10,000 Matching Annotations
  1. Sep 2025
    1. Reviewer #2 (Public review):

      Summary:

      This interesting study implicates the direct interaction between two multi-subunit complexes, known as the exocyst and septin complexes, in the function of both complexes during cytokinesis in fission yeast. While previous work from several labs had implicated roles for the exocyst and septin complexes in cytokinesis and cell separation, this study describes the importance of protein:protein interaction between these complexes in mediating the functions of these complexes in cytokinesis. Previous studies in neurons had suggested interactions between septins and exocyst complexes occur but the functional importance of such interactions was not known. Moreover, in baker's yeast where both of these complexes have been extensively studied - no evidence of such an interaction has been uncovered despite numerous studies which should have detected it. Therefore while exocyst:septin interactions appear to be conserved in several systems, it appears likely that budding yeast are the exception--having lost this conserved interaction.

      Strengths:

      The strengths of this work include the rigorous analysis of the interaction using multiple methods including Co-IP of tagged but endogenously expressed proteins, 2 hybrid interaction, and Alphafold Multimer. Careful quantitative analysis of the effects of loss of function in each complex and the effects on localization and dynamics of each complex was also a strength. Taken together this work convincingly describes that these two complexes do interact and that this interaction plays an important role in post Golgi vesicle targeting during cytokinesis.

      Comments on revisions:

      The authors have added substantial work to the revised manuscript, and it is much improved. In particular, the figures portraying the AlphaFold Multimer model of the exocyst:septin interactions are much clearer. I also appreciate the effort that went into modeling the fission yeast exocyst complex based on the yeast CryoEM structure in order to determine if the predicted interfaces with septins were likely to be surface accessible in the intact exocyst complex.

    2. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Summary: 

      In this manuscript, Singh, Wu and colleagues explore functional links between septins and the exocyst complex. The exocyst in a conserved octameric complex that mediates the tethering of secretory vesicles for exocytosis in eukaryotes. In fission yeast cells, the exocyst is necessary for cell division, where it localizes mostly at the rim of the division plane, but septins, which localize in a similar manner, are non-essential. The main findings of the work are that septins are required for the specific localization of the exocyst to the rim of the division plane, and the likely consequent localization of the glucanase Eng1 at this same location, where it is known to promote cell separation. In the absence of septins, the exocyst still localizes to the division plane but is not restricted to the rim. They also show some defects in the localization of secretory vesicles and glucan synthase cargo. They further propose that interactions between septins and exocysts are direct, as shown through Alphafold2 predictions (of unclear strength) and clean coIP experiments. 

      Strengths: 

      The septin, exocyst and Eng1 localization data are well supported, showing that the septin rim recruits the exocyst and (likely consequently) the Eng1 glucanase at this location. One major finding of the manuscript is that of a physical interaction between septins and exocyst subunits. Indeed, many of the coIPs supporting this discovery are very clear. 

      Weaknesses: 

      I am less convinced by the strength of the physical interaction of septins with the exocyst complex. Notably, one important open question is whether septins interact with the intact exocyst complex, as claimed in the text, or whether the interactions occur only with individual subunits. The two-hybrid and coIP data only show weak interactions with individual subunits, and some coIPs (for instance Sec3 and Exo70 with Spn1 and Spn4) are negative, suggesting that the exocyst complex does not remain intact in these experiments.

      Given the known structure of the full exocyst complex and septin filaments (at least in S. cerevisiae), the Alphafold2 predicted structure could be used to probe whether the proposed interaction sites are compatible with full complex formation.  

      We thank the reviewer for these important and insightful comments. We agree that our current data, particularly the data from yeast two-hybrid and co-immunoprecipitation (coIP) assays, primarily reveal interactions between individual septin and exocyst subunits, and do not conclusively demonstrate binding of septins to the fully assembled exocyst complex. We realize this as a key limitation and have revised the manuscript text accordingly to clarify this point.

      We also appreciate the reviewer’s suggestion to use structural prediction to further assess their interaction plausibility. We have now employed the full Saccharomyces cerevisiae exocyst complex (with 4.4 Å resolution) published by the Guo group (Mei et al., 2018) to examine the interfaces of septin and the exocyst interactions, assuming that the S. pombe exocyst has the similar structure. We focused on checking all the interacting residues on the exocyst complex and septins from our AlphaFold modeling to determine whether these predicted interactions are structurally compatible. Our analysis reveals that majority subunit interactions are sterically feasible, while a few would likely require partial disassembly or flexible conformations. These new insights have been added to the revised Results and Discussion sections (Figure Supplement S4, S5 and Videos 4-7).

      While we cannot fully resolve whether septins engage with the whole exocyst complex versus selected subunits, our combined data support a model that septins scaffold or spatially regulate the exocyst localization at the division site, potentially through dynamic and multivalent interactions. We now explicitly state this more cautious interpretation in the revised manuscript.

      Mei, K., Li, Y., Wang, S., Shao, G., Wang, J., Ding, Y., Luo, G., Yue, P., Liu, J.-J., Wang, X. and Dong, M.-Q., Wang, H-W, Guo W. 2018. Cryo-EM structure of the exocyst complex. Nature Struct & Mol. Biol, 25(2), pp.139-146.

      The effect of spn1∆ on Eng1 localization is very clear, but the effect on secretory vesicles (Ypt3, Syb1) and glucan synthase Bgs1 is less convincing. The effect is small, and it is not clear how the cells are matched for the stage of cytokinesis. 

      For localizations and quantifications of Eng1, Ypt3, Syb1, and Bgs1 shown in Figures 6 and 7, cells with a closed septum (at or after the end of contractile-ring constriction) were quantified or highlighted. To quantify their fluorescence intensity at the division site using line scan, the line width used was 3 pixels. For Syb1 (Figure 6D), we quantified cells at the end of ring constriction (when Rlc1-tdTomato constricted to a dot) in the middle focal plane. The exact same lines were drawn in both Rlc1 and Syb1 channels. The center of line scan was defined as the pixel with the brightest Rlc1 value. All data were aligned by the center and plotted. For Bgs1 (Figure 7A), we quantified the cells that Rlc1 signal had disappeared from the division site. The line was drawn in the Bgs1 channel in the middle focal plane. The center of line scan was defined as the pixel with the brightest Bgs1 value.

      All data were aligned by the center and plotted. These details were added to the Materials and Methods.

      Reviewer #2 (Public Review): 

      Summary: 

      This interesting study implicates the direct interaction between two multi-subunit complexes, known as the exocyst and septin complexes, in the function of both complexes during cytokinesis in fission yeast. While previous work from several labs had implicated roles for the exocyst and septin complexes in cytokinesis and cell separation, this study describes the importance of protein:protein interaction between these complexes in mediating the functions of these complexes in cytokinesis. Previous studies in neurons had suggested interactions between septins and exocyst complexes occur but the functional importance of such interactions was not known. Moreover, in baker's yeast where both of these complexes have been extensively studied - no evidence of such an interaction has been uncovered despite numerous studies which should have detected it. Therefore while exocyst:septin interactions appear to be conserved in several systems, it appears likely that budding yeast are the exception--having lost this conserved interaction. 

      Strengths: 

      The strengths of this work include the rigorous analysis of the interaction using multiple methods including Co-IP of tagged but endogenously expressed proteins, 2 hybrid interaction, and Alphafold Multimer. Careful quantitative analysis of the effects of loss of function in each complex and the effects on localization and dynamics of each complex was also a strength. Taken together this work convincingly describes that these two complexes do interact and that this interaction plays an important role in post Golgi vesicle targeting during cytokinesis. 

      Weaknesses: 

      The authors used Alphafold Multimer to predict (largely successfully) which subunits were most likely to be involved in direct interactions between the complexes. It would be very interesting to compare this to a parallel analysis on the budding yeast septin and exocyst complexes where it is quite clear that detectable interactions between the exocyst and septins (using the same methods) do not exist. Presumably the resulting pLDDT scores will be significantly lower. These are in silico experiments and should not be difficult to carry out. 

      We thank the reviewer for this insightful suggestion. To assess the specificity of the predicted interactions between septins and the exocyst complex in S. pombe, we performed a comparative AlphaFold2 analysis using some of the homologous subunits from Saccharomyces cerevisiae. We modeled two interactions between Cdc10-Sec5 and Cdc10-Sec15 (Cdc10 is the Spn2 homolog) using the same pipeline and parameters at the time when we did the modeling for S. pombe. We did not find interactions between them using the criteria we used for the fission yeast proteins in this study. These results support the notion that the predicted septin–exocyst interactions in S. pombe are not generalizable to budding yeast. Unfortunately, we did not test all other combinations at that time and the AlphaFold2 platform is not available to us now (showing system error messages when we tried recently). We thank the reviewer again for this helpful suggestion, which should strengthen the evolutionary interpretation of the septin-exocyst interactions once it is able to be systematically carried out.

      Reviewer #3 (Public Review): 

      Septins in several systems are thought to guide the location of exocytosis, and they have been found to interact with the exocyst vesicle-tethering complex in some cells. However, it is not known whether such interactions are direct or indirect. Moreover, septin-exocyst physical associations were not detected in several other systems, including yeasts, making it unclear whether such interactions reflect a conserved septin-exocytosis link or whether they may missed if they depend on septin polymerization or association into higher-order structures. Singh et. al., set out to define whether and how septins influence the exocyst during S. pombe cytokinesis. Based on three lines of evidence, the authors conclude that septins directly bind to exocyst subunits to regulate localization of the exocyst and vesicle secretion during cytokinesis. The conclusions are consistent with the data presented, but some interpretations need to be clarified and extended: 

      (1) The first line of evidence examines septin and exocyst localization during cytokinesis in wild-type and septin-mutant or exocyst-mutant yeast. Quantitative imaging convincingly shows that the detailed localization of the exocyst at the division site is perturbed in septin mutants, and that this is accompanied by modest accumulation of vesicles and vesicle cargos. Whether that is sufficient to explain the increased thickness of the division septum in septin mutants remains unclear.

      The modest accumulation of vesicles and vesicle cargos at the division site is one of the reasons for the increased thickness of the division septum in septin mutants. It is more likely that the misplaced exocyst can still tether vesicles along the division plane (less likely at the rim) without septins. Due to the lack of the glucanase Eng1 at the rim of the division plane in septin mutants, daughter-cell separation is delayed and then cells continue to thicken the septum. We have added these points to the Discussion.

      (2) The second line of evidence involves a comprehensive Alphafold2 analysis of potential pair-wise interactions between septin and exocyst subunits. This identifies several putative interactions in silico, but it is unclear whether the identified interaction surfaces would be available in the full septin or exocyst complexes.  

      We thank the reviewer for raising this important point. We fully agree that a key limitation of pairwise AlphaFold predictions is that they do not account for the higher-order structural context of multimeric protein complexes, such as septin hetero-oligomers or the assembled exocyst complex. As a result, some of the predicted interfaces could indeed be conformationally restricted in the native state.

      To address this concern, we predicted the S. pombe exocyst and septin structures using AlphaFold3. We mapped predicted contact residues onto the predicted structure. Most predicted interfaces (86% for the exocyst and 86-96% for septins) appear to be located on accessible surfaces in the assembled complexes (Figure supplement S4, S5, videos 4 - video 7), suggesting that these interactions are sterically plausible. We have added this important caveat to the text of the revised manuscript highlighting the interface accessibility within the assembled complexes. We appreciate the reviewer’s insight, which helped us strengthen the interpretation and limitations of the AlphaFold-based analysis.

      (3) The third line of evidence uses co-immunoprecipitation and yeast two hybrid assays to show that several physical interactions predicted by Alphafold2 can be detected, leading the authors to conclude that they have identified direct interactions. However, both methods leave open the possibility that the interactions are indirect and mediated by other proteins in the fission yeast extract (co-IP) or budding yeast cell (two-hybrid). 

      We thank the reviewer for this important clarification. We agree that coimmunoprecipitation (co-IP) and yeast two-hybrid (Y2H) assays cannot conclusively distinguish between direct and indirect interactions. As the reviewer points out, co-IPs may reflect associations mediated by bridging proteins within the fission yeast extract, and Y2H readouts can be influenced by fusion context or endogenous host proteins. In our manuscript, we have now revised the relevant statements in the Results and Discussion sections to clarify that the observed associations are consistent with direct interactions predicted by AlphaFold2, but cannot alone establish direct binding. We have also tempered our terminology—substituting phrases such as “direct interaction” with “physical association consistent with direct binding,” where appropriate.

      (4) Based on prior studies it would be expected that the large majority of both septins and exocyst subunits are present in cells and extracts as stoichiometric complexes. Thus, one would expect any septin-exocyst interaction to yield associations detectable with multiple subunits, yet co-IPs were not detected in some combinations. It is therefore unclear whether the interactions reflect associations between fully-formed functional complexes or perhaps between transient folding intermediates. 

      We thank the reviewer for this thoughtful observation. We agree that both septins and exocyst subunits are generally understood to exist in cells as stable, stoichiometric complexes, and that interactions between fully assembled complexes might be expected to yield co-immunoprecipitation signals involving multiple subunits from each complex. However, it was also found that >50% of septins Spn1 and Spn4 are in the cytoplasm even during cytokinesis when the septin double rings are formed (Table 1 of Wu and Pollard, Science 2005, PMID: 16224022). Thus, it is possible that there are pools of free septin and exocyst subunits in the cytoplasm, which were detected in our Co-IP assays. 

      In our experiments, we observed selective co-IP signals between certain septin and exocyst subunits, while other combinations did not yield detectable interactions. We believe these findings could reflect several other possibilities besides the possible interactions among the free subunits in the cytoplasm:

      (1) Some interactions may only be strong enough between specific subunits at exposed interfaces under the Co-IP conditions, rather than through wholesome complex–complex interactions;

      (2) The detergent and/or salt conditions used in our co-IPs may disrupt labile complex interfaces or partially dissociate multimeric assemblies.

      To address this concern, we now include in the Discussion a paragraph highlighting the possibility that some of the observed interactions may not reflect binding between fully assembled, functional complexes. Notably, most detected interactions pairs are consistent with the AlphaFold predictions, which suggest specific subunit interfaces may be responsible for mediating contact. While we cannot fully resolve whether septins engage with the whole exocyst complex versus selected subunits, our combined data supports a model that septins scaffold or spatially regulate the exocyst localization at the division site, potentially through dynamic and multivalent interactions. We now explicitly state this more cautious interpretation in the revised manuscript. Future biochemical studies using native complex purifications, cross-linking mass spectrometry, or in vitro reconstitution with fully assembled septin and exocyst complexes, or in vivo FRET assays will be essential to clarify whether the interactions we observe occur between intact assemblies or intermediate forms.

      Reviewer #1 (Recommendations for the Authors): 

      A major finding from the manuscript is the description of physical interaction of septin subunits with exocyst subunits. The analysis starts from Alphafold2 predictions, shown in Figures 3 and S3. However, some of the most useful metrics of Alphafold, the PAE plot and the pTM and ipTM values, are not provided. It is thus very difficult to estimate the value of the predicted structures (which are also obscured by all side chains). The power of a predicted structure is that it suggests binding interfaces, which is not explored here. At the very least, it would not be difficult to examine whether the proposed binding interfaces are free in the septin filaments and octameric exocyst complex. 

      Please also see response to reviewer #1 (Public Review).

      We thank the reviewer for these very helpful suggestions. We agree that inclusion of AlphaFold2 model confidence metrics—specifically the Predicted Aligned Error (PAE) plots, as well as pTM and ipTM values—is essential for evaluating the reliability of the predicted septin–exocyst interfaces.

      In the revised manuscript, we have now included the PAE plots (Figure 3 and Supplementary S3) and summarizes the pTM scores for each predicted septin–exocyst subunit pair. We also provide a short description of these metrics in the figure legend to help guide interpretation. The old Alphafold2 version (alphafold2advanced) that we used doesn’t give iPTM score, so are not included. However, according to our methodology, we only counted the interacting residues which have pLDDT scores >50%, predicting the resulting iPTM score should not be very weak.

      In addition, we have updated Figures 3 and S3 to show simplified ribbon diagrams of the interface regions, with side chains hidden by default and selectively displayed only at predicted interaction hotspots. This improves structural clarity and makes the interface regions easier to interpret. We mentioned in the Discussion that the preliminary studies show that the predicted interacting interfaces of Sec15 and Sec5 with septin subunits are accessible for interaction in the whole exocyst complex. The new Figure Supplement S4 and S5 and Videos 4-7 now show the interface residues of both the exocyst and septins that are involved in the interactions.

      Two further points on the interaction: 

      The 2H interaction data is not very convincing. The insets showing beta-gal assays do not look very different from the negative control (compare for instance in panel 4E the Sec15BD alone, last column, with the Sec15-BD in combination with Spn4-AD, third column: roughly same color), which suggests it is mostly driven by autoactivation of Sec15-BD. Providing growth information in addition to beta-gal may be helpful. 

      We appreciate the reviewer’s close evaluation of the yeast two-hybrid (Y2H) assay data, and we agree that the signals observed in the Spn4–Sec15 combination is indeed weak. Unfortunately, we did not perform growth assays. However, we would like to clarify that this is consistent with the nature of the interactions that we are investigating. The interaction between individual septin and exocyst subunits is not strong and/or transient as supported by the weak interactions by Co-IP experiments. Given the exocyst only tethers/docks vesicles on the plasma membrane for tens of seconds before vesicle fusion, the multivalent interactions between septins and the exocyst should be very dynamic and not be too strong. 

      As evidenced by our Co-IP experiments and multivalent interactions predicted by Alphafold2, the interaction between Spn4 and Sec15 is detectable but weak, suggesting that this may be a low-affinity or transient interaction. Given that Y2H assays have known limitations in detecting such low-affinity interactions—especially those that depend on conformational context or are not optimal in the yeast nucleus—it is perhaps not surprising that the X-gal color development is subtle. These limitations of the Y2H system have been well-documented (e.g., Braun et al., 2009; Vidal & Fields, 2014), particularly for interactions with affinities in the micromolar range or those requiring conformational specificity. Therefore, the weak signal observed is in line with expectations for a lowaffinity, transient interaction such as between Spn4 and Sec15.

      Vidal, M. and Fields, S., 2014. The yeast two-hybrid assay: still finding connections after 25 years. Nature methods, 11(12), pp.1203-1206.

      Braun, P., Tasan, M., Dreze, M., Barrios-Rodiles, M., Lemmens, I., Yu, H., Sahalie, J.M., Murray, R.R., Roncari, L., De Smet, A.S. and Venkatesan, K., 2009. An experimentally derived confidence score for binary protein-protein interactions. Nature methods, 6(1), pp.91-97.

      In the coIP experiments, I am confused by the presence of tubulin signal in some of the IPs. For instance, in Fig 4B, but not 4D, where the same Sec15-GFP is immunoprecipitated. There is also a signal in 4C but not 4A. This needs to be clarified. 

      The presence of tubulin in some immunoprecipitates is not unexpected, particularly in experiments involving cytoskeleton-associated proteins such as septins and exocyst subunits. The occasional presence of tubulin in our co-IP samples is consistent with well-documented reports showing tubulin as a frequent non-specific co-purifying protein, particularly under native lysis conditions used to preserve large complexes (Vega and Hsu, 2003; Gavin et al., 2006; Mellacheruvu et al., 2013; Hein et al., 2015). The CRAPome database and quantitative interactomics studies highlight tubulin as one of the most common background proteins in affinity-based workflows. Importantly, tubulin was used as a loading control but not as a marker for interaction in our study, and its variable presence does not reflect a specific interaction with Sec15-GFP or other bait proteins, and we have clarified this point in the revised figure legend.

      Gavin, A.C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L.J., Bastuck, S., Dümpelfeld, B. and Edelmann, A., 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084), pp.631-636.

      Mellacheruvu, D., Wright, Z., Couzens, A.L., Lambert, J.P., St-Denis, N.A., Li, T., Miteva, Y.V., Hauri, S., Sardiu, M.E., Low, T.Y. and Halim, V.A., 2013. The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nature methods, 10(8), pp.730736.

      Hein, M.Y., Hubner, N.C., Poser, I., Cox, J., Nagaraj, N., Toyoda, Y., Gak, I.A., Weisswange, I., Mansfeld, J., Buchholz, F. and Hyman, A.A., 2015. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell, 163(3), pp.712-723.

      Vega, I.E., Hsu, S.C. 2003. The septin protein Nedd5 associates with both the exocyst complex and microtubules and disruption of its GTPase activity promotes aberrant neurite sprouting in PC12 cells. Neuroreport, 14, pp.31-37.

      Regarding the localization of Ypt3 and Syb1 in WT and spn1∆ in Figure 6C-D and Bgs1 in Figure 7A, it would help to add a contractile ring marker to be able to match the timing of cytokinesis between WT and mutants and ensure that cells of same stage are compared (and add some quantification for Ypt3). In fact, in Figure 7A, next to the cells being pointed at, there are very similar localizations of Bgs1 in WT and spn1∆ at the rim of the ingressing septum, which makes me wonder how the quantified cells were chosen. 

      For localizations and quantifications of Eng1, Ypt3, Syb1, and Bgs1 shown in Figures 6 and 7, cells with a closed septum (at or after the end of contractile-ring constriction) were quantified or highlighted. To quantify their fluorescence intensity at the division site using line scan, the line width used was 3 pixels. For Syb1 (Figure 6D), we quantified cells at the end of ring constriction (when Rlc1-tdTomato constricted to a dot) in the middle focal plane. The exact same lines were drawn in both Rlc1 and Syb1 channels. The center of line scan was defined as the pixel with the brightest Rlc1 value. All data were aligned by the center and plotted. For Bgs1 (Figure 7A), we quantified the cells that Rlc1 signal had disappeared from the division site. The line was drawn in the Bgs1 channel in the middle focal plane. The center of line scan was defined as the pixel with the brightest Bgs1 value. All data were aligned by the center and plotted. These details were added to the Materials and Methods.

      Finally, the manuscript would benefit from some figure reorganization/compaction. Unless work on the binding interfaces is added, Figure 3 and S3 could be removed and summarized by providing the pTM and ipTM values of the predicted interactions. Figure 5 could be combined with Figure 2, as it is essentially a repeat with additional exocyst subunits. 

      Because the binding interfaces are added, we keep the original Figures 3 and S3. The experiments in Figure 5 could not be performed before the interaction tests between septins and the exocyst. Thus, to aid the flow of the story, we keep Figures 2 and 5 separated.

      Minor comments: 

      The last sentence of the first paragraph of the results does not make much sense at this point of the paper. After the first paragraph, there is no evidence that colocalization would be required for proper function.  

      We agree that the sentence in question may have overstated the functional implications of colocalization too early in the Results section, before presenting supporting evidence. Our intention was to introduce the hypothesis that spatial proximity between septins and exocyst subunits may be relevant for their coordination during cytokinesis, which we examine in later figures. We have revised the sentence to more accurately reflect the observational nature of the data at this stage in the manuscript as below:

      "These observations suggest the spatial proximity between septins and the exocyst during certain stage of cytokinesis, raising the possibility of their functional coordination, which we would further investigate below."

      What is the indicated n in Figure 6B? Number of cells? 

      Yes, the n in Figure 6B refers to the thin sections of electron microscopy quantified in the analysis. We have now updated the figure legend to explicitly state this for clarity.

      The causal inference made between the alteration of Exocyst localization in septin mutants and the thicker septum is possible, but by no means certain. It should be phrased more cautiously. 

      We agree that our original phrasing may have overstated the causal relationship between altered exocyst localization in septin mutants and septum thickening. Our data supports a correlation between these phenotypes, but additional experiments would be required to establish direct causality.

      To reflect this, we have revised the relevant sentence in the Discussion to read:

      “The modest accumulation of vesicles and vesicle cargos at the division site is one of the reasons for the increased thickness of the division septum in septin mutants. It is more likely that the misplaced exocyst can still tether vesicles along the division plane without septins. Due to the lack of the glucanase Eng1 at the rim of the division plane in septin mutants, daughter-cell separation is delayed and then cells continue to thicken the septum.”

      Reviewer #2 (Recommendations for the Authors): 

      (1) In the display of the AlphaFold Model for the interactions (Figure 3 and Supplemental Figure 3) it is difficult to identify which subunits are where. Residue numbers and subunits should be labeled and only side chains important for the interactions should be present in the model. 

      We appreciate this valuable suggestion. We agree that clearer visual labeling is essential for interpreting the predicted interactions and have revised Figures 3 and S3 accordingly to improve readability and emphasize key structural features.

      Specifically, we have:

      • Labeled each subunit with its name and color-coded consistently across panels.

      •  Annotated key interface residues with residue numbers directly in the figure.

      • Removed non-interacting side chains to declutter the model and highlight only those involved in predicted interactions as well as expanded the figure legend for explanation.

      (2) In Table 1 the column label "Genetic Interaction at 25C" is confusing when synthetic growth defects are shown with a "plus". Rather this column could be labeled "Growth of double mutants at 25C" and then designate the relative growth rate observed at 25C as in Table 2. Designating a negative effect on growth with a plus is confusing. 

      Thanks for the thoughtful suggestions. We have made the suggested changes by deleting the last column so that Tables 1 and 2 are consistent.

      (3) In Figure 4, why is tubulin being co-immunoprecipitated in two of the four anti-GFP IPs? Are the IPs dirty and if so why does it vary between the four experiments? If they are dirty can the non-specific tubulin be removed by additional washes with IP buffer or conversely is it necessary to do minimal washes in order to detect the exocyst-septin interaction by coIP? A comment on this would be helpful. 

      The presence of tubulin in some immunoprecipitates is not unexpected, particularly in experiments involving cytoskeleton-associated proteins such as septins and exocyst subunits. The occasional presence of tubulin in our co-IP samples is consistent with welldocumented reports showing tubulin as a frequent non-specific co-purifying protein, particularly under native lysis conditions used to preserve large complexes (Vega and Hsu, 2003; Gavin et al., 2006; Mellacheruvu et al., 2013; Hein et al., 2015). The CRAPome database and quantitative interactomics studies highlight tubulin as one of the most common background proteins in affinity-based workflows. Importantly, tubulin was used as a loading control but not marker for interaction in our study, and its variable presence does not reflect a specific interaction with Sec15-GFP or other bait proteins, and we have clarified this point in the revised figure legend.

      Gavin, A.C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L.J., Bastuck, S., Dümpelfeld, B. and Edelmann, A., 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084), pp.631-636.

      Mellacheruvu, D., Wright, Z., Couzens, A.L., Lambert, J.P., St-Denis, N.A., Li, T., Miteva, Y.V., Hauri, S., Sardiu, M.E., Low, T.Y. and Halim, V.A., 2013. The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nature methods, 10(8), pp.730736.

      Hein, M.Y., Hubner, N.C., Poser, I., Cox, J., Nagaraj, N., Toyoda, Y., Gak, I.A., Weisswange, I., Mansfeld, J., Buchholz, F. and Hyman, A.A., 2015. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell, 163(3), pp.712-723.

      Vega, I.E., Hsu, S.C. 2003. The septin protein Nedd5 associates with both the exocyst complex and microtubules and disruption of its GTPase activity promotes aberrant neurite sprouting in PC12 cells. Neuroreport, 14, pp.31-37. 

      In response to the second part of reviewer’s comment, we washed the pulldown product for 5 times each time with 1 ml IP buffer at 4ºC. We used this standard protocol for all the Co-IP experiments to detect the interaction between different septin-exocyst subunits. So, we are not sure if and how more washes or more stringent buffer conditions can interfere with detection of the interactions.

      Reviewer #3 (Recommendations for the Authors): 

      In addition to the issues noted in the public review, there were some confusing findings and references to previous literature that merit further consideration or discussion: 

      • The current gold standard for validating Alphafold predictions involves making targeted mutants suggested by the structural predictions. The absence of any such validation weakens the conclusions significantly. 

      We agree that the targeted mutagenesis based on AlphaFold2-predicted interaction interfaces represents a powerful approach to experimentally validate the in silico models. While we did not pursue structure-guided mutagenesis in this study, our goal was to identify putative interactions between septin and exocyst subunits as a foundation for future functional work. Our current conclusions are intentionally limited to proposing putative interfaces, supported by co-immunoprecipitation and genetic interaction data.

      We recognize that direct validation of specific contact residues would significantly strengthen the model. Accordingly, we have revised the Discussion to explicitly state this limitation and to note that structure-based mutagenesis will be an important next step to test the functional relevance of predicted interactions. We have added the following statement:

      “Future studies are needed to refine the residues involved in the interactions because the predicted interacting residues from AlphaFold are too numerous. However, it is encouraging that most of the predicted interacting residues are clustered in several surface patches. Experimental validation through targeted mutagenesis is an important next step.”

      • Much of the writing appears to imply that differences in mutant phenotypes indicate differences in septin (or exocyst) subunit behaviors/functions. However, my reading of the work in budding yeast is that such differences reflect the partial functionality that can be conferred by aberrant partial septin complexes that assemble and may polymerize in mutants lacking different subunits. In this view, which is supported by data showing that essentially all septins are in stoichiometric octameric complexes in cells, the wild-type functions are all mediated by the full complex. Similarly, the separate exocyst subunit localizations based on tagged Sec3 (Finger et al) were not supported by later work from the Brennwald lab with untagged Sec3, and the idea that different exocyst subunits may function separately from the full complex has very limited support in yeast. I would suggest that the text be edited to better reflect the literature, or that different views be better justified. 

      Thanks for the suggestions. We have revised the text accordingly.

      • The comprehensive set of Alphafold2 predictions is a major strength of the paper, but it is unclear to this reader whether the multiple predicted interactions truly reflect multivalent multimode interactions or whether many (most?) predictions would not be consistent with interactions between full complexes and may not indicate physiological interactions. Better discussion of these issues is needed to interpret the findings. 

      We appreciate the reviewer’s suggestion to use structural prediction to further assess interaction plausibility. We have now employed the full Saccharomyces cerevisiae exocyst complex (with 4.4 Å resolution) published by the Guo group to examine the interfaces of septins and the exocyst interactions, assuming that the S. pombe exocyst has the similar structure. We mapped predicted contact residues onto the predicted structure. Most predicted interfaces (86% for the exocyst and 86-96% for septins) appear to be located on accessible surfaces in the assembled complexes (Figure supplement S4, S5, videos 4 - video 7), suggesting that these interactions are sterically plausible. We have added this important caveat to the text of the revised manuscript highlighting the interface accessibility within the assembled complexes. We appreciate the reviewer’s insight, which helped us strengthen the interpretation and limitations of the AlphaFold-based analysis.

      • Some but not all co-IP blots appear to show tubulin (negative control) coming down with the GFP pull-downs. Why is that, and what does it imply for the reliability of the co-IP protocol? 

      The presence of tubulin in some immunoprecipitates is not unexpected, particularly in experiments involving cytoskeleton-associated proteins such as septins and exocyst subunits. The occasional presence of tubulin in our co-IP samples is consistent with welldocumented reports showing tubulin as a frequent non-specific co-purifying protein, particularly under native lysis conditions used to preserve large complexes (Vega and Hsu, 2003; Gavin et al., 2006; Mellacheruvu et al., 2013; Hein et al., 2015). The CRAPome database and quantitative interactomics studies highlight tubulin as one of the most common background proteins in affinity-based workflows. Importantly, tubulin was used as a loading control but not a marker for interaction in our study, and its variable presence does not reflect a specific interaction with Sec15-GFP or other bait proteins, and we have clarified this point in the revised figure legend.

      Gavin, A.C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L.J., Bastuck, S., Dümpelfeld, B. and Edelmann, A., 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084), pp.631-636.

      Mellacheruvu, D., Wright, Z., Couzens, A.L., Lambert, J.P., St-Denis, N.A., Li, T., Miteva, Y.V., Hauri, S., Sardiu, M.E., Low, T.Y. and Halim, V.A., 2013. The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nature methods, 10(8), pp.730736.

      Hein, M.Y., Hubner, N.C., Poser, I., Cox, J., Nagaraj, N., Toyoda, Y., Gak, I.A., Weisswange, I., Mansfeld, J., Buchholz, F. and Hyman, A.A., 2015. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell, 163(3), pp.712-723.

      Vega, I.E., Hsu, S.C. 2003. The septin protein Nedd5 associates with both the exocyst complex and microtubules and disruption of its GTPase activity promotes aberrant neurite sprouting in PC12 cells. Neuroreport, 14, pp.31-37.

      • Why were two different protocols used for different yeast-two-hybrid analyses? 

      The purpose of using two protocols was to test which protocol is more reliable and sensitive.

      • The different genetic interactions between septin and exocyst mutants when combined with TRAPP-II mutants merits further discussion: might the difference reflect relocation of exocyst from rim to center in septin mutants versus inactivation of exocyst in exocyst mutants? 

      We appreciate this insightful comment and agree that this distinction is likely meaningful. The reviewer correctly notes that septin mutants may not abolish exocyst function but rather cause its spatial mislocalization: from the rim to the center of the division site, whereas the exocyst mutants likely result in partial or complete loss of vesicle tethering activity at the plasma membrane.

      To address this important nuance, we have expanded the Discussion as follows:

      “The genetic interactions between mutations in the exocyst and septins when combined with TRAPP-II mutants may reflect fundamentally different consequences for compromising the exocyst function (Tables 1 and 2). In septin mutants, the exocyst complex still localizes to the division site but is mispositioned from the rim to the center of the division plane. This mislocalization allows partial retention of exocyst function, leading to very mild synthetic or additive defects when combined with compromised TRAPP-II trafficking and tethering. In contrast, in exocyst subunit mutants, the exocyst becomes partial or non-functional, resulting in a more severe loss of exocyst activity. These differing consequences could explain the qualitative differences in genetic interactions observed with TRAPP-II mutants (Tables 1 and 2). Thus, septins and the exocyst also work in different genetic pathways for certain functions in fission yeast cytokinesis.”

      • The vesicle accumulation in septin mutants was quite modest. Does that imply that most vesicles are still fusing in the septum? Further discussion would be beneficial to understand what the authors think this means. 

      We thank the reviewer for this important point. We agree that the modest vesicle accumulation observed in septin mutants suggests that a significant proportion of vesicles continue to successfully fuse at the division site, even in the absence of fully functional septin structures.

      We now discuss this in greater detail in the revised manuscript:

      “The relatively modest vesicle accumulation in septin mutants suggests that septins are not absolutely required for vesicle tethering or fusion per se at the division site. Instead, septins primarily function to spatially organize the targeting sites of exocyst-directed vesicles by stabilizing the localization of the exocyst at the rim of the cleavage furrow. In septin mutants, mislocalization of the exocyst reduces the spatial precision of membrane insertion but still permits vesicle tethering and fusion, albeit in a less controlled manner. Thus, septins likely play a modulatory rather than essential role in exocytic vesicle delivery during cytokinesis. This interpretation aligns with our localization and genetic interaction data, which indicates that septins act as scaffolds to optimize secretion geometry, rather than as core components of the fusion machinery.”

      • It was unclear to this reader why relocation of some exocyst complexes from the rim to the center of the septal region would lead to dramatic thickening of the septum. Further discussion would be beneficial to understand what the authors think this means. 

      The modest accumulation of vesicles and vesicle cargos at the division site is one of the reasons for the increased thickness of the division septum in septin mutants. It is more likely that the misplaced exocyst can still tether vesicles along the division plane without septins. Because of the lack of glucanase Eng1 at the rim of the division plane in septin mutants, daughter-cell separation is delayed and then cells continue to thicken the septum. We have added these points to the Discussion.

    1. eLife Assessment

      This work presents important findings suggesting that a combination of transcranial stimulation approaches applied for a short period could improve memory performance. Solid methods and evidence, in line with current standards for non-invasive stimulation and recording, are included to broadly support the main findings. The results potentially have implications for non-invasive enhancement of cognitive functions.

    2. Reviewer #1 (Public review):

      Summary:

      The authors make a bold claim that a combination of repetitive transcranial magnetic stimulation (intermittent theta burst-iTBS) and transcranial alternating current stimulation (gamma tACS) causes slight improvements in memory in a face/name/profession task.

      Strengths:

      The idea of stimulating the human brain non-invasively is very attractive because, if it worked, it could lead to a host of interesting applications. The current study aims to evaluate one such exciting application.

    3. Reviewer #2 (Public review):

      Summary:

      The manuscript by Borghi and colleagues provides evidence that the combination of intermittent theta burst TMS stimulation and gamma transcranial alternating current stimulation (γtACS) targeting the precuneus increases long-term associative memory in healthy subjects compared to iTBS alone and sham conditions. Using a rich dataset of TMS-EEG and resting-state functional connectivity (rs-FC) maps and structural MRI data, the authors also provide evidence that dual stimulation increased gamma oscillations and functional connectivity between the precuneus and hippocampus. Enhanced memory performance was linked to increased gamma oscillatory activity and connectivity through white matter tracts.

      Strengths:

      The combination of personalized repetitive TMS (iTBS) and gamma tACS is a novel approach to targeting the precuneus, and thereby, connected memory-related regions to enhance long-term associative memory. The authors leverage an existing neural mechanism engaged in memory binding, theta-gamma coupling, by applying TMS at theta burst patterns and tACS at gamma frequencies to enhance gamma oscillations. The authors conducted a thorough study that suggests that simultaneous iTBS and gamma tACS could be a powerful approach for enhancing long-term associative memory. The paper was well-written, clear, and concise.

    4. Reviewer #3 (Public review):

      Summary:

      Borghi and colleagues present results from 4 experiments aimed at investigating the effects of dual γtACS and iTBS stimulation of the precuneus on behavioral and neural markers of memory formation. In their first experiment (n = 20), they find that a 3-minute offline (i.e., prior to task completion) stimulation that combines both techniques leads to superior memory recall performance in an associative memory task immediately after learning associations between pictures of faces, names, and occupation, as well as after a 15-minute delay, compared to iTBS alone (+ tACS sham) or no stimulation (sham for both iTBS and tACS). Performance in a second task probing short-term memory was unaffected by the stimulation condition. In a second experiment (n = 10), they show that these effects persist over 24 hours and up to a full week after initial stimulation. A third (n = 14) and fourth (n = 16) experiment were conducted to investigate neural effects of the stimulation protocol. The authors report that, once again, only combined iTBS and γtACS increases gamma oscillatory activity and neural excitability (as measured by concurrent TMS-EEG) specific to the stimulated area at the precuneus compared to a control region, as well as precuneus-hippocampus functional connectivity (measured by resting state MRI), which seemed to be associated with structural white matter integrity of the bilateral middle longitudinal fasciculus (measured by DTI).

      Strengths:

      Combining non-invasive brain stimulation techniques is a novel, potentially very powerful method to maximize the effects of these kinds of interventions that are usually well-tolerated and thus accepted by patients and healthy participants. It is also very impressive that the stimulation-induced improvements in memory performance resulted from a short (3 min) intervention protocol. If the effects reported here turn out to be as clinically meaningful and generalizable across populations as implied, this approach could represent a promising avenue for treatment of impaired memory functions in many conditions.

      Methodologically, this study is expertly done! I don't see any serious issues with the technical setup in any of the experiments. It is also very commendable that the authors conceptually replicated the behavioral effects of experiment 1 in experiment 2 and then conducted two additional experiments to probe the neural mechanisms associated with these effects. This certainly increases the value of the study and the confidence in the results considerably.

      The authors used a within-subject approach in their experiments, which increases statistical power and allows for stronger inferences about the tested effects. They also used to individualize stimulation locations and intensities, which should further optimize the signal-to-noise ratio.

    5. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary:

      The authors make a bold claim that a combination of repetitive transcranial magnetic stimulation (intermittent theta burst-iTBS) and transcranial alternating current stimulation (gamma tACS) causes slight improvements in memory in a face/name/profession task.

      Strengths:

      The idea of stimulating the human brain non-invasively is very attractive because, if it worked, it could lead to a host of interesting applications. The current study aims to evaluate one such exciting application.

      Weaknesses:

      (1) The title refers to the "precuneus-hippocampus" network. A clear definition of what is meant by this terminology is lacking. More importantly, mechanistic evidence that the precuneus and the hippocampus are involved in the potential effects of stimulation remains unconvincing.

      Thank you for the observation. We believe that the evidence collected supports our state relative to the stimulation of the precuneus and the involvement of the hippocampus. In particular, given the existing evidence on TMS methodology and precuneus non-invasive stimulation (see Koch et al., Brain, 2022, Koch et al., Alzheimer's research & therapy, 2025), the computation of the biophysical model with the E-field we produced (see Biophysical modeling and E-field calculation section in the supplementary information), together with the individual identification of the precuneus through the RM (see iTBS+γtACS neuromodulation protocol and MRI data acquisition in the main text), we can reasonably assume that the individually identified PC was stimulated.

      As we acknowledged in the Limitations section, we cannot entirely rule out the possibility that our results might also reflect stimulation of more superficial parietal regions adjacent to the precuneus. Nor do we provide direct evidence of microscopic changes in the precuneus following stimulation. However, the results we provide in terms of changes in precuneus oscillatory activity and precuneus-hippocampi connectivity sustain both our thesis of the precuneus stimulation and of hippocampi involvement in the stimulation effects.

      Despite this consideration, we agree on the fact that a clear definition of what is meant by the terminology “precuneus-hippocampus network” is lacking. Moreover, since our data and previous evidence sustain the notion of PC stimulation, while this study does not produce direct evidence of the hippocampi stimulation - but only of the effect of the neuromodulation protocol on its connection with the precuneus, we soften the claim in the title. We remove the mention of the precuneus-hippocampus network so that the modified title will be as follows: “Dual transcranial electromagnetic stimulation of the precuneus boosts human long-term memory.”

      (2) The question of the extent to which the stimulation approach and the stimulation parameters used in these experiments causes specific and functionally relevant neural effects remains open. Invasive recordings that could address this question remain out of the scope of this non-invasive study. The authors conducted scalp EEG experiments in an attempt to address this question using non-invasive methods. However, the results shown in Fig. 3 are unclear. The results are inconsistently reported in units of microvolts squared in some panels (3A, 3B) and in units of microvolts in other panels (3C). Also, there is insufficient consideration of potential contamination by signal components reflecting eye movements, other muscle artifacts, or another volume-conducted signal reflecting aggregate activity inside the brain.

      As you correctly noted, Figure 3 presents results obtained from the TMS–EEG recordings. However, there is no inconsistency regarding the measurement units, as we are referring to two distinct indices: one in the frequency domain—oscillatory power shown in Figures 3A and 3B, expressed in microvolts squared (μV<sup>²</sup>)—and one in the time domain—the TMS-evoked potential shown in Figure 3C, expressed in microvolts (μV).

      Regarding the concern about artifacts, this is an important issue on which our group has a strong expertise, having published well-established, highly cited procedures on how to record and clean TMS-EEG signals (e.g., Casula et al., Clinical Neurophysiology, 2017; Rocchi et al., Brain Stimulation, 2021). In the current study, we adopted a well-established and rigorous approach for both data acquisition and preprocessing. This ensured that the recorded TMS–EEG signals were not contaminated by physiological or electrical artifacts.

      As regards the recording procedure, all participants were instructed to fixate on a black cross to minimize eye movements. To avoid auditory-related components caused by the TMS click, we adopted an ad-hoc procedure optimized for TMS-EEG recordings (Rocchi et al., Brain Stimulation, 2021). First, participants were given earphones that continuously played an ad-hoc masking noise composed of white noise mixed with specific time-varying frequencies of the TMS click (Rocchi et al., Brain Stimulation, 2021). The masking noise volume was adjusted to ensure that participants could not detect the TMS click, or as much as tolerated (always below 90 dB). To further reduce the impact of the TMS click on the EEG signal, we placed ear defenders (SNR=30) on top of the earphones. Please see TMS–EEG data acquisition section in the main text.

      As regards the offline cleaning process, we applied Independent Component Analysis (INFOMAX-ICA) to the EEG data to identify and remove components associated with muscle activity, eye movements, blinking, and residual TMS-related artifacts, in line with the most recent guidelines on TMS–EEG preprocessing (Hernandez-Pavon et al., Brain Stimulation, 2023). Specifically, for TMS-related muscle artefacts, we strictly followed the criteria based on their scalp topography, spectral content, timing, and amplitude, which we published in a paper focused on this topic (Casula et al., Clinical Neurophysiology, 2017). We add this detail in the TMS–EEG preprocessing and analysis section in the supplementary information (lines 119-120).

      (3) Figure 3 indicates "Precuneus oscillatory activity ...", but evidence that the activity presented reflects precuneus activity is lacking. The maps shown at the bottom of Figure 3C suggest that the EEG signals recorded with scalp EEG reflect activity generated across a wide spatial range, with a peak encompassing at least tens of centimeters. Thus, evidence that effects specifically reflect precuneus activity, as the paper's title and text throughout the manuscript suggest, is lacking.

      We believe there may have been a misunderstanding. As indicated in the figure caption, panels A and B represent oscillatory activity, whereas panel C displays the TMS-evoked potentials (TEPs). Therefore, the topographical maps mentioned (i.e., those in panel C) did not refer to oscillatory activity, but to differences in TEP amplitude. Specifically, the topographies shown in Figure 3C illustrate statistically significant differences in TEP amplitudes between post-stimulation time points (T1—immediately after stimulation, and T2—20 minutes after stimulation) and the pre-stimulation baseline (T0).

      In this figure, we focused our analysis on a cluster of electrodes overlying the individually identified precuneus, capturing EEG responses to single TMS pulses delivered to that target. This approach, widely used in previous literature (e.g., Koch et al., NeuroImage, 2018; Casula et al., Annals of Neurology, 2022; Koch et al., Brain, 2022; Maiella et al., Clinical Neurophysiology, 2024; Koch et al., Alzheimer’s Research & Therapy, 2025), supports the interpretation that the observed responses reflect precuneus-related activity. Furthermore, the wide spatial range change you mention proved to be statistically different only when conducting the TMS-EEG over the precuneus (i.e., administering the TMS single pulse over the precuneus) and not when performing it over the left parietal cortex. We modified the discussion section in the main text to make it more clear (lines 196-199).

      “Moreover, we observed specific cortical changes in the posteromedial parietal areas, as evidenced by the whole-brain analysis conducted on TMS-EEG data when performed over the precuneus and the absence of effect when TMS-EEG was performed on the lateral posterior parietal cortex used as a control condition.”

      That said, we do not state that the effects observed specifically reflect the precuneus activity; indeed, we think the effect of the stimulation is broader, as discussed in the Discussion section. We rather sustain, in line with the literature (Koch et al., Neuroimage 2018; Koch et al., Brain, 2022; Koch et al., Alzheimer's research & therapy, 2025), the idea that the effects observed are a consequence of the precuneus stimulation by the dual stimulation.

      (4) The paper as currently presented (e.g., Figure 3) also lacks rigorous evidence of relevant oscillatory activity. Prior to filtering EEG signals in a particular frequency band, clear evidence of oscillations in the frequency band of interest should be shown (e.g., demonstration of a clear peak that emerges naturally in the frequency range of interest when spectral analysis is applied to "raw" signals). The authors claim that gamma oscillations change because of the stimulation, but a clear peak in the gamma range prior to stimulation is not apparent in the data as currently presented. Thus, the extent to which spectral measurements during stimulation reflect physiological gamma oscillations remains unclear.

      If we understand correctly, your concern relates to the lack of a clear gamma peak before neuromodulation, which may suggest uncertainty about the observed changes in gamma oscillatory activity. Is that correct?

      First, it is important to underline that the natural frequency typically observed in the precuneus falls within the beta range, not the gamma range (see Rosanova et al., Journal of Neuroscience, 2009; Casula et al., Annals of Neurology, 2022). This explains why a prominent gamma peak is not expected at baseline (T0).

      Differently, our neuromodulatory protocol was specifically aimed at boosting gamma oscillatory activity given its well-established role in learning and memory processes (Griffiths & Jensen, Trends in Neurosciences, 2023). Thus, to assess the effect of the neuromodulatory protocol, we compared the oscillatory activity before (T0) and after stimulation (T1 and T2), which showed a clear increase in the gamma band. This effect is visible in the raw oscillatory power plot and is most clearly represented in Figure 3B, where the gamma band emerged as the only frequency range showing significant changes across time points.

      (5) Concerns remain regarding the rigor of statistical analyses in the revised manuscript (see also point 8 below). Figure 3B shows an undefined statistical test with p<0.05. The statistical test that was used is not explained. Also, a description of how corrections for multiple comparisons were made is missing. Figures 3A and 3C are not accompanied by statistics, making the results difficult to interpret. For Figure 4C, a claim was made based on a significant p-value for one statistical test and a non-significant p-value in another test. This is a common statistical mistake (see Figure 1 and accompanying discussion in Makin and Orban de Xivry (2019) Science Forum: Ten common statistical mistakes to watch out for when writing or reviewing a manuscript. eLife 8:e48175).

      All statistical tests are described in the Statistical Analysis section of the main text. Specifically, to assess cortical oscillation changes in Experiment 3, we conducted repeated-measures ANOVAs with stimulation condition (iTBS+γtACS vs. iTBS+sham-tACS) and time (ΔT1 = T1–T0; ΔT2 = T2–T0) as within-subject factors, for each frequency band. To further explore the effects of stimulation at each time point, we performed paired t-tests with Bonferroni correction for multiple comparisons. A one-tailed hypothesis was adopted, based on our a priori prediction of gamma-band increase derived from previous work (Maiella et al., 2022).

      Please note that Figures 3A and 3C are purely descriptive and are therefore not accompanied by statistical tests. Figure 3A shows the full spectral profile across frequencies and conditions, while statistical significance for these data is reported in Figure 3B. Similarly, the upper part of Figure 3C displays the TMS-evoked potential (TEP) in the precuneus, while the statistical comparison of TEP amplitudes across time points is shown in the lower part of Figure 3C.

      Regarding Figure 4C and the article you cited, are you referring to the error described as “Interpreting comparisons between two effects without directly comparing them”? If we understand correctly, this refers to the mistake of inferring an effect by observing that a significant result occurs in one condition or group, while the corresponding result in another condition or group is not significant, without directly testing the difference between them.

      In the case of Experiment 4, which investigates fMRI effects and is illustrated in Figure 4, we employed a general linear model that explicitly modeled both conditions and time points, allowing for a direct statistical comparison. Therefore, the connectivity effect reported does not fall into the category of the error you mentioned.

      Importantly, Figure 4C does not depict the effect of the neuromodulatory protocol itself. Rather, its purpose is to show that, within the real stimulation condition, there is a correlation between the observed effect and the integrity of the bilateral Middle Longitudinal Fasciculus. No conclusions or assumptions were made based on the absence of a significant correlation in the sham condition. However, since it was an exploratory analysis, we decided to soften our claims relative to the neural mechanism in the discussion section of the main text (lines 241-246).

      (6) In the second question posed in the original review, I highlighted that it was unclear how such stimulation would produce memory enhancement. The authors replied that, in the absence of mechanisms, there are many other studies that suffer from the same problem. This raises the question of placebo effects. The paper does not sufficiently address or discuss the possibility that any potential stimulation effects may reflect placebo effects.

      We agree with the reviewer on the potential role of a placebo effect in our study. For this reason, our experimental study had several stimulation conditions, including a placebo condition, which corresponded to the sham iTBS-sham tACS condition, which did not produce any effect.

      (7) The third major concern in the original review was the lack of evidence for a mechanism that is specific to the precuneus. Evidence for specific involvement of the precuneus remains lacking in the revised manuscript. The authors state: "the non-invasive stimulation protocol was applied to an individually identified precuneus for each participant". However, the meaning of this statement is unclear. Specifically, it is unclear how the authors know that they are specifically targeting the precuneus. Without directly recording from the precuneus and directly demonstrating effects, which is outside of the scope of the study, specific involvement of the precuneus seems speculative. Also, it does not seem as though a figure was included in the paper to show how the stimulation protocol specifically targets the precuneus. In their response to the original reviews, the authors state that posterior medial parietal areas are the only regions that show significant differences following the stimulation, but they did not cite a specific figure, or statistics reported in the text, that show this. In any event, posterior medial parietal areas encompass a wide area of the brain, so this would still not provide evidence for an effect specifically involving the precuneus.

      We respectfully disagree with the claim that targeting the precuneus in our study is speculative. The statement that “without directly recording from the precuneus and directly demonstrating effects, which is outside the scope of the study, specific involvement of the precuneus seems speculative” would, by that logic, implicitly call into question a large body of cognitive neuroscience research employing non-invasive techniques such as EEG and fMRI.

      Our methodological approach—combining MRI-guided stimulation, biophysical modeling, and TMS–EEG—is well established and widely used for targeting and studying the role of specific cortical regions, including the precuneus (e.g., Wang et al., Science, 2014; Koch et al., NeuroImage, 2018; Casula et al., Annals of Neurology, 2022, 2023; Koch et al., Brain, 2022; Maiella et al., Clinical Neurophysiology, 2024; Koch et al., Alzheimer’s Research & Therapy, 2025).

      In line with previously published protocols (Santarnecchi et al., Human Brain Mapping, 2018; Özdemir et al., PNAS, 2020; Mantovani et al., Journal of Psychiatric Research, 2021), we identified individual targets (i.e., the precuneus) for each participant based on structural and resting-state functional MRI data (see MRI Data Acquisition and Preprocessing section in the main text). This target was then accurately localized using MRI-guided stereotaxic neuronavigation, ensuring reproducible and anatomically precise stimulation across subjects.

      Finally, concerning the last comment about the lack of figures/statistics showing how the stimulation protocol targets the precuneus and the specificity of the effect observed, we would like to let the focus go over:

      Figure 3 in the main text, where we show the results of the TME-EEG over the posterior medial parietal areas;

      Figure S1 in the supplementary information, which shows with the e-fied simulation how the stimulation protocol targets the brain;

      the Precuneus iTBS+γtACS increases gamma oscillatory activity section in the main text results, where we report the results of the statistical analysis of the TMS-EEG conducted over the precuneus and the left posterior parietal cortex, used as a control condition to test for the specificity of the neuromodulation protocol.

      (8) Regarding chance levels, it is unfortunate that the authors cannot quantify what chance levels are in the immediate and delayed recall conditions. This makes interpretation of the results challenging. In the immediate and delayed conditions, the authors state that the chance level is 33%. It would be useful to mark this in the figures. If I understand correctly, chance is 33% in Fig. 2A. If this is the case and if I am interpreting the figure correctly:

      Gray bars for the sham condition appear to be below chance (~20-25%). Why is this condition associated with an accuracy level that is lower than chance?

      Cyan bars and red bars do not appear to be significantly different from chance (i.e., 33%), with red slightly higher than cyan. What statistic was performed to obtain the level of significance indicated in the figure? The highest average value for the red condition appears to be around 35%. More details are needed to fully explain this figure and to support the claims associated with this figure.

      The immediate and recall conditions you mention correspond to a free recall task. In this case, the notion of a fixed "chance level" is not straightforward as it would be in recognition or forced-choice paradigms, which is why we did not quantify it at first. I will now try to explain this extensively.

      Unlike multiple-choice tasks, where participants select the answer from a limited set of alternatives and the probability of a correct response by chance can be precisely quantified (e.g., 33% in a 3-alternative forced choice), free recall involves the spontaneous retrieval of items from memory without external cues or predefined options. As such, the response range in free recall is essentially unconstrained, encompassing the entire vocabulary of the participant.

      Because of this open-ended nature, the probability of correctly recalling a studied item purely by chance is exceedingly low and could be approximated to zero. Also, in our task, participants had to correctly recollect both name and occupation, doubling the possibility of the answers.

      This assumption is further supported by the fact that random guesses in free recall are unlikely to match any of the studied items, given the vast number of possible alternatives. As a result, performance above zero can be reasonably interpreted as reflecting genuine memory retrieval, rather than random guessing.

      As regards statistics, repeated-measures ANOVAs with stimulation condition as a within-subject factor (i.e., iTBS+γtACS; iTBS+sham-tACS; sham-iTBS+sham-tACS) for each dependent variable (see statistical analysis section in main text).

      (9) In the revised version of the paper, the authors did not address concerns associated with the block design (please see question 4d in the original review).

      We are sorry for the misunderstanding. We did not address your concerns related to block design since it does not apply to our study. As reported in the paper you mentioned in the original review, block design involves data collection performed in response to different stimuli of a given class presented in succession. If this is the case, it does not correspond to our experimental design since both TMS-EEG and fMRI were conducted in the resting state (i.e., without the presentation of stimuli) on different days according to the different randomized stimulation conditions.  

      In sum, this study presents an admirable aspirational goal, the notion that a non-invasive stimulation protocol could modulate activity in specific brain regions to enhance memory. However, the evidence presented at the behavioral level and at the mechanistic level (e.g. the putative involvement of specific brain regions) remains unconvincing.

      We hope our response will be carefully considered, fostering a constructive exchange and leading to a reassessment of your evaluation.

      Reviewer #2 (Public review):

      Summary:

      The manuscript by Borghi and colleagues provides evidence that the combination of intermittent theta burst TMS stimulation and gamma transcranial alternating current stimulation (γtACS) targeting the precuneus increases long-term associative memory in healthy subjects compared to iTBS alone and sham conditions. Using a rich dataset of TMS-EEG and resting-state functional connectivity (rs-FC) maps and structural MRI data, the authors also provide evidence that dual stimulation increased gamma oscillations and functional connectivity between the precuneus and hippocampus. Enhanced memory performance was linked to increased gamma oscillatory activity and connectivity through white matter tracts.

      Strengths:

      The combination of personalized repetitive TMS (iTBS) and gamma tACS is a novel approach to targeting the precuneus, and thereby, connected memory-related regions to enhance long-term associative memory. The authors leverage an existing neural mechanism engaged in memory binding, theta-gamma coupling, by applying TMS at theta burst patterns and tACS at gamma frequencies to enhance gamma oscillations. The authors conducted a thorough study that suggests that simultaneous iTBS and gamma tACS could be a powerful approach for enhancing long-term associative memory. The paper was well-written, clear, and concise.

      Comments on Revision:

      I thank the authors for their thoughtful responses to my first review and their inclusion of more detailed methodological discussion of their rationale for the stimulation protocol conditions and timing. Regarding the apparent difference in connectivity at baseline between conditions, the explanation that this is due to intrinsic dynamics, state, or noise implies the baseline is reflecting transient changes in dynamics rather than a true or stable baseline. Based on this, it looks like iTBS solely is significantly greater than the baseline before the iTBS and γtACS condition but maybe not that much lower than post-stimulation period for iTBS and γtACS. A longer baseline period should be used to ensure transient states are not driving baseline levels such that these endogenous fluctuations would average out. This also raises questions about whether the effect of iTBS and γtACS or iTBS alone are dependent on the intrinsic state at the time when stimulation begins. Their additional clarification of memory scoring is helpful but also reveals that the effect of dual iTBS+γtACS specifically on the association between faces and names is just significant. This modest increase in associative memory should be taken into consideration when interpreting these findings.

      We thank the reviewer for the feedback. We fully agree that considering baseline dynamics is critical when assessing the neurophysiological and connectivity effects of stimulation protocols.

      In Experiments 3 and 4, baseline measurements were specifically included in our design to account for the possibility that intrinsic dynamics, state, or noise could influence the observed effects of neuromodulation. Indeed, if we had compared only post-stimulation connectivity between the real and sham conditions, the effects might have appeared larger. The inclusion of baseline measurements allows us to contextualize and better isolate the neuromodulatory impact by controlling such endogenous fluctuations. Importantly, the fMRI connectivity measurements, which comprise the baseline, are derived from 10-minute BOLD signal acquisitions, which help mitigate the influence of transient fluctuations and provide a quite stable estimate of intrinsic connectivity.

      Moreover, regarding the possibility that stimulation effects may depend on the intrinsic state at stimulation onset, we hypothesize that gamma-frequency entrainment induced by tACS could reduce the variability of intrinsic dynamics, promoting a more stable neural state that is favorable for the induction of long-term plasticity.

      As regards the memory scoring, we would like to clarify that the significant improvement observed in the dual iTBS+γtACS condition does not pertain solely to the face–name association. Rather, it concerns the more demanding task of recalling the association between face, name, and occupation. While we agree that the observed effect could be considered modest, it is worth noting that it follows from only 3 minutes of stimulation.

      Reviewer #3 (Public review):

      Summary:

      Borghi and colleagues present results from 4 experiments aimed at investigating the effects of dual γtACS and iTBS stimulation of the precuneus on behavioral and neural markers of memory formation. In their first experiment (n = 20), they find that a 3-minute offline (i.e., prior to task completion) stimulation that combines both techniques leads to superior memory recall performance in an associative memory task immediately after learning associations between pictures of faces, names, and occupation, as well as after a 15-minute delay, compared to iTBS alone (+ tACS sham) or no stimulation (sham for both iTBS and tACS). Performance in a second task probing short-term memory was unaffected by the stimulation condition. In a second experiment (n = 10), they show that these effects persist over 24 hours and up to a full week after initial stimulation. A third (n = 14) and fourth (n = 16) experiment were conducted to investigate neural effects of the stimulation protocol. The authors report that, once again, only combined iTBS and γtACS increases gamma oscillatory activity and neural excitability (as measured by concurrent TMS-EEG) specific to the stimulated area at the precuneus compared to a control region, as well as precuneus-hippocampus functional connectivity (measured by resting state MRI), which seemed to be associated with structural white matter integrity of the bilateral middle longitudinal fasciculus (measured by DTI).

      Strengths:

      Combining non-invasive brain stimulation techniques is a novel, potentially very powerful method to maximize the effects of these kinds of interventions that are usually well-tolerated and thus accepted by patients and healthy participants. It is also very impressive that the stimulation-induced improvements in memory performance resulted from a short (3 min) intervention protocol. If the effects reported here turn out to be as clinically meaningful and generalizable across populations as implied, this approach could represent a promising avenue for treatment of impaired memory functions in many conditions.

      Methodologically, this study is expertly done! I don't see any serious issues with the technical setup in any of the experiments. It is also very commendable that the authors conceptually replicated the behavioral effects of experiment 1 in experiment 2 and then conducted two additional experiments to probe the neural mechanisms associated with these effects. This certainly increases the value of the study and the confidence in the results considerably.

      The authors used a within-subject approach in their experiments, which increases statistical power and allows for stronger inferences about the tested effects. They also used to individualize stimulation locations and intensities, which should further optimize the signal-to-noise ratio.

      Weaknesses:

      I think one of the major weaknesses of this study is the overall low sample size in all of the experiments (between n = 10 and n = 20). This is, as I mentioned when discussing the strengths of the study, partly mitigated by the within-subject design and individualized stimulation parameters. The authors mention that they performed a power analysis but this analysis seemed to be based on electrophysiological readouts similar to those obtained in experiment 3. It is thus unclear whether the other experiments were sufficiently powered to reliably detect the behavioral effects of interest. In the revised manuscript, the authors provide post-hoc sensitivity analyses that help contextualize the strength of the findings.

      While the authors went to great lengths trying to probe the neural changes likely associated with the memory improvement after stimulation, it is impossible from their data to causally relate the findings from experiments 3 and 4 to the behavioral effects in experiments 1 and 2. This is acknowledged by the authors and there are good methodological reasons for why TMS-EEG and fMRI had to be collected in separate experiments, but readers should keep in mind that this limits inferences about how exactly dual iTBS and γtACS of the precuneus modulate learning and memory.

      We thank the reviewer for the feedback.

      Reviewer #1 (Recommendations for the authors):

      I suggest:

      (1) Removing all mechanistic claims about the precuneus and hippocampus.

      We soften our claims about the precuneus-hippocampus network.

      (2) Repeating and focusing on the behavioral experiments with a much larger number of images and stronger statistical power to try to demonstrate a compelling behavioral correlate of the proposed stimulation protocol.

      We clarified the misunderstanding relative to the chance level of the behavioral experiments raised by the reviewer.

      Reviewer #2 (Recommendations for the authors):

      Use longer baseline to establish stable gamma level for comparisons in Figure 3

      If we understand correctly, you propose to increase the baseline to establish the gamma oscillatory activity as expressed in Figure 3 (showing the results of experiment 3). Is that right? In the figure, you see a baseline of -100; 0ms, which we use for a merely graphical reason, since no activity is usually observable before the TMS pulse. However, to establish the level of gamma, we used a larger baseline correction ranging from -700 ms to -300 ms (i.e., 400ms). We added this important information in the cortical oscillation section of the supplementary information (lines 134-135).

      Reviewer #3 (Recommendations for the authors):

      I think that the authors did a great job responding to the concerns raised by the reviewers. All of my own comments have been satisfactorily addressed. I will update my public review to be more concise, so that it only includes the overall assessment of the manuscript, including the strengths and weaknesses, but without the requests for clarification. Strengths and weaknesses remain largely the same, as the authors did not conduct additional experiments.

      Thank you.

    1. eLife Assessment

      This study presents a valuable finding that KDM5 inhibitors may enable a wide therapeutic window as compared to STING agonists or Type I Interferons. The evidence supporting the claims of the authors is convincing. The work will be of broad interest to scientists working in the field of breast cancer research.

    2. Reviewer #1 (Public review):

      In this manuscript, Lau et al reported that KDM5 inhibition in luminal breast cancer cells results in R-loop-mediated DNA damage, reduced cell fitness and an increase in ISG and AP signatures as well as cell surface Major Histocompatibility Complex (MHC) class I, mediated by RNA:DNA hybrid activation of the CGAS/STING pathway.

      Their studies have shown that KDM5 inhibition/loss mediates a viral mimicry and DNA damage response through the generation of R-loops in genomic repeats. This is a different mechanism from the more well studied double-stranded RNA-induced "viral mimicry" response.

      More importantly, they have shown that KDM5 inhibition does not result in DNA damage or activation of the CGAS/STING pathway in normal breast epithelial cells, suggesting that KDM5 inhibitors may enable a wide therapeutic window in this setting, as compared to STING agonists or Type I Interferons.

      Their findings provide new insights into the interplay between epigenetic regulation of genomic repeats, R-loop formation, innate immunity, and cell fitness in the context of cancer evolution and therapeutic vulnerability.

      Comments on revised version:

      The authors have satisfactorily addressed my comments and revised the manuscript accordingly.

