multicollinearity.

      (3)All model-based approaches, including SANDI, may be prone to model instability or parameter degeneracy and we will acknowledge and discuss this in the revised version.

      Responses to Reviewer 3:

      Weaknesses: 

      Ad (1) and (2) The effect sizes (ES) of group differences in SANDI, DTI, and volume measures in the caudate and putamen (Tables 3 and 4) were broadly comparable: apparent soma radius rs (rrb = 0.45 -0.53), apparent soma size fis (rrb = 0.32 -0.45), FA (rrb = 0.38 -0.55), MD (rrb = 0.51 -0.61) and volumes (rrb = 0.49 -0.55 ). Similar ES were observed between fis and FA, and between rs and volumes. MD showed the largest ES, likely due to striatal atrophy-related CSF partial volume contamination.Cost-benefit analyses of imaging marker choices in clinical trials depend on the aim of the study. DTI provides sensitive but unspecific indices that are influenced by biological and geometrical tissue properties and capture a multitude of microstructural properties. Similarly, volumetric measurements do not inform about the underpinning neurodegenerative processes.

      With the advancement of disease-modifying therapies for HD it has become important to identify non-invasive imaging markers that can inform about the mechanistic effects of novel therapies. While DTI and volume metrics are sensitive to detect brain changes, they do not provide specific information about the underpinning tissue properties. Such information, however, may turn out to be important for the evaluation of mechanistic effects of novel therapeutics in clinical trials. Advanced microstructural models such as SANDI may help provide such information. We found that SANDI indices had statistically similar power to the gold standard measures of volumes, but with the added value of information underpinning microstructure. We and others have also shown that SANDI can be applied to multi-shell diffusion data acquired in a clinically feasible time (~10 min) on standard 3T MRI systems (please refer to our response above).

      To summarise, DTI and volumes are sensitive to brain changes but will need to be complemented by more advanced microstructural measurements such as SANDI to gain a better understanding of the underlying tissue changes and effects of disease-modifying therapies.

      Ad (3) We will provide a correlation matrix of all DWI measures in supplementary material to allow a better understanding how similar SANDI measures are to each other and compared to DTI measures. 

      Ad (4) Most of the people with HD who have taken part in our study were participants in the Enroll-HD study. We will use HD-ISS information from ENROLL as much as possible. As we do not have longitudinal imaging data for all individuals classified as ISS <2, we will compare our cross-sectional striatal volumes with those from age and sex matched individuals from WAND to determine whether people fall into ISS 0 or 1 category. This approach will hopefully allow us to increase the total HD-ISS sample size and to determine whether there were participants with ISS 0 in our sample.

      Ad (5) We will explain in the revised manuscript that ISS stages are created for research only purposes and are not used or applied in clinic, while “premanifest” and “manifest” are helpful concepts in the clinical context. We will clarify that we refer to individuals without motor symptoms as assessed with Total Motor Score (TMS) as premanifest and to those with motor symptoms as manifest. This roughly corresponds to individuals at ISS 0/1 without signs of motor symptoms compared to individuals at ISS 2-3 with signs of motor symptoms.

    1. eLife Assessment

      In this important manuscript, Cassell and colleagues set out on a mechanistic and pharmacological exploration of an engineered chimeric small conductance calcium-activated potassium channel 2 (SK2). They show compelling evidence that the SK2 channel possesses a unique extracellular structure that modulates the conductivity of the selectivity filter, and that this structure is the target for the SK2 inhibitor apamin. The interpretations are sound and the writing is clear, and the manuscript was strengthened during review by providing more detailed information for the electrophysiological experiments and the structural analyses attempted, in addition to relating dilation of the filter to mechanisms of inactivation in other potassium channels. This high-quality study will be of interest to membrane protein structural biologists, ion channel biophysicists, and chemical biologists, and will help to inform future drug development targeting SK channels.

    2. Reviewer #3 (Public review):

      This is a fundamentally important study presenting cryo-EM structures of a human small conductance calcium-activated potassium (SK2) channel in the absence and presence of calcium, or with interesting pharmacological probes bound, including the bee toxin apamin, a small molecule inhibitor, and a small molecule activator. As efforts to solve structures of the wild-type hSK2 channel were unsuccessful, the authors engineered a chimera containing the intracellular domain of the SK4 channel, the subtype of SK channel that was successfully solved in a previous study (reference 13). The authors present many new and exciting findings, including opening of an internal gate (similar to SK4), for the first time resolving the S3-S4 linker sitting atop the outer vestibule of the pore and unanticipated plasticity of the ion selectivity filter, and the binding sites for apamin, one new small molecule inhibitor and another small molecule activator. Appropriate functional data are provided to frame interpretations arising from the structures of the chimeric protein; the data are compelling, the interpretations are sound, and the writing is clear. This high-quality study will be of interest to membrane protein structural biologists, ion channel biophysicists, and chemical biologists, and will be valuable for future drug development targeting SK channels.

      Comments on revisions:

      The authors have done a nice job of revising the manuscript to address the issues raised in the first round of review and I have no further suggestions.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      The small conductance calcium-activated potassium channel 2 (SK2) is an important drug target for treating neurological and cardiovascular diseases. However, structural information on this subtype of SK channels has been lacking, and it has been diOicult to draw conclusions about activator and inhibitor binding and action in the absence of structural information.

      Here the authors set out to (1) determine the structure of the transmembrane regions of a mammalian SK2 channel, (2) determine the binding site of apamin, a historically important SK2 inhibitor whose mode of action is unclear, and (3) use the structural information to generate a novel set of activators/inhibitors that selectively target SK2.

      The authors largely achieved all the proposed goals, and they present their data clearly.

      Unable to solve the structure of the human SK2 due to excessive heterogeneity in its cytoplasmic regions, the authors create a chimeric construct using SK4, whose structure was previously solved, and use it for structural studies. The data reveal a unique extracellular structure formed by the S2-S3 loop, which appears to directly interact with the selectivity filter and modulate its conductivity. Structures of SK2 in the absence and presence of the activating Ca2+ ions both possess non-K+-selective/conductive selectivity filters, where only sites 3 and 4 are preserved. The S6 gates are captured in closed and open states, respectively. Apamine binds to the S2-S3 loop, and unexpectedly, induces a K+ selective/conductive conformation of the selectivity filter while closing the S6 gate.

      Through high-throughput screening of small compound libraries and compound optimization, the group identified a reasonably selective inhibitor and a related compound that acts as an activator. The characterization shows that these compounds bind in a novel binding site. Interestingly, the inhibitor, despite binding in a site diOerent from that of apamine, also induces a K+ selective/conductive conformation of the selectivity filter while the activator induces a non-K+ selective/conductive conformation and an open S6 gate.

      The data suggest that the selectivity filter and the S6 gate are rarely open at the same time, and the authors hypothesize that this might be the underlying reason for the small conductance of SK2. The data will be valuable for understanding the mechanism of SK2 channel (and other SK subtypes).

      Overall, the data is of good quality and supports the claims made by the authors. However, a deeper analysis of the cryo-EM data sets might yield some important insights, i.e., about the relationship between the conformation of the selectivity filter and the opening of the S6 gate.

      We attempted focused 3D classification to identify subsets of particles with the S6 open and the SF in a conductive state but were not able to isolate such a particle class. This indicates that either none or a very small percentage of particles exists in a fully conductive state. This sentence was included in the results section: 

      “Focused 3D classification of the S3-S4 linker was unsuccessful in identifying particles subsets with a dilated extracellular constriction suggesting that either none or a very small percentage of Ca<sup>2+</sup>-bound SK2-4 is in a conductive state”

      Some insight and discussion about the allosteric networks between the SF and the S6 gate would also be a valuable addition.

      The extracellular constriction is in the same non-conductive conformation in the Ca<sup>2+</sup> bound and Ca<sup>2+</sup> -free SK2-4 structures suggesting that the conformation of S3-S4 linker/SF and the S6 are not allosterically coupled. We predict that Ca<sup>2+</sup> opens the intracellular gate and another physiological factor (not yet identified) promotes extracellular gate opening. These sentences were added to the results and discussion: “This along with the similar conformation of the S3-S4 linker in the Ca<sup>2+</sup> -bound and Ca<sup>2+</sup> -free states of SK2-4 suggest that Ca<sup>2+</sup> -dependent intracellular gate dynamics are not coupled to the conformation of the S3-S4 linker. Other yet to be identified physiological factors may be required to dilate the extracellular constriction.”

      “Alternatively, other physiological factors, such as PIP2[46,47] or protein-protein interactions[48-50], may exist in live cells that modulate the interaction between S3-S4 linker and the selectivity filter.”

      Reviewer #2 (Public review):

      Summary:

      The authors have used single-particle cryoEM imaging to determine how small-molecule regulators of the SK channel interact with it and modulate their function.

      Strengths:

      The reconstructions are of high quality, and the structural details are well described.

      Weaknesses:

      The electrophysiological data are poorly described. Several details of the structural observations require a mechanistic context, perhaps better relating them to what is known about SK channels or other K channel gating dynamics.

      As recommended, additional details for electrophysiological data were added to the results, methods, and figure legends for clarification.  

      The most pressing point I have to make, which could help improve the manuscript, relates to the selectivity filter (SF) conformation. Whether the two ion-bound state of SK2-4 (Figure 4A) represents a non-selective, conductive SF occluded by F243 or represents a C-type inactivated SF, further occluded by F243, is unclear. It would be important to discuss this. Reconstructions of Kv1.3 channels also feature a similar configuration, which has been correlated to its accelerated C-type inactivation.

      Structural overlays of Ca<sup>2+</sup> bound SK2-4, HCN, and C-type inactivated Kv1.3 selectivity filters demonstrate that each have conformational diVerences and it is diVicult to definitively determine if the SK2-4 selectivity filter is in a non-selective conformation like HCN or a C-type inactivated conformation like Kv1.3. Based on the number of ions observed in the filter and the position of Tyr361 we believe the selectivity filter most closely resembles that of HCN. Importantly, the selectivity filter conformation observed in the SK2-4 Ca<sup>2+</sup> -bound and Ca<sup>2+</sup> -free structures is ultimately nonconductive due to the Phe243 extracellular constriction blocking K<sup>+</sup> eVlux. 

      A comparison of the SK2-4 selectivity filter to HCN and C-type inactivated Kv1.3 was included in Figure 4 and this sentence was included in the results section:

      “The selectivity filter of SK2-4 resembles that of to HCN in both the position of Tyr361 and the number of K<sup>+</sup> coordination sites (Fig 4E,F,G,H)”

      Furthermore, binding of a toxin derivative to Kv1.3 restores the SF into a conductive form, though occluded by the toxin. It appears that apamin binding to SK2-4 might be doing something similar. Although I am not sure whether SK channels undergo C-type inactivation like gating, classical MTS accessibility studies have suggested that dynamics of the SF might play a role in the gating of SK channels. It would be really useful (if not essential) to discuss the SF dynamics observed in the study and relate them better to aspects of gating reported in the literature.

      Extracellular toxin binding to SK2-4 and K<sub>v</sub>1.3 induce a conformational change in the selectivity filter to produce a canonical K<sup>+</sup> selective structure with four coordination sites. However, the mechanism by which the toxins produce the conformational change is diVerent. For SK2-4, apamin interacts primarily with S3-S4 linker residues and induces a shift in the S3-S4 linker away from the pore axis. This in turn prevents the hydrogen bonds between Arg240 and Tyr245 of the S3-S4 linker and Asp363 at the C-terminus of the selectivity filter to produce a selectivity filter conformation with four K<sup>+</sup> coordination sites. For K<sub>v</sub>1.3, the sea anemone toxin ShK binds directly to the C-terminus of the selectivity filter disrupting interactions required for the C-type inactivated structure and thereby inducing the conformational change. These sentences were added to the results:

      “Toxin induced selectivity filter conformational change has also been reported for K<sub>v</sub 1.3 with the sea anemone toxin ShK. However, unlike apamin binding to SK2-4, ShK binds directly to the K<sub>v</sub> 1.3 selectivity filter to convert a C-type inactivated conformation to a canonical K<sup>+</sup> selective structure with four coordination sites [39,40]. The change in selectivity filter conformation in apamin-bound SK2-4 seems to be driven instead by the weakening of interactions between the selectivity filter and the S3-S4 linker.”

      The SF of K channels, in conductive states, are usually stabilized by an H-bond network involving water molecules bridged to residues behind the SF (D363 in the down-flipped conformation and Y361). Considering the high quality of the reconstructions, I would suspect that the authors might observe speckles of density (possibly in their sharpened map) at these sites, which overlap with water molecules identified in high-resolution X-ray structures of KcsA, MthK, NaK, NaK2K, etc. It could be useful to inspect this region of the density map.

      We did not observe strong density near Y361 or D363 that could be confidently model as water. However, in the structures of SK2-4 bound to apamin and compound 1 Tyr361 in the selectivity filter rotates 180° and forms a hydrogen bond with Thr355 in the pore helix. The homologous hydrogen bond is also observed in SK4 and the conductive/ K<sup>+</sup> selective selectivity filter conformation of Kv1.3.  The rotation of Tyr361 to form a hydrogen bond with Thr355, reorientation of Asp363 and Trp350 into hydrogen bonding position, and the presence of four K<sup>+</sup> coordination sites upon binding of apamin and compound 1 strongly suggest that the selectivity filter is in a K<sup>+</sup> selective/conductive conformation. The Tyr361/Thr355 hydrogen bond is now described in the paper and shown in Figures 4D, 5D, and S6F.