    3. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors investigated how the type-I interferon response (ISG) and antigen presentation (AP) pathways are repressed in luminal breast cancer cells and how this repression can be overcome. They found that a STING agonist can reactivate these pathways in breast cancer cells, but it also does so in normal cells, suggesting that this is not a good way to create a therapeutic window. Depletion of ADAR and inhibition of KDM5 also activate ISG and AP genes. The activation of ISG and AP genes is dependent on cGAS/STING and the JAK kinase. Interestingly, although both ADAR depletion and KDM5 inhibition activate ISG and AP genes, their effects on cell fitness are different. Furthermore, KDM5 inhibitor selectively activates ISG and AP genes in tumor cells but not normal cells, arguing that it may create a larger therapeutic window than the STING agonist. These results also suggest that KDM5 inhibition may activate ISG and AP genes in a way different from ADAR loss, and this process may affect tumor cell fitness independently of the activation of ISG and AP genes.

      The authors further showed that KDM5 inhibition increases R-loops and DNA damage in tumor cells, and XPF, a nuclease that cuts R-loops, is required for the activation of ISG and AP genes. Using H3K4me3 CUT&RUN, they found that KMD5 inhibition results in increased H3K4me3 not only at genes, but also at repetitive elements including SINE, LINE, LTR, telomeres, and centromeres. Using S9.6 CUT&TAG, they confirmed that R-loops are increased at SINE, LINE, and LTR repeated with increased H3K4me3. Together, the results of this study suggest that KMD5 inhibition leads to H3K4me3 and R-loop accumulation in repetitive elements, which induces DNA damage and cGAS/STING activation and subsequently activates AP genes. This provides an exciting approach to stimulate the anti-tumor immunity against breast tumors.

      KDM5 inhibition activates interferon and antigen presentation genes through R-loops.

      Strengths:

      A new approach to make breast tumors "hot" for anti-tumor immunity.

      Weaknesses:

      Future in vivo studies are needed to show the effects of KDM5 inhibitors on the immunotherapy responses of breast tumors.

      Comments on revised version:

      The authors have adequately addressed my comments.

    1. eLife Assessment

      The study showcases a significant and important enhancement of the MAGIC transgenesis method, by extending it genome-wide to all chromosomes. The authors convincingly demonstrate that the MAGIC mosaic clones can be generated for genes from all, including the 4th chromosome. With this toolkit extension, the method is now most likely set to strongly rival the classical FRT/Flp recombination system for gene manipulation in flies.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Shen et al. have improved upon the mitotic clone analysis tool MAGIC that their lab previously developed. MAGIC uses CRISPR/Cas9-mediated double-stranded breaks to induce mitotic recombination. The authors have replaced the sgRNA scaffold with a more effective scaffold to increase clone frequency. They also introduced modifications to positive and negative clonal markers to improve signal-to-noise and mark the cytoplasm of the cells instead of the nuclei. The changes result in increase in clonal frequencies and marker brightness. The authors also generated the MAGIC transgenics to target all chromosome arms and tested the clone induction efficacy.

      Strengths:

      MAGIC is a mitotic clone generation tool that works without prior recombination to special chromosomes (e.g., FRT). It can also generate mutant clones for genes for which the existing FRT lines could not be used (e.g., the genes that are between the FRT transgene and the centromere).

      This manuscript does a thorough job in describing the method and provides compelling data that support improvement over the existing method.

      Weaknesses:

      It would be beneficial to have a greater variety of clonal markers for nMAGIC. Currently, the only marker is BFP, which may clash with other genetic tools (e.g., some FRET probes) depending on the application. It would be nice to have far-red clonal markers.

    3. Reviewer #2 (Public review):

      Summary:

      In this study, the authors present the latest improvement of their previously published methods, pMAGIC and nMAGIC, which can be used to engineer mosaic gene expression in wild-type animals and in a tissue-specific manner. They address the main limitation of MAGIC, the lack of gRNA-marker transgenes, which has hampered the broader adoption of MAGIC in the fly community. To do so, they create an entire toolkit of gRNA markers for every Drosophila chromosome and test them across a range of different tissues and in the context of making Drosophila species hybrid mosaic animals. The study provides a significant and broadly useful improvement compared to earlier versions, as it broadens the use-cases for transgenic manipulation with MAGIC to virtually any subfield of Drosophila cell biology.

      Strengths:

      Major improvements to MAGIC were made in terms of clone induction efficiency and usability across the Drosophila model system, including wild-type genotypes and the use in non-melanogaster species.

      Notably, mosaic mutants can now be created for genes residing on the 4th chromosome, which is exciting and possibly long-awaited by 4th chromosome gene enthusiasts.

      Selection of the standard set of gRNA markers was done thoughtfully, using non-repetitive conserved and unique sequences.

      The authors demonstrate that MAGIC can be used easily in the context of interspecific hybrids. I believe this is a great advancement for the Drosophila community, especially for evolutionary biologists, because this may allow for easy access to mechanistic, tissue-specific insight into the process of a range of hybrid incompatibilities, an important speciation process that is normally difficult to study at the level of molecular and cell biology.

      In the same way, because it is not limited to usage in any particular genetic background, genome-wide MAGIC can be potentially used in wild-type genotypes relatively easily. This is exciting, especially because natural genetic diversity is rarely investigated more mechanistically and at the scale/resolution of cells or specific tissues. Now, one can ask how a particular naturally occurring allele influences cell physiology compared to another (control) while keeping the global physiological context of the particular genetic background largely intact.

      Weaknesses:

      It is not entirely clear how functionally non-critical regions were evaluated, besides that they are selected based on conservation of sequence between species. It may be useful to directly test the difference in viability or other functionally relevant phenotype for flies carrying different markers. Similarly, the frequency of off-targets could be investigated or documented in a bit more detail, especially if one of the major use-cases is meant for naturally derived, diverse genetic backgrounds. It is, at the moment, unclear how consistently the clones are induced for each new gRNA marker across different WT genetic backgrounds, for example, a set of DGRP genotypes, which could be highly useful information for future users.

    4. Reviewer #3 (Public review):

      Summary:

      In the manuscript by Shen, Yeung, and colleagues, the authors generate an improved and expanded Mosaic analysis by gRNA-induced crossing-over (MAGIC) toolkit for use in making mosaic clones in Drosophila. This is a clever method by which mitotic clones can be induced in dividing cells by using CRISPR/Cas9 to generate double-strand breaks at specific locations that induce crossing over at those locations. This is conceptually similar to previous mosaic methods in flies that utilized FRT sites that had been inserted near centromeres along with heat-shock inducible FLPase. The advantage of the MAGIC system is that it can be used along with chromosomes lacking FRT sites already introduced, such as those found in many deficiency collections or in EMS mutant lines. It may also be simpler to implement than FRT-based mosaic systems. There are two flavors of the MAGIC system: nMAGIC and pMAGIC. In nMAGIC, the main constituents are a transgene insertion that contains gRNAs that target DNA near the centromere, along with a fluorescent marker. In pMAGIC, the main constituents are a transgenic insertion that contains gRNAs that target DNA near the centromere, along with ubiquitous expression of GAL80. As such, nMAGIC can be used to generate clones that are not labelled, whereas pMAGIC (along with a GAL4 line and UAS-marker) can be used much like MARCM to positively label a clone of cells. This manuscript introduces MAGIC transgenic reagents that allow all 4 chromosomes to be targeted. They demonstrate its use in a variety of tissues, including with mutants not compatible with current FLP/FRT methods, and also show it works well in tissues that prove challenging for FLP/FRT mosaic analyses (such as motor neurons). They further demonstrate that it can be used to generate mosaic clones in non-melanogaster hybrid tissues. Overall, this work represents a valuable improvement to the MAGIC method that should promote even more widespread adoption of this powerful genetic technique.

      Strengths:

      (1) Improves the design of the gRNA-marker by updating the gRNA backbone and also the markers used. GAL80 now includes a DE region that reduces the perdurance of the protein and thus better labeling of pMAGIC clones. The data presented to demonstrate these improvements is rigorous and of high quality.

      (2) Introduces a toolkit that now covers all chromosome arms in Drosophila. In addition, the efficiency of 3 target different sites is characterized for each chromosome arm (e.g., 3 different gRNA-Marker combinations), which demonstrate differences in efficiency. This could be useful to titrate how many clones an experimenter might want (e.g., lower efficiency combinations might prove advantageous).

      (3) The manuscript is well written and easy to follow. The authors achieved their aims of creating and demonstrating MAGIC reagents suitable for mosaic analysis of any Drosophila chromosome arm.

      (4) The MAGIC method is a valuable addition to the Drosophila genetics toolkit, and the new reagents described in this manuscript should allow it to become more widely adopted.

      Weaknesses:

      (1) The MAGIC method might not be well known to most readers, and the manuscript could have benefited from schematics introducing the technique.

      (2) Traditional mosaic analyses using the FLP/FRT system have strongly utilized heat-shock FLPase for inducible temporal control over mitotic clones, as well as a way to titrate how many clones are induced (e.g., shorter heat shocks will induce fewer clones). This has proven highly valuable, especially for developmental studies. A heat-shock Cas9 is available, and it would have been beneficial to determine the efficiency of inducing MAGIC clones using this Cas9 source.

    5. Author response:

      Reviewing Editor Comments:

      The following are some consolidated review remarks after discussions amongst all three reviewers:

      The reviewers feel the evidence level could be raised from 'convincing' to 'compelling' if the following key (and partially shared) suggestions by the reviewers are followed adequately:

      (1) Expand labeling options for nMAGIC, which is currently just a BFP marker. This would increase the utility of the method. A far-red marker would be very helpful. Could the authors just do this for one chromosome arm and make the reagent available for others to generate other chromosome arms?

      This is a great suggestion. We will make an nMAGIC vector containing a far-red fluorescent marker and generate a 40D2 version of this nMAGIC gRNA-maker to demonstrate its utility. This vector will be available for others to make additional nMAGIC gRNA-markers.

      (2) Verify that destabilized GAL80 is potent enough to suppress GAL4. Repeat Figure 1C-E with tub-GAL80-DE-SV40.

      We will use a tub-GAL80-DE-SV40 gRNA-marker to test suppression of pxn-Gal4.

      (3) Concern about the health of the induced mitotic clones. This is an important consideration, but the reviewers were not sure what the necessary experiments would be. To gauge twin-spot clone sizes? Please address.

      We will assess the health of induced mitotic clones in wing imaginal discs. We will do this by generating twin spots with a nMAGIC gRNA-marker in wing discs and compare the sizes of the two cell populations (BFP<sup>+/+</sup> and BFP<sup>-/-</sup>) in twin spots.

      (4) Include a schematic of the MAGIC method as Figure 1 or add it to Figure 1. Many may not be familiar with the method, so to promote its adoption, the authors should clearly introduce the MAGIC method in this paper (and not rely on readers to go to previous publications). For this paper to become a MAGIC reference paper, it should be self-contained.

      We will add a diagram of the MAGIC method in the revised manuscript.

      (5) Determine the utility of using a hs-Cas9 line for temporal induction of MAGIC clones. This is a traditional method for mitotic clone induction (with hsFLP/FRTs), and its use with the MAGIC system (especially pMAGIC) could also make it more attractive, especially to label small populations of neurons born at known times. To this point, the authors could generate pMAGIC clones using hs-Cas9 for commonly used adult target neurons, such as projection neurons, central complex neurons, or mushroom body neurons. The method to label small numbers of these adult neurons is well worked out with known GAL4 lines, and demonstrating that pMAGIC could have similar results would capture the attention of many not familiar with the pMAGIC method.

      We thank the reviewers for this suggestion. We will test hs-Cas9 in inducing pMAGIC clones in one of the neuronal populations in the adult brain, as suggested by the reviewers.

      In addition, we will address all other minor concerns of the reviewers.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Plasmodium vivax can persist in the liver of infected individuals in the form of dormant hypnozoites, which cause malaria relapses and are resistant to most current antimalarial drugs. This highlights the need to develop new drugs active against hypnozoites that could be used for radical cure. Here, the authors capitalize on an in vitro culture system based on primary human hepatocytes infected with P. vivax sporozoites to screen libraries of repurposed molecules and compounds acting on epigenetic pathways. They identified a number of hits, including hydrazinophthalazine analogs. They propose that some of these compounds may act on epigenetic pathways potentially involved in parasite quiescence. To provide some support to this hypothesis, they document DNA methylation of parasite DNA based on 5-methylcytosine immunostaining, mass spectrometry, and bisulfite sequencing.

      Strengths:

      -The drug screen itself represents a huge amount of work and, given the complexity of the experimental model, is a tour de force.

      -The screening was performed in two different laboratories, with a third laboratory being involved in the confirmation of some of the hits, providing strong support that the results were reproducible.

      -The screening of repurposing libraries is highly relevant to accelerate the development of new radical cure strategies.

      We thank the reviewer for pointing out the strengths of our report.

      Weaknesses:

      The manuscript is composed of two main parts, the drug screening itself and the description of DNA methylation in Plasmodium pre-erythrocytic stages. Unfortunately, these two parts are loosely connected. First, there is no evidence that the identified hits kill hypnozoites via epigenetic mechanisms. The hit compounds almost all act on schizonts in addition to hypnozoites, therefore it is unlikely that they target quiescence-specific pathways. At least one compound, colforsin, seems to selectively act on hypnozoites, but this observation still requires confirmation. Second, while the description of DNA methylation is per se interesting, its role in quiescence is not directly addressed here. Again, this is clearly not a specific feature of hypnozoites as it is also observed in P. vivax and P. cynomolgi hepatic schizonts and in P. falciparum blood stages. Therefore, the link between DNA methylation and hypnozoite formation is unclear. In addition, DNA methylation in sporozoites may not reflect epigenetic regulation occurring in the subsequent liver stages.

      We agree our report lacks direct evidence that hydrazinophthalazines are interacting with parasite epigenetic mechanisms. We spent significant resources attempting several novel approaches to establish a direct connection, but technological advances are needed to enable such studies, which we mention in the introduction and discussion. We disagree that schizonticidal activity automatically excludes the possibility a hypnozonticidal hit is acting on quiescence-specific pathways because both hypnozoites and schizonts are under epigenetic control and these pathways are likely performing different functions in different stages. Also important is the use of the word ‘specific’ as this term could be used to indicate parasite versus host (a drug that clears a parasite infection with a safety margin), parasite-directed effect versus host-directed effect (a drug acting via an agonistic or antagonistic effect on parasite or host pathway(s), but leading to parasite death in either case), hypnozoite versus schizont, or P. vivax versus other Plasmodium species. We were careful to indicate the usage of ‘specific’ throughout the text. Given the almost-nonexistent hit rate when screening diverse small molecule libraries screening against P. vivax hypnozoites, and remarkable increase in hits when screening epigenetic inhibitors as described in this report, our data suggests epigenetic pathways are important to the regulation of hypnozoite dormancy in addition to regulation of other parasite stages, but those effects are outside the scope of this report.

      -The mode of action of the hit compounds remains unknown. In particular, it is not clear whether the drugs act on the parasite or on the host cell. Merely counting host cell nuclei to evaluate the toxicity of the compounds is probably acceptable for the screen but may not be sufficient to rule out an effect on the host cell. A more thorough characterization of the toxicity of the selected hit compounds is required.

      We agree, and mention in the results and discussion, that the effect could be mediated through host pathways. This is not unlike the 8-aminoquinolones, which are activated by host cytochromes and kill via ROS, which is a nonspecific mechanism (that is, the compound is not directly interacting with a parasite target) leading to a parasite-specific effect (the parasite cannot tolerate the ROS produced, but the host can). During screening, it is generally the case that detecting hits with direct effects on the target organism are more desirable, so hits are counterscreened for general cytotoxicity. In this report, we show an effect on the parasite in direct comparison to the effect on host primary hepatocytes in the P. vivax assay itself, and follow up on hits with general counterscreens using two mammalian cell lines using CellTiter Glo, which does not rely on nuclei counts. Some compounds did show general cytotoxic effects, but with selectivity (more potency) against P. vivax liver stages, while other hits like the hydrazinophthalazines did not show an effect against primary hepatocytes and show only weak toxicity against mammalian cells at the highest dose tested. Further studies are needed to determine if the effect is indeed host- or parasite-directed and, if hydrazinophthalazines are to be developed into marketed antimalarials, extensive safety testing would be part of the development process.

      -There is no convincing explanation for the differences observed between P. vivax and P. cynomolgi. The authors question the relevance of the simian model but the discrepancy could also be due to the P. vivax in vitro platform they used.

      Fully characterizing the chemo-sensitivity of P. vivax and P. cynomolgi liver stages is outside the scope of this report. Rather, we report tool compounds which could be used in future studies to further characterize these sister species. We also make the point that P. cynomolgi is the gold standard for in vivo antirelapse activity, but it is still a model species, not a target species, and so few experimental hypnozonticidal compounds have been reported that the predictive value of P. cynomolgi is not fully understood. We found that several of our hits were species-specific using our in vitro platforms, thus future studies are needed to ensure this predictive value.

      -Many experiments were performed only once, not only during the screen (where most compounds were apparently tested in a single well) but also in other experiments. The quality of the data would be increased with more replication.

      Due to their size, compound library screens are typically performed once, with confirmation in dose-response assays, which were repeated several times. Rhesus PK studies was performed once on three animals, which is typical. All other studies were performed at least twice and most were performed three times or more. We provide a data table showing readers the source material for all replication as well as other source data tables showing the raw data for dose-response and other assays.

      -While the extended assay (12 days versus 8 days) represents an improvement of the screen, the relevance of adding inhibitors of core cytochrome activity is less clear, as under these conditions the culture system deviates from physiological conditions.

      We agree that cytochrome inhibitors render the platform less physiologically relevant, but the goal of screening is to detect hits which could be improved upon using medicinal chemistry, including metabolic stability. Metabolic stability is better assessed using standard assays such as liver microsomes, thus our goal was to characterize the effects of test compounds on the parasite without the confounding effect of hepatic metabolism.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, inhibitors of the P. vivax liver stages are identified from the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library as well as a 773-member collection of epigenetic inhibitors. This study led to the discovery that epigenetics pathway inhibitors are selectively active against P. vivax and P. cynomolgi hypnozoites. Several inhibitors of histone post-translational modifications were found among the hits and genomic DNA methylation mapping revealed the modification on most genes. Experiments were completed to show that the level of methylation upstream of the gene (promoter or first exon) may impact gene expression. With the limited number of small molecules that act against hypnozoites, this work is critically important for future drug leads. Additionally, the authors gleaned biological insights from their molecules to advance the current understanding of essential molecular processes during this elusive parasite stage.

      Strengths:

      -This is a tremendously impactful study that assesses molecules for the ability to inhibit Plasmodium hypnozoites. The comparison of various species is especially relevant for probing biological processes and advancing drug leads.

      -The SI is wonderfully organized and includes relevant data/details. These results will inspire numerous studies beyond the current work.

      We thank the reviewer for pointing out the strengths of our report.

      Reviewer #3 (Public Review):

      Although this work represents a massive screening effort to find new drugs targeting P. vivax hypnozoites, the authors should balance their statement that they identified targetable epigenetic pathways in hypnozoites.

      -They should emphasize the potential role of the host cell in the presentation of the results and the discussion, as it is known that other pathogens modify the epigenome of the host cell (i.e. toxoplasma, HIV) to prevent cell division. Also, hydrazinophtalazines target multiple pathways (notably modulation of calcium flux) and have been shown to inhibit DNA-methyl transferase 1 which is lacking in Plasmodium.

      -In a drug repurposing approach, the parasite target might also be different than the human target.

      -The authors state that host-cell apoptotic pathways are downregulated in P. vivax infected cells (p. 5 line 162). Maybe the HDAC inhibitors and DNA-methyltransferase inhibitors are reactivating these pathways, leading to parasite death, rather than targeting parasites directly.

      We agree caution must be taken as we did not directly confirm the mechanism of our hits. Many follow up studies will be needed to do so. We do point out in the discussion that the mechanism of hits could be host-directed. We agree with the notion that some of these hits could be affecting parasitized host cell pathways, which lead to death of the parasitized cell, with the parasite being collateral damage, yet such a mechanism could lead to a safe and effective novel antimalarial.

      It would make the interpretation of the results easier if the authors used EC50 in µM rather than pEC50 in tables and main text. It is easy to calculate when it is a single-digit number but more complicated with multiple digits.

      We apologize for the atypical presentation of potency data. However, there is growing concern in drug discovery when Standard Deviation is applied to Potency data because Standard Deviation is a linear calculation and Potency is a log effect, making the math incompatible. We understand thousands of papers are reported every year using this mathematically incorrect method, making our presentation of these data less familiar. However, we define pEC50 in its use in the text and table legends and hope to increase its use in the broader scientific community.

      Authors mention hypnozoite-specific effects but in most cases, compounds are as potent on hypnozoite and schizonts. They should rather use "liver stage specific" to refer to increased activity against hypnozoites and schizonts compared to the host cell. The same comment applies to line 351 when referring to MMV019721. Following the same idea, it is a bit far-fetched to call MMV019721 "specific" when the highest concentration tested for cytotoxicity is less than twice the EC50 obtained against hypnozoites and schizonts.

      We have reviewed and revised statements in the manuscript to ensure the effect we are describing is accurate in terms of parasite versus parasite form.

      Page 5 lines 187-189, the authors state "...hydrazinophtalazines were inactive when tested against P. berghei liver schizonts and P. falciparum asexual blood stages, suggesting that hypnozoite quiescence may be biologically distinct from developing schizonts". The data provided in Figure 1B show that these hydrazinophtalazines are as potent in P. vivax schizonts than in P. vivax hypnozoites, so the distinct activity seems to be Plasmodium species specific and/or host-cell specific (primary human hepatocytes rather than cell lines for P. berghei) rather than hypnozoite vs schizont specific.

      We agree the effect of hydrazinophtalazine could be more species specific than stage specific, but the context of our comment has to do with current methods in antimalarial discovery and development. Given the biological uniqueness of the various Plasmodium species and stages, any hypnozonticidal hit may or may not have pan-species or pan-stage activity; our goal was to characterize this. Regardless of the mechanism, we found it interesting that the hydrazinophtalazines kill P. vivax hypnozoites, but not P. cynomolgi hypnozoites nor other species and stages used in antimalarial drug development. This result makes the point that hypnozoite-focused assays may be required to detect and develop hypnozonticidal hits, regardless of what other species or stages they may or may not act on.

      Why choose to focus on cadralazine if abandoned due to side effects? Also, why test the pharmacokinetics in monkeys? As it was a marketed drug, were no data available in humans?

      Cadralazine was found more potent than hydralazine and PK data was available from humans, thus dose prediction calculations showed an efficacious dose was more achievable with cadralazine than hydralazine. Side effects are often dependent on dose and regimen, which are very likely to be much different for treating malaria versus hypertension. Thus, the potential side effects of cadralazine if it was to be used as an antimalarial are simply unknown and are not disqualifying at this step. The PK study was done in Rhesus macaques so we could calculate the dose needed to achieve coverage of EC90 during a planned follow up in a Rhesus-P. cynomolgi relapse model. However, this planned in vivo efficacy study was not justified once we concurrently discovered cadralazine was inactive on P. cynomolgi in vitro.

      In the counterscreen mentioned on page 6, the authors should mention that the activity of poziotinib in P. berghei and P. cynomolgi is equivalent to cell toxicity, so likely not due to parasite specificity.

      Poziotinib shows activity against mammalian cell lines but not against the primary hepatocyte cultures supporting dose-response assays against P. vivax liver forms, which do not replicate. Thus, poziotinib appears selective in the liver stage assay but also may have a much more potent effect in continuously replicating cell lines.

      To improve the clarity and flow of the manuscript, could the authors make a recapitulative table/figure for all the data obtained for poziotinib and hydrazinophtalazines in the different assays (8-days vs 12-days) and laboratory settings rather than separate tables in main and supplementary figures. Maybe also reorder the results section notably moving the 12-day assay before the DNA methylation part.

      We apologize for the large amount of data presented but believe we are presenting it in the clearest way possible. All raw data is available if readers wish to re-analyze or re-organize our findings.

      The isobologram plot shows an additive effect rather than a synergistic effect between cadralazine and 5-azacytidine, please modify the paragraph title accordingly. Please put the same axis scale for both fractional EC50 in the isobologram graph (Figure 2A).

      The isobologram shows the effect approaching synergy at some combinations. The isobologram was rendered using standard methods. The raw data is available if readers wish to re-analyze it.

      Concerning the immunofluorescence detection of 5mC and 5hmC, the authors should be careful with their conclusions. The Hoechst signal of the parasites is indistinguishable because of the high signal given by the hepatocyte nuclei. The signal obtained with the anti-5hmC in hepatocyte nuclei is higher than with the anti-5mC, thus if a low signal is obtained in hypnozoites and schizonts, it might be difficult to dissociate from the background. In blood stages (Figure S18), the best to obtain a good signal is to lyse the red blood cell using saponin, before fixation and HCl treatment.

      We spent many hours using high resolution imaging of hundreds of parasites trying to detect clear 5hmC signal in both hypnozoites and schizonts but never saw a clearly positive signal. Indeed, the host signal can be confounding, thus we felt the most clear and unbiased way to quantify and present these data was using HCI. We appreciate the suggestion to lyse cells first for detecting in the blood stage.

      To conclude that 5mC marks are the predominate DNA methylation mark in both P. falciparum and P. vivax, authors should also mention that they compare different stages of the life cycle, that might have different methylation levels.

      We do mention at the start of this section our reasoning that quantifying marks in sporozoites was technically achievable, but not in a mixed culture of parasites and hepatocytes. We agree they could have different marks at these different stages.

      Also, the authors conclude that "[...] 5mC is present at low level in P. vivax and P. cynomolgi sporozoites and could control liver stage development and hypnozoite quiescence". Based on the data shown here, nothing, except presence the of 5mC marks, supports that DNA methylation could be implicated in liver stage development or hypnozoite quiescence.

      We clearly show sporozoite and liver stage DNA is methylated, which implicates this fundamental cell function exists in P. vivax liver stages, and that compounds with characterized activity against DNMT are active on liver stages. We acknowledge we were unable to show a direct effect and use the qualifier ‘could’ for this very reason.

      How many DNA-methyltransferase inhibitors were present in the epigenetic library? Out of those, none were identified as hits, maybe the hydrazinophtalazines effect is not linked to DNMT inhibition but another target pathway of these molecules like calcium transport?

      We supply the complete list of inhibitors in the epigenetic library as a supplemental file, the library contained 773 compounds. Hydrazinophtalazines were not included in the library, but several other DNA methyltransferase inhibitors were inactive. It is possible that hydrazinophtalazine activity is linked to other mechanisms but the inactivity of other DNMT inhibitors does not preclude the possibility hydrazinophtalazines are acting through DNMT.

      The authors state (line 344): "These results corroborate our hypothesis that epigenetic pathways regulate hypnozoites". This conclusion should be changed to "[...] that epigenetic pathways are involved in P. vivax liver stage survival" because:

      -The epigenetic inhibitors described here are as active on hypnozoite than liver schizonts.

      -Again, we cannot rule out that the host cell plays a role in this effect and that the compound may not act directly on the parasite.

      The same comment applies to the quote in lines 394 to 396. There is no proof in the results presented here that DNA methylation plays any role in the effect of hydrazinophtalazines in the anti-plasmodial activity obtained in the assay.

      We maintain that we use words throughout the text that express uncertainty about the mechanisms involved. It is important to point out that, prior to this paper, the number of hypnozonticidal hits was incredibly low and this field is just emerging. The fundamental role of epigenetic mechanisms is regulation of gene expression. Finding several hypnozonticial hits when screening epigenetic libraries implies epigenetic pathways are important for hypnozoite survival. We intentionally do not specify exact mechanisms or if they are host or parasite pathways. Host-parasite interactions in the liver stage are incredibly difficult to resolve and are outside the scope of this report. Furthermore, this statement is not exclusive to schizonts, but since screens of diversity sets against schizonts result in a much higher hit rate, the focus of this comment is unearthing rare hypnozonticidal hits.

    1. eLife Assessment

      This study provides valuable insights into human valve development by integrating snRNA-seq and spatial transcriptomics to characterize cell populations and regulatory programs in the embryonic and fetal outflow tract. The methods, data, and analyses are solid overall, but with some weaknesses that can be strengthened. The findings will be of interest to those who work in the field of heart development and congenital heart disease.

    2. Reviewer #1 (Public review):

      Summary:

      The study by Bobola et al reports single-nucleus expression analysis with some supporting spatial expression data of human embryonic and fetal cardiac outflow tracts compared to adult aortic valves. The transcription factor GATA6 is identified as a top regulator of one of the mesenchymal subpopulations, and potential interacting factors and downstream target genes are identified bioinformatically. Additional bioinformatic tools are used to describe cell lineage relationships and trajectories for developmental and adult cardiac cell types.

      Strengths:

      The studies of human tissue and extensive gene expression data will be valuable to the field.

      Weaknesses:

      (1) The expression data are largely confirmatory of previous studies in humans and mice. Thus, it is not clear what novel biological insights are being reported. While there is some novelty and impact in using human tissue, there are extensive existing publications and data sets in this area.

      (2) Major conclusions regarding spatial localization, differential gene expression, or cell lineage relationships based on bioinformatic data are not validated in the context of intact tissues.

      (3) The conclusions regarding lineage relationships are based on common gene expression in the current study and may not reflect cellular origins or lineage relationships that have previously been reported in genetic mouse models.

      (4) An additional limitation is the exclusive examination of adult aortic valve leaflets that represent only a subset of outflow tract derivatives in the mature heart. The conclusion, as stated in the title regarding adult derivatives of the outflow tract, is not accurate based on the limited adult tissue evaluated, exclusive bioinformatic approach, and lack of experimental lineage analysis of cell origins.

    3. Reviewer #2 (Public review):

      Summary:

      The manuscript by Leshem et al. presents a transcriptomic analysis of the developing human outflow tract (OFT) at embryonic and fetal stages using snRNAseq and spatial transcriptomics. Additionally, the authors analyze transcriptomic data from the adult aortic valve to compare embryonic and adult cell populations, aiming to identify persistent embryonic transcriptional signatures in adult cells. A total of 15 clusters were identified from the embryonic and fetal OFT samples, including three mesenchymal and four endothelial clusters. Using SCENIC analysis on the embryonic snRNAseq data, the authors identified GATA6 as a key regulator of valve precursor cells. Spatial transcriptomic analysis of four fetal OFT sections further revealed the spatial distribution of mesenchymal nuclei, smooth muscle cells, and valvular interstitial cells. Trajectory analysis identified two distinct developmental origins of fetal mesenchymal cells: the neural crest and the second heart field. Finally, the authors used snRNAseq data from the adult aortic valve to propose that embryonic transcriptional signatures persist in a subset of adult cells.

      Strengths:

      (1) The study offers a rich and detailed dataset, combining snRNA-seq and spatial transcriptomics in human embryonic and fetal OFT, which are challenging to obtain.

      (2) The use of SCENIC and trajectory analysis adds mechanistic insight into cell lineage and regulatory programs during valve development.

      (3) This study confirms GATA6 as a key regulator of valve precursor cells.

      (4) Comparison between embryonic/fetal and adult datasets represents a novel attempt to trace persistence of developmental transcriptional programs.

      Weaknesses:

      (1) A major limitation is the lack of experimental validation to support key conclusions, particularly the claim of persistent embryonic transcriptional signatures in adult cells.

      (2) The manuscript would benefit from a clearer discussion of how these results advance beyond previous studies in human heart and valve development.

      (3) The comparison between embryonic and adult data is interesting, but would be more convincing with additional evidence supporting the proposed persistence of embryonic transcriptional signatures in adult cells.

    4. Reviewer #3 (Public review):

      Leshem et al have generated a transcriptional cell atlas of the human outflow tract at two developmental timepoints and its adult valvular derivatives. This carefully performed study provides a useful resource for the study of known genes implicated in outflow tract defects and potentially also for discovering new disease genes. The authors reveal neural crest and mesodermal contributions to different outflow tract components and show that GATA6, known to play a role in arterial valve development, controls a set of genes expressed in endocardium-derived cells during valve development. Interestingly, the results suggest lineage persistence of expression of certain genes through to the adult timepoint, a main new finding of this study.

      The following points should be addressed to reinforce the conclusions and emphasize the novel features of this study.

      (1) It would be helpful to clarify how these new findings confirm or diverge from what is known from analysis of neural crest and mesodermal lineage contributions to different cell populations in the mouse heart. Did the authors identify any human-specific populations of cells, such as the LGR5 population reported by Sahara et al?

      (2) The authors should clarify in the introduction and results that they consider the endocardium to be on the SHF trajectory as indicated in Figure S4C. Please add a reference for this point.

      (3) The GATA6 results are interesting and support this experimental approach. The paper would be reinforced if the authors could provide any functional validation (in addition to their GATA6 genomic occupancy data) that the designated target genes are regulated by GATA6. This might involve looking at mutant mouse embryos or cultured cells. Do the authors consider that GATA6 may regulate the endocardial to mesenchymal transition during the early stages of valve development? Or the valve interstitial cell versus fibroblast fate choice?

      (4) Do the new findings reveal whether human valves have a direct SHF to VIC trajectory (ie, without transiting through endocardium) as has been recently shown in the murine non-coronary valve leaflet? Relevant to this point, Figure 5E appears to show contributions to a single adult aortic valve leaflet - this should be explained, or corrected.

    5. Author response:

      We thank the editors and reviewers for the time and effort they have invested in evaluating our manuscript. We appreciate the constructive feedback, which highlights both the strengths of the work and areas for improvement. We will carefully consider all comments and, in the coming months, revise the manuscript to incorporate additional data, address the concerns regarding limited referencing, and provide further clarification on the points raised.

    1. eLife Assessment

      This manuscript reports important findings that have theoretical or practical implications beyond a single subfield. However, despite the combination of numerous analytical tools established and applied in the study, the work has substantial experimental limitations leading to incomplete evidence, indicating that the conclusions may be an over-interpretation of the findings.

    2. Reviewer #1 (Public review):

      Summary:

      In the study by Wang et al. entitled "Dissecting organoid-bacteria interaction highlights decreased contractile force as a key factor for heart infection", a simple cardiac organoid (CO) model was established, by combining a heterologous mixture of patient-specific human induced pluripotent stem cells (hiPSC)-derived cardiomyocytes (CMs) in combination with primary HUVECs (Human Umbilical Vein Endothelial Cells) and human mesenchymal stem cells (MSCs, representing stromal cells). This model was applied for investigating the interplay of COs' bacterial infections in vitro, aiming at revealing pathological mechanisms of bacterial infections of the heart in vivo, which may induce myocarditis and consequently heart failure in affected patients.

      Strengths:

      The paper is systematic, well written, and easy to follow.

      Based on their results, the authors state that: "In this study, by developing quantitative tools for analyzing bacterial-cardiac organoid interactions in a 3D, dynamic, clinically relevant setting, we discovered the significant role of cardiac contractility in preventing bacterial infection."

      In principle, the idea of establishing a simple yet functionally and physiologically relevant in vitro model and relevant analytical tools for enabling the study of complex pathological mechanisms of cardiovascular diseases is intriguing.

      Weaknesses:

      However, despite the combination of numerous analytical tools established and applied in the study, the work has substantial experimental limitations, indicating that the bold conclusions may represent a misinterpretation or overinterpretation of the findings.

      Key limitations and questions:

      (1) It seems that iPSCs from only one patient ("dilated cardiomyopathy (DCM) cells were derived from a 47-year-old Asian male with an LMNA gene mutation") were used in the study. Moreover, it seems that only one iPSC-line/clone from that DCM patient was used and compared to a single control iPSC line from a "healthy donor". Therefore, despite the different assays and experimental controls used in the study, there is a high risk that the observed phenomena reflect iPSC-line-/ clone-dependent effects, rather than revealing general pathophysiologic mechanisms. Thus, key experiments must be shown by cardiomyocytes/ cardiac organoids derived from additional independent iPSC-lines representing different patients and other non-diseased control lines as well. Moreover, it is established good experimental practice in the iPS cell field to generate and include isogenic iPSC controls i.e. iPSC lines of the same genetic background but with corrections of the hypothesised gene mutation underlying the respective e.g., cardiovascular disease.

      (2) In Figure 1 (A) immunohistochemical staining for cardiomyocytes for the cardiac marker Troponin is shown, apparently indicating successful cardiomyogenic differentiation of the applied hiPSC lines. In supplemental Figure S1, a flow cytometry analysis specific to cTnT is shown to reveal the CMs content resulting from the monolayer differentiation of respective iPSC lines. Already, the exemplified plots indicate that the CMs' content/ purity for DCM-CMs was notably lower compared to healthy cardiomyocytes (CM; control). This is an important issue, since the non-CMs ("contaminating bystander cells") may have a substantial effect on the functional (including contractile) properties of the COs.

      Interestingly, based on the method description, it seems that COs were generated from cryopreserved iPSC-CMs and iPSC-DCMs, including intermediate seeding and culture on Matrigel before COs formation. However, it remains unclear whether the CMs FACS analysis, which is apparently: "Representative FACS plots for analysis of the cell types in DCM monolayer culture after 33 days of differentiation" shows a CMs purity relevant to CO formation, or something different.

      The lineage phenotype of non-CMs in respective differentiations should also be clarified. Moreover, it should be noted in the results that the CMs content in COs is lower than the 6:2:2 (CM:ECs:MSC) ratio indicated by the authors, since the CMs purity is not 100%, and is particularly reduced in the iPSC-DCMs.

      Finally, to investigate the important latter questions of the "real CMs content" in COs, systematic technologies should be applied to quantify the lineage composition in COs (e.g. by IF staining for the 3 lineages plus DAPI, followed by COs clearance, confocal microscopy "3D stags" and automated, ImageJ-based quantitative cell counts for total cell number definition (see e.g. doi: 10.1038/s41596-024-00976-2) per CO, and quantification of respective lineage content as well.

      These questions are of key importance since the presence of non-CMs and their phenotype has profound consequences on the cardiac organoid model, its contractile/ biophysical properties, and, in general, on models' sensitivity to bacterial infections as well.

      (3) Figure 2: (F) Why is this figure (Confocal Observations) showing only healthy cardiac organoids (HCOs) but not DCM-COs?

      The overall quality of these pictures is poor and not informative regarding the structural identity and tissue composition of the COs, which actually is an important topic in the frame of the paper, as the 3D structure and tissue composition - and differences between HCOs and DCM-COs - are of key importance to their contractile properties.

      Moreover, the expective overlay of the cardiac markers alpha-actinin and MHC is not obvious from Figure 2F (see also comments on Figure 7, below).

      In Figure 2E: COs at later stages/days should be shown, in particular at that stage, which was used for the functional assays i.e., bacteria infections and contraction pattern monitoring.

      (4) Figure 7 (A) (B) - In the IF sections, it seems that there is no overlay between the expression of the cardiac marker MHC (seems to be expressed in the centre of COs only) and the cardiac markers alpha-actinin (which seems to be unexpectedly expressed in all cells on the sections) and Troponin (which seems to be vocally expressed on the outside, excluding the area of MHC expression).

      (F) Quantification of the mean area of gene expression, e.g., for MHC indicates a larger area after MHC expression; this seems to entirely contradict the IF pictures (in Figures 7 A-D) of MHC expression before and after infection. This contraction is deemed very critical to this reviewer as it may indicate that the IF staining, data analysis, and/or data interpretation in this part of the manuscript is poor, misleading, or simply wrong.

      (5) Overall, from the perspective of this reviewer, the CO-derived results do not reflect in a meaningful way the contractile and hydrodynamic conditions in the mouse heart or the human heart. Thus, it seems that the conclusions may rather represent a hypothesised outcome bias.

    3. Reviewer #2 (Public review):

      Summary:

      The authors tried deconvoluting, for the first time, the effect of various components of heart contraction on initial bacterial adhesion, which increases the risk of infective endocarditis. The proposed organoid platform might be used to develop and test novel therapeutic agents for infective endocarditis.

      Strengths:

      (1) Use of a broad range of methods: finite element methods, -omics, particle tracking, animal experiments to investigate the connections between contractility and infective endocarditis.

      (2) Detailed procedure and supportive information, which will allow other groups to replicate the results and extend the application of the proposed organoid platform.

      (3) Despite the complexity of the work reported, the manuscript is rather readable and understandable by non-specialists.

      Weaknesses:

      There is a minor issue with some of the vocabulary (e.g., magnificent amount of bacteria).

    1. eLife Assessment

      This fundamental study provides new insights into the plasticity mechanisms underlying the formation of spatial maps in the hippocampus. Supported by a large and comprehensive dataset, the evidence is convincing. This study will be of interest to neuroscientists focusing on spatial navigation, learning, and memory.

    2. Reviewer #1 (Public review):

      Summary:

      The authors aimed to investigate the cellular mechanisms underlying place field formation (PFF) in hippocampal CA1 pyramidal cells by performing in vivo two-photon calcium imaging in head-restrained mice navigating a virtual environment. Specifically, they sought to determine whether BTSP-like (behavioral time scale synaptic plasticity) events, characterized by large calcium transients, are the primary mechanism driving PFFs or if other mechanisms also play a significant role. Through their extensive imaging dataset, the authors found that while BTSP-like events are prevalent, a substantial fraction of new place fields are formed via non-BTSP-like mechanisms. They further observed that large calcium transients, often associated with BTSP-like events, are not sufficient to induce new place fields, indicating the presence of additional regulatory factors (possibly local dendritic spikes).

      Strengths

      The study makes use of a robust and extensive dataset collected from 163 imaging sessions across 45 mice, providing a comprehensive examination of CA1 place cell activity during navigation in both familiar and novel virtual environments. The use of two-photon calcium imaging allows the authors to observe the detailed dynamics of neuronal activity and calcium transients, offering insights into the differences between BTSP-like and non-BTSP-like PFF events. The study's ability to distinguish between these two mechanisms and analyze their prevalence under different conditions is a key strength, as it provides a nuanced understanding of how place fields are formed and maintained. The paper supports the idea that BTSP is not the only driving fore behind PFF, and other mechanisms are likely sufficient to drive PFF, and BTSP events may also be insufficient to drive PFF in some cases. The longer-than-usual virtual track used in the experiment allowed place cells to express multiple place fields, adding a valuable dimension to the dataset that is typically lacking in similar studies. Additionally, the authors took a conservative approach in classifying PFF events, ensuring that their findings were not confounded by noise or ambiguous activity.

      Weaknesses

      The stand out weakness of the paper is the lack of direct measures of BTSP events. Without direct confirmation that large calcium transients correspond to actual BTSP events (including associated complex spikes and calcium plateau potentials), concluding that BTSP is not necessary or sufficient for PFF formation is speculative (although I do believe it).

    3. Reviewer #2 (Public review):

      Summary:

      The authors of this manuscript aim to investigate the formation of place fields (PFs) in hippocampal CA1 pyramidal cells. They focus on the role of behavioral time scale synaptic plasticity (BTSP), a mechanism proposed to be crucial for the formation of new PFs. Using in vivo two-photon calcium imaging in head-restrained mice navigating virtual environments, employing a classification method based on calcium activity to categorize the formation of place cells' place fields into BTSP, non-BTSP-like, and investigated their properties.

      Strengths:

      This work shows that place fields formation could induced by both BSTP and non-BSTP events, and it also provided a new and solid method to classify BTSP and non-BTSP place field formation using calcium image to the field. This work offers novel knowledge and new methods and factual evidence for other researchers in the field.

      The method enabled the authors to reveal that while many PFs are formed by BTSP-like events, a significant number of PFs emerge with calcium dynamics that do not match BTSP characteristics, suggesting a diversity of mechanisms underlying PF formation. The characteristics of place fields under the first two categories are comprehensively described, including aspects such as formation timing, quantity, and width.

      Weaknesses:

      The authors have addressed the weaknesses in the revised version.

    4. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Sumegi et al. use calcium imaging in head-fixed mice to test whether new place fields tend to emerge due to events that resemble behavioral time scale plasticity (BTSP) or other mechanisms. An impressive dataset was amassed (163 sessions from 45 mice with 500-1000 neurons per sample) to study spontaneous emergence of new place fields in area CA1 that had the signature of BTSP. The authors observed that place fields could emerge due to BTSP and non-BTSP-like mechanisms. Interestingly, when non-BTSP mechanisms seemed to generate a place field, this tended to occur on a trial with a spontaneous reset in neural coding (a remapping event). Novelty seemed to upregulate non-BTSP events relative to BTSP events. Finally, large calcium transients (presumed plateau potentials) were not sufficient to generate a place field.

      Strengths:

      I found this manuscript to be exceptionally well written, well powered, and timely given the outstanding debate and confusion surrounding whether all place fields must arise from BTSP event. Working at the same institute, Albert Lee (e.g. Epszstein et al., 2011 - which should be cited) and Jeff Magee (e.g. Bittner et al., 2017) showed contradictory results for how place fields arise. These accounts have not fully been put toe-to-toe and reconciled in the literature. This manuscript addresses this gap and shows that both accounts are correct - place fields can emerge due to a pre-existing map and due to BTSP.

      Weaknesses:

      I find only three significant areas for improvement in the present study:

      First, can it be concluded that non-BTSP events occur exclusively due to a global remapping event, as stated in the manuscript "these PFF surges included a high fraction of both non-BTSP- and BTSP-like PFF events, and were associated with global remapping of the CA1 representation"? Global remapping has a precise definition that involves quantifying the stability of all place fields recorded. Without a color scale bar in Figure 3D (which should be added), we cannot know whether the overall representations were independent before and after the spontaneous reset. It would be good to know if some neurons are able to maintain place coding (more often than expected by chance), suggestive of a partial-remapping phenomenon.

      Second, BTSP has a flip side that involves weakening of existing place fields when a novel field emerges. Was this observed in the present study? Presumably place fields can disappear due to this bidirectional-BTSP or due to global remapping. For a full comparison of the two phenomena, the disappearance of place fields must also be assessed.

      Finally, it would be good to know if place fields differ according to how they are born. For example, are there differences in reliability, width, peak rate, out of field firing, etc for those that arise due BTSP vs non-BTSP.

      Comments on revisions:

      The authors have mostly addressed my feedback. Compelling evidence for a fundamental observation.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors aimed to investigate the cellular mechanisms underlying place field formation (PFF) in hippocampal CA1 pyramidal cells by performing in vivo two-photon calcium imaging in head-restrained mice navigating a virtual environment. Specifically, they sought to determine whether BTSP-like (behavioral time scale synaptic plasticity) events, characterized by large calcium transients, are the primary mechanism driving PFFs or if other mechanisms also play a significant role. Through their extensive imaging dataset, the authors found that while BTSP-like events are prevalent, a substantial fraction of new place fields are formed via non-BTSP-like mechanisms. They further observed that large calcium transients, often associated with BTSP-like events, are not sufficient to induce new place fields, indicating the presence of additional regulatory factors (possibly local dendritic spikes).

      Strengths

      The study makes use of a robust and extensive dataset collected from 163 imaging sessions across 45 mice, providing a comprehensive examination of CA1 place-cell activity during navigation in both familiar and novel virtual environments. The use of two-photon calcium imaging allows the authors to observe the detailed dynamics of neuronal activity and calcium transients, offering insights into the differences between BTSP-like and non-BTSP-like PFF events. The study's ability to distinguish between these two mechanisms and analyze their prevalence under different conditions is a key strength, as it provides a nuanced understanding of how place fields are formed and maintained. The paper supports the idea that BTSP is not the only driving force behind PFF, and other mechanisms are likely sufficient to drive PFF, and BTSP events may also be insufficient to drive PFF in some cases. The longer-than-usual virtual track used in the experiment allowed place cells to express multiple place fields, adding a valuable dimension to the dataset that is typically lacking in similar studies. Additionally, the authors took a conservative approach in classifying PFF events, ensuring that their findings were not confounded by noise or ambiguous activity.

      Weaknesses

      Despite the impressive dataset, there are several methodological and interpretational concerns that limit the impact of the findings. Firstly, the virtual environment appears to be poorly enriched, relying mainly on wall patterns for visual cues, which raises questions about the generalizability of the results to more enriched environments. Prior studies have shown that environmental enrichment can significantly influence spatial coding, and it would be important to determine how a more immersive VR environment might alter the observed PFF dynamics. Secondly, the study relies on deconvolution methods in some cases to infer spiking activity from calcium signals without in vivo ground truth validation. This introduces potential inaccuracies, as deconvolution is an estimate rather than a direct measure of spiking, and any conclusions drawn from these inferred signals should be interpreted with caution. Thirdly, the figures would benefit from clearer statistical annotations and visual enhancements. For example, several plots lack indicators of statistical significance, making it difficult for readers to assess the robustness of the findings. Furthermore, the use of bar plots without displaying underlying data distributions obscures variability, which could be better visualized with violin plots or individual data points. The manuscript would also benefit from a more explicit breakdown of the proportion of place fields categorized as BTSP-like versus non-BTSP-like, along with clearer references to figures throughout the results section. Lastly, the authors' interpretation of their data, particularly regarding the sufficiency of large calcium transients for PFF induction, needs to be more cautious. Without direct confirmation that these transients correspond to actual BTSP events (including associated complex spikes and calcium plateau potentials), concluding that BTSP is not necessary or sufficient for PFF formation is speculative.

      Reviewer #2 (Public review):

      Summary:

      The authors of this manuscript aim to investigate the formation of place fields (PFs) in hippocampal CA1 pyramidal cells. They focus on the role of behavioral time scale synaptic plasticity (BTSP), a mechanism proposed to be crucial for the formation of new PFs. Using in vivo two-photon calcium imaging in head-restrained mice navigating virtual environments, employing a classification method based on calcium activity to categorize the formation of place cells' place fields into BTSP, non-BTSP-like, and investigated their properties.

      Strengths:

      A new method to use calcium imaging to separate BTSP and non-BTSP place field formation. This work offers new methods and factual evidence for other researchers in the field.

      The method enabled the authors to reveal that while many PFs are formed by BTSP-like events, a significant number of PFs emerge with calcium dynamics that do not match BTSP characteristics, suggesting a diversity of mechanisms underlying PF formation. The characteristics of place fields under the first two categories are comprehensively described, including aspects such as formation timing, quantity, and width.

      Weaknesses:

      There are some issues about data and statistics that need to be addressed before these research findings can be considered as rigorous conclusions.

      While the authors mentioned 3 features of PF generated by BTSP during calcium imaging in the Introduction, the classification method used features 1 and 2. The confirmation by feature 3 in its current form is important but not strong enough.

      Some key data is missing such as the excluded PFs, the BTSP/non-BTSP of each animal, etc

      Impact:

      This work is likely to provide a new method to classify BTSP and non-BTSP place field formation using calsium image to the field.

      Reviewer #3 (Public review):

      Summary:

      In this manuscript, Sumegi et al. use calcium imaging in head-fixed mice to test whether new place fields tend to emerge due to events that resemble behavioral time scale plasticity (BTSP) or other mechanisms. An impressive dataset was amassed (163 sessions from 45 mice with 500-1000 neurons per sample) to study the spontaneous emergence of new place fields in area CA1 that had the signature of BTSP. The authors observed that place fields could emerge due to BTSP and non-BTSP-like mechanisms. Interestingly, when non-BTSP mechanisms seemed to generate a place field, this tended to occur on a trial with a spontaneous reset in neural coding (a remapping event). Novelty seemed to upregulate non-BTSP events relative to BTSP events. Finally, large calcium transients (presumed plateau potentials) were not sufficient to generate a place field.

      Strengths:

      I found this manuscript to be exceptionally well-written, well-powered, and timely given the outstanding debate and confusion surrounding whether all place fields must arise from BTSP event. Working at the same institute, Albert Lee (e.g. Epszstein et al., 2011 - which should be cited) and Jeff Magee (e.g. Bittner et al., 2017) showed contradictory results for how place fields arise. These accounts have not fully been put toe-to-toe and reconciled in the literature. This manuscript addresses this gap and shows that both accounts are correct - place fields can emerge due to a pre-existing map and due to BTSP.

      We thank the Reviewer for his/her appreciation of the importance of our study. We have included the additional reference.

      Weaknesses:

      I find only three significant areas for improvement in the present study:

      First, can it be concluded that non-BTSP events occur exclusively due to a global remapping event, as stated in the manuscript "these PFF surges included a high fraction of both non-BTSP- and BTSP-like PFF events, and were associated with global remapping of the CA1 representation"? Global remapping has a precise definition that involves quantifying the stability of all place fields recorded. Without a color scale bar in Figure 3D (which should be added), we cannot know whether the overall representations were independent before and after the spontaneous reset. It would be good to know if some neurons are able to maintain place coding (more often than expected by chance), suggestive of a partial-remapping phenomenon.

      We have performed the analysis suggested by the Reviewer and determined what fraction of CA1PCs retained its original tuning property after the representation switch. We found that the remapping was essentially global, as only a small fraction (5.4%) of CA1PCs retained their pre-switch tuning curve after the switch. This is now described in the Results.

      We now state in the figure legend for the former Figure 3D (now Figure 3F) that the color scale applies to all subpanels.

      We would like to note that we do not conclude that non-BTSP events occur exclusively during global remapping – we have found a sizable fraction of PFF by non-BTSP mechanism also in the familiar environment with no signs of change in the population representation. We agree nonetheless that PFF is dominated by BTSP under these conditions, whereas the contribution of non-BTSP is larger during global remapping events.

      Second, BTSP has a flip side that involves the weakening of existing place fields when a novel field emerges. Was this observed in the present study? Presumably place fields can disappear due to this bidirectional BTSP or due to global remapping. For a full comparison of the two phenomena, the disappearance of place fields must also be assessed.

      In this study we focused on the birth of new PFs – yet, PFs not only form but also disappear constantly. The factors driving PF weakening are even less explored and understood than those driving PF birth. In fact, we observed (as illustrated by several examples in our MS) that many PFs weaken, or disappear completely during the course of an imaging session. These effects are sometimes accompanied by a new PFF event elsewhere (e.g. Figure 2 – figure supplement 2E bottom), whereas in other cases they are not (e.g. Figure 5A, middle). Similarly, some BTSP events seem to coincide with disappearance of another PF, but others are not (e.g. Figure 2A bottom, first PF along the track; Figure 3 – figure supplement 1A left, first PF). The picture is further complicated in the case of global remapping events (i.e. representation switches, Figure 3 – figure supplement 2B) that, by definition, include both new PFF and PF disappearance. We feel that exploration of the complex mechanisms at play in PF disappearance is outside the scope of the current study, but could be the subject of an interesting future investigation.

      Finally, it would be good to know if place fields differ according to how they are born. For example, are there differences in reliability, width, peak rate, out-of-field firing, etc for those that arise due to BTSP vs non-BTSP.

      We have analyzed several properties of the PFs and found no significant difference in either their width (BTSP: 46.4 ± 24.4 cm; non-BTSP: 50.4 ± 32.5 cm, p = 0.28) or peak rates (BTSP: 19.0 ± 14.7 a.u./s; non-BTSP: 21.4 ± 16.8 a.u./s, p = 0.27) or the out-of-field firing rates (BTSP: 0.64 ± 0.68 a.u./s; non-BTSP: 0.83 ± 1.25 a.u./s, p = 0.09, all unpaired t-test). We have included these data into the Results section.

      Reviewer #1 (Recommendations for the authors):

      Consider adding additional visual cues or environmental elements to the virtual reality (VR) setup to create a more enriched and immersive environment. Collect data from a couple of mice in the enriched environment and compare the PFF dynamics to the original environment. This would help determine whether the findings on PFF dynamics hold in a setting where spatial coding may be more robust. Including floor cues, distal visual markers, or varying textures might provide a more comprehensive understanding of the factors influencing BTSP-like and non-BTSP-like events.

      We thank the Reviewer for her/his suggestion of analyzing data obtained from a more enriched VR environment compared to the one we used in our study. We have now included data obtained in a profoundly different VR environment, which did not have sparse dominant visual landmarks, but the entire wall was covered with a rich pattern with different shapes of different colors. Our data from 11 imaging sessions from 4 mice revealed BTSP- and non-BTSP-like PFF events with approximately the same ratio to that found in our regular maze. These results are described in the Results section and are presented in a new supplementary figure (Figure 2 – figure supplement 2). 

      Wherever deconvolved spikes were used for analysis, provide a comparison of results obtained directly from the GCaMP ΔF/F signals versus those derived from the deconvolved spiking data. This could illustrate any differences and help readers understand the limitations and reliability of the inference method.

      We have adopted a currently widely accepted method in the field to infer spikes from fluorescent traces using the Suite2p software package. All of our analyses were then performed on the inferred spikes. To address the concerns of the Reviewer, we analyzed the relationship between the peak [Ca<sup>2+</sup>] transients and inferred spike activity (new Figure 3 – figure supplement 1C-E). Our results clearly demonstrate a robust, highly significant correlation between these measures at the level of individual cells (new Figure 3 – figure supplement 1D) and the Spearman correlation coefficients show a distribution that is very different from random distributions (new Figure 3 – figure supplement 1E). From these, we conclude that using directly the fluorescent data would have resulted in largely similar PF detection and identification.

      Improve the visual clarity of figures by enlarging key elements such as arrows that indicate BTSP-like events. Consider using colors that stand out more clearly to guide readers' attention. Include annotations of statistical significance directly on the figures (e.g., adding NS or * indicators) to make it clear which comparisons are statistically significant. This will help readers quickly interpret the data without needing to refer back to the text.

      Based on the suggestion of the Reviewer, we have enlarged the arrows. We have also indicated statistical results on the figures. Because some of the results of factorial ANOVA tests are difficult to be comprehensively indicated on our plots, we kept the description of the statistical results in the legends as well. We hope that these alterations will make data interpretation easier.

      Replace or supplement bar plots with violin plots or scatter plots that show the distribution of individual data points. This change would offer a clearer picture of data variability and underlying trends, aiding readers in assessing the robustness of the results.

      We have changed the plots and now present all data points.

      Add more detailed quantification in the results section, specifying the total number of newly formed place fields, the proportion that are categorized as BTSP-like versus non-BTSP-like, and how many events did not fit these categories. Explicitly state what fraction of the total recorded place field formations are represented by the 59 non-BTSP-like events mentioned, as this is currently difficult to discern.

      The number of BTSP- and non-BTSP-like PFF events are given in the MS. As described in the Methods, after identifying BTSP- and non-BTSP-like PFF events using the shift and gain criteria, we have manually checked each of these ROIs and the spatial footprint of every new PFF events for these cells and excluded ROIs with non-soma-like shapes and activities with spurious footprints suggesting contamination, creating a ‘cleaned’ dataset. We did not perform such visual inspection and manual curation of every ROI’s spatial footprints that belong to the two additional categories (no gain with shift, gain without shift, 872 events). Since these classes are also overestimated without curation, we cannot provide a precise fraction of the BTSP- and non-BTSP-like PFF events from the total recorded PFF population. However, - assuming that factors leading to exclusion affect all groups equally - we can provide their fractions by comparing the numbers of newly born PFs in all categories before the visual inspections. In the normal maze, we found 806 candidate BTSP-like (52%),164 non-BTSP-like (10%) PFFs and an additional 593 PFs (38%) could not be included in these two groups [40 PFs (3%) with formation lap gain and backward shift but significant backward drift; 238 PFs (15%) with formation lap gain but without backward shift; 315 PFs (20%) with no formation lap gain but with backward shift]. These data have been included in the Methods.

      Ensure that all statements describing specific findings are consistently linked to the appropriate figures and panels. There are instances in the text where results are discussed without clear references, which can make it challenging for readers to verify the data. For example, the section on population remapping in a novel environment should point directly to the relevant figure panels to guide readers.

      We regret that our text was not linked properly to the appropriate figures. We corrected this during the revision.

      Given that BTSP-like events are inferred rather than directly confirmed, it would be prudent to frame conclusions about their sufficiency in more tentative terms, acknowledging the limitations of the current data. Consider adding a discussion of potential future experiments that could confirm whether these large transients truly represent BTSP events, including evidence for complex spikes or calcium plateau potentials.

      The Reviewer is correct that we do not have direct evidence that all large somatic Ca<sup>2+</sup> events represent dendritic plateau potentials. Now we discuss this and other limitations in the MS (Discussion section).

      Reviewer #2 (Recommendations for the authors):

      Although the author has outlined three characteristics of place fields (PFs) generated by behavioral time scale synaptic plasticity (BTSP) during calcium imaging in the Introduction section, as follows: ' First, the prolonged CSB results in large [Ca<sup>2+</sup>] transient during the initial PFF event, typically followed by weaker Ca2+ signals on consecutive traversals through the PF. Second, due to the long and asymmetric temporal kernel of the plasticity (favoring potentiation of inputs active 1-2 seconds before the CSB) a substantial backward shift in the spatial position of the PF center can be observed on linear tracks after the formation lap. Third, the width of the new PF is generally proportional to the running speed of the animal during the PFF event.' Figure 3B, which displays the third feature of classified BTSP and non-BTSP data, serves as an important confirmation of the classification results using the first two features. Even though the Spearman correlation indicated a significant difference, the raw data distributions of BTSP and non-BTSP appear similar, suggesting that a distribution of bootstrap and more stringent confirmation should be conducted to be convincing.

      As described in the MS, because of the difference in the number of events in the two groups, we randomly subsampled the BTSP-like events to the sample size of the non-BTSP-like PFF events 10000 times and performed regression analysis. This bootstrapping revealed that both the r and p values of the fit to the non-BTSP data fell outside the 95% confidence interval of the bootstrapped BTSP values, indicating that the difference between the groups was robust.

      In further analysis during the revision, we found that the PF width variance explained by distance from landmarks is substantially larger than the variance explained by the running speed during the formation lap. We performed a cross-validated analysis by these two factors (Figure 3D), which highlights that speed explains some of the PF width variance of BTSP-like PFFs, but none of the non-BTSP PFFs.

      The proportions of the three types should be provided. page 6: ' Using a conservative approach, we categorized a new PF to be formed by a BTSP-like mechanism if it had both positive gain and negative shift values (Figure 2A; n = 310 new PFs), whereas new PFs exhibiting neither positive gain nor negative shift were considered as non-BTSP-like events (Figure 2B; n = 59). All other newly formed PFs (no-gain with backward shift and gain without backward shift) were excluded from further analysis.' The number of excluded newly formed PFs should be disclosed, as well as the distribution ratio of these three types in each animal.

      The number of BTSP- and non-BTSP-like PFF events are given in the MS. As described in the Methods, after identifying BTSP- and non-BTSP-like PFF events using the shift and gain criteria, we have manually checked each of these ROIs and the spatial footprint of every new PFF events for these cells and excluded ROIs with non-soma-like shapes or spurious activities, creating a ‘cleaned’ dataset. We did not perform such visual inspection and manual curation of every ROI’s spatial footprints that belonged to the two additional categories (no gain with shift, gain without shift, 872 events). Since these classes are also overestimated without curation, we cannot provide a precise fraction of the BTSP- and non-BTSP-like PFF events from the total recorded PFF population. However, - assuming that factors leading to exclusion affect all groups equally - we can provide their fractions by comparing the numbers of newly born PFs in all categories before the visual inspections. In the normal maze, we found 806 candidate BTSP-like (52%),164 non-BTSP-like (10%) PFFs and an additional 593 PFs (38%) could not be included in these two groups [40 PFs (3%) with formation lap gain and backward shift but significant backward drift; 238 PFs (15%) with formation lap gain but without backward shift; 315 PFs (20%) with no formation lap gain but with backward shift]. These data have been included in the Methods.

      Figure 2C, while showing an overall decrease in amplitude from the formation lap to the next lap, could benefit from a pairwise analysis of the corresponding formation lap and the following lap of each session to provide more convincing and detailed results.

      We now present all data with connected lines across consecutive laps to illustrate the changes in each ROI. Our statistical analysis included the pairwise comparison of amplitudes.

      The experiment's time range is broad (11-99 days); it is worth investigating whether different training intervals might influence the results.

      Based on the suggestion of the Reviewer, we have analyzed the elapsed time and the number of sessions from the first training to the recording, and we demonstrate that there is no correlation of these parameters with the number of new PFFs. These data are now presented in Figure 2 – figure supplement 1C.

      It is unclear whether the formation of place fields also generates characteristic features of dendritic properties.

      It is not clear to us which ‘characteristic dendritic features of dendritic properties’ generated by PFF the Reviewer refers to. Since we did not image dendrites of individual CA1PCs, we have no information about dendritic properties of the neurons.

      It may be necessary to add a clearer figure to illustrate the correlation between width and speed following the downsampling of non-BTSP-like events (refer to Figure 3B).

      We have performed extensive additional analysis on the relationship of PF width with various behavioral factors, including the speed of the animal in the formation lap. Inspection of the PF width distributions along the track revealed a close association of PF width with the distance of the animal from the nearest visual landmark in the corridor, so that PFs close to landmarks were narrower than PFs between landmarks. We found that the PF width variance explained by distance from landmarks is substantially larger than the variance explained by the running speed during the formation lap. Nevertheless, there is a clear difference between BTSP-like and non-BTSP-like PFFs: running speed explains some variance in the case of BTSP-like PFFs, but none for non-BTSP-like PFFs.

      We have included these findings into the Results section and created two new panels in Figure 3 (C, D) and Figure 3 – figure supplement 1 (A, B).

      It is recommended that statistical results be labeled in the figures with n.s. or stars for better readability.

      Based on the suggestion of the Reviewer, we have indicated statistical results on the figures. Because some of the results of factorial ANOVA tests are difficult to be comprehensively indicated on our plots, we kept the description of the statistical results in the legends as well. We hope that these alterations will make data interpretation easier. We hope that these alterations will make data interpretation easier.

    1. eLife Assessment

      This manuscript describes a useful study describing an interesting infection phenotype that differs between adult male and female zebrafish. The authors argue that male-biased expression of Cyp17a2 is implicated in mediating infection levels through STING and USP8 activity regulation. Thus, this study highlights an unexpected factor involved in antiviral immunity that could open new avenues of investigation for infection, metabolism, and other contexts. Although the manuscript presents some evidence supporting its main claims, the evidence for the main argument made in the study on sex dimorphism remains incomplete at this stage.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Lu & Cui et al. observe that adult male zebrafish are more resistant to infection and disease following exposure to Spring Viremia of Carp Virus (SVCV) than female fish. The authors then attempt to identify some of the molecular underpinnings of this apparent sexual dimorphism and focus their investigations on a gene called cytochrome P450, family 17, subfamily A, polypeptide 2 (cyp17a2) because it was among the genes that they found to be more highly expressed in kidney tissue from males than in females. Their investigations lead them to propose a direct connection between cyp17a2 and modulation of interferon signaling as the key underlying driver of the difference between male and female susceptibility to SVCV.

      Strengths:

      Strengths of this study include the interesting observation of a substantial difference between adult male and female zebrafish in their susceptibility to SVCV, and also the breadth of experiments that were performed linking cyp17a2 to infection phenotypes and molecularly to the stability of host and virus proteins in cell lines. The authors place the infection phenotype in an interesting and complex context of many other sexual dimorphisms in infection phenotypes in vertebrates. This study succeeds in highlighting an unexpected factor involved in antiviral immunity that will be an important subject for future investigations of infection, metabolism, and other contexts.

      Weaknesses:

      Weaknesses of this study include an indirect connection between the majority of experiments and the proposed mechanism underlying the sexual dimorphism phenotype, widespread reliance on over-expression when investigating protein-protein interaction and localization, and an insufficient amount of description of the data presented in the figures. Specific examples of areas for clarification or improvement include:

      (1) Figure 10 outlines a mechanistic link between cyp17a2 and the sexual dimorphism the authors report for SVCV infection outcomes. The data presented on increased susceptibility of cyp17a2-/- mutant male zebrafish support this diagram, but this conclusion is fairly weak without additional experimentation in both males and females. The authors justify their decision to focus on males by stating that they wanted to avoid potential androgen-mediated phenotypes in the cpy17a2 mutant background (lines 152-156), but this appears to be speculation. It also doesn't preclude the possibility of testing the effects of increased cyp17a2 expression on viral infection in both males and females. This is of critical importance if the authors intend to focus the study on sexual dimorphism, which is how the introduction and discussion are currently structured.

      (2) The authors present data indicating an unexpected link between cyp17a2 and ubiquitination pathways. It is unclear how a CYP450 family member would carry out such activities, and this warrants much more attention. One brief paragraph in the discussion (starting at line 448) mentions previous implications of CYP450 proteins in antiviral immunity, but given that most of the data presented in the paper attempt to characterize cyp17a2 as a direct interactor of ubiquitination factors, more discussion in the text should be devoted to this topic. For example, are there any known domains in this protein that make sense in this context? Discussion of this interface is more relevant to the study than the general overview of sexual dimorphism that is currently highlighted in the discussion and throughout the text.

      (3) Figures 2-9 contain information that could be streamlined to highlight the main points the authors hope to make through a combination of editing, removal, and movement to supplemental materials. There is a consistent lack of clarity in these figures that could be improved by supplementing them with more text to accompany the supplemental figures. Using Figure 2 and an example, panel (A) could be removed as unnecessary, panel (B) could be exchanged for a volcano plot with examples highlighting why cyp17a2 was selected for further study and also the full dataset could be shared in a supplemental table, panel (C) could be modified to indicate why that particular subset was chosen for plotting along with an explanation of the scaling, panel (D) could be moved to supplemental because the point is redundant with panels (A) and (C), panel (E) could be presented as a heatmap, in panels (G) and (H) data from EPC cells could be moved to supplemental because it is not central to the phenotype under investigation, panels (J) to (L) and (N) to (P) could be moved to supplemental because they are redundant with the main points made in panels (M) and (Q). Similar considerations could be made with Figures 3-9

      (4) The data in Figure 3 (A)-(C) do not seem to match the description in the text. That is, the authors state that cyp17a2 overexpression increases interferon signaling activity in cells, but the figure shows higher increases in vector controls. Additionally, the data in panel (H) are not described. What genes were selected and why, and where are the data on the rest of the genes from this analysis? This should be shared in a supplemental table.

      (5) Some of the reagents described in the methods do not have cited support for the applications used in the study. For example, the antibody for TRIM11 (line 624, data in Figures 6 & 7) was generated for targeting the human protein. Validation for use of this reagent in zebrafish should be presented or cited. Furthermore, the accepted zebrafish nomenclature for this gene would be preferred throughout the text, which is bloodthirsty-related gene family, member 32.

    3. Reviewer #2 (Public review):

      The manuscript identified Cyp17a2 as a master regulator of male-biased antiviral immunity in a sex chromosome-free model (zebrafish) challenging established immunological paradigms.

      Strengths:

      (1) The bifunctional role of Cyp17a2 (host-directed STING stabilization and virus-directed P degradation) represents a significant conceptual advance.

      (2) First demonstration of K33 chains as a critical regulatory switch for both host defense proteins and viral substrates.

      (3) Comprehensive validation across biological scales: organismal (survival, histopathology), cellular (transcriptomics, Co-IPs), and molecular (ubiquitination assays, site-directed mutagenesis).

      (4) Functional conservation in cyprinids (zebrafish and gibel carp) strengthens biological significance.

      Weaknesses:

      (1) Colocalization analyses (Figures 4G, 6I, 9D) require quantitative metrics (e.g., Pearson's coefficients) rather than representative images alone.

      (2) Figure 1 survival curves need annotated statistical tests (e.g., "Log-rank test, p=X.XX")

      (3) Figure 2P GSEA should report exact FDR-adjusted *p*-values (not just "*p*<0.05").

      (4) Section 2 overextends on teleost sex-determination diversity, condensing to emphasize relevance to immune dimorphism would strengthen narrative cohesion.

      (5) Limited discussion on whether this mechanism extends beyond Cyprinidae and its implications for teleost adaptation.

    1. eLife Assessment

      The study by Reed et al. provides fundamental findings and convincing evidence defining the topological changes that occur during tumorigenesis. The findings enhance the understanding of stable long-range connections among genes that reprogram cancer-related functions. Nevertheless, performing additional experiments is recommended.

    2. Reviewer #1 (Public review):

      Summary:

      In their manuscript, Metz Reed and colleagues present an exceptionally thorough analysis of three-dimensional genome reorganization during breast cancer progression using the well-characterized MCF10 model system. The integration of high-resolution Micro-C contact maps with multi-omics profiling provides compelling insights into stage-specific dynamics of chromatin compartments, TAD boundaries, and looping events. The discovery that stable chromatin loops enable epigenetic reprogramming of cancer genes, while structural changes selectively drive metastasis-associated pathways, represents a significant conceptual advance. This work substantially deepens our understanding of genome topology in malignancy. To further enhance this impactful study, we offer the following constructive suggestions.

      Strengths:

      This work sets a benchmark for integrative 3D genomics in oncology. Its methodological sophistication and conceptual advances establish a new paradigm for studying nuclear architecture in disease.

      Weaknesses:

      Major Issues

      (1) Functional tests would strengthen the observed links between structure and gene changes. For example, the COL12A1 gene loop formation correlates with its increased expression. Disrupting this loop using CRISPR-dCas9 at chr6 position 75280 kb could prove whether the loop causes COL12A1 activation. Such experiments would turn strong correlations into clear mechanisms.

      (2) The H3K27ac looping idea needs deeper validation. Data suggests H3K27ac loss weakens loops without affecting CTCF. Testing how cohesin proteins interact with H3K27ac-modified sites would clarify this process. Degron systems could rapidly remove H3K27ac to observe real-time effects. Also, the AP-1 motifs found at dynamic loop sites deserve functional tests. Knocking down AP-1 factors might show if they control loop formation.

      (3) Connecting findings to patient data would boost clinical relevance. The MCF10 model is excellent for controlled studies. Checking if TAD boundary weakening occurs in actual patient metastases would show real-world importance. Comparing primary and metastatic tumor samples from the same patients could reveal new structural biomarkers. If tissue is scarce, testing cancer cells with added stroma cells might mimic tumor environment effects.

      Minor Issues

      Adding a clear definition for static loops would help readers. For example, state that static loops show less than 10 percent contact change across replicates. In the ABC model analysis, removing promoter regions from the enhancer list would focus results on true long-range interactions. Briefly noting why this study sees TAD weakening while other cancer types show different patterns would provide useful context.

    3. Reviewer #2 (Public review):

      Employing the MCF10 breast-cancer progression series, the authors integrate high-resolution Micro-C chromatin-conformation capture with RNA-seq and ChIP-seq to delineate the sequential reorganization of compartments, topologically associated domains (TADs), and long-range loops across benign, pre-neoplastic, and metastatic states, and couple these 3D alterations to gene expression and enhancer activity. Four principal findings emerge: (i) largely static chromatin frameworks still gate differential gene output, with up-regulated loci most affected; (ii) enhancer-promoter contact strength covaries with transcriptional amplitude; (iii) 127 genes gain expression concomitant with increased chromatin contacts; and (iv) progression-associated genes acquire altered histone marks at distal enhancers that remain tethered by stable loops. While the conclusions are broadly supported, methodological and analytical refinements are required.

      (1) Model representativeness.<br /> The long-term culture-adapted MCF10 genome harbours extensive aneuploidies and translocations. Validation of key COL12A1/WNT5A loop dynamics in an independent breast-cancer line (e.g., MDA-MB-231, T47D) or in patient-derived organoids/PDX models would strengthen generalizability.

      (2) The study remains purely correlative; no perturbation experiments are conducted to demonstrate causal roles of chromatin loops on gene expression. CRISPR interference (CRISPR-Cas9-KRAB/HDAC) or enhancer deletion/inversion should be applied to 3-5 pivotal loops (e.g., COL12A1, WNT5A) to test their impact on target-gene expression and cellular phenotypes (e.g., proliferation, migration).

      (3) The manuscript lacks integration with clinical datasets. Integrate TCGA-BRCA data to assess whether elevated COL12A1/WNT5A expression associates with overall survival (OS) or distant metastasis-free survival (DMFS).

    4. Reviewer #3 (Public review):

      Summary:

      The authors tackle an important problem: defining the topological changes that occur during tumorigenesis. To study this, they use an established stepwise cell model of breast cancer. A strength of their study is a careful, robust differential analysis of topological features across each cell state, which is presented clearly and rigorously. They define changes in compartmentalization, TAD structure, and chromatin looping. Intriguingly, when the authors integrate differential gene expression with chromatin looping, they see that most differentially regulated genes are not involved in loop changes, suggesting that changes in promoter or enhancer chromatin marks may play a bigger role in regulating transcription than differential loops. The differential topology analysis and its integration with transcription is very well done- one of the best versions of this I have read in the 3D genome field! However, the paper is framed largely as a cancer biology study, and it teaches us much less about this. I am worried that some of the trends for each topologic feature are not going to be consistent across the pre-malignant-malignant-metastatic spectrum and would like the authors to soften some of their claims a bit regarding how this clarifies our understanding of cancer evolution.

      Weaknesses:

      Major Concerns:

      (1) The integration of gene expression and chromatin loops is intriguing. The authors' differential analysis, however, omits consideration of genes that are on and simply further upregulated versus genes that transition on/off or off/on. It would be nice to see the authors break out looping patterns for these two different patterns of regulation, as it may be instructive regarding the rules for how EP loops govern transcription.

      (2) Given the paucity of differential loops at the majority of genes whose expression changes, the authors should examine chromatin subcompartments, as these may associate more with differential transcription.

      (3) The authors could push their TAD analysis further by integrating it with transcription. Can they look at genes and their enhancers that span these altered boundaries to see if these shifts impact transcription?

      (4) The progression of cancer critically goes from a benign -> pre-malignant -> malignant -> metastatic series of steps. The AT1 line is described as 'premalignant' and thus the authors' series omits a malignant line. While I think adding such a sample is an unreasonable request at this point (as it would have had to have been studied in 'batch' with these other samples), the authors should acknowledge that they omit this step and spend some time discussing the genetic, morphologic, and phenotypic features for their 3 conditions. The images in Figure 1S aren't particularly useful- they don't tell the reader that these cells are malignant/benign. The karyotypic data are intriguing but not fully analyzed, so it is hard to know what true phenotype these cells represent. For example, malignant means DCIS/invasive carcinoma - so then what does this pre-malignant cell model represent? The described alteration in the AT1 line is a Ras oncogene, so in some sense, the transition to this line really is just +/- Ras. The authors could spend some time thinking about the effects of Ras specifically on the 3D genome.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      The question of how central nervous system (CNS) lamination defects affect functional integrity is an interesting topic, though it remains a subject of debate. The authors focused on the retina, which is a relatively simple yet well-laminated tissue, to investigate the impact of afadin - a key component of adherens junctions on retinal structure and function. Their findings show that the loss of afadin leads to significant disruptions in outer retinal lamination, affecting the morphology and localization of photoreceptors and their synapses, as illustrated by high-quality images. Despite these severe changes, the study found that some functions of the retinal circuits, such as the ability to process light stimuli, could still be partially preserved. This research offers new insights into the relationship between retinal lamination and neural circuit function, suggesting that altered retinal morphology does not completely eliminate the capacity for visual information processing.

      Strengths:

      The retina serves as an excellent model for investigating lamination defects and functional integrity due to its relatively simple yet well-organized structure, along with the ease of analyzing visual function. The images depicting outer retinal lamination, as well as the morphology and localization of photoreceptors and their synapses, are clear and well-described. The paper is logically organized, progressing from structural defects to functional analysis. Additionally, the manuscript includes a comprehensive discussion of the findings and their implications.

      Weaknesses:

      While this work presents a wealth of descriptive data, it lacks quantification, which would help readers fully understand the findings and compare results with those from other studies. Furthermore, the molecular mechanisms underlying the defects caused by afadin deletion were not explored, leaving the role of afadin and its intracellular signaling pathways in retinal cells unclear. Finally, the study relied solely on electrophysiological recordings to demonstrate RGC function, which may not be robust enough to support the conclusions. Incorporating additional experiments, such as visual behavior tests, would strengthen the overall conclusions. 

      We would like to thank the reviewer for the thoughtful and valuable comments that helped us to further improve the manuscript. We have revised the manuscript to address the following three points in response to the reviewer's comments.

      While this work presents a wealth of descriptive data, it lacks quantification, which would help readers fully understand the findings and compare results with those from other studies.

      In response, we quantified the position of each retinal cell type and measured retinal thickness in the cHet and cKO mice at 1M, as presented in Figures 2F–M. To reflect these additions, we have included explanatory text in the revised manuscript (see lines 507–533).

      Furthermore, the molecular mechanisms underlying the defects caused by afadin deletion were not explored, leaving the role of afadin and its intracellular signaling pathways in retinal cells unclear.

      As AJ components, such as catenin and cadherin, are known to be associated with several signaling pathways, including Notch and Wnt signals (PMID: 37255594), we speculated that these pathways might be disrupted in the afadin cKO retina. Since these pathways are involved in cell proliferation, we examined the number of progenitor cells in the afadin cKO retina at developmental stages P1, P3, and P5 (new Figure S6C, see lines 868-870). No significant differences were observed at any of these stages. We also quantified the number of each retinal cell type at P14 when differentiation is complete. In the cKO retina, the number of BCs significantly increased, whereas the number of photoreceptors significantly reduced (new Figure S4C, see lines 620-622). To our knowledge, activation or inactivation of any AJ-associated signaling pathway does not reproduce the cell fate alterations observed in the afadin cKO retina. These findings suggest that the above pathways related to AJ may be unchanged in the cKO retina. However, we cannot exclude the possibility that multiple signaling pathways may be affected simultaneously or other pathways affected in the cKO retina.

      Finally, the study relied solely on electrophysiological recordings to demonstrate RGC function, which may not be robust enough to support the conclusions. Incorporating additional experiments, such as visual behavior tests, would strengthen the overall conclusions.

      We appreciate the reviewer’s insightful suggestion. To more robustly evaluate visual function in the cKO mice, we performed optomotor response (OMR) and visual cliff tests using cHet, cKO, and optic nerve crush (ONC) mice with Aki Hashio, Yuki Emori, and Mao Hiratsuka. We added their name as co-authors to the new manuscript. In the OMR test, cKO mice exhibited fewer responses to visual stimuli than cHet mice but significantly more than ONC mice. Furthermore, although no significant difference was detected between cKO and ONC mice in the visual cliff test, some cKO mice displayed cautious behavior suggestive of depth perception. These results indicate that cKO mice retain partial visual function, which is consistent with the MEA analysis. We have included these data as the new Figure 8 and incorporated the findings into the revised manuscript in the Introduction (lines 130-131 and 133-134), Methods (lines 378-406), Results (lines 775-816), and Discussion sections (lines 1026-1035).

      Reviewer #2 (Public review):

      Summary:

      Ueno et al. described substantial changes in the afadin knockout retina. These changes include decreased numbers of rods and cones, an increased number of bipolar cells, and disrupted somatic and synaptic organization of the outer limiting membrane, outer nuclear layer, and outer plexiform layer. In contrast, the number and organization of amacrine cells and retinal ganglion cells remain relatively intact. They also observed changes in ERG responses and RGC receptive fields and functions using MEA recordings.<br /> Strengths:

      The morphological characterization of retinal cell types and laminations is detailed and relatively comprehensive.

      Weaknesses:

      (1) The major weakness of this study, perhaps, is that its findings are predominantly descriptive and lack any mechanistic explanation. As afadin is key component of adherent junctions, its role in mediating retinal lamination has been reported previously (see PMCID: PMC6284407). Thus, a more detailed dissection of afadin's role in processes, such as progenitor generation, cell migration, or the formation of retinal lamination would provide greater insight into the defects caused by knocking out afadin.

      Thank you for valuable comments. We agree with the reviewer's point that findings are predominantly descriptive and lack any mechanistic explanation. However, we would like to clarify that the study cited in the comment (PMCID: PMC6284407) analyzed the role of afadin in dendritic stratification of direction-selective RGCs within the IPL, where “lamination” refers to the layering of RGC dendrites in the IPL. Here, we analyzed the function of afadin in the laminar construction of the overall retina.

      In response to the reviewer’s comment, we have added new analyses addressing retinal lamination, as well as the number and spatial distribution of progenitor cells, during development in the cKO retina. These new results are shown in Figures 4E, 9C–F, S5A–C, and S6C of the revised manuscript, and corresponding explanations added in the revised text (lines 643–662 and 855–870).

      (2) The authors observed striking changes in the numbers of rods, cones, and BCs, but not in ACs or RGCs. The causes of these distinct changes in specific cell classes remain unclear. Detailed characterizations, such as the expression of afadin in early developing retina, tracing cell numbers across various early developmental time points, and staining of apoptotic markers in developing retinal cells, could help to distinguish between defects in cell generation and survival, providing a better understand of the underlying causes of these phenotypes.

      Thank you for the insightful comment. Following the reviewer’s suggestion, we quantified the number of retinal cell types at P14 when cell differentiation is complete (new Figure S4C). At P14, the numbers of photoreceptors and BCs were significantly reduced in the cKO retina, while Müller glia, which was significantly reduced at 1M, showed no difference. We further examined the number of rods and BCs at P1, P3, and P5 (new Figures S4E, F). No significant differences were detected at P1 or P3, however, at P5, rod marker expression was significantly decreased, while the number of BCs was significantly increased. These results suggest that the defects in cell fate determination of BCs and rods begin to emerge between P3 and P5, a period for which rods and BCs actively differentiate. We speculate that cells originally destined to become rods may instead differentiate into BCs in the cKO retina. In addition, we found a significant increase in apoptotic cells at P1, P3, P5, and P14 (new Figure S6B). Furthermore, Müller glia and rod photoreceptors showed significantly greater reduction at 1M compared to P14, suggesting that the reduction in Müller glia observed at 1M may be due to post-differentiation cell death. These are presented in Figures S4C, S4E–F, and S6B, and described in the revised manuscript (lines 620-635 and 827-838).

      (3) Although the total number of ACs or RGCs remains unchanged, their localizations are somewhat altered (Figures 2E and 4E). Again, the cause of the altered somatic localization in ACs and RGCs is unclear.

      Thank you for the valuable question. In response to the reviewer’s comment, we analyzed the position of RGCs and ACs in the developing cKO retina. In the cKO retina at P1, retinal cells were organized into distinct multicellular compartments with clear boundaries, and acellular regions extending to the outer retinal surface were observed at these boundaries. These acellular regions contained dendritic processes of RGCs and ACs, which are components of the IPL, indicating that elements of the IPL extended vertically across the retina. As development progressed, the compartment boundaries gradually shifted toward the inner retina. At P14, the IPL was mainly located on the inner retina, as in the normal retina. However, some IPL structures remained in the outer retina and may correspond to the acellular patches. We have included the above data in the revised manuscript as Figures S5A and S5B and revised the manuscript to include this point (lines 643-660).

      (4) One conclusion that the authors emphasise is that the function of RGCs remains detectable despite a major disrupted outer plexiform layer. However, the organization of the inner plexiform layer remains largely intact, and the axonal innervation of BCs remains unchanged. This could explain the function integrity of RGCs. In addition, the resolution of detecting RGCs by MEA is low, as they only detected 5 clusters in heterozygous animals. This represents an incomplete clustering of RGC functional types and does not provide a full picture of how functional RGC types are altered in the afadin knockout.

      We appreciate the reviewer’s insightful comments. Although our clustering of RGC subtypes in afadin cHet retinas resulted in only five clusters, the key finding of our study is the preservation of RGC receptive fields in afadin cKO retinas, despite severe photoreceptor loss (reduced to about one-third of normal) and disruption of photoreceptor-bipolar cell synapses in the OPL. This suggests that even with crucial damage to the OPL, the primary photoreceptor-bipolar-RGC pathway can still function as long as the IPL remains intact. Moreover, the presence of rod-driven responses in RGCs indicates that the AII amacrine cell-mediated rod pathway may also continue to function. We agree that our functional clustering in afadin cHet retinas was incomplete. However, we guess that the absence of RGCs with fast temporal responses in afadin cKO retinas may not simply be due to the loss of specific RGC subtypes but due to disrupted synaptic connections between photoreceptors and fast-responding BCs. Furthermore, the structural abnormalities in retinal lamination in afadin cKO retinas may alter RGC response properties, making strict functional classification less meaningful. We would like to emphasize the finding that disruption of the retinal lamination in afadin cKO retinas leads to the absence of RGCs with fast temporal response properties, rather than focusing solely on the classification of RGC subtypes.

      Minor Comments:

      (1) Line 56-67: "Overall, these findings provide the first evidence that retinal circuit function can be partially preserved even when there are significant disruptions in retinal lamination and photoreceptor synapses" There is existing evidence showing substantial adaption in retinal function when retinal lamination or photoreceptor synapses are disrupted, such as PMCID: PMC10133175.

      Thank you for your comment. We agree that the original sentence was ambiguous in its wording, and we have revised it to clarify our intended meaning (lines 48-50):

      "Overall, these findings provide the first evidence that retinal circuit function can be partially preserved even when there are significant disruptions in both retinal lamination and photoreceptor synapses."

      In response, we have cited this study and added the following sentence to the Discussion section of the revised manuscript. The paper you mentioned is crucial for discussing and considering the results of our study. We have cited this study and added the following sentence to the Discussion section of the revised manuscript (lines 910-915):

      “Furthermore, RFs of RGCs are also detected in several mouse models of retinitis pigmentosa, in which rod photoreceptors are degenerated and surviving cone photoreceptors lose their OS discs and pedicles, instead forming abnormal processes resembling synaptic dendrites (Barhoum et al., 2008; Ellis et al., 2023; Scalabrino et al., 2022).”

      (2) Line 114-115: "we focused on afadin, which is a scaffolding protein for nectin and has no ortholog in mice." The term "Ortholog" is misused here, as the mouse has an afadin gene. Should the intended meaning be that afadin has no other isoforms in mouse?

      Thank you for pointing it out. As we misused "Ortholog" as "Paralog", we revised the sentence (line 108).

      Recommendations for the authors:

      (1) The introduction to afadin is insufficient. Please provide more background information about this protein.

      Following the reviewer’s recommendations, we expanded the Introduction in the revised manuscript to provide a more detailed background on afadin, as follows (lines 108-119):

      “Afadin regulates the localization of nectin, which initiates cell–cell adhesion and promotes AJ formation by recruiting the cadherin–catenin complex. (Ohama et al., 2018; Takai and Nakanishi, 2003). In addition, afadin interacts with various cell adhesion and signaling molecules, as well as the actin cytoskeleton, and contributes to the accumulation of β-catenin, αE-catenin, and E-cadherin at AJs (Sakakibara et al., 2018; Sato et al., 2006). Afadin KO mice exhibit severe disruption of AJs in the ectoderm, along with other developmental defects, leading to embryonic lethality (Ikeda et al., 1999; Zhadanov et al., 1999). Conditional deletion of afadin in RGCs leads to disruption of dendrites in ON-OFF direction-selective RGCs (Duan et al., 2018). However, the effect of afadin loss on retinal lamination, circuit formation, and function is poorly understood.”

      (2) In Figure 1A (Bottom), regarding the peptide+ image, what does the green signal represent?

      The green signal observed in the peptide+ image represents the background and non-specific staining. We have added the sentence to the legend of Figure 1A in the revised manuscript (lines 1067-1068).

      (3) In the RESULTS section on page 17, the statement "Nectin-1, unlike nectin-2 and nectin-3, was partially co-localized with afadin at the OPL and IPL, in addition to the OLM" suggests that nectin-2 is also expressed at the IPL, as shown in Figure S1A. Providing high-power images, similar to those in Figure S1B, could help readers clearly recognize the staining signals.

      Following your suggestion, we added higher-magnification images of Nectin-2 signals in the IPL to Figure S1A and included the following clarification in the Figure legend (lines 1356-1358):

      “Nectin-2 and nectin-3 were localized in the OLM. The Nectin-2 signal in the IPL was insufficient for reliable assessment of its localization and colocalization.”

      (4) Figure S2A requires an uncropped scan of the membrane after Western blotting to demonstrate that there are no non-specific bands when using this afadin antibody, which was also utilized for IHC.

      We revised the new Figure S2C to include the uncropped membrane scan. Faint non-specific bands were observed in the Western blot, consistent with detecting non-specific signals in immunostaining using the anti-afadin antibody pre-absorbed with its antigen peptide.

      (5) IHC staining is necessary to demonstrate the knockout of afadin in retinal cells, as the paper does not show Cre expression in the retinal cells of the Dkk3-Cre mouse line. This would also help verify the specificity of the afadin antibody.

      In the cKO retina, the laminar structure was disrupted, and the background signal was generally high, making it difficult to reliably assess whether afadin expression was lost using immunostaining with the anti-afadin antibody. Therefore, in addition to the Western blot analysis already presented, we evaluated Cre activity in the Dkk3-Cre mouse line by crossing it with the R26-H2B-EGFP reporter line. Cre-mediated recombination was observed in all retinal cells at P0 and 1M. We have added these results to a revised Figure S2A and B and included explanatory text in the revised manuscript (lines 455–458).

      (6) Why is the outer nuclear layer (ONL) severely impaired in the cKO mice when afadin is not expressed in this layer? Additionally, given that afadin is highly expressed in the inner plexiform layer (IPL), why does the cKO not affect its structure?

      We speculate that the AJ defect in the outer retina during development may cause severe disruption of the ONL in afadin cKO mice. As shown in new Figure 9, ectopic AJs and aberrant position of mitotic cells were observed in the P0 cKO retina. These defects caused abnormal cell migration and position, resulting in the ONL disruption. On the other hand, in the IPL, afadin and other cell adhesion molecules may function redundantly, and thus, the IPL structure would be kept intact in the afadin cKO retina. We have added this interpretation to the Discussion section of the revised manuscript (lines 998–1005).

      (7) In the RESULTS section on page 20, the authors state, "We further investigated adherens junctions (AJs) in the cKO retina by immunostaining with OLM adherens junction markers β-catenin, N-cadherin, and nectin-1. We found that these signals were dispersed in the cKO retina (Figure S2C)." It appears that β-catenin, N-cadherin, and nectin-1 can still be detected in the cKO retina.

      We agree with the reviewer that β-catenin, N-cadherin, and nectin-1 can still be detected in the cKO retina. We used the term 'dispersed' to indicate that the signal was “scattered” rather than “disappeared”. To avoid confusion, we have revised the wording in the revised manuscript (line 499).\

      (8) In Figure 3, please indicate where the zoomed-in images were captured from the low-power images. Additionally, point out the locations of zoomed-in images in other figures as well.

      Following the reviewer’s suggestion, we updated Figures 2D, 3A-C, 4A, S2D, S3A, S3D, S3E, and S5D. The related Figure legends have also been revised.

      (9) The authors should include individual data points in all statistical graphics to provide a clearer presentation of the data.

      As suggested by the reviewers, we have revised all statistical graphs to display individual data points. Furthermore, the statistical analysis of synapse counts in Figures 3E, 3F, and S3C has been changed to linear mixed models (LMM) or generalized LMM to account for the variability in the number of synapses within individual mice.

      (10) In the RESULTS section on page 23, the statement "These data indicate that the rosette-like structure in the cKO may be an ectopic IPL, termed 'acellular patches'". What is the mechanism that may cause the rosette-like structure to translocate from the IPL to the outer region of the retina?

      Thank you for raising a valuable question. To clarify the mechanism of acellular patch formation in the cKO mice, we analyzed the position of RGCs and ACs in the developing cKO retina. In the cKO retina at P1, retinal cells were organized into distinct multicellular compartments with clear boundaries, and acellular regions extending to the outer retinal surface were observed at these boundaries. These acellular regions contained dendritic processes of RGCs and ACs, which are components of the IPL, indicating that elements of the IPL extended vertically across the retina. As development progressed, the compartment boundaries gradually shifted toward the inner retina. At P14, the IPL was mainly located on the inner retina, as in the normal retina. However, some IPL structures remained in the outer retina and may correspond to the acellular patches. We have included these findings in the revised manuscript as Figures S5A and S5B and added the corresponding description to the text (lines 643–665).

      (11) Is the blood vessel structure normal in the cKO retina? Could this impact the survival of retinal cells?

      Thank you for your valuable comment. We performed immunostaining with an anti-CD31 antibody, a marker for blood vessels, as shown in the new Figure S2G. No apparent differences were observed in the cKO retina. We have added the following description to the revised manuscript (lines 539–543):

      “It has been reported that defects in the distal processes of Müller glia are associated with abnormal retinal vasculature (Shen et al., 2012). Thus, we immunostained the cKO retina with anti-CD31, a blood vessel marker, but no apparent vascular abnormalities were detected (Figure S2G).”

      (12) In the RESULTS section on pages 26-29, there is a lot of statistical information included in parentheses. It would be more concise to place this information in the figure legends, if possible.

      Following the reviewer's suggestion, we have moved the statistical information from the main text (pages 26–29) to the corresponding Figure legends.

      (13) In the RESULTS section on page 28, the authors state, "On the other hand, the inner retina was apparently normal, and both the inner nuclear layer (INL) and IPL could be recognized." However, in Fig 7A, it appears that the INL is mixed with the ONL and cannot be clearly identified.

      We agree with the reviewer that the INL is mixed with the ONL and cannot be clearly identified. Accordingly, we have revised the description in the text (lines 740–742) as follows:

      “On the other hand, the inner retina was apparently normal, and both the IPL and the proximal part of the INL could be recognized.”.

      (14) It is mentioned in the manuscript that "The receptive field (RF) area in the cKO retinas was significantly smaller than that in the cHet retinas." Is there an impairment in the dendritic fields of RGCs in the cKO retina that could lead to a smaller RF?

      Thank you for asking an interesting question. The dendritic field reflects the region where presynaptic cells can form synaptic contacts, whereas the receptive field is dynamically shaped by spatiotemporal excitatory and inhibitory inputs, gap junctions, and membrane properties of the dendrites. Consequently, the size of the dendritic field does not necessarily correspond to that of the receptive field. Moreover, the disruption of the retinal lamination in the afadin cKO retina may alter the morphology of RGC dendritic fields—even when RNA expression levels are identical—which makes it difficult to exactly compare the morphology of the same RGC subtype between afadin cHet and afadin cKO retinas. Additionally, due to the presence of over 40 RGC subtypes and the rosette-like structures in the afadin cKO retina, it is challenging to trace the complete dendritic arborization of individual RGCs. For these reasons, we rather hesitate to compare the dendritic field size and the receptive field size.

      (15) Figure 7H was not cited in the corresponding section of the main text.

      Thank you for pointing it out. We have added a citation of Figure 7H in the revised manuscript (line 759).

      (16) In Figure 8C, is there a difference in the number of pHH3+ mitotic cells between the cHet and cKO mice?

      We quantified the number of pHH3-positive cells in the cKO retina at P0, as shown in the new Figure 9B. The number of mitotic cells was significantly increased in the cKO retina (see lines 853-855). In contrast, the number of BrdU-labeled progenitor cells at P1, P3, and P5 was not significantly different between cHet and cKO retinas, as presented in the new Figure S6C. These results suggest that although the total number of progenitor cells remain unchanged in cKO retinas, the M phase may be prolonged.

      (17) The results related to Figure 8 should be moved to a location before Figure 5, as Figure 8 is also related to the lamination defects.

      In the original manuscript, Figures 2–7 presented the phenotypes observed in the cKO retina, while Figure 8 addressed the possible cause of the lamination defects. Since the revised Figure 8 presents behavioral tests evaluating visual function, the phenotypic analyses are presented in the revised Figures 2–8. In response to the reviewers’ comments, we further analyzed the distribution of mitotic and progenitor cells during development and included these results as revised Figure 9.

      (18) In the DISCUSSION section on page 32, the authors state, "A few photoreceptor-bipolar cell-retinal ganglion cell (BC-RGC) pathways (vertical pathways of the retina) are inferred to be maintained in the cKO retina." The authors could verify this using retrograde transsynaptic tracing with a pseudorabies virus injected into the superior colliculus.

      Thank you for your interesting suggestion. This is an important point, and the recommended experiment idea sounds excellent. We attempted this analysis; however, the virus injected into the superior colliculus successfully labeled RGCs but failed to reach BCs and photoreceptors in normal mice. We guess that light stimulation evoked RGC firings evidently show that the photoreceptor-bipolar cell-retinal ganglion cell (BC-RGC) pathways function.

    2. Reviewer #2 (Public review):

      Summary:

      Ueno et al. described substantial changes in the Afadin knockout retina. These changes include decreased numbers of rods and cones, an increased number of bipolar cells, and disrupted somatic and synaptic organization of the outer limiting membrane, outer nuclear layer, outer plexiform layer. In contrast, the number and organization of amacrine cells and retinal ganglion cells remain relatively intact. They also observed changes in ERG responses, RGC receptive fields and functions, and visual behaviors. The morphological and function characterization of retinal cell types and laminations is detailed and relatively comprehensive.

    3. Reviewer #1 (Public review):

      Summary:

      The question of how central nervous system lamination defects affect functional integrity is an interesting yet debated topic. The authors investigated the role of afadin, a key adherens junction scaffolding protein, in retinal lamination and function using a retina-specific conditional knockout mouse model. Their findings show that the loss of Afadin caused severe outer retinal lamination defects, disrupting photoreceptor morphology, synapse numbers, and cell positioning, as demonstrated by histological analysis. Despite these structural impairments, retinal function was partially preserved: mERG detected small a- and b-waves, retinal ganglion cells responded to light, and behavioral tests confirmed residual visual function. This research offers new insights into the relationship between retinal lamination and neural circuit function, suggesting that altered retinal morphology does not completely eliminate the capacity for visual information processing.

      Strengths:

      The study effectively employs the well-organized laminar structure of the retina as an accessible model for investigating afadin's role in lamination within the central nervous system. High-quality histological, immunostaining, and electron microscopy images clearly reveal structural defects in the conditional knockout mice. The revised manuscript significantly enhances the findings by incorporating robust quantitative analyses of cell positioning, retinal thickness, and cell numbers, as well as new assessments of developmental defects. Additionally, new behavioral tests, including the optomotor response and visual cliff tests, have been introduced. Together with electrophysiological recordings, these additions compellingly demonstrate the partial preservation of visual function despite severe structural disruptions.

      Weaknesses:

      Overall, the study of the mechanisms remains weak. While the authors addressed concerns about molecular mechanisms by examining cell proliferation potentially related to Notch and Wnt signaling (Figure S6C, lines 868-870), the findings are largely negative (no significant changes in progenitor cell numbers), and the discussion of alternative pathways remains speculative.

    4. eLife Assessment

      This study demonstrates that conditional knockout of afadin disrupts retinal laminar organization and reduces the number of photoreceptors, while preserving certain aspects of retinal ganglion cell structure and light responsiveness. The work is valuable and well-supported by revised figures and comprehensive data on retinal cell types, lamination patterns, and visual functio. The findings are solid and intriguing, and the study provides insights into the relationship between retinal lamination and neural circuit function.

    1. eLife Assessment

      This valuable study employs a formalized computational model of learning to assess memory deficits in Alzheimer's Disease with the goal of developing an early diagnosis tool. Using an established mouse model of the disease, the authors studied multiple behavioral tasks and ages with the goal of showing similarities in behavioral deficits across tasks. Using the model, the authors indicate specific deficits in memory (overgeneralization and over differentiation) in mice with the transgene for the disease. The evidence presented is solid, yet certain concerns remain regarding the interpretation of the results of the modeling.

    2. Reviewer #1 (Public review):

      I applaud the authors' for providing a thorough response to my comments from the first round of review. The authors' have addressed the points I raised on the interpretation of the behavioral results as well as the validation of the model (fit to the data) by conducting new analyses, acknowledging the limitations where required and providing important counterpoints. As a result of this process, the manuscript has considerably improved. I have no further comments and recommend this manuscript for publication.

    3. Reviewer #2 (Public review):

      Summary:

      This manuscript proposes that the use of a latent cause model for assessment of memory-based tasks may provide improved early detection in Alzheimer's Disease as well as more differentiated mapping of behavior to underlying causes. To test the validity of this model, the authors use a previously described knock-in mouse model of AD and subject the mice to several behaviors to determine whether the latent cause model may provide informative predictions regarding changes in the observed behaviors. They include a well-established fear learning paradigm in which distinct memories are believed to compete for control of behavior. More specifically, it's been observed that animals undergoing fear learning and subsequent fear extinction develop two separate memories for the acquisition phase and the extinction phase, such that the extinction does not simply 'erase' the previously acquired memory. Many models of learning require the addition of a separate context or state to be added during the extinction phase and are typically modeled by assuming the existence of a new state at the time of extinction. The Niv research group, Gershman et al. 2017, have shown that the use of a latent cause model applied to this behavior can elegantly predict the formation of latent states based on a Bayesian approach, and that these latent states can facilitate the persistence of the acquisition and extinction memory independently. The authors of this manuscript leverage this approach to test whether deficits in production of the internal states, or the inference and learning of those states, may be disrupted in knock-in mice that show both a build-up of amyloid-beta plaques and a deterioration in memory as the mice age.

      Strengths:

      I think the authors' proposal to leverage the latent cause model and test whether it can lead to improved assessments in an animal model of AD is a promising approach for bridging the gap between clinical and basic research. The authors use a promising mouse model and apply this to a paradigm in which the behavior and neurobiology are relatively well understood - an ideal situation for assessing how a disease state may impact both the neurobiology and behavior. The latent cause model has the potential to better connect observed behavior to underlying causes and may pave a road for improved mapping of changes in behavior to neurobiological mechanisms in diseases such as AD.<br /> The authors also compare the latent cause model to the Rescorla-Wagner model and a latent state model allowing for better assessment of the latent cause model as a strong model for assessing reinstatement.

      Weaknesses:

      I have several substantial concerns which I've detailed below. These include important details on how the behavior was analyzed, how the model was used to assess the behavior, and the interpretations that have been made based on the model.<br /> (1) There is substantial data to suggest that during fear learning in mice separate memories develop for the acquisition and extinction phases, with the acquisition memory becoming more strongly retrieved during spontaneous recovery and reinstatement. The Gershman paper, cited by the authors, shows how the latent causal model can predict this shift in latent causes by allowing for the priors to decay over time, thereby increasing the posterior of the acquisition memory at the time of spontaneous recovery. In this manuscript, the authors suggest a similar mechanism of action for reinstatement, yet the model does not appear to return to the acquisition memory after reinstatement, at least based on the simulation and examples shown in figures 1 and 3. More specifically, in figure 1, the authors indicate that the posterior probability of the latent cause, z<sub>A</sub> (the putative acquisition memory), increases, partially leading to reinstatement. This does not appear to be the case as test 3 (day 36) appears to have similar posterior probabilities for z<sub>A</sub> as well as similar weights for the CS as compared to the last days of extinction. Rather, the model appears to mainly modify the weights in the most recent latent cause, z<sub>B</sub> - the putative the 'extinction state', during reinstatement. The authors suggest that previous experimental data have indicated that spontaneous recovery or reinstatement effects are due to an interaction of the acquisition and extinction memory. These studies have shown that conditioned responding at a later time point after extinction is likely due to a balance between the acquisition memory and the extinction memory, and that this balance can shift towards the acquisition memory naturally during spontaneous recovery, or through artificial activation of the acquisition memory or inhibition of the extinction memory (see Lacagnina et al. for example). Here the authors show that the same latent cause learned during extinction, z<sub>B</sub>, appears to dominate during the learning phase of reinstatement, with rapid learning to the context - the weight for the context goes up substantially on day 35 - in z<sub>B</sub>. This latent cause, z<sub>B</sub>, dominates at the reinstatement test, and due to the increased associative strength between the context and shock, there is a strong CR. For the simulation shown in figure 1, it's not clear why a latent cause model is necessary for this behavior. This leads to the next point.

      (2) The authors compared the latent cause model to the Rescorla-Wagner model. This is very commendable, particularly since the latent cause model builds upon the RW model, so it can serve as an ideal test for whether a more simplified model can adequately predict the behavior. The authors show that the RW model cannot successfully predict the increased CR during reinstatement (Appendix figure 1). Yet there are some issues with the way the authors have implemented this comparison:<br /> (2A) The RW model is a simplified version of the latent cause model and so should be treated as a nested model when testing, or at a minimum, the number of parameters should be taken into account when comparing the models using a method such as the Bayesian Information Criterion, BIC.<br /> (2B) The RW model provides the associative strength between stimuli and does not necessarily require a linear relationship between V and the CR. This is the case in the original RW model as well as in the LCM. To allow for better comparison between the models, the authors should be modeling the CR in the same manner (using the same probit function) in both models. In fact, there are many instances in which a sigmoid has been applied to RW associative strengths to predict CRs. I would recommend modeling CRs in the RW as if there is just one latent cause. Or perhaps run the analysis for the LCM with just one latent cause - this would effectively reduce the LCM to RW and keep any other assumptions identical across the models.<br /> (2C) In the paper, the model fits for the alphas in the RW model are the same across the groups. Were the alphas for the two models kept as free variables? This is an important question as it gets back to the first point raised. Because the modeling of the reinstatement behavior with the LCM appears to be mainly driven by latent cause z<sub>B</sub>, the extinction memory, it may be possible to replicate the pattern of results without requiring a latent cause model. For example, the 12-month-old App NL-G-F mice behavior may have a deficit in learning about the context. Within the RW model, if the alpha for context is set to zero for those mice, but kept higher for the other groups, say alpha_context = 0.8, the authors could potentially observe the same pattern of discrimination indices in figure 2G and 2H at test. Because the authors don't explicitly state which parameters might be driving the change in the DI, the authors should show in some way that their results cannot simply be due to poor contextual learning in the 12 month old App NL-G-F mice, as this can presumably be predicted by the RW model. The authors' model fits using RW don't show this, but this is because they don't consider this possibility that the alpha for context might be disrupted in the 12-month-old App NL-G-F mice. Of course, using the RW model with these alphas won't lead to as nice of fits of the behavior across acquisition, extinction, and reinstatement as the authors' LCM, the number of parameters are substantially reduced in the RW model. Yet the important pattern of the DI would be replicated with the RW model (if I'm not mistaken), which is the important test for assessment of reinstatement.

      (3) As stated by the authors in the introduction, the advantage of the fear learning approach is that the memory is modified across the acquisition-extinction-reinstatement phases. Although perhaps not explicitly stated by the authors, the post-reinstatement test (test 3) is the crucial test for whether there is reactivation of a previously stored memory, with the general argument being that the reinvigorated response to the CS can't simply be explained by relearning the CS-US pairing, because re-exposure the US alone leads to increase response to the CS at test. Of course there are several explanations for why this may occur, particularly when also considering the context as a stimulus. This is what I understood to be the justification for the use of a model, such as the latent cause model, that may better capture and compare these possibilities within a single framework. As such, it is critical to look at the level of responding to both the context alone and to the CS. It appears that the authors only look at the percent freezing during the CS, and it is not clear whether this is due to the contextual-US learning during the US re-exposure or to increased responding to the CS - presumably caused by reactivation of the acquisition memory. The authors do perform a comparison between the preCS and CS period, but it is not clear whether this is taken into account in the LCM. For example, the instance of the model shown in figure 1 indicates that the 'extinction cause', or cause z6, develops a strong weight for the context during the reinstatement phase of presenting the shock alone. This state then leads to increased freezing during the final CS probe test as shown in the figure. If they haven't already, I think the authors must somehow incorporate these different phases (CS vs ITI) into their model, particularly since this type of memory retrieval that depends on assessing latent states is specifically why the authors justified using the latent causal model. In more precise terms, it's not clear whether the authors incorporate a preCS/ITI period each day the cue is presented as a vector of just the context in addition to the CS period in which the vector contains both the context and the CS. Based on the description, it seemed to me that they only model the CRs during the CS period on days when the CS is presented, and thereby the context is only ever modeled on its own (as just the context by itself in the vector) on extinction days when the CS is not presented. If they are modeling both timepoints each day that the CS I presented, then I would recommend explicitly stating this in the methods section.

      (4) The authors fit the model using all data points across acquisition and learning. As one of the other reviewers has highlighted, it appears that there is a high chance for overfitting the data with the LCM. Of course, this would result in much better fits than models with substantially fewer free parameters, such as the RW model. As mentioned above, the authors should use a method that takes into account the number of parameters, such as the BIC.

      (5) The authors have stated that they do not think the Barnes maze task can be modeled with the LCM. Whether or not this is the case, if the authors do not model this data with the LCM, the Barnes maze data doesn't appear valuable to the main hypothesis. The authors suggest that more sophisticated models such as the LCM may be beneficial for early detection of diseases such as Alzheimer's, so the Barnes maze data is not valuable for providing evidence of this hypothesis. Rather, the authors make an argument that the memory deficits in the Barnes maze mimic the reinstatement effects providing support that memory is disrupted similarly in these mice. Although, the authors state that the deficits in memory retrieval are similar across the two tasks, the authors are not explicit as to the precise deficits in memory retrieval in the reinstatement task - it's a combination of overgeneralizing latent causes during acquisition, poor learning rate, over differentiation of the stimuli.

    4. Reviewer #3 (Public review):

      Summary:

      This paper seeks to identify underlying mechanisms contributing to memory deficits observed in Alzheimer's disease (AD) mouse models. By understanding these mechanisms, they hope to uncover insights into subtle cognitive changes early in AD to inform interventions for early-stage decline.

      Strengths:

      The paper provides a comprehensive exploration of memory deficits in an AD mouse model, covering early and late stages of the disease. The experimental design was robust, confirming age-dependent increases in Aβ plaque accumulation in the AD model mice and using multiple behavior tasks that collectively highlighted difficulties in maintaining multiple competing memory cues, with deficits most pronounced in older mice.

      In the fear acquisition, extinction, and reinstatement task, AD model mice exhibited a significantly higher fear response after acquisition compared to controls, as well as a greater drop in fear response during reinstatement. These findings suggest that AD mice struggle to retain the fear memory associated with the conditioned stimulus, with the group differences being more pronounced in the older mice.

      In the reversal Barnes maze task, the AD model mice displayed a tendency to explore the maze perimeter rather than the two potential target holes, indicating a failure to integrate multiple memory cues into their strategy. This contrasted with the control mice, which used the more confirmatory strategy of focusing on the two target holes. Despite this, the AD mice were quicker to reach the target hole, suggesting that their impairments were specific to memory retrieval rather than basic task performance.

      The authors strengthened their findings by analyzing their data with a leading computational model, which describes how animals balance competing memories. They found that AD mice showed somewhat of a contradiction: a tendency to both treat trials as more alike than they are (lower α) and similar stimuli as more distinct than they are (lower σx) compared to controls.

      Weaknesses:

      While conceptually solid, the model struggles to fit the data and to support the key hypothesis about AD mice's inability to retain competing memories. These issues are evident in Figure 3:

      (1) The model misses trends in the data, including the gradual learning of fear in all groups during acquisition, the absence of a fear response at the start of the experiment, and the faster return of fear during reinstatement compared to the gradual learning of fear during acquisition. It also underestimates the increase in fear at the start of day 2 of extinction, particularly in controls.

      (2) The model explains the higher fear response in controls during reinstatement largely through a stronger association to the context formed during the unsignaled shock phase, rather than to any memory of the conditioned stimulus from acquisition (as seen in Figure 3C). In the experiment, however, this memory does seem to be important for explaining the higher fear response in controls during reinstatement (as seen in Author Response Figure 3). The model does show a necessary condition for memory retrieval, which is that controls rely more on the latent causes from acquisition. But this alone is not sufficient, since the associations within that cause may have been overwritten during extinction. The Rescorla-Wagner model illustrates this point: it too uses the latent cause from acquisition (as it only ever uses a single cause across phases) but does not retain the original stimulus-shock memory, updating and overwriting it continuously. Similarly, the latent cause model may reuse a cause from acquisition without preserving its original stimulus-shock association.

      These issues lead to potential overinterpretation of the model parameters. The differences in α and σx are being used to make claims about cognitive processes (e.g., overgeneralization vs. over differentiation), but the model itself does not appear to capture these processes accurately.

      The authors could benefit from a model that better matches the data and captures the retention and retrieval of fear memories across phases. While they explored alternatives, including the Rescorla-Wagner model and a latent state model, these showed no meaningful improvement in fit. This highlights a broader issue: these models are well-motivated but may not fully capture observed behavior.

      Conclusion:

      Overall, the data support the authors' hypothesis that AD model mice struggle to retain competing memories, with the effect becoming more pronounced with age. While I believe the right computational model could highlight these differences, the current models fall short in doing so.

    1. eLife Assessment

      This manuscript describes an AI-automated microscopy-based approach to characterize both bacterial and host cell responses associated with Shigella infection of epithelial cells. The methodology is compelling and should be helpful for investigators studying a variety of intracellular pathogens. The authors have acquired important findings regarding host and bacterial responses in the context of infection, which should be followed up with further mechanistic-based studies.

    2. Reviewer #2 (Public review):

      Summary:

      Septin caging has emerged as one of the innate immune response of eukaryotic cells to infections by intracellular bacteria. This fascinating assembly of eukaryotic proteins into complex structures restricts bacteria motility within the cytoplasm of host cells, thereby facilitating recognition by cytosolic sensors and components of the autophagy machinery. Given the different types of septin caging that have been described thus far, a single cell, unbiased approach to quantify and characterise septin recruitment at bacteria is important to fully grasp the role and function of caging. Thus, the authors have developed an automated image analysis pipeline allowing bacterial segmentation and classification of septin cages that will be very useful in the future, applied to study the role of host and bacterial factors, compare different bacterial strains or even compare infections by clinical isolates.

      Strengths:

      The authors developed a solid pipeline that has been thoroughly validated. When tested on infected cells, automated analysis corroborated previous observations and allowed the unbiased quantification of the different types of septin cages as well as the correlation between caging and bacterial metabolic activity. This approach will prove an essential asset in the further characterisation of septin cages for future studies.

      Weaknesses:

      As the main aim of the manuscript is to described the newly developed analysis pipeline, the results illustrated in the manuscript are essentially descriptive. The developed pipeline seems exceptionally efficient in recognising septin cages in infected cells but its application for a broader purpose or field of study remains limited.

    3. Reviewer #4 (Public review):

      Summary

      In this study, López-Jiménez and colleagues demonstrate the utility of using high-content microscopy in dissecting host and bacterial determinants that play a role in the establishment of infection using Shigella flexneri as a model. The manuscript nicely identifies that infection with Shigella results in a block to DNA replication and protein synthesis. At the same time, the host responds, in part, via the entrapment of Shigella in septin cages.

      Strengths:

      The main strength of this manuscript is its technical aspects. They nicely demonstrate how an automated microscopy pipeline coupled with artificial intelligence can be used to gain new insights regarding elements of bacterial pathogenesis, using Shigella flexneri as a model system. Using this pipeline enabled the investigators to enhance the field's general understanding regarding the role of septin cages in responding to invading Shigella. This platform should be of interest to those who study a variety of intracellular microbial pathogens.

      Another strength of the manuscript is the demonstration - using cell biology-based approaches- that infection with Shigella blocks DNA replication and protein synthesis. These observations nicely dovetail with the prior findings of other groups. Nevertheless, their clever click-chemistry-based approaches provide visual evidence of these phenomena and should interest many.

      Weaknesses:

      There are two main weaknesses of this work. First, the studies are limited to findings obtained using a single immortalized cell line. It is appreciated that HeLa cells serve as an excellent model for studying aspects of Shigella pathogenesis and host responses. However, it would be nice to see that similar observations are observed with an epithelial cell line of intestinal, preferably colonic origin, and eventually, with a non-immortalized cell line, although it is appreciated that the latter studies are beyond the scope of this work.

      The other weakness is that the studies are minimally mechanistic. For example, the investigators have data to suggest that infection with Shigella leads to an arrest in DNA replication and protein synthesis; however, no follow-up studies have been conducted to determine how these host cell processes are disabled. Interestingly, Zhang and colleagues recently identified that the Shigella OspC effectors target eukaryotic translation initiation factor 3 to block host cell translation (PMID: 38368608).

    4. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public Review):

      Summary:

      In this study, López-Jiménez and colleagues demonstrated the utility of using high-content microscopy in dissecting host and bacterial determinants that play a role in the establishment of infection using Shigella flexneri as a model. The manuscript nicely identifies that infection with Shigella results in a block to DNA replication and protein synthesis. At the same time, the host responds, in part, via the entrapment of Shigella in septin cages.

      Strengths:

      The main strength of this manuscript is its technical aspects. They nicely demonstrate how an automated microscopy pipeline coupled with artificial intelligence can be used to gain new insights regarding elements of bacterial pathogenesis, using Shigella flexneri as a model system. Using this pipeline enabled the investigators to enhance the field's general understanding regarding the role of septin cages in responding to invading Shigella. This platform should be of interest to those who study a variety of intracellular microbial pathogens.

      Another strength of the manuscript is the demonstration - using cell biology-based approaches- that infection with Shigella blocks DNA replication and protein synthesis. These observations nicely dovetail with the prior findings of other groups. Nevertheless, their clever click-chemistry-based approaches provide visual evidence of these phenomena and should interest many.

      We thank the Reviewer for their enthusiasm on technical aspects of this paper, regarding both the automated microscopy pipeline coupled with artificial intelligence and the click-chemistry based approaches to dissect DNA replication and protein synthesis by microscopy.

      Weaknesses:

      There are two main weaknesses of this work. First, the studies are limited to findings obtained using a single immortalized cell line. It is appreciated that HeLa cells serve as an excellent model for studying aspects of Shigella pathogenesis and host responses. However, it would be nice to see that similar observations are observed with an epithelial cell line of intestinal, preferably colonic origin, and eventually, with a non-immortalized cell line, although it is appreciated that the latter studies are beyond the scope of this work.

      The immortalized cell line HeLa is widely regarded as a paradigm to study infection by Shigella and other intracellular pathogens. However, we agree that future studies beyond the scope of this work should include other cell lines (eg. epithelial cells of colonic origin, macrophages, primary cells). 

      The other weakness is that the studies are minimally mechanistic. For example, the investigators have data to suggest that infection with Shigella leads to an arrest in DNA replication and protein synthesis; however, no follow-up studies have been conducted to determine how these host cell processes are disabled. Interestingly, Zhang and colleagues recently identified that the Shigella OspC effectors target eukaryotic translation initiation factor 3 to block host cell translation (PMID: 38368608). This paper should be discussed and cited in the discussion.

      We appreciate the Reviewer’s concern about the lack of follow up work on observations of host DNA and protein synthesis arrest upon Shigella infection, which will be the focus of future studies. We acknowledge the recent work of Zhang et al. (Cell Reports, 2024) considering their similar results on protein translation arrest, and this reference has been more fully discussed in the revised version of the manuscript.

      Reviewer #2 (Public Review):

      Summary:

      Septin caging has emerged as one of the innate immune responses of eukaryotic cells to infections by intracellular bacteria. This fascinating assembly of eukaryotic proteins into complex structures restricts bacteria motility within the cytoplasm of host cells, thereby facilitating recognition by cytosolic sensors and components of the autophagy machinery. Given the different types of septin caging that have been described thus far, a single-cell, unbiased approach to quantify and characterise septin recruitment at bacteria is important to fully grasp the role and function of caging. Thus, the authors have developed an automated image analysis pipeline allowing bacterial segmentation and classification of septin cages that will be very useful in the future, applied to study the role of host and bacterial factors, compare different bacterial strains, or even compare infections by clinical isolates.

      Strengths:

      The authors developed a solid pipeline that has been thoroughly validated. When tested on infected cells, automated analysis corroborated previous observations and allowed the unbiased quantification of the different types of septin cages as well as the correlation between caging and bacterial metabolic activity. This approach will prove an essential asset in the further characterisation of septin cages for future studies.

      We thank the Reviewer for their positive comments, and for highlighting the strength of our imaging and analysis pipeline to analyse Shigella-septin interactions.

      Weaknesses:

      As the main aim of the manuscript is to describe the newly developed analysis pipeline, the results illustrated in the manuscript are essentially descriptive. The developed pipeline seems exceptionally efficient in recognising septin cages in infected cells but its application for a broader purpose or field of study remains limited.

      The main objective of this manuscript is the development of imaging and analysis tools to study Shigella infection, and in particular, Shigella interactions with the septin cytoskeleton. In future work we will provide more mechanistic insight with novel experiments and broader applicability, using different cell lines (in agreement with Reviewer 1), mutants or clinical isolates of Shigella and different bacteria species (eg. Listeria, Salmonella, mycobacteria).

      Reviewer #3 (Public Review):

      Summary:

      The manuscript uses high-content imaging and advanced image-analysis tools to monitor the infection of epithelial cells by Shigella. They perform some analysis on the state of the cells (through measurements of DNA and protein synthesis), and then they focus on differential recruitment of Sept7 to the bacteria. They link this recruitment with the activity of the bacterial T3SS, which is a very interesting discovery. Overall, I found numerous exciting elements in this manuscript, and I have a couple of reservations. Please see below for more details on my reservations. Nevertheless, I think that these issues can be addressed by the authors, and doing so will help to make it a convincing and interesting piece for the community working on intracellular pathogens. The authors should also carefully re-edit their manuscript to avoid overselling their data (see below for issues I see there). I would consider taking out the first figure and starting with Figure 3 (Figure 2 could be re-organized in the later parts)- that could help to make the flow of the manuscript better.

      Strengths:

      The high-content analysis including the innovative analytical workflows are very promising and could be used by a large number of scientists working on intracellular bacteria. The finding that Septins (through SEPT7) are differentially regulated through actively secreting bacteria is very exciting and can steer novel research directions.

      We thank the Reviewer for their constructive feedback and excitement for our results, including our findings on T3SS activity and Shigella-septin interactions. In accordance with the Reviewer’s comments, we avoid overselling our data in the revised version of the manuscript.

      Weaknesses:

      The manuscript makes a connection between two research lines (1: Shigella infection and DNA/protein synthesis, 2: regulation of septins around invading Shigella) that are not fully developed - this makes it sometimes difficult to understand the take-home messages of the authors.

      We agree that the manuscript is mostly technical and therefore some of our experimental observations would benefit from follow up mechanistic studies in the future. We highlight our vision for broader applicability in response to weaknesses raised by Reviewer 2.

      It is not clear whether the analysis that was done on projected images actually reflects the phenotypes of the original 3D data. This issue needs to be carefully addressed.

      We agree with the Reviewer that characterizing 3D data using 2D projected images has limitations.

      We observe an increase in cell and nuclear surface that does not strictly imply a change in volume. This is why we measure Hoechst intensity in the nucleus using SUM-projection (as it can be used as a proxy of DNA content of the cell). However, we agree that future use of other markers (such as fluorescently labelled histones) would make our conclusions more robust.

      Regarding the different orientation of intracellular bacteria, we agree that investigation of septin recruitment is more challenging when bacteria are placed perpendicular to the acquisition plane. In a first step, we trained a Convolutional Neural Network (CNN) using 2D data, as it is easier/faster to train and requires fewer annotated images. In doing so, we already managed to correctly identify 80% of Shigella interacting with septins, which enabled us to observe higher T3SS activity in this population. In future studies, we will maximize the 3D potential of our data and retrain a CNN that will allow more precise identification of Shigella-septin interactions and in depth characterization of volumetric parameters.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) To conclude that cell volume is indeed increased, the investigators should consider staining the cells with markers that demarcate cell boundaries and/or are confined to the cytosol, i.e., a cell tracker dye.

      Staining using our SEPT7 antibody enables us to define cell boundaries for cellular area measurements (Novel Figure 1 - figure supplement 1A). However, we agree with the Reviewer that staining cells with additional markers (such as a cell tracker dye) would be required to conclude that cell volume is increased. We therefore adjust our claims in the main text (lines 107-115 and 235-246).

      (2) Line 27: I understand what is meant by "recruited to actively pathogenic bacteria with increased T3SS activation." However, one could argue that there are many different roles of the intracytosolic bacteria in pathogenesis in terms of pathogenesis, not just actively secreting effectors.

      T3SS secretion by cytosolic bacteria is tightly regulated and both T3SS states (active, inactive) likely contribute to the pathogenic lifestyle of S. flexneri. In agreement with this, we removed this statement from the manuscript (lines 27, 225 and 274).

      (3) Line 88: Please clarify in the text that HeLa cells are being studied.

      We explicitly mention that the epithelial cell line we study is HeLa in the main text (line 93), in addition to the Materials and methods (line 328).

      (4) Line 97: is it possible to quantify the average distance of the nuclei from the cell perimeter? This would help provide some context as to what it means to be a certain distance from the nucleus, i.e., is there another way to point out that distance from nuclei correlates with movement inward post-invasion at the periphery?

      To provide more context to the inward movement of bacteria to the cell centre, we provide calculations based on measurements in Figure 1G, I. If we approximate geometric shape of both cells and nucleus to a circle, the median radius of a HeLa cell is 31.1 µm<sup>2</sup> (uninfected cell) and 36.3 µm<sup>2</sup> (infected cell). Similarly, the median radius of the nucleus is 22.2 µm<sup>2</sup> (uninfected cell) and 24.57 µm<sup>2</sup> (infected cell).

      However, we note that Figure 1F shows distance of bacteria to the centroid of the cell, which is the geometric centre of the cell, and which does not necessarily coincide with the geometric centre of the nucleus. We also note that nuclear area increases with infection (in a bacterial dose dependent manner). Finally, we note that these measurements are performed on max projections of 3D Z-stacks. In this case we cannot fully appreciate distance to the nucleus for bacteria located above it.

      (5) Lines 212-213 - there is no Figure 9A, B - I think this should be Figure 7A, B.

      Text has been updated (lines 216-217).

      Reviewer #2 (Recommendations For The Authors):

      Testing the analysis pipeline as a proof-of-concept question such as the comparison of caging around the laboratory strain as compared to one or a few clinical isolates or mutants of interest would help stress the relevance of this new, remarkable tool.

      We thank the Reviewer for their enthusiasm.

      Future research in the Mostowy lab will capitalise on the high-content tools generated here to explore the frequency and heterogeneity of septin cage entrapment for a wide variety of S. flexneri mutants and Shigella clinical isolates.

      The sentence in line 215 ends with "in agreement with" followed by a reference.

      Text has been updated (line 219).

      The sentence in line 217 on the correlation between caging and T3SS is not very clear.

      Text has been clarified (lines 221-223).

      There is a typo in line 219 : "protrusSions"

      Text has been updated (line 223).

      Reviewer #3 (Recommendations For The Authors):

      Major points

      The quantitative analysis approach in Figure 1 has multiple issues. Some examples:<br /> (1) How was the cell area estimated? Normally, a marker for the whole cell (CellMask or similar) or cells expressing GFP would be good indicators. Here it is not clear to me what was done.

      The cell area was estimated using SEPT7 antibody staining which is enriched under the cell cortex. CellProfiler was used to segment cells based on SEPT7 staining, using a propagation method from the identified nucleus based on Otsu thresholding. To provide more clarity on how this was performed, we now include a new figure (Figure 1- figure supplement 1A) showing a representative image of HeLa cells stained with SEPT7 and the corresponding cell segmentation performed with CellProfiler software, together with an updated figure legend explaining the procedure (lines 784–787).

      (2) The authors use Hoechst and integrated z-projections (Figure 1 S1) as a proxy to estimate nuclear volume. Hoechst staining depends on the organization of the DNA within the nucleus and I find that the authors need to do better controls to estimate nuclear size - this would be possible with cells expressing fluorescently labeled histones, or even better with a fluorescently tagged nuclear pore/envelope marker. The current quantification approach is misleading.

      We understand Reviewer #3’s concerns about using Hoechst staining as a proxy of nuclear volume, due to potential differences in DNA organisation within the nucleus.

      Following the recommendation of Reviewer #3 in the following point 3, text has been updated (lines 107–115 and 235-246).

      (3) Was cell density assessed for the measurements? If cells are confluent, bacteria could spread between cells within 3 hrs, if cells are less dense, this does not occur. When epithelial cells are infected for some hours, they have the tendency to round up a bit (and to appear thicker in z), but a bit smaller in xy. My suggestion to the authors (as they use these findings to follow up with experiments on the underlying processes) would be to tone down their statements - eg, Hoechst staining could be simply indicated as altered, but not put in a context of size (this would require substantial control experiments).

      Local cell density was not directly measured, but the experiment was set up to infect at roughly 80% confluency (cells were seeded at 10<sup>4</sup> cells/well 2 days prior to infection in a 96-well microplate, as described in the Materials and methods section) and to ensure bacterial spread between cells.