      Reviewer #3 (Public review):

      This is a fundamentally important study presenting cryo-EM structures of a human small conductance calcium-activated potassium (SK2) channel in the absence and presence of calcium, or with interesting pharmacological probes bound, including the bee toxin apamin, a small molecule inhibitor, and a small molecule activator. As eOorts to solve structures of the wild-type hSK2 channel were unsuccessful, the authors engineered a chimera containing the intracellular domain of the SK4 channel, the subtype of SK channel that was successfully solved in a previous study (reference 13). The authors present many new and exciting findings, including opening of an internal gate (similar to SK4), for the first time resolving the S3-S4 linker sitting atop the outer vestibule of the pore and unanticipated plasticity of the ion selectivity filter, and the binding sites for apamin, one new small molecule inhibitor and another small molecule activator. Appropriate functional data are provided to frame interpretations arising from the structures of the chimeric protein; the data are compelling, the interpretations are sound, and the writing is clear. This high-quality study will be of interest to membrane protein structural biologists, ion channel biophysicists, and chemical biologists, and will be valuable for future drug development targeting SK channels.

      The following are suggestions for strengthening an already very strong and solid manuscript:

      (1) It would be good to include some information in the text of the results section about the method and configuration used to obtain electrophysiological data and the limitations. It is not until later in the text that the Qube instrument is mentioned in the results section, and it is not until the methods section that the reader learns it was used to obtain all the electrophysiological data. Even there, it is not explicitly mentioned that a series of diOerent internal solutions were used in each cell where the free calcium concentration was varied to obtain the data in Figure1C. Also, please state the concentration of free calcium for the data in Figure 1B.

      As recommended, additional details for electrophysiological data were added to the results, methods, and figure legends for clarification.  

      (2) The authors do a nice job of discussing the conformations of the selectivity filter they observed here in SK as they relate to previous work on NaK and HCN, but from my perspective the authors are missing an opportunity to point out even more striking relationships with slow C-type inactivation of the selectivity filter in Shaker and Kv1 channels. C-type inactivation of the filter in Shaker was seen in 150 mM K using the W434F mutant (PMC8932672) or in 4 mM K for the WT channel (PMC8932672), and similar results have been reported for Kv1.2 (PMC9032944; PMC11825129) and for Kv1.3 (PMC9253088; PMC8812516) channels. For Kv1.3, C-type inactivation occurs even in 150 mM K (PMC9253088; PMC8812516). Not unlike what is seen here with apamin, binding of the sea anemone toxin (ShK) with a Fab attached (or the related dalazatide) inserts a Lys into the selectivity filter and stabilizes the conducting conformation of Kv1.3 even though the Lys depletes occupancy of S1 by potassium (PMC9253088; PMC8812516). Or might the conformation of the filter be controlled by regulatory processes in SK2 channels? I think connecting the dots here would enhance the impact of this study, even if it remains relatively speculative.

      Please see the response to reviewer 2’s comments for a comparison of the selectivity filter structure between SK2-4 and C-type inactivated K<sub>v</sub>1.3 and a discussion of toxin induced selectivity filter conformational change.

      What is known about how the functional properties of SK2 channels (where the filter changes conformation) diOer from SK4, where the filter remains conducting (reference 13)? Is there any evidence that SK2 channels inactivate?

      Compared with SK4, SK2 has some unique properties such as lower conductance and the ability to switch between low- and high-open probability states. Mutation of Phe243 suggests that the S3-S4 linker conformation contributes to the low conductance. This is included in the discussion.

      “Such a mechanism may explain some properties of SK2 that are not observed in SK4, which lacks an S3-S4 linker, such as its low conductance (~10 pS) and the ability to switch between low- and high-open probability states[3,4]. Indeed, mutation of Phe243 in rat SK2 produced a 2-fold increase in channel conductance[5].”

      Or might the conformation of the filter be controlled by regulatory processes in SK2 channels? I think connecting the dots here would enhance the impact of this study, even if it remains relatively speculative.

      Please see the response to reviewer 1’s comments for a discussion of the potential physiological role of the S3-S4 linker/extracellular constriction and its mechanism for opening.

      Reviewer #1 (Recommendations for the authors):

      I enjoyed reading your paper and am intrigued by your findings on the selectivity filter of SK2. I've got a few recommendations for data analysis and a couple of questions that might contribute to the discussion.

      In your Ca2+-bound dataset, have you tried to parse out any alternative conformations (e.g., by using 3D classification, or 3D variability)? Do you think there might be a small(er) population of particles that adopt a fully open conformation? If you haven't done this already, I would recommend doing so. You have a rather large number of particles in your final 3D reconstruction (~660k), so there might be some hidden conformations that could contribute to our understanding of the system.

      I would recommend doing the same for your compound 4-bound data set.

      Please see above for response to this recommendation.

      Do you think apamine works solely as a pore blocker, or does its binding perhaps also aOect the S6 gate via allosteric networks (perhaps the same ones that induce the formation of the K+ conductive SF through binding of compound 1 above the S6 gate?)?

      Apamin binding does not change the conformation of the pore helices (S5 or S6) and thus we believe it acts primarily as a pore blocker. The following was added to the results section:

      “Overall, the apamin-bound SK2-4/CaM structure resembles Ca<sup>2+</sup>-bound SK2-4. The Nterminal lobe of CaM engages with the S<sub>45</sub> A helix, the S5 and S6 helices adopt a similar conformation, and the intracellular gate Val390 is open with a radius of 3.5 Å (Fig 2D). The most significant conformational change is in the position of the S3-S4 linker, which shifts ~2 Å away from the pore axis to accommodate apamin binding.”

      Is there a mechanistic explanation for why it might be diOicult/energetically costly for the SF to be conductive and the S6 gate to be open at the same time?

      Not to our knowledge.

      I also have these minor recommendations:

      -In all figures showing density, include the threshold/sigma value at which density is shown.

      -For all ligands and ions, include half-map data.

      Sigma values were added for all figures legends displaying cryoEM density. The displayed maps are the sharpened full maps.

      Reviewer #2 (Recommendations for the authors):

      Is it possible to provide a structure-sequence guided explanation for the diOerent aOinity of compound 1 for SK2 vs SK4?

      Yes. The following is now included in the results section and a panel was added to Figure S6D.

      “However, for SK4 Thr212 replaces SK2 Ser318 and Trp216 (homologous to SK2 Trp322) is conserved but adopts a diVerent rotamer conformation (Fig S6D). Both changes occlude the compound 1 binding site in SK4 and would likely reduce compound 1 potency on SK4 as observed in the functional data.”

      Is it possible to propose a model of modulation by compound 1/4 where the authors can comment on the conformational dependence of compound binding? That is, do they bind exclusively to the identified conformational states of the channel, or are they able to bind to both closed and open channels, but bias one state over the other?

      The clash between compound 1 and Thr386 in the open conformation of the S6 helices suggests that compound 1 would preferentially bind to closed state of SK2. Similarly, the clash between compound 4 and Ile380 in the closed conformation of the S6 helices suggests that compound 4 would preferentially bind to the open state of SK2. This was included in the discussion:

      “This proposed mechanism of modulation suggests that compound 1 may bind preferentially to the closed conformation of the S6 helices and compound 4 may bind preferentially to the open conformation of the S6 helices.” 

      Please provide the calcium concentration used to generate the data in Figure 1B. The calcium concentration is now stated in the legend for Fig 1B:

      “Intracellular solution contains 2 µM Ca<sup>2+</sup> based on calculation using Maxchelator (see methods)”

      Essential and critically important descriptions of experiments in Figure 7A are lacking. It would be essential to describe properly, with care, what the currents and the conditions of measurements are. If these currents are obtained by subtracting leak currents by adding other drugs, it would be good to comment on whether the latter compete with compounds 1/4.

      As recommended, additional details for electrophysiological data were added to the results, methods, and figure legends for clarification. SK currents were obtained by subtracting leak currents by adding UCL1684 only at the end of experiments. UCL1684 is not expected to interfere with eVect of compound 1 or 4 given diVerent binding sites and mechanisms.  

      If Compound 1 changes the structure of the SF (Figure 6F), would it also promote apamin binding? Given that both these agents produce a similar change in the SF, could each favor the binding of the other?

      Since apamin binds to the S3-S4 linker it is unlikely that the selectivity filter conformational change observed in the compound 1 bound structure would aVect apamin binding.

    1. eLife Assessment

      This manuscript presents useful insights into the molecular basis underlying the positive cooperativity between the co-transported substrates (galactoside sugar and sodium ion) in the melibiose transporter MelB. Building on years of previous studies, this work improves on the resolution of previously published structures and reports the presence of a water molecule in the sugar binding site that would appear to be key for its recognition, introduces further structures bound to different substrates, and utilizes HDX-MS to further understand the positive cooperativity between sugar and the co-transported sodium cation. Although the experimental work is solid, the presentation of the data lacks clarity, and in particular, the HDX-MS data interpretation requires further explanation in both methodology and discussion, as well as a clearer description of the new insight that is obtained in relation to previous studies. The work will be of interest to biologists and biochemists working on cation-coupled symporters, which mediate the transport of a wide range of solutes across cell membranes.

    2. Reviewer #1 (Public review):

      While the structure of the melibiose permease in both outward and inward-facing forms has been solved previously, there remain unanswered questions regarding its mechanism. Hariharan et al set out to address this with further crystallographic studies complemented with ITC and hydrogen-deuterium exchange (HDX) mass spectrometry. They first report 4 different crystal structures of galactose derivatives to explore molecular recognition, showing that the galactose moiety itself is the main source of specificity. Interestingly, they observe a water-mediated hydrogen bonding interaction with the protein and suggest that this water molecule may be important in binding.

      The results from the crystallography appear sensible, though the resolution of the data is low, with only the structure with NPG better than 3Å. However, it is a bit difficult to understand what novel information is being brought out here and what is known about the ligands. For instance, are these molecules transported by the protein or do they just bind? They measure the affinity by ITC, but draw very few conclusions about how the affinity correlates with the binding modes. Can the protein transport the trisaccharide raffinose?

      The HDX also appears to be well done; however, in the manuscript as written, it is difficult to understand how this relates to the overall mechanism of the protein and the conformational changes that the protein undergoes.

    3. Reviewer #2 (Public review):

      This manuscript from Hariharan, Shi, Viner, and Guan presents x-ray crystallographic structures of membrane protein MelB and HDX-MS analysis of ligand-induced dynamics. This work improves on the resolution of previously published structures, introduces further sugar-bound structures, and utilises HDX to explore in further depth the previously observed positive cooperatively to cotransported cation Na+. The work presented here builds on years of previous study and adds substantial new details into how Na+ binding facilitates melibiose binding and deepens the fundamental understanding of the molecular basis underlying the symport mechanism of cation-coupled transporters. However, the presentation of the data lacks clarity, and in particular, the HDX-MS data interpretation requires further explanation in both methodology and discussion.

      Comments on Crystallography and biochemical work:

      (1) It is not clear what Figure 2 is comparing. The text suggests this figure is a comparison of the lower resolution structure to the structure presented in this work; however, the figure legend does not mention which is which, and both images include a modelled water molecule that was not assigned due to poor resolution previously, as stated by the authors, in the previously generated structure. This figure should be more clearly explained.

      (2) It is slightly unclear what the ITC measurements add to this current manuscript. The authors comment that raffinose exhibiting poor binding affinity despite having more sugar units is surprising, but it is not surprising to me. No additional interactions can be mapped to these units on their structure, and while it fits into the substrate binding cavity, the extra bulk of additional sugar units is likely to reduce affinity. In fact, from their listed ITC measurements, this appears to be the trend. Additionally, the D59C mutant utilised here in structural determination is deficient in sodium/cation binding. The reported allostery of sodium-sugar binding will likely influence the sugar binding motif as represented by these structures. This is clearly represented by the authors' own ITC work. The ITC included in this work was carried out on the WT protein in the presence of Na+. The authors could benefit from clarifying how this work fits with the structural work or carrying out ITC with the D59C mutant, or additionally, in the absence of sodium.

      Comments on HDX-MS work:

      While the use of HDX-MS to deepen the understanding of ligand allostery is an elegant use of the technique, this reviewer advises the authors to refer to the Masson et al. (2019) recommendations for the HDX-MS article (https://doi.org/10.1038/s41592-019-0459-y) on how to best present this data. For example:

      (1) The Methodology includes a lipid removal step. Based on other included methods, I assumed that the HDX-MS was being carried out in detergent-solubilised protein samples. I therefore do not see the need for a lipid removal step that is usually included for bilayer reconstituted samples. I note that this methodology is the same as previously used for MelB. It should be clarified why this step was included, if it was in fact used, aka, further details on the sample preparation should be included.

      (2) A summary of HDX conditions and results should be given as recommended, including the mean peptide length and average redundancy per state alongside other included information such as reaction temperature, sequence coverage, etc., as prepared for previous publications from the authors, i.e., Hariharan et al., 2024.