      In agreement with Reviewer #3 we tone down statements in the main text (see response to point 2 above).

      In addition, I found Figure 1 (and parts of Figure 2) disconnected from the rest of the manuscript, and it may even be an idea to take it out of the manuscript (that could also help to deal with my feedback relating to Figure 1). I would suggest starting the manuscript with the current Figure 3 and building the biological story with a stronger focus on SEPT7 (and its links with T3 secretion and actively pathogenic bacteria) from there on. As it stands, the two parts of the manuscript are not well connected.

      We carefully considered this comment but following revisions we have not reorganised the manuscript. We believe that high-content characterisation of S. flexneri infection in Figure 1 and 2 provides insightful information about changes in host cells in response to infection. Following this, we move onto characterising intracellular bacteria (and in particular those entrapped in septin cages) in the second part of the manuscript (Figure 3-7). Similar methods were used to analyse both host and bacterial cells and results obtained offer complementary views on host-pathogen interactions.

      My major reservation with the experimental work of the current version of the manuscript relates to Figure 5: The analysis of the septin phenotypes in Figure 5 seems to be problematic - to me, it appears that analysis and training were done on projected image stacks. As bacteria are rod-shaped their orientation in space has an enormous impact on how the septin signal appears in a projection - this can lead to wrong interpretation of the phenotypes. The authors need to do some quantitative controls analyzing their data in 3D. To be more clear: the example "tight" (second row) shows a bacterium that appears short. It may be that it's actually longer if one looks in 3D, and the septin signal could possibly fall in the category "rings" or even "two poles".

      The deep learning training and subsequent analysis of septin-cage entrapment is done on projected Z-stacks, which presents limitations. Future work in the Mostowy lab will exploit this first study and dive deeper into 3D aspects of the data.

      To address Reviewer #3’s concern, we include a sentence explaining that this analysis was performed using 2D max projections (lines 708 and 724), as well as acknowledging its limitations in the main text (lines 259-262).

      Minor points

      The scale bar in Fig 1 is very thin.

      We corrected the scale bar in Fig. 1 to make it more visible.

      Could it be that Figure 1F is swapped with Figure1E in the description?

      Descriptions for Figure 1E and F are correct.

      Line 27: what does "actively pathogenic bacteria" mean? I propose to change the term.

      We agree with Reviewer #3 that “actively pathogenic bacteria” should be removed from the text. This update is also in agreement with Reviewer #1 (see Reviewer #1 point 2).

      Line 28: "dynamics" can be confusing as it relates to dynamic events imaged by time-lapse.

      Although we are making a snapshot of the infection process at 3 hpi, we capture asynchronous processes in both host and bacterial cells (eg. host cells infected with different bacterial loads, bacterial cells undergoing actin polymerisation or septin cage entrapment). We agree that we are not following dynamics of full events over time. However, our high content approach enables us to capture different stages of dynamic processes. To avoid confusion, we replace “dynamics” by “diverse interactions” (line 28), and we discuss the importance of follow-up studies studying microscopy timelapses (line 274).

      Paragraph 59 following: the concept of heterogeneity was investigated in some detail for viral infection by the Pelkmans group (PMID: 19710653) using advanced image analysis tools. Advanced machine-learning-based analysis was then performed on Salmonella invasion by Voznica and colleagues (PMID: 29084895). It would be great to include these somewhat "old" works here as they really paved the way for high-content imaging, and the way analyses were performed then should be also discussed in light of how analyses can be performed now with the approaches developed by the authors.

      We agree. These landmark studies have now been included in the main text (lines 71-74).

      Line 181: I do not know what "morphological conformations" means, perhaps the authors can change the wording or clarify.

      We substituted the phrase “morphological conformations” by “morphological patterns” to improve clarity in the main text (lines 185).

      The authors claim (eg in the abstract) that they are measuring the dynamic infection process. To me, it appears that they look at one time-point, so no dynamic information can be extracted. I suggest that the authors tone down their claims.

      Please note our response above (Minor points, Line 28) which also refers to this question.

    1. eLife Assessment

      This study presents a computational-experimental workflow for optimizing RNA aptamers targeting SARS-CoV-2 RBD. While the integrated approach combining docking, molecular dynamics, and experimental validation shows some promise, the useful findings are limited by the extremely weak binding affinities (>100 µM KD) and restriction to a single target system. The evidence is incomplete, with experimental design issues in the antibody competition assays and a lack of specificity testing undermining confidence in the conclusions.

    2. Reviewer #1 (Public review):

      Summary:

      In this study, the authors attempt to devise general rules for aptamer design based on structure and sequence features. The main system they are testing is an aptamer targeting a viral sequence.

      Strengths:

      The method combines a series of well-established protocols, including docking, MD, and a lot of system-specific knowledge, to design several new versions of the Ta aptamer with improved binding affinity.

      Weaknesses:

      The approach requires a lot of existing knowledge and, importantly, an already known aptamer, which presumably was found with Selex. In addition, although the aptamer may have a stronger binding affinity, it is not clear if any of it has any additional useful properties such as stability, etc.

    3. Reviewer #2 (Public review):

      Summary:

      This manuscript proposes a workflow for discovering and optimizing RNA aptamers, with application in the optimization of a SARS-CoV-2 RBD. The authors took a previously identified RNA aptamer, computationally docked it into one specific RBD structure, and searched for variants with higher predicted affinity. The variants were subsequently tested for RBD binding using gel retardation assays and competition with antibodies, and one was found to be a stronger binder by about three-fold than the founding aptamer.

      Overall, this would be an interesting study if it were performed with truly high-affinity aptamers, and specificity was shown for RBD or several RBD variants.

      Strengths:

      The computational workflow appears to mostly correctly find stronger binders, though not de novo binders.

      Weaknesses:

      (1) Antibody competition assays are reported with RBD at 40 µM, aptamer at 5 µM, and a titration of antibody between 0 and 1.2 µg. This approach does not make sense. The antibody concentration should be reported in µM. An estimation of the concentration is 0-8 pmol (from 0-1.2 µg), but that's not a concentration, so it is unknown whether enough antibody molecules were present to saturate all RBD molecules, let alone whether they could have displaced all aptamers.

      (2) These are not by any means high-affinity aptamers. The starting sequence has an estimated (not measured, since the titration is incomplete) KD of 110 µM. That's really the same as non-specific binding for an interaction between an RNA and a protein. This makes the title of the manuscript misleading. No high-affinity aptamer is presented in this study. If the docking truly presented a bound conformation of an aptamer to a protein, a sub-micromolar Kd would be expected, based on the number of interactions that they make.

      (3) The binding energies estimated from calculations and those obtained from the gel-shift experiments are vastly different, as calculated from the Kd measurements, making them useless for comparison, except for estimating relative affinities.

    1. eLife Assessment

      This study is a valuable contribution to the evidence base. However, the evidence provided is incomplete as the study results only partially support the study conclusions. Addressing the methodological and reporting issues raised by the peer reviewers and properly aligning the claim made for providing a tool for early warning with the study analysis/results would improve the study quality and usefulness of its findings.

    2. Reviewer #1 (Public review):

      This is my first review of this manuscript. The authors included previous reviews for a different journal with a length of 90 and 39 pages; I did not review this reply in my assessment of the paper itself. Influenza prediction is not my area of expertise.

      A major concern is that the model is trained in the midst of the COVID-19 pandemic and its associated restrictions and validated on 2023 data. The situation before, during, and after COVID is fluid, and one may not be representative of the other. The situation in 2023 may also not have been normal and reflective of 2024 onward, both in terms of the amount of testing (and positives) and measures taken to prevent the spread of these types of infections. A further worry is that the retrospective prospective split occurred in October 2020, right in the first year of COVID, so it will be impossible to compare both cohorts to assess whether grouping them is sensible.

      The outcome of interest is the number of confirmed influenza cases. This is not only a function of weather, but also of the amount of testing. The amount of testing is also a function of historical patterns. This poses the real risk that the model confirms historical opinions through increased testing in those higher-risk periods. Of course, the models could also be run to see how meteorological factors affect testing and the percentage of positive tests. The results only deal with the number of positive (only the overall number of tests is noted briefly), which means there is no way to assess how reasonable and/or variable these other measures are. This is especially concerning as there was massive testing for respiratory viruses during COVID in many places, possibly including China.

      (1) Although the authors note a correlation between influenza and the weather factors. The authors do not discuss some of the high correlations between weather factors (e.g., solar radiation and UV index). Because of the many weather factors, those plots are hard to parse.

      (2) The authors do not actually compare the results of both methods and what the LSTM adds.

      Minor comments:

      (3) The methods are long and meandering. They could be cleaned up and shortened. E.g., there is no need for 30 lines on PCR testing; the study area should come before the study design. The authors discuss similar elements in multiple places; this whole section can be shortened considerably without affecting the content.

      (4) How reliable is the "Our Word in Data" website for subnational coverage of restrictions? Some of the authors are from Putian and should be able to confirm the accuracy for both studied areas.

      (5) Figure 2A is hard to parse; it would make more sense to plot these as line plots (y=count, x=month).

    3. Reviewer #2 (Public review):

      Summary:

      The study aimed to assess the associations between meteorological drivers and influenza is important although not new. The authors used only 6 years of surveillance data and deep learning models, combining distributed lag non-linear models (DLNM) with Bayesian-optimized LSTM neural networks for predictive modeling. The key interest in this area is to explore the subtropical locations, where influenza is less common and circulates year-round. The authors further claimed that such an association could be able to provide an early warning in the community. In this direction, the current manuscript has several scopes of improvements and clarification of the claims, as I list here.

      Strengths:

      Study design based on a prospective cohort to analyse the data for retrospective outcomes.

      Weaknesses:

      (1) The rationale of the study is not clearly stated.

      (2) Several issues with methodological and data integration should be clarified.

      (3) Validation of the models is not presented clearly.

      (4) The claim for providing tools for 'early warning' was not validated by analysis and results.

    4. Author response:

      Reviewer # 1 (Public review):

      A major concern is that the model is trained in the midst of the COVID-19 pandemic and its associated restrictions and validated on 2023 data. The situation before, during, and after COVID is fluid, and one may not be representative of the other. The situation in 2023 may also not have been normal and reflective of 2024 onward, both in terms of the amount of testing (and positives) and measures taken to prevent the spread of these types of infections. A further worry is that the retrospective prospective split occurred in October 2020, right in the first year of COVID, so it will be impossible to compare both cohorts to assess whether grouping them is sensible.

      We fully concur with the reviewer that the COVID-19 pandemic represents a profound confounding factor that fundamentally impacts the interpretation and generalizability of our model. This is a critical point that deserves a more thorough treatment. In the revised manuscript, we will add a dedicated subsection in the Discussion to explicitly analyze the pandemic’s impact. We will reframe our model’s contribution not as a universally generalizable tool for a hypothetical “normal” future, but as a robust framework demonstrated to capture complex epidemiological dynamics under the extreme, non-stationary conditions of a real-world public health crisis. We will argue that its strong performance on the 2023 validation data, a unique post-NPI “rebound” year, specifically showcases its utility in modeling volatile periods.

      The outcome of interest is the number of confirmed influenza cases. This is not only a function of weather, but also of the amount of testing. The amount of testing is also a function of historical patterns. This poses the real risk that the model confirms historical opinions through increased testing in those higher-risk periods. Of course, the models could also be run to see how meteorological factors affect testing and the percentage of positive tests. The results only deal with the number of positive (only the overall number of tests is noted briefly), which means there is no way to assess how reasonable and/or variable these other measures are. This is especially concerning as there was massive testing for respiratory viruses during COVID in many places, possibly including China.

      The reviewer raises a crucial point regarding surveillance bias, which is inherent in studies using reported case data. We acknowledge this limitation and will address it more transparently.

      (1) Clarification of Available Data: Our manuscript states that over the six-year period, a total of 20,488 ILI samples were tested, yielding 3,155 positive cases (line 471; Figure 1). We will make this denominator more prominent in the Methods section. However, the reviewer is correct that our models for Putian and the external validation for Sanming utilize the daily positive case counts as the outcome. The reality of our surveillance data source is that while we have the aggregate total of tests over six years, obtaining a reliable daily denominator of all respiratory virus tests conducted (not just for ILI patients as per the surveillance protocol) is not feasible. This is a common constraint in real-world public health surveillance systems.

      (2) Justification and Discussion: We will add a detailed paragraph to the Limitations section to address this. We will justify our use of case counts as it is the most direct metric for assessing public health burden and planning resource allocation (e.g., hospital beds, antivirals). We will also explain that modeling the positivity rate presents its own challenges, as the ILI denominator is also subject to biases (e.g., shifts in healthcare-seeking behavior, co-circulation of other pathogens causing similar symptoms). We will thus frame our work as forecasting the direct surveillance signal that public health officials monitor daily.

      Although the authors note a correlation between influenza and the weather factors. The authors do not discuss some of the high correlations between weather factors (e.g., solar radiation and UV index). Because of the many weather factors, those plots are hard to parse.

      This is an excellent point. Our preliminary analysis (Supplementary Figure S2) indeed confirms a strong positive correlation between solar radiation and the UV index. Perhaps the reviewer overlooked the contents of the supplementary information document. We have included the figure for their review. Our original discussion did explicitly address this multicollinearity, summarized as follows: We acknowledge the high correlation between certain meteorological variables. We then explain that our two-stage modeling approach is designed to mitigate this issue. In the first stage, the DLNM models assess the impact of each variable individually, thus isolating their non-linear and lagged effects without being confounded by interactions. In the second stage, the LSTM network, by its nature, is a powerful non-linear function approximator that is robust to multicollinearity and can learn the complex, interactive relationships between all input features, including correlated ones.

      Figure S2. Scatterplot matrix illustrating correlations between Influenza cases and meteorological factors. This comprehensive scatterplot matrix visualizes the relationships between influenza-like illness (ILI) cases, influenza A and B cases, and multiple meteorological variables, including average temperature, humidity, precipitation, wind speed, wind direction, solar radiation, and ultraviolet (UV) index. The figure is composed of three distinct sections that collectively provide an in-depth analysis of these relationships:

      (1) Upper-right triangle: This section presents a Pearson correlation coefficient matrix, with color intensity reflecting the strength of correlations between the variables. Red cells represent positive correlations, while green cells represent negative correlations. The closer the coefficient is to 1 or -1, the darker the cell and the stronger the correlation, with statistically significant correlations marked by asterisks. This matrix allows for a rapid identification of notable relationships between influenza cases and meteorological factors.

      (2) Lower-left triangle: This section contains scatterplots of pairwise comparisons between variables. These scatterplots facilitate the visual identification of potential linear or non-linear relationships, as well as any outliers or anomalies. This visualization is essential for evaluating the nature of interactions between meteorological factors and influenza cases.

      (3) Diagonal: The diagonal displays the density distribution curves for each individual variable. These curves provide an overview of the distribution characteristics of each variable, revealing central tendencies, variance, and any skewness present in the data.

      The authors do not actually compare the results of both methods and what the LSTM adds.

      We thank the reviewer for this comment and realize we may not have signposted the comparison clearly enough. Our manuscript does present a direct comparison between the LSTM and ARIMA models in the Results section (lines 737-745) and Table 2, where performance metrics (MAE, RMSE, MAPE, SMAPE) for both models on the 2023 validation set are detailed, showing LSTM’s superior performance, particularly for Influenza A. Furthermore, Figure 6 (panels A and B) visualizes the LSTM’s predictions against observed values, and Supplementary Figure S3 does the same for the ARIMA model, allowing for a visual comparison of their fit.

      To address the reviewer’s concern, in the revised manuscript, we will:

      (1) Add a more explicit comparative statement in the Results section, directly contrasting the key metrics and highlighting the LSTM’s advantages in capturing peak activities.

      (2) Consider combining the visualizations from Figure 6 and Supplementary Figure S3 into a single, more powerful comparative figure that shows the observed data, the LSTM predictions, and the ARIMA predictions on the same plot.

      Meandering methods; reliability of “Our Word in Data”; Figure 2A is hard to parse.

      We will address these points comprehensively.

      (3) Methods: We will significantly streamline and restructure the Methods section. We also wish to provide context that the manuscript’s current structure reflects an effort to incorporate feedback from multiple rounds of peer review across different journals, which may have led to some repetition. We will perform a thorough edit to improve its conciseness and logical flow.

      (4) Data Reliability: The reviewer raises a crucial and highly insightful question regarding the validity of using a national-level index to represent local public health interventions. This is a critical aspect of our model’s construction, and we are grateful for the opportunity to provide a more thorough justification.

      We acknowledge that the ideal variable would be a daily, quantitative, city-level index of non-pharmaceutical interventions (NPIs). However, the practical reality of the data landscape in China is that such granular, publicly accessible databases for subnational regions do not exist. Given this constraint, our choice of the Our World in Data (OWID) national stringency index was the result of a careful consideration process, and we believe it serves as the best available proxy for our study context.

      In the revised manuscript, we will significantly expand the Methods section to articulate our rationale, which is threefold:

      National Policy Coherence: During the COVID-19 pandemic in mainland China, core NPIs, particularly mandatory face-covering policies in shared public spaces, were implemented with a high degree of national uniformity. While local governments had some autonomy, they operated within a centrally defined framework, ensuring a baseline level of policy consistency across the country.

      Local Context Alignment: A key factor supporting the use of this national proxy is the specific epidemiological context of Putian during the study period. For the vast majority of the pandemic, Putian was classified as a low-risk area with only sporadic COVID-19 cases. Consequently, the city’s public health measures consistently aligned with the standard national guidelines. It did not experience prolonged or exceptionally strict local lockdowns that would cause a significant deviation from the national-level policy trends captured by the OWID index.

      Validation by Local Public Health Experts: Most critically, and to directly address your suggestion, our co-authors from the Putian Center for Disease Control and Prevention have meticulously reviewed the OWID stringency index against their on-the-ground, institutional knowledge of the mandates that were in effect. They have confirmed that the categorical levels (0-4) and the temporal trends of the OWID index provide a faithful representation of the public health restrictions concerning face coverings as experienced by the population of Putian.

      Therefore, we will revise our manuscript to make it clear that the use of the OWID index was not a choice of convenience, but a necessary and well-vetted decision. Given the unavailability of official local data, the OWID index, cross-validated by our local experts, represents the most rigorous and appropriate variable available to account for the profound impact of NPIs on influenza transmission in our model.

      (5) Figure 2A: We agree completely and will replace the heatmap with a multi-line plot or a stacked area chart to better visualize the temporal dynamics of influenza subtypes.

      We have preliminarily completed the redrawing of Figure 3A. The new and old versions are presented for your review to determine which figure is more suitable for this manuscript in terms of scientific accuracy and visual impact.

      Reviewer #2 (Public review):

      Weakness (1):

      The rationale of the study is not clearly stated.

      We appreciate the reviewer’s critique and acknowledge that the unique contribution of our study needs to be articulated more forcefully. Our introduction (lines 105-140) attempted to outline the limitations of existing studies, but we will revise it to be much sharper. The revised introduction will state unequivocally that our study’s rationale is to address a confluence of specific, unresolved gaps in the literature: 1) The persistent challenge of forecasting influenza in subtropical regions with their erratic seasonality; 2) The lack of studies that build subtype-specific models for Influenza A and B, which we show have distinct meteorological drivers; 3) The methodological gap in integrating the explanatory power of DLNM with the predictive power of a rigorously, Bayesian-optimized LSTM network; and 4) The unique opportunity to develop and test a model on data that encompasses the unprecedented disruption of the COVID-19 pandemic, a critical test of model robustness.

      Weakness (2):

      Several issues with methodological and data integration should be clarified.

      We interpret this as a general statement, with the specific issues detailed in the reviewer’s subsequent points and the “Recommendations for the authors” section. We will meticulously address each of these specific points in our revision. For instance, as a demonstration of our commitment to clarification, we will provide a much more detailed justification for our choice of benchmark model (ARIMA), as detailed in our response to Recommendation #11.

      Reviewer #2 (Recommendation  for the authors):

      The authors should justify why the baseline model selection was made by comparing the LSTM model only with ARIMA? How the outcomes could be sensitive to other commonly used machine learning methods, such as Random Forest or XGBoost, etc, as a benchmark for their performance.

      The reviewer raises a highly pertinent question regarding the selection of our benchmark model. A robust comparison is indeed essential for contextualizing the performance of our proposed LSTM network. Our choice to benchmark against the ARIMA model was a deliberate and principled decision, grounded in the specific literature of influenza forecasting at the intersection of climatology and epidemiology.

      In the revised manuscript, we will expand our justification within the Methods section and reinforce it in the Discussion. Our rationale is as follows:

      (1) ARIMA as the Established Standard: As we briefly noted in our original introduction (lines 110-113), the ARIMA model is arguably the most widely established and frequently cited statistical method for time-series forecasting of influenza incidence, including studies investigating meteorological drivers. It serves as the conventional benchmark against which novel methods in this specific domain are often evaluated. Therefore, demonstrating superiority over ARIMA is the most direct and scientifically relevant way to validate the incremental value of our deep learning approach.

      (2) A Focused Scientific Hypothesis: Our primary hypothesis was that the LSTM network, with its inherent ability to capture complex non-linearities and long-term dependencies, could overcome the documented limitations of linear autoregressive models like ARIMA in the context of climate-influenza dynamics. Our study was designed specifically to test this hypothesis.

      (3) Avoiding a “Bake-off” without a Clear Rationale: While other machine learning models like Random Forest or XGBoost are powerful, they are not established as the standard baseline in this particular niche of literature. Including them would shift the focus from a targeted comparison against the conventional standard to a broader, less focused “bake-off” of various algorithms. Such an exercise, while potentially interesting, would risk diluting the core message of our paper and would be undertaken without a clear, literature-driven hypothesis for why one of these specific tree-based models should be the next logical benchmark.

      Therefore, we will argue in the revised manuscript that our focused comparison with ARIMA provides the clearest and most meaningful assessment of our model’s contribution to the existing body of work on climate-informed influenza forecasting. We will, however, explicitly acknowledge in the Discussion that future work could indeed benefit from a broader comparative analysis as the field continues to evolve and adopt a wider array of machine learning techniques.

      Similarly, for some of the reviewer’s recommendations that do not require significant time and effort to implement, such as recommendation 7, we have also redrawn Figure 3 based on your feedback. It is provided for your review.

      Figure 3 presents the time series of the cases. I wonder whether the data for these factors and outcomes are daily or aggregated by week/month? I suggest representing it in 9x1 format with a single x-axis to compare, instead of 3x3 format. Authors can refer similar plot in https://doi.org/ 10.1371/journal.pcbi.1012311 in Figure 1.

      We are deeply grateful for the reviewer’s valuable suggestion and thoughtful provision of reference illustrations. Based on their input, we have redrawn Figure 3 and have included it for their review.

      Weakness (3):

      Validation of the models is not presented clearly.

      We were concerned by this comment and conducted a thorough self-assessment of our manuscript. We believe we have performed a multi-faceted validation, but we have evidently failed to present it with sufficient clarity and structure. Our validation strategy, detailed across the Methods and Results sections, includes:

      • Internal Out-of-Time Validation: Using 2023 data as a hold-out set to test the model trained on 2018-2022 data (lines 695-696, 705-710; Figure 6A, B).

      • External Validation: Testing the trained model on an independent dataset from a different city, Sanming (lines 730-736; Figure 6I, J).

      • Benchmark Model Comparison: Quantitatively comparing the LSTM’s performance against the standard ARIMA model using multiple error metrics (lines 737-745; Table 2).

      • Interpretability Validation (Sanity Check): Using SHAP analysis to ensure the model’s predictions are driven by epidemiologically plausible factors (lines 746-755; Figure 6E-H).

      To address the reviewer’s valid critique of our presentation, we will significantly restructure the relevant parts of the Results section. We will create explicit subheadings such as “Internal Validation,” “External Validation,” and “Comparative Performance against ARIMA Benchmark” to make our comprehensive validation process unambiguous and easy to follow.

      Weakness (4):

      The claim for providing tools for 'early warning' was not validated by analysis and results.

      We agree with this assessment entirely. This aligns with the eLife Assessment and comments from Reviewer #1. Our primary revision will be to systematically recalibrate the manuscript's language. We will replace all instances of “early warning tool” with more accurate and modest phrasing, such as “high-performance forecasting framework” or “a foundational model for future warning systems.” We will ensure that our revised title, abstract, and conclusions precisely reflect what our study has delivered: a robust predictive model, not a field-ready public health intervention tool.

    1. eLife Assessment

      This landmark manuscript comprehensively examines the roles of nine structural proteins in herpes simplex virus 1 (HSV-1) assembly and nuclear egress. By integrating cryo-light microscopy and soft X-ray tomography, the study presents an innovative approach to investigating viral assembly within cells. The research is thoroughly executed, yielding exceptional data that explain previously unknown functions expected to bear widespread influence. This work is of broad interest to virologists, cellular biologists, and structural biologists, offering a robust, contextually rich methodology for studying large protein complex assembly within the cellular environment, serving as an excellent starting point for high-resolution techniques.

    2. Reviewer #1 (Public review):

      Summary:

      Nahas et al. investigated the roles of herpes simplex virus 1 (HSV-1) structural proteins using correlative cryo-light microscopy and soft X-ray tomography. The authors generated nine viral variants with deletions or mutations in genes encoding structural proteins. They employed a chemical fixation-free approach to study native-like events during viral assembly, enabling observation of a wider field of view compared to cryo-ET. The study effectively combined virology, cell biology, and structural biology to investigate the roles of viral proteins in virus assembly and budding.

      Strengths:

      (1) The study presented a novel approach to studying viral assembly in cellulo.

      (2) The authors generated nine mutant viruses to investigate the roles of essential proteins in nuclear egress and cytoplasmic envelopment.

      (3) The use of correlative imaging with cryoSIM and cryoSXT allowed for the study of viral assembly in a near-native state and in 3D.

      (4) The study identified the roles of VP16, pUL16, pUL21, pUL34, and pUS3 in nuclear egress.

      (5) The authors demonstrated that deletion of VP16, pUL11, gE, pUL51, or gK inhibits cytoplasmic envelopment.

      (6) The manuscript is well-written, clearly describing findings, methods, and experimental design.

      (7) The figures and data presentation are of good quality.

      (8) The study effectively correlated light microscopy and X-ray tomography to follow virus assembly, providing a valuable approach for studying other viruses and cellular events.

      (9) The research is a valuable starting point for investigating viral assembly using more sophisticated methods like cryo-ET with FIB-milling.

      (10) The study proposes a detailed assembly mechanism and tracks the contributions of studied proteins to the assembly process.

      (11) The study includes all necessary controls and tests for the influence of fluorescent proteins.

      Weaknesses:

      Overall, the manuscript does not have any major weaknesses, just a few minor comments, which were mostly solved in the revised version of the manuscript.

      Comments on the latest version:

      I reviewed the responses and the updated manuscript, and I am very pleased with how the authors have revised it. The manuscript was already strong, but with the addition of the summary table and the separated images, it is now excellent.

    3. Reviewer #2 (Public review):

      Summary:

      For centuries, humans have been developing methods to see ever smaller objects, such as cells and their contents. This has included studies of viruses and their interactions with host cells during processes extending from virion structure to the complex interactions between viruses and their host cells: virion entry, virus replication and virion assembly, and release of newly constructed virions. Recent developments have enabled simultaneous application of fluorescence-based detection and intracellular localization of molecules of interest in the context of sub-micron resolution imaging of cellular structures by electron microscopy.

      The submission by Nahas et al., extends the state-of-the-art for visualization of important aspects of herpesvirus (HSV-1 in this instance) virion morphogenesis, a complex process that involves virus genome replication, and capsid assembly and filling in the nucleus, transport of the nascent nucleocapsid and some associated tegument proteins through the inner and outer nuclear membranes to the cytoplasm, orderly association of several thousand mostly viral proteins with the capsid to form the virion's tegument, envelopment of the tegumented capsid at a virus-tweaked secretory vesicle or at the plasma membrane, and release of mature virions at the plasma membrane.

      In this groundbreaking study, cells infected with HSV-1 mutants that express fluorescently tagged versions of capsid (eYFP-VP26) and tegument (gM-mCherry) proteins were visualized with 3D correlative structured illumination microscopy and X-ray tomography. The maturation and egress pathways thus illuminated were studied further in infections with fluorescently tagged viruses lacking one of nine viral proteins.

      Strengths:

      This outstanding paper meets the journal's definitions of Landmark, Fundamental, Important, Valuable, and Useful. The work is also Exceptional, Compelling, Convincing, and Solid. The work is a tour de force of classical and state-of-the-art molecular and cellular virology. Beautiful images accompanied by appropriate statistical analyses and excellent figures. The numerous complex issues addressed are explained in a clear and coordinated manner; the sum of what was learned is greater than the sum of the parts. Impacts go well beyond cytomegalovirus and the rest of the herpesviruses, to other viruses and cell biology in general.

      Comments on the latest version:

      This is a very nice paper. The authors responded affirmatively to the suggestions and questions of the reviewers.

    4. Reviewer #3 (Public review):

      Summary:

      Kamal L. Nahas et al. demonstrated that pUL16, pUL21, pUL34, VP16, and pUS3 are involved in the egress of the capsids from the nucleous, since mutant viruses ΔpUL16, ΔpUL21, ΔUL34, ΔVP16, and ΔUS3 HSV-1 show nuclear egress attenuation determined by measuring the nuclear:cytoplasmic ratio of the capsids, the dfParental, or the mutants. Then, they showed that gM-mCherry+ endomembrane association and capsid clustering were different in pUL11, pUL51, gE, gK, and VP16 mutants. Furthermore, the 3D view of cytoplasmic budding events suggests an envelopment mechanism where capsid budding into spherical/ellipsoidal vesicles drives the envelopment.

      Strengths:

      The authors employed both structured illumination microscopy and cellular ultrastructure analysis to examine the same infected cells, using cryo-soft-X-ray tomography to capture images. This combination, set here for the first time, enabled the authors to obtain holistic data regarding a biological process, as a viral assembly. Using this approach, the researchers studied various stages of HSV-1 assembly. For this, they constructed a dual-fluorescently labelled recombinant virus, consisting of eYFP-tagged capsids and mCherry-tagged envelopes, allowing for the independent identification of both unenveloped and enveloped particles. They then constructed nine mutants, each targeting a single viral protein known to be involved in nuclear egress and envelopment in the cytoplasm, using this dual-fluorescent as the parental one. The experimental setting, both the microscopic and the virological, is robust and well-controlled. The manuscript is well-written, and the data generated is robust and consistent with previous observations made in the field.

      I congratulate the authors. The work is robust, and I personally highlight the way they managed to include others' results merged among their own, providing a complete view of the story.

      Comments on the latest version:

      I reviewed the responses and the updated manuscript, and I agree with the reviewer's #1 words: "The manuscript was already strong, but with the addition of the summary table and the separated images, it is now excellent."

    5. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Nahas et al. investigated the roles of herpes simplex virus 1 (HSV-1) structural proteins using correlative cryo-light microscopy and soft X-ray tomography. The authors generated nine viral variants with deletions or mutations in genes encoding structural proteins. They employed a chemical fixation-free approach to study native-like events during viral assembly, enabling observation of a wider field of view compared to cryo-ET. The study effectively combined virology, cell biology, and structural biology to investigate the roles of viral proteins in virus assembly and budding.

      Strengths:

      (1) The study presented a novel approach to studying viral assembly in cellulo.

      (2) The authors generated nine mutant viruses to investigate the roles of essential proteins in nuclear egress and cytoplasmic envelopment.

      (3) The use of correlative imaging with cryoSIM and cryoSXT allowed for the study of viral assembly in a near-native state and in 3D.

      (4) The study identified the roles of VP16, pUL16, pUL21, pUL34, and pUS3 in nuclear egress.

      (5) The authors demonstrated that deletion of VP16, pUL11, gE, pUL51, or gK inhibits cytoplasmic envelopment.

      (6) The manuscript is well-written, clearly describing findings, methods, and experimental design.

      (7) The figures and data presentation are of good quality.

      (8) The study effectively correlated light microscopy and X-ray tomography to follow virus assembly, providing a valuable approach for studying other viruses and cellular events.

      (9) The research is a valuable starting point for investigating viral assembly using more sophisticated methods like cryo-ET with FIB-milling.

      (10) The study proposes a detailed assembly mechanism and tracks the contributions of studied proteins to the assembly process.

      (11) The study includes all necessary controls and tests for the influence of fluorescent proteins.

      Weaknesses:

      Overall, the manuscript does not have any major weaknesses, just a few minor comments:

      (1) The gel quality in Figure 1 is inconsistent for different samples, with some bands not well resolved (e.g., for pUL11, GAPDH, or pUL20).

      We thank the reviewer for their suggestion. We tried to resolve the bands several times, but unfortunately this was the best outcome we could achieve.

      (2) The manuscript would benefit from a summary figure or table to concisely present the findings for each protein. It is a large body of manuscript, and a summary figure showing the discovered function would be great.

      We thank the reviewer for their suggestion. We have created a summary table (Table 2).

      (3) Figure 2 lacks clarity on the type of error bars used (range, standard error, or standard deviation). It says, however, range, and just checking if this is what the authors meant.

      We thank the reviewer for double-checking, but it is meant to be range, as reported in the legend. We used range because there are only two data points for each time point, which are insufficient to calculate standard deviation or standard error.

      (4) The manuscript could be improved by including details on how the plasma membrane boundary was estimated from the saturated gM-mCherry signal. An additional supplementary figure with the data showing the saturation used for the boundary definition would be helpful.

      We appreciate the suggestion and have included an example of how saturated gM-mCherry signal was used to delineate the cytoplasm in Supp. Fig. 4A.

      (5) Additional information or supplementary figures on the mask used to filter the YFP signal for Figure 4 would be helpful.

      Thanks, we have adapted the text in the results section to clarify: “eYFP-VP26 signal was manually inspected to determine threshold values that filtered out background and included pixels containing individual or clustered puncta that represent capsids.”

      (6) The figure legends could include information about which samples are used for comparison for significance calculations. As the colour of the brackets is different from the compared values (dUL34), it would be great to have this information in the figure legend.

      Thanks, we have adapted Fig. 4B to make the colour of the brackets match the colour used for the ΔUL34 mutant, and we have included labels next to the brackets for clarity. We have applied similar adjustments to Fig. 5D & E and Supp. Fig. 4C.

      (7) In Figure 5B, the association between YFP and mCherry signals is difficult to assess due to the abundance of mCherry signal; single-channel and combined images might improve visualization.

      Thanks, we have provided split and combined channel views in Supp. Fig. 4B to improve visualization.

      (8) In Figure 6D, staining for tubulin could help identify the cytoskeleton structures involved in the observed virus arrays.

      We thank the reviewer for their suggestion, which we think would be interesting future work to build on the current study. Given the competitive nature of access to the cryoSIM and cryoSXT, CLXT, including staining for tubulin was outside the scope of additional experiments we were able to conduct at this time.

      (9) It is unclear in Figure 6D if the microtubule-associated capsids are with the gM envelope or not, as the signal from mCherry is quite weak. It could be made clearer with the split signals to assess the presence of both viral components.

      We have provided split channels to the figure to aid with visualization.

      (10) The representation of voxel intensity in Figure 8 is somewhat confusing. Reversion of the voxel intensity representation to align brighter values with higher absorption, which would simplify interpretation.

      We thank the reviewer for this suggestion. In contrast to fluorescence microscopy where high intensities reflect signal, low intensities represent signal (absorbance of X-rays) in cryoSXT. We respectfully decided not to reverse the values, as we believe that could cause more confusion. We have instead added a black-to-white gradient bar to illustrate that low voxel intensities correspond to dark signal in Fig 8.

      (11) The visualization in panel I of Figure 8 might benefit from a more divergent colormap to better show the variation in X-ray absorbance.

      We thank the reviewer for their suggestion. We experimented with a few different colour schemes but concluded that the current one produced the clearest results and was most accessible for color-blind viewers.

      (12) Figure 9 would be enhanced by images showing the different virus sizes measured for the comparative study, which would help assess the size differences between different assembly stages.

      We thank the reviewer for their suggestion and have included images to accompany the graph.

      Overall, this is an excellent manuscript and an enjoyable read. It would be interesting to see this approach applied to the study of other viruses, providing valuable insights before progressing to high-resolution methods.

      Reviewer #2 (Public review):

      Summary:

      For centuries, humans have been developing methods to see ever smaller objects, such as cells and their contents. This has included studies of viruses and their interactions with host cells during processes extending from virion structure to the complex interactions between viruses and their host cells: virion entry, virus replication and virion assembly, and release of newly constructed virions. Recent developments have enabled simultaneous application of fluorescence-based detection and intracellular localization of molecules of interest in the context of sub-micron resolution imaging of cellular structures by electron microscopy.

      The submission by Nahas et al., extends the state-of-the-art for visualization of important aspects of herpesvirus (HSV-1 in this instance) virion morphogenesis, a complex process that involves virus genome replication, and capsid assembly and filling in the nucleus, transport of the nascent nucleocapsid and some associated tegument proteins through the inner and outer nuclear membranes to the cytoplasm, orderly association of several thousand mostly viral proteins with the capsid to form the virion's tegument, envelopment of the tegumented capsid at a virus-tweaked secretory vesicle or at the plasma membrane, and release of mature virions at the plasma membrane.

      In this groundbreaking study, cells infected with HSV-1 mutants that express fluorescently tagged versions of capsid (eYFP-VP26) and tegument (gM-mCherry) proteins were visualized with 3D correlative structured illumination microscopy and X-ray tomography. The maturation and egress pathways thus illuminated were studied further in infections with fluorescently tagged viruses lacking one of nine viral proteins.

      Strengths:

      This outstanding paper meets the journal's definitions of Landmark, Fundamental, Important, Valuable, and Useful. The work is also Exceptional, Compelling, Convincing, and Solid. The work is a tour de force of classical and state-of-the-art molecular and cellular virology. Beautiful images accompanied by appropriate statistical analyses and excellent figures. The numerous complex issues addressed are explained in a clear and coordinated manner; the sum of what was learned is greater than the sum of the parts. Impacts go well beyond cytomegalovirus and the rest of the herpesviruses, to other viruses and cell biology in general.

      Reviewer #3 (Public review):

      Summary:

      Kamal L. Nahas et al. demonstrated that pUL16, pUL21, pUL34, VP16, and pUS3 are involved in the egress of the capsids from the nucleous, since mutant viruses ΔpUL16, ΔpUL21, ΔUL34, ΔVP16, and ΔUS3 HSV-1 show nuclear egress attenuation determined by measuring the nuclear:cytoplasmic ratio of the capsids, the dfParental, or the mutants. Then, they showed that gM-mCherry+ endomembrane association and capsid clustering were different in pUL11, pUL51, gE, gK, and VP16 mutants. Furthermore, the 3D view of cytoplasmic budding events suggests an envelopment mechanism where capsid budding into spherical/ellipsoidal vesicles drives the envelopment.

      Strengths:

      The authors employed both structured illumination microscopy and cellular ultrastructure analysis to examine the same infected cells, using cryo-soft-X-ray tomography to capture images. This combination, set here for the first time, enabled the authors to obtain holistic data regarding a biological process, as a viral assembly. Using this approach, the researchers studied various stages of HSV-1 assembly. For this, they constructed a dual-fluorescently labelled recombinant virus, consisting of eYFP-tagged capsids and mCherry-tagged envelopes, allowing for the independent identification of both unenveloped and enveloped particles. They then constructed nine mutants, each targeting a single viral protein known to be involved in nuclear egress and envelopment in the cytoplasm, using this dual-fluorescent as the parental one. The experimental setting, both the microscopic and the virological, is robust and well-controlled. The manuscript is well-written, and the data generated is robust and consistent with previous observations made in the field.

      Weaknesses:

      It would be helpful to find out what role the targeted proteins play in nuclear egress or envelopment acquisition in a different orthoherpesvirus, like HSV-2. This would confirm the suitability of the technical approach set and would also act as a way to validate their mechanism at least in one additional herpesvirus beyond HSV-1. So, using the current manuscript as a starting point and for future studies, it would be advisable to focus on the protein functions of other viruses and compare them.

      We appreciate the suggestion and agree that this would be a great starting point for future studies. At present, we do not have a panel of mutant viruses in HSV-2 or another orthoherpesvirus, and it would be significant work to generate them, so we consider this outside the scope of the current study.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      (1) There are enough uncommon abbreviations in the text to justify the inclusion of an abbreviation list.

      We thank the reviewer for the suggestion, but we define all uncommon abbreviations at first mention and an abbreviations list is not part of eLife’s house style.

      (2) The complex paragraph on p. 7 would be much easier to digest if broken into smaller chunks. Consider similar treatment for other lengthy landmark-free blocks of text, e.g., the one that begins on p. 14. Subheadings would help.

      We thank the reviewer for this suggestion. We have divided large paragraphs into more easily digestible chunks throughout the manuscript, for example in the discussion where the previous monolithic 3rd paragraph has been divided into five shorter, focussed paragraphs.

      (3) Table 1 needs units.

      We thank the reviewer for noticing our omission and apologise for the oversight - the table has been updated accordingly.

      Reviewer #3 (Recommendations for the authors):

      (1) Toward the end of the manuscript, I missed some lines attempting to speculate on the origin/nature of the spherical/ellipsoidal vesicles providing the envelopment. Would it be possible to incorporate this in the Discussion section?

      Thank you for noticing that omission. We have now included a few lines speculating that they may represent recycling endosomes, trans-Golgi network vesicles, or a hybrid compartment.

      (2) I congratulate the authors. The work is robust, and I personally highlight the way they managed to include others' results merged with their own, providing a complete view of the story.

      We thank the reviewer for their kind words.

      Note to editors

      In addition to these responses to the reviewer’s comments, we have also now included in the methods section details of the Tracking of Indels by Decomposition (TIDE) analysis we performed (data in Supplementary Figure 3) that was omitted by mistake from the original submission.

    1. eLife Assessment

      The ratio of nuclei to cell volume is a well-controlled parameter in eukaryotic cells. This study now reports important findings that expand our understanding of the regulatory relationship between cell size and number of nuclei. The evidence supporting the conclusions is convincing obtained by applying appropriate and validated methodology in line with current state-of-the-art. The paper will be of broad interest for cell biologists and fungal biotechnologists seeking to understand mechanisms determining cell size and number of nuclei and why this knowledge might also be of importance for the production of enzymes and thus production strains not only of Aspergillus oryzae but also other industrially used fungi.

    2. Reviewer #1 (Public review):

      Filamentous fungi are established work horses in biotechnology with Aspergillus oryzae as a prominent example with a thousand-year of history. Still the cell biology and biochemical properties of the production strains is not well understood. The paper of the Takeshita group describes the change in nuclear numbers and correlate it to different production capacities. They used microfluidic devices to really correlate the production with nuclear numbers. In addition, they used microdissection to understand expression profile changes and found an increase of ribosomes. The analysis of two genes involved in cell volume control in S. pombe did not reveal conclusive answers to explain the phenomenon. It appears that it is a multi-trait phenotype. Finally, they identified SNPs in many industrial strains and tried to correlate them to the capability of increasing their nuclear numbers.

      The methods used in the paper range from high quality cell biology, Raman spectroscopy to atomic force and electron microscopy and from laser microdissection to the use of microfluidic devices to study individual hyphae.

      This is a very interesting, biotechnologically relevant paper with the application of excellent cell biology.

      Comments on revised version:

      The authors addressed all suggestions satisfactorily.

    3. Reviewer #2 (Public review):

      Summary:

      In the study presented by Itani and colleagues it is shown that some strains of Aspergillus oryzae - especially those used industrially for the production of sake and soy sauce - develop hyphae with a significantly increased number of nuclei and cell volume over time. These thick hyphae are formed by branching from normal hyphae and grow faster and therefore dominate the colonies. The number of nuclei positively correlates with the thicker hyphae and also the amount of secreted enzymes. The addition of nutrients such as yeast extract or certain amino acids enhanced this effect. Genome and transcriptome analyses identified genes, including rseA, that are associated with the increased number of nuclei and enzyme production. The authors conclude from their data involvement of glycosyltransferases, calcium channels and the tor regulatory cascade in regulation of cell volume and number of nuclei. Thicker hyphae and an increased number of nuclei was also observed in high-production strains of other industrially used fungi such as Trichoderma reesei and Penicillium chrysogenum, leading to the hypothesis that the mentioned phenotypes are characteristic of production strains which is of significant interest for fungal biotechnology.

      Strengths:

      The study is very comprehensive and involves application of divers state-of-the-art cell biological, biochemical and genetic methods. Overall, the data are properly controlled and analyzed, and the figures and movies are of excellent quality.The results are particularly interesting with regard to the elucidation of molecular mechanisms that regulate the size of fungal hyphae and the number of nuclei. For this, the authors have discovered a very good model: (regular) strains with a low number of nuclei and strains with high number of nuclei. Also, the results can be expected to be of interest for the further optimization of industrially relevant filamentous fungi.

      In the revision the authors addressed all my comments and as a result produced an even stronger study.

    4. Reviewer #3 (Public review):

      Summary:

      The authors seek to determine the underlying traits that support the exceptional capacity of Aspergillus oryzae to secrete enzymes and heterologous proteins. To do so, they leverage the availability of multiple domesticated isolates of A. oryzae along with other Aspergillus species to perform comparative imaging and genomic analysis.

      Strengths:

      The strength of this study lies in the use of multifaceted approaches to identify significant differences in hyphal morphology that correlate with enzyme secretion, which is then followed by the use of genomics to identify candidate functions that underlie these differences.

      Weaknesses:

      The authors addressed all suggestions satisfactorily.

    5. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Recommendations for the authors): 

      The authors addressed all suggestions satisfactorily. 

      Reviewer #2 (Recommendations for the authors):

      The authors have adequately dealt with the comments. 

      Reviewer #3 (Recommendations for the authors):

      (1) Line 157. Although the authors have added a statement acknowledging that addition of YE increased hyphal width and secretion in A. nidulans without increasing nuclear number, they have not indicated how this result might impact their model. It might just boil down to variation between the different Aspergilli, but it merits attention. 

      (2) Line 341. To extend the argument, you might consider adding this citation (https://elifesciences.org/articles/76075), which provides evidence that nuclear size might scale with osmotic pressure based on the density of macromolecules in the nucleus vs. cytoplasm.

      Thanks for the suggestion.

      L341 This is likely related to the phenomenon in which a decrease in cell size is accompanied by a reduction in nuclear size (66).

      (3) Line 343. Neurospora crass hyphal cells can exceed 100 nuclei... 

      Changed.

    1. eLife Assessment

      This study presents a valuable finding regarding the role of Arp2/3 and the actin nucleators N-WASP and WAVE complexes in myoblast fusion. The data presented is convincing, and the work will be of interest to biologists studying skeletal muscle stem cell biology in the context of skeletal muscle regeneration.

    2. Reviewer #1 (Public review):

      Overall, the manuscript reveals the role for actin polymerization to drive fusion of myoblasts during adult muscle regeneration. This pathway regulates fusion in many contexts, but whether it was conserved in adult muscle regeneration remained unknown. Robust genetic tools and histological analyses were used to convincingly support the claims.

    3. Reviewer #2 (Public review):

      To fuse, differentiated muscle cells must rearrange their cytoskeleton and assemble actin-enriched cytoskeletal structures. These actin foci are proposed to generate mechanical forces necessary to drive close membrane apposition and the fusion pore formation. While the study of these actin-rich structures has been conducted mainly in drosophila and in vertebrate embryonic development, the present manuscript present clear evidence this mechanism is necessary for fusion of adult muscle stem cells in vivo, in mice. The data presented here clearly demonstrate that ARP2/3 and SCAR/WAVE complexes are required for differentiating satellite cells fusion into multinucleated myotubes, during skeletal muscle regeneration.

    4. Reviewer #3 (Public review):

      The authors have satisfactorily addressed my inquiries. However, I had to look quite hard to find where they responded to my final comment regarding the potential role of Arpc2 post-fusion during myofiber growth and/or maintenance, which I eventually located on page 7. I would appreciate it if the authors could state this point more explicitly, perhaps by adding a sentence such as "However, we cannot rule out the possibility that Arpc2 may also play a role in....." to improve clarity of communication.

      While I understood from the original version that this issue falls beyond the immediate scope of the study, I believe it is important to adopt a more cautious and rigorous interpretative framework, especially given the widespread use of this experimental approach. In particular, when a gene could potentially have additional roles in myofibers, it may be helpful to explicitly acknowledge that possibility. Even if Arpc2 may not necessarily be one of them, such roles cannot be fully excluded without direct testing.

    1. eLife Assessment

      This computational modeling study builds on multiple previous lines of experimental and theoretical research to investigate how a single neuron can solve a nonlinear pattern classification task. The revised manuscript presents convincing evidence that the location of synapses on dendritic branches, as well as synaptic plasticity of excitatory and inhibitory synapses, influences the ability of a neuron to discriminate combinations of sensory stimuli. The ideas in this work are very interesting, presenting an important direction in the computational neuroscience field about how to harness the computational power of "active dendrites" for solving learning tasks.

    2. Reviewer #1 (Public review):

      Summary:

      This computational modeling study builds on multiple previous lines of experimental and theoretical research to investigate how a single neuron can solve a nonlinear pattern classification task. The authors construct a detailed biophysical and morphological model of a single striatal medium spiny neuron, and endow excitatory and inhibitory synapses with dynamic synaptic plasticity mechanisms that are sensitive to (1) the presence or absence of a dopamine reward signal, and (2) spatiotemporal coincidence of synaptic activity in single dendritic branches. The latter coincidence is detected by voltage-dependent NMDA-type glutamate receptors, which can generate a type of dendritic spike referred to as a "plateau potential." In the absence of inhibitory plasticity, the proposed mechanisms result in good performance on a nonlinear classification task when specific input features are segregated and clustered onto individual branches, but reduced performance when input features are randomly distributed across branches. Interestingly, adding inhibitory plasticity improves classification performance even when input features are randomly distributed.

      Strengths:

      The integrative aspect of this study is its major strength. It is challenging to relate low-level details such as electrical spine compartmentalization, extrasynaptic neurotransmitter concentrations, dendritic nonlinearities, spatial clustering of correlated inputs, and plasticity of excitatory and inhibitory synapses to high-level computations such as nonlinear feature classification. Due to high simulation costs, it is rare to see highly biophysical and morphological models used for learning studies that require repeated stimulus presentations over the course of a training procedure. The study aspires to prove the principle that experimentally-supported biological mechanisms can explain complex learning.

      Weaknesses:

      The high level of complexity of each component of the model makes it difficult to gain an intuition for which aspects of the model are essential for its performance, or responsible for its poor performance under certain conditions. Stripping down some of the biophysical detail and comparing it to a simpler model may help better understand each component in isolation.

    3. Reviewer #2 (Public review):

      Summary:

      The study explores how single striatal projection neurons (SPNs) utilize dendritic nonlinearities to solve complex integration tasks. It introduces a calcium-based synaptic learning rule that incorporates local calcium dynamics and dopaminergic signals, along with metaplasticity to ensure stability for synaptic weights. Results show SPNs can solve the nonlinear feature binding problem and enhance computational efficiency through inhibitory plasticity in dendrites, emphasizing the significant computational potential of individual neurons. In summary, the study provides a more biologically plausible solution to single-neuron learning and gives further mechanical insights into complex computations at the single-neuron level.

      Strengths:

      The paper introduces a novel learning rule for training a single multicompartmental neuron model to perform nonlinear feature binding tasks (NFBP), highlighting two main strengths: the learning rule is local, calcium-based, and requires only sparse reward signals, making it highly biologically plausible, and it applies to detailed neuron models that effectively preserve dendritic nonlinearities, contrasting with many previous studies that use simplified models.

    4. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary:

      This computational modeling study builds on multiple previous lines of experimental and theoretical research to investigate how a single neuron can solve a nonlinear pattern classification task. The authors construct a detailed biophysical and morphological model of a single striatal medium spiny neuron, and endow excitatory and inhibitory synapses with dynamic synaptic plasticity mechanisms that are sensitive to (1) the presence or absence of a dopamine reward signal, and (2) spatiotemporal coincidence of synaptic activity in single dendritic branches. The latter coincidence is detected by voltage-dependent NMDA-type glutamate receptors, which can generate a type of dendritic spike referred to as a "plateau potential." In the absence of inhibitory plasticity, the proposed mechanisms result in good performance on a nonlinear classification task when specific input features are segregated and clustered onto individual branches, but reduced performance when input features are randomly distributed across branches. Interestingly, adding inhibitory plasticity improves classification performance even when input features are randomly distributed.

      Strengths:

      The integrative aspect of this study is its major strength. It is challenging to relate low-level details such as electrical spine compartmentalization, extrasynaptic neurotransmitter concentrations, dendritic nonlinearities, spatial clustering of correlated inputs, and plasticity of excitatory and inhibitory synapses to high-level computations such as nonlinear feature classification. Due to high simulation costs, it is rare to see highly biophysical and morphological models used for learning studies that require repeated stimulus presentations over the course of a training procedure. The study aspires to prove the principle that experimentally-supported biological mechanisms can explain complex learning.

      Weaknesses:

      The high level of complexity of each component of the model makes it difficult to gain an intuition for which aspects of the model are essential for its performance, or responsible for its poor performance under certain conditions. Stripping down some of the biophysical detail and comparing it to a simpler model may help better understand each component in isolation.

      We greatly appreciate your recognition of the study’s integrative scope and the challenges of linking detailed biophysics to high-level computation. We acknowledge that the model’s complexity can obscure the contribution of individual components. However, as stated in the introduction the principles already have been shown in simplified theoretical models for instance  in Tran-Van-Minh et al. 2015. Our aim here was to extend those ideas into a more biologically detailed setting to test whether the same principles still hold under realistic constraints. While simplification can aid intuition, we believe that demonstrating these effects in a biophysically grounded model strengthens the overall conclusion. We agree that further comparisons with reduced models would be valuable for isolating the contribution of specific components and plan to explore that in future work.  

      Reviewer #2 (Public review):

      Summary:

      The study explores how single striatal projection neurons (SPNs) utilize dendritic nonlinearities to solve complex integration tasks. It introduces a calcium-based synaptic learning rule that incorporates local calcium dynamics and dopaminergic signals, along with metaplasticity to ensure stability for synaptic weights. Results show SPNs can solve the nonlinear feature binding problem and enhance computational efficiency through inhibitory plasticity in dendrites, emphasizing the significant computational potential of individual neurons. In summary, the study provides a more biologically plausible solution to single-neuron learning and gives further mechanical insights into complex computations at the single-neuron level.

      Strengths:

      The paper introduces a novel learning rule for training a single multicompartmental neuron model to perform nonlinear feature binding tasks (NFBP), highlighting two main strengths: the learning rule is local, calcium-based, and requires only sparse reward signals, making it highly biologically plausible, and it applies to detailed neuron models that effectively preserve dendritic nonlinearities, contrasting with many previous studies that use simplified models.

      Thank you for highlighting the biological plausibility of our calcium- and dopamine-dependent learning rule and its ability to exploit dendritic nonlinearities. Your positive assessment reinforces our commitment to refining the rule and exploring its implications in larger, more diverse settings.

      Reviewer #1 (Recommendations for the authors):

      Major recommendations:

      P9: When introducing the excitatory learning rule, the reader is referred to the Methods. I suggest moving Figure 7A-D, "Excitatory plasticity" to be more prominently presented in the main body of the paper where the reader needs to understand it. There are errors in the current Figure 7, and wrong/confusing acronyms. The abbreviations "LTP-K" and "MP-K" are not intuitive. In A, I would spell out "LTP kernel" and "Theta_LTP adaptation".  In B, I would spell out "LTD kernel" and "Theta_LTD adaptation".

      We have clarified the terminology in Figure 7 by replacing “LTP-K” with “LTP kernel” and “MP-K” with “metaplasticity kernel”.  While we kept Figure 7 in the Methods section to maintain the flow of the main text, we agree that an earlier introduction of the learning rule improves clarity. To that end, we added a simplified schematic to Figure 3 in the Results section, which provides readers with an accessible overview of the excitatory plasticity mechanism at the point where it is first introduced.

      In C, for simplicity and clarity, I would only show the initial and updated LTP kernel and Calcium and remove the Theta_LTP adaptation curve, it's too busy and not necessary. Similarly in D, I would show only the initial and updated LTD kernel and Calcium and remove the Theta_LTD adaptation curve. In the current version of the Figure, panel B, right incorrectly labels "Theta_LTD" as "Theta_LTP". Panel D incorrectly labels "LTD kernel" as "LTP/MP-K" in the subheading and "MP/LTP-K" in the graph.

      To avoid confusion and better illustrate the interactions between calcium signals, kernels, and thresholds, we have added a movie showing how these components evolve during learning. The figure panels remain as originally designed, since the LTP kernel governs both potentiation and depression through metaplastic threshold adaptation, while the LTD kernel remains fixed.

      P17: Again, instead of pointing the reader to the Methods, I would move Figure 7E, "Inhibitory plasticity" to the main body of the paper where the reader needs to understand it. For clarity, I would label "C_TL" and "Theta_Inh,low" and "C_TH" as "Theta_Inh,high". The right panel could be better labeled "Inhibitory plasticity kernel". The left panel could be better labeled "Theta_Inh adaptation", with again replacing the acronyms "C_TL" and "C_TH". The same applies to Fig. 5D on P19.

      We have updated the labeling in Figures 5D and 7E for clarity, including replacing "C_TL" and "C_TH" with "Theta_Inh,low" and "Theta_Inh,high". In addition, we added a simplified schematic of the inhibitory plasticity rule to Figure 5 to assist the reader’s understanding when presenting the results. Figure 7E remains in the Methods section to preserve the flow of the main text.

      P12: I would suggest simplifying Fig. 3 panels and acronyms as well. Remove "MP-K" from C and D. Relabel "LTP-K" as "LTP kernel". The same applies to Fig. 5E on P19 and Fig. 3 - supplement 1 on P46 and Fig 6 - supplement 1 on P49.

      We have simplified the labeling across all relevant figures by replacing “MP-K” with “metaplasticity kernel” and “LTP-K” with “LTP kernel.” To maintain clarity, we retained these terms in only one panel as a reference.

      Minor recommendations:

      P4: "Although not discussed much in more theoretical work, our study demonstrates the necessity of metaplasticity for achieving stable and physiologically realistic synaptic weights." This sentence is jarring. BCM and metaplasticity has been discussed in hundreds of theory papers! Cite some. This sentence would more accurately read, "Our study corroborates prior theory work (citations) demonstrating that metaplasticity helps to achieve stable and physiologically realistic synaptic weights."

      We have followed the reviewers suggestion and updated the sentence to: Previous theoretical studies (Bienenstock et al., 1982; Fusi et al., 2005; Clopath et al., 2010; Benna & Fusi, 2016; Zenke & Gerstner, 2017) demonstrate the essential role of metaplasticity in maintaining stability in synaptic weight distributions. (page 2 line 49-51, page 3 line 1)

      P9: Grammar. "The neuron model was during training activated..." should read "During training, the neuron model was activated..."

      Corrected

      P17: Lovett-Barron et al., 2012 is appropriately cited here. Milstein et al., Neuron, 2015 also showed dendritic inhibition regulates plateau potentials in CA1 pyramidal cells in vitro, and Grienberger et al., Nat. Neurosci., 2017 showed it in vivo.

      P19 vs P16 vs P21. Fig. 4B, Fig. 5B, and Fig. 6B choose different strategies to show variance across seeds. Please choose one strategy and apply to all comparable plots.

      We thank the reviewer for these helpful points.

      We have added the suggested citations (Milstein et al., 2015; Grienberger et al., 2017) alongside Lovett-Barron et al., 2012. 

      Variance across seeds is now displayed uniformly (mean is solid line STD is shaded area) in Figures 4B, 5B, and 6B.

      Reviewer #2 (Recommendations for the authors):

      Major Points:

      (1)  Quality of Scientific Writing:

      i. Mathematical and Implementation Details:

      I appreciate the authors' efforts in clarifying the mathematical details and providing pseudocode for the learning rule, significantly improving readability and reproducibility. The reference to existing models via GitHub and ModelDB repositories is acceptable. However, I suggest enhancing the presentation quality of equations within the Methods section-currently, they are low-resolution images. Please consider rewriting these equations using LaTeX or replacing them with high-resolution images to further improve clarity.

      We appreciate the reviewer’s comment regarding clarity and reproducibility. In response, we have rewritten all equations in LaTeX to improve their readability and presentation quality in the Methods section.

      ii. Figure quality.

      I acknowledge the authors' effort to improve figure clarity and consistency throughout the manuscript. However, I notice that the x-axis label "[Ca]_v (μm)" in Fig. 7E still appears compressed and unclear. Additionally, given the complexity and abundance of hyperparameters or artificial settings involved in your experimental design and learning rule (such as kernel parameters, metaplasticity kernels, and unspecific features), the current arrangement of subfigures (particularly Fig. 3C, D and Fig. 5D, E) still poses readability challenges. I recommend reordering subfigures to present primary results (e.g., performance outcomes) prominently upfront, while relegating visualizations of detailed hyperparameter manipulations or feature weight variations to later sections or the discussion, thus enhancing clarity for readers.

      We thank the reviewer for pointing out the readability issue. We have corrected the x-axis label in Figure 7D. We hope this new layout with a simplified rule in Fig 3 and Fig 5   presents the key findings while retaining full mechanistic detail to make it easier to understand the model behavior.  

      iii. Writing clarity.

      The authors have streamlined the "Metaplasticity" section and reduced references to dopamine, which is a positive step. However, the broader issue remains: the manuscript still appears overly detailed and more like a technical report of a novel learning rule, rather than a clearly structured scientific paper. I strongly recommend that the authors further distill the manuscript by clearly focusing on one or two central scientific questions or hypotheses-for instance, emphasizing core insights such as "inhibitory inputs facilitate nonlinear dendritic computations" or "distal dendritic inputs significantly contribute to nonlinear integration." Clarifying and highlighting these primary scientific questions early and consistently throughout the manuscript would substantially enhance readability and impact.

      We appreciate the reviewer’s guidance on improving the manuscript’s clarity and focus.In response, we now highlight two central questions at the end of the Introduction and have retitled the main Results subsections to follow this thread, thereby sharpening the manuscript’s focus while retaining necessary technical detail (page3 line 20-28).We have also removed redundant passages and simplified technical details to improve overall readability .

      Minor:

      (1) The [Ca]NMDA in Figure 2A and 2C can have large values even when very few synapses are activated. Why is that? Is this setting biologically realistic?

      The authors acknowledge that their simulated [Ca²⁺] levels exceed typical biological measurements but claim that the learning rule remains robust across variations in calcium concentrations. However, robustness to calcium variations was not explicitly demonstrated in the main figures. To convincingly address this concern, I recommend the authors explicitly test and present whether adopting biologically realistic calcium concentrations (~1 μM) impacts the learning outcomes or synaptic weight dynamics. Clarifying this point with a supplemental analysis or an additional figure panel would significantly strengthen their argument regarding the model's biological plausibility and robustness.

      We thank the reviewer for the comment. The elevated [Ca<sup>²⁺</sup>]<sub>NMDA</sub> values reflect localized transients in spine heads with narrow necks and high NMDA conductance. These values are not problematic for our model, as the plasticity rule depends on relative calcium differences rather than absolute levels as the metaplasticity kernel will adjust. In future versions of our detailed neuron model, we will likely decrease the spine axial resistance of the spine neck.

    1. eLife Assessment

      This important computational study investigates homeostatic plasticity mechanisms that neurons may employ to achieve and maintain stable target activity patterns. The work extends previous analyses of calcium-dependent homeostatic mechanisms based on ion channel density by considering activity-dependent shifts in channel activation and inactivation properties that operate on faster and potentially variable timescales. The model simulations convincingly demonstrate the potential functional importance of these mechanisms.

    2. Reviewer #1 (Public review):

      This revision of the computational study by Mondal et al addresses several issues that I raised in the previous round of reviews and, as such, is greatly improved. The manuscript is more readable, its findings are more clearly described, and both the introduction and the discussion sections are tighter and more to the point. And thank you for addressing the three timescales of half activation/inactivation parameters. It makes the mechanism clearer.

      Some issues remain that I bring up below.

      Comment:

      I still have a bone to pick with the claim that "activity-dependent changes in channel voltage-dependence alone are insufficient to attain bursting". As I mentioned in my previous comment, this is also the case for the gmax values (channel density). If you choose the gmax's to be in a reasonable range, then the statement above is simply cannot be true. And if, in contrast, you choose the activation/inactivation parameters to be unreasonable, then no set of gmax's can produce proper activity. So I remain baffled what exactly is the point that the authors are trying to make.

    3. Reviewer #2 (Public review):

      Summary:

      In this study, Mondal and co-authors present the development of a computational model of homeostatic plasticity incorporating activity-dependent regulation of gating properties (activation, inactivation) of ion channels. The authors show that, similar to what has been observed for activity-dependent regulation of ion channel conductances, implementing activity-dependent regulation of voltage sensitivity participates in the achievement of a target phenotype (bursting or spiking). The results however suggest that activity-dependent regulation of voltage sensitivity is not sufficient to allow this and needs to be associated with the regulation of ion channel conductances in order to reliably reach target phenotype. Although the implementation of this biologically relevant phenomenon is undeniably relevant, a few important questions are left unanswered.

      Strengths:

      (1) Implementing activity-dependent regulation of gating properties of ion channels is biologically relevant.

      (2) The modeling work appears to be well performed and provides results that are consistent with previous work performed by the same group.

      Weaknesses:

      (1) The main question not addressed in the paper is the relative efficiency and/or participation of voltage-dependence regulation compared to channel conductance in achieving the expected pattern of activity. Is voltage-dependence participating to 50% or 10%. Although this is a difficult question to answer (and it might even be difficult to provide a number), it is important to determine whether channel conductance regulation remains the main parameter allowing the achievement of a precise pattern of activity (or its recovery after perturbation).

      (2) Another related question is whether the speed of recovery is significantly modified by implementing voltage-dependence regulation (it seems to be the case looking at Figure 3). More generally, I believe it would be important to give insights into the overall benefit of implementing voltage-dependence regulation, beyond its rather obvious biological relevance.

      (3) Along the same line, the conclusion about how voltage-dependence regulation and channel conductance regulation interact to provide the neuron with the expected activity pattern (summarized and illustrated in Figure 6) is rather qualitative. Consistent with my previous comments, one would expect some quantitative answers to this question, rather than an illustration that approximately places a solution in parameter space.

    4. Reviewer #3 (Public review):

      Mondal et al. use computational modeling to investigate how activity-dependent shifts in voltage-dependent (in)activation curves can complement changes in ion channel conductance to support homeostatic plasticity. While it is well established that the voltage-dependent properties of ion channels influence neuronal excitability, their potential role in homeostatic regulation, alongside conductance changes, has remained largely unexplored. The results presented here demonstrate that activity-dependent regulation of voltage dependence can interact with conductance plasticity to enable neurons to attain and maintain target activity patterns, in this case, intrinsic bursting. Notably, the timescale of these voltage-dependent shifts influences the final steady-state configuration of the model, shaping both channel parameters and activity features such as burst period and duration. A major conclusion of the study is that altering this timescale can seamlessly modulate a neuron's intrinsic properties, which the authors suggest may be a mechanism for adaptation to perturbations.

      While this conclusion is largely well-supported, additional analyses could help clarify its scope. For instance, the effects of timescale alterations are clearly demonstrated when the model transitions from an initial state that does not meet the target activity pattern to a new stable state. However, Fig. 6 and the accompanying discussion appear to suggest that changing the timescale alone is sufficient to shift neuronal activity more generally. It would be helpful to clarify that this effect primarily applies during periods of adaptation, such as neurodevelopment or in response to perturbations, and not necessarily once the system has reached a stable, steady state. As currently presented, the simulations do not test whether modifying the timescale can influence activity after the model has stabilized. In such conditions, changes in timescale are unlikely to affect network dynamics unless they somehow alter the stability of the solution, which is not shown here. That said, it seems plausible that real neurons experience ongoing small perturbations which, in conjunction with changes in timescale, could allow gradual shifts toward new solutions. This possibility is not discussed but could be a fruitful direction for future work.

      Editor's note: The authors have adequately addressed the concerns raised in the public reviews above, as well as the previous recommendations, and revised the manuscript where necessary.

    5. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      I still have a bone to pick with the claim that "activity-dependent changes in channel voltage-dependence alone are insufficient to attain bursting". As I mentioned in my previous comment, this is also the case for the gmax values (channel density). If you choose the gmax's to be in a reasonable range, then the statement above is simply cannot be true. And if, in contrast, you choose the activation/inactivation parameters to be unreasonable, then no set of gmax's can produce proper activity. So I remain baffled what exactly is the point that the authors are trying to make.

      We thank the reviewer for this clarification. We did not intend to imply that voltage-dependence modulation is universally incapable of supporting bursting or that conductance changes alone are universally sufficient. To avoid any overstatement, we now write:

      “…activity-dependent changes in channel voltage-dependence alone did not assemble bursting from these low-conductance initial states (cf. Figure 1B)”.

      Reviewer #2 (Public review):

      (1) The main question not addressed in the paper is the relative efficiency and/or participation of voltage-dependence regulation compared to channel conductance in achieving the expected pattern of activity. Is voltage-dependence participating to 50% or 10%. Although this is a difficult question to answer (and it might even be difficult to provide a number), it is important to determine whether channel conductance regulation remains the main parameter allowing the achievement of a precise pattern of activity (or its recovery after perturbation).

      We appreciate the reviewer’s interest in a quantitative partitioning of the contributions from voltage-dependence regulation versus conductance regulation. We agree that this would be an important analysis in principle. In practice, obtaining this would be difficult.

      Our goal here was to establish the principle: that half-(in)activation shifts can meaningfully influence recovery. This is not an obvious result, given that these two processes can act on vastly different timescales.

      That said, our current dataset does provide partial quantitative insight. Eight of the twenty models required some form of voltage-dependence modulation to recover; among these, two only recovered under fast modulation and two only under slow modulation. This demonstrates that voltage-dependence regulation is essential for recovery in some neurons, and its timescale critically shapes the outcome.

      (2) Another related question is whether the speed of recovery is significantly modified by implemeting voltage-dependence regulation (it seems to be the case looking at Figure 3). More generally, I believe it would be important to give insights into the overall benefit of implementing voltage-dependence regulation, beyond its rather obvious biological relevance.

      Our current results suggest that voltage-dependence regulation can indeed accelerate recovery, as illustrated in Figure 3 and supported by additional simulations (not shown). However, a fully quantitative comparison (e.g., time-to-recovery distributions or survival analysis) would require a much larger ensemble of degenerate models to achieve sufficient statistical power across all four conditions. Generating and simulating this expanded model set is computationally intensive, requiring stochastic searches in a high-dimensional parameter space, full time-course simulations, and a subsequent selection process that may succeed or fail.

      The principal aim of the present study is conceptual: to demonstrate that this multi-timescale homeostatic model—built here for the first time—can capture interactions between conductance regulation and voltage-dependence modulation during assembly (“neurodevelopment”) and perturbation. Establishing the conceptual framework and exploring its qualitative behavior were the necessary first steps before pursuing a large-scale quantitative study.

      (3) Along the same line, the conclusion about how voltage-dependence regulation and channel conductance regulation interact to provide the neuron with the expected activity pattern (summarized and illustrated in Figure 6) is rather qualitative. Consistent with my previous comments, one would expect some quantitative answers to this question, rather than an illustration that approximately places a solution in parameter space.

      We appreciate the reviewer’s interest in a more quantitative characterization of the interaction between voltage-dependence and conductance regulation (Fig. 6). As noted in our responses to Comments 1 and 2, some of the facets of this interaction—such as the ability to recover from perturbations and the speed of assembly—can be measured.

      However, fully quantifying the landscape sketched in Figure 6 would require systematically mapping the regions of high-dimensional parameter space where stable solutions exist. In our model, this space spans 18 dimensions (maximal conductances and half‑(in)activations). Even a coarse grid with three samples per dimension would entail over 100 million simulations, which is computationally prohibitive and would still collapse to a schematic representation for visualization.

      For this reason, we chose to present Figure 6 as a conceptual summary, illustrating the qualitative organization of solutions and the role of multi-timescale regulation, rather than attempting an exhaustive mapping. We view this figure as a necessary first step toward guiding future, more quantitative analyses.

      Reviewer #3 (Public review):

      Mondal et al. use computational modeling to investigate how activity-dependent shifts in voltage-dependent (in)activation curves can complement changes in ion channel conductance to support homeostatic plasticity. While it is well established that the voltage-dependent properties of ion channels influence neuronal excitability, their potential role in homeostatic regulation, alongside conductance changes, has remained largely unexplored. The results presented here demonstrate that activity-dependent regulation of voltage dependence can interact with conductance plasticity to enable neurons to attain and maintain target activity patterns, in this case, intrinsic bursting. Notably, the timescale of these voltage-dependent shifts influences the final steady-state configuration of the model, shaping both channel parameters and activity features such as burst period and duration. A major conclusion of the study is that altering this timescale can seamlessly modulate a neuron's intrinsic properties, which the authors suggest may be a mechanism for adaptation to perturbations.

      While this conclusion is largely well-supported, additional analyses could help clarify its scope. For instance, the effects of timescale alterations are clearly demonstrated when the model transitions from an initial state that does not meet the target activity pattern to a new stable state. However, Fig. 6 and the accompanying discussion appear to suggest that changing the timescale alone is sufficient to shift neuronal activity more generally. It would be helpful to clarify that this effect primarily applies during periods of adaptation, such as neurodevelopment or in response to perturbations, and not necessarily once the system has reached a stable, steady state. As currently presented, the simulations do not test whether modifying the timescale can influence activity after the model has stabilized. In such conditions, changes in timescale are unlikely to affect network dynamics unless they somehow alter the stability of the solution, which is not shown here. That said, it seems plausible that real neurons experience ongoing small perturbations which, in conjunction with changes in timescale, could allow gradual shifts toward new solutions. This possibility is not discussed but could be a fruitful direction for future work.

      We thank the reviewer for this thoughtful comment and for highlighting an important point about the scope of our conclusions regarding timescale effects. The reviewer is correct that our simulations demonstrate the influence of voltage-dependence timescale primarily during periods of adaptation—when the neuron is moving from an initial, target-mismatched state toward a final target-satisfying state. Once the system has reached a stable solution, simply changing the timescale of voltage-dependent modulation does not by itself shift the neuron’s activity, unless a new perturbation occurs that re-engages the homeostatic mechanism. We have clarified this point in the revised Discussion.

      The confusion likely arose from imprecise phrasing in the original text describing Figure 6. Previously, we wrote:

      “When channel gating properties are altered quickly in response to deviations from the target activity, the resulting electrical patterns are shown in Figure 6 as the orange bubble labeled 𝝉<sub>𝒉𝒂𝒍𝒇</sub> = 6 s”. 

      We have revised this sentence to emphasize that the orange bubble represents the eventual stable state, rather than implying that timescale changes alone drive activity shifts:

      ”When channel gating properties are altered quickly in response to deviations from the target activity, the neuron ultimately settles into a stable activity pattern. The resulting electrical patterns are shown in Figure 6 as the orange bubble labeled 𝝉<sub>𝒉𝒂𝒍𝒇</sub> = 6 s”.

      Reviewer #1 (Recommendations for the authors):

      Unless I am missing something, Figure 2 should be a supplement to Figure 1. I would prefer to see panel B in Figure 1 to indicate that the findings of that figure are general. Panel A really is not showing anything useful to the reader.

      We appreciate the suggestion to combine Figure 2 with Figure 1, but we believe keeping Figure 2 separate better preserves the manuscript’s flow. Figure 1 illustrates the mechanism in a single model, while Figure 2 presents the population-level summary that generalizes the phenomenon across all models.

      Also, I find Figure 6 unnecessary and its description in the Discussion more detracting than useful. Even with the descriptions, I find nothing in the figure itself that clarifies the concept.

      We appreciate the reviewer’s feedback on Figure 6. The purpose of this figure is to conceptually illustrate that multiple degenerate solutions can satisfy the calcium target and that the timescale of voltage‑dependence modulation can influence which region of this solution space is accessed during the acquisition of the activity target. Reviewer 3 noted some confusion about this point. We made a small clarifying edit.

      At the risk of being really picky, I also don't see the purpose of Figure 7. And I find it strange to plot -Vm just because that's the argument of findpeaks.

      We appreciate the reviewer’s comment on Figure 7. The purpose of this figure is to illustrate exactly what the findpeaks function is detecting, as indicated by the red arrows on the traces. For readers unfamiliar with findpeaks, it may not be obvious how the algorithm interprets the waveform. Showing the peaks directly ensures that the measurements used in our analysis align with what one would intuitively expect.

      Reviewer #2 (Recommendations for the authors):

      The writing of the article has been much improved since the last version. It is much clearer, and the discussion has been improved and better addresses the biological foundations and relevance of the study. However, conclusions are rather qualitative, while one would expect some quantitative answers to be provided by the modeling approach.

      We appreciate the reviewer’s concern regarding quantification and share this perspective. As noted above, our study is primarily conceptual. Many aspects of the model, such as calcium handling and channel regulation, are parameterized based on incomplete biological data. These uncertainties make robust quantitative predictions difficult, so we focus on qualitative outcomes that are likely to hold independently of specific parameter choices.

    1. eLife Assessment

      This study presents a valuable investigation into cell-specific microstructural development in the neonatal rat brain using diffusion-weighted magnetic resonance spectroscopy. The evidence supporting the core claims is solid, with innovative in vivo data acquisition and modeling, noting residual caveats with regard to the limitations of diffusion-weighted magnetic resonance spectroscopy for strict validation of cell-type-specific metabolite compartmentation. In addition, the study provides community resources that will benefit researchers in this field. The work will be of interest to researchers studying brain development and biophysical imaging methods.

    2. Reviewer #1 (Public review):

      In this work, Ligneul and coauthors implemented diffusion-weighted MRS in young rats to follow longitudinally and in vivo the microstructural changes occurring during brain development. Diffusion-weighted MRS is here instrumental in assessing microstructure in a cell-specific manner, as opposed to the claimed gold-standard (manganese-enhanced MRI) that can only probe changes in brain volume. Differential microstructure and complexification of the cerebellum and the thalamus during rat brain development were observed non-invasively. In particular, lower metabolite ADC with increasing age were measured in both brain regions, reflecting increasing cellular restriction with brain maturation. Higher sphere (representing cell bodies) fraction for neuronal metabolites (total NAA, glutamate) and total creatine and taurine in the cerebellum compared to the thalamus were estimated, reflecting the unique structure of the cerebellar granular layer with a high density of cell bodies. Decreasing sphere fraction with age was observed in the cerebellum, reflecting the development of the dendritic tree of Purkinje cells and Bergmann glia. From morphometric analyses, the authors could probe non-monotonic branching evolution in the cerebellum, matching 3D representations of Purkinje cells expansion and complexification with age. Finally, the authors highlighted taurine as a potential new marker of cerebellar development.

      From a technical standpoint, this work clearly demonstrates the potential of diffusion-weighted MRS at probing microstructure changes of the developing brain non-invasively, paving the way for its application in pathological cases. Ligneul and coauthors also show that diffusion-weighted MRS acquisitions in neonates are feasible, despite the known technical challenges of such measurements, even in adult rats. They also provide all necessary resources to reproduce and build upon their work, which is highly valuable for the community.

      From a biological standpoint, claims are well supported by the microstructure parameters derived from advanced biophysical modelling of the diffusion MRS data.

      Specific strengths:

      (1) The interpretation of dMRS data in terms of cell-specific microstructure through advanced biophysical modelling (e.g. the sphere fraction, modelling the fraction of cell bodies versus neuronal or astrocytic processes) is a strong asset of the study, going beyond the more commonly used signal representation metrics such as the apparent diffusion coefficient, which lacks specificity to biological phenomena.

      (2) The fairly good data quality despite the complexity of the experimental framework should be praised: diffusion-weighted MRS was acquired in two brain regions (although not in the same animals) and longitudinally, in neonates, including data at high b-values and multiple diffusion times, which altogether constitutes a large-scale dataset of high value for the diffusion-weighted MRS community.

      (3) The authors have shared publicly data and codes used for processing and fitting, which will allow one to reproduce or extend the scope of this work to disease populations, and which goes in line with the current effort of the MR(S) community for data sharing.

      Specific weaknesses:

      Ligneul and coauthors have convincingly addressed and included my comments from the first and second round in their revised manuscript.

      I believe the following conceptual concerns, which are inherent to the nature of the study and do not require further adjustments of the manuscript, remain:

      (1) Metabolite compartmentation in one cell type or the other has often been challenged and is currently impossible to validate in vivo. Here, Ligneul and coauthors did not use this assumption a priori and supported their claims also with non-MR literature (eg. for Taurine), but the interpretation of results in that direction should be made with care.

      (2) Longitudinal MR studies of the developing brain make it difficult to extract parameters with an "absolute" meaning. Indirect assumptions used to derive such parameters may change with age and become confounding factors (brain structure, cell distribution, concentrations normalizing metabolites (here macromolecules), relaxation times...). While findings of the manuscript are convincing and supported with literature, the true underlying nature of such changes might be difficult to access.

      (3) Diffusion MRI in addition to diffusion MRS would have been complementary and beneficial to validate some of the signal contributions, but was unfeasible in the time constraints of experiments on young animals.

    3. Author response:

      The following is the authors’ response to the previous reviews

      We thank the reviewers once again for their careful evaluation of the revised manuscript and for their constructive suggestions. In response to the remaining recommendations, we have made minor amendments to the manuscript. The main changes are as follows:

      • Metabolite Concentrations: we now report them more conventionally, i.e. normalised by water content. The original normalisation by the absolute MM content has been retained in the supplementary information, as MMs are an endogenous tissue probe (i.e., not dependent on cerebrospinal fluid).  The fact that both water and MM normalisation provide similar trends supports the robustness of our conclusions. We have also updated Figure S2 to include the absolute MM concentrations, raw water content, and the MM-to-water ratios for each time point.

      • Taurine Interpretation: We have revised the wording related to the interpretation of taurine findings to clarify that we present a set of converging observations suggesting taurine may serve as a marker of early cerebellar neurodevelopment, rather than asserting it as a definitive conclusion.

      Comments to the editor & reviewers:

      We sincerely thank the reviewers and the editor for their valuable feedback, which has significantly improved the manuscript since its initial submission.

      Please note a correction in Figure S2 (added during the previous revision round): the reported evolution of metabolite/water concentrations has changed due to an earlier error in calculating the water peak integral, which has now been corrected.

      While we recognise that a study and manuscript can always be improved, we prefer not to make further changes at this stage. We cannot conduct new experiments, and redesigning the model falls outside the scope of this work. Additionally, we believe that further altering the manuscript’s structure could lead to unnecessary confusion rather than clarity.

    1. eLife Assessment

      This valuable work explores how synaptic activity encodes information during memory tasks. All reviewers agree that the work is of very high quality and that the methodological approach is praiseworthy. Although the experimental data support the possibility that phospholipase diacylglycerol signaling and synaptotagmin 7 (Syt7) dynamically regulate the vesicle pool required for presynaptic release, a concern remains that the central finding of paired-pulse depression at very short intervals could be due to a mechanism that does not depend on exocytosis, such as Ca²⁺ channel inactivation, rather than vesicle pool depletion. Overall, this is a solid study although the results still warrant consideration of alternative interpretations.

    2. Reviewer #3 (Public review):

      To summarize: The authors' overfilling hypothesis depends crucially on the premise that the very-quickly reverting paired-pulse depression seen after unusually short rest intervals of << 50 ms is caused by depletion of release sites whereas Dobrunz and Stevens (1997) concluded that the cause was some other mechanism that does not involve depletion. The authors now include experiments where switching extracellular Ca2+ from 1.2 to 2.5 mM increases synaptic strength on average, but not by as much as at other synapse types. They contend that the result supports the depletion hypothesis. I didn't agree because the model used to generate the hypothesis had no room for any increase at all, and because a more granular analysis revealed a mixed population with a subset where: (a) synaptic strength increased by as much as at standard synapses; and yet (b) the quickly reverting depression for the subset was the same as the overall population.

      The authors raise the possibility of additional experiments, and I do think this could clarify things if they pre-treat with EGTA as I recommended initially. They've already shown they can do this routinely, and it would allow them to elegantly distinguish between pv and pocc explanations for both the increases in synaptic strength and the decreases in the paired pulse ratio upon switching Ca2+ to 2.5 mM. Plus/minus EGTA pre-treatment trials could be interleaved and done blind with minimal additional effort.

      Showing reversibility would be a great addition too, because, in our experience, this does not always happen in whole-cell recordings in ex-vivo tissue even when electrical properties do not change. If the goal is to show that L2/3 synapses are less sensitive to changes in Ca2+ compared to other synapse types - which is interesting but a bit off point - then I would additionally include a positive control, done by the same person with the same equipment, at one of those other synapse types using the same kind of presynaptic stimulation (i.e. ChRs).

      Specific points (quotations are from the Authors' rebuttal)

      (1) Regarding the Author response image 1, I was instead suggesting a plot of PPR in 1.2 mM Ca2+ versus the relative increase in synaptic strength in 2.5 versus in 1.2 mM. This continues to seem relevant.

      (2) "Could you explain in detail why two-fold increase implies pv < 0.2?"

      a. start with power((2.5/(1 + (2.5/K1) + 1/2.97)),4) = 2*power((1.3/(1 + (1.3/K1) + 1/2.97)),4);

      b. solve for K1 (this turns out to be 0.48);

      c. then implement the premise that pv -> 1.0 when Ca2+ is high by calculating Max = power((C/(1 + (C/K1) + 1/2.97)),4) where C is [Ca] -> infinity.

      d. pv when [Ca] = 1.3. mM must then be power((1.3/(1 + (1.3/K1) + 1/2.97)),4)/Max, which is <0.2.

      Note that modern updates of Dodge and Rahamimoff typically include a parameter that prevents pv from approaching 1.0; this is the gamma parameter in the versions from Neher group.

      (3) "If so, we can not understand why depletion-dependent PPD should lead to PPF."

      When PPD is caused by depletion and pv < 0.2, the number of occupied release sites should not be decreased by more than one-fifth at the second stimulus so, without facilitation, PPR should be > 0.8. The EGTA results then indicate there should be strong facilitation, driving PPR to something like 1.2 with conservative assumptions. And yet, a value of < 0.4 is measured, which is a large miss.

      (4) Despite the authors' suggestion to the contrary, I continue to think there is a substantial chance that Ca2+-channel inactivation is the mechanism underlying the very quickly reverting paired-pulse depression. However, this is only one example of a non-depletion mechanism among many, with the main point being that any non-depletion mechanism would undercut the reasoning for overfilling. And, this is what Dobrunz and Stevens claimed to show; that the mechanism - whatever it is - does not involve depletion. The most effective way to address this would be affirmative experiments showing that the quickly reverting depression is caused by depletion after all. Attempting to prove that Ca2+-channel inactivation does not occur does not seem like a worthwhile strategy because it would not address the many other possibilities.

      (5) True that Kusick et al. observed morphological re-docking, but then vesicles would have to re-prime and Mahfooz et al. (2016) showed that re-priming would have to be slower than 110 ms (at least during heavy use at calyx of Held).

    1. eLife Assessment

      This valuable study introduces a non-perturbative pulse-labeling strategy for yeast nuclear pore complexes (NPCs), employing a nanobody-based approach in order to selectively capture Nup84-containing complexes for imaging and biochemical analysis. The data convincingly demonstrate that a short induction period (20 minutes to 1 hour) yields a strong and sustained signal, enabling affinity purification that faithfully recapitulates the endogenous Nup84 interactome. This tool offers a powerful framework for investigating NPC dynamics and associated interactomes through both imaging and biochemical assays.

    2. Reviewer #1 (Public review):

      Summary:

      The authors present a nanobody-based pulse-labeling system to track yeast NPCs. Transient expression of a nanobody targeting Nup84 (fused to NeonGreen or an affinity tag) permits selective visualization and biochemical capture of NPCs. Short induction effectively labels NPCs, and the resulting purifications match those from conventional Nup84 tagging. Crucially, when induction is repressed, dilution of the labeled pool through successive cell cycles allows the visualization of "old" NPCs (and potentially individual NPCs), providing a powerful view of NPC lifespan and turnover without permanently modifying a core scaffold protein.

      Strengths:

      (1) A brief expression pulse labels NPCs, and subsequent repression allows dilution-based tracking of older (and possibly single) NPCs over multiple cell cycles.

      (2) The affinity-purified complexes closely match known Nup84-associated proteins, indicating specificity and supporting utility for proteomics.

      Weaknesses:

      (1) Reliance on GAL induction introduces metabolic shifts (raffinose → galactose → glucose) that could subtly alter cell physiology or the kinetics of NPC assembly. Alternative induction systems (e.g., β-estradiol-responsive GAL4-ER-VP16) could be discussed as a way to avoid carbon-source changes.

      (2) While proteomics is solid, a comprehensive supplementary table listing all identified proteins (with enrichment and statistics) would enhance transparency.

      (3) Importantly, the authors note that the method is particularly useful "in conditions where direct tagging of Nup84 interferes with its function, while sub-stoichiometric nanobody binding does not." After this sentence, it would be valuable to add concrete examples, such as experiments examining NPC integrity in aging or stress conditions where epitope tags can exacerbate phenotypes. These examples will help readers identify situations in which this approach offers clear advantages.

    3. Reviewer #2 (Public review):

      Summary:

      This preprint describes a practical and useful approach for labeling and tracking NPCs in situ. While useful applications including timelapse imaging, affinity purification, or proximity labeling are envisioned, addressing some outstanding technical questions would give a clearer picture of the sensitivity and temporal resolution of this approach.

      Strengths:

      Clever use of a fluorescently conjugated nanobody that binds directly to the core scaffold nucleoporin Nup84 with nanomolar affinity.

      Weaknesses:

      The decrease in nanobody labeling over 8 hours of chase period is interpreted to indicate that NPCs turn over during this time. However, it is also possible that the nanobody:Nup84 association is disrupted during mitosis by phosphorylation, other PTMs, or structural remodeling.

    4. Reviewer #3 (Public review):

      Summary:

      Submitted to the Tools and Resources series, this study reports on the use of a single-domain antibody targeting the nucleoporin Nup84 to probe and track NPCs in budding yeast. The authors demonstrate their ability to rapidly label or pull down NPCs by inducing the expression of a tagged version of the nanobody (Figure 1).

      Strengths:

      This tool's main strength is its versatility as an inexpensive, easy-to-set-up alternative to metabolic labelling or optical switching. This same rationale could, in principle, be applied to the study of other multiprotein complexes using similar strategies, provided that single-chain antibodies are available.

      Weaknesses:

      This approach has no inherent weaknesses, but it would be useful for the authors to verify that their pulse labelling strategy can also be used to detect assembly intermediates, structural variants, or damaged NPCs.

      Overall, the data clearly show that Nup84 nanobodies are a valuable tool for imaging NPC dynamics and investigating their interactomes through affinity purification.

    1. eLife Assessment

      The authors examined the frequency of alternative splicing across prokaryotes and eukaryotes and found that the rate of alternative splicing varies with taxonomic groups and genome coding content. This solid work, based on nearly 1,500 high-quality genome assemblies, relies on a novel genome-scale metric that enables cross-species comparisons and that quantifies the extent to which coding sequences generate multiple mRNA transcripts via alternative splicing. This timely study provides an important basis for improving our general understanding of genome architecture and the evolution of life forms.

    2. Reviewer #2 (Public review):

      Summary:

      In this contribution, the authors investigate the degree of alternative splicing across the evolutionary tree, and identify a trend of increasing alternative splicing as you move from the base of the tree (here, only prokaryotes are considered) towards the tips of the tree. In particular, the authors investigate how the degree of alternative splicing (roughly speaking, the number of different proteins made from a single ORF (open reading frame) via alternative splicing) relates to three genomic variables: the genome size, the gene content (meaning the fraction of the genome composed of ORFs), and finally, the coding percentage of ORFs, meaning the ratio between exons and total DNA in the ORF.

      The revised manuscript addresses the problems identified in the first round of reviews and now serves as a guide to understand how alternative splicing has evolved within different phyla, as opposed to making unsubstantiated claims about overall trends.

    3. Reviewer #3 (Public review):

      Summary:

      In "Alternative Splicing Across the Tree of Life: A Comparative Study," the authors use rich annotation features from nearly 1,500 high-quality NCBI genome assemblies to develop a novel genome-scale metric, the Alternative Splicing Ratio, that quantifies the extent to which coding sequences generate multiple mRNA transcripts via alternative splicing (AS). This standardized metric enables cross-species comparisons and reveals clear phylogenetic patterns: minimal AS in prokaryotes and unicellular eukaryotes, moderate AS in plants, and high AS in mammals and birds. The study finds a strong negative correlation between AS and coding content, with genomes containing approximately 50% intergenic DNA exhibiting the highest AS activity. By integrating diverse lines of prior evidence, the study offers a cohesive evolutionary framework for understanding how alternative splicing varies and evolves across the tree of life.

      Strengths:

      By studying alternative splicing patterns across the tree of life, the authors systematically address an important yet historically understudied driver of functional diversity, complexity, and evolutionary innovation. This manuscript makes a valuable contribution by leveraging standardized, publicly available genome annotations to perform a global survey of transcriptional diversity, revealing lineage-specific patterns and evolutionary correlates. The authors have done an admirable job in this revised version, thoroughly addressing prior reviewer comments. The updated manuscript includes more rigorous statistical analyses, careful consideration of potential methodological biases, expanded discussion of regulatory mechanisms, and acknowledgment of non-adaptive alternatives. Overall, the work presents an intriguing view of how alternative splicing may serve as a flexible evolutionary strategy, particularly in lineages with limited capacity for coding expansion (e.g., via gene duplication). Notably, the identification of genome size and genic coding fraction thresholds (~20 Mb and ~50%, respectively) as tipping points for increased splicing activity adds conceptual depth and potential generalizability.

      Weaknesses:

      While the manuscript offers a broad comparative view of alternative splicing, its central message becomes diffuse in the revised version. The focus of the study is unclear, and the manuscript comes across as largely descriptive without a well-articulated hypothesis or explanatory evolutionary model. Although the discussion gestures toward adaptive and non-adaptive mechanisms, these interpretations are not developed early or prominently enough to anchor the reader. The negative correlation between alternative splicing and coding content is compelling, but the biological significance of this pattern remains ambiguous: it is unclear whether it reflects functional constraint, genome organization, or annotation bias. This uncertainty weakens the manuscript's broader evolutionary inferences.

      Sections of the Introduction, particularly lines 72-90, lack cohesion and logical flow, shifting abruptly between topics without a clear structure. A more effective approach may involve separating discussions of coding and non-coding sequence evolution to clarify their distinct contributions to splicing complexity. Furthermore, some interpretive claims lack nuance. For example, the assertion that splicing in plants "evolved independently" seems overstated given the available evidence, and the citation regarding slower evolution of highly expressed genes overlooks counterexamples from the immunity and reproductive gene literature.

      Presentation of the results is occasionally vague. For instance, stating "we conducted comparisons of mean values" (line 146) without specifying the metric undercuts interpretability. The authors should clarify whether these comparisons refer to the Alternative Splicing Ratio or another measure. Additionally, the lack of correlation between splicing and coding region fraction in prokaryotes may reflect a statistical power issue, particularly given their limited number of annotated isoforms, rather than a biological absence of pattern.

      Finally, the assessment of annotation-related bias warrants greater methodological clarity. The authors note that annotations with stronger experimental support yield higher splicing estimates, yet the normalization strategy for variation in transcriptomic sampling (e.g., tissue breadth vs sequencing depth) is insufficiently described. As these factors can significantly influence splicing estimates, a more rigorous treatment is essential. While the authors rightly acknowledge that splicing represents only one layer of regulatory complexity, the manuscript would benefit from a more integrated consideration of additional dimensions, such as 3D genome architecture, e.g., the potential role of topologically associating domains in constraining splicing variation.

    4. Reviewer #4 (Public review):

      The manuscript reports on a large-scale study correlating genomic architecture with splicing complexity over almost 1,500 species. We still know relatively little about alternative splicing functional consequences and evolution, and thus, the study is relevant and timely. The methodology relies on annotations from NCBI for high-quality genomes and a main metric proposed by the authors and named Alternative Splicing Ratio (ASR). It quantifies the level of redundancy of each coding nucleotide in the annotated isoforms.

      According to the authors' response to the first reviewers' comments, the present version of the manuscript seems to be a profoundly revised version compared to the original submission. I did not have access to the reviewers' comments.

      Although the study addresses an important question and the authors have visibly made an important effort to make their claims more statistically robust, I have a number of major concerns regarding the methodology and its presentation.

      (1) A large part of the manuscript is speculative and vague. For instance, the Discussion is very long (almost longer than the Results section) and the items discussed are sometimes not in direct connection with the present work. I would suggest merging the last 2 paragraphs, for instance, since the before last paragraph is essentially a review of the literature without direct connection to the present work.

      (2) The Methods section lacks clarity and precision. A large part is devoted to explaining the biases in the data without any reference or quantification. The definition of ASR is very confusing. It is first defined in equation 2, with a different name, and then again in the next subsection from a different perspective on lines 512-518. Why build matrices of co-occurrences if these are, in practice, never used? It seems the authors exploit only the trace. A major revision, if I understood correctly, was the correction/normalisation of the ASR metric. This normalisation is not explained. The authors argue that they will write another paper about it, I do not think this is acceptable for the publication of the present manuscript. Furthermore, there is no information about the technical details of the implementation: which packages did the authors use?

      (3) Could the authors motivate why they do not directly focus on the MC permutation test? They motivate the use of permutations because the data contains extreme outliers and are non normal in most cases. Hence, it seems the Welch's ANOVA is not adapted. "To further validate our findings, we also conducted<br /> 148 a Monte Carlo permutation test, which supported the conclusions (see Methods)." Where is the comparison shown? I did not see any report of the results for the non-permuted version of the Welch's ANOVA.

      (4) What are the assumptions for the Phylogenetic Generalized Least Squares? Which evolution model was chosen and why? What is the impact of changing the model? Could the authors define more precisely (e.g. with equations) what is lambda? Is it estimated or fixed?

      (5) I think the authors could improve their account of recent literature on the topic. For instance, the paper https://doi.org/10.7554/eLife.93629.3, published in the same journal last year, should be discussed. It perfectly fits in the scope of the subsection "Evidence for the adaptive role of alternative splicing". Methods and findings reported in https://doi.org/10.1186/s13059-021-02441-9 and https://www.genome.org/cgi/doi/10.1101/gr.274696.120 directly concern the assessment of AS evolutionary conservation across long evolutionary times and/or across many species. These aspects are mentioned in the introduction on p.3. but without pointing to such works. Can we really qualify a work published in 2011 as "recent" (line 348-350)?

      The generated data and codes are available on Zenodo, which is a good point for reproducibility and knowledge sharing with the community.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1

      Methodological biases in annotation and sequencing methods

      We acknowledge the reviewer’s concern regarding methodological heterogeneity in genome annotations, particularly regarding the use of CDS annotations derived from public databases. In response, we have properly addressed the potential sources of bias in estimating alternative splicing (AS) across such a broad taxonomic range.

      Given the methodological challenges encountered in this study, we have undertaken an in-depth analysis of the biases associated with genome annotations and their impact on large-scale estimates of alternative splicing. This effort has resulted in the development of a comprehensive framework for quantifying, modeling, and correcting such biases, which we believe will be of interest to the broader genomics community. We are currently preparing a separate manuscript dedicated to this methodological aspect, which we intend to submit for publication in the near future.

      To account for these biases, we performed a statistical evaluation of annotation quality by examining the relationship between ASR values and multiple features of the NCBI annotation pipeline, including both technical and biological variables. Specifically, we analyzed a set of metadata descriptors related to: (i) genome assembly quality (e.g., Contig N50, Scaffold N50, number of gaps, gap length, contig/scaffold count), (ii) the amount and diversity of experimental evidence used in annotation (e.g., number of RNA-Seq reads, number of tissues, number of experimental runs, number of proteins and transcripts, including those derived from Homo sapiens), and (iii) the nature of the annotated coding sequences (e.g., total number of CDSs, percentage of CDSs supported by experimental evidence, proportion of known CDSs, percentage of CDSs derived from ab initio predictions).

      This comprehensive analysis revealed that the strongest bias affecting ASR values is associated with the proportion of fully supported CDSs, which showed a strong positive correlation with observed splicing levels. In contrast, the percentage of CDSs relying on ab initio models showed a negative correlation, indicating that computational predictions tend to underestimate splicing complexity. Based on these findings, we implemented a polynomial normalization model using the percentage of fully supported CDSs as the main predictor of annotation bias. The resulting normalized metric, ASR<sup>∗</sup>, corrects for annotation-related variability while preserving biologically meaningful variation.

      We further verified the robustness of this correction by comparing the main results of our study using both the raw ASR and the normalized ASR<sup>*</sup> across all analyses. The qualitative and quantitative consistency of results obtained with both metrics demonstrates that our findings are not an artifact of methodological bias and validates the reliability of our approach.

      Conceptual and Statistical Framework

      Our aim was not to investigate specific regulatory mechanisms of alternative splicing, but rather to explore large-scale statistical patterns across the tree of life using a newly defined metric—the Alternative Splicing Ratio (ASR)—that enables genome-wide comparisons of splicing complexity across species. To clarify the conceptual framework, we have revised the manuscript to explicitly state our assumptions, objectives, and the scope of our conclusions. The ASR metric is now briefly introduced in the Results section, with a more detailed mathematical formulation included in the Methods section.

      From a methodological standpoint, we have expanded the manuscript to better support the comparative framework through additional statistical analyses. In particular, we now include:

      • Monte Carlo permutation tests to assess pairwise differences in splicing and genomic variables across taxonomic groups, which are robust to non-normality and heteroscedasticity in the data.

      • Welch’s ANOVA with Bonferroni correction, which accounts for unequal variances when comparing group means.

      • Phylogenetic Generalized Least Squares (PGLS) regression, which explicitly models phylogenetic non-independence between species and allows us to infer lineage-specific associations between genomic composition and alternative splicing.

      • Coefficient of variation analysis, used to evaluate the relative variability of splicing and genomic traits across groups in a scale-independent manner.

      • Variability ratio metrics, designed to compare the dispersion of splicing values relative to genomic features, thereby quantifying trends in regulatory plasticity versus structural constraints.

      All methods are thoroughly described in the revised Methods section, and their application is presented in the Results section.

      Functional vs. non-functional nature of AS events

      We have included a new discussion paragraph addressing the ongoing debate regarding the functionality of alternative splicing and a possible non-adaptive explanation for the patterns observed. While many previous studies suggest that a considerable fraction of AS events might represent splicing noise or non-functional isoforms, our intention is not to adopt this view uncritically. Instead, we cite recent literature to provide a more nuanced interpretation, recognizing both the potential adaptive value and the uncertainty surrounding the functional relevance of many AS events. Thus, rather than assuming that all observed alternative splicing events are adaptive or biologically meaningful, we now emphasize that many patterns may emerge from other processes, such as those associated to genomic constraints.

      Terminology and Result Interpretation

      The manuscript has been thoroughly revised to improve both the scientific language and the conceptual framing. We have removed inappropriate terminology such as “higher/lower organisms” and “highly evolved”. Also, we have reinterpreted the results. As part of this process, the manuscript has been substantially rewritten to focus on the most meaningful findings. Ultimately, we have retained only those results that specifically concern broad-scale patterns of alternative splicing across taxa, which are now presented with greater clarity and methodological rigor.

      Reviewer #2

      Gene Regulatory Complexity Beyond Splicing Mechanisms

      While alternative splicing represents a prominent mechanism of transcriptomic diversification, we agree with the reviewer that it constitutes only one component of the broader landscape of gene regulation. Structural and behavioral complexity in organisms arises from a combination of regulatory processes, and our study focuses specifically on alternative splicing as a measurable proxy within this multifactorial system. To clarify this point, we have added a paragraph in the Discussion section, where we explicitly contextualize alternative splicing within the wider regulatory architecture. In that paragraph, we discuss additional mechanisms that contribute to phenotypic complexity—such as transcriptional control, chromatin remodeling, epigenetic modifications, and RNA editing—citing key literature.

      Alternative Splicing Measure and Methodology

      While we agree that alternative splicing is not a definitive measure of organismal complexity, we argue that it remains a meaningful proxy for transcriptomic and regulatory diversification, especially when analyzed at large phylogenetic scale. In this version of the manuscript, our goal was not to equate alternative splicing with biological complexity, but rather to quantify its patterns across lineages and evaluate its relationship with genome structure. This point is now explicitly stated in both the Introduction and Discussion.

      We also recognize the limitations associated with the use of coding sequence (CDS) annotations from public databases such as NCBI RefSeq. To address this concern, we have conducted a detailed analysis of the potential biases introduced by heterogeneous annotation quality, sequencing depth, and computational prediction, as previously addressed in our response to Reviewer #1.

      In response to concerns about unsupported statements, we have completely rewritten the manuscript to ensure that all claims are now explicitly supported by data and grounded in up-to-date scientific literature. We have reformulated speculative statements, removed inappropriate generalizations, and improved the logical flow of the arguments throughout the text. In summary, we have strengthened both the conceptual framework and the methodological foundation of the study, while maintaining a cautious interpretation of the results.

      Trends of Alternative Splicing

      To address the reviewer’s concern, we have revised the interpretation of trends as used in our analysis. In this study, we define a trend not as a strict directional progression or a linear trajectory across all species, but rather as a broad statistical pattern observable in the relative distribution and variability of alternative splicing across major taxonomic groups. We do not claim that this pattern reflects a universal adaptive pathway. Instead, we interpret it as a signal of differences in regulatory strategies associated to the genome architecture. To avoid misinterpretation, we have rephrased several sentences in the manuscript and explicitly emphasized the variability within groups, and the lack of significant correlations in certain clades.

      Inconsistent statistics

      The discrepancies pointed out were due to differences between mean and median-based analyses. These have been clarified and consistently reported in the revised manuscript. Error bars, p-values, and a supplementary table summarizing all tests are now included. Furthremore, we have no removed any species from our dataset.

    1. eLife Assessment

      This important study examines the evolution of virulence and antibiotic resistance in Staphylococcus aureus under multiple selection pressures. The evidence presented is convincing, with rigorous data that characterizes the outcomes of the evolution experiments. However, the manuscript's primary weakness is in its presentation, as claims about the causal relationship between genotypes and phenotypes are based on correlational evidence. The manuscript needs to be revised to address these limitations, clarify the implications of the experimental design, and adjust the overall narrative to better reflect the nature of the findings.

    2. Reviewer #1 (Public review):

      Summary:

      The authors investigate how methicillin-resistant (MRSA) and sensitive (MSSA) Staphylococcus aureus adapt to a new host (C. elegans) in the presence or absence of a low dose of the antibiotic oxacillin. Using an "Evolve and Resequence" design with 48 independently evolving populations, they track changes in virulence, antibiotic resistance, and other fitness-related traits over 12 passages. Their key finding is that selection from both the host and the antibiotic together, rather than either pressure alone, results in the evolution of the most virulent pathogens. Genomically, they find that this adaptation repeatedly involves mutations in a small number of key regulatory genes, most notably codY, agr, and saeRS.

      Strengths:

      The main advantage of the research lies in its strong and thoroughly replicated experimental framework, enabling significant conclusions to be drawn based on the concept of parallel evolution. The study successfully integrates various phenotypic assays (virulence, growth, hemolysis, biofilm formation) with whole-genome sequencing, offering an extensive perspective on the adaptive landscape. The identification of certain regulatory genes as common targets of selection across distinct lineages is an important result that indicates a level of predictability in how pathogens adapt.

      Weaknesses:

      (1) The main limitation of the paper is that its findings on the function of specific genes are based on correlation, not cause-and-effect evidence. While the parallel evolution evidence is strong, the authors have not yet performed the definitive tests (i.e., reconstruction of ancestral genes) to ensure that the mutations identified in isolation are enough to account for the virulence or resistance changes observed. This makes the conclusions more like firm hypotheses, not confirmed facts.

      (2) In some instances, the claims in the text are not fully supported by the visual data from the figures or are reported with vagueness. For example, the display of phenotypic clusters in the PCA (Figure 6A) and the sweeping generalization about the effect of antibiotics on the mutation rates (Figure S5) can be more precise and nuanced. Such small deviations dilute the overall argument somewhat and must be corrected.

    3. Reviewer #2 (Public review):

      Summary:

      The manuscript describes the results of an evolution experiment where Staphylococcus aureus was experimentally evolved via sequential exposure to an antibiotic followed by passaging through C. elegans hosts. Because infecting C. elegans via ingestion results in lysis of gut cells and an immune response upon infection, the S. aureus were exposed separately across generations to antibiotic stress and host immune stress. Interestingly, the dual selection pressure of antibiotic exposure and adaptation to a nematode host resulted in increased virulence of S. aureus towards C. elegans.

      Strengths:

      The data presented provide strong evidence that in S. aureus, traits involved in adaptation to a novel host and those involved in antibiotic resistance evolution are not traded off. On the contrary, they seem to be correlated, with strains adapted to antibiotics having higher virulence towards the novel host. As increased virulence is also associated with higher rates of haemolysis, these virulence increases are likely to reflect virulence levels in vertebrate hosts.

      Weaknesses:

      Right now, the results are presented in the context of human infections being treated with antibiotics, which, in my opinion, is inappropriate. This is because<br /> (1) exposure to the host and antibiotics was sequential, not simultaneous, and thus does not reflect the treatment of infection, and<br /> (2) because the site of infection is different in C. elegans and human hosts.

      Nevertheless, the results are of interest; I just think the interpretation and framing should be adjusted.

    4. Reviewer #3 (Public review):

      Summary:

      Su et al. sought to understand how the opportunistic pathogen Staphylococcus aureus responds to multiple selection pressures during infection. Specifically, the authors were interested in how the host environment and antibiotic exposure impact the evolution of both virulence and antibiotic resistance in S. aureus. To accomplish this, the authors performed an evolution experiment where S. aureus was fed to Caenorhabditis elegans as a model system to study the host environment and then either subjected to the antibiotic oxacillin or not. Additionally, the authors investigated the difference in evolution between an antibiotic-resistant strain, MRSA, and an isogenic susceptible strain, MSSA. They found that MRSA strains evolved in both antibiotic and host conditions became more virulent, and that strains evolved outside these conditions lost virulence. Looking at the strains evolved in just antibiotic conditions, the authors found that S. aureus maintained its ability to lyse blood cells. Mutations in codY, gdpP, and pbpA were found to be associated with increased virulence. Additionally, these mutations identified in these experiments were found in S. aureus strains isolated from human infections.

      Strengths:

      The data are well-presented, thorough, and are an important addition to the understanding of how certain pathogens might adapt to different selective pressures in complex environments.

      Weaknesses:

      There are a few clarifications that could be made to better understand and contextualize the results. Primarily, when comparing the number of mutations and selection across conditions in an evolution experiment, information about population sizes is important to be able to calculate the mutation supply and number of generations throughout the experiment. These calculations can be difficult in vivo, but since several steps in the methodology require plating and regrowth, those population sizes could be determined. There was also no mention of how the authors controlled the inoculation density of bacteria introduced to each host. This would need to be known to calculate the generation time within the host. These caveats should be addressed in the manuscript.

      Another concern is the number of generations the populations of S. aureus spent either with relaxed selection in rich media or under antibiotic pressure in between the host exposure periods. It is probable then that the majority of mutations were selected for in these intervening periods between host infection. Again, a more detailed understanding of population sizes would contribute to the understanding of which phase of the experiment contributed to the mutation profile observed.

    1. eLife Assessment

      This study reports on the development and characterization of chickens with genetic deficiencies in type I or type III interferon receptors, which is an important contribution to the field of avian immunology. The data reflecting the development of the new interferon-receptor-deficient chickens is compelling. However, the characterization of IFN biology and infection responses in these knockout chickens is somewhat incomplete and could be improved by addressing the noted weaknesses.

    2. Reviewer #1 (Public review):

      Summary:

      This manuscript presents an extensive body of work and an outstanding contribution to our understanding of the IFN type I and III system in chickens. The research started with the innovative approach of generating KO chickens that lack the receptor for IFNα/β (IFNAR1) or IFN-λ (IFNLR1). The successful deletion and functional loss of these receptors was clearly and comprehensively demonstrated in comparison to the WT. Moreover, the homozygous KO lines (IFNAR1-/- or IFNLR1-/- ) were found to have similar body weights, and normal egg production and fertility compared to their WT counterparts. These lines are a major contribution to the toolbox for the study of avian/chicken immunology.

      The significance of this contribution is further demonstrated by the use of these lines by the authors to gain insight into the roles of IFN type I and IFN-type III in chickens, by conducting in ovo and in vivo studies examining basic aspects of immune system development and function, as well as the responses to viral challenges conducted in ovo and in vivo.

      Based on solid, state-of the-art methods and convincing evidence from studies comparing various immune system related functions in the IFNAR1-/- or IFNLR1-/- lines to the WT, revealed that the deletion of IFNAR1 and/or IFNLR1 resulted in:<br /> (1) impaired IFN signaling and induction of anti-viral state;<br /> (2) modulation of immune cell profiles in the peripheral blood circulation and spleen;<br /> (3) modulation of the cecum microbiome;<br /> (4) reduced concentrations of IgM and IgY in the blood plasma before and following immunization with model antigen KLH, whereby also line differences in the time-course of the antibody production were observed;<br /> (5) decrease in MHCII+ macrophages and B cells in the spleen of IFNAR1 KO chickens, although the MHCII-expression per cell was not affected in this line; and<br /> (6) reduction in the response of αβ1 TCR+ T cells of IFNAR1 KO chickens as suggested by clonal repertoire analyses.

      These studies were then followed by examination of the role of type I and type III IFN in virus infection, using different avian influenza A virus strains as well as an avian gamma corona virus (IBV) in in ovo challenge experiments. These studies revealed: viral titers that reflect virus-species and strain-specific IFN responses; no differences in the secretion of IFN-α/β in both KO compared to the WT lines; a predominant role of type I IFN in inducing the interferon-stimulated gene (ISG) Mx; and that an excessive and unbalanced type I IFN response can harm host fitness (survival rate, length of survival) and contribute to immunopathology.

      Based on guidance from the in ovo studies, comprehensive in vivo studies were conducted on host-pathogen interactions in hens from the three lines (WT, IFNAR1 KO, or IFNLR1 KO). These studies revealed the early appearance of symptoms and poor survival of hens from the IFNR1 KO line challenged with H3N1 avian influenza A virus; efficient H#N1 virus replication in IFNAR1 KO hens, increased plasma concentrations of IFNα/β and mRNA expression of IFN-λ in spleens of the IFNAR1 KO hens; a pro-inflammatory role of IFN-λ in the oviduct of hens infected with H3N1 virus; increased proinflammatory cytokine expression in spleens of IFNAR1 KO hens, and Impairment of negative feedback mechanisms regulating IFN-α/β secretion in IFNAR1-KO hens and a significant decrease in this group's antiviral state; additionally it was demonstrated that IFN-α/β can compensate IFN-λ to induce an adequate antiviral state in the spleen during H3N1 infection, but IFN-λ cannot compensate for IFN-α/β signaling in the spleen.

      Strengths:

      (1) Both the methods and results from the comprehensive, well-designed, and well-executed experiments are considered excellent. The results are well and correctly described in the result narrative and well presented in both the manuscript and supplement Tables and Figures. Excellent discussion/interpretation of results.

      (2) The successful generation of the type I and type III IFN KO lines offers unprecedented insight and opens multiple new venues for exploring the IFN system in chickens. The new knowledge reported here is direct evidence of the high impact of this model system on effectively addressing a critical knowledge gap in avian immunology.

      (3) The thoughtful selection of highly relevant viruses to poultry and human health for the in ovo and in vivo challenge studies to examine and assess host-pathogen interactions in the IFNR KO and WT lines.

      (4) Making use of the unique opportunities in the chicken model to examine and evaluate the host's IFN system responses to various viral challenges in ovo, before conducting challenge studies in hens.

      (5) The new knowledge gained from the IFNAR1 and IFNLR1 KO lines will find much-needed application in developing more effective strategies to prevent health challenges like avian influenza and its devastating effects on poultry, humans, and other mammals.

      (6) The excellent cooperation and contributions of the co-authors and institutions.

      Weaknesses:

      No weaknesses were identified by this reviewer.

    3. Reviewer #2 (Public review):

      Summary:

      This study attempts to dissect the contributions of type I and type III IFNs to the antiviral response in chickens. The first part of the study characterises the generation of IFNAR and IFNLR KO chicken strains and describes basic differences. Four different viruses are then tested in chicken embryos, while the subsequent analysis of the antiviral response in vivo is performed with one influenza H3N1 strain.

      Strengths:

      Having these two KO chicken strains as a tool is a great achievement. The initial analysis is solid. Clear effect of IFNAR deficiency in in vivo infection, less so for IFNLR deficiency.

      Weaknesses:

      (1) The antibody induction by KLH immunisation: No data indicated whether or not this vaccination induces IFN responses in wt mice, so the effects observed may be due to steady-state differences or to differential effects of IFN induced during the vaccination phase. No pre-immune results are shown. The differences are relatively small and often found at only one plasma dilution - the whole of Figure 4 could be condensed into one or two panels by proper calculation of Ab titers - would these titres be significantly different? This, as all of the other in vivo experiments, has not been repeated, if I understand the methods section correctly.

      (2) The basic conundrum here and in later figures is never addressed by the authors: Situations where IFN type 1 and 3 signalling deficiency each have an independent effect (i.e., Figure 4d) suggest that they act by separate, unrelated mechanisms. However, all the literature about these IFN families suggests that they show almost identical signalling and gene induction downstream of their respective receptors. How can the same signalling, clearly active here downstream of the receptors for IFN type 1 or type 3, be non-redundant, i.e., why does the unaffected IFN family not stand in? This is a major difference from the mouse studies, which showed a rather subtle phenotype when only one of the two IFN systems was missing, but a massive reduction in virus control in double KO mice (the correct primary paper should be quoted here, not only the review by McNab). Reasons could be a direct effect of IFNab on B cells and an indirect effect of IFNL through non-B cells, timing issues, and many other scenarios can be envisaged. The authors do not address this question, which limits the depth of analysis.

      (3) In the one in vivo experiment performed with chickens, only one virus was tested; more influenza strains should be included, as well as non-influenza viruses.

      (4) The basic conundrum of point 2 applies equally to Figure 6a; both KOs have a phenotype. Again in 6d, both IFNs appear to be separately required for Mx induction. An explanation is needed.

      (5) Line 308, where are the viral titers you refer to in the text? The statement that the results demonstrate that excessive IFNab has a negative impact is overstretched, as no IFN measurements of the infected embryos are shown here.

      (6) The in vivo infection is the most interesting experiment, and the key outcome here is that IFN type 1 is crucial for anti-H3N1 protection in chickens, while type 3 is less impactful. However, this experiment suffers from the different time points when chickens were culled, so many parameters are impossible to compare (e.g., weight loss, histopathology, IFN measurements, and more). Many of these phenomena are highly dynamic in acute virus infections, so disparate time points do not allow a meaningful comparison between different genotypes. What are the stats in 7b? Is the median rather than the mean indicated by the line? Otherwise, the lines appear in surprising places. SD must be shown, and I find it difficult to believe that there is a significant difference in weight, for e.g., IFNAR KO, unless maybe with a paired t test. What is the statistical test?

      (7) Figures 7e,f: these comparisons are very difficult to interpret as the virus loads at these time points already differ significantly, so any difference could be secondary to virus load differences.

    1. eLife Assessment

      Non-essential amino acids such as glutamine have been known to be required for T cell general activation through sustaining basic biosynthetic processes, including nucleotide biosynthesis, ATP generation, and protein synthesis. In this important study, the authors found that extracellular asparagine (Asn) is required not only for T cells to generally refuel metabolic reprogramming, but to produce helper T cell lineage-specific cytokine, for instance, IL17. In particular, the importance of Asn in IL17 production was convincingly demonstrated in the mouse experimental autoimmune encephalomyelitei (EAE) model, mimicking human multiple sclerosis disease.

    2. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors reveal that the availability of extracellular asparagine (Asn) represents a metabolic vulnerability for the activation and differentiation of naive CD4+ T cells. To deplete extracellular Asn, they employed two orthogonal approaches: activating naive CD4+ T cells in either PEGylated asparaginase (PEG-AsnASE)-treated medium or custom-formulated RPMI medium specifically lacking Asn. Importantly, they demonstrate that Asn depletion not only impaired metabolic reprogramming associated with CD4+ T cell activation but also reduced CD4+ helper T cell lineage-specific cytokine production, thereby ameliorating the severity of experimental autoimmune encephalomyelitis.

      Strengths:

      The experiments presented here are comprehensive and well-designed, providing compelling evidence for the conclusions. The conclusions will be important to the field.

      Weaknesses:

      (1) EAE is the prototypic T cell-mediated autoimmune disease model, and both Th1 and Th17 cells are implicated in its pathogenesis. In contrast, Th2 and Treg cells and their associated cytokines (such as IL-4 and IL-10) have been shown to play a role in the resolution of EAE, and potentially in the modulation of disease progression. Thus, it will be important to determine whether Asn depletion affects the differentiation of naive CD4+ T cells into corresponding subsets under Th2 and Treg polarization conditions, as well as the expression of lineage-specific transcription factors and cytokine production.

      (2) EAE is characterized by inflammation and demyelination in the central nervous system (CNS), leading to neurological deficits. Myelin destruction is directly correlated with the severity of the disease. For Figure 6, did the authors perform spinal cord histological analysis by hematoxylin and eosin (H&E) or Luxol fast blue (LFB) staining? This is important to rigorously examine pathological EAE symptoms.

    3. Reviewer #2 (Public review):

      While the importance of asparagine in the differentiation and activation of CD8 T cells has been previously reported, its role in CD4 T cells remained unclear. Using culture media containing specific amino acids, the authors demonstrated that extracellular asparagine promotes CD4 T cell proliferation. Consistent with this, depletion of extracellular asparagine using PEG-AsnASE suppressed CD4 T cell activation. Proteomic analysis focusing on asparagine content revealed that, during the early phase of T cell activation, most asparagine incorporated into proteins is derived from extracellular sources. The authors further confirmed the importance of extracellular asparagine in vivo, demonstrating improved EAE pathology.

      While the data are well organized and convincing, the mechanism by which asparagine deficiency leads to altered T cell differentiation remains unclear. It is also necessary to investigate the transporters involved in asparagine uptake. In particular, elucidating whether different T cell subsets utilize the same or distinct transport mechanisms would provide important insight into the immunoregulatory role of asparagine.

      (1) The finding that asparagine supplementation promotes T cell proliferation under various amino acid conditions is highly significant. However, the concentration at which this effect occurs remains unclear. A titration analysis would be necessary to determine the dose-dependency of asparagine.

      (2) The effects of asparagine deficiency occur during the early phase of T cell activation. Thus, it is likely that the transporters responsible for asparagine uptake are either rapidly induced upon activation or already expressed in the resting state. Since this is central to the focus of the manuscript, it is interesting to identify the transporter responsible for asparagine uptake during early T cell activation. A recent paper (DOI: 10.1126/sciadv.ads350) reported that macrophages utilize Slc6a14 to use extracellular asparagine. Is this also true for CD4+ T cells?

      (3) Given that depletion of extracellular asparagine impairs differentiation of Th1 and Th17 cells, it is possible that TCR signaling is compromised under these conditions. This point should be investigated by targeting downstream signaling molecules such as Lck, ZAP70, or mTOR. Also, does it affect the protein stability of master transcription factors such as T-bet and RORgt?

      (4) Is extracellular asparagine also important for the differentiation of helper T cell subsets other than Th1 and Th17, such as Th2, Th9, and iTreg?

      (5) Asparagine taken up from outside the cell has been shown to be used for de novo protein synthesis (Figure 3E), but are there any proteins that are particularly susceptible to asparagine deficiency? This can be verified by performing proteome analysis, and the effects on Th1/17 subset differentiation mentioned above should also be examined.

      (6) While the importance of extracellular asparagine is emphasized, Asns expression is markedly induced during early T cell activation. Nevertheless, the majority of asparagine incorporated into proteins appears to be derived from extracellular sources. Does genetic deletion of Asns have any impact on early CD4+ T cell activation? The authors indicated that newly synthesized Asns have little impact on CD8+ T cells in the Discussion section, but is this also true for CD4+ T cells? This could be verified through experiments using CRISPR-mediated Asns gene targeting or pharmacological inhibition.

    1. eLife Assessment

      This study illustrates a valuable application of BID-seq to bacterial RNA, allowing transcriptome-wide mapping of pseudouridine modifications across various bacterial species. The evidence presented includes a mix of solid and incomplete data and analyses, and would benefit from more rigorous approaches. The work will interest a specialized audience involved in RNA biology.

    2. Reviewer #1 (Public review):

      Summary:

      The manuscript by Xu et al. reported base-resolution mapping of RNA pseudouridylation in five bacterial species, utilizing recently developed BID-seq. They detected pseudouridine (Ψ) in bacterial rRNA, tRNA, and mRNA, and found growth phase-dependent Ψ changes in tRNA and mRNA. They then focused on mRNA and conducted a comparative analysis of Ψ profiles across different bacterial species. Finally, they developed a deep learning model to predict Ψ sites based on RNA sequence and structure.

      Strengths:

      This is the first comprehensive Ψ map across multiple bacterial species, and systematically reveals Ψ profiles in rRNA, tRNA, and mRNA under exponential and stationary growth conditions. It provides a valuable resource for future functional studies of Ψ in bacteria.

      Weaknesses:

      Ψ is highly abundant on non-coding RNA such as rRNA and tRNA, while its level on mRNA is very low. The manuscript focuses primarily on mRNA, which raises questions about the data quality and the rigor of the analysis. Many conclusions in the manuscript are speculative, based solely on the sequencing data but not supported by additional experiments.

    3. Reviewer #2 (Public review):

      Summary:

      In this study, Xu et al. present a transcriptome-wide, single-base resolution map of RNA pseudouridine modifications across evolutionarily diverse bacterial species using an adapted form of BID-Seq. By optimizing the method for bacterial RNA, the authors successfully mapped modifications in rRNA, tRNA, and, importantly, mRNA across both exponential and stationary growth phases. They uncover evolutionarily conserved Ψ motifs, dynamic Ψ regulation tied to bacterial growth state, and propose functional links between pseudouridylation and bacterial transcript stability, translation, and RNA-protein interactions. To extend these findings, they develop a deep learning model that predicts pseudouridine sites from local sequence and structural features.

      Strengths:

      The authors provide a valuable resource: a comprehensive Ψ atlas for bacterial systems, spanning hundreds of mRNAs and multiple species. The work addresses a gap in the field - our limited understanding of bacterial epitranscriptomics, by establishing both the method and datasets for exploring post-transcriptional modifications.

      Weaknesses:

      The main limitation of the study is that most functional claims (i.e., translation efficiency, mRNA stability, and RNA-binding protein interactions) are based on correlative evidence. While suggestive, these inferences would be significantly strengthened by targeted perturbation of specific Ψ synthases or direct biochemical validation of proposed RNA-protein interactions (e.g., with Hfq). Additionally, the GNN prediction model is a notable advance, but methodological details are insufficient to reproduce or assess its robustness.

    4. Reviewer #3 (Public review):

      Summary:

      This study aimed to investigate pseudouridylation across various RNA species in multiple bacterial strains using an optimized BID-seq approach. It examined both conserved and divergent modification patterns, the potential functional roles of pseudouridylation, and its dynamic regulation across different growth conditions.

      Strengths:

      The authors optimized the BID-seq method and applied this important technique to bacterial systems, identifying multiple pseudouridylation sites across different species. They investigated the distribution of these modifications, associated sequence motifs, their dynamics across growth phases, and potential functional roles. These data are of great interest to researchers focused on understanding the significance of RNA modifications, particularly mRNA modifications, in bacteria.

      Weaknesses:

      (1) The reliability of BID-seq data is questionable due to a lack of experimental validations.

      (2) The manuscript is not well-written, and the presented work shows a major lack of scientific rigor, as several key pieces of information are missing.

      (3) The manuscript's organization requires significant improvement, and numerous instances of missing or inconsistent information make it difficult to understand the key objectives and conclusions of the study.

      (4) The rationale for selecting specific bacterial species is not clearly explained, and the manuscript lacks a systematic comparison of pseudouridylation among these species.

    1. eLife Assessment

      This study presents valuable data suggesting that ATP-induced modulation of alveolar macrophage (AM) functions is associated with NLRP3 inflammasome activation and enhanced phagocytic capacity. While the in vivo and in vitro data reveal an interesting phenotype, the evidence provided is incomplete and does not fully support the paper's conclusions. Additional investigations would be of value in complementing the data and strengthening the interpretation of the results. This study should be of interest to immunologists and the mucosal immunity community.

    2. Reviewer #1 (Public review):

      Summary:

      Alveolar macrophages (AMs) are key sentinel cells in the lungs, representing the first line of defense against infections. There is growing interest within the scientific community in the metabolic and epigenetic reprogramming of innate immune cells following an initial stress, which alters their response upon exposure to a heterologous challenge. In this study, the authors show that exposure to extracellular ATP can shape AM functions by activating the P2X7 receptor. This activation triggers the relocation of the potassium channel TWIK2 to the cell surface, placing macrophages in a heightened state of responsiveness. This leads to the activation of the NLRP3 inflammasome and, upon bacterial internalization, to the translocation of TWIK2 to the phagosomal membrane, enhancing bacterial killing through pH modulation. Through these findings, the authors propose a mechanism by which ATP acts as a danger signal to boost the antimicrobial capacity of AMs.

      Strengths:

      This is a fundamental study in a field of great interest to the scientific community. A growing body of evidence has highlighted the importance of metabolic and epigenetic reprogramming in innate immune cells, which can have long-term effects on their responses to various inflammatory contexts. Exploring the role of ATP in this process represents an important and timely question in basic research. The study combines both in vitro and in vivo investigations and proposes a mechanistic hypothesis to explain the observed phenotype.

      Weaknesses:

      First, the concept of training or trained immunity refers to long-term epigenetic reprogramming in innate immune cells, resulting in a modified response upon exposure to a heterologous challenge. The investigations presented demonstrate phenotypic alterations in AMs seven days after ATP exposure; however, they do not assess whether persistent epigenetic remodeling occurs with lasting functional consequences. Therefore, a more cautious and semantically precise interpretation of the findings would be appropriate.

      Furthermore, the in vivo data should be strengthened by additional analyses to support the authors' conclusions. The authors claim that susceptibility to Pseudomonas aeruginosa infection differs depending on the ATP-induced training effect. Statistical analyses should be provided for the survival curves, as well as additional weight curves or clinical assessments. Moreover, it would be appropriate to complement this clinical characterization with additional measurements, such as immune cell infiltration analysis (by flow cytometry), and quantification of pro-inflammatory cytokines in bronchoalveolar lavage fluid and/or lung homogenates.

      Moreover, the authors attribute the differences in resistance to P. aeruginosa infection to the ATP-induced training effect on AMs, based on a correlation between in vivo survival curves and differences in bacterial killing capacity measured in vitro. These are correlative findings that do not establish a causal role for AMs in the in vivo phenotype. ATP-mediated effects on other (i.e., non-AM) cell populations are omitted, and the possibility that other cells could be affected should be, at least, discussed. Adoptive transfer experiments using AMs would be a suitable approach to directly address this question.

    3. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Thompson et al. investigate the impact of prior ATP exposure on later macrophage functions as a mechanism of immune training. They describe that ATP training enhances bactericidal functions, which they connect to the P2x7 ATP receptor, Nlrp3 inflammasome activation, and TWIK2 K+ movement at the cell surface and subsequently at phagosomes during bacterial engulfment. With stronger methodology, these findings could provide useful insight into how ATP can modulate macrophage immune responses, though they are generally an incremental addition to existing literature. The evidence supporting their conclusions is currently inadequate. Gaps in explaining methodology are substantial enough to undermine trust in much of the data presented. Some assays may not be designed rigorously enough for interpretation.