      (3) Uptake plots per peptide for the HDX-MS data should be included as supporting information outside of the few examples given in Figure 6.

      (4) A reference should be given to the hybrid significance testing method utilised. Additionally, as stated by Hageman and Weis (2019) (doi:10.1021/acs.analchem.9b01325), the use of P < 0.05 greatly increases the likelihood of false positive ΔD identifications. While the authors include multiple levels of significance, what they refer to as high and lower significant results, this reviewer understands that working with dynamic transporters can lead to increased data variation; a statement of why certain statistical criteria were chosen should be included, and possibly accompanied by volcano plots. The legend of Figure 6 should include what P value is meant by * and ** rather than statistically significant and highly statistically significant.

      (5) Line 316 states a significant difference in seen in dynamics, how is significance measured here? There is no S.D. given in Table S4. Can the authors further comment on the potential involvement in solvent accessibility and buried helices that might influence the overall dynamics outside of their role in sugar vs sodium binding? An expected low rate of exchange suggests that dynamics are likely influenced by solvent accessibility or peptide hydrophobicity? The increased dynamics at peptides covering the Na binding site on overall more dynamic helices suggests that there is no difference between the dynamics of each site.

      (6) Previously stated HDX-MS results of MelB (Hariharan et al., 2024) state that the transmembrane helices are less dynamic than polypeptide termini and loops with similar distributions across all transmembrane bundles. The previous data was obtained in the presence of sodium. Does this remove the difference in dynamics in the sugar-binding helices and the cation-binding helices? Including this comparison would support the statement that the sodium-bound MelB is more stable than the Apo state, along with the lack of deprotection observed in the differential analysis.

      (7) Have the authors considered carrying out an HDX-MS comparison between the WT and the D59C mutant? This may provide some further information on the WT structure (particularly a comparison with sugar-bound). This could be tied into a nice discussion of their structural data.

      (8) Have the authors considered utilising Li+ to infer how cation selectivity impacts the allostery? Do they expect similar stabilisation of a higher-affinity sugar binding state with all cations?

      (9) MD of MelB suggests all transmembrane helices are reorientated during substrate translocation, yet substrate and cotransporter ligand binding only significantly impacts a small number of helices. Can the authors comment on the ensemble of states expected from each HDX experiment? The data presented here instead shows overall stabilisation of the transporter. This data can be compared to that of HDX on MFS sugar cation symporter XylE, where substrate binding induces a transition to OF state. There is no discussion of how this HDX data compares to previous MFS sugar transporter HDX. The manuscript could benefit from this comparison rather than a comparison to LacY. It is unlikely that there are universal mechanisms that can be inferred even from these model proteins. Highlighting differences instead between these transport systems provides broader insights into this protein class. Doi: 10.1021/jacs.2c06148 and 10.1038/s41467-018-06704-1.

      (10) Additionally, the recent publication of SMFS data (by the authors: doi:10.1016/j.str.2022.11.011) states the following: "In the presence of either melibiose or a coupling Na+-cation, however, MelB increasingly populates the mechanically less stable state which shows a destabilized middle-loop C3." And "In the presence of both substrate and co-substrate, this mechanically less stable state of MelB is predominant.". It would benefit the authors to comment on these data in contrast to the HDX obtained here. Additionally, is the C3 loop covered, and does it show the destabilization suggested by these studies? HDX can provide a plethora of results that are missing from the current analysis on ligand allostery. The authors instead chose to reference CD and thermal denaturation methods as comparisons.

    4. Reviewer #3 (Public review):

      Summary:

      The melibiose permease from Salmonella enterica serovar Typhimurium (MelBSt) is a member of the Major Facilitator Superfamily (MFS). It catalyzes the symport of a galactopyranoside with Na⁺, H⁺, or Li⁺, and serves as a prototype model system for investigating cation-coupled transport mechanisms. In cation-coupled symporters, a coupling cation typically moves down its electrochemical gradient to drive the uphill transport of a primary substrate; however, the precise role and molecular contribution of the cation in substrate binding and translocation remain unclear. In a prior study, the authors showed that the binding affinity for melibiose is increased in the presence of Na+ by about 8-fold, but the molecular basis for the cooperative mechanism remains unclear. The objective of this study was to better understand the allosteric coupling between the Na+ and melibiose binding sites. To verify the sugar-recognition specific determinants, the authors solved the outward-facing crystal structures of a uniport mutant D59C with four sugar ligands containing different numbers of monosaccharide units (α-NPG, melibiose, raffinose, or α-MG). The structure with α-NPG bound has improved resolution (2.7 Å) compared to a previously published structure and to those with other sugars. These structures show that the specificity is clearly directed toward the galactosyl moiety. However, the increased affinity for α-NPG involves its hydrophobic phenyl group, positioned at 4 Å-distance from the phenyl group of Tyr26 forms a strong stacking interaction. Moreover, a water molecule bound to OH-4 in the structure with α-NPG was proposed to contribute to the sugar recognition and appears on the pathway between the two specificity-determining pockets. Next, the authors analyzed by hydrogen-to-deuterium exchange coupled to mass spectrometry (HDX-MS) the changes in structural dynamics of the transporter induced by melibiose, Na+, or both. The data support the conclusion that the binding of the coupling cation at a remote location stabilizes the sugar-binding residues to switch to a higher-affinity state. Therefore, the coupling cation in this symporter was proposed to be an allosteric activator.

      Strengths:

      (1) The manuscript is generally well written.

      (2) This study builds on the authors' accumulated knowledge of the melibiose permease and integrates structural and HDX-MS analyses to better understand the communication between the sodium ion and sugar binding sites. A high sequence coverage was obtained for the HDX-MS data (86-87%), which is high for a membrane protein.

      Weaknesses:

      (1) I am not sure that the resolution of the structure (2.7 Å) is sufficiently high to unambiguously establish the presence of a water molecule bound to OH-4 of the α-NPG sugar. In Figure 2, the density for water 1 is not obvious to me, although it is indeed plausible that water mediates the interaction between OH4/OH6 and the residues Q372 and T373.

      (2) Site-directed mutagenesis could help strengthen the conclusions of the authors. Would the mutation(s) of Q372 and/or T373 support the water hypothesis by decreasing the affinity for sugars? Mutations of Thr 121, Arg 295, combined with functional and/or HDX-MS analyses, may also help support some of the claims of the authors regarding the allosteric communication between the two substrate-binding sites.

      (3) The main conclusion of the authors is that the binding of the coupling cation stabilizes those dynamic sidechains in the sugar-binding pocket, leading to a high-affinity state. This is visible when comparing panels c and a from Figure S5. However, there is both increased protection (blue, near the sugar) and decreased protection in other areas (red). The latter was less commented, could the increased flexibility in these red regions facilitate the transition between inward- and outward-facing conformations? The HDX changes induced by the different ligands were compared to the apo form (see Figure S5). It might be worth it for data presentation to also analyze the deuterium uptake difference by comparing the conditions sodium ion+melibiose vs melibiose alone. It would make the effect of Na+ on the structural dynamics of the melibiose-bound transporter more visible. Similarly, the deuterium uptake difference between sodium ion+melibiose vs sodium ion alone could be analyzed too, in order to plot the effect of melibiose on the Na+-bound transporter.

      (4) For non-specialists, it would be beneficial to better introduce and explain the choice of using D59C for the structural analyses.

      (5) In Figure 5a, deuterium changes are plotted as a function of peptide ID number. It is hardly informative without making it clearer which regions it corresponds to. Only one peptide is indicated (213-226), I would recommend indicating more of them in areas where deuterium changes are substantial.

      (6) From prior work of the authors, melibiose binding also substantially increases the affinity of the sodium ion. Can the authors interpret this observation based on the HDX data?

    5. Author response:

      Reviewer #1:

      While the structure of the melibiose permease in both outward and inward-facing forms has been solved previously, there remain unanswered questions regarding its mechanism. Hariharan et al set out to address this with further crystallographic studies complemented with ITC and hydrogen-deuterium exchange (HDX) mass spectrometry.

      They first report 4 different crystal structures of galactose derivatives to explore molecular recognition, showing that the galactose moiety itself is the main source of specificity. Interestingly, they observe a water-mediated hydrogen bonding interaction with the protein and suggest that this water molecule may be important in binding.

      We appreciate the understanding of our work presented in this manuscript by this reviewer.

      The results from the crystallography appear sensible, though the resolution of the data is low, with only the structure with NPG better than 3Å. However, it is a bit difficult to understand what novel information is being brought out here and what is known about the ligands. For instance, are these molecules transported by the protein or do they just bind? They measure the affinity by ITC, but draw very few conclusions about how the affinity correlates with the binding modes. Can the protein transport the trisaccharide raffinose?

      The four structures with a bound sugar of different sizes aimed to identify the binding motif on both the primary substrate (sugar) and the transporter (MelB<sub>St</sub>). Although the resolutions of the structures complexed with melibiose, raffinose, or a-MG are relatively low, the size and shape of the densities at each structure are consistent with the corresponding sugar molecules, which provide valuable data for determining the pose of the bound sugar. Additionally, there is another a-NPG-bound structure at a higher resolution of 2.7 Å. Therefore, our new data support the published binding site with the galactosyl moiety as the main interacting group. The identified water-1 in this study further confirms the orientation of C4-OH. Notably, this transporter does not recognize or transport glucosides where the orientation of C4-OH at the glucopyranosyl ring is opposite. We will provide stronger data to support the water-1.

      Regarding the raffinose question, we should have clearly introduced the historical background. Bacterial disaccharide transporters have broad specificity, allowing them to work on a group of sugars with shared structural elements; for example, one sugar molecule can be transported by several transporters. As reported in the literature, the galactosides melibiose, lactose, and raffinose can be transported by both LacY and MelB of E. coli. We did not test whether MelB<sub>St</sub> can transport the a-NPG and raffinose. To address this issue and strengthen our conclusions, we plan to conduct additional experiments to gather evidence of the translocation of these sugars by MelB<sub>St</sub>.

      The HDX also appears to be well done; however, in the manuscript as written, it is difficult to understand how this relates to the overall mechanism of the protein and the conformational changes that the protein undergoes.

      Previously, we used HDX-MS to examine the conformational transition between inward- and outward-facing conformations using a conformation-specific nanobody to trap MelB<sub>St</sub> in an inward-facing state, as structurally resolved by cryoEM single-particle analysis and published in eLife 2024. That study identified dynamic regions that may be involved in the conformational transitions; however, there was no sugar present. We also solved and published the crystal structure of the apo D59C MelB<sub>St</sub>. The sugar-bound and apo states are virtually identical. To address the positive cooperativity of binding between the sugar and co-transport cations observed in biophysical analysis, in this study, we utilize HDX-MS to analyze the structural dynamics induced by melibiose, Na<sup>+</sup>, or both, focusing on the binding residues at the sugar-binding and cation-binding pockets. The results suggest that the coupling cation stabilizes sugar-binding residues at helices I and V, contributing to affinity but not specificity.

      Since MelB<sub>St</sub> favors the outward-facing conformation, and simulations on the free-energy landscape suggest that the highest affinity of the sugar-bound state is also at an outward-facing state, MelB<sub>St</sub> in both the apo and bound states tend to remain in the outward-facing conformation. We will include a section comparing these differences. Thank you to this reviewer for the critical insight.

      Reviewer #2:

      This manuscript from Hariharan, Shi, Viner, and Guan present x-ray crystallographic structures of membrane protein MelB and HDX-MS analysis of ligand-induced dynamics. This work improves on the resolution of previously published structures, introduces further sugar-bound structures, and utilises HDX to explore in further depth the previously observed positive cooperatively to cotransported cation Na<sup>+</sup>. The work presented here builds on years of previous study and adds substantial new details into how Na<sup>+</sup> binding facilitates melibiose binding and deepens the fundamental understanding of the molecular basis underlying the symport mechanism of cation-coupled transporters. However, the presentation of the data lacks clarity, and in particular, the HDX-MS data interpretation requires further explanation in both methodology and discussion.

      We thank this reviewer for taking the time to read our previous articles related to this manuscript.

      Comments on Crystallography and biochemical work:

      (1) It is not clear what Figure 2 is comparing. The text suggests this figure is a comparison of the lower resolution structure to the structure presented in this work; however, the figure legend does not mention which is which, and both images include a modelled water molecule that was not assigned due to poor resolution previously, as stated by the authors, in the previously generated structure. This figure should be more clearly explained.

      This figure shows a stereo view of a density map created in cross-eye style to demonstrate its quality. We will update this figure with a higher-resolution map, and the density for Wat-1 is clearly visible. This also addresses Reviewer-3’s comment regarding the map resolution.

      (2) It is slightly unclear what the ITC measurements add to this current manuscript. The authors comment that raffinose exhibiting poor binding affinity despite having more sugar units is surprising, but it is not surprising to me. No additional interactions can be mapped to these units on their structure, and while it fits into the substrate binding cavity, the extra bulk of additional sugar units is likely to reduce affinity. In fact, from their listed ITC measurements, this appears to be the trend. Additionally, the D59C mutant utilised here in structural determination is deficient in sodium/cation binding. The reported allostery of sodium-sugar binding will likely influence the sugar binding motif as represented by these structures. This is clearly represented by the authors' own ITC work. The ITC included in this work was carried out on the WT protein in the presence of Na<sup>+</sup>. The authors could benefit from clarifying how this work fits with the structural work or carrying out ITC with the D59C mutant, or additionally, in the absence of sodium.

      While raffinose and a-MG have been reported as substrates of MelB in E. coli, binding data are unavailable; additionally, for MelB<sub>St</sub>, we lack data on the binding of two of the four sugars or sugar analogs. We performed a label-free binding assay using ITC to address this concern with the WT MelB<sub>St</sub>. We will also perform the binding assay with the D59C MelB<sub>St</sub>, since sugar binding has been structurally analyzed with this mutant, as pointed out by this reviewer. Along with other new functional results, we will prepare a new Figure 1 on functional analysis, which will also address the comment regarding extra bulk at the non-galactosyl moiety with poor affinity.

      This D59C uniport mutant exhibits increased thermostability, making it a valuable tool for crystal structure determination, especially since the wild type (WT) is difficult to crystallize at high quality. Asp59 is the only site that responds to the binding of all coupling cations: Na<sup>+</sup>, Li<sup>+</sup>, or H<sup>+</sup>. Notably, this mutant selectively abolishes cation binding and cotransport. However, it still maintains intact sugar binding with slightly higher affinity and preserves the conformational transition, as demonstrated by an electroneutral transport reaction, the melibiose exchange, and fermentation assays with intact cells. Therefore, the structural data derived from this mutant are significant and offer important mechanistic insights into sugar transport. We will provide additional details during the revision.

      Comments on HDX-MS work:

      While the use of HDX-MS to deepen the understanding of ligand allostery is an elegant use of the technique, this reviewer advises the authors to refer to the Masson et al. (2019) recommendations for the HDX-MS article (https://doi.org/10.1038/s41592-019-0459-y) on how to best present this data. For example:

      All authors appreciate this reviewer’s comments and suggestions, which will be incorporated into the revision.

      (1) The Methodology includes a lipid removal step. Based on other included methods, I assumed that the HDX-MS was being carried out in detergent-solubilised protein samples. I therefore do not see the need for a lipid removal step that is usually included for bilayer reconstituted samples. I note that this methodology is the same as previously used for MelB. It should be clarified why this step was included, if it was in fact used, aka, further details on the sample preparation should be included.

      Yes, a lipid/detergent removal step was applied in this study and in previous studies and this information was clearly described in Methods.

      (2) A summary of HDX conditions and results should be given as recommended, including the mean peptide length and average redundancy per state alongside other included information such as reaction temperature, sequence coverage, etc., as prepared for previous publications from the authors, i.e., Hariharan et al., 2024.

      We will update the Table S2. Thank you.

      (3) Uptake plots per peptide for the HDX-MS data should be included as supporting information outside of the few examples given in Figure 6.

      We will prepare the plots in supplementary information.

      (4) A reference should be given to the hybrid significance testing method utilised. Additionally, as stated by Hageman and Weis (2019) (doi:10.1021/acs.analchem.9b01325), the use of P < 0.05 greatly increases the likelihood of false positive ΔD identifications. While the authors include multiple levels of significance, what they refer to as high and lower significant results, this reviewer understands that working with dynamic transporters can lead to increased data variation; a statement of why certain statistical criteria were chosen should be included, and possibly accompanied by volcano plots. The legend of Figure 6 should include what P value is meant by * and ** rather than statistically significant and highly statistically significant.

      We appreciate this comment and will cite this article on the hybrid significance method. We will include volcano plots for each dataset. We fully acknowledge that using a cutoff of P < 0.05 can increase the likelihood of false-positive identifications. However, given the complexity of the samples analyzed in this study, we believe that some important changes may have been excluded due to higher variability within the dataset. By applying multiple levels of statistical testing, we determined that P < 0.05 represents a suitable threshold for this study. The threshold values were marked in the residual plots and explained in the text. For Figure 6, we have revised it by showing the P value directly.

      (5) Line 316 states a significant difference in seen in dynamics, how is significance measured here? There is no S.D. given in Table S4. Can the authors further comment on the potential involvement in solvent accessibility and buried helices that might influence the overall dynamics outside of their role in sugar vs sodium binding? An expected low rate of exchange suggests that dynamics are likely influenced by solvent accessibility or peptide hydrophobicity? The increased dynamics at peptides covering the Na binding site on overall more dynamic helices suggests that there is no difference between the dynamics of each site.

      Table S4 was created to provide an overall view of the dynamic regions. If we understand correctly, this reviewer asked us to comment on the effect of solvent accessibility or hydrophobic regions on the overall dynamics outside the binding residues of the peptides that carry binding residues. Since the HDX rate is influenced by two linked factors: solvent accessibility and hydrogen-bonding interactions that reflect structural dynamics, poor solvent accessibility in buried regions results in low deuterium uptakes. The peptides in our dataset that include the Na<sup>+</sup>-binding site showed low HDX, likely due to poor solvent accessibility and structural stability. It is unclear what this reviewer meant by "increased dynamics at peptides covering the Na binding site on overall more dynamic helices." We do not observe increased dynamics in peptides covering Na<sup>+</sup>-binding sites.

      (6) Previously stated HDX-MS results of MelB (Hariharan et al., 2024) state that the transmembrane helices are less dynamic than polypeptide termini and loops with similar distributions across all transmembrane bundles. The previous data was obtained in the presence of sodium. Does this remove the difference in dynamics in the sugar-binding helices and the cation-binding helices? Including this comparison would support the statement that the sodium-bound MelB is more stable than the Apo state, along with the lack of deprotection observed in the differential analysis.

      Thanks for this suggestion. The previous datasets were collected in the presence of Na<sup>+</sup>. In the current study, we also have a Na-containing dataset. Both showed similar results: the multiple overlapping peptides covering the sugar-binding residues on helices I and V have higher HDX rates than those covering the Na<sup>+</sup>-binding residues, even when Na<sup>+</sup> is present in both datasets.

      (7) Have the authors considered carrying out an HDX-MS comparison between the WT and the D59C mutant? This may provide some further information on the WT structure (particularly a comparison with sugar-bound). This could be tied into a nice discussion of their structural data.

      Thanks for this suggestion. Conducting the HDX-MS comparison between the WT and the D59C mutant is certainly interesting, especially given the growing amount of structural and biochemical/biophysical data available for this mutant. However, due to limited resources, we might consider doing it later.

      (8) Have the authors considered utilising Li<sup>+</sup> to infer how cation selectivity impacts the allostery? Do they expect similar stabilisation of a higher-affinity sugar binding state with all cations?

      Thanks for this suggestion. We have demonstrated that Li<sup>+</sup> also shows positive cooperativity with melibiose through ITC binding measurements. Li<sup>+</sup> binds to MelB<sub>St</sub> with higher affinity than Na<sup>+</sup> but causes many different effects on MelB. It is worth investigating this thoroughly and individually. To address the second question, H<sup>+</sup> is a poor coupling cation with minimal impact on melibiose binding. Since its pKa is around 6.5, only a small subpopulation of MelB<sub>St</sub> is protonated at pH 7.5. The order of sugar-binding cooperativity is the highest with Na<sup>+</sup>, followed by Li<sup>+</sup> and H<sup>+</sup>.

      (9) MD of MelB suggests all transmembrane helices are reorientated during substrate translocation, yet substrate and cotransporter ligand binding only significantly impacts a small number of helices. Can the authors comment on the ensemble of states expected from each HDX experiment? The data presented here instead shows overall stabilisation of the transporter. This data can be compared to that of HDX on MFS sugar cation symporter XylE, where substrate binding induces a transition to OF state. There is no discussion of how this HDX data compares to previous MFS sugar transporter HDX. The manuscript could benefit from this comparison rather than a comparison to LacY. It is unlikely that there are universal mechanisms that can be inferred even from these model proteins. Highlighting differences instead between these transport systems provides broader insights into this protein class. Doi: 10.1021/jacs.2c06148 and 10.1038/s41467-018-06704-1.

      The sugar translocation free-energy landscape simulations showed that both helix bundles move relative to the membrane plane. That analysis aimed to clarify a hypothesis in the field—that the MFS transporter can use an asymmetric mode to transition between inward- and outward-facing states. In the case of MelB, we clearly demonstrated that both domains move and each helix bundle moves as a unit, so the labeling changes were identified only in some extramembrane loops and a few highly flexible helices. Thanks for the suggestion about comparing with XylE. We will include a discussion on it.

      (10) Additionally, the recent publication of SMFS data (by the authors: doi:10.1016/j.str.2022.11.011) states the following: "In the presence of either melibiose or a coupling Na<sup>+</sup>-cation, however, MelB increasingly populates the mechanically less stable state which shows a destabilized middle-loop C3." And "In the presence of both substrate and co-substrate, this mechanically less stable state of MelB is predominant.". It would benefit the authors to comment on these data in contrast to the HDX obtained here. Additionally, is the C3 loop covered, and does it show the destabilization suggested by these studies? HDX can provide a plethora of results that are missing from the current analysis on ligand allostery. The authors instead chose to reference CD and thermal denaturation methods as comparisons.

      Thank this reviewer for reading the single-molecule force spectroscopy (SMFS) study on MelB<sub>St</sub>. The C3 loop mentioned in this SMFS article is partially covered in the dataset Mel or Mel plus Na<sup>+</sup> vs. Apo, and more coverage is in the Na<sup>+</sup> vs. Apo. In either condition, no deprotection was detected. Two possible reasons the HDX data did not reflect the deprotection are: 1) The changes were too subtle and did not pass the statistical tests and 2) the longest labeling time point was still insufficient to detect the changes; much longer labeling times should be considered in future studies.

      Reviewer #3:

      Summary:

      The melibiose permease from Salmonella enterica serovar Typhimurium (MelB<sub>St</sub>) is a member of the Major Facilitator Superfamily (MFS). It catalyzes the symport of a galactopyranoside with Na⁺, H⁺, or Li⁺, and serves as a prototype model system for investigating cation-coupled transport mechanisms. In cation-coupled symporters, a coupling cation typically moves down its electrochemical gradient to drive the uphill transport of a primary substrate; however, the precise role and molecular contribution of the cation in substrate binding and translocation remain unclear. In a prior study, the authors showed that the binding affinity for melibiose is increased in the presence of Na<sup>+</sup> by about 8-fold, but the molecular basis for the cooperative mechanism remains unclear. The objective of this study was to better understand the allosteric coupling between the Na<sup>+</sup> and melibiose binding sites. To verify the sugar-recognition specific determinants, the authors solved the outward-facing crystal structures of a uniport mutant D59C with four sugar ligands containing different numbers of monosaccharide units (α-NPG, melibiose, raffinose, or α-MG). The structure with α-NPG bound has improved resolution (2.7 Å) compared to a previously published structure and to those with other sugars. These structures show that the specificity is clearly directed toward the galactosyl moiety. However, the increased affinity for α-NPG involves its hydrophobic phenyl group, positioned at 4 Å-distance from the phenyl group of Tyr26 forms a strong stacking interaction. Moreover, a water molecule bound to OH-4 in the structure with α-NPG was proposed to contribute to the sugar recognition and appears on the pathway between the two specificity-determining pockets. Next, the authors analyzed by hydrogen-to-deuterium exchange coupled to mass spectrometry (HDX-MS) the changes in structural dynamics of the transporter induced by melibiose, Na<sup>+</sup>, or both. The data support the conclusion that the binding of the coupling cation at a remote location stabilizes the sugar-binding residues to switch to a higher-affinity state. Therefore, the coupling cation in this symporter was proposed to be an allosteric activator.

      Strengths:

      (1) The manuscript is generally well written.

      (2) This study builds on the authors' accumulated knowledge of the melibiose permease and integrates structural and HDX-MS analyses to better understand the communication between the sodium ion and sugar binding sites. A high sequence coverage was obtained for the HDX-MS data (86-87%), which is high for a membrane protein.

      Thank this reviewer for your positive comments.

      Weaknesses:

      (1) I am not sure that the resolution of the structure (2.7 Å) is sufficiently high to unambiguously establish the presence of a water molecule bound to OH-4 of the α-NPG sugar. In Figure 2, the density for water 1 is not obvious to me, although it is indeed plausible that water mediates the interaction between OH4/OH6 and the residues Q372 and T373.

      Thanks for your comments on the resolution. We will improve the density for the Water 1.

      (2) Site-directed mutagenesis could help strengthen the conclusions of the authors. Would the mutation(s) of Q372 and/or T373 support the water hypothesis by decreasing the affinity for sugars? Mutations of Thr 121, Arg 295, combined with functional and/or HDX-MS analyses, may also help support some of the claims of the authors regarding the allosteric communication between the two substrate-binding sites.

      The authors thank this reviewer for the thoughtful suggestions. MelB<sub>St</sub> has been subjected to Cys-scanning mutagenesis (https://doi.org/10.1016/j.jbc.2021.101090). Placing a Cys residue on the hydrogen bond-donor Q372 significantly decreased the transport initial rate, accumulation, and melibiose fermentation, with little effect on protein expression, as shown in Figure 2 of this JBC paper. Although no binding data are available, the poor initial rate of transport with a similar amount of protein expressed suggested that the binding affinity is apparently decreased, supporting the role of water-1 in the binding pocket for better binding. The T373C mutant retained most activities of the WT. We will discuss the functional characterizations of these two mutants. Thanks.