      Strengths:

      The authors demonstrate two novel findings that have sufficient rigor to assess:

      (1) prolonged persistence of TWIK2 at the macrophage plasma membrane following ATP, and can translocate to the phagosome during particle engulfment, which builds upon their prior report of ATP-driven 'training' of macrophages.

      (2) administering mice intra-nasal ATP to 'train' lungs to protect mice from otherwise fatal bacterial infection.

      Weaknesses:

      (1) Missing details from methods/reported data: Substantial sections of key methods have not been disclosed (including anything about animal infection models, RNA-sequencing, and western blotting), and the statistical methods, as written, only address two-way comparisons, which would mean analysis was improperly performed. In addition, there is a general lack of transparency - the methods state that only representative data is included in the manuscript, and individual data points are not shown for assays.

      (2) Poor experimental design including missing controls: Particularly problematic are the Seahorse assay data (requires normalization to cell numbers to interpret this bulk assay - differences in cell growth/loss between conditions would confound data interpretation) and bacterial killing assays (as written, this method would be heavily biased by bacterial initial binding/phagocytosis which would confound assessment of killing). Controls need to be included for subcellular fractionating to confirm pure fractions and for dye microscopy to show a negative background. Conclusions from these assays may be incorrect, and in some cases, the whole experiment may be uninterpretable.

      (3) The conclusions overstate what was tested in the experiments: Conceptually, there are multiple places where the authors draw conclusions or frame arguments in ways that do not match the experiments used. Particularly:<br /> a) The authors discuss their findings in the context of importance for AM biology during respiratory infection but in vitro work uses cells that are well-established to be poor mimics of resident AMs (BMDM, RAW), particularly in terms of glycolytic metabolism.<br /> b) In vivo work does not address whether immune cell recruitment is triggered during training.<br /> c) Figure 3 is used to draw conclusions about K+ in response to bacterial engulfment, but actually assesses fungal zymosan particles.<br /> d) Figure 5 is framed in bacterial susceptibility post-viral infection, but the model used is bacterial post-bacterial.<br /> e) In their discussion, the authors propose to have shown TWIK2-mediated inflammasome activation. They link these separately to ATP, but their studies do not test if loss of TWIK2 prevents inflammasome activation in response to ATP (Figure 4E does not use TWIK2 KO).

      In summary, this work contains some useful data showing how ATP can 'train' macrophages. However, it largely lacks the expected level of rigor. For this work to be valuable to the field, it is likely to need substantial improvement in methods reporting, inclusion of missing assay controls, may require repeating key experiments that were run with insufficient methodology (or providing details and supplemental data to prove that methodology was sufficient), and should either add additional experiments that properly test their experimental question or rewrite their conclusions.

    1. eLife Assessment

      This convincing study, which is based on a survey of researchers, finds that women are less likely than men to submit articles to elite journals. It also finds that there is no relation between gender and reported desk rejection. The study is an important contribution to work on gender bias in the scientific literature.

    2. Joint Public Review:

      Summary from an earlier round of review:

      This paper summarises responses from a survey completed by around 5,000 academics on their manuscript submission behaviours. The authors find several interesting stylised facts, including (but not limited to):- Women are less likely to submit their papers to highly influential journals (e.g., Nature, Science and PNAS).

      - Women are more likely to cite the demands of co-authors as a reason why they didn’t submit to highly influential journals.

      - Women are also more likely to say that they were advised not to submit to highly influential journals.

      The paper highlights an important point, namely that the submission behaviours of men and women scientists may not be the same (either due to preferences that vary by gender, selection effects that arise earlier in scientists’ careers or social factors that affect men and women differently and also influence submission patterns). As a result, simply observing gender differences in acceptance rates - or a lack thereof - should not be automatically interpreted as as evidence for or against discrimination (broadly defined) in the peer review process.

      Editor’s note: This is the third version of this article.

      Comments made during the peer review of the second version, along with author’s responses to these comments, are available below. Revisions made in response to these comments include changing the colour scheme used for the figures to make the figures more accessible for readers with certain forms of colour blindness.

      Comments made during the peer review of the first version, along with author’s responses to these comments, are available with previous versions of the article.

    3. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary

      This paper summarises responses from a survey completed by around 5,000 academics on their manuscript submission behaviours. The authors find several interesting stylised facts, including (but not limited to):

      Women are less likely to submit their papers to highly influential journals (e.g., Nature, Science and PNAS).

      Women are more likely to cite the demands of co-authors as a reason why they didn't submit to highly influential journals.

      Women are also more likely to say that they were advised not to submit to highly influential journals.

      The paper highlights an important point, namely that the submission behaviours of men and women scientists may not be the same (either due to preferences that vary by gender, selection effects that arise earlier in scientists' careers or social factors that affect men and women differently and also influence submission patterns). As a result, simply observing gender differences in acceptance rates - or a lack thereof - should not be automatically interpreted as as evidence for or against discrimination (broadly defined) in the peer review process.

      Major comments

      What do you mean by bias?

      In the second paragraph of the introduction, it is claimed that "if no biases were present in the case of peer review, then we should expect the rate with which members of less powerful social groups enjoy successful peer review outcomes to be proportionate to their representation in submission rates." There are a couple of issues with this statement.

      First, the authors are implicitly making a normative assumption that manuscript submission and acceptance rates *should* be equalised across groups. This may very well be the case, but there can also be valid reasons - even when women are not intrinsically better at research than men - why a greater fraction of female-authored submissions are accepted relative to male-authored submissions (or vice versa). For example, if men are more likely to submit their less ground-breaking work, then one might reasonably expect that they experience higher rejection rates compared to women, conditional on submission.

      We do assume that normative statement: unless we believe that men’s papers are intrinsically better than women’s papers, the acceptance rate should be the same. But the referee is right: we have no way of controlling for the intrinsic quality of the work of men and women. That said, our manuscript does not show that there is a different acceptance rate for men and women; it shows that women are less likely to submit papers to a subset of journals that are of a lower Journal Impact Factor, controlling for their most cited paper, in an attempt to control for intrinsic quality of the manuscripts.

      Second, I assume by "bias", the authors are taking a broad definition, i.e., they are not only including factors that specifically relate to gender but also factors that are themselves independent of gender but nevertheless disproportionately are associated with one gender or another (e.g., perhaps women are more likely to write on certain topics and those topics are rated more poorly by (more prevalent) male referees; alternatively, referees may be more likely to accept articles by authors they've met before, most referees are men and men are more likely to have met a given author if he's male instead of female). If that is the case, I would define more clearly what you mean by bias. (And if that isn't the case, then I would encourage the authors to consider a broader definition of "bias"!)

      Yes, the referee is right that we are taking a broad definition of bias. We provide a definition of bias on page 3, line 92. This definition is focused on differential evaluation which leads to differential outcomes. We also hedge our conversation (e.g., page 3, line 104) to acknowledge that observations of disparities may only be an indicator of potential bias, as many other things could explain the disparity. In short, disparities are a necessary but insufficient indicator of bias. We add a line in the introduction to reinforce this. The only other reference to the term bias comes on page 10, line 276. We add a reference to Lee here to contextualize.

      Identifying policy interventions is not a major contribution of this paper

      I would take out the final sentence in the abstract. In my opinion, your survey evidence isn't really strong enough to support definitive policy interventions to address the issue and, indeed, providing policy advice is not a major - or even minor - contribution of your paper. (Basically, I would hope that someone interested in policy interventions would consult another paper that much more thoughtfully and comprehensively discusses the costs and benefits of various interventions!) While it's fine to briefly discuss them at the end of your paper - as you currently do - I wouldn't highlight that in the abstract as being an important contribution of your paper.

      We thank the referee for this comment. While we agree that our results do not lead to definitive policy interventions, we believe that our findings point to a phenomenon that should be addressed through policy interventions. Given that some interventions are proposed in our conclusion, we feel like stating this in the abstract is coherent.

      Minor comments

      What is the rationale for conditioning on academic rank and does this have explanatory power on its own - i.e., does it at least superficially potentially explain part of the gender gap in intention to submit?

      Thank you for this thoughtful question. We conditioned on academic rank in all regression analyses to account for structural differences in career stage that may potentially influence submission behaviors. Academic rank (e.g., assistant, associate, full professor) is a key determinant of publishing capacity and strategic considerations, such as perceived likelihood of success at elite journals, tolerance for risk, and institutional expectations for publication venues.

      Importantly, academic rank is also correlated with gender due to cumulative career disadvantages that contribute to underrepresentation of women at more senior levels. Failing to adjust for rank would conflate gender effects with differences attributable to career stage. By including rank as a covariate, we aim to isolate gender-associated patterns in submission behavior within comparable career stages, thereby producing a more precise estimate of the gender effect.

      Regarding explanatory power, academic rank does indeed contribute significantly to model fit across our analyses, indicating that it captures meaningful variation in submission behavior. However, even after adjusting for rank, we continue to observe significant gender differences in submission patterns in several disciplines. This suggests that while academic rank explains part of the variation, it does not fully account for the gender gap—highlighting the importance of examining other structural and behavioral factors that shape the publication trajectory.

      Reviewer #2 (Public review):

      Basson et al. present compelling evidence supporting a gender disparity in article submission to "elite" journals. Most notably, they found that women were more likely to avoid submitting to one of these journals based on advice from a colleague/mentor. Overall, this work is an important addition to the study of gender disparities in the publishing process.

      I thank the authors for addressing my concerns.

      Reviewer #4 (Public review):

      Main strengths

      The topic of the MS is very relevant given that across the sciences/academia, genders are unevenly represented, which has a range of potential negative consequences. To change this, we need to have the evidence on what mechanisms cause this pattern. Given that promotion and merit in academia are still largely based on the number of publications and the impact factor, one part of the gap likely originates from differences in publication rates of women compared to men.

      Women are underrepresented compared to men in journals with a high impact factor. While previous work has detected this gap and identified some potential mechanisms, the current MS provides strong evidence that this gap might be due to a lower submission rate of women compared to men, rather than the rejection rates. These results are based on a survey of close to 5000 authors. The survey seems to be conducted well (though I am not an expert in surveys), and data analysis is appropriate to address the main research aims. It was impossible to check the original data because of the privacy concerns.

      Interestingly, the results show no gender bias in rejection rates (desk rejection or overall) in three high-impact journals (Science, Nature, PNAS). However, submission rates are lower for women compared to men, indicating that gender biases might act through this pathway. The survey also showed that women are more likely to rate their work as not groundbreaking and are advised not to submit to prestigious journals, indicating that both intrinsic and extrinsic factors shape women's submission behaviour.

      With these results, the MS has the potential to inform actions to reduce gender bias in publishing, but also to inform assessment reform at a larger scale.

      I do not find any major weaknesses in the revised manuscript.

      Reviewer #4 (Recommendations for the authors):

      (1) Colour schemes of the Figures are not adjusted for colour-blindness (red-green is a big NO), some suggestions can be found here https://www.nceas.ucsb.edu/sites/default/files/2022-06/Colorblind%20Safe%20Color%20Schemes.pdf

      We appreciate the suggestion. We’ve adjusted the colors in the manuscript to be color-blind friendly using one of the colorblind safe palettes suggested by the reviewer.

      (2) I do not think that the authors have fully addressed the comment about APCs and the decision to submit, given that PNAS has publication charges that amount to double of someone's monthly salary. I would add a sentence or two to explain that publication charges should not be a factor for Nature and Science, but might be for PNAS.

      While APCs are definitely a factor affecting researchers’ submission behavior, it is mostly does so for lower prestige journals rather than for the three elite journals analyzed here. As mentioned in the previous round of revisions, Nature and Science have subscription options. And PNAS authors without funding have access to waivers: https://www.pnas.org/author-center/publication-charges

      (3) Line 268, the first suggestion here is not something that would likely work. Thus, I would not put it as the first suggestion.

      We made the suggested change.

      (4) Data availability - remove AND in 'Aggregated and de-identified data' because it sounds like both are shared. Suggest writing: 'Aggregated, de-identified data..'. I still suggest sharing data/code in a trusted repository (e.g. Dryad, ZENODO...) rather than on GitHub, as per the current recommendation on the best practices for data sharing.

      Thank you for your comment regarding data availability. Due to IRB restrictions and the conditions of our ethics approval, we are not permitted to share the survey data used in this study. However, to support transparency and reproducibility, we have made all analysis code available on Zenodo at https://doi.org/10.5281/zenodo.16327580. In addition, we have included a synthetic dataset with the same structure as the original survey data but containing randomly generated values. This allows others to understand the data structure and replicate our analysis pipeline without compromising participant confidentiality.

    1. eLife Assessment

      This valuable study introduces a modern and accessible PyTorch reimplementation of the widely used SpliceAI model for splice site prediction. The authors provide convincing evidence that their OpenSpliceAI implementation matches the performance of the original while improving usability and enabling flexible retraining across species. These advances are likely to be of broad interest to the computational genomics community.

    2. Reviewer #1 (Public review):

      Summary:

      Chao et al. produced an updated version of the SpliceAI package using modern deep learning frameworks. This includes data preprocessing, model training, direct prediction, and variant effect prediction scripts. They also added functionality for model fine-tuning and model calibration. They convincingly evaluate their newly trained models against those from the original SpliceAI package and investigate how to extend SpliceAI to make predictions in new species. Their comparisons to the original SpliceAI models are convincing on the grounds of model performance and their evaluation of how well the new models match the original's understanding of non-local mutation effects. However, their evaluation of the new calibration functionality would benefit from a more nuanced discussion of the limitations of calibration.

      Strengths

      (1) They provide convincing evidence that their new implementation of SpliceAI matches the performance and mutation effect estimation capabilities of the original model on a similar dataset while benefiting from improved computational efficiencies. This will enable faster prediction and retraining of splicing models for new species as well as easier integration with other modern deep learning tools.

      (2) They produce models with strong performance on non-human model species and a simple well well-documented pipeline for producing models tuned for any species of interest. This will be a boon for researchers working on splicing in these species and make it easy for researchers working on new species to generate their own models.

      (3) Their documentation is clear and abundant. This will greatly aid the ability of others to work with their code base.

      Weaknesses

      (1) Their discussion of their package's calibration functionality does not adequately acknowledge the limitations of model calibration. This is problematic as this is a package intended for general use and users who are not experienced in modeling broadly and the subfield of model calibration specifically may not already understand these limitations. This could lead to serious errors and misunderstandings down the road. A model is not calibrated or uncalibrated in and of itself, only with respect to a specific dataset. In this case they calibrated with respect to the training dataset, a set of canonical transcript annotations. This is a perfectly valid and reasonable dataset to calibrate against. However, this is unlikely to be the dataset the model is applied to in any downstream use case, and this calibration is not guaranteed or expected to hold for any shift in the dataset distribution. For example, in the next section they use ISM based approaches to evaluate which sequence elements the model is sensitive to and their calibration would not be expected to hold for this set of predictions. This issue is particularly worrying in the case of their model because annotation of canonical transcript splice sites is a task that it is unlikely their model will be applied to after training. Much more likely tasks will be things such as predicting the effects of mutations, identification of splice sites that may be used across isoforms beyond just the canonical one, identification of regulatory sequences through ISM, or evaluation of human created sequences for design or evaluation purposes (such as in the context of an MPSA or designing a gene to splice a particular way), we would not expect their calibration to hold in any of these contexts. To resolve this issue, the authors should clarify and discuss this limitation in their paper (and in the relevant sections of the package documentation) to avoid confusing downstream users.

      (2) The clarity of their analysis of mutation effects could be improved with some minor adjustments. While they report median ISM importance correlation it would be helpful to see a histogram of the correlations they observed. Instead of displaying (and calculating correlations using) importance scores of only the reference sequence, showing the importance scores for each nucleotide at each position provides a more informative representation. This would also likely make the plots in 6B clearer.

    3. Reviewer #2 (Public review):

      Summary:

      The paper by Chao et al offers a reimplantation of the SpliceAI algorithm in PyTorch so that the model can more easily/efficiently be retrained. They apply their new implementation of the SpliceAI algorithm, which they call OpenSpliceAI, to several species and compare it against the original model, showing that the results are very similar and that in some small species pre-training on other species helps improve performance.

      Strengths:

      On the upside, the code runs fine and it is well documented.

      Weaknesses:

      The paper itself does not offer much beyond reimplementing SpliceAI. There is no new algorithm, new analysis, new data, or new insights into RNA splicing. There is not even any comparison to many of the alternative methods that have since been published to surpass SpliceAI. Given that some of the authors are well known with a long history of important contributions, our expectations were admittedly different. Still, we hope some readers will find the new implementation useful.

      Update for the revised version:

      The update includes mostly clarifications for tech questions/comments raised by the other two reviewers. There is no additional analysis/results that changes our above initial assessment of this paper's contribution.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Chao et al. produced an updated version of the SpliceAI package using modern deep learning frameworks. This includes data preprocessing, model training, direct prediction, and variant effect prediction scripts. They also added functionality for model fine-tuning and model calibration. They convincingly evaluate their newly trained models against those from the original SpliceAI package and investigate how to extend SpliceAI to make predictions in new species. While their comparisons to the original SpliceAI models are convincing on the grounds of model performance, their evaluation of how well the new models match the original's understanding of non-local mutation effects is incomplete. Further, their evaluation of the new calibration functionality would benefit from a more nuanced discussion of what set of splice sites their calibration is expected to hold for, and tests in a context for which calibration is needed.

      Strengths:

      (1) They provide convincing evidence that their new implementation of SpliceAI matches the performance of the original model on a similar dataset while benefiting from improved computational efficiencies. This will enable faster prediction and retraining of splicing models for new species as well as easier integration with other modern deep learning tools.

      (2) They produce models with strong performance on non-human model species and a simple, well-documented pipeline for producing models tuned for any species of interest. This will be a boon for researchers working on splicing in these species and make it easy for researchers working on new species to generate their own models.

      (3) Their documentation is clear and abundant. This will greatly aid the ability of others to work with their code base.

      We thank the reviewer for these positive comments.  

      Weaknesses:

      (1) The authors' assessment of how much their model retains SpliceAI's understanding of "nonlocal effects of genomic mutations on splice site location and strength" (Figure 6) is not sufficiently supported. Demonstrating this would require showing that for a large number of (non-local) mutations, their model shows the same change in predictions as SpliceAI or that attribution maps for their model and SpliceAI are concordant even at distances from the splice site. Figure 6A comes close to demonstrating this, but only provides anecdotal evidence as it is limited to 2 loci. This could be overcome by summarizing the concordance between ISM maps for the two models and then comparing across many loci. Figure 6B also comes close, but falls short because instead of comparing splicing prediction differences between the models as a function of variants, it compares the average prediction difference as a function of the distance from the splice site. This limits it to only detecting differences in the model's understanding of the local splice site motif sequences. This could be overcome by looking at comparisons between differences in predictions with mutants directly and considering non-local mutants that cause differences in splicing predictions.

      We agree that two loci are insufficient to demonstrate preservation of non-local effects. To address this, we have extended our analysis to a larger set of sites: we randomly sampled 100 donor and 100 acceptor sites, applied our ISM procedure over a 5,001 nt window centered at each site for both models, and computed the ISM map as before. We then calculated the Pearson correlation between the collection of OSAI<sub>MANE</sub> and SpliceAI ISM importance scores. We also created 10 additional ISM maps similar to those in Figure 6A, which are now provided in Figure S23.

      Follow is the revised paragraph in the manuscript’s Results section:

      First, we recreated the experiment from Jaganathan et al. in which they mutated every base in a window around exon 9 of the U2SURP gene and calculated its impact on the predicted probability of the acceptor site. We repeated this experiment on exon 2 of the DST gene, again using both SpliceAI and OSAI<sub>MANE</sub> . In both cases, we found a strong similarity between the resultant patterns between SpliceAI and OSAI<sub>MANE</sub>, as shown in Figure 6A. To evaluate concordance more broadly, we randomly selected 100 donor and 100 acceptor sites and performed the same ISM experiment on each site. The Pearson correlation between SpliceAI and OSAI<sub>MANE</sub> yielded an overall median correlation of 0.857 (see Methods; additional DNA logos in Figure S23). 

      To characterize the local sequence features that both models focus on, we computed the average decrease in predicted splice-site probability resulting from each of the three possible singlenucleotide substitutions at every position within 80bp for 100 donor and 100 acceptor sites randomly sampled from the test set (Chromosomes 1, 3, 5, 7, and 9). Figure 6B shows the average decrease in splice site strength for each mutation in the format of a DNA logo, for both tools.

      We added the following text to the Methods section:

      Concordance evaluation of ISM importance scores between OSAI<sub>MANE</sub> and SpliceAI

      To assess agreement between OSAI<sub>MANE</sub>  and SpliceAI across a broad set of splice sites, we applied our ISM procedure to 100 randomly chosen donor sites and 100 randomly chosen acceptor sites. For each site, we extracted a 5,001 nt window centered on the annotated splice junction and, at every coordinate within that window, substituted the reference base with each of the three alternative nucleotides. We recorded the change in predicted splice-site probability for each mutation and then averaged these Δ-scores at each position to produce a 5,001-score ISM importance profile per site.

      Next, for each splice site we computed the Pearson correlation coefficient between the paired importance profiles from ensembled OSAI<sub>MANE</sub> and ensembled SpliceAI. The median correlation was 0.857 for all splice sites. Ten additional zoom-in representative splice site DNA logo comparisons are provided in Supplementary Figure S23.

      (2) The utility of the calibration method described is unclear. When thinking about a calibrated model for splicing, the expectation would be that the models' predicted splicing probabilities would match the true probabilities that positions with that level of prediction confidence are splice sites. However, the actual calibration that they perform only considers positions as splice sites if they are splice sites in the longest isoform of the gene included in the MANE annotation. In other words, they calibrate the model such that the model's predicted splicing probabilities match the probability that a position with that level of confidence is a splice site in one particular isoform for each gene, not the probability that it is a splice site more broadly. Their level of calibration on this set of splice sites may very well not hold to broader sets of splice sites, such as sites from all annotated isoforms, sites that are commonly used in cryptic splicing, or poised sites that can be activated by a variant. This is a particularly important point as much of the utility of SpliceAI comes from its ability to issue variant effect predictions, and they have not demonstrated that this calibration holds in the context of variants. This section could be improved by expanding and clarifying the discussion of what set of splice sites they have demonstrated calibration on, what it means to calibrate against this set of splice sites, and how this calibration is expected to hold or not for other interesting sets of splice sites. Alternatively, or in addition, they could demonstrate how well their calibration holds on different sets of splice sites or show the effect of calibrating their models against different potentially interesting sets of splice sites and discuss how the results do or do not differ.

      We thank the reviewer for highlighting the need to clarify our calibration procedure. Both SpliceAI and OpenSpliceAI are trained on a single “canonical” transcript per gene: SpliceAI on the hg 19 Ensembl/Gencode canonical set and OpenSpliceAI on the MANE transcript set. To calibrate each model, we applied post-hoc temperature scaling, i.e. a single learnable parameter that rescales the logits before the softmax. This adjustment does not alter the model’s ranking or discrimination (AUC/precision–recall) but simply aligns the predicted probabilities for donor, acceptor, and non-splice classes with their observed frequencies. As shown in our reliability diagrams (Fig. S16-S22), temperature scaling yields negligible changes in performance, confirming that both SpliceAI and OpenSpliceAI were already well-calibrated. However, we acknowledge that we didn’t measure how calibration might affect predictions on non-canonical splice sites or on cryptic splicing. It is possible that calibration might have a detrimental effect on those, but because this is not a key claim of our paper, we decided not to do further experiments. We have updated the manuscript to acknowledge this potential shortcoming; please see the revised paragraph in our next response.

      (3) It is difficult to assess how well their calibration method works in general because their original models are already well calibrated, so their calibration method finds temperatures very close to 1 and only produces very small and hard to assess changes in calibration metrics. This makes it very hard to distinguish if the calibration method works, as it doesn't really produce any changes. It would be helpful to demonstrate the calibration method on a model that requires calibration or on a dataset for which the current model is not well calibrated, so that the impact of the calibration method could be observed.

      It’s true that the models we calibrated didn’t need many changes. It is possible that the calibration methods we used (which were not ours, but which were described in earlier publications) can’t improve the models much. We toned down our comments about this procedure, as follows.

      Original:

      “Collectively, these results demonstrate that OSAIs were already well-calibrated, and this consistency across species underscores the robustness of OpenSpliceAI’s training approach in diverse genomic contexts.”

      Revised:

      “We observed very small changes after calibration across phylogenetically diverse species, suggesting that OpenSpliceAI’s training regimen yielded well‐calibrated models, although it is possible that a different calibration algorithm might produce further improvements in performance.”

      Reviewer #2 (Public review):

      Summary:

      The paper by Chao et al offers a reimplementation of the SpliceAI algorithm in PyTorch so that the model can more easily/efficiently be retrained. They apply their new implementation of the SpliceAI algorithm, which they call OpenSpliceAI, to several species and compare it against the original model, showing that the results are very similar and that in some small species, pretraining on other species helps improve performance.

      Strengths:

      On the upside, the code runs fine, and it is well documented.

      Weaknesses:

      The paper itself does not offer much beyond reimplementing SpliceAI. There is no new algorithm, new analysis, new data, or new insights into RNA splicing. There is no comparison to many of the alternative methods that have since been published to surpass SpliceAI. Given that some of the authors are well-known with a long history of important contributions, our expectations were admittedly different. Still, we hope some readers will find the new implementation useful.

      We thank the reviewer for the feedback. We have clarified that OpenSpliceAI is an open-source PyTorch reimplementation optimized for efficient retraining and transfer learning, designed to analyze cross-species performance gains, and supported by a thorough benchmark and the release of several pretrained models to clearly position our contribution.

      Reviewer #3 (Public review):

      Summary:

      The authors present OpenSpliceAI, a PyTorch-based reimplementation of the well-known SpliceAI deep learning model for splicing prediction. The core architecture remains unchanged, but the reimplementation demonstrates convincing improvements in usability, runtime performance, and potential for cross-species application.

      Strengths:

      The improvements are well-supported by comparative benchmarks, and the work is valuable given its strong potential to broaden the adoption of splicing prediction tools across computational and experimental biology communities.

      Major comments:

      Can fine-tuning also be used to improve prediction for human splicing? Specifically, are models trained on other species and then fine-tuned with human data able to perform better on human splicing prediction? This would enhance the model's utility for more users, and ideally, such fine-tuned models should be made available.

      We evaluated transfer learning by fine-tuning models pretrained on mouse (OSAI<sub>Mouse</sub>), honeybee (OSAI<sub>Honeybee</sub>), Arabidopsis (OSAI<sub>Arabidopsis</sub>), and zebrafish (OSAI<sub>Zebrafish</sub>) on human data. While transfer learning accelerated convergence compared to training from scratch, the final human splicing prediction accuracy was comparable between fine-tuned and scratch-trained models, suggesting that performance on our current human dataset is nearing saturation under this architecture.

      We added the following paragraph to the Discussion section:

      We also evaluated pretraining on mouse (OSAI<sub>Mouse</sub>), honeybee (OSAI<sub>Honeybee</sub>), zebrafish (OSAI<sub>Zebrafish</sub>), and Arabidopsis (OSAI<sub>Arabidopsis</sub>) followed by fine-tuning on the human MANE dataset. While cross-species pretraining substantially accelerated convergence during fine-tuning, the final human splicing-prediction accuracy was comparable to that of a model trained from scratch on human data. This result indicates that our architecture seems to capture all relevant splicing features from human training data alone, and thus gains little or no benefit from crossspecies transfer learning in this context (see Figure S24).

      Reviewer #1 (Recommendations for the authors):

      We thank the editor for summarizing the points raised by each reviewer. Below is our point-bypoint response to each comment:

      (1) In Figure 3 (and generally in the other figures) OpenSpliceAI should be replaced with OSAI_{Training dataset} because otherwise it is hard to tell which precise model is being compared. And in Figure 3 it is especially important to emphasize that you are comparing a SpliceAI model trained on Human data to an OSAI model trained and evaluated on a different species.

      We have updated the labels in Figures 3, replacing “OpenSpliceAI” with “OSAI_{training dataset}” to more clearly specify which model is being compared.

      (2) Are genes paralogous to training set genes removed from the validation set as well as the test set? If you are worried about data leakage in the test set, it makes sense to also consider validation set leakage.

      Thank you for this helpful suggestion. We fully agree, and to avoid any data leakage we implemented the identical filtering pipeline for both validation and test sets: we excluded all sequences paralogous or homologous to sequences in the training set, and further removed any sequence sharing > 80 % length overlap and > 80 % sequence identity with training sequences. The effect of this filtering on the validation set is summarized in Supplementary Figure S7C.

      Reviewer #3 (Recommendations for the authors):

      (1) The legend in Figure 3 is somewhat confusing. The labels like "SpliceAI-Keras (species name)" may imply that the model was retrained using data from that species, but that's not the case, correct?

      Yes, “SpliceAI-Keras (species name)” was not retrained; it refers to the released SpliceAI model evaluated on the specified species dataset. We have revised the Figure 3 legends, changing “SpliceAI-Keras (species name)” to “SpliceAI-Keras” to clarify this.

      (2) Please address the minor issues with the code, including ensuring the conda install works across various systems.

      We have addressed the issues you mentioned. OpenSpliceAI is now available on Conda and can be installed with:  conda install openspliceai. 

      The conda package homepage is at: https://anaconda.org/khchao/openspliceai We’ve also corrected all broken links in the documentation.

      (3) Utility:

      I followed all the steps in the Quick Start Guide, and aside from the issues mentioned below, everything worked as expected.

      I attempted installation using conda as described in the instructions, but it was unsuccessful. I assume this method is not yet supported.

      In Quick Start Guide: predict, the link labeled "GitHub (models/spliceai-mane/10000nt/)" appears to be incorrect. The correct path is likely "GitHub (models/openspliceaimane/10000nt/)".

      In Quick Start Guide: variant (https://ccb.jhu.edu/openspliceai/content/quick_start_guide/quickstart_variant.html#quick-startvariant), some of the download links for input files were broken. While I was able to find some files in the GitHub repository, I think the -A option should point to data/grch37.txt, not examples/data/input.vcf, and the -I option should be examples/data/input.vcf, not data/vcf/input.vcf.

      Thank you for catching these issues. We’ve now addressed all issues concerning Conda installation and file links. We thank the editor for thoroughly testing our code and reviewing the documentation.

    1. eLife Assessment

      This fundamental work advances our understanding of how SP5 and SP8 promote neuromesodermal competent progenitors in murine embryos. Generally the evidence is compelling, with strong developmental genetics, transcriptomic, and genomic transcription binding surveys contributing to the strength of the data. Some of the language could be softened to avoid overinterpretation of the data, and figures and diagrams could be improved.

    2. Reviewer #1 (Public review):

      This is an important, interesting, and in-depth study examining the role of Sp5/8 transcription factors in maintaining the neuromesodermal progenitor (NMP) niche. The authors first used Sp5/8 double conditional KO mouse embryos to establish that these factors function in the NMP niche to promote trunk elongation. They then conducted extensive single-cell analyses on embryos of various genetic mutant backgrounds to unravel the complex and intricate interactions between Wnt signaling and Sp5/8. The key conclusion from these experiments is that Sp5/8 function within an autoregulatory loop crucial for maintaining the NMP niche. The authors went on to identify and characterize a novel enhancer element downstream of the Wnt3a coding sequence, which mediates the effects of Sp5/8 on Wnt3a expression. Overall, the data presented are compelling and of high quality, and the study offers a prime example of how a relatively small set of signaling pathways and transcription factors can function in concert to impart robustness to developmental processes.

    3. Reviewer #2 (Public review):

      Chalamalasetty et al. investigate the regulatory circuit of signaling molecules and transcription factors that drive the fate of neuromesodermal competent progenitors (NMCs). NMCs contribute to Sox2-positive spinal cord and Tbxt/Bra-expressing somitic mesoderm, and this choice is governed by the interplay between Wnt3a and Fgf signaling. The authors discovered that the transcription factors SP5 and SP8 participate in this process. Mouse genetics, in vivo development, and transcription factors profiling point to a model where SP5 and SP8 directly regulate Wnt3a expression to foster Tbxt-marked mesoderm formation at the expense of Sox2-marked neural ectoderm. Mechanistically, SP5/8 bind to an enhancer which the authors characterize: its activity depends on the presence of SP5, CDX2, TCF7, and TBXT binding sites, and it is activated only in primitive streak cells at E7.5, in NMP, and in caudal and somitic mesoderm, underscoring the tissue and stage-specific nature of this Wnt3a enhancer.

      Moreover, the authors find that SP5/8 likely regulate the TCF7 association with the chromatin and compete for its binding to the TLE repressor.

      The study is extensive, compelling, and well written. The combination of in vivo evidence with single-cell transcriptomics, transcription factors profiling, and in vitro regulatory element characterization is notable and builds a convincing picture of the action of SP5/SP8.

      Here, I provide a series of comments and questions that, if addressed and clarified, could, in my opinion, improve the study.

      (1) While Sp5 and Sp8 are both present in NMCs, their expression does not fully overlap. Sp5 is also detected in caudal and presomitic mesoderm, notochord and gut, while Sp8 overlaps with Sox2 in neural progenitors of the spinal cord and brain (Fig. 1D). Accordingly, Sp8 expression is also activated by the neural-promoting RA+Fgf. It is not easy for me to reconcile this non-fully overlapping expression pattern - and in particular the overlap of Sp8 and Sox2 - with the presumed redundancy (or similarity of function) described later. Sp5/8 dko NMCs show reduced Tbxt and expanded Sox2, indicating that SP8 also represses Sox2 or neural fate, an observation confirmed by Sp8 overexpression (Figure 4c). What is the explanation for this, and is the function of SP8 in Sox2-positive neural progenitors different from its Wnt3a-sustaining role in NMCs? Or what am I missing?

      (2) I suggest that the authors show relevant ChIP-seq peaks in Figure 3 to lend credibility to the complicated overlapping Venn diagrams. I consider visual inspection of peak tracks as primary quality control of this type of experiment. A good choice could be the cis-regulatory elements at Sp5, Sp8, Tbxt, Cdx1, 2, 4 bound by TBXT and either CDX2, SP5, or SP8 (now referring to the Venn diagrams and the annotated peak table). On ChIP-seq visualization, in reference to Figures 5 and 7, I also suggest that the authors show the tracks of a negative control (IgG, non-related antibody, or better anti-flag in Sp5/8 dko). While I do not doubt the validity of these experiments, there are peaks in these figures bound by all factors tested that could be suspicious (even though, admittedly, they look like genuinely good TF peaks). A negative track would clearly show beyond any doubt that these are not suspect regions of positive unspecific signal caused by open chromatin, excessive cross-linking, or antibody cross-reaction.

      (3) SP5 here is found as a direct inducer of Wnt3a expression, and accordingly positive regulator of Tbxt and mesoderm, caudal development. I find this in partial contradiction with a finding by the Willert group (PMID: 29044119). They show that "genes with an associated SP5 peak, such as SP5 itself, AXIN2, AMOTL2, GPR37, GSC, MIXL1, NODAL, and T, show significant upregulation in expression upon Wnt3a treatment in SP5 mutant cells". There, essentially, SP5 inhibits Wnt target genes. While the authors are aware of this and cite Huggins et al., I find that this deserves a better discussion addressing how opposite functions could be sustained in different contexts, if these really are different cellular contexts in the first place, or if this could result from different methodologies.

      (4) The gastruloid experiment is nice, but I wonder whether there is any marker that the authors can use to show that other features of the gastruloids respond accordingly. For example, is the Sox2 expression domain expanded? And is there any unaffected marker to emphasize the specificity of the decreased Tbxt and Cdx2?

      (5) SP5/8 seems to enhance the TCF7 occupancy at WRE. And then, SP5/8 appears to counteract the presence of TLE repressor associated with TCF7. While these two mechanisms are interesting, they are not necessarily interconnected. According to the still-established view, TCF7 should be associated with WRE even in the absence of the Wnt signal, when TLEs are also present on the locus. One could expect that SP5 competes with TLE, to decrease its presence on TCF7-bound loci, leaving the abundance of TCF7 binding unchanged. Yet, the authors also observe that the TCF7 association changes. What is the mechanism implied? Do they perhaps consider a TCF7L1 > TCF7 switch, and if so, what evidence exists for this?

      (6) Along the same line as above, I wonder whether beta-catenin binding is also enhanced at these sites? Any TCF/LEF would require beta-catenin for gene upregulation.

      (7) The authors write that "Small Tle peaks were identified at these WREs in WT cells, demonstrating that both repressive Tle and activating Tcf7 could be detected at active genes". However, ChIP-seq is a population assay, and it is possible - more plausible, in fact - that cells displaying TLE binding are not expressing the target genes.

    4. Reviewer #3 (Public review):

      Summary:

      This is a well-done study. It shows, in a comprehensive manner, that Sp5 and Sp8 play essential roles in maintaining the complicated positive feedback circuitry needed for specification of neuromesodermal competent progenitors (NMCs) in caudal mesodermal development in murine embryos.

      Strengths:

      The developmental genetics, transcriptomic, and genomic survey of TF binding are all satisfactory and make a compelling story. The CRISPR deletion of the Wnt3a downstream enhancer clearly demonstrates that it plays an important role in the positive feedback circuit.

      Weaknesses:

      My only concerns are some of the language surrounding the mechanistic interpretation of the Wnt3a downstream enhancer and the relationship between TCF and TLE binding.

    1. eLife Assessment

      This work presents important information on rhythmicity of overlapping target and distractor processing and how this affects behaviour. The methods are, in general, clearly laid out and defensible, with several supplementary analyses leading to a solid base of evidence for their claims.

    2. Reviewer #1 (Public review):

      Summary:

      Using a combination of EEG and behavioural measurements, the authors investigate the degree to which processing of spatially-overlapping targets (coherent motion) and distractors (affective images) are sampled rhythmically and how this affects behaviour. They found that both target processing (via measurement of amplitude modulations of SSVEP amplitude to target frequency) and distractor processing (via MVPA decoding accuracy of bandpassed EEG relative to distractor SSVEP frequency) displayed a pronounced rhythm at ~1Hz, time-locked to stimulus onset. Furthermore, the relative phase of this target/distractor sampling predicted accuracy of coherent motion detection across participants.

      Strengths:

      - The authors are addressing a very interesting question with respect to sampling of targets and distractors, using neurophysiological measurements to their advantage in order to parse out target and distractor processing.<br /> - The general EEG analysis pipeline is sensible and well-described.<br /> - The main result of rhythmic sampling of targets and distractors is striking and very clear even on a participant-level.<br /> - The authors have gone to quite a lot of effort to ensure the validity of their analyses, especially in the Supplementary Material.<br /> - It is incredibly striking how the phase of both target and distractor processing are so aligned across trials for a given participant. I would have thought that any endogenous fluctuation in attention or stimulus processing like that would not be so phase aligned. I know there is literature on phase resetting in this context, the results seem very strong here and it is worth noting. The authors have performed many analyses to rule out signal processing artifacts, e.g. the sideband and beating frequency analyses.

      Weaknesses:

      - In general, the representation of target and distractor processing is a bit of a reach. Target processing is represented by SSVEP amplitude, which is going to most likely be related to the contrast of the dots, as opposed to representing coherent motion energy which is the actual target. These may well be linked (e.g. greater attention to the coherent motion task might increase SSVEP amplitude) but I would call it a limitation of the interpretation. Decoding accuracy of emotional content makes sense as a measure of distractor processing, and the supplementary analysis comparing target SSVEP amplitude to distractor decoding accuracy is duly noted. Overall, this limitation remains and has been noted in the Limitations section.<br /> - Then comparing SSVEP amplitude to emotional category decoding accuracy feels a bit like comparing apples with oranges. They have different units and scales and reflect probably different neural processes. Is the result the authors find not a little surprising in this context? This relationship does predict performance and is thus intriguing, but I think this methodological aspect needs to be discussed further. For example, is the phase relationship with behaviour a result of a complex interaction between different levels of processing (fundamental contrast vs higher order emotional processing)? Again, this has been noted in the Limitations section, but changing the data to z-scores doesn't really take care of the conceptual issue, i.e. that on-screen contrast changes would necessarily be distracting during emotional category decision-making.

    3. Reviewer #2 (Public review):

      In this study, Xiong et al. investigate whether rhythmic sampling - a process typically observed in the attended processing of visual stimuli - extends to task-irrelevant distractors. By using EEG with frequency tagging and multivariate pattern analysis (MVPA), they aimed to characterize the temporal dynamics of both target and distractor processing and examine whether these processes oscillate in time. The central hypothesis is that target and distractor processing occur rhythmically, and the phase relationship between these rhythms correlates with behavioral performance.

      Major Strengths<br /> (1) The extension of rhythmic attentional sampling to include distractors is a novel and interesting question.<br /> (2) The decoding of emotional distractor content using MVPA from SSVEP signals is an elegant solution to the problem of assessing distractor engagement in the absence of direct behavioral measures.<br /> (3) The finding that relative phase (between 1 Hz target and distractor processes) predicts behavioral performance is compelling.

      Major Weaknesses and Limitations<br /> (1) The central claim of 1 Hz rhythmic sampling is insufficiently validated. The windowing procedure (0.5s windows with 0.25s step) inherently restricts frequency resolution, potentially biasing toward low-frequency components like 1 Hz. Testing different window durations or providing controls would significantly strengthen this claim.<br /> (2) The study lacks a baseline or control condition without distractors. This makes it difficult to determine whether the distractor-related decoding signals or the 1 Hz effect reflect genuine distractor processing or more general task dynamics.<br /> (3) The pairwise decoding accuracies for distractor categories hover close to chance (~55%), raising concerns about robustness. While statistically above chance, the small effect sizes need careful interpretation, particularly when linked to behavior.<br /> (4) Neither target nor distractor signal strength (SSVEP amplitude) correlates with behavioral accuracy. The study instead relies heavily on relative phase, which-while interesting-may benefit from additional converging evidence.<br /> (5) Phase analysis is performed between different types of signals hindering their interpretability (time-resolved SSVEP amplitude and time-resolved decoding accuracy).

      The authors largely achieved their stated goal of assessing rhythmic sampling of distractors. However, the conclusions drawn - particularly regarding the presence of 1 Hz rhythmicity - rest on analytical choices that should be scrutinized further. While the observed phase-performance relationship is interesting and potentially impactful, the lack of stronger and convergent evidence on the frequency component itself reduces confidence in the broader conclusions.

      If validated, the findings will advance our understanding of attentional dynamics and competition in complex visual environments. Demonstrating that ignored distractors can be rhythmically sampled at similar frequencies to targets has implications for models of attention and cognitive control. However, the methodological limitations currently constrain the paper's impact.

      Additional Considerations<br /> • The use of EEG-fMRI is mentioned but not leveraged. If BOLD data were collected, even exploratory fMRI analyses (e.g., distractor modulation in visual cortex) could provide valuable converging evidence.<br /> • In turn, removal of fMRI artifacts might introduce biases or alter the data. For instance, the authors might consider investigating potential fMRI artifact harmonics around 1 Hz to address concerns regarding induced spectral components.

      Comments on revisions:

      The authors have addressed my previous points, and the manuscript is substantially improved. The key methodological clarifications have been incorporated, and the interpretation of findings has been appropriately moderated. I have no further major concerns.

    1. eLife Assessment

      This fundamental work significantly advances our understanding of gravity sensing and orientation behavior in the ctenophore, an animal of major importance in understanding the evolution of nervous systems. Through comprehensive reconstruction with volumetric electron microscopy, and time-lapse imaging of cilia motion, the authors provide compelling evidence that the aboral nerve net coordinates the activity of balancer cilia. The resemblance to the ciliomotor circuit in marine annelids provides a fascinating example of how neural circuits may convergently evolve to solve common sensorimotor challenges.

    2. Reviewer #1 (Public review):

      Summary:

      This work presents an interesting circuit dissection of the neural system allowing a ctenophore to keep its balance and orientation in its aquatic environment by using a fascinating structure called the statocyst. By combining serial-section electron microscopy with behavioral recordings, the authors found a population of neurons that exists as a syncytium and could associate these neurons with specific functions related to controlling the beating of cilia located in the statocyst. The type A ANN neurons participate in arresting cilia beating, and the type B ANN neurons participate in resuming cilia beating and increasing their beating frequency.

      Moreover, the authors found that bridge cells are connected with the ANN neurons, giving them the role of rhythmic modulators.

      From these observations, the authors conclude that the control is coordination instead of feedforward sensory-motor function, a hypothesis that had been put forth in the past but could not be validated until now. They also compare it to the circuitry implementing a similar behavior in a species that belongs to a different phylum, where the nervous system is thought to have evolved separately.

      Therefore, this work significantly advances our knowledge of the circuitry implementing the control of the cilia that participate in statocyst function, which ultimately allows the animal to correct its orientation. It represents an example of systems neuroscience explaining how the nervous system allows an animal to solve a specific problem and puts it in an evolutionary perspective, showing a convincing case of convergent evolution.

      Strengths:

      The evidence for how the circuitry is connected is convincing. Pictures of synapses showing the direction of connectivity are clear, and there are good reasons to believe that the diagram inferred is valid, even though we can always expect that some connections are missing.

      The evidence for how the cilia change their beating frequency is also convincing, and the paradigm and recording methods seem pretty robust.

      The authors achieved their aims, and the results support their conclusions. This work impacts its field by presenting a mechanism by which ctenophores correct their balance, which will provide a template for comparison with other sensory systems.

      Weaknesses:

      The evidence supporting the claim that the neural circuitry presented here controls the cilia beating is more correlational because it only relies on the fact that the location of the two types of ANN neurons coincides with the quadrants that are affected in the behavioral recordings. Discussing ways by which causality could be established might be helpful.

      The explanation of the relevance of this work could be improved. The conclusion that the work hints at coordination instead of feedforward sensory-motor control is explained over only a few lines. The authors could provide a more detailed explanation of how the two models compete (coordination vs feedforward sensory-motor control), and why choosing one option over the other could provide advantages in this context.

      Since the fact that the ANN neurons form a syncytium is an important finding of this study, it would be useful to have additional illustrations of it. For instance, pictures showing anastomosing membranes could typically be added in Figure 2.

      Also, to better establish the importance of the study, it could be useful to explain why the balancers' cilia spontaneously beat in the first place (instead of being static and just acting as stretch sensors).

    3. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors describe the production of a high-resolution connectome for the statocyst of a ctenophore nervous system. This study is of particular interest because of the apparent independent evolution of the ctenophore nervous system. The statocyst is a component of the aboral organ, which is used by ctenophores to sense gravity and regulate the activity of the organ's balancer cilia. The EM reconstruction of the aboral organ was carried out on a five-day-old larva of the model ctenophore Mnemiopsis leidyi. To place their connectome data in a functional context, the authors used high-speed imaging of ciliary beating in immobilized larvae. With these data, the authors were able to model the circuitry used for gravity sensing in a ctenophore larva.

      Strengths:

      Because of it apparently being the sister phylum to all other metazoans, Ctenophora is a particularly important group for studies of metazoan evolution. Thus, this work has much to tell us about how animals evolved. Added to that is the apparent independent evolution of the ctenophore nervous system. This study provides the first high-resolution connectomic analysis of a portion of a ctenophore nervous system, extending previous studies of the ctenophore nervous system carried out by Sid Tamm. As such, it establishes the methodology for high-resolution analysis of the ctenophore nervous system. While the generation of a connectome is in and of itself an important accomplishment, the coupling of the connectome data with analysis of the beating frequency of balancer cell cilia provides a functional context for understanding how the organization of the neural circuitry in the aboral organ carries out gravity sensing. In addition, the authors identified a new type of syncytial neuron in Mnemiopsis. Interestingly, the authors show that the neural circuitry controlling cilia beating in Mnemiopsis shares features with the circuitry that controls ciliary movement in the annelid Platynereis, suggesting convergent evolution of this circuitry in the two organisms. The data in this paper are of high quality, and the analyses have been thoroughly and carefully done.

      Weaknesses:

      The paper has no obvious weaknesses.

    4. Reviewer #3 (Public review):

      Summary:

      It has been a long time since I enjoyed reviewing a paper as much as this one. In it, the authors generate an unprecedented view of the aboral organ of a 5-day-old ctenophore. They proceed to derive numerous insights by reconstructing the populations and connections of cell types, with up to 150 connections from the main Q1-4 neuron.

      Strengths:

      The strengths of the analysis are the sophisticated imaging methods used, the labor-intensive reconstruction of individual neurons and organelles, and especially the mapping of synapses. The synaptic connections to and from the main coordinating neurons allow the authors to create a polarized network diagram for these components of the aboral organ. These connections give insight into the potential functions of the major neurons. This also gives some unexpected results, particularly the lack of connections from the balancer system to the coordinating system.

      Weaknesses:

      There were no significant weaknesses in the paper - only a slate of interesting unanswered questions to motivate future studies.

    1. eLife Assessment

      This valuable work presents a novel computational framework for modeling macroscopic traveling waves in the mouse cortex by integrating open-source connectomic and transcriptomic data into a spiking network model. This approach allows the computational model to assign excitatory/inhibitory connections based on neurotransmitter profiles and extends simulations to the 3D domain. The authors present results that demonstrate how spatiotemporal dynamics such as slow oscillations (0.5-4 Hz) emerge and self-organize at the whole-brain scale. This study provides convincing initial insights into the structural basis of traveling waves at the whole-brain scale in the mouse.

    2. Reviewer #1 (Public review):

      Summary:

      The manuscript "Realistic coupling enables flexible macroscopic traveling waves in the mouse cortex" by Sun, Forger, and colleagues presents a novel computational framework for studying macroscopic traveling waves in the mouse cortex by integrating realistic brain connectivity data with large-scale neural simulations.

      The key contributions include:<br /> (1) developing an algorithm that combines spatial transcriptomic data (providing detailed neuron positions and molecular properties) with voxelized connectivity data from the Allen Brain Atlas to construct neuron-to-neuron connections across ~300,000 cortical neurons;<br /> (2) building a GPU-accelerated simulation platform capable of modeling this large-scale network with both excitatory and inhibitory Hodgkin-Huxley neurons;<br /> (3) extending phase-based analysis methods from 2D to 3D to quantify traveling wave activity in the realistic brain geometry; and<br /> (4) demonstrating that realistic Allen connectivity generates significantly higher levels of macroscopic traveling waves compared to simplified local or uniform connectivity patterns.

      The study reveals that wave activity depends non-monotonically on coupling strength and that slow oscillations (0.5-4 Hz) are particularly conducive to large-scale wave propagation, providing new insights into how anatomical connectivity enables flexible spatiotemporal dynamics across the cortex.

      Strengths:

      The authors leverage two existing dense datasets of spatial transcriptomic data and connection strength between pairwise voxels in the mouse cortex in a novel way, allowing for the computational model to capture molecular and functional properties of neurons as determined by their neurotransmitter profiles, rather than making arbitrary assignments of excitatory/inhibitory roles. Additionally, the author's expansion of 2D phase dynamics to 3D phase gradient analysis methods is important and can be widely applied to calcium imaging, LFP recordings, and likely other electrophysiological recordings.

      Weaknesses:

      Despite these important computational advancements, a few aspects of this model, particularly the inability to validate the model with experimental neural data, diminish my enthusiasm for this paper:

      (1) The model's Allen connectivity approach overlooks critical aspects of real cortical dynamics. Most importantly, it excludes subcortical structures, especially the thalamus, which drives cortical traveling waves through thalamocortical interactions. The authors' method of electrically stimulating all layer 4 neurons simultaneously to initiate waves is artificially crude and bears little resemblance to natural wave generation mechanisms.

      (2) The model handles voxel-to-voxel connections crudely when neurons have mixed excitatory/inhibitory properties and varying synaptic strengths. Real connectivity differs dramatically between neuron types (pyramidal cells vs. interneurons, across cortical layers), but the model only distinguishes excitatory and inhibitory neurons. Additionally, uniform synaptic weights ignore natural variations in connection strength based on neuron type, distance, and functional role. Integrating the updated thalamocortical dataset mentioned by the authors, even at regional resolution, would substantially improve the model.

      (3) While the authors bridge microscopic (single neuron) and mesoscopic (regional connectivity) data to study macroscopic (whole-cortex) waves, they don't integrate the distinct mechanisms operating at each scale. The framework demonstrates that realistic connectivity enables macroscopic waves but fails to connect how wave dynamics emerge and interact across spatial scales systematically.

      (4) Claims that Allen connectivity produces higher phase gradient directionality (PGD) than local connectivity appear limited to delta oscillations at very specific coupling strengths and applied currents. Few parameter combinations show significantly higher PGD for Allen connectivity, and these are generally low PGD values overall.

      (5) Broadly, it's unclear how this computational framework can study memory, learning, sleep, sensory processing, or disease states, given the disconnect between simulated intracellular voltages and the local field potentials or other electrophysiological measurements typically used to study cortical traveling waves. While computationally impressive, the practical research applications remain vague.

      (6) The paper needs a clearer explanation for why medium coupling (100%) eliminates waves in Allen connectivity (Figure 6) while stronger coupling (150%) restores them.

      (7) Does using a single connectivity parameter (ρ = 300) across all regions miss important regional differences in cortical connectivity density?

    3. Reviewer #2 (Public review):

      Summary:

      This work presents a spiking network model of traveling waves at the whole-brain scale in the mouse neocortex. The authors use data from the Allen Institute to reconstruct connectivity between different neocortical sites. They then quantify macroscopic traveling waves following stimulation of all layer 4 neurons in the neocortex.

      Strengths:

      Overall, the results are interesting and shed new light on the dynamic organization of activity across the neocortex of the mouse. The paper uses realistic neuron models specifically fit to intracellular recordings, demonstrating that traveling waves occur in the mouse neocortex with both realistic connectivity and realistic single-neuron dynamics. The paper is also well-written in general. For these reasons, the authors have generally achieved their aims in this work.

      Weaknesses:

      (1) Description of Algorithm 1:<br /> While the Methods section clearly explains the density parameter \rho, the statement on line 358 concerning the "ideal" average number of connections is a little unclear. The authors should explicitly clarify that \rho is a free parameter that can be adjusted to balance computational feasibility (for a given set of computational resources) and biological fidelity.

      (2) Lines 102-103:<br /> The \rho parameter used here results in approximately 300 connections per neuron on average. The authors should state clearly that the number of connections per cell is the key determinant of computational feasibility (cf. Morrison et al., Neural Computation, 2005). The authors should also review neuronal density and synaptic connectivity in the mouse neocortex and clearly reference density and connectivity in their model to the biological scales found in the mouse.

      (3) Line 131:<br /> From the plots in Figure 2, it is not clear that the stimulus response is necessarily a rhythmic oscillation, in the sense of a single narrowband frequency.

      (4) Line 217:<br /> The authors should clarify how these findings relate to the results from Mohajerani et al. (Nature Neuroscience, 2013) or differ from them.

      (5) Line 230:<br /> Because higher temporal frequency activity also tends to be more spatially localized, a correlation between PGD and temporal frequency could be an inherent consequence of this relationship, rather than a meaningful result.

      (6) Line 247-248:<br /> It is not clear that the algorithm for generating connections between neurons presented here really relates to those for community detection. For example, in the case of the Allen Institute data, the communities are essentially in the data already.

      (7) Line 284-285:<br /> The relationship between conduction delay is more direct than this sentence suggests. Conduction delay is fundamentally determined by the time required for action potentials to propagate along axons, making it intrinsically linked to anatomical distance.

      (8) Line 287-288:<br /> The authors suggest at this point that they do not have enough information to estimate time delays due to axonal conduction along white matter fibers. However, experimental data from white matter connections typically includes information about fiber length, which does enable estimating conduction delays. These estimations have been previously implemented for Allen Institute connectome data in the mouse (Choi and Mihalas, PLoS Comput Biology, 2019) and human connectome data (Budzinski et al., Physical Review Research, 2023).

      (9) Lines 294-295:<br /> Several methods do exist for detecting and characterizing wave dynamics in three-dimensional data (Budzinski et al., Physical Review Research, 2023).

    1. eLife Assessment

      This important study utilizes behavioral data and computational modeling to show that spatial properties of visual attention affect human planning. The methodology and statistical analyses are solid, though the way attention is conceptualized and modeled could be refined. The findings of this study will interest cognitive scientists studying attention, perception, and decision-making.

    2. Reviewer #1 (Public review):

      Summary: This study investigated how visuospatial attention influences the way people build simplified mental representations to support planning and decision-making. Using computational modeling and virtual maze navigation, the authors examined whether spatial proximity and the spatial arrangement of obstacles determine which elements are included in participants' internal models of a task. The study developed and tested an extension of the value-guided construal (VGC) model that incorporates features of spatial attention for selecting simpler task mental representation.

      Strengths:

      (1) Original Perspective: The study introduces an explicit attentional component to established models of planning, offering an approach that bridges perception, attention, and decision-making.

      (2) Methodological Approach: The combination of computational modeling, behavioral data, and eye-tracking provides converging measures to assess the relationship between attention and planning representations.

      (3) Cross-validated data: The study relies on the analysis of three separate datasets, two already published and an additional novel one. This allows for cross-validation of the findings and enhances the robustness of the evidence.

      (4) Focus on Individual Differences: Reports of how individual variability in attentional "spillover" correlates with the sparsity of task representations and spatial proximity add depth to the analysis.

      Weaknesses:

      (1) Clarity of the VGC model and behavioral task: The exposition of the VGC model lacks sufficient detail for non-expert readers. It is not clear how this model infers which maze obstacles are relevant or irrelevant for planning, nor how the maze tasks specifically operationalize "planning" versus other cognitive processes.

      The method for classifying obstacles as relevant or irrelevant to the task and connecting metacognitive awareness (i.e., participants' reports of noticing obstacles) to attentional capture is not well justified. The rationale for why awareness serves as a valid attention proxy, as opposed to behavioral or neurophysiological markers, should be clearer.

      (2) Attention framework: The account of attention is largely limited to the "spotlight" model. When solving a maze, participants trace the correct trail, following it mentally with their overt or covert attention. In this perspective, relevant concepts are also rooted in attention literature pertaining to object-based attention using tasks like curve tracing (e.g., Pooresmaeili & Roelfsema, 2014) and to mental maze solving (e.g., Wong & Scholl, 2024), which may be highly relevant and add nuance to the current work. This view of attention may be more pertinent to the task than models of simultaneously tracking multiple objects cited here. Prior work (notably from the Roelfsema group) indicates that attentional engagement in curve-tracing tasks may be a continuous, bottom-up process that progressively spreads along a trajectory, in time and space, rather than a "spotlight" that simply travels along the path. The spread of attention depends on the spatial proximity to distractors - a point that could also be pertinent to the findings here.

      Moreover, the tracing of a "solution" trail in a maze may be spontaneous and not only a top-down voluntary operation (Wong & Scholl, 2024), a finding that requires a more careful framing of the link to conscious perception discussed in the manuscript.

      Conceptualizing attention as a spatial spotlight may therefore oversimplify its role in navigation and planning. Perhaps the observed attentional modulation reflects a perceptual stage of building the trail in the maze rather than a filter for a later representation for more efficient decision making and planning. A fuller discussion of whether the current model and data can distinguish between these frameworks would benefit readers.

      (3) Lateralization of attention: The analysis considers whether relevant information is distributed bilaterally or unilaterally across the visual display, but does not sufficiently address evidence for attentional asymmetries across the left and right visual fields due to hemispheric specialization (e.g., Bartolomeo & Seidel Malkinson, 2019). Whether effects differ for left versus right hemifield arrangements is not made explicit in the presented findings.

      (4) Individual differences: Individual differences in attentional modulation are a strength of the work, but similar analyses exploring individual variation in lateralization effects could provide further insight, and the lack of such analyses may mask important effects.

      (5) Distinction between overt and covert attention: The current report at times equates eye movement patterns with the locus of attention. However, attention can be covertly shifted without corresponding gaze changes (see, for example, Pooresmaeili & Roelfsema, 2014).

      The implications for interpreting the relationship between eye movement, memory, and attention in this setting are not fully addressed. The potential dynamics of attention along a maze trajectory and their impact on lateralization analysis would benefit from further clarification.

      Appraisal of Aims and Results:

      The study sets out to determine how spatial attention shapes the construction of task representations in planning contexts. The authors provide evidence that spatial proximity and arrangement influence which environmental features are incorporated into internal models used for navigation, and that accounting for these effects improves model predictions. There is clear documentation of individual variation, with some participants showing greater attentional spillover and more sparse awareness profiles.

      However, some conceptual and methodological aspects would be clearer with greater engagement with the broader literature on attention dynamics, a more explicit justification of operational choices, and more targeted lateralization analyses.

    3. Reviewer #2 (Public review):

      Summary:

      Castanheira et al. investigate the role of spatial attention for planning during three maze navigation experiments (one new experiment and two existing datasets). Effective planning in complex situations requires the construction of simplified representations of the task at hand. The authors find that these mental representations (as assessed by conscious awareness) of a given stimulus are influenced by (spatially) surrounding stimuli. Individual participants varied in the degree to which attention influenced their task representations, and this attentional effect correlated with the sparsity of representations (as measured by the range of awareness reports across all stimuli). Spatially grouping task-relevant information on either the left or right side of the maze led to mental representations more similar to optimal representations predicted by the value-guided construal (VGC) model - a normative model describing a theoretical approach to simplifying complex task information. Finally, the authors propose an update to this model, incorporating an attentional spotlight component; the revised descriptive model predicts empirical task representations better than the original (normative) VGC model.

      Strengths:

      The novelty of this study lies in the proposal and investigation of a cognitive mechanism through which a normative model like value-guided construal can enable human planning. After proposing attention as this mechanism, the authors make concrete hypotheses about mismatches between the VGC predictions and real human behavior, which are experimentally validated. Thus, not only does this study describe a possible mechanism for simplification of task information for planning, but the authors also propose a descriptive model, revising VGC to incorporate this attentional component.

      A strength of this paper is the variety of investigative approaches: analysis of existing data, novel experiment, and a computational approach to predict experimental findings from a theoretical model. Analyzing pre-existing datasets increases the size of the participant cohort and strengthens the authors' conclusions. Meanwhile, comparing the predictions of the existing normative model and the authors' own refined model is a clever approach to substantiate their claims. In addition, the authors describe several crucial controls, which are key to the interpretability of their results. In particular, the eye tracking results were critical.

      In summary, this paper constitutes an important step toward a more complete understanding of the human ability to plan.

      Weaknesses:

      (1) There is a critical conceptual gap in the study and its interpretation, mainly due to the reliance on a self-report metric of awareness (rather than an objective measure of behavioral performance).

      a. Awareness is tested by a 9-point self-report scale. It is currently unclear why awareness of task-irrelevant obstacles in this task would necessarily compromise optimal planning. There is no indication of whether self-reported awareness affects performance (e.g., navigation path distance, time to complete the maze, number of errors). Such behavioral evidence of planning would be more compelling.

      b. Relatedly, it would have been more convincing to have an objective measure of awareness, for instance, how the presence or absence of a "task-irrelevant" obstacle affects performance (e.g., change navigation path distance or time to complete the maze), or whether participants can accurately recall the location of obstacles.

      c. Consequently, I'm not sure that we can conclude that the spatial context does impact participants' ability to plan spatial navigation or to "incorporate task-relevant information into their construal". We know that the spatial context affects subjective (self-reported) awareness, but the authors do not present evidence that spatial context affects behavioral performance.

      d. Another concern that may complicate interpretation is the following: Figure 3c shows improved VGC model predictions (steeper slope) for mazes with greater lateralization. However, there are notable outliers in these plots, where a high lateralization index does not correspond to good model performance. There is currently no discussion/explanation of these cases.

      (2) I noticed an issue with clarity regarding task-relevance. It is currently not fully clear which obstacles are "task irrelevant". Also, the term is used inconsistently, sometimes conflating with "awareness". For example, in the "Attentional spotlight model of task representations" section, the authors state that "task-relevant information becomes less relevant when surrounded by task-irrelevant information". But they really mean that participants become less aware of those task-relevant obstacles. I assume task-relevance is an objective characteristic related to maze organization, not to a participant's construal. Indeed, the following paragraph provides evidence of model predictions of awareness.

      (3) The behavioral paradigm has some distinct disadvantages, and the validity of the task is not backed up by behavioral data.

      a. I understand the need for central fixation, but it also makes the task less naturalistic.

      b. The task with its top-down grid view does not seem to mimic real human navigation. Though this grid may be similar to mental maps we form for navigation, the sensory stimuli corresponding to possible paths and to spatial context during real-life navigation are very different.

      c. Behavioral performance is not reported, so it is unknown whether participants are able to properly complete the task. The task seems pretty difficult to navigate, especially when the obstacles disappear, and in combination with the central fixation.

      d. There is no discussion of whether/how this navigation task generalizes to other forms of planning.

    4. Reviewer #3 (Public review):

      Summary:

      The authors build on a recent computational model of planning, the "value-guided construal" framework by Ho et al. (2022), which proposes that people plan by constructing simple models of a task, such as by attending to a subset of obstacles in a maze. They analyze both published experimental data and new experimental data from a task in which participants report attention to objects in mazes. The authors find that attention to objects is affected by spatial proximity to other objects (i.e., attentional overspill) as well as whether relevant objects are lateralized to the same hemifield. To account for these results, the authors propose a "spotlight-VGC" model, in which, after calculating attention scores based on the original VGC model, attention to objects is enhanced based on distance. They find that this model better explains participant responses when objects are lateralized to different hemifields. These results demonstrate complex interactions between filtering of task-relevant information and more classical signatures of attentional selection.

      Strengths:

      (1) The paper builds on existing modeling work in a novel manner and integrates classic results on attention into the computational framework.

      (2) The authors report new and extensive analyses of existing data that shed light on additional sources of systematic variability in responses related to attentional spillover effects

      (3) They collect new data using new stimuli in the original paradigm that directly test predictions related to the lateralization of task-relevant information, including eye tracking data that allows them to control for possible confounds.

      (4) The extended model (spotlight-VGC) provides a formal account of these new results.