      (3) The main conclusion of the authors is that the binding of the coupling cation stabilizes those dynamic sidechains in the sugar-binding pocket, leading to a high-affinity state. This is visible when comparing panels c and a from Figure S5. However, there is both increased protection (blue, near the sugar) and decreased protection in other areas (red). The latter was less commented, could the increased flexibility in these red regions facilitate the transition between inward- and outward-facing conformations?

      Thanks for this important question. We will discuss the deprotected data in the conformational transition between inward-facing and outward-facing states. The two regions, loop8-9 and loop1-2, are located in the gate area on both sides of the membrane and showed increased deuterium uptakes upon binding of melibiose plus Na<sup>+</sup>. They are likely involved in this process.

      The HDX changes induced by the different ligands were compared to the apo form (see Figure S5). It might be worth it for data presentation to also analyze the deuterium uptake difference by comparing the conditions sodium ion+melibiose vs melibiose alone. It would make the effect of Na<sup>+</sup> on the structural dynamics of the melibiose-bound transporter more visible. Similarly, the deuterium uptake difference between sodium ion+melibiose vs sodium ion alone could be analyzed too, in order to plot the effect of melibiose on the Na<sup>+</sup>-bound transporter.

      We will analyze the data as suggested by this reviewer.

      (4) For non-specialists, it would be beneficial to better introduce and explain the choice of using D59C for the structural analyses.

      As response to the reviewer #1 at page 3, “Asp59 is the only site that responds to the binding of all coupling cations: Na<sup>+</sup>, Li<sup>+</sup>, or H<sup>+</sup>. Notably, this mutant selectively abolishes cation binding and cotransport. However, it still maintains intact sugar binding with slightly higher affinity and preserves the conformational transition, as demonstrated by an electroneutral transport reaction, the melibiose exchange, and fermentation assays with intact cells. Therefore, the structural data derived from this mutant are significant and offer important mechanistic insights into sugar transport. We will provide additional details during the revision.”.

      (5) In Figure 5a, deuterium changes are plotted as a function of peptide ID number. It is hardly informative without making it clearer which regions it corresponds to. Only one peptide is indicated (213-226), I would recommend indicating more of them in areas where deuterium changes are substantial.

      We appreciate this comment, which will make the plots more meaningful. In the previous article published in eLife (2024), we drew boxed to mark the transmembrane regions; however, it generated much confusion, such as why some helices are very short. The revised figure will label the full length of covered positions.

      (6) From prior work of the authors, melibiose binding also substantially increases the affinity of the sodium ion. Can the authors interpret this observation based on the HDX data?

      This is an intriguing mechanistic question. Based on current data, we believe that the bound melibiose physically prevents the release of Na<sup>+</sup> or Li<sup>+</sup> from the cation-binding pocket. The cation-binding pocket and surrounding regions, including the sugar-binding residue Asp124, show low HDX, supporting this idea. Since we lack a structure with both substrates bound, figuring out the details structurally is challenging. However, we have a hypothesis about the intracellular Na<sup>+</sup> release as proposed in the 2024 JBC paper (https://doi.org/10.1016/j.jbc.2024.107427). After sugar release, the rotamer change of Asp55 will help Na<sup>+</sup> exit the cation pocket to the sugar pocket, and the negative membrane potential will facilitate the further movement from MelB to the cytosol. We will discuss this during the revision.

    1. eLife Assessment

      This important study significantly advances our understanding of the skeleton of cartilaginous fishes by using a range of state of the art and complementary approaches to compare the skeleton amongst three cartilagenous fishes (catshark, little skate and ratfish). The evidence presented is compelling and likely to impact several fields of study.

    2. Reviewer #2 (Public review):

      General comment:

      This is a very valuable and unique comparative study. An excellent combination of scanning and histological data from three different species is presented. Obtaining the material for such a comparative study is never trivial. The study presents new data and thus provides the basis for an in-depth discussion about chondrichthyan mineralised skeletal tissues.

      Comments on previous revisions:

      The manuscript has been revised and improved and can be published. A very nice manuscript, indeed. My only recommendation (point of discussion, not a requirement) would still be to think about the claim of paedomorphosis in a holocephalan.

      Within the chondrichthyes, how distant holocephali are in relation to elasmobranchii remains uncertain, holocephali are quite a specialised group. Holocephali are also older than Batoidea and Selachii. As paedomorphosis is a derived character, I imagine it is difficult to establish that development in an extant holocephalan is derived compared to development in elasmobranchii. If this type of development would have been typical for the "older" holocephali it would not be paedomorphic. Also, the uncertainty how distant holocephali are from elasmobranchii makes it difficult to identify paedomorphosis with reference to chondrichthyes.

      [Editors note: the authors have made further revisions in response to the previous reviews.]

    3. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public Review):

      Summary:

      It seems as if the main point of the paper is about the new data related to rat fish although your title is describing it as extant cartilaginous fishes and you bounce around between the little skate and ratfish. So here's an opportunity for you to adjust the title to emphasize ratfish is given the fact that leader you describe how this is your significant new data contribution. Either way, the organization of the paper can be adjusted so that the reader can follow along the same order for all sections so that it's very clear for comparative purposes of new data and what they mean. My opinion is that I want to read, for each subheading in the results, about the the ratfish first because this is your most interesting novel data. Then I want to know any confirmation about morphology in little skate. And then I want to know about any gaps you fill with the cat shark. (It is ok if you keep the order of "skate, ratfish, then shark, but I think it undersells the new data).

      The main points of the paper are 1) to define terms for chondrichthyan skeletal features in order to unify research questions in the field, and 2) add novel data on how these features might be distributed among chondrichthyan clades. However, we agree with the reviewer that many readers might be more interested in the ratfish data, so we have adjusted the order of presentation to emphasize ratfish throughout the manuscript.

      Strengths:

      The imagery and new data availability for ratfish are valuable and may help to determine new phylogenetically informative characters for understanding the evolution of cartilaginous fishes. You also allude to the fossil record.

      Thank you for the nice feedback.

      Opportunities:

      I am concerned about the statement of ratfish paedomorphism because stage 32 and 33 were not statistically significantly different from one another (figure and prior sentences). So, these ratfish TMDs overlap the range of both 32 and 33. I think you need more specimens and stages to state this definitely based on TMD. What else leads you to think these are paedomorphic? Right now they are different, but it's unclear why. You need more outgroups.

      Sorry, but we had reported that the TMD of centra from little skate did significantly increase between stage 32 and 33. Supporting our argument that ratfish had features of little skate embryos, TMD of adult ratfish centra was significantly lower than TMD of adult skate centra (Fig1).  Also, it was significantly higher than stage 33 skate centra, but it was statistically indistinguishable from that of stage 33 and juvenile stages of skate centra.  While we do agree that more samples from these and additional groups would bolster these data, we feel they are sufficiently powered to support our conclusions for this current paper.

      Your headings for the results subsection and figures are nice snapshots of your interpretations of the results and I think they would be better repurposed in your abstract, which needs more depth.

      We have included more data summarized in results sub-heading in the abstract as suggested (lines 32-37).

      Historical literature is more abundant than what you've listed. Your first sentence describes a long fascination and only goes back to 1990. But there are authors that have had this fascination for centuries and so I think you'll benefit from looking back. Especially because several of them have looked into histology and development of these fishes.

      I agree that in the past 15 years or so a lot more work has been done because it can be done using newer technologies and I don't think your list is exhaustive. You need to expand this list and history which will help with your ultimate comparative analysis without you needed to sample too many new data yourself.

      We have added additional recent and older references: Kölliker, 1860; Daniel, 1934; Wurmbach, 1932; Liem, 2001; Arratia et al., 2001.

      I'd like to see modifications to figure 7 so that you can add more continuity between the characters, illustrated in figure 7 and the body of the text.

      We address a similar comment from this reviewer in more detail below, hoping that any concerns about continuity have been addressed with inclusion of a summary of proposed characters in a new Table 1, re-writing of the Discussion, and modified Fig7 and re-written Fig7 legend.

      Generally Holocephalans are the outgroup to elasmobranchs - right now they are presented as sister taxa with no ability to indicate derivation. Why isn't the catshark included in this diagram?

      While a little unclear exactly what was requested, we restructured the branches to indicate that holocephalans diverged earlier from the ancestors that led to elasmobranchs. Also in response to this comment, we added catshark (S. canicula) and little skate (L. erinacea) specifically to the character matrix.

      In the last paragraph of the introduction, you say that "the data argue" and I admit, I am confused. Whose data? Is this a prediction or results or summary of other people's work? Either way, could be clarified to emphasize the contribution you are about to present.

      Sorry for this lack of clarity, and we have changed the wording in this revision to hopefully avoid this misunderstanding.

      Reviewer #2 (Public Review):

      General comment:

      This is a very valuable and unique comparative study. An excellent combination of scanning and histological data from three different species is presented. Obtaining the material for such a comparative study is never trivial. The study presents new data and thus provides the basis for an in-depth discussion about chondrichthyan mineralised skeletal tissues.

      many thanks for the kind words

      I have, however, some comments. Some information is lacking and should be added to the manuscript text. I also suggest changes in the result and the discussion section of the manuscript.

      Introduction:

      The reader gets the impression almost no research on chondrichthyan skeletal tissues was done before the 2010 ("last 15 years", L45). I suggest to correct that and to cite also previous studies on chondrichthyan skeletal tissues, this includes studies from before 1900.

      We have added additional older references, as detailed above.

      Material and Methods:

      Please complete L473-492: Three different Micro-CT scanners were used for three different species? ScyScan 117 for the skate samples. Catshark different scanner, please provide full details. Chimera Scncrotron Scan? Please provide full details for all scanning protocols.

      We clarified exact scanners and settings for each micro-CT experiment in the Methods (lines 476-497).

      TMD is established in the same way in all three scanners? Actually not possible. Or, all specimens were scanned with the same scanner to establish TMD? If so please provide the protocol.

      Indeed, the same scanner was used for TMD comparisons, and we included exact details on how TMD was established and compared with internal controls in the Methods. (lines 486-488)

      Please complete L494 ff: Tissue embedding medium and embedding protocol is missing. Specimens have been decalcified, if yes how? Have specimens been sectioned non-decalcified or decalcified?

      Please complete L506 ff: Tissue embedding medium and embedding protocol is missing. Description of controls are missing.

      Methods were updated to include these details (lines 500-503).

      Results:

      L147: It is valuable and interesting to compare the degree of mineralisation in individuals from the three different species. It appears, however, not possible to provide numerical data for Tissue Mineral Density (TMD). First requirement, all specimens must be scanned with the same scanner and the same calibration values. This in not stated in the M&M section. But even if this was the case, all specimens derive from different sample locations and have, been preserved differently. Type of fixation, extension of fixation time in formalin, frozen, unfrozen, conditions of sample storage, age of the samples, and many more parameters, all influence TMD values. Likewise the relative age of the animals (adult is not the same as adult) influences TMD. One must assume different sampling and storage conditions and different types of progression into adulthood. Thus, the observation of different degrees of mineralisation is very interesting but I suggest not to link this observation to numerical values.

      These are very good points, but for the following reasons we feel that they were not sufficiently relevant to our study, so the quantitative data for TMD remain scientifically valid and critical for the field moving forward.  Critically, 1) all of the samples used for TMD calculations underwent the same fixation protocols, and 2) most importantly, all samples for TMD were scanned on the same micro-CT scanner using the same calibration phantoms for each scanning session.  Finally, while the exact age of each adult was not specified, we note for Fig1 that clear statistically significant differences in TMD were observed among various skeletal elements from ratfish, shark, and skate.  Indeed, ratfish TMD was considerably lower than TMD reported for a variety of fishes and tetrapods (summarized in our paper about icefish skeletons, who actually have similar TMD to ratfish: https://doi.org/10.1111/joa.13537).

      In  , however, we added a caveat to the paper’s Methods (lines 466-469), stating that adult ratfish were frozen within 1 or 2 hours of collection from the wild, staying frozen for several years prior to thawing and immediate fixation.

      Parts of the results are mixed with discussion. Sometimes, a result chapter also needs a few references but this result chapter is full of references.

      As mentioned above, we reduced background-style writing and citations in each Results section.

      Based on different protocols, the staining characteristics of the tissue are analysed. This is very good and provides valuable additional data. The authors should inform the not only about the staining (positive of negative) abut also about the histochemical characters of the staining. L218: "fast green positive" means what? L234: "marked by Trichrome acid fuchsin" means what? And so on, see also L237, L289, L291

      We included more details throughout the Results upon each dye’s first description on what is generally reflected by the specific dyes of the staining protocols. (lines 178, 180, 184, 223, 227, and 243-244)

      Discussion

      Please completely remove figure 7, please adjust and severely downsize the discussion related to figure 7. It is very interesting and valuable to compare three species from three different groups of elasmobranchs. Results of this comparison also validate an interesting discussion about possible phylogenetic aspects. This is, however, not the basis for claims about the skeletal tissue organisation of all extinct and extant members of the groups to which the three species belong. The discussion refers to "selected representatives" (L364), but how representative are the selected species? Can there be a extant species that represents the entire large group, all sharks, rays or chimeras? Are the three selected species basal representatives with a generalist life style?

      These are good points, and yes, we certainly appreciate that the limited sampling in our data might lead to faulty general conclusions about these clades.  In fact, we stated this limitation clearly in the Introduction (lines 126-128), and we removed “representative” from this revision.  We also replaced general reference to chondrichthyans in the Title by listing the specific species sampled.  However, in the Discussion, we also compare our data with previously published additional species evaluated with similar assays, which confirms the trend that we are concluding.  We look forward to future papers specifically testing the hypotheses generated by our conclusions in this paper, which serves as a benchmark for identifying shared and derived features of the chondrichthyan endoskeleton.

      Please completely remove the discussion about paedomorphosis in chimeras (already in the result section). This discussion is based on a wrong idea about the definition of paedomorphosis. Paedomorphosis can occur in members of the same group. Humans have paedormorphic characters within the primates, Ambystoma mexicanum is paedormorphic within the urodeals. Paedomorphosis does not extend to members of different vertebrate branches. That elasmobranchs have a developmental stage that resembles chimera vertebra mineralisation does not define chimera vertebra centra as paedomorphic. Teleost have a herocercal caudal fin anlage during development, that does not mean the heterocercal fins in sturgeons or elasmobranchs are paedomorphic characters.

      We agree with the reviewer that discussion of paedomorphosis should apply to members of the same group.  In our paper, we are examining paedomorphosis in a holocephalan, relative to elasmobranch fishes in the same group (Chrondrichthyes), so this is an appropriate application of paedomorphosis.  In response to this comment, we clarified that our statement of paedomorphosis in ratfish was made with respect to elasmobranchs (lines 37-39; 418-420).

      L432-435: In times of Gadow & Abott (1895) science had completely wrong ideas bout the phylogenic position of chondrichthyans within the gnathostomes. It is curious that Gadow & Abott (1895) are being cited in support of the paedomorphosis claim.

      If paedomorphosis is being examined within Chondrichthyes, such as in our paper and in the Gadow and Abbott paper, then it is an appropriate reference, even if Gadow and Abbott (and many others) got the relative position of Chondrichthyes among other vertebrates incorrect.

      The SCPP part of the discussion is unrelated to the data obtained by this study. Kawaki & WEISS (2003) describe a gene family (called SCPP) that control Ca-binding extracellular phosphoproteins in enamel, in bone and dentine, in saliva and in milk. It evolved by gene duplication and differentiation. They date it back to a first enamel matrix protein in conodonts (Reif 2006). Conodonts, a group of enigmatic invertebrates have mineralised structures but these structure are neither bone nor mineralised cartilage. Cat fish (6 % of all vertebrate species) on the other hand, have bone but do not have SCPP genes (Lui et al. 206). Other calcium binding proteins, such as osteocalcin, were initially believed to be required for mineralisation. It turned out that osteocalcin is rather a mineralisation inhibitor, at best it regulates the arrangement collagen fiber bundles. The osteocalcin -/- mouse has fully mineralised bone. As the function of the SCPP gene product for bone formation is unknown, there is no need to discuss SCPP genes. It would perhaps be better to finish the manuscript with summery that focuses on the subject and the methodology of this nice study.

      We completely agree with the reviewer that many papers claim to associate the functions of SCPP genes with bone formation, or even mineralization generally.  The Science paper with the elephant shark genome made it very popular to associate SCPP genes with bone formation, but we feel that this was a false comparison (for many reasons)!  In response to the reviewer’s comments, however, we removed the SCPP discussion points, moving the previous general sentence about the genetic basis for reduced skeletal mineralization to the end of the previous paragraph (lines 435-439).  We also added another brief Discussion paragraph afterwards, ending as suggested with a summary of our proposed shared and derived chondrichthyan endoskeletal traits (lines 440-453).

      Reviewer #1 (Recommendations For The Authors):

      Further Strengths and Opportunities:

      Your headings for the results subsection and figures are nice snapshots of your interpretations of the results and I think they would be better repurposed in your abstract, which needs more depth. It's a little unusual to try and state an interpretation of results as the heading title in a results section and the figures so it feels out of place. You could also use the headings as the last statement of each section, after you've presented the results. In order I would change these results subheadings to:

      Tissue Mineral Density (TMD)

      Tissue Properties of Neural Arches

      Trabecular mineralization

      Cap zone and Body zone Mineralization Patterns

      Areolar mineralization

      Developmental Variation

      Sorry, but we feel that summary Results sub-headings are the best way to effectively communicate to readers the story that the data tell, and this style has been consistently used in our previous publications.  No changes were made.

      You allude to the fossil record and that is great. That said historical literature is more abundant than what you've listed. Your first sentence describes a long fascination and only goes back to 1990. But there are authors that have had this fascination for centuries and so I think you'll benefit from looking back. Especially because several of them have looked into histology of these fishes. You even have one sentence citing Coates et al. 2018, Frey et al., 2019 and ørvig 1951 to talk about the potential that fossils displayed trabecular mineralization. That feels like you are burying the lead and may have actually been part of the story for where you came up with your hypothesis in the beginning... or the next step in future research. I feel like this is really worth spending some more time on in the intro and/or the discussion.

      We’ve added older REFs as pointed out above.  Regarding fossil evidence for trabecular mineralization, no, those studies did not lead to our research question.  But after we discovered how widespread trabecular mineralization was in extant samples, we consulted these papers, which did not focus on the mineralization patterns per se, but certainly led us to emphasize how those patterns fit in the context of chondrichthyan evolution, which is how we discussed them.

      I agree that in the past 15 years or so a lot more work has been done because it can be done using newer technologies. That said there's a lot more work by Mason Dean's lab starting in 2010 that you should take a look at related to tesserae structure... they're looking at additional taxa than what you did as well. It will be valuable for than you to be able to make any sort of phylogenetic inference as part of your discussion and enhance the info your present in figure 7. Go further back in time... For example:

      de Beer, G. R. 1932. On the skeleton of the hyoid arch in rays and skates. Quarterly

      Journal of Microscopical Science. 75: 307-319, pls. 19-21.

      de Beer, G. R. 1937. The Development of the Vertebrate Skull. The University Press,Oxford.

      Indeed, we have read all of Mason’s work, citing 9 of his papers, and where possible, we have incorporated their data on different species into our Discussion and Fig7.  Thanks for the de Beer REFs.  While they contain histology of developing chondrichthyan elements, they appear to refer principally to gross anatomical features, so were not included in our Intro/Discussion.

      Most sections with in the results, read more like a discussion than a presentation of the new data and you jump directly into using an argument of those data too early. Go back in and remove the references or save those paragraphs for the discussion section. Particularly because this journal has you skip the method section until the end, I think it's important to set up this section with a little bit more brevity and conciseness.  For instance, in the first section about tissue mineral density, change that subheading to just say tissue mineral density. Then you can go into the presentation of what you see in the ratfish, and then what you see in the little skate, and then that's it. You save the discussion about what other elasmobranch's or mineralizing their neural arches, etc. for another section.

      We dramatically reduced background-style writing and citations in each Results section (other than the first section of minor points about general features of the ratfish, compared to catshark and little skate), keeping only a few to briefly remind the general reader of the context of these skeletal features.

      I like that your first sentence in the paragraph is describing why you are doing. a particular method and comparison because it shows me (the reader) where you're sampling from. Something else is that maybe as part of the first figure rather than having just each with the graph have a small sketch for little skate and catch shark to show where you sampled from for comparative purposes. That would relate back, then to clarifying other figures as well.

      done (also adding a phylogenetic tree).

      Second instance is your section on trabecular mineralization. This has so many references in it. It does not read like results at all. It looks like a discussion. However, the trabecular mineralization is one of the most interesting aspect of this paper, and how you are describing it as a unique feature. I really just want a very clear description of what the definition of this trabecular mineralization is going to be.

      In addition to adding Table 1 to define each proposed endoskeletal character state, we have changed the structure of this section and hope it better communicates our novel trabecular mineralization results.  We also moved the topic of trabecular mineralization to the first detailed Discussion point (lines 347-363) to better emphasize this specific topic.

      Carry this reformatting through for all subsections of the results.

      As mentioned above, we significantly reduced background-style writing and citations in each Results section.

      I'd like to see modifications to figure 7 so that you can add more continuity between the characters, illustrated in figure 7 and the body of the text. I think you can give the characters a number so that you can actually refer to them in each subsection of the results. They can even be numbered sequentially so that they are presented in a standard character matrix format, that future researchers can add directly to their own character matrices. You could actually turn it into a separate table so it doesn't taking up that entire space of the figure, because there need to be additional taxa referred to on the diagram. Namely, you don't have any out groups in figure 7 so it's hard to describe any state specifically as ancestral and wor derived. Generally Holocephalans are the outgroup to elasmobranchs - right now they are presented as sister taxa with no ability to indicate derivation. Why isn't the catshark included in this diagram?

      The character matrix is a fantastic idea, and we should have included it in the first place!  We created Table 1 summarizing the traits and terminology at the end of the Introduction, also adding the character matrix in Fig7 as suggested, including specific fossil and extant species.  For the Fig7 branching and catshark inclusion, please see above. 

      You can repurpose the figure captions as narrative body text. Use less narrative in the figure captions. These are your results actually, so move that text to the results section as a way to truncate and get to the point faster.

      By figure captions, we assume the reviewer refers to figure legends.  We like to explain figures to some degree of sufficiency in the legends, since some people do not read the main text and simply skim a manuscript’s abstract, figures, and figure legends.  That said, we did reduce the wording, as requested.

      More specific comments about semantics are listed here:

      The abstract starts negative and doesn't state a question although one is referenced. Potential revision - "Comprehensive examination of mineralized endoskeletal tissues warranted further exploration to understand the diversity of chondrichthyans... Evidence suggests for instance that trabecular structures are not common, however, this may be due to sampling (bring up fossil record.) We expand our understanding by characterizing the skate, cat shark, and ratfish... (Then add your current headings of the results section to the abstract, because those are the relevant takeaways.)"

      We re-wrote much of the abstract, hoping that the points come across more effectively.  For example, we started with “Specific character traits of mineralized endoskeletal tissues need to be clearly defined and comprehensively examined among extant chondrichthyans (elasmobranchs, such as sharks and skates, and holocephalans, such as chimaeras) to understand their evolution”.  We also stated an objective for the experiments presented in the paper: “To clarify the distribution of specific endoskeletal features among extant chondrichthyans”. 

      In the last paragraph of the introduction, you say that "the data argue" and I admit, I am confused. Whose data? Is this a prediction or results or summary of other people's work? Either way, could be clarified to emphasize the contribution you are about to present.

      Sorry for this lack of clarity, and we have changed the wording in this revision to hopefully avoid this misunderstanding.

      In the second paragraph of the TMD section, you mention the synarcual comparison. I'm not sure I follow. These are results, not methods. Tell me what you are comparing directly. The non-centrum part of the synarcual separate from the centrum? They both have both parts... did you mean the comparison of those both to the cat shark? Just be specific about which taxon, which region, and which density. No need to go into reasons why you chose those regions here.. Put into methods and discussion for interpretation.

      We hope that we have now clarified wording of that section.

      Label the spokes somehow either in caption or on figure direction. I think I see it as part of figure 4E, I, and J, but maybe I'm misinterpreting.

      Based upon histological features (e.g., regions of very low cellularity with Trichrome unstained matrix) and hypermineralization, spokes in Fig4 are labelled with * and segmented in blue.  We detailed how spokes were identified in main text (lines 241-243; 252-254) and figure legend (lines 597-603). 

      Reviewer #2 (Recommendations For The Authors):

      Other comments

      L40: remove paedomorphism

      no change; see above

      L53: down tune languish, remove "severely" and "major"

      done (lines 57-59)

      L86: provide species and endoskeletal elements that are mineralized

      no change; this paragraph was written generally, because the papers cited looked at cap zones of many different skeletal elements and neural arches in many different species

      L130: remove TMD, replace by relative, descriptive, values

      no change; see above

      L135: What are "segmented vertebral neural arches and centra" ?

      changed to “neural arches and centra of segmented vertebrae” (lines 140-141)

      L166: L168 "compact" vs. "irregular". Partial mineralisation is not necessarily irregular.

      thanks for pointing out this issue; we changed wording, instead contrasting “non-continuous” and “continuous” mineralization patterns (lines 171-174)

      L192: "several endoskeletal regions". Provide all regions

      all regions provided (lines 198-199)

      L269: "has never been carefully characterized in chimeras". Carefully means what? Here, also only one chimera is analyses, not several species.

      sentence removed

      302: Can't believe there is no better citation for elasmobranch vertebral centra development than Gadow and Abott (1895)

      added Arriata and Kolliker REFs here (lines 293-295)

      L318 ff: remove discussion from result chapter

      references to paedomorphism were removed from this Results section

      L342: refer to the species studied, not to the entire group.

      sorry, the line numbering for the reviewer and our original manuscript have been a little off for some reason, and we were unclear exactly to which line of text this comment referred.  Generally in this revision, however, we have tried to restrict our direct analyses to the species analyzed, but in the Discussion we do extrapolate a bit from our data when considering relevant published papers of other species.