      Weaknesses:

      (1) The spotlight-VGC model has a free parameter - the "width" of the attentional spotlight. This seems to have been fixed to be 3 squares. It would be good if the authors could describe a more principled procedure for selecting the width so that others can use the model in other contexts.

      (2) Have the authors considered other ways in which factors such as attentional spillover and lateralization could be incorporated into the model? The spotlight-VGC model, as presented, involves first computing VGC predictions and only afterwards computing spillover. This seems psychologically implausible, since it supposes that the "optimal" representation is first formed and then it gets corrupted. Is there a way to integrate these biases directly into the VGC framework, perhaps as a prior on construals? The authors gesture towards this when they talk about "inductive biases", but this is not formalized.

      (3) Can the authors rule out that the lateralization effects are the result of memory biases since the main measure used is a self-report of attention?

    1. eLife Assessment

      This study presents a valuable and rigorous molecular resource, offering subtype-specific insight into the composition of ribosome-associated protein complexes in the developing cerebral cortex. The evidence is compelling in terms of data quality and is strongly supported by the results, given the rigorous technical execution. However, the findings remain primarily descriptive, as the study lacks functional validation to support mechanistic conclusions.

    2. Reviewer #1 (Public review):

      This work provides a valuable toolkit for endogenous isolation of projection neuron subtypes. With further validation, it could present a solid method for low-input ribosome affinity purification using a ribosomal RNA (rRNA) antibody. The experimental evidence for the distinct ribosomal complexes is limited to this method and indirect support from complementary analyses of pre-existing data. However, with additional experimental data to support the specificity of ribosomal complex pulldown and confirmation of the putative ribosomal complex proteins of interest, the study would provide compelling evidence for translation regulation of neuronal development through compositional ribosome heterogeneity. This work would be of interest to neuroscientists, developmental biologists, and those studying translational networks underlying gene regulation.

      Strengths

      (1) This in vivo labeling of specific projection neurons and ribosomal rRNA affinity purification method accommodates a low input of <100K somata per replicate, which is useful for the study of neuronal subtypes with limited input. In principle, this set of techniques could work across different cell types with limited input, depending on the molecule used for cell type labeling.

      (2) The authors are also able to isolate endogenous neurons with minimal perturbation up to the point of collection, preserving the native state for the neuron in vivo as long as possible prior to processing.

      (3) This study identified over a dozen potential non-ribosomal proteins associated with SCPN ribosomal complexes, as well as a ribosomal protein enriched in CPN.

      Limitations

      (1) In this study, the authors address the advantages of their ribosomal complex isolation method in SCPN and CPN against RPL22-HA affinity purification. While this does show more pull-down of the ribosomal RNA by the Y10B rRNA antibody, the authors claim this method identifies cell-type-specific ribosomal complex proteins without demonstrating a positive control for the method's specificity. There are very limited experiments to truly delineate how "specific" this method is working and whether there could be contamination from other complexes bound by the antibody. I see this as the major limitation that should be addressed. To boost their claims of capturing cell-type-specific ribosomal complexes, the authors could consider applying their rRNA affinity purification pipeline to compare cell types with well-characterized ribosome-associated proteins, like mouse embryonic stem cells and HELA cells. The reviewer can completely appreciate the elegance in the neural characterization here, but it seems there needs to be a solid foothold on the specificity of the method, perhaps facilitated by cell types that can be more readily scaled up and tested.

      (2) The authors followed up on their differentially enriched ribosomal complex proteins by analyzing the ribosome association of these proteins in external datasets. While this analysis supports the ribosome-association of these proteins, there is limited experimental validation of physical association with the ribosome, much less any functional characterization. The reciprocal pulldown of PRKCE is promising; however, I would recommend orthogonal validation of several putative ribosomal complex proteins to increase confidence. Specifically, the authors could use sucrose gradient fractionation of SCPN and CPN, followed by a western blot to identify the putative interaction with the 80S monosome or polysomes. This would also provide evidence towards the pulldown capturing association with mature ribosome species, which is currently unclear. This experiment would provide substantial evidence for the direct association of these non-ribosomal proteins with subtype-specific ribosomal complexes.

      (3) The authors state interest in learning more about the differences underlying translational regulation of projection neuron development. This method only captures neuronal somata, which will only capture ribosomes in the main cell body. There are also ribosomes regulating local translation in the axons, which may also play a critical role in axonal circuit establishment and activity. These ribosomal complex interactions may also be rather transient and difficult to capture at only one developmental stage. Therefore, this method is currently limited to a single developmental snapshot of ribosomal complexes at P3 within the main cell body. It would be exciting to see the extended utility of this method to sample neurites and additional developmental stages to gain further resolution on the developmental translation regulation of these projection neurons.

      Likely impact of the work on the field, and the utility of the methods and data to the community:

      The authors introduce a unique pipeline of techniques to identify cell-type-specific ribosomal complex compositions. With more validation, there is certainly potential for those studying neuronal translation to leverage this method in limited primary cells as an alternative to existing methods that do not rely on ribosomal protein tagging, such as ARC-MS (Bartsch et al., 2023), RAPIDASH (Susanto and Hung et al., 2024), and RAPPL (Nature Communications, 2025).

    3. Reviewer #2 (Public review):

      Summary:

      This study presents a sophisticated molecular dissection of ribosome-associated complexes (RCs) in two well-defined cortical projection neuron subtypes (ScPN and CPN) during early postnatal development. The authors develop and optimize an rRNA immunoprecipitation-mass spectrometry (rRNA IP-MS) workflow to recover RCs from FACS-purified, retrogradely labeled neurons, achieving remarkable subtype specificity and biochemical resolution. Through proteomic profiling, they reveal both shared and distinct ribosome-associated proteins between ScPN and CPN, with a focus on non-core RC components and their potential functional relevance. The work advances our understanding of cell-type-specific translation regulation, moving beyond the transcriptome to explore the proteome-level complexity in neuronal subtypes.

      Strengths:

      This work stands out for its technical sophistication and innovation. The authors combine retrograde labeling, FACS purification, and an optimized rRNA IP-MS approach (low input) to isolate ribosome-associated complexes from highly specific neuronal subtypes in vivo, a challenging issue that they execute with impressive rigor. The methodological pipeline is both elegant and well-controlled, yielding high-quality, reproducible data. The depth of proteomic coverage is remarkable, with nearly all known cytoplasmic ribosomal proteins identified, along with hundreds of ribosome-associated proteins (RAPs), including translation factors, chaperones, and RNA-binding proteins. The analysis not only reveals shared components between ScPN and CPN RCs but also uncovers subtype-specific differences in associated proteins.

      Particularly notable is the integration of this new proteomic dataset with previously published transcriptomic and ribosome footprinting data, which helps to validate the specificity and relevance of the findings. Overall, the clarity of the writing, the robustness of the data, and the transparency of the methods make this a strong and compelling contribution.

      Weaknesses:

      Despite the depth and high quality of the dataset, the study remains descriptive. While the identification of subtype-specific RC components is intriguing, the current version of the manuscript does not explore their functional roles or the biological consequences of their alterations. There is no perturbation, causal testing, in vitro or in vivo manipulation to demonstrate whether these proteins are necessary for ScPN or CPN identity, specific axonal targeting, metabolism, or synaptic function.

      One important point highlighted by the authors in the discussion - and critical for establishing the subtype specificity of the identified proteins - is that some ribosomal complexes may be specialized for specific developmental stages, rather than exclusively for the subtype-specific needs of projection neuron development. The work presented here provides a valuable starting point for further investigation into such RC specialization. However, it will be essential to determine to what extent these RCs exhibit true subtype specificity, independently of their temporal maturation context.

      As a result, key mechanistic insights remain a bit speculative. Although several of the identified proteins have known roles in processes like synaptogenesis or metabolism, their relevance to the specific neuronal subtypes under study is not experimentally addressed. That said, given its rich content and the comprehensive early postnatal dataset, the manuscript represents an extremely valuable resource for the community. While primarily exploratory, it lays a strong foundation for future functional studies aimed at uncovering the biological impact of the identified ribosomal complexes.

    1. eLife Assessment

      This valuable model-based study seeks to mimic bat echolocation behavior and flight under conditions of high interference, such as when large numbers of bats leave their roost together. Although some of the assumptions made in the model may be questioned, the simulations convincingly suggest that the problem of acoustic jamming in these situations may be less severe than previously thought. This finding will be of broad interest to scientists working in the fields of bat biology and collective behaviour.

    2. Reviewer #1 (Public review):

      Summary:

      Mazer & Yovel 2025 dissect the inverse problem of how echolocators in groups manage to navigate their surroundings despite intense jamming using computational simulations.

      The authors show that despite the 'noisy' sensory environments that echolocating groups present, agents can still access some amount of echo-related information and use it to navigate their local environment. It is known that echolocating bats have strong small and large-scale spatial memory that plays an important role for individuals. The results from this paper also point to the potential importance of an even lower-level, short-term role of memory in the form of echo 'integration' across multiple calls, despite the unpredictability of echo detection in groups. The paper generates a useful basis to think about the mechanisms in echolocating groups for experimental investigations too.

      Strengths:

      * The paper builds on biologically well-motivated and parametrised 2D acoustics and sensory simulation setup to investigate the various key parameters of interest

      * The 'null-model' of echolocators not being able to tell apart objects & conspecifics while echolocating still shows agents succesfully emerge from groups - even though the probability of emergence drops severely in comparison to cognitively more 'capable' agents. This is nonetheless an important result showing the direction-of-arrival of a sound itself is the 'minimum' set of ingredients needed for echolocators navigating their environment.

      * The results generate an important basis in unraveling how agents may navigate in sensorially noisy environments with a lot of irrelevant and very few relevant cues.

      * The 2D simulation framework is simple and computationally tractable enough to perform multiple runs to investigate many variables - while also remaining true to the aim of the investigation.

      Weaknesses:

      * Authors have not yet provided convincing justification for the use of different echolocation phases during emergence and in cave behaviour. In the previous modelling paper cited for the details - here the bat-agents are performing a foraging task, and so the switch in echolocation phases is understandable. While flying with conspecifics, the lab's previous paper has shown what they call a 'clutter response' - but this is not necessarily the same as going into a 'buzz'-type call behaviour. As pointed out by another reviewer - the results of the simulations may hinge on the fact that bats are showing this echolocation phase-switching, and thus improving their echo-detection. This is not necessarily a major flaw - but something for readers to consider in light of the sparse experimental evidence at hand currently.

      * The decision to model direction-of-arrival with such high angular resolution (1-2 degrees) is not entirely justifiable - and the authors may wish to do simulation runs with lower angular resolution. Past experimental paradigms haven't really separated out target-strength as a confounding factor for angular resolution (e.g. see the cited Simmons et al. 1983 paper). Moreover, to this reviewer's reading of the cited paper - it is not entirely clear how this experiment provides source-data to support the DoA-SNR parametrisation in this manuscript. The cited paper has two array-configurations, both of which are measured to have similar received levels upon ensonification. A relationship between angular resolution and signal-to-noise ratio is understandable perhaps - and one can formulate such a relationship, but here the reviewer asks that the origin/justification be made clear. On an independent line, also see the recent contrasting results of Geberl, Kugler, Wiegrebe 2019 (Curr. Biol.) - who suggest even poorer angular resolution in echolocation.

    3. Reviewer #2 (Public review):

      This manuscript describes a detailed model for bats flying together through a fixed geometry. The model considers elements which are faithful to both bat biosonar production and reception and the acoustics governing how sound moves in air and interacts with obstacles. The model also incorporates behavioral patterns observed in bats, like one-dimensional feature following and temporal integration of cognitive maps. From a simulation study of the model and comparison of the results with the literature, the authors gain insight into how often bats may experience destructive interference of their acoustic signals and those of their peers, and how much such interference may actually negatively effect the groups' ability to navigate effectively. The authors use generalized linear models to test the significance of the effects they observe.

      The work relies on a thoughtful and detailed model which faithfully incorporates salient features, such as acoustic elements like the filter for a biological receiver and temporal aggregation as a kind of memory in the system. At the same time, the authors abstract features that are complicating without being expected to give additional insights, as can be seen in the choice of a two-dimensional rather than three-dimensional system. I thought that the level of abstraction in the model was perfect, enough to demonstrate their results without needless details. The results are compelling and interesting, and the authors do a great job discussing them in the context of the biological literature.

      With respect to the first version of the manuscript, the authors have remedied all my outstanding questions or concerns in the current version. The new supplementary figure 5 is especially helpful in understanding the geometry.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      We thank the reviewer for his valuable input and careful assessment, which have significantly improved the clarity and rigor of our manuscript.

      Summary:

      Mazer & Yovel 2025 dissect the inverse problem of how echolocators in groups manage to navigate their surroundings despite intense jamming using computational simulations.

      The authors show that despite the 'noisy' sensory environments that echolocating groups present, agents can still access some amount of echo-related information and use it to navigate their local environment. It is known that echolocating bats have strong small and large-scale spatial memory that plays an important role for individuals. The results from this paper also point to the potential importance of an even lower-level, short-term role of memory in the form of echo 'integration' across multiple calls, despite the unpredictability of echo detection in groups. The paper generates a useful basis to think about the mechanisms in echolocating groups for experimental investigations too.

      Strengths:

      (1) The paper builds on biologically well-motivated and parametrised 2D acoustics and sensory simulation setup to investigate the various key parameters of interest

      (2) The 'null-model' of echolocators not being able to tell apart objects & conspecifics while echolocating still shows agents successfully emerge from groups - even though the probability of emergence drops severely in comparison to cognitively more 'capable' agents. This is nonetheless an important result showing the directionof-arrival of a sound itself is the 'minimum' set of ingredients needed for echolocators navigating their environment.

      (3) The results generate an important basis in unraveling how agents may navigate in sensorially noisy environments with a lot of irrelevant and very few relevant cues.

      (4) The 2D simulation framework is simple and computationally tractable enough to perform multiple runs to investigate many variables - while also remaining true to the aim of the investigation.

      Weaknesses:

      There are a few places in the paper that can be misunderstood or don't provide complete details. Here is a selection:

      (1) Line 61: '... studies have focused on movement algorithms while overlooking the sensory challenges involved' : This statement does not match the recent state of the literature. While the previous models may have had the assumption that all neighbours can be detected, there are models that specifically study the role of limited interaction arising from a potential inability to track all neighbours due to occlusion, and the effect of responding to only one/few neighbours at a time e.g. Bode et al. 2011 R. Soc. Interface, Rosenthal et al. 2015 PNAS, Jhawar et al. 2020 Nature Physics.

      We appreciate the reviewer's comment and the relevant references. We have revised the manuscript accordingly to clarify the distinction between studies that incorporate limited interactions and those that explicitly analyze sensory constraints and interference. We have refined our statement to acknowledge these contributions while maintaining our focus on sensory challenges beyond limited neighbor detection, such as signal degradation, occlusion effects, and multimodal sensory integration (see lines 58-64):

      (2) The word 'interference' is used loosely places (Line 89: '...took all interference signals...', Line 319: 'spatial interference') - this is confusing as it is not clear whether the authors refer to interference in the physics/acoustics sense, or broadly speaking as a synonym for reflections and/or jamming.

      To improve clarity, we have revised the manuscript to distinguish between different types of interference:

      • Acoustic interference (jamming): Overlapping calls that completely obscure echo detection, preventing bats from perceiving necessary environmental cues.

      • Acoustic interference (masking): Partial reduction in signal clarity due to competing calls.

      • Spatial interference: Physical obstruction by conspecifics affecting movement and navigation.

      We have updated the manuscript to use these terms consistently and explicitly define them in relevant sections (see lines 84-85, 119-120). This distinction ensures that the reader can differentiate between interference as an acoustic phenomenon and its broader implications in navigation.

      (3) The paper discusses original results without reference to how they were obtained or what was done. The lack of detail here must be considered while interpreting the Discussion e.g. Line 302 ('our model suggests...increasing the call-rate..' - no clear mention of how/where call-rate was varied) & Line 323 '..no benefit beyond a certain level..' - also no clear mention of how/where call-level was manipulated in the simulations.

      All tested parameters, including call rate dynamics and call intensity variations, are detailed in the Methods section and Tables 1 and 2. Specifically:

      • Call Rate Variation: The Inter-Pulse Interval (IPI) was modeled based on documented echolocation behavior, decreasing from 100 msec during the search phase to 35 msec (~28 calls per second) at the end of the approach phase, and to 5 msec (200 calls per second) during the final buzz (see Table 2). This natural variation in call rate was not manually manipulated in the model but emerged from the simulated bat behavior.

      • Call Intensity Variation: The tested call intensity levels (100, 110, 120, 130 dB SPL) are presented in Table 1 under the “Call Level” parameter. The effect of increasing call intensity was analyzed in relation to exit probability, jamming probability, and collision rate. This is now explicitly referenced in the Discussion. We have revised the manuscript to explicitly reference these aspects in the Results and Discussion sections – see lines 346-349, 372-375.

      Reviewer #2 (Public review):

      We are grateful for the reviewer’s insightful feedback, which has helped us clarify key aspects of our research and strengthen our conclusions.

      This manuscript describes a detailed model of bats flying together through a fixed geometry. The model considers elements that are faithful to both bat biosonar production and reception and the acoustics governing how sound moves in the air and interacts with obstacles. The model also incorporates behavioral patterns observed in bats, like one-dimensional feature following and temporal integration of cognitive maps. From a simulation study of the model and comparison of the results with the literature, the authors gain insight into how often bats may experience destructive interference of their acoustic signals and those of their peers, and how much such interference may actually negatively affect the groups' ability to navigate effectively. The authors use generalized linear models to test the significance of the effects they observe.

      In terms of its strengths, the work relies on a thoughtful and detailed model that faithfully incorporates salient features, such as acoustic elements like the filter for a biological receiver and temporal aggregation as a kind of memory in the system. At the same time, the authors' abstract features are complicating without being expected to give additional insights, as can be seen in the choice of a twodimensional rather than three-dimensional system. I thought that the level of abstraction in the model was perfect, enough to demonstrate their results without needless details. The results are compelling and interesting, and the authors do a great job discussing them in the context of the biological literature. 

      The most notable weakness I found in this work was that some aspects of the model were not entirely clear to me. 

      For example, the directionality of the bat's sonar call in relation to its velocity. Are these the same?

      For simplicity, in our model, the head is aligned with the body, therefore the direction of the echolocation beam is the same as the direction of the flight. 

      Moreover, call directionality (directivity) is not directly influenced by velocity. Instead, directionality is estimated using the piston model, as described in the Methods section. The directionality is based on the emission frequency and is thus primarily linked to the behavioral phases of the bat, with frequency shifts occurring as the bat transitions from search to approach to buzz phases. During the approach phase, the bat emits calls with higher frequencies, resulting in increased directionality. This is supported by the literature (Jakobsen and Surlykke, 2010; Jakobsen, Brinkløv and Surlykke, 2013). This phase is also associated with a natural reduction in flight speed, which is a well-documented behavioral adaptation in echolocating bats(Jakobsen et al., 2024).

      To clarify this in the manuscript, we have updated the text to explicitly state that directionality follows phase-dependent frequency changes rather than being a direct function of velocity, see lines 543-545. 

      If so, what is the difference between phi_target and phi_tx in the model equations? 

      𝝓<sub>𝒕𝒂𝒓𝒈𝒆𝒕</sub> represents the angle between the bat and the reflected object (target).

      𝝓<sub>𝑻𝒙</sub> the angle [rad], between the masking bat and target (from the transmitter’s perspective)

      𝝓<sub>𝑻𝒙𝑹𝒙</sub> refers to the angle between the transmitting conspecific and the receiving focal bat, from the transmitter’s point of view.

      𝝓<sub>𝑹𝒙𝑻𝒙</sub> represents the angle between the receiving bat and the transmitting bat, from the receiver’s point of view.

      These definitions have been explicitly stated in the revised manuscript to prevent any ambiguity (lines 525-530). Additionally, a Supplementary figure demonstrating the geometrical relations has been added to the manuscript.

      What is a bat's response to colliding with a conspecific (rather than a wall)? 

      In nature, minor collisions between bats are common and typically do not result in significant disruptions to flight (Boerma et al., 2019; Roy et al., 2019; Goldshtein et al., 2025). Given this, our model does not explicitly simulate the physical impact of a collision event. Instead, during the collision event the bat keeps decreasing its velocity and changing its flight direction until the distance between bats is above the threshold (0.4 m). We assume that the primary cost of such interactions arises from the effort required to avoid collisions, rather than from the collision itself. This assumption aligns with observations of bat behavior in dense flight environments, where individuals prioritize collision avoidance rather than modeling post-collision dynamics. See lines 479-484.

      From the statistical side, it was not clear if replicate simulations were performed. If they were, which I believe is the right way due to stochasticity in the model, how many replicates were used, and are the standard errors referred to throughout the paper between individuals in the same simulation or between independent simulations, or both? 

      The number of repetitions for each scenario is detailed in Table 1, but we included it in a more prominent location in the text for clarity. Specifically, we now state (Lines 110-111):

      "The number of repetitions for each scenario was as follows: 1 bat: 240; 2 bats: 120; 5 bats: 48; 10 bats: 24; 20 bats: 12; 40 bats: 12; 100 bats: 6."

      Regarding the reported standard errors, they are calculated across all individuals within each scenario, without distinguishing between different simulation trials. 

      We clarified in the revised text (Lines 627-628 in Statistical Analysis) 

      Overall, I found these weaknesses to be superficial and easily remedied by the authors. The authors presented well-reasoned arguments that were supported by their results, and which were used to demonstrate how call interference impacts the collective's roost exit as measured by several variables. As the authors highlight, I think this work is valuable to individuals interested in bat biology and behavior, as well as to applications in engineered multi-agent systems like robotic swarms.

      Reviewer #3 (Public review):

      We sincerely appreciate the reviewer’s thoughtful comments and the time invested in evaluating our work, which have greatly contributed to refining our study.

      We would like to note that in general, our model often simplifies some of the bats’ abilities, under the assumption that if the simulated bats manage to perform this difficult task with simpler mechanisms, real better adapted bats will probably perform even better. This thought strategy will be repeated in several of the s below.

      Summary:

      The authors describe a model to mimic bat echolocation behavior and flight under high-density conditions and conclude that the problem of acoustic jamming is less severe than previously thought, conflating the success of their simulations (as described in the manuscript) with hard evidence for what real bats are actually doing. The authors base their model on two species of bats that fly at "high densities" (defined by the authors as colony sizes from tens to tens of thousands of individuals and densities of up to 33.3 bats/m2), Pipistrellus kuhli and Rhinopoma microphyllum. This work fits into the broader discussion of bat sensorimotor strategies during collective flight, and simulations are important to try to understand bat behavior, especially given a lack of empirical data. However, I have major concerns about the assumptions of the parameters used for the simulation, which significantly impact both the results of the simulation and the conclusions that can be made from the data. These details are elaborated upon below, along with key recommendations the authors should consider to guide the refinement of the model.

      Strengths:

      This paper carries out a simulation of bat behavior in dense swarms as a way to explain how jamming does not pose a problem in dense groups. Simulations are important when we lack empirical data. The simulation aims to model two different species with different echolocation signals, which is very important when trying to model echolocation behavior. The analyses are fairly systematic in testing all ranges of parameters used and discussing the differential results.

      Weaknesses:

      The justification for how the different foraging phase call types were chosen for different object detection distances in the simulation is unclear. Do these distances match those recorded from empirical studies, and if so, are they identical for both species used in the simulation? 

      The distances at which bats transition between echolocation phases are identical for both species in our model (see Table 2). These distances are based on welldocumented empirical studies of bat hunting and obstacle avoidance behavior (Griffin, Webster and Michael, 1958; Simmons and Kick, 1983; Schnitzler et al., 1987; Kalko, 1995; Hiryu et al., 2008; Vanderelst and Peremans, 2018). These references provide extensive evidence that insectivorous bats systematically adjust their echolocation calls in response to object proximity, following the characteristic phases of search, approach, and buzz.

      To improve clarity, we have updated the text to explicitly state that the phase transition distances are empirically grounded and apply equally to both modeled species (lines 499-508).

      What reasoning do the authors have for a bat using the same call characteristics to detect a cave wall as they would for detecting a small insect? 

      In echolocating bats, call parameters are primarily shaped by the target distance and echo strength. Accordingly, there is little difference in call structure between prey capture and obstacles-related maneuvers, aside from intensity adjustments based on target strength (Hagino et al., 2007; Hiryu et al., 2008; Surlykke, Ghose and Moss, 2009; Kothari et al., 2014). In our study, due to the dense cave environment, the bats are found to operate in the approach phase most of the time, which is consistent with natural cave emergence, where they are navigating through a cluttered environment rather than engaging in open-space search. For one of the species (Rhinopoma), we also have empirical recordings of individuals flying under similar conditions (Goldshtein et al., 2025). Our model was designed to remain as simple as possible while relying on conservative assumptions that may underestimate bat performance. If, in reality, bats fine-tune their echolocation calls even earlier or more precisely during navigation than assumed, our model would still conservatively reflect their actual capabilities. See lines 500-508.

      The two species modeled have different calls. In particular, the bandwidth varies by a factor of 10, meaning the species' sonars will have different spatial resolutions. Range resolution is about 10x better for PK compared to RM, but the authors appear to use the same thresholds for "correct detection" for both, which doesn't seem appropriate.

      The detection process in our model is based on Saillant’s method using a filterbank, as detailed in the paper (Saillant et al., 1993; Neretti et al., 2003; Sanderson et al., 2003). This approach inherently incorporates the advantages of a wider bandwidth, meaning that the differences in range resolution between the species are already accounted for within the signal-processing framework. Thus, there is no need to explicitly adjust the model parameters for bandwidth variations, as these effects emerge from the applied method.

      Also, the authors did not mention incorporating/correcting for/exploiting Doppler, which leads me to assume they did not model it.

      The reviewer is correct. To maintain model simplicity, we did not incorporate the Doppler effect or its impact on echolocation. The exclusion of Doppler effects was based on the assumption that while Doppler shifts can influence frequency perception, their impact on jamming and overall navigation performance is minor within the modelled context.

      The maximal Doppler shifts expected for the bats in this scenario are of ~ 1kHz. These shifts would be applied variably across signals due to the semi-random relative velocities between bats, leading to a mixed effect on frequency changes. This variability would likely result in an overall reduction in jamming rather than exacerbating it, aligning with our previous statement that our model may overestimate the severity of acoustic interference. Such Doppler shifts would result in errors of 2-4 cm in localization (i.e., 200-400 micro-seconds) (Boonman, Parsons and Jones, 2003).

      We have now explicitly highlighted this in the revised version (see 548-581).

      The success of the simulation may very well be due to variation in the calls of the bats, which ironically enough demonstrates the importance of a jamming avoidance response in dense flight. This explains why the performance of the simulation falls when bats are not able to distinguish their own echoes from other signals. For example, in Figure C2, there are calls that are labeled as conspecific calls and have markedly shorter durations and wider bandwidths than others. These three phases for call types used by the authors may be responsible for some (or most) of the performance of the model since the correlation between different call types is unlikely to exceed the detection threshold. But it turns out this variation in and of itself is what a jamming avoidance response may consist of. So, in essence, the authors are incorporating a jamming avoidance response into their simulation. 

      We fully agree that the natural variations in call design between the phases contribute significantly to interference reduction (see our discussion in a previous paper in Mazar & Yovel, 2020). However, we emphasize that this cannot be classified as a Jamming Avoidance Response (JAR). In our model, bats respond only to the physical presence of objects and not to the acoustic environment or interference itself. There is no active or adaptive adjustment of call design to minimize jamming beyond the natural phase-dependent variations in call structure. Therefore, while variation in call types does inherently reduce interference, this effect emerges passively from the modeled behavior rather than as an intentional strategy to avoid jamming. 

      The authors claim that integration over multiple pings (though I was not able to determine the specifics of this integration algorithm) reduces the masking problem. Indeed, it should: if you have two chances at detection, you've effectively increased your SNR by 3dB.  

      The reviewer is correct. Indeed, integration over multiple calls improves signal-tonoise ratio (SNR), effectively increasing it by approximately 3 dB per doubling of observations. The specifics of the integration algorithm are detailed in the Methods section, where we describe how sensory information is aggregated across multiple time steps to enhance detection reliability.

      They also claim - although it is almost an afterthought - that integration dramatically reduces the degradation caused by false echoes. This also makes sense: from one ping to the next, the bat's own echo delays will correlate extremely well with the bat's flight path. Echo delays due to conspecifics will jump around kind of randomly. However, the main concern is regarding the time interval and number of pings of the integration, especially in the context of the bat's flight speed. The authors say that a 1s integration interval (5-10 pings) dramatically reduces jamming probability and echo confusion. This number of pings isn't very high, and it occurs over a time interval during which the bat has moved 5-10m. This distance is large compared to the 0.4m distance-to-obstacle that triggers an evasive maneuver from the bat, so integration should produce a latency in navigation that significantly hinders the ability to avoid obstacles. Can the authors provide statistics that describe this latency, and discussion about why it doesn't seem to be a problem? 

      As described in the Methods section, the bat’s collision avoidance response does not solely rely on the integration process. Instead, the model incorporates real-time echoes from the last calls, which are used independently of the integration process for immediate obstacle avoidance maneuvers. This ensures that bats can react to nearby obstacles without being hindered by the integration latency. The slower integration on the other hand is used for clustering, outlier removal and estimation wall directions to support the pathfinding process, as illustrated in Supplementary Figure 1.

      Additionally, our model assumes that bats store the physical positions of echoes in an allocentric coordinate system (x-y). The integration occurs after transforming these detections from a local relative reference frame to a global spatial representation. This allows for stable environmental mapping while maintaining responsiveness to immediate changes in the bat’s surroundings.

      See lines 600-616 in the revised version.

      The authors are using a 2D simulation, but this very much simplifies the challenge of a 3D navigation task, and there is an explanation as to why this is appropriate. Bat densities and bat behavior are discussed per unit area when realistically it should be per unit volume. In fact, the authors reference studies to justify the densities used in the simulation, but these studies were done in a 3D world. If the authors have justification for why it is realistic to model a 3D world in a 2D simulation, I encourage them to provide references justifying this approach. 

      We acknowledge that this is a simplification; however, from an echolocation perspective, a 2D framework represents a worst-case scenario in terms of bat densities and maneuverability:

      • Higher Effective Density: A 2D model forces all bats into a single plane rather than distributing them through a 3D volume, increasing the likelihood of overlap in calls and echoes and making jamming more severe. As described in the text: the average distance to the nearest bat in our simulation is 0.27m (with 100 bats), whereas reported distances in very dense colonies are 0.5m (Fujioka et al., 2021), as observed in Myotis grisescens (Sabol and Hudson, 1995) and Tadarida brasiliensis (Theriault et al., no date; Betke et al., 2008; Gillam et al., 2010)

      • Reduced Maneuverability: In 3D space, bats can use vertical movement to avoid obstacles and conspecifics. A 2D constraint eliminates this degree of freedom, increasing collision risk and limiting escape options.

      Thus, our 2D model provides a conservative difficult test case, ensuring that our findings are valid under conditions where jamming and collision risks are maximized. Additionally, the 2D framework is computationally efficient, allowing us to perform multiple simulation runs to explore a broad parameter space and systematically test the impact of different variables.

      To address the reviewer’s concern, we have clarified this justification in the revised text and will provide supporting references where applicable (see Methods lines 450455).

      The focus on "masking" (which appears to be just in-band noise), especially relative to the problem of misassigned echoes, is concerning. If the bat calls are all the same waveform (downsweep linear FM of some duration, I assume - it's not clear from the text), false echoes would be a major problem. Masking, as the authors define it, just reduces SNR. This reduction is something like sqrt(N), where N is the number of conspecifics whose echoes are audible to the bat, so this allows the detection threshold to be set lower, increasing the probability that a bat's echo will exceed a detection threshold. False echoes present a very different problem. They do not reduce SNR per se, but rather they cause spurious threshold excursions (N of them!) that the bat cannot help but interpret as obstacle detection. I would argue that in dense groups the mis-assignment problem is much more important than the SNR problem. 

      There is substantial literature supporting the assumption that bats can recognize their own echoes and distinguish them from conspecific signals (Schnitzler, Bioscience and 2001, no date; Kazial, Burnett and Masters, 2001; Burnett and Masters, 2002; Kazial, Kenny and Burnett, 2008; Chili, Xian and Moss, 2009; Yovel et al., 2009; Beetz and Hechavarría, 2022)). However, we acknowledge that false echoes may present a major challenge in dense groups. To address this, we explicitly tested the impact of the self-echo identification assumption in our study see Results Figure 1: The impact of confusion on performance, and lines 399-404 in the Discussion.

      Furthermore, we examined a full confusion scenario, where all reflected echoes from conspecifics were misinterpreted as obstacle reflections (i.e., 100% confusion). Our results show that this significantly degrades navigation performance, supporting the argument that echo misassignment is a critical issue. However, we also explored a simple mitigation strategy based on temporal integration with outlier rejection, which provided some improvement in performance. This suggests that real bats may possess additional mechanisms to enhance self-echo identification and reduce false detections. See lines 411-420 in the manuscript for further discussion. 

      We actually used logarithmically frequency modulated (FM) chirps, generated using the MATLAB built-in function chirp(t, f0, t1, f1, 'logarithmic'). This method aligns with the nonlinear FM characteristics of Pipistrellus kuhlii (PK) and Rhinopoma microphyllum (RM) and provides a realistic approximation of their echolocation signals. We acknowledge that this was not sufficiently emphasized in the original text, and we have now explicitly highlighted this in the revised version to ensure clarity (see Lines 509-512 in Methods).

      The criteria set for flight behavior (lines 393-406) are not justified with any empirical evidence of the flight behavior of wild bats in collective flight. How did the authors determine the avoidance distances? Also, what is the justification for the time limit of 15 seconds to emerge from the opening? Instead of an exit probability, why not instead use a time criterion, similar to "How long does it take X% of bats to exit?"  :

      While we acknowledge that wild bats may employ more complex behaviors for collision avoidance, we chose to implement a simplified decision-making rule in our model to maintain computational tractability.

      The avoidance distances (1.5 m from walls and 0.4 m from other bats) were selected as internal parameters to support stable and realistic flight trajectories while maintaining a reasonable collision rate. These values reflect a trade-off between maneuverability and behavioral coherence under crowding. To address this point, we added a sensitivity analysis to the revised manuscript. Specifically, we tested the effect of varying the conspecific avoidance distance from 0.2 to 1.6 meters at bat densities of 2 to 40 bats/3m². The only statistically significant impact was at the highest density (40 bats/3m²), where exit probability increased slightly from 82% to 88% (p = 0.024, t = 2.25, DF = 958). No significant changes were observed in exit time, collision rate, or jamming probability across other densities or conditions (GLM, see revised Methods). These results suggest that the selected avoidance distances are robust and not a major driver of model performance, see lines 469-47.

      The 15-second exit limit was determined as described in the text (Lines 489-491): “A 15-second window was chosen because it is approximately twice the average exit time for 40 bats and allows for a second corrective maneuver if needed.” In other words, it allowed each bat to circle the ‘cave’ twice to exit even in the most crowded environment. This threshold was set to keep simulation time reasonable while allowing sufficient time for most bats to exit successfully.

      We acknowledge that the alternative approach suggested by the reviewer— measuring the time taken for a certain percentage of bats to exit—is also valid. However, in our model, some outlier bats fail to exit and continue flying for many minutes, such simulations would lead to excessive simulation times making it difficult to generate repetitions and not teaching us much – they usually resulted from the bat slightly missing the opening (see video S1. Our chosen approach ensures practical runtime constraints while still capturing relevant performance metrics.

      What is the empirical justification for the 1-10 calls used for integration?  

      The "average exit time for 40 bats" is also confusing and not well explained. Was this determined empirically? From the simulation? If the latter, what are the conditions?

      Does it include masking, no masking, or which species? 

      Previous studies have demonstrated that bats integrate acoustic information received sequentially over several echolocation calls (2-15), effectively constructing an auditory scene in complex environments (Ulanovsky and Moss, 2008; Chili, Xian and Moss, 2009; Moss and Surlykke, 2010; Yovel and Ulanovsky, 2017; Salles, Diebold and Moss, 2020). Additionally, bats are known to produce echolocation sound groups when spatiotemporal localization demands are high (Kothari et al., 2014). Studies have documented call sequences ranging from 2 to 15 grouped calls (Moss and Surlykke, 2010), and it has been hypothesized that grouping facilitates echo segregation.

      We did not use a single integration window - we tested integration sizes between 1 and 10 calls and presented the results in Figure 3A. This range was chosen based on prior empirical findings and to explore how different levels of temporal aggregation impact navigation performance. Indeed, the results showed that the performance levels between 5-10 calls integration window (Figure 3A)

      Regarding the average exit time for 40 bats, this value was determined from our simulations, where it represents the mean time for successful exits under standard conditions with masking. We have revised the text to clarify these details see, lines 489-491.

      Reviewer #1 (Recommendations for the authors):

      (1) Data Availability:

      As it stands now, this reviewer cannot vouch for the uploaded code as it wasn't accessible according to F.A.I.R principles. The link to the code/data points to a private company's file-hosting account that requires logging in or account creation to see its contents, and thus cannot be accessed.

      This reviewer urges the authors to consider uploading the code onto an academic data repository from the many on offer (e.g. Dryad, Zenodo, OSF). Some repositories offer an option to share a private link (e.g. Zenodo) to the folder that can then be shared only with reviewers so it is not completely public.

      This is a computational paper, and the credibility of the results is based on the code used to generate them.

      The code is available at GitHub as required:

      https://github.com/omermazar/Colony-Exit-Bat-Simulation

      (2) Abstract:

      Line 22: 'To explore whether..' - replace 'whether' with 'how'?

      The sentence was rephrased as suggested by the reviewer.

      (2) Main text:

      Line 43: '...which may share...' - correct to '...which share...', as elegantly framed in the authors' previous work - jamming avoidance is unavoidable because all FM bats of a species still share >90% of spectral bandwidth despite a few kHz shift here and there.

      The sentence was rephrased as suggested by the reviewer.

      Line 49: The authors may wish to additionally cite the work of Fawcett et al. 2015 (J. Comp. Phys A & Biology Open)

      Thank you for the suggestion. We have included a citation to the work of Fawcett et al. (2015) in the revised manuscript.

      Line 61: This statement does not match the recent state of the literature. While the previous models may have assumed that all neighbours can be detected, there are models that specifically study the role of limited interaction arising from the potential inability to track all neighbours, and the effect of responding to only one/few neighbours at a time e.g. Bode et al. 2011 R. Soc. Interface, Jhawar et al. 2020 Nature Physics.

      We have added citations to the important studies suggested by the reviewer, as detailed in the Public Review above.

      Line 89: '..took all interference signals into account...' - what is meant by 'interference signals' - are the authors referring to reflections, unclear.

      We have revised the sentence and detailed the acoustic signals involved in the process: self-generated echoes, calls from conspecifics, and echoes from cave walls and other bats evoked by those calls, see lines 99-106.

      Figure 1A: The colour scheme with overlapping points makes the figure very hard to understand what is happening. The legend has colours from subfigures B-D, adding to the confusion.

      What does the yellow colour represent? This is not clear. Also, in general, the color schemes in the simulation trajectories and the legend are not the same, creating some amount of confusion for the reader. It would be good to make the colour schemes consistent and visually separable (e.g. consp. call direct is very similar to consp. echo from consp. call), and perhaps also if possible add a higher resolution simulation visualisation. Maybe it is best to separate out the colour legends for each sub-figure.

      The updated figure now includes clearer, more visually separable colors, and consistent color coding across all sub-panels. The yellow trajectory representing the focal bat’s flight path is now explicitly labeled, and we adjusted the color mapping of acoustic signals (e.g., conspecific calls vs. echoes) to improve distinction. We also revised the figure caption accordingly and ensured that the legend is aligned with the updated visuals. These modifications aim to enhance interpretability and reduce ambiguity for the reader.

      Figure C3: What is 'FB Channel', this is not explained in the legend.

      FB Channel’ stands for ‘Filter Bank Channel’. This clarification has been added to the caption of Figure 1. 

      Figure 3: Visually noticing that the colour legend is placed only on sub-figure A is tricky and readers may be left searching for the colour legend. Maybe lay out the legend horizontally on top of the entire figure, so it stands out?

      We have adjusted the placement of the color legend in Figure 3 to improve visibility and consistency.

      Line 141: '..the probability of exiting..' - how is this probability calculated - not clear.

      We have clarified in the revised text that the probability of exiting the cave within 15 seconds is defined as the number of bats that exited the cave within that time divided by the total number of bats in each scenario, see lines 159160.

      Line 142: What are the sample sizes here - i.e. how many simulation replicates were performed?

      We have clarified the number of repetitions in each scenario the revised text, as detailed in the Public Review above.

      Line 151: 'The jamming probability,...number of jammed echoes divided by the total number of reflected echoes' - it seems like these are referring to 'own' echoes or first-order reflections, it is important to clarify this.

      The reviewer is right. We have clarified it in the revised text, see lines 173175.

      Line 153: '..with a maximum difference of ...' - how is this difference calculated? What two quantities are being compared - not clear.

      We have revised the text to clarify that the 14.3% value reflects the maximum difference in jamming probability between the RM and PK models, which occurred at a density of 10 bats. The values at each density are shown in Figure 2D, see lines 175-177.

      Line 221: '..temporal aggregation helps..' - I'm assuming the authors meant temporal integration? However, I would caution against using the exact term 'temporal integration' as it is used in the field of audition to mean something different. Perhaps something like 'sensory integration' , or 'multi-call integration'

      To avoid ambiguity and better reflect the process modeled in our work, we have replaced the term "temporal aggregation" with "multi-call integration" throughout the revised manuscript. This term more accurately conveys the idea of combining information from multiple echolocation calls without conflicting with existing terminology.

      (4) Discussion

      Lines 302: 'Our model suggests...increasing the call-rate..' - not clear where this is explicitly tested or referred to in this manuscript. Can't see what was done to measure/quantify the effect of this variable in the Methods or anywhere else.

      We have rephrased this paragraph as detailed in the Public Review above, see lines 346-349.

      Line 319: 'spatial interference' - unclear what this means. This reviewer would strongly caution against creating new terms unless there is an absolute need for it. What is meant by 'interference' in this paper is hard to assess given that the word seems to be used as a synonym for jamming and also for actual physical wave-based interference.

      We have rephrased this paragraph as detailed in the Public Review above, see line 119-120, 366-367.

      Line 323: '..no benefit beyond a certain level...' - also not clear where this is explicitly tested. It seems like there was a set of simulations run for a variety of parameters but this is not written anywhere explicitly. What type of parameter search was done, was it all possible parameter combinations - or only a subset? This is not clear.

      We have rephrased this paragraph as detailed in the Public Review above, see lines 372-375.

      Line 324: '..ca. 110 dB-SPL.' - what reference distance?

      All call levels were simulated and reported in dB-SPL, referenced at 0.1 meters from the emitting bat. We have clarified it in the revised text in the relevant contexts and specifically in line 529.

      (5) Methods

      Line 389 : '...over a 2 x 1.5 m2 area..' It took a while to understand this statement and put it in context. Since there is no previous description of the entire L-arena, the reviewer took it to mean the simulations happened over the space of a 2 x 1.5 m2 area. Include a top-down description of the simulation's spatial setup and rephrase this sentence.

      To address the confusion, we revised the text to clarify that the full simulation environment represents a corridor-shaped cave measuring 14.5 × 2.5 meters, with a right-angle turn located 5.5 meters before the exit, as shown in Figure 1A. The 2 × 1.5 m area refers specifically to the small zone at the far end of the cave where bats begin their flight. The revised description now includes a clearer spatial overview to prevent ambiguity, see lines 456-460.

      Line 398: Replace 'High proximity' with 'Close proximity'

      Replaced.

      Line 427: 'uniform target strength of -23 dB' - at what distance is this target strength defined? Given the reference distance can vary by echolocation convention (0.1 or 1 m), one can't assess if this is a reasonable value or not.

      The reference distance for the reported target strength is 1 meter, in line with standard acoustic conventions. We have revised the text to clarify this explicitly (line 531).

      Also, independent of the reference distance, particularly with reference to bats, the target strength is geometry-dependent, based on whether the wings are open or not. Using the entire wingspan of a bat to parametrise the target strength is an overestimate of the available reflective area. The effective reflective area is likely to be somewhere closer to the surface area of the body and a fraction of the wingspan together. This is important to note and/or mention explicitly since the value is not experimentally parametrised.

      For comparison, experimentally based measurements used in Goetze et al. 2016 are -40 dB (presumably at 1 m since the source level is also defined at 1 m?), and Beleyur & Goerlitz 2019 show a range between -43 to -34 dB at 1 m.

      We agree with the reviewer that target strength in bats is strongly influenced by their geometry, particularly wing posture during flight. In our model, we simplified this aspect by using a constant target strength, as the detailed temporal variation in body and wing geometry is pseudo-random and not explicitly modeled. We acknowledge that this is a simplification, and have now stated this limitation clearly in the revised manuscript. We chose a fixed value of –23 dB at 1 meter to reflect a plausible mid-range estimate, informed by anatomical data and consistent with values reported for similarly sized species (Beleyur and Goerlitz, 2019). To support this, we directly measured the target strength of a 3D-printed RM bat model, obtaining –32dB. 

      Moreover, a sensitivity analysis across a wide range (–49 to –23 dB) confirmed that performance metrics remain largely stable, indicating that our conclusions are not sensitive to this parameter, and suggesting that our results hold for different-sized bats. See lines 384-390, 533-538, and Supplementary Figures 3 and 4 in the revised article. 

      Line 434: 'To model the bat's cochlea...'. Bats have two cochleas. This model only describes one, while the agents are also endowed with the ability to detect sound direction - which requires two ears/cochleas.... There is missing information about the steps in between that needs to be provided.

      We appreciate the reviewer’s observation. Indeed, our model is monaural, and simulates detection using a single cochlear-like filter bank receiver. We have clarified this in the revised text to avoid confusion. This paragraph specifically describes the detection stage of the auditory processing pipeline. The localization process, which builds on detection and includes directional estimation, is described in the following paragraph (see line 583 onward), as discussed in the next comment and response.

      Line 457: 'After detection, the bat estimates the range and Direction of Arrival...' This paragraph describes the overall idea, but not the implementation. What were the inputs and outputs for the range and DOA calculation performed by the agent? Or was this information 'fed' in by the simulation framework? If there was no explicit DOA step that the agent performed, but it was assumed that agents can detect DOA, then this needs to be stated.

      In the current simulation, the Direction of Arrival (DOA) was not modeled via an explicit binaural processing mechanism. Instead, based on experimental studies (Simmons et al., 1983; Popper and Fay, 1995).  we assumed that bats can estimate the direction of an echo with an angular error that depends on the signal-to-noise ratio (SNR). Accordingly, the inputs to the DOA estimation were the peak level of the desired echo, noise level, and the level of acoustic interference. The output was an estimated direction of arrival that included a random angular error, drawn from a normal distribution whose standard deviation varied with the SNR. We have revised the relevant paragraph (Lines 583-592) to clarify this implementation.

      Line 464: 'To evaluate the impact of the assumption...' - the 'self' and 'non-self' echoes can be distinguished perhaps using pragmatic time-delay cues, but also using spectro-temporal differences in individual calls/echoes. Do the agents have individual call structures, or do all the agents have the same call 'shape'? The echolocation parameters for the two modelled species are given, but whether there is call parameter variation implemented in the agents is not mentioned.

      In our relatively simple model, all individuals emit the same type of chirp call, with parameters adapted only based on the distance to the nearest detected object. However, individual variation is introduced by assigning each bat a terminal frequency drawn from a normal distribution with a standard deviation of 1 kHz, as described in the revised version -lines 519-520. This small variation is not used explicitly as a spectro-temporal cue for echo discrimination.

      In our model, all spectro-temporal variations—whether due to call structure or variations resulting from overlapping echoes from nearby reflectors—are processed through the filter bank, which compares the received echoes to the transmitted call during the detection stage. As such, the detection process itself can act as a discriminative filter, to some extent, based on similarity to the emitted call.

      We acknowledge that real bats likely rely on a variety of spectro-temporal features for distinguishing self from non-self-echoes—such as call duration, received level, multi-harmonic structure, or amplitude modulation. In our simulation, we focus on comparing two limiting conditions: full recognition of self-generated echoes versus full confusion. Implementing a more nuanced self-recognition mechanism based on temporal or spectral cues would be a valuable extension for future work.

      (6) References

      Reference 22: Formatting error - and extra '4' in the reference.

      The error has been fixed.

      (7) Thoughts/comments

      Even without 'recogntion' of walls & conspecifics, bats may be able to avoid obstacles - this is a neat result. Also, using their framework the authors show that successful 'blind' object-agnostic obstacle avoidance can occur only when supported by some sort of memory. In some sense, this is a nice intermediate step showing the role of memory in bat navigation. We know that bats have good long-term and long-spatial scale memory, and here the authors show that short-term spatial memory is important in situations where immediate sensory information is unreliable or unavailable.

      We appreciate the reviewer’s thoughtful summary. Indeed, one of the main takeaways of our study is that successful obstacle avoidance can occur even without explicit recognition of walls or conspecifics—provided that a clustered multi-call integration is in place. Our model shows that when immediate sensory information is unreliable, integrating detections over time becomes essential for effective navigation. This supports the broader view that memory, even on short timescales, plays an important role in bat behavior.

      (8) Reporting GLM results

      The p-value, t-statistic, and degrees of freedom are reported consistently across multiple GLM results. However, the most important part which is the effect size is not consistently reported - and this needs to be included in all results, and even in the table. The effect size provides an indicator of the parameter's magnitude, and thus scientific context.

      We agree that the effect size provides essential scientific context. In fact, we already include the effect size explicitly in Table 1, as shown in the “Effect Size” column for each tested parameter. These values describe the magnitude of each parameter’s effect on exit probability, jamming probability, and collision rate. In the main text, effect sizes are presented as concrete changes in performance metrics (e.g., “exit probability increased from 20% to 87%,” or “with a decrease of 3.5%±8% to 5.5%±5% (mean ± s.e.)”), which we believe improves interpretability and scientific relevance.  

      To further clarify this in the main text, we have reviewed the reported results and ensured that effect sizes are mentioned more consistently wherever GLM outcomes are discussed. Additionally, we have added a brief note in the table caption to emphasize that effect sizes are provided for all tested parameters.

      The 'tStat' appears multiple times and seems to be the output of the MATLAB GLM function. This acronym is specific to the MATLAB implementation and needs to be replaced with a conventionally used acronym such as 't', or the full form 't-statistic' too. This step is to keep the results independent of the programming language used.

      We have replaced all instances of tStat with the more conventional term ‘t’ throughout the manuscript to maintain consistency with standard reporting practices.

      Reviewer #2 (Recommendations for the authors):

      In addition to my public review, I had a few minor points that the authors may want to consider when revising their paper.

      (1) Figures 2, 3, and 4 may benefit from using different marker styles, in addition to different colors, to show the different cases.

      Thank you for the suggestion. In Figures 2–4, the markers represent means with standard error bars. To maintain clarity and consistency across all conditions, we have chosen to keep a standardized marker style – and we clarify this in the legend. We found that varying only the colors is sufficient for distinguishing between conditions without introducing visual clutter.

      (2) The text "PK" in the inset for Figure 2A is very difficult to read. I would suggest using grey as with "RM" in the other inset.

      We have updated the insert in Figure 2A to improve legibility.

      (3) Are the error bars in Figure 3 very small? I wasn't able to see them. If that is the case, the authors may want to mention this in the caption.

      You are correct—the error bars are present in all plots but appear very small due to the large number of simulation repetitions and low variability. We have revised the caption to explicitly mention this.

      (4) The species name of PK is spelled inconsistently (kuhli, khulli, and kuhlii).

      We have corrected the species name throughout the manuscript.

      (5) Table 1 is a great condensation of all the results, but the time to exit is missing. It may be helpful if summary statistics on that were here as well.

      We have added time-to-exit to the effect size column in Table 1, alongside the other performance metrics, to provide a more complete summary of the simulation results.

      (6) I may have missed it, but why are there two values for the exit probability when nominal flight speed is varied?

      The exit probability was not monotonic with flight speed, but rather showed a parabolic trend with a clear optimum. Therefore, we reported two values representing the effect before and after the peak. We have clarified this in the revised table and updated the caption accordingly.

      (7) Table 2 has an extra header after the page break on page 18.

      The extra header in Table 2 after the page break has been removed in the revised manuscript.

      (8) The G functions have 2 arguments in their definitions and Equation 1, but only one argument in Equations 2 and 3. I wasn't able to see why.

      Thank you for pointing this out. You are correct—this was a typographical error. We have corrected the argument notation in Equations 2 and 3 and explicitly included the frequency dependence of the gain (G) functions in both equations.

      (9) D_txrx was not defined but it was used in Equation 2.

      The variable D_txrx is defined in the equation notation section as: D<sub>₍ₜₓ</sub>r<sub>ₓ</sub> – the distance [m] between the transmitting conspecific and the receiving focal bat, from the transmitter’s perspective. We have now ensured that this definition is clearly linked to Equation 2 in the revised text. Moreover, we have added a supplementary figure that illustrates the geometric configuration defined by the equations to further support clarity, as described in the Public Review above.

      (10) It was hard for me to understand what was meant by phi_rx and phi_tx. These were described as angles between the rx or tx bats and the target, but I couldn't tell what the point defining the angle was. Perhaps a diagram would help, or more precise definitions.

      We have revised the caption to provide clearer and more precise definitions Additionally, we have included a geometric diagram as a supplementary figure, as noted in the Public Review above, to visually clarify the spatial relationships and angle definitions used in the equations, see lines 498-499.

      (11) Was the hearing threshold the same for both species?

      Yes. We have clarified it in the revised version.

      (12) Collision avoidance is described as turning to the "opposite direction" in the supplemental figure explaining the model. Is this 90 degrees or 180 degrees? If 90 degrees, how do these turns decide between right and left?

      In our model, the bat does not perform a fixed 90° or 180° turn. Instead, the avoidance behavior is implemented by setting the maximum angular velocity in the direction opposite to the detected echo. For example, if the obstacle or conspecific is detected on the bat’s right side, the bat begins turning left, and vice versa.

      This turning direction is re-evaluated at each decision step, which occurs after every echolocation pulse. The bat continues turning in the same direction if the obstacle remains in front, otherwise it resumes regular pathfinding. We have clarified this behavior in the updated figure caption and model description, see lines 478-493.

      Reviewer #3 (Recommendations for the authors):

      (1) Lines 27-31: These sentences mischaracterize the results. This claim appears to equate "the model works" with "this is what bats actually do." Also, the model does not indicate that bats' echolocation strategies are robust enough to mitigate the effects of jamming - this is self-evident from the fact that bats navigate successfully via echolocation in dense groups.

      Thank you for the comment. Our aim was not to claim that the model confirms actual bat behavior, but rather to demonstrate that simple and biologically plausible strategies—such as signal redundancy and basic pathfinding—are sufficient to explain how bats might cope with acoustic interference in dense settings. We have revised the wording to better reflect this goal and to avoid overinterpreting the model's implications.

      See abstract in the revised version.  

      (2) Line 37: This number underestimates the number of bats that form some of the largest aggregations of individuals worldwide - the free-tailed bats can form aggregations exceeding several million bats.

      We have revised the text to reflect that some bat species, such as free-tailed bats, are known to form colonies of several million individuals, which exceed the typical range. The updated sentence accounts for these extreme cases, see lines 36-37.

      (3) The flight densities explained in the introduction and chosen references are not representative of the literature - without providing additional justification for the chosen species, it can be interpreted that the selection of the species for the simulation is somewhat arbitrary. If the goal is to model dense emergence flight, why not use a species that has been studied in terms of acoustic and flight behavior during dense emergence flights---such as Tadarida brasiliensis?

      Our goal was to develop a general model applicable to a broad class of FMecholocating bat species. The two species we selected—Pipistrellus kuhlii (PK) and Rhinopoma microphyllum (RM)—span a wide range of signal characteristics: from wideband (PK) to narrowband (RM), providing a representative contrast in call structure. 

      Although we did not include Tadarida brasiliensis (TB) specifically, its echolocation calls are acoustically similar to RM in terminal frequency and fall between PK and RM in bandwidth. Therefore, we believe our findings are likely to generalize to TB and other FM-bats.

      Moreover, as noted in a previous response, the average inter-bat distance in our highest-density simulations (0.27 m) is still smaller than those reported for Tadarida brasiliensis during dense emergences—further supporting the relevance of our model to such scenarios.

      To support broader applicability, we also provide a supplementary graphical user interface (GUI) that allows users to modify key echolocation parameters and explore their impact on behavior—making the framework adaptable to additional species, including TB.

      (4) Line 78: It is not clear how (or even if) the simulated bats estimate the direction of obstacles. The explanation given in lines 457-463 is quite confusing. What is the acoustic/neurological mechanism that enables this direction estimation? If there is some mechanism (such as binaural processing), how does this extrapolate to 3D?

      This comment echoes a similar concern raised by a previous reviewer. As explained earlier, in the current simulation, the Direction of Arrival (DOA) was not modeled via an explicit binaural processing mechanism. The complete  is detailed in  to Reviewer #1, Line 457. This implementation is now clarified in the revised text, and a detailed description of the localization process is also provided in the Methods section (lines 583-592).

      (5) The authors propose they are modeling the dynamic echolocation of bats in the simulation (line 79), but it appears (whether this is due to a lack of information in the manuscript or true lack in the simulation) that the authors only modeled a flight response. How did the authors account for bats dynamically changing their echolocation? This is unclear and from what I can tell may just mean that the bats can switch between foraging phase call types depending on the distance to a detected obstacle. Can the authors elaborate more on this?

      The echolocation behavior of the bats—including dynamic call adjustments— was implemented in the simulation and is described in detail in the Methods section (lines 498-520 and Table 2). To avoid redundancy, the Results chapter originally referred to this section, but we have now added a brief explanation in the Results to clarify that the bats’ call parameters (IPI, duration, and frequency range) adapt based on the distance to detected objects, following empirically documented echolocation phases ("search," "approach," "buzz"). These dynamics are consistent with established bat behavior during navigation in cluttered environments such as caves.

      (6) Figure 1 C3: "Detection threshold": what is this and how was it derived?

      The caption also mentions yellow arrows, but they are absent from the figure. C4: Each threshold excursion is marked with an asterisk, but there are many more excursions than asterisks. Why are only some marked? Unclear.

      C3: The detection threshold is determined dynamically. It is set to the greater of either 7 dB above the noise level (0 dB-SPL)(Kick, 1982; Saillant et al., 1993; Sanderson et al., 2003; Boonman et al., 2013) or the maximal received level minus 70 dB, effectively applying a dynamic range of 70 dB. This clarification has been added to the Methods section. The yellow arrow has been added.

      C4: Thank you for this important observation. Only peaks marked with asterisks represent successful detections—those that were identified in both the interference-free and full detection conditions, as explained in the Methods. Other visible peaks result from masking signals or overlapping echoes from nearby reflectors, but they do not meet the detection criteria. To keep the figure caption concise, we have elaborated on this process more clearly in the revised Methods section. We added this information to the legend

      (7) Figure 2: A line indicating RM, No Masking is absent

      Thank you for pointing this out. The missing line for RM, No Masking has now been added in the revised version of Figure 2.

      (8) Line 121: "reflected off conspecifics". Does this mean echoes due to conspecifics?

      The phrase "reflected off conspecifics" refers to echoes originating from the bat’s own call and reflected off the bodies of nearby conspecifics. We have clarified the wording in the revised text to avoid confusion

      (9) Line 125: Why are low-frequency channels stimulated by higher frequencies? This needs further clarification.

      The cochlear filter bank in our model is implemented using gammatone filters, each modeled as an 8th-order Butterworth filter. Due to the non-ideal filter response and relatively broad bandwidths—especially in the lower-frequency channels—strong energy from the beginning of the downward FM chirp (at higher frequencies) can still produce residual activation in lower-frequency channels. While these stimulations are usually below the detection threshold, they may still be visible as early sub-threshold responses. Given the technical nature of this explanation (a property of the filter implementation) and it does not influence the detection outcomes, we have chosen not to elaborate on it in the figure caption or Methods.

      (10) Lines 146-150: This is an interesting finding. Is there a theoretical justification for it?

      This outcome arises directly from the simulation results. As noted in the Discussion (lines 359-365), although Pipistrellus kuhlii (PK) shows a modest advantage in jamming resistance due to its broader bandwidth, the redundancy in sensory information across calls—enabled by frequent echolocation—appears to compensate for these signal differences. As a result, the small variations in echo quality between species do not translate into significant differences in performance. We speculate that if the difference in jamming probability had been larger, performance disparities would likely have emerged.

      (11) Line 151: The authors define a jammed echo as an echo entirely missed due to masking. Is this appropriate? Doesn't echo mis-assignment also constitute jamming?

      We agree that echo mis-assignment can also degrade performance; however, in our model, we distinguish between two outcomes: (1) complete masking (echo not detected), and (2) detection with a localization error. As explained in the Methods (lines 500–507), we run the detection analysis twice—once with only desired echoes (“interference-free detection”) and once including masking signals (“full detection”). If a previously detected echo is no longer detected, it is classified as a jammed echo. If the echo is still detected but the delay shifts by more than 100 µs compared to the interference-free condition, it is also considered jammed. If the delay shift is smaller, it is treated as a detection with localization error rather than full jamming. We have clarified this distinction in the revised Methods section.

      (12) Figure 2-E: Detection probability statistics are of limited usefulness without accompanying false alarm rate (FAR) statistics. Do the authors have FAR numbers?

      We understand FAR to refer to instances where masking signals or other acoustic phenomena are mistakenly interpreted as real echoes from physical objects. As explained in the manuscript, we implemented two model versions: one without confusion, and one with full confusion.

      Figure 2E reports detection performance under the non-confusion model, in which only echoes from actual physical reflectors are used, and no false detections occur—hence, the false alarm rate is effectively zero in this condition. In the full-confusion model, all detected echoes—including those originating from masking signals or conspecific calls—are treated as valid detections, which may include false alarms. However, we did not explicitly quantify the false alarm rate as a separate metric in this simulation.

      We agree that tracking FAR could be informative and will consider incorporating it into future versions of the model.

      (13) Line 161: RM bats suffered from a significantly higher probability of the "desired conspecific's echoes" being jammed. What does "desired conspecific's echoes" mean? This is unclear.

      The term “desired conspecific's echoes” refers to echoes originating from the bat’s own call, reflected off nearby conspecifics, which are treated as relevant reflectors for collision avoidance. We have revised the wording in the text for clarity.

      (14) Line 188: Why didn't the size of the integration window affect jamming probability? I couldn't find this explained in the discussion.

      The jamming probability in our analysis is computed at the individual-echo level, prior to any temporal integration. Since the integration window is applied after the detection step, it does not influence whether a specific echo is masked (i.e., jammed) or not. Therefore, as expected, we did not observe a significant effect of integration window size on jamming probability.

      (15) Line 217-218: Why do the authors think this would be?

      Thank you for the thoughtful question. We agree that, in theory, increasing call intensity should raise the levels of both desired echoes and masking signals proportionally. However, in our model, the environmental noise floor and detection threshold remain constant, meaning that higher call intensities increase the signal-to-noise ratio (SNR) more effectively for weaker echoes, especially those at longer distances or with low reflectivity. This could lead to a higher likelihood of those echoes crossing the detection threshold, resulting in a small but measurable reduction in jamming probability.

      Additionally, the non-linear behavior of the filter-bank receiver—including such as thresholding at multiple stages—can introduce asymmetries in how increased signal levels affect the detection of target versus masking signals.

      That said, the effect size was small, and the improvement in jamming probability did not translate into any significant gain in behavioral performance (e.g., exit probability or collision rate), as shown in Figure 3C.

      (16) Line 233: I'm not sure I understand how a slightly improved aggregation model that clustered detected reflectors over one-second periods is different. Doesn't this just lead to on average more calls integrated into memory?

      While increasing the memory duration does lead to more detections being available, the enhanced aggregation model (we now refer to as multi-call clustering) differs fundamentally from the simpler one. As detailed in the Methods, it includes additional processing steps: clustering spatially close detections, removing outliers, and estimating wall directions based on the spatial structure of clustered echoes. In contrast, the simpler model treats each detection as an isolated point without estimating obstacle orientation. These additional steps allow for more robust environmental interpretation and significantly improve performance under high-confusion conditions. We have clarified it in revised text (lines 606-616) and added a Supplementary Figure 2B.

      (17) Table 1: What about conspecific target strength?

      We have now added the conspecific target strength as a tested parameter in Table 1, along with its tested range, default value, and measured effect sizes. A detailed sensitivity analysis is also presented in Supplementary Figure 4, demonstrating that variations in conspecific target strength had relatively minor effects on performance metrics.  

      (18) Figure 3-A: The x-axis is the number of calls in the integration window. But the leftmost sample on each curve is at 0 calls. Shouldn't this be 1?

      “0 calls” refers to the case where only the most recent call is used for pathfinding—without integrating any information from prior calls. The x-axis reflects the number of previous calls stored in memory, so a value of 0 still includes the current call. We’ve clarified this terminology in the figure caption.

      (19) Lines 282-283: This statement needs to be clarified that it is with the constraints of using a 2D simulation with at most 33 bats/m^2. It also should be clarified that it is assumed the bat can reliably distinguish between its own echoes and conspecific echoes, which is a very important caveat.

      We have revised the text to clarify that the results are based on a 2D simulation with a maximum tested density of 33 bats/m². We also now explicitly state that the model assumes bats can distinguish between their own echoes and those generated by conspecifics—an assumption we recognize as a simplification. These clarifications help place the results within the scope and constraints of the simulation. Moreover, as described in the text (and noted in previous response): the average distance to the nearest bat in our simulation is 0.27m (with 100 bats), whereas reported distances in very dense colonies are 0.5m

      (20) Line 294: What is this sentence referring to?