      346: "selected representative". Selection criteria are missing

      “selected representative” removed

      L348: down tune, remove "critical"

      Done

      L351: down tune, remove "critical"

      done

      L 364: "Since stem chondrichthyans did not typically mineralize their centra". Means there are fossil stem chondrichthyans with full mineralised centra?

      Re-worded to “Stem chondrichthyans did not appear to mineralize their centra” (lines 379)

      L379: down tune and change to: "we propose the term "non-tesseral trabecular mineralization. Possibly a plesiomorphic (ancestral) character of chondrichthyans"

      no change; sorry, but we feel this character state needs to be emphasized as we wrote in this paper, so that its evolutionary relationship to other chondrichthyan endoskeletal features, such as tesserae, can be clarified.

      L407: suggests so far palaeontologist have not been "careful" enough?

      apologies; sentence re-worded, emphasizing that synchrotron imaging might increase details of these descriptions (lines 406-408)

      414: down tune, remove "we propose". Replace by "possibly" or "it can be discussed if"

      sentence re-worded and “we propose” removed (lines 412-415)

      L420: remove paragraph

      no action; see above

      L436: remove paragraph

      no action; see above

      L450: perhaps add summery of the discussion. A summery that focuses on the subject and the methodology of this nice study.

      yes, in response to the reviewer’s comment, we finished the discussion with a summary of the current study.  (lines 440-453)

    1. eLife Assessment

      This study presents valuable findings on the ability of a state-of-the-art method temporally delayed linear modelling (TDLM) to detect the replay of sequences in human memory. The investigation provides convincing evidence that TDLM has limitations in its sensitivity to detect replay when being applied to extended (minutes-long) rest periods, though a more thorough treatment of the relationship to prior positive findings would make the demonstration even stronger. The work will be of particular interest to researchers investigating memory reactivation in humans, especially using iEEG, MEG, and EEG.

    2. Reviewer #1 (Public review):

      Summary:

      Participants learned a graph-based representation, but, contrary to the hypotheses, failed to show neural replay shortly after. This prompted a critical inquiry into temporally delayed linear modeling (TDLM)--the algorithm used to find replay. First, it was found that TDLM detects replay only at implausible numbers of replay events per second. Second, it detects replay-to-cognition correlations only at implausible densities. Third, there are concerning baseline shifts in sequenceness across participants. Fourth, spurious sequences arise in control conditions without a ground truth signal. Fifth, when reframing simulations previously published, similar evidence is apparent.

      Strengths:

      (1) This work is meticulous and meets a high standard of transparency and open science, with preregistration, code and data sharing, external resources such as a GUI with the task and material for the public.

      (2) The writing is clear, balanced, and matter-of-fact.

      (3) By injecting visually evoked empirical data into the simulation, many surface-level problems are avoided, such as biological plausibility and questions of signal-to-noise ratio.

      (4) The investigation of sequenceness-to-cognition correlations is an especially useful add-on because much of the previous work uses this to make key claims about replay as a mechanism.

      Weaknesses:

      Many of the weaknesses are not so much flaws in the analyses, but shortcomings when it comes to interpretation and a lack of making these findings as useful as they could be.

      (1) I found the bigger picture analysis to be lacking. Let us take stock: in other work, during active cognition, including at least one study from the Authors, TDLM shows significance sequenceness. But the evidence provided here suggests that even very strong localizer patterns injected into the data cannot be detected as replay except at implausible speeds. How can both of these things be true? Assuming these analyses are cogent, do these findings not imply something more destructive about all studies that found positive results with TDLM?

      (2) All things considered, TDLM seems like a fairly 'vanilla' and low-assumption algorithm for finding event sequences. It is hard to see intuitively what the breaking factor might be; why do the authors think ground truth patterns cannot be detected by this GLM-based framework at reasonable densities?

      (3) Can the authors sketch any directions for alternative methods? It seems we need an algorithm that outperforms TDLM, but not many clues or speculations are given as to what that might look like. Relatedly, no technical or "internal" critique is provided. What is it about TDLM that causes it to be so weak?

      Addressing these points would make this manuscript more useful, workable, and constructive, even if they would not necessarily increase its scientific breadth or strength of evidence.

    3. Reviewer #2 (Public review):

      Summary:

      Kern et al. investigated whether temporally delayed linear modeling (TDLM) can uncover sequential memory replay from a graph-learning task in human MEG during an 8-minute post-learning rest period. After failing to detect replay events, they conduct a simulation study in which they insert synthetic replay events, derived from each participant's localizer data, into a control rest period prior to learning. The simulations suggest that TDLM only reveals sequences when replay occurs at very high densities (> 80 per minute) and that individual differences in baseline sequenceness may lead to spurious and/or lackluster correlations between replay strength and behavior.

      Strengths:

      The approach is extremely well documented and rigorous. The authors have done an excellent job re-creating the TDLM methodology that is most commonly used, reporting the different approaches and parameters that they used, and reporting their preregistrations. The hybrid simulation study is creative and provides a new way to assess the efficacy of replay decoding methods. The authors remain measured in the scope/applicability of their conclusions, constructive in their discussion, and end with a useful set of recommendations for how to best apply TDLM in future studies. I also want to commend this work for not only presenting a null result but thoroughly exploring the conditions under which such a null result is expected. I think this paper is interesting and will be generally quite useful for the field, but I believe it also has a number of weaknesses that, if addressed, could improve it further.

      Weaknesses:

      The sample size is small (n=21, after exclusions), even for TDLM studies (which typically have somewhere between 25-40 participants). The authors address this somewhat through a power analysis of the relationship between replay and behavioral performance in their simulations, but this is very dependent on the assumptions of the simulation. Further, according to their own power analysis, the replay-behavior correlations are seriously underpowered (~10% power according to Figure 7C), and so if this is to be taken at face value, their own null findings on this point (Figure 3C) could therefore just reflect undersampling as opposed to methodological failure. I think this point needs to be made more clearly earlier in the manuscript. Relatedly, it would be very useful if one of the recommendations that come out of the simulations in this paper was a power analysis for detecting sequenceness in general, as I suspect that the small sample size impacts this as well, given that sequenceness effects reported in other work are often small with larger sample sizes. Further, I believe that the authors' simulations of basic sequenceness effects would themselves still suffer from having a small number of subjects, thereby impacting statistical power. Perhaps the authors can perform a similar sort of bootstrapping analysis as they perform for the correlation between replay and performance, but over sequenceness itself?

      The task paradigm may introduce issues in detecting replay that are separate from TDLM. First, the localizer task involves a match/mismatch judgment and a button press during the stimulus presentation, which could add noise to classifier training separate from the semantic/visual processing of the stimulus. This localizer is similar to others that have been used in TDLM studies, but notably in other studies (e.g., Liu, Mattar et al., 2021), the stimulus is presented prior to the match/mismatch judgment. A discussion of variations in different localizers and what seems to work best for decoding would be useful to include in the recommendations section of the discussion. Second, and more seriously, I believe that the task design for training participants about the expected sequences may complicate sequence decoding. Specifically, this is because two images (a "tuple") are shown together and used for prediction, which may encourage participants to develop a single bound representation of the tuple that then predicts a third image (AB -> C rather than A -> B, B -> C). This would obviously make it difficult to i) use a classifier trained on individual images to detect sequences and ii) find evidence for the intended transition matrix using TDLM. Can the authors rule out this possibility?

      Participants only modestly improved (from 76-82% accuracy) following the rest period (which the authors refer to as a consolidation period). If the authors assume that replay leads to improved performance, then this suggests there is little reason to see much task-related replay during rest in the first place. This limitation is touched on (lines 228-229), but I think it makes the lack of replay finding here less surprising. However, note that in the supplement, it is shown that the amount of forward sequenceness is marginally related to the performance difference between the last block of training and retrieval, and this is the effect I would probably predict would be most likely to appear. Obviously, my sample size concerns still hold, and this is not a significant effect based on the null hypothesis testing framework the authors employ, but I think this set of results should at least be reported in the main text. I was also wondering whether the authors could clarify how the criterion over six blocks was 80% but then the performance baseline they use from the last block is 76%? Is it just that participants must reach 80% within the six blocks *at some point* during training, but that they could dip below that again later?

      Because most of the conclusions come from the simulation study, there are a few decisions about the simulations that I would like the authors to expand upon before I can fully support their interpretations. First, the authors use a state-to-state lag of 80ms and do not appear to vary this throughout the simulations - can the authors provide context for this choice? Does varying this lag matter at all for the results (i.e., does the noise structure of the data interact with this lag in any way?) Second, it seems that the approach to scaling simulated replays with performance is rather coarse. I think a more sensitive measure would be to scale sequence replays based on the participants' responses to *that* specific sequence rather than altering the frequency of all replays by overall memory performance. I think this would help to deliver on the authors' goal of simulating an "increase of replay for less stable memories" (line 246). On the other hand, I was also wondering whether it is actually necessary to use the real memory performance for each participant in these simulations - couldn't similar goals (with a better/more full sampling of the space of performance) be achieved with simulated memory performance as well, taking only the MEG data from the participant? Finally, Figure 7D shows that 70ms was used on the y-axis. Why was this the case, or is this a typo?

      Because this is a re-analysis of a previous dataset combined with a new simulation study on that data aimed at making recommendations about how to best employ TDLM, I think the usefulness of the paper to the field could be improved in a few places. Specifically, in the discussion/recommendation section, the authors state that "yet unknown confounders" (line 295) lead to non-random fluctuations in the simulated correlations between replay detection and performance at different time lags. Because it is a particularly strong claim that there is the potential to detect sequenceness in the baseline condition where there are no ground-truth sequences, the manuscript could benefit from a more thorough exploration of the cause(s) of this bias in addition to the speculation provided in the current version. In addition, to really provide that a realistic simulation is necessary (one of the primary conclusions of the paper), it would be useful to provide a comparison to a fully synthetic simulation performed on this exact task and transition structure (in addition to the recreation of the original simulation code from the TDLM methods paper). Finally, I think the authors could do further work to determine whether some of their recommendations for improving the sensitivity of TDLM pan out in the current data - for example, they could report focusing not just on the peak decoding timepoint but incorporating other moments into classifier training.

      Lastly, I would like the authors to address a point that was raised in a separate public forum by an author of the TDLM method, which is that when replays "happen during rest, they are not uniform or close". Because the simulations in this work assume regularly occurring replay events, I agree that this is an important limitation that should be incorporated into alternative simulations to ensure the lack of findings is not because of this assumption.

    4. Reviewer #3 (Public review):

      Summary:

      Kern et al. critically assess the sensitivity of temporally delayed linear modelling (TDLM), a relatively new method used to detect memory replay in humans via MEG. While TDLM has recently gained traction and been used to report many exciting links between replay and behavior in humans, Kern et al. were unable to detect replay during a post-learning rest period. To determine whether this null result reflected an actual absence of replay or sensitivity of the method, the authors ran a simulation: synthetic replay events were inserted into a control dataset, and TDLM was used to decode them, varying both replay density and its correlation with behavior. The results revealed that TDLM could only reliably detect replay at unrealistically (not-physiological) high replay densities, and the authors were unable to induce strong behavior correlations. These findings highlight important limitations of TDLM, particularly for detecting replay over extended, minutes-long time periods.

      Strengths:

      Overall, I think this is an extremely important paper, given the growing use of TDLM to report exciting relationships between replay and behavior in humans. I found the text clear, the results compelling, and the critique of TDLM quite fair: it is not that this method can never be applied, but just that it has limits in its sensitivity to detect replay during minutes-long periods. Further, I greatly appreciated the authors' efforts to describe ways to improve TDLM: developing better decoders and applying them to smaller time windows.

      The power of this paper comes from the simulation, whereby the authors inserted replay events and attempted to detect them using TDLM. Regarding their first study, there are many alternative explanations or possible analysis strategies that the authors do not discuss; however, none of these are relevant if, under conditions where it is synthetically inserted, replay cannot be detected.

      Additionally, the authors are relatively clear about which parameters they chose, why they chose them, and how well they match previous literature (they seem well matched).

      Finally, I found the application of TDLM to a baseline period particularly important, as it demonstrated that there are fluctuations in sequenceness in control conditions (where no replay would be expected); it is important to contrast/calculate the difference between control (pre-resting state) and target (post-resting state) sequenceness values.

      Weaknesses:

      While I found this paper compelling, I was left with a series of questions.

      (1) I am still left wondering why other studies were able to detect replay using this method. My takeaway from this paper is that large time windows lead to high significance thresholds/required replay density, making it extremely challenging to detect replay at physiological levels during resting periods. While it is true that some previous studies applying TDLM used smaller time windows (e.g., Kern's previous paper detected replay in 1500ms windows), others, including Liu et al. (2019), successfully detected replay during a 5-minute resting period. Why do the authors believe others have nevertheless been able to detect replay during multi-minute time windows?

      For example, some studies using TDLM report evidence of sequenceness as a contrast between evidence of forwards (f) versus backwards (b) sequenceness; sequenceness was defined as ZfΔt - ZbΔt (where Z refers to the sequence alignment coefficient for a transition matrix at a specific time lag). This use case is not discussed in the present paper, despite its prevalence in the literature. If the same logic were applied to the data in this study, would significant sequenceness have been uncovered? Whether it would or not, I believe this point is important for understanding methodological differences between this paper and others.

      (2) Relatedly, while the authors note that smaller time windows are necessary for TDLM to succeed, a more precise description of the appropriate window size would greatly improve the utility of this paper. As it stands, the discussion feels incomplete without this information, as providing explicit guidance on optimal window sizes would help future researchers apply TDLM effectively. Under what window size range can physiological levels of replay actually be detected using TDLM? Or, is there some scaling factor that should be considered, in terms of window size and significance threshold/replay density? If the authors are unable to provide a concrete recommendation, they could add information about time windows used in previous studies (perhaps, is 1500ms as used in their previous paper a good recommendation?).

      (3) In their simulation, the authors define a replay event as a single transition from one item to another (example: A to B). However, in rodents, replay often traverses more than a single transition (example: A to B to C, even to D and E). Observing multistep sequences increases confidence that true replay is present. How does sequence length impact the authors' conclusions? Similarly, can the authors comment on how the length of the inserted events impacts TDLM sensitivity, if at all?

      For example, regarding sequence length, is it possible that TDLM would detect multiple parts of a longer sequence independently, meaning that the high density needed to detect replay is actually not quite so dense? (example: if 20 four-step sequences (A to B to C to D to E) were sampled by TDLM such that it recorded each transition separately, that would lead to a density of 80 events/min).

    1. eLife Assessment

      This important study fills a gap in our knowledge of the evolution of GPCRs in holozoans, as well as the phylogeny of associated signaling pathway components such as G proteins, GRKs, and RIC8 proteins. The evidence supporting the conclusions is compelling, with the analysis of extensive new genomic data from choanoflagellates and other non-animal holozoans. Overall, the study is thorough and well-executed. It will be a resource for researchers interested in both the comparative genomics of multicellularity and GPCR biology more broadly, especially given the importance of GPCRs as highly druggable targets

    2. Reviewer #1 (Public review):

      Summary:

      The authors strived for an inventory of GPCRs and GPCR pathway component genes within the genomes of 23 choanoflagellates and other close relatives of metazoans.

      Strengths:

      The authors generated a solid phylogenetic overview of the GPCR superfamily in these species. Intriguingly, they discover novel GPCR families, novel assortments of domain combinations, novel insights into the evolution of those groups within the Opisthokonta clade. A particular focus is laid on adhesion GPCRs, for which the authors discover many hitherto unknown subfamilies based on Hidden Markov Models of the 7TM domain sequences, which were also reflected by combinations of extracellular domains of the homologs. In addition, the authors provide bioinformatic evidence that aGPCRs of choanoflagellates also contained a GAIN domain, which are self-cleavable thereby reflecting the most remarkable biochemical feat of aGPCRs.

      Weaknesses:

      The chosen classification scheme for aGPCRs may require reassessment and amendment by the authors in order to prevent confusion with previously issued classification attempts of this family.

    3. Reviewer #2 (Public review):

      Summary:

      The authors set out to characterise the GPCR family in choanoflagellates (and other unicellular holozoans). GPCRs are the most abundant gene family in many animal genomes, playing crucial roles in a wide range of physiological processes. Although they are known to evolve rapidly, GPCRs are an ancient feature of eukaryotic biology. Identifying conserved elements across the animal-protist boundary is therefore a valuable goal, and the increasing availability of genomes from non-animal holozoans provides new opportunities to explore evolutionary patterns that were previously obscured by limited taxon sampling. This study presents a comprehensive re-examination of GPCRs in choanoflagellates, uncovering examples of differential gene retention and revealing the dynamic nature of the GPCR repertoire in this group. As GPCRs are typically involved in environmental sensing, understanding how these systems evolved may shed light on how our unicellular ancestors adapted their signalling networks in the transition to complex multicellularity.

      Strengths:

      The paper combines a broad taxonomic scope with the use of both established and recently developed tools (e.g. Foldseek, AlphaFold), enabling a deep and systematic exploration of GPCR diversity. Each family is carefully described, and the manuscript also functions as an up-to-date review of GPCR classification and evolution. Although similar attempts of understanding GPCR evolution were done over the last decade, the authors build on this foundation by identifying new families and applying improved computational methods to better predict structure and function. Notably, the presence of Rhodopsin-like GPCRs in some choanoflagellates and ichthyosporeans is intriguing, even though they do not fall within known animal subfamilies. The computational framework presented here is broadly applicable, offering a blueprint for surveying GPCR diversity in other non-model eukaryotes (and even in animal lineages), potentially revealing novel families relevant to drug discovery or helping revise our understanding of GPCR evolution beyond model systems.

      Weaknesses:

      While the study contributes several interesting observations, it does not radically revise the evolutionary history of the GPCR family. However, in an era increasingly concerned with the reproducibility of scientific findings, this is arguably a strength rather than a weakness. It is encouraging to see that previously established patterns largely hold, and that with expanded sampling and improved methods, new insights can be gained-especially at the level of specific GPCR subfamilies. Then, no functional follow ups are provided in the model system Salpingoeca rosetta, but I am sure functional work on GPCRs in choanoflagellates is set to reveal very interesting molecular adaptations in the future.

      Comments on the latest version:

      The authors have done a good job answering my questions and suggestions.

    4. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1: 

      “I am sorry to dwell on the point of naming the newly identified families of adhesion GPCRs in choanoflagellates. I commented: "Can the authors suggest another scheme (mind to avoid the subfamily I-IX or the alternative ADGRA-G,L,V subfamily schemes of metazoan aGPCRs) and adapt their numbering throughout the text and all figures/supplementary figures/supplementary files." Now the authors have changed the Roman numeral numbering (previously used by the adhesion GPCR field to denominate metazoan receptor families) to the other option that I explicitly said should be obsolete, the numbering by capital letters (which is in use since its introduction in 2015 in Hamann et al., Pharmacol Rev, 2015). The authors write: "Phylogenetic analysis of the 7TM domains of choanoflagellates uncovered at least 19 subfamilies of aGPCRs (subfamilies A-S ...". I am thus afraid this has not addressed my point at all. For example, in the revised numbering scheme for Choanoflagellates aGPCR subfamilies of the authors the now used "A" descriptor, which are predicted to contain a HYR domain, can be mistaken for ADGRA homologs (abbreviated as "A" receptors, previously termed subfamily III aGPCRs) of metazoan aGPCRs, which contain HRM and LRR domains. Likewise, choanoflagellate "E" receptors are predicted to harbour LRR repeats, but metazoan ADGRE (abbreviated as "E" too) are characterised by their EGF domains. This clearly underlines the need to devise a numbering scheme for the newly described choanoflagellate aGPCR homologs so they cannot be confused with the receptors from other kingdoms, for which identical naming conventions exist. Please change this, e.g. by numbering/denominating the choanoflagellate subfamilies by greek letters (or your pick of any other ordering system that does not lend itself to be mistaken with the previous and existing aGPCR classifications) and change the manuscript and figures accordingly.”

      We have now re-labeled the choanoflagellate aGPCR subfamilies, previously numbered from A to S, using Greek alphabetical enumeration (from α to τ). Changes have been made throughout the main text, in Figure 5, and in Supplementary Figures  S6 and S7.

    1. eLife Assessment

      This important study convincingly shows that Vibrio bacteria act as predators of ecologically significant algae that contribute to harmful blooms in the lab, as well as in their natural habitat. While the data strongly suggest that starvation may induce predation, further work is needed to fully establish this link. Similarly, the evidence for a social component in the predation process remains incomplete. This study will be very impactful to those interested in the diversity of microbial predator-prey interactions and controlling toxic algal bloom, but the paper could be strengthened by more clearly showing the degree of replication, by better defining the terms used to describe the observed behaviour, and by providing better support for starvation and collective behaviour.

    2. Reviewer #1 (Public review):

      Summary:

      Rolland and colleagues investigated the interaction between Vibrio bacteria and Alexandrium algae. The authors found a correlation between the abundance of the two in the Thau Lagoon and observed in the laboratory that Vibrio grows to higher numbers in the presence of the algae than in monoculture. Time-lapse imaging of Alexandrium in coculture with Vibrio enabled the authors to observe Vibrio bacteria in proximity to the algae and subsequent algae death. The authors further determine the mechanism of the interaction between the two and point out similarities between the observed phenotypes and predator-prey behaviours across organisms.

      Strengths:

      The study combines field work with mechanistic studies in the laboratory and uses a wide array of techniques ranging from co-cultivation experiments to genetic engineering, microscopy and proteomics. Further, the authors test multiple Vibrio and Alexandria species and claim a wide spread of the observed phenotypes.

      Weaknesses:

      In my view, the presentation of the data is in some cases not ideal. The phrasing of some conclusions (e.g., group-attacks and wolf-pack-hunting by the bacteria) is in my opinion too strong based on the herein provided data.

    3. Reviewer #2 (Public review):

      Goal summary:

      The authors sought to (i) demonstrate correlations between the dynamics of the dinoflagellate Alexandrium pacificum and the bacterim Vibrio atlanticus in natural populations, ii) demonstrate the occurrence of predation in laboratory experiments, iii) claim coordinated action by the predators in the predation process, iv) demonstrate that predation is induced by predator starvation, and v) test for effects of quorum sensing and iron-uptake genes on the predation process.

      Strengths include:

      (1) Data indicating correlated dynamics in a natural environment that increase the motivation for the study of in vitro interactions.

      (2) Experimental design allowing clear inference of predation based on population counts of both prey and predators in addition to microscopy-based evidence.

      (3) Supplementation of population-level data with molecular approaches to test hypotheses regarding possible involvement of quorum sensing and iron uptake in predation.

      Weaknesses include:

      (1) A lack of early, clear definitions for several important terms used in the paper, including 'predation', 'coordination' and 'coordinated action', 'group attack', and 'wolf-pack hunting', along with a corresponding lack of criteria for what evidence would warrant use of some of these labels. (For example, does mere simultaneity of attacks of an A. pacificum cell by many V. atlanticus cells constitute "coordination"? Or, as it seems to us, does coordination require some form of signalling between predator cells?)

      (2) Absence of controls for cell density in the test for starvation effects on predatory behavior; unclear how the length of incubation affects the density of V. atlanticus cells.

      (3) Lack of clarity in some of the methodological descriptions

      Appraisal:

      The authors convincingly achieve their aim of demonstrating that V. atlanticus can prey on A. pacificum, provide strongly suggestive evidence that such predation is induced by starvation, and clearly demonstrate that both iron availability and, correspondingly, the presence of genes involved in iron uptake, strongly influence the efficacy of predation. However, the evidence for starvation-induction of predation can be strengthened with cell-density controls; evidence for a social component to predation - positive interactions between attacking predators - is lacking.

      Discussion of impact:

      This paper will interest those interested in how microbial behaviour responds to environmental fluctuations, in particular predatory behaviour, but will do so more strongly if the evidence of starvation-induction of predation is strengthened. It will also interest those investigating bacteria-algae interactions and potential ecological controls of algal blooms. It has the potential to interest researchers of microbial cooperation, should the authors be able to provide any evidence of coordination between predator cells.

    1. eLife Assessment

      How secretion is regulated during cell division and how membrane trafficking factors cooperate with the cytoskeleton during cell division remain poorly understood. In this work the authors find protein-protein interactions and localization dependencies between the polymeric septin cytoskeleton and the exocyst complex, using fission yeast as a model organism and using alphafold 3 based structural predictions. The work provides a valuable body of new information that will be of great interest to the cell biology community. The evidence is solid and provides the authors and the community a framework to test if the identified interfaces reflect bona fide interaction sites in vivo and in vitro in future.

    2. Reviewer #1 (Public review):

      Summary

      In this manuscript, Singh, Wu and colleagues explore functional links between septins and the exocyst complex. The exocyst in a conserved octameric complex that mediates the tethering of secretory vesicles for exocytosis in eukaryotes. In fission yeast cells, the exocyst is necessary for cell division, where it localizes mostly at the rim of the division plane, but septins, which localize in a similar manner, are non-essential. The main findings of the work are that septins are required for the specific localization of the exocyst to the rim of the division plane, and the likely consequent localization of the glucanase Eng1 at this same location, where it is known to promote cell separation. In absence of septins, the exocyst still localizes to the division plane, but is not restricted to the rim. They also show some defect in the localization of secretory vesicles and glucan synthase cargo. They further show interactions between septins and exocyst subunits through coIP experiments.

      Strengths

      The septin, exocyst and Eng1 localization data are well supported, showing that the septin rim recruits the exocyst and (likely consequently) the Eng1 glucanase at this location. One important finding of the manuscript is that of a physical interaction between septins and exocyst subunits in co-immunoprecipitation experiments.

      Weaknesses

      While interactions are supported by coIP experiments, the AlphaFold-predicted septin-exocyst interactions are not very convincing and the predicted binding interfaces are not supported by mutation analysis. A further open question is whether septins interact with the intact exocyst complex or whether the interactions occur only with individual subunits. The two-hybrid and coIP data only show weak interactions with individual subunits, and some coIPs (for instance Sec3 and Exo70 with Spn1 and Spn4) are negative, suggesting that the exocyst complex may not remain intact in these experiments.