      The sentence refers to the finding that, even under high bat densities, a substantial portion of the echoes—particularly those reflected from nearby obstacles (e.g., 1 m away)—were jammed due to masking. Nevertheless, the bats in the simulation were still able to navigate successfully using partial sensory input. We have clarified the sentence in the revised text to make this point more explicit, see line 333-336.

      (21) Line 302: Was jamming less likely when IPI was higher or lower? I could not find this demonstrated anywhere in the manuscript.

      We agree that the original text was not sufficiently clear on this point. While we did not explicitly test fixed IPI values as a parameter, the model does simulate the natural behavior of decreasing IPI as bats approach obstacles. This behavior is supported by empirical observations and is incorporated into the echolocation dynamics of the simulation. We have clarified this point in the revised text (see Lines 346-351) and explained that while lower IPI introduces more acoustic overlap, it also increases redundancy and improves detection through temporal integration.

      (22) Lines 313-314: This is an interesting assumption, but it is not evident that is substantiated by the references.

      The claim is based on well-established principles in signal processing and bioacoustics. Wideband signals—such as those emitted by PK bats— distribute their energy over a broader frequency range, which makes them inherently more resistant to narrowband interference and masking. This concept is commonly applied in both biological and artificial sonar systems and is supported by empirical studies in bats and theory in acoustic sensing.

      For example, Beleyur & Goerlitz (2019) demonstrate that broader bandwidth calls improve detection in cluttered and jamming-prone environments. Similarly, Ulanovsky et al. (2004) and Schnitzler & Kalko (200) discuss how FM bats' wideband calls enhance temporal and spatial resolution, helping to reduce the impact of overlapping signals from conspecifics. These findings align with communication theory where spread-spectrum techniques improve robustness in noisy environments.

      We agree with the reviewer that this is an important point and we have updated the manuscript to clarify this rationale and cite the relevant literature accordingly – lines 631-363,

      (23) Lines 318-319: What is the justification for "probably"? Isn't this just a supposition?

      We agree with the reviewer’s point and have rephrased the sentence

      (24) Line 320: How does this 63% performance match the sentence in line 295?

      The sentence in Line 295 refers to the overall ability of the bats to navigate successfully despite high jamming levels, highlighting the robustness of the strategy under challenging conditions. The figure in Line 320 (63%) quantifies this performance under the most extreme simulated scenario (100 bats / 3 m²), where both spatial and acoustic interferences are maximal. We have rephrased the text in the revised version (lines 324-327).

      (25) Lines 341-345: It seems like this is more likely to be the main takeaway of the paper.

      As noted in the Public Review above, there is substantial literature supporting the assumption that bats can recognize their own echoes and distinguish them from those of conspecifics (e.g., Schnitzler, Bioscience, 2001; Kazial et al., 2001, 2008; Burnett & Masters, 2002; Chiu et al., 2009; Yovel et al., 2009; Beetz & Hechavarría, 2022). Therefore, we consider our assumption of selfrecognition to be well-supported, at least under typical conditions. That said, we agree that the impact of echo confusion on performance is significant and highlights a critical challenge in dense environments.

      To our knowledge, this is the first computational model to explicitly simulate both self-recognition and full echo confusion under high-density conditions. We believe that the combination of modeled constraints and the demonstrated robustness of simple sensorimotor strategies, even under worst-case assumptions, is what makes this contribution both novel and meaningful.

      (26) Lines 349-350: What is the aggregation model? What is meant by "integration"?

      We have revised the text to clarify that the “aggregation model” refers to a multi-call clustering process that includes clustering of detections, removal of outliers, and estimation of wall orientation, as described in detail in the revised Methods and Results sections.

      (27) Line 354: Again, why isn't this the assumption we're working under?

      As addressed in our response to Comment 25, our primary model assumes that bats can recognize their own echoes—an assumption supported by substantial empirical evidence. The alternative "full confusion" model was included to explore a worst-case scenario and highlight the behavioral consequences of failing to distinguish self from conspecific echoes. We assume that real bats may experience some degree of echo misidentification; however, our assumption of full confusion represents a worst-case scenario.

      (28) Line 382: "Under the assumption that..." I agree that bats probably can, but if we assume they can differentiate them all, where's the jamming problem?

      The assumption that bats can theoretically distinguish between different signal sources applies after successful detection. However, the jamming problem arises during the detection and localization stages, where acoustic interference can prevent echoes from crossing the detection threshold or distort their timing.

      (29) Lines 386-387: The paper referenced focused on JAR in the context of foraging. What changes were made to the simulation to switch to obstacle avoidance?

      While the simulation framework in Mazar & Yovel (2020) was developed to study jamming avoidance during foraging, the core components—such as the acoustic calculations, receiver model, and echolocation behavior—remain applicable. For the current study, we adapted the simulation extensively to address colony-exit behavior. These modifications include modeling cave walls as acoustic reflectors, implementing a pathfinding algorithm, integrating obstacle-avoidance maneuvers, and adapting the integration window and integration processes. These updates are detailed throughout the Methods section.

      (30) Line 400-402: Something doesn't add up with the statement: each decision relies on an integration window that records estimated locations of detected reflectors from the last five echolocation calls, with the parameter being tested between 1 and 10 calls. Can the authors reword this to make it less confusing?

      We have reworded the sentence to clarify that the default integration window includes five calls, while we systematically tested the effect of using 1 to 10 calls, see lines 486-487.

      (31) Line 393: "30 deg/sec" why was this value chosen?

      The turning rate of 30 deg/sec was manually selected to approximate the curvature of natural foraging flight paths observed in Rhinopoma microphyllum using on-board tags. Moreover, in Mazar & Yovel (2020), we showed that the flight dynamics of simulated bats in a closed room closely matched those of Pipistrellus kuhlii flying in a room of similar dimensions. However, in the current simulation, bats rarely follow a random-walk trajectory due to the structured environment and frequent obstacle detection. As a result, this parameter has no meaningful impact on the simulation outcomes.

      (32) Line 412: "Harmony" --- do you mean harmonic? And what is the empirical evidence that RM bats use the 2nd harmonic compared to the 1st?

      Perhaps showing a spectrogram of a real RM signal would be helpful.

      The typo-error was corrected. For reference See (Goldshtein et al., 2025)

      (33) Table 2: Something is incorrect with the table. The first row on the next page is the wrong species name. Also, where are the citations for these parameter values?

      The table header has been corrected in the revised version. The parameter values for flight and echolocation behavior were derived from existing literature and empirical data: Pipistrellus kuhlii parameters were based on Kalko (1995), and Rhinopoma microphyllum parameters were extracted from our own recordings using on-board tags, as described in Goldstein et al. (2025). We have added the appropriate citations to Table 2.

      (34) Line 442: How was the threshold level chosen?

      The detection threshold in each level is set to the greater of either 7 dB above the noise level (0 dB-SPL) or the maximal received level minus 70 dB, effectively applying a dynamic range of 70 dB.

      (35) Line 445: 100 micros: This is about 3cm. The resolution of PK is about 1cm. For RM it's about 10cm. So, this window is generous for PK, but too strict for RM.

      To keep the model simple and avoid introducing species-specific detection thresholds, we selected a biologically plausible compromise that could reasonably apply to both species. This simplification ensures consistency across simulations while remaining within the known behavioral range.

      (36) Line 448: What is the spectrum of the Gaussian noise, and did it change between PK and RM?

      We used the same white Gaussian noise with a flat spectrum across the relevant frequency range (10–80 kHz) for both species. We have clarified this in the revised text in lines 570-572.

      (37) Line 451: 4 milliseconds is 1.3m. Is this appropriate?

      The 4 milliseconds window was selected based on established auditory masking thresholds described in Mazar & Yovel (2020), and supported by (Popper and Fay, 1995) ch. 2.4.5, ((Blauert, 1997),  ch. 3.1 and (Mohl and Surlykke, 1989). These values provide conservative lower bounds on bats’ ability to cope with masking (Beleyur and Goerlitz, 2019). For simplicity, we used constant thresholds within each window, see lines 574-576.  

      (38) Line 452: Citation for the forward and backward masking durations?

      See the  to the previous comment.

      (39) Lines 460-461: This is unclear. How does the bat get directional information? The authors claim to be able to measure direction-of-arrival for each detection, but it is not clear how this is done

      As noted in our response to Reviewer 1 (Comment on Line 457), directional information is not computed via an explicit binaural model. Instead, we assume the bat estimates the direction of arrival with an angular error that depends on the SNR, based on established studies (e.g., Simmons et al., 1983; Popper & Fay, 1995). We have clarified this in the revised text in lines 583-592.

      (40) Line 467: It seems like the authors are modeling pulse-echo ambiguity, at least in this one alternative model, which is good! However the alternative model doesn't get much attention in the paper. Is there a reason for this?

      We would like to clarify that we did not model pulse-echo. In our confusion model, all echoes received within the IPI are attributed to the bat’s most recent call. This includes echoes that may in fact originate from conspecific calls, but the model does not assign self-echoes to earlier pulses or span multiple IPIs. Therefore, while the model captures echo confusion, it does not include true pulse-echo ambiguity. We have clarified this point in the revised text in lines 551-553.

      (41) Line 41: "continuous" is more appropriate than "constant".

      Thank you, we have rephrased the text accordingly.

      (42) Line 69: "band width" should be one word.

      Thank you, we have corrected it to “bandwidth”.

      (43) Line 79: "bats" should be in the possessive.

      Thank you, the text has been rephrased.

      (44) Line 128: "convoluted" don't you mean "convolved"?

      We have replaced “convoluted” with the correct term “convolved” in the revised text.

      (45) Please check your references, as there are some incomplete citations and typos.

      Thank you, we have reviewed and corrected all references for completeness and consistency.

      References

      Beetz, M.J. and Hechavarría, J.C. (2022) ‘Neural Processing of Naturalistic Echolocation Signals in Bats’, Frontiers in Neural Circuits, 16, p. 899370. Available at: https://doi.org/10.3389/FNCIR.2022.899370/BIBTEX.

      Beleyur, T. and Goerlitz, H.R. (2019) ‘Modeling active sensing reveals echo detection even in large groups of bats’, Proceedings of the National Academy of Sciences of the United States of America, 116(52), pp. 26662–26668. Available at: https://doi.org/10.1073/pnas.1821722116.

      Betke, M. et al. (2008) ‘Thermal Imaging Reveals Significantly Smaller Brazilian Free-Tailed Bat Colonies Than Previously Estimated’, Journal of Mammalogy, 89(1), pp. 18–24. Available at: https://doi.org/10.1644/07-MAMM-A-011.1.

      Blauert, J. (1997) ‘Spatial Hearing: The Psychophysics of Human Sound Localization (rev. ed.)’.

      Boerma, D.B. et al. (2019) ‘Wings as inertial appendages: How bats recover from aerial stumbles’, Journal of Experimental Biology, 222(20). Available at: https://doi.org/10.1242/JEB.204255/VIDEO-3.

      Boonman, A. et al. (2013) ‘It’s not black or white-on the range of vision and echolocation in echolocating bats’, Frontiers in Physiology, 4 SEP(September), pp. 1–12. Available at: https://doi.org/10.3389/fphys.2013.00248.

      Boonman, A.M., Parsons, S. and Jones, G. (2003) ‘The influence of flight speed on the ranging performance of bats using frequency modulated echolocation pulses’, The Journal of the Acoustical Society of America, 113(1), p. 617. Available at: https://doi.org/10.1121/1.1528175.

      Burnett, S.C. and Masters, W.M. (2002) ‘Identifying Bats Using Computerized Analysis and Artificial Neural Networks’, North American Symposium on Bat Research, 9.

      Chili, C., Xian, W. and Moss, C.F. (2009) ‘Adaptive echolocation behavior in bats for the analysis of auditory scenes’, Journal of Experimental Biology, 212(9), pp. 1392–1404. Available at: https://doi.org/10.1242/jeb.027045.

      Fujioka, E. et al. (2021) ‘Three-Dimensional Trajectory Construction and Observation of Group Behavior of Wild Bats During Cave Emergence’, Journal of Robotics and Mechatronics, 33(3), pp. 556–563. Available at: https://doi.org/10.20965/jrm.2021.p0556.

      Gillam, E.H. et al. (2010) ‘Echolocation behavior of Brazilian free-tailed bats during dense emergence flights’, Journal of Mammalogy, 91(4), pp. 967–975. Available at: https://doi.org/10.1644/09-MAMM-A-302.1.

      Goldshtein, A. et al. (2025) ‘Onboard recordings reveal how bats maneuver under severe acoustic interference’, Proceedings of the National Academy of Sciences, 122(14), p. e2407810122. Available at: https://doi.org/10.1073/PNAS.2407810122.

      Griffin, D.R., Webster, F.A. and Michael, C.R. (1958) ‘THE ECHOLOCATION OF FLYING INSECTS BY BATS ANIMAL BEHAVIOUR , Viii , 3-4’.

      Hagino, T. et al. (2007) ‘Adaptive SONAR sounds by echolocating bats’, International Symposium on Underwater Technology, UT 2007 - International Workshop on Scientific Use of Submarine Cables and Related Technologies 2007, pp. 647–651. Available at: https://doi.org/10.1109/UT.2007.370829.

      Hiryu, S. et al. (2008) ‘Adaptive echolocation sounds of insectivorous bats, Pipistrellus abramus, during foraging flights in the field’, The Journal of the Acoustical Society of America, 124(2), pp. EL51–EL56. Available at: https://doi.org/10.1121/1.2947629.

      Jakobsen, L. et al. (2024) ‘Velocity as an overlooked driver in the echolocation behavior of aerial hawking vespertilionid bats’. Available at: https://doi.org/10.1016/j.cub.2024.12.042. Jakobsen, L., Brinkløv, S. and Surlykke, A. (2013) ‘Intensity and directionality of bat echolocation signals’, Frontiers in Physiology, 4 APR(April), pp. 1–9. Available at: https://doi.org/10.3389/fphys.2013.00089.

      Jakobsen, L. and Surlykke, A. (2010) ‘Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit’, 107(31). Available at:

      https://doi.org/10.1073/pnas.1006630107.

      Kalko, E.K. V. (1995) ‘Insect pursuit, prey capture and echolocation in pipistrelle bats (Microchirptera)’, Animal Behaviour, 50(4), pp. 861–880.

      Kazial, K.A., Burnett, S.C. and Masters, W.M. (2001) ‘ Individual and Group Variation in Echolocation Calls of Big Brown Bats, Eptesicus Fuscus (Chiroptera: Vespertilionidae) ’, Journal of Mammalogy, 82(2), pp. 339–351. Available at: https://doi.org/10.1644/15451542(2001)082<0339:iagvie>2.0.co;2.

      Kazial, K.A., Kenny, T.L. and Burnett, S.C. (2008) ‘Little brown bats (Myotis lucifugus) recognize individual identity of conspecifics using sonar calls’, Ethology, 114(5), pp. 469– 478. Available at: https://doi.org/10.1111/j.1439-0310.2008.01483.x.

      Kick, S.A. (1982) ‘Target-detection by the echolocating bat, Eptesicus fuscus’, Journal of Comparative Physiology □ A, 145(4), pp. 431–435. Available at: https://doi.org/10.1007/BF00612808/METRICS.

      Kothari, N.B. et al. (2014) ‘Timing matters: Sonar call groups facilitate target localization in bats’, Frontiers in Physiology, 5 MAY. Available at: https://doi.org/10.3389/fphys.2014.00168.

      Mohl, B. and Surlykke, A. (1989) ‘Detection of sonar signals in the presence of pulses of masking noise by the echolocating bat , Eptesicus fuscus’, pp. 119–124.

      Moss, C.F. and Surlykke, A. (2010) ‘Probing the natural scene by echolocation in bats’, Frontiers in Behavioral Neuroscience. Available at: https://doi.org/10.3389/fnbeh.2010.00033.

      Neretti, N. et al. (2003) ‘Time-frequency model for echo-delay resolution in wideband biosonar’, The Journal of the Acoustical Society of America, 113(4), pp. 2137–2145. Available at: https://doi.org/10.1121/1.1554693.

      Popper, A.N. and Fay, R.R. (1995) Hearing by Bats. Springer-Verlag.

      Roy, S. et al. (2019) ‘Extracting interactions between flying bat pairs using model-free methods’, Entropy, 21(1). Available at: https://doi.org/10.3390/e21010042.

      Sabol, B.M. and Hudson, M.K. (1995) ‘Technique using thermal infrared-imaging for estimating populations of gray bats’, Journal of Mammalogy, 76(4). Available at: https://doi.org/10.2307/1382618.

      Saillant, P.A. et al. (1993) ‘A computational model of echo processing and acoustic imaging in frequency- modulated echolocating bats: The spectrogram correlation and transformation receiver’, The Journal of the Acoustical Society of America, 94(5). Available at: https://doi.org/10.1121/1.407353.

      Salles, A., Diebold, C.A. and Moss, C.F. (2020) ‘Echolocating bats accumulate information from acoustic snapshots to predict auditory object motion’, Proceedings of the National Academy of Sciences of the United States of America, 117(46), pp. 29229–29238. Available at: https://doi.org/10.1073/PNAS.2011719117/SUPPL_FILE/PNAS.2011719117.SAPP.PDF.

      Sanderson, M.I. et al. (2003) ‘Evaluation of an auditory model for echo delay accuracy in wideband biosonar’, The Journal of the Acoustical Society of America, 114(3), pp. 1648– 1659. Available at: https://doi.org/10.1121/1.1598195.

      Schnitzler, H., Bioscience, E.K.- and 2001, undefined (no date) ‘Echolocation by insecteating bats: we define four distinct functional groups of bats and find differences in signal structure that correlate with the typical echolocation ’, academic.oup.comHU Schnitzler, EKV KalkoBioscience, 2001•academic.oup.com [Preprint]. Available at: https://academic.oup.com/bioscience/article-abstract/51/7/557/268230 (Accessed: 17 March 2025).

      Schnitzler, H.-U. et al. (1987) ‘The echolocation and hunting behavior of the bat,Pipistrellus kuhli’, Journal of Comparative Physiology A, 161(2), pp. 267–274. Available at: https://doi.org/10.1007/BF00615246.

      Simmons, J.A. et al. (1983) ‘Acuity of horizontal angle discrimination by the echolocating bat , Eptesicus fuscus’. Simmons, J.A. and Kick, S.A. (1983) ‘Interception of Flying Insects by Bats’, Neuroethology and Behavioral Physiology, pp. 267–279. Available at: https://doi.org/10.1007/978-3-64269271-0_20.

      Surlykke, A., Ghose, K. and Moss, C.F. (2009) ‘Acoustic scanning of natural scenes by echolocation in the big brown bat, Eptesicus fuscus’, Journal of Experimental Biology, 212(7), pp. 1011–1020. Available at: https://doi.org/10.1242/JEB.024620.

      Theriault, D.H. et al. (no date) ‘Reconstruction and analysis of 3D trajectories of Brazilian free-tailed bats in flight’, cs-web.bu.edu [Preprint]. Available at: https://csweb.bu.edu/faculty/betke/papers/2010-027-3d-bat-trajectories.pdf (Accessed: 4 May 2023).

      Ulanovsky, N. and Moss, C.F. (2008) ‘What the bat’s voice tells the bat’s brain’, Proceedings of the National Academy of Sciences of the United States of America, 105(25), pp. 8491– 8498. Available at: https://doi.org/10.1073/pnas.0703550105. Vanderelst, D. and Peremans, H. (2018) ‘Modeling bat prey capture in echolocating bats : The feasibility of reactive pursuit’, Journal of theoretical biology, 456, pp. 305–314.

      Yovel, Y. et al. (2009) ‘The voice of bats: How greater mouse-eared bats recognize individuals based on their echolocation calls’, PLoS Computational Biology, 5(6). Available at: https://doi.org/10.1371/journal.pcbi.1000400.

      Yovel, Y. and Ulanovsky, N. (2017) ‘Bat Navigation’, The Curated Reference Collection in Neuroscience and Biobehavioral Psychology, pp. 333–345. Available at: https://doi.org/10.1016/B978-0-12-809324-5.21031-6.

    1. eLife Assessment

      In this fundamental manuscript, Richter et al. present a thorough anatomical characterization of the Drosophila melanogaster larval pharyngeal sensory system, which is involved in taste-guided behaviors. This study fills a major gap in the larval sensory map, providing a compelling neuroanatomical foundation for future investigations into sensory circuits and behavior. The data presented here are of exceptional quality and will be of interest to the Drosophila neurobiology community.

    2. Reviewer #1 (Public review):

      Summary:

      The authors provide a detailed ultrastructural analysis of the larval pharyngeal sensory organs, including the dorsal pharyngeal sensilla, dorsal pharyngeal organ, ventral pharyngeal sensilla, and posterior pharyngeal sensilla. Using electron microscopy and 3D reconstruction, Richter et al., present a comprehensive mapping and classification of pharyngeal sensory structures, defining mthe orphological type of pharyngeal sensilla based on ultrastructure and generating a neuron-to-sensillum map. These findings significantly advance our understanding of internal larval sensory systems and establish a robust framework for future functional studies in coordination with external sensory systems.

      Strengths:

      The application of high-resolution electron microscopy and 3D imaging analysis successfully overcomes technical challenges associated with visualizing deep internal structures. This enables an unprecedented level of anatomical detail of the larval pharyngeal sensory system. Thus, the study complements and completes existing maps of larval sensory circuits, contributing a comprehensive neuroanatomical characterization of larval sensory input pathways. These insights will inform future studies on larval behavior, sensory processing, and may also have applied relevance for insect control strategies.

      Weaknesses:

      While the manuscript is concise, clearly written, and methodologically rigorous, it primarily addresses a specialized readership with expertise in insect neuroanatomy.

    3. Reviewer #2 (Public review):

      Summary:

      This manuscript documents the structure of the pharyngeal nervous system of the Drosophila larva. The authors wanted to achieve a detailed ultrastructural reconstruction of the gustatory sensory organs in the Drosophila pharynx. Using serial EM and the associated bioinformatics tools, they have achieved their goal. The paper is written clearly and illustrated beautifully with 3D models and annotated sections. The data will significantly enrich the field of Drosophila neurobiology.

      Strengths:

      Given the dataset, the findings presented are solid and will be an important work of reference for the future.

      Weaknesses:

      Previous work, including EM, on the pharyngeal sensory organ is not sufficiently referenced and used for comparison with the data presented in this study.

    4. Author Response:

      We thank the reviewers and editors for their thoughtful and constructive feedback on our manuscript, “Morphology and ultrastructure of pharyngeal sense organs of Drosophila larvae.” We are pleased that both reviewers found our ultrastructural analysis and 3D reconstructions of the larval pharyngeal sensory system to be of high quality, and we appreciate the recognition of the study’s significance and potential impact on the Drosophila neurobiology field.

      We want to address the concern raised regarding the limited referencing and comparison with previous work on pharyngeal sensory organs, particularly in adult Drosophila and other insect species.

      As noted by the reviewers, our manuscript is concise and focused. We want to clarify that we initially prepared and submitted this study with the intention of it being considered as a Short Report, which comes with limitations on the number of characters and figures that can be included. During the submission process, we were asked by the editors if we would like to submit our work as a full-length Research Advance, which we agreed to.

      That said, we are now happy to expand the discussion in the broader context of related studies — including prior EM and anatomical work — which would enrich the manuscript and provide readers with a deeper comparative perspective.

      We are grateful for the positive assessment of our manuscript and for the opportunity to clarify this point.

      Sincerely,

      Vincent Richter and Andreas S. Thum

    1. eLife Assessment

      This important work provides convincing evidence of the cognitive and neural mechanisms that give rise to feelings of shame and guilt, as well as their transformation into compensatory behavior. The authors combine well-designed manipulations of responsibility and harm with computational cognitive modeling and neuroimaging to provide a comprehensive account of how emotions are experienced and acted upon.

    2. Reviewer #1 (Public review):

      Summary:

      This work provides important new evidence of the cognitive and neural mechanisms that give rise to feelings of shame and guilt, as well as their transformation into compensatory behavior. The authors use a well-designed interpersonal task to manipulate responsibility and harm, eliciting varying levels of shame and guilt in participants. The study combines behavioral, computational, and neuroimaging approaches to offer a comprehensive account of how these emotions are experienced and acted upon. Notably, the findings reveal distinct patterns in how harm and responsibility contribute to guilt and shame and how these factors are integrated into compensatory decision-making.

      Strengths:

      (1) Investigating both guilt and shame in a single experimental framework allows for a direct comparison of their behavioral and neural effects while minimizing confounds.

      (2) The study provides a novel contribution to the literature by exploring the neural bases underlying the conversion of shame into behavior.

      (3) The task is creative and ecologically valid, simulating a realistic social situation while retaining experimental control.

      (4) Computational modeling and fMRI analysis yield converging evidence for a quotient-based integration of harm and responsibility in guiding compensatory behavior.

      Weaknesses:

      (1) Post-experimental self-reports rely both on memory and on the understanding of the conceptual difference between the two emotions. Additionally, it is unclear whether the 16 scenarios were presented in random order; sequential presentation could have introduced contrast effects or demand characteristics.

      (2) In the neural analysis of emotion sensitivity, the authors identify brain regions correlated with responsibility-driven shame sensitivity and then use those brain regions as masks to test whether they were more involved in the responsibility-driven shame sensitivity than the other types of emotion sensitivity. I wonder if this is biasing the results. Would it be better to use a cross-validation approach? A similar issue might arise in "Activation analysis (neural basis of compensatory sensitivity)."

      Additional comments and questions:

      (1) Regarding the traits of guilt and shame, I appreciate using the scores from the subscales (evaluations and action tendencies) separately for the analyses (instead of a composite score). An issue with using the actions subscales when measuring guilt and shame proneness is that the behavioral tendencies for each emotion get conflated with their definitions, risking circularity. It is reassuring that the behavior evaluation subscale was significantly correlated with compensatory behavior (not only the action tendencies subscale). However, the absence of significant neural correlates for the behavior evaluation subscale raises questions: Do the authors have thoughts on why this might be the case, and any implications?

      (2) Regarding the computational model finding that participants seem to disregard self-interest, do the authors believe it may reflect the relatively small endowment at stake? Do the authors believe this behavior would persist if the stakes were higher? Additionally, might the type of harm inflicted (e.g., electric shock vs. less stigmatized/less ethically charged harm like placing a hand in ice-cold water) influence the weight of self-interest in decision-making?

      Taken together, the conclusions of the paper are well supported by the data. It would be valuable for future studies to validate these findings using alternative tasks or paradigms to ensure the robustness and generalizability of the observed behavioral and neural mechanisms.

    3. Reviewer #2 (Public review):

      Summary:

      The authors combined behavioral experiments, computational modeling, and functional magnetic resonance imaging (fMRI) to investigate the psychological and neural mechanisms underlying guilt, shame, and the altruistic behaviors driven by these emotions. The results revealed that guilt is more strongly associated with harm, whereas shame is more closely linked to responsibility. Compared to shame, guilt elicited a higher level of altruistic behavior. Computational modeling demonstrated how individuals integrate information about harm and responsibility. The fMRI findings identified a set of brain regions involved in representing harm and responsibility, transforming responsibility into feelings of shame, converting guilt and shame into altruistic actions, and mediating the effect of trait guilt on compensatory behavior.

      Strengths:

      This study offers a significant contribution to the literature on social emotions by moving beyond prior research that typically focused on isolated aspects of guilt and shame. The study presents a comprehensive examination of these emotions, encompassing their cognitive antecedents, affective experiences, behavioral consequences, trait-level characteristics, and neural correlates. The authors have introduced a novel experimental task that enables such a systematic investigation and holds strong potential for future research applications. The computational modeling procedures were implemented in accordance with current field standards. The findings are rich and offer meaningful theoretical insights. The manuscript is well written, and the results are clearly and logically presented.

      Weaknesses:

      In this study, participants' feelings of guilt and shame were assessed retrospectively, after they had completed all altruistic decision-making tasks. This reliance on memory-based self-reports may introduce recall bias, potentially compromising the accuracy of the emotion measurements.

      In many behavioral economic models, self-interest plays a central role in shaping individual decision-making, including moral decisions. However, the model comparison results in this study suggest that models without a self-interest component (such as Model 1.3) outperform those that incorporate it (such as Model 1.1 and Model 1.2). The authors have not provided a satisfactory explanation for this counterintuitive finding.

      The phrases "individuals integrate harm and responsibility in the form of a quotient" and "harm and responsibility are integrated in the form of a quotient" appear in the Abstract and Discussion sections. However, based on the results of the computational modeling, it is more accurate to state that "harm and the number of wrongdoers are integrated in the form of a quotient." The current phrasing misleadingly suggests that participants represent information as harm divided by responsibility, which does not align with the modeling results. This potentially confusing expression should be revised for clarity and accuracy.

      In the Discussion, the authors state: "Since no brain region associated with social cognition showed significant responses to harm or responsibility, it appears that the human brain encodes a unified measure integrating harm and responsibility (i.e., the quotient) rather than processing them as separate entities when both are relevant to subsequent emotional experience and decision-making." However, this interpretation overstates the implications of the null fMRI findings. The absence of significant activation in response to harm or responsibility does not necessarily imply that the brain does not represent these dimensions separately. Null results can arise from various factors, including limitations in the sensitivity of fMRI. It is possible that more fine-grained techniques, such as intracranial electrophysiological recordings, could reveal distinct neural representations of harm and responsibility. The interpretation of these null findings should be made with greater caution.

    4. Reviewer #3 (Public review):

      Summary:

      Zhu et al. set out to elucidate how the moral emotions of guilt and shame emerge from specific cognitive antecedents - harm and responsibility - and how these emotions subsequently drive compensatory behavior. Consistent with their prediction derived from functionalist theories of emotion, their behavioral findings indicate that guilt is more influenced by harm, whereas shame is more influenced by responsibility. In line with previous research, their results also demonstrate that guilt has a stronger facilitating effect on compensatory behavior than shame. Furthermore, computational modeling and neuroimaging results suggest that individuals integrate harm and responsibility information into a composite representation of the individual's share of the harm caused. Brain areas such as the striatum, insula, temporoparietal junction, lateral prefrontal cortex, and cingulate cortex were implicated in distinct stages of the processing of guilt and/or shame. In general, this work makes an important contribution to the field of moral emotions. Its impact could be further enhanced by clarifying methodological details, offering a more nuanced interpretation of the findings, and discussing their potential practical implications in greater depth.

      Strengths:

      First, this work conceptualizes guilt and shame as processes unfolding across distinct stages (cognitive appraisal, emotional experience, and behavioral response) and investigates the psychological and neural characteristics associated with their transitions from one stage to the next.

      Second, the well-designed experiment effectively manipulates harm and responsibility - two critical antecedents of guilt and shame.

      Third, the findings deepen our understanding of the mechanisms underlying guilt and shame beyond what has been established in previous research.

      Weaknesses:

      (1) Over the course of the task, participants may gradually become aware of their high error rate in the dot estimation task. This could lead them to discount their own judgments and become inclined to rely on the choices of other deciders. It is unclear whether participants in the experiment had the opportunity to observe or inquire about others' choices. This point is important, as the compensatory decision-making process may differ depending on whether choices are made independently or influenced by external input.

      (2) Given the inherent complexity of human decision-making, it is crucial to acknowledge that, although the authors compared eight candidate models, other plausible alternatives may exist. As such, caution is warranted when interpreting the computational modeling results.

      (3) I do not agree with the authors' claim that "computational modeling results indicated that individuals integrate harm and responsibility in the form of a quotient" (i.e., harm/responsibility). Rather, the findings appear to suggest that individuals may form a composite representation of the harm attributable to each individual (i.e., harm/the number of people involved). The explanation of the modeling results ought to be precise.

      (4) Many studies have reported positive associations between trait gratitude, social value orientation, and altruistic behavior. It would be helpful if the authors could provide an explanation about why this study failed to replicate these associations.

      (5) As the authors noted, guilt and shame are closely linked to various psychiatric disorders. It would be valuable to discuss whether this study has any implications for understanding or even informing the treatment of these disorders.

    1. eLife Assessment

      This is a useful analysis of STORM data that characterizes the clustering of active zones in retinogeniculate terminals across ages and in the absence of retinal waves. The design makes it possible to relate fixed time point structural data to a known outcome of activity-dependent remodeling. However, the evidence is incomplete, weakening the claims the authors make regarding how activity influences the clustering of these synapses. This basic criticism has not improved with revisions.

    2. Reviewer #1 (Public review):

      Summary

      The authors previously published a study of RGC boutons in the dLGN in developing wild-type mice and developing mutant mice with disrupted spontaneous activity. In the current manuscript, they have broken down their analysis of RGC boutons according to the number of Homer/Bassoon puncta associated with each vGlut3 cluster.

      The authors find that, in the first post-natal week, RGC boutons with multiple active zones (mAZs) are about a third as common as boutons with a single active zone (sAZ). The size of the vGluT2 cluster associated with each bouton was proportional to the number of active zones present in each bouton. Within the author's ability to estimate these values (n=3 per group, 95% of results expected to be within ~2.5 standard deviations), these results are consistent across groups: 1) dominant eye vs. non-dominant eye, 2) wild-type mice vs. mice with activity blocked, and at 3) ages P2, P4, and P8. The authors also found that mAZs and sAZs also have roughly the same number (about 1.5) of sAZs clustered around them (within 1.5 um).

      However, the authors do not interpret this consistency between groups as evidence that active zone clustering is not a specific marker or driver of activity dependent synaptic segregation. Rather, the authors perform a large number of tests for statistical significance and cite the presence or absence of statistical significance as evidence that "Eye-specific active zone clustering underlies synaptic competition in the developing visual system (title)". I don't believe this conclusion is supported by the evidence.

      Strengths

      The source dataset is high resolution data showing the colocalization of multiple synaptic proteins across development. Added to this data is labeling that distinguishes axons from the right eye from axons from the left eye. The first order analysis of this data showing changes in synapse density and in the occurrence of multi-active zone synapses is useful information about the development of an important model for activity dependent synaptic remodeling.

      Weaknesses

      In my previous review I argued that it was not possible to determine, from their analysis, whether the differences they were reporting between groups was important to the biology of the system. The authors have made some changes to their statistics (paired t-tests) and use some less derived measures of clustering. However, they still fail to present a meaningfully quantitative argument that the observed group differences are important. The authors base most of their claims on small differences between groups. There are two big problems with this practice. First, the differences between groups appear too small to be biologically important. Second, the differences between groups that are used as evidence for how the biology works are generally smaller than the precision of the author's sampling. That is, the differences are as likely to be false positives as true positives.

      (1) Effect size. The title claims: "Eye-specific active zone clustering underlies synaptic competition in the developing visual system". Such a claim might be supported if the authors found that mAZs are only found in dominant-eye RGCs and that eye-specific segregation doesn't begin until some threshold of mAZ frequency is reached. Instead, the behavior of mAZs is roughly the same across all conditions. For example, the clear trend in Figure 4C and D is that measures of clustering between mAZ and sAZ are as similar as could reasonably be expected by the experimental design. However, some of the comparisons of very similar values produced p-values < 0.05. The authors use this fact to argue that the negligible differences between mAZ and sAZs explain the development of the dramatic differences in the distribution of ipsilateral and contralateral RGCs.

      (2) Sample size. Performing a large number of significance tests and comparing p-values is not hypothesis testing and is not descriptive science. At best, with large sample sizes and controls for multiple tests, this approach could be considered exploratory. With n=3 for each group, many comparisons of many derived measures, among many groups, and no control for multiple testing, this approach constitutes a random result generator.

      The authors argue that n=3 is a large sample size for the type of high resolution / large volume data being used. It is true that many electron microscopy studies with n=1 are used to reveal the patterns of organization that are possible within an individual. However, such studies cannot control individual variation and are, therefore, not appropriate for identifying subtle differences between groups.<br /> In response to previous critiques along these lines, the authors argue they have dealt with this issue by limiting their analysis to within-individual paired comparisons. There are several problems with their thinking in this approach. The main problem is that they did not change the logic of their arguments, only which direction they pointed the t-tests. Instead of claiming that two groups are different because p < 0.05, they say that two groups are different because one produced p < 0.05 and the other produced p > 0.05. These arguments are not statistically valid or biologically meaningful.

      To the best of my understanding, the results are consistent with the following model:

      • RGCs form mAZs at large boutons (known)

      • About a quarter of week-one RGC boutons are mAZs (new observation)

      • Vesicle clustering is proportional to active zone number (~new observation)

      • RGC synapse density increases during the first post-week (known)

      • Blocking activity reduces synapse density (known)

      • Contralateral eye RGCs for more and larger synapses in the lateral dLGN (known)

      • With n=3 and effect sizes smaller than 1 standard deviation, a statistically significant result is about as likely to be a false positive as a true positive.

      • A true-positive statistically significant result does is not evidence of a meaningful deviation from a biological model.

      Providing plots that show the number of active zones present in boutons across these various conditions is useful. However, I could find no compelling deviation from the above default predictions that would influence how I see the role of mAZs in activity dependent eye-specific segregation.

      Below are critiques of most of the claims of the manuscript.

      Claim (abstract): individual retinogeniculate boutons begin forming multiple nearby presynaptic active zones during the first postnatal week.

      Confirmed by data.

      Claim (abstract): the dominant-eye forms more numerous mAZ contacts,

      Misleading: The dominant-eye (by definition) forms more contacts than the non-dominant eye. That includes mAZ.

      Claim (abstract): At the height of competition, the non-dominant-eye projection adds many single active zone (sAZ) synapses

      Weak: While the individual observation is strong, it is a surprising deviation based on a single n=3 experiment in a study that performed twelve such experiments (six ages, mutant/wildtype, sAZ/mAZ)

      Claim (abstract): Together, these findings reveal eye-specific differences in release site addition during synaptic competition in circuits essential for visual perception and behavior.

      False: This claim is unambiguously false. The above findings, even if true, do not argue for any functional significance to active zone clustering.

      Claim (line 84): "At the peak of synaptic competition midway through the first postnatal week, the non-dominant-eye formed numerous sAZ inputs, equalizing the global synapse density between the two eyes"

      Weak: At one of twelve measures (age, bouton type, genotype) performed with 3 mice each, one density measure was about twice as high as expected.

      Claim (line 172): "In WT mice, both mAZ (Fig. 3A, left) and sAZ (Fig. 3B, left) inputs showed significant eye-specific volume differences at each age."

      Questionable: There appears to be a trend, but the size and consistency is unclear.

      Claim (line 175): "the median VGluT2 cluster volume in dominant-eye mAZ inputs was 3.72 fold larger than that of non-dominant-eye inputs (Fig. 3A, left)."

      Cherry picking. Twelve differences were measured with an n of 3, 3 each time. The biggest difference of the group was cited. No analysis is provided for the range of uncertainty about this measure (2.5 standard deviations) as an individual sample or as one of twelve comparisons.

      Claim (line 174): "In the middle of eye-specific competition at P4 in WT mice, the median VGluT2 cluster volume in dominant-eye mAZ inputs was 3.72 fold larger than that of non-dominant-eye inputs (Fig. 3A, left). In contrast, β2KO mice showed a smaller 1.1 fold difference at the same age (Fig. 3A, right panel). For sAZ synapses at P4, the magnitudes of eye-specific differences in VGluT2 volume were smaller: 1.35-fold in WT (Fig. 3B, left) and 0.41-fold in β2KO mice (Fig. 3B, right). Thus, both mAZ and sAZ input size favors the dominant eye, with larger eye-specific differences seen in WT mice (see Table S3)."

      No way to judge the reliability of the analysis and trivial conclusion: To analyze effect size the authors choose the median value of three measures (whatever the middle value is). They then make four comparisons at the time point where they observed the biggest difference in favor of their hypothesis. There is no way to determine how much we should trust these numbers besides spending time with the mislabeled scatter plots. The authors then claim that this analysis provides evidence that there is a difference in vGluT2 cluster volume between dominant and non-dominant RGCs and that that difference is activity dependent. The conclusion that dominant axons have bigger boutons and that mutants that lack the property that would drive segregation would show less of a difference is very consistent with the literature. Moreover, there is no context provided about what 1.35 or 1.1 fold difference means for the biology of the system.

      Claim (189): "This shows that vesicle docking at release sites favors the dominant-eye as we previously reported but is similar for like eye type inputs regardless of AZ number."

      Contradicts core claim of manuscript: Consistent with previous literature, there is an activity dependent relative increase in vGlut2 clustering of dominant eye RGCs. The new information is that that activity dependence is more or less the same in sAZ and mAZ. The only plausible alternative is that vGlut2 scaling only increases in mAZ which would be consistent with the claims of their paper. That is not what they found. To the extent that the analysis presented in this manuscript tests a hypothesis, this is it. The claim of the title has been refuted by figure 3.

      Claim (line 235): "For the non-dominant eye projection, however, clustered mAZ inputs outnumbered clustered sAZ inputs at P4 (Fig. 4C, bottom left panel), the age when this eye adds sAZ synapses (Fig. 2C)."

      Misleading: The overwhelming trend across 24 comparisons is that the sAZ clustering looks like mAZ clustering. That is the objective and unambiguous result. Among these 24 underpowered tests (n=3), there were a few p-values < 0.05. The authors base their interpretation of cell behavior on these crossings.

      Claim (line 328): "The failure to add synapses reduced synaptic clustering and more inputs formed in isolation in the mutants compared to controls."

      Trivially true: Density was lower in mutant.

      Claim (line 332): "While our findings support a role for spontaneous retinal activity in presynaptic release site addition and clustering..."

      Not meaningfully supported by evidence: I could not find meaningful differences between WT and mutant beside the already known dramatic difference in synapse density.

    3. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Zhang and Speer examine changes in the spatial organization of synaptic proteins during eye specific segregation, a developmental period when axons from the two eyes initially mingle and gradually segregate into eye-specific regions of the dorsal lateral geniculate. The authors use STORM microscopy and immunostain presynaptic (VGluT2, Bassoon) and postsynaptic (Homer) proteins to identify synaptic release sites. Activity-dependent changes of this spatial organization are identified by comparing the β2KO mice to WT mice. They describe two types of synapses based on Bassoon clustering: the multiple active zone (mAZ) synapse and single active zone (sAZ) synapse. In this revision, the authors have added EM data to support the idea that mAZ synapses represent boutons with multiple release sites. They have also reanalyzed their data set with different statistical approaches.

      Strengths:

      The data presented is of good quality and provides an unprecedented view at high resolution of the presynaptic components of the retinogeniculate synapse during active developmental remodeling. This approach offers an advance to the previous mouse EM studies of this synapse because of the CTB label allows identification of the eye from which the presynaptic terminal arises.

      Weaknesses:

      While the interpretation of this data set is much more grounded in this second revised submission, some of the authors' conclusions/statements still lack convincing supporting evidence. In particular, the data does not support the title: "Eye-specific active zone clustering underlies synaptic competition in the developing visual system". The data show that there are fewer synapses made for both contra- and ipsi- inputs in the β2KO mice-- this fact alone can account for the differences in clustering. There is no evidence linking clustering to synaptic competition. Moreover, the findings of differences in AZ# or distance between AZs that the authors report are quite small and it is not clear whether they are functionally meaningful.

    4. Reviewer #3 (Public review):

      This study is a follow-up to a recent study of synaptic development based on a powerful data set that combines anterograde labeling, immunofluorescence labeling of synaptic proteins, and STORM imaging (Cell Reports, 2023). Specifically, they use anti-Vglut2 label to determine the size of the presynaptic structure (which they describe as the vesicle pool size), anti-Bassoon to label active zones with the resolution to count them, and anti-Homer to identify postsynaptic densities. Their previous study compared the detailed synaptic structure across the development of synapses made with contra-projecting vs. ipsi-projecting RGCs and compared this developmental profile with a mouse model with reduced retinal waves. In this study, they produce a new detailed analysis on the same data set in which they classify synapses into "multi-active zone" vs. "single-active zone" synapses and assess the number and spacing of these synapses. The authors use measurements to make conclusions about the role of retinal waves in the generation of same-eye synaptic clusters. The authors interpret these results as providing insight into how neural activity drives synapse maturation, the strength of their conclusions is not directly tested by their analysis.

      Strengths:

      This is a fantastic data set for describing the structural details of synapse development in a part of the brain undergoing activity-dependent synaptic rearrangements. The fact that they can differentiate the eye of origin is what makes this data set unique over previous structural work. The addition of example images from the EM dataset provides confidence in their categorization scheme.

      Weaknesses:

      Though the descriptions of single vs multi-active zone synapses are important and represent a significant advance, the authors continue to make unsupported conclusions regarding the biological processes driving these changes. Although this revision includes additional information about the populations tested and the tests conducted, the authors do not address the issue raised by previous reviews. Specifically, they provide no assessment of what effect size represents a biologically meaningful result. For example, a more appropriate title is "The distribution of eye-specific single vs multi-active zone is altered in mice with reduced spontaneous activity" rather than concluding that this difference in clustering is somehow related to synaptic competition. Of course, the authors are free to speculate, but many of the conclusions of the paper are not supported by their results.

    1. eLife Assessment

      This manuscript uses modeling approaches to provide mechanistic insight into the structural and dynamic properties of enhancer-promoter interactions in Drosophila. Given the interest in this field, this is a timely approach, and the results give useful insights by providing predictions about the processivity of cohesin loop extrusion in Drosophila and concluding that the compartmental interaction strength is poised near criticality in the coil-globule phase space. The evidence provided to support some of the conclusions is, however, incomplete and would be strengthened by better considering some of the caveats in the data used to constrain the models, such as the use of "homie" genetic elements in the dynamic data. There is insufficient evidence provided for the dynamics being criticality-driven, and in addition, consideration of alternative models would further strengthen the conclusions of the manuscript.

    2. Reviewer #1 (Public review):

      Summary:

      This computational study investigates the physical mechanisms underlying enhancer-promoter (E-P) interactions across genomic distances in Drosophila chromosomes, motivated by a previously published study that revealed unexpectedly frequent long-range contacts challenging classical polymer models. The authors performed coarse-grained polymer simulations testing three chromatin organization models: ideal polymers, loop extrusion, and compartmental segregation, comparing their predictions to experimental Hi-C contact maps, mean E-P distances, and two-locus mean-squared displacement dynamics. They found that compartmental segregation best captured both the structural and dynamic features observed experimentally, while neither ideal chains nor loop extrusion alone could reproduce all experimental observables. The combination of compartmental segregation with loop extrusion further improved agreement with experimental data, suggesting these mechanisms might be involved in Drosophila chromatin organization.

      Strengths:

      The paper has two primary strengths:

      (1) The simulations are based on biologically interpretable mechanisms (compartmentalization and loop extrusion), which may facilitate making specific experimentally testable predictions.

      (2) The work uses a systematic approach to increase model complexity by directly fitting to data, first establishing that simple models fail to capture the data until arriving at a more complex model that does capture the data.

      Weaknesses:

      I have two major concerns (detailed below) and multiple minor concerns.

      Major concerns:

      (1) While the upside of the mechanistic simulations is that they are interpretable, the downside is that specific choices for the considered mechanism were made, and conclusions drawn from it are necessarily biased by the initial choices. In this paper, only two mechanisms were considered: loop extrusion and compartmentalization. Yet, it is not clear why these are the most likely underlying mechanisms that might determine the chromosome dynamics. Indeed, previous work (not cited in this paper) showed that Drosophila chromosome structure is not determined by loop extrusion: https://elifesciences.org/articles/94070.

      This should be acknowledged, and the main reasons for choosing these particular mechanisms should be laid out. The conclusions of the paper must then necessarily always be seen under the caveat that only these two mechanisms were considered.

      (2) Even within the framework of the approach, insufficient evidence is given to support the title of the paper "Criticality-driven enhancer-promoter dynamics in Drosophila chromosomes" for two reasons:

      (a) The fact that the best-fit parameters are near a coil-globule transition does not mean that the resulting dynamics are criticality-driven. To claim criticality, one would usually expect much more direct evidence, such as diverging correlation lengths. Furthermore, it would need to be shown that the key features of the dynamics (which should be defined, presumably the static and dynamic exponents) indeed depend on the parameters being at this transition. i.e., when tuning the simulations away from this parameter point, does the behaviour disappear? Only in this case can it be claimed that the behaviour is driven by this phenomenon.

      (b) The results section actually contains no mention of the coil-globule transition, and it is not clear in what way the parameters are close to this transition.

      Thus, three things are necessary:

      (i) How the parameters are close to the transition needs to be explained in detail.

      (ii) The divergence of observed dynamics whenever the parameters are tuned away from the transition needs to be demonstrated.

      (iii) Even if 1 and 2 are fulfilled, a more careful title should be chosen, such as "Polymer simulations near the coil-globule transition are consistent with enhancer-promoter dynamics in Drosophila chromosomes."

      Many of the results in the figures and results section are rather repetitive and could be compressed. The main result of Figure 1 - that the data are not described by an ideal chain - was already fully shown and established in the original paper from which the data are taken. Figure 2 is a negative result with near-identical panels to Figure 3. Figure 4B is hard to interpret.

      The paper makes no concrete suggestions for new experiments to test the hypotheses formulated. Since the paper can only claim that the simulations are consistent with the data, it would significantly strengthen the paper if testable predictions could be made.

    3. Reviewer #2 (Public review):

      Summary:

      In this work, Ganesh and colleagues use experimental data from Hi-C and from live-cell imaging to evaluate different polymer models of 3D genome organization in Drosophila based on both structural and dynamic properties. The authors consider several leading hypotheses, which are examined sequentially in increasing level of complexity - from the minimal Rouse polymer, to a model combining sequence-specific compartmentalization and loop-extrusion without extrusion blockers. They conclude that the combination of both compartmentalization and loop-extrusion gives the best agreement with the data. Their analysis also leads to concrete predictions about the processivity of cohesin loop extrusion in Drosophila, and a conclusion that the compartmental interaction strength is poised near criticality in the coil-globule phase space.

      Strengths:

      There is considerable interest in the field in understanding the mechanisms responsible for the 3D spatial organization genome and the dynamic movement of the genome, which has major implications for our understanding of long-range transcriptional regulation and other genome behaviors. The live-cell experimental work on which this study draws highlights the limitations of existing models to explain even the dynamic behaviors observed in the data, further exciting interest in further exploration. Therefore, this paper seeks to address an important gap in the field. The work is written in a well-organized, well-illustrated fashion. The text and figures are nicely integrated, easy to read, and explain challenging concepts with elegance and brevity in a manner that will be accessible to a broad audience.

      Weaknesses:

      The validity and utility of these conclusions are, in my view, substantially undermined by what appears to be unappreciated peculiarities of the live-cell data set that was used to constrain the model. The live-cell data comes from embryos were edited in a way that intentionally substantively changed both the 3D genome structure and dynamics specifically at the loci which are imaged, a case which is not at all explained by any of the models suggested nor acknowledged in the current work, nor compatible with the Hi-C data that simultaneously used to explain these models. As these ignored synthetic alterations have been previously shown to be determinative of transcriptional activity, the relevance of the author's work to transcriptional control (a prime motivation in the introduction) is unclear.

      The agreement in 3D organization, as represented in chromosome-scale contact frequency heatmaps, is substantially less impressive than the agreement seen in prior work with similar models. This discrepancy appears to be due in part to the unappreciated effects of the mentioned in the previous limitation, as well as inappropriate choices in metrics used to evaluate agreement. It is also not particularly surprising that combining more models, with more free parameters, results in an improvement in the quality of fit.

      Some major results, including both theoretical works and experimental ones, are ignored, despite their relevance to the stated objective of the work. The current manuscript and analysis could be improved substantially by a consideration of these works.

      I describe these issues in more detail below.

      Major issues:

      (1) The genetic element "homie" is present in a subset of the data: The experimental data used in this analysis come from different fly lines, half of which have been edited explicitly to alter genome structure and consequent transcriptional behavior, yet the authors are trying to fit with a common model - a problem which substantially undermines the utility of the analysis.

      Specifically, the authors evaluate the various models/simulations by comparing them to Hi-C from wildtype Drosophila embryos on the chromosome scale and 3D distances and dynamics from live cell imaging in genetically edited embryos, to a series of models in turn. The exercise fatally overlooks a critical fact, (admittedly not easily noticed in the work from Bruckner et al), that the fly embryos used for nearly all their analyses contain not only fluorescent labels, but also contain two copies of a powerful genetic sequence, "homie", known for its ability to dramatically change the 3D organization and dynamics of the genome. Whether or not the fluorescent labels themselves used in the study further alter structure and dynamics is not entirely clear (and will require further work beyond the scope of either study), but at least these fluorescent labels aren't known to dramatically affect 3D structure and dynamics the way homie is. The critical problem is that adding or removing the "homie", as shown in a collection of prior works I describe below in more detail, dramatically affects structure, dynamics, and gene expression. Whether or not the genome contains two distal cis-linked copies of homie fundamentally changes genome structure and dynamics, so to use one dataset which has this edit (the live-cell data) and one dataset which lacks it (the Hi-C data) is, in some sense, to guarantee failure of any model to match all the data.

      If the authors had chosen instead to focus exclusively on the 'no homie' genetic lines in the Brukner data, they would have a much smaller dataset (just 2 distances), which would not cover all the length scales of interest, but it would at least be a dataset not known to be contradictory to the Hi-C. The two 'no homie' lines make much more plausible candidates for the sort of generalizable polymer dynamics these authors seek to explain, as will hopefully be made more clear by a brief review of what is known about homie. I next describe the published data that support these conclusions about how homie affects 3D genome spatial organization and dynamics:

      What is "homie" and how does it affect 3D genome distances, dynamics, and gene expression?

      The genetic element "homie" was named by James Jaynes' lab ( Fujioka...Jaynes 2009) in reference to its remarkable "homing" ability - a fascinating and still poorly understood biological observation that some genetic sequences from Drosophila, when cloned on plasmids and reintegrated into the genome with p-elements, had a remarkable propensity to re-integrate near their endogenous sequence, (Hama et al., 1990; Kassis, 2002; Taillebourg and Dura, 1999; Bender and Hudson, 2000; Fujioka...Jaynes 2009). By contrast, most genetic elements tend to incorporate at random across the genome in such assays (with some bias for active chromatin).

      The Jaynes lab subsequently showed that flies carrying two copies of homie, one integrated in cis, ~140 kb distal from the endogenous element, formed preferential cis contacts with one another. Indeed, if a promoter and reporter gene were included at this distal integration site, the reporter gene would activate gene expression in the pattern normally seen by the gene, even-skipped. The endogenous copy of homie marks one border of ~16 kb mini-TAD which contains the even-skipped gene, (eve), and its developmental enhancers, so this functional interaction provides further evidence of physical proximity (as was also shown by 3C by Jaynes (Fujioka..., Schedl, Jaynes 2016), and later with elegant live imaging, by Jaynes and Gregor (Chen 2018)).

      Critically, if either copy of homie is deleted or substantially mutated, the 3D proximity is lost (Fujioka 2016, Chen 2018, Bruckner 2023), and the expression of the transgene is dramatically reduced (at 58 kb) or lost. Given the author's motivation of understanding "E-P" interactions, the fact that the increased 3D proximity provided by homie is as essential for transcription as the promoter itself at the ~150 kb distance, underscores that these are not negligible changes.

      These effects can be seen by plotting the data from Bruckner 2023, which includes data from labels with separations of 58 kb and ~150 kb "no homie" as well as homie. Unfortunately, the authors don't plot this data in the manuscript in the comparison of 3D distances, though the two-point MSD can be seen in Figure S13C, and laudably, the data is made public in a well-annotated repository on Zenodo, noted in the study. Note that the distance data in Figure S13 were filtered to exclude the transcriptionally off state, and are thus not the quantity the current authors are interested in. If they plot the published data for no homie, they will see the clear effect on the average 3D distance, R(s), and a somewhat stronger effect on the contact frequency P(s), which causes significant deviation from the trend-line followed by the homie-containing data.

      (2) The agreement between the "best performing" simulations for all models and the Hi-C data is not on par with prior studies using similar approaches, apparently due to some erroneous choices in how the optimization is carried out:

      Hi-C-comparison

      The 'best fit' simulation Hi-C looks strikingly different from the biological data in all comparisons, with clearly lower agreement than other authors have shown using highly similar methods (e.g., Shi and Thirumalai 2023; Di Pierro et al. 2017; Nuebler et al. 2018; Esposito et al. 2022; Conte et al. 2022), among many others. I believe this results from a few issues with how the current authors select and evaluate the data in their work:

      (a) Most works have used Pearson's correlation rather than Spearman's correlation when comparing simulation and Hi-C contact frequencies. Pearson's correlation is more appropriate when we expect the values to be linearly related, which they should be in this case, as they are constructed indeed to be measuring the same thing (contact frequency), just derived from two different methods. Spearman's correlation would have been justifiable for comparing how transcription output correlates with contact frequency. This may fix the bafflingly low correlations reported at lower adhesion values in Figure S2C.

      (b) Choice of adhesion strengths - The Hi-C map comparison in Figure 3 strongly suggests that a much more striking visual agreement would have been achieved if much weaker (but still non-zero) homotypic monomer affinity had been selected. In the authors' simulation, the monomer state (A/B identity) strongly dominates polymer position, resulting in the visual appearance of an almost black-and-white checkerboard. The data, meanwhile, look like a weak checkerboard superimposed on the polymer.

      (c) A further confounding problem is the aforementioned issue that the Hi-C data don't come from the edited cell lines, and that the interaction of the two Homie sites is vastly stronger than the compartment interactions of this region of the genome.

      (3) Some important concepts from the field are ignored:

      The crumpled/fractal globule model is widely discussed in the literature (including the work containing the data used in this study) - its exclusion from this analysis thus appears as a substantial gap/oversight:

      A natural alternative to the much-discussed Rouse polymer model is the "crumpled polymer" (Grosberg et al. 1988; Grosberg 2016; Halverson et al. 2011; Halverson et al. 2011), also known as the "fractal globule" (Lieberman-Aiden et al. 2009; Mirny 2011; Dekker and Mirny 2016; Boettiger et al. 2016), much discussed for the way it captures the ⅓ scaling of R(s), found for much of the genome (or, equivalently, the -1 exponent of the probability of contact as a function of genome separation, P(s)). Given the 1/3rd scaling in the data, and the fact that the original authors highlighted the crumpled model in addition to the Rouse model, it seems that this comparison would be instructive and the lack of discussion an oversight. Moreover, while prior works (e.g., Buckner, Gregor, 2023) used some traditional simplifying assumptions to estimate the MSD and relaxation time scaling of this model, I believe a more rigorous analysis with explicit simulations (as in Figure 1 for the Rouse model) would be instructive for the crumpled polymer simulations. Note the crumpled globule is not necessarily the same as the globule in the coil-globule transition discussed here - it requires some assumptions about non-entanglement to stay trapped in the meta-stable state which has the 1/3rd R(s) scaling that is indicative of this model, and not the 1/2 exhibited by equilibrium globules (for s<< length of the polymer) and dilute polymers alike.

      While the fit in Figure 2 appears to get closer to the 1/3rd exponent (B= 0.32), this appears to be a largely coincidental allusion of agreement - the simulation data in truth shows a systematic deviation, returning to the 1/2 scaling for distances from 500 kb to whole chromosomes. This feature is not very evident as the authors restrict the analysis to only the few points available in the experimental data, though had they tested intervening distances I expect they would show log-log P(s) is nonlinear (non-powerlaw) for distances less than the typical loop length up to a few fold larger than the loop length, and thereafter returns to the scaling provided by the 'base' polymer behavior. This appears to be Rouse-like in these authors' model, with R(s) going like 1/2, even though the data are closer to 1/3rd, as indeed most published simulated P(s) curves based on loop extrusion - e.g., (Fudenberg et al. 2016; Nuebler et al. 2018). In this vein, it would be instructive to the readers if the authors would include additional predictions from the simulation on the plot that lie at genomic separation distances not tested in the data, to better appreciate the predictions.

      Minor issues

      (1) I think it is too misleading to only describe the experimental data from Brukner as "E-P" interactions from Drosophila. It is important to note somewhere that this is not an endogenous interaction with a functional role in Drosophila - it is a synthetic interaction between enhancers in the vicinity of the eve gene and a synthetic promoter placed at a variable distance away. The uniformity is elegant - (it is the same pair of elements being studied at all distances), but also provides limited scope for generalization as suggested by the current text. Moreover, the enhancers were not directly labeled; rather, the 3D position of nascent RNA transcribed from eve was tracked with an RNA-binding protein and used as a proxy for the 3D position of the enhancers. There is not an individual enhancer at the eve locus that interacts with the transgene, but rather a collection of enhancers is distributed at different positions throughout the entire TAD, which contains eve, and must form separate loops to reach eve. Indeed, it was previously reported that differences in the local position of these enhancers, relative to eve, affect their ability to interact with the distal reporter gene and the endogenous eve gene (Chen 2018). There is also reported competition between these enhancers and the distal gene, which further complicates the analysis (especially since the state of eve and of its enhancers varies among the different cells as a function of stripe position) - see Chen 2018. All of this is ignored in the current work, despite the assertion of the application to understanding E-P interaction. A detailed discussion of these issues is not necessary, but I fear that ignoring them entirely is to invite further confusion and error.

      (2) I believe this sentence is overstated, given available data: " TAD borders are characterized by transitions between epigenetic states rather than by preferentially-bound CTCF [4, 23, 24]." Indeed, this claim has been repeatedly made in the literature as cited here. However, other data clearly demonstrate a strong enrichment of CTCF at TAD borders (and at epigenetic borders, which in Drosophila have a high correspondence with TAD borders, as the authors have already appropriately noted). See, for example, Figure 4 of Sexton Cell 2012, and compare to Figure 2 of Dixon 2012. Of minor note, CTCF peaks co-occupied by the Zinc Finger TF CP190 are more likely to be TAD borders than CTCF alone. How big a species-specific difference this is remains unclear, as it appears some mammalian CTCF-marked TAD boundaries may be co-occupied by additional ZNFs. While plenty of Drosophila TAD boundaries indeed lack CTCF, many are marked by CTCF, this is enriched relative to what would be expected by chance (or relative to the alignment of other TFs, like Twist or Eve with TAD boundaries), and it has been shown that CTCF loss is sufficient to remove a subset of these, see for example Figure 5 of (Kaushal et al. 2021) (though it is possible, most will require mutation of the all the border-associated factors that collectively bind many of the borders, dCTCF, CP190, mod(mdg4) and others).

      (3) This assertion is overstated given available data: "Although TAD boundaries in Drosophila are often associated with insulator proteins [20], there is no direct evidence that these elements block LEFs in vivo. Therefore, we did not impose boundary constraints in our simulations; LEFs were allowed to move freely unless stalled by collisions with other LEFs, with the possibility of crossover.". Deletion of insulator in Drosophila that lie within a common epigenetic state leads to fusion of TADs (e.g., Mateo et al., 2019 - deletion of the CTCF-marked Fub insulator, in posterior tissues where both flanks of Fub are active; Kaushal, 2021, has examples as well). Loss of CTCF causes a small number of TADs to fuse as measured by Hi-C. This is far from 'direct evidence that insulators block LEFs' - as the authors have already noted, even the idea that cohesin extrudes loops in Drosophila in the first place is indeed controversial. However, LEF activity and stalling at insulators would provide a very natural explanation of why chromatin in a shared epigenetic state should form distinct TADs, and why these TADs should fuse upon insulator deletion. Justifying the lack of stalling sites based on empirical data is thus not very convincing to this reviewer. I believe it would be more apt to simply describe this as a simplifying assumption, rather than the above phrase, which may be misleading.

    4. Author response:

      We thank the editors and the reviewers for their constructive comments, which have greatly helped us identify key areas to strengthen the manuscript. We acknowledge the validity of the major points raised, and we plan the following revisions:

      Criticality

      As suggested by Reviewer #1, we will carefully examine whether the dynamics we observe are indeed poised near criticality. We will perform additional analyses to assess how structural and dynamic features change when parameters are tuned away from the coil–globule transition, and we will revise the title and text to ensure that our claims are appropriately moderated.

      Role of the homie element

      We agree with Reviewer #2 that the presence of homie elements introduces major modifications to chromosome structure and dynamics. We initially considered that this factor might even explain the paradox described in Gregor’s work. In the first phase of our study, we carried out simulations including homie elements and found that the potential confounding effects are largely resolved if we restrict the analysis to trajectories prior to encounters between the two homie copies. We will include these simulations and expand the discussion accordingly in the revised version.

      Comparison to Hi-C data

      Both reviewers noted a visual discrepancy between experimental and simulated Hi-C maps. We will address this by testing alternative similarity measures (e.g., Pearson correlation, as suggested) and by exploring parameter ranges that may improve the agreement.<br /> Together, these modifications will strengthen the manuscript, clarify the scope of our conclusions, and directly address the reviewers’ central concerns.

    1. eLife Assessment

      This paper explores the role of extracellular vesicles in providing extracellular matrix signals for migration of vascular smooth muscle cells. The evidence, based on cell culture experiments and supporting imaging of human samples, is mostly convincing. The paper will be valuable for researchers investigating cell migration during vessel repair and atherogenesis.

    2. Reviewer #1 (Public review):

      In this revised submission from Kapustin et al., the authors have made significant changes to the manuscript. Namely, the authors have addressed several of the major issues with the original submission, providing a more concrete link between fibronectin and the secretion of extracellular vesicles. Additionally, the authors have moderated some of the conclusions to better suit the rigor of the experimental results and limitations of their approach. Generally, the findings convey an interesting cell autonomous pathway in which smooth muscle cells sense fibronectin, which canonically is a proinflammatory substrate with activating properties in many tissues. Fibronectin-mediated integrin signaling stimulates secretion of small extracellular vesicles containing collagen VI which is deposited into the surrounding extracellular matrix. Collagen VI itself gleaned from extracellular vesicle secretion seems to further alter smooth muscle cell morphodynamics. For this later finding, much of the mechanism behind collagen VI vesicle loading and secretion has yet to be worked out. The authors provide evidence of extracellular vesicles containing collagen VI trapped in fibronectin in atherosclerotic plaques providing a nice validation of their in vitro findings in a diseased human cohort. Some limitations do still exist in the manuscript in its current form such as the assessment of the vesicle origins, contents and their association with the actin cytoskeleton; however, the rigor and execution are much improved from the preceding version. Overall, the pathobiology underlying vascular smooth muscle remodeling in disease states is a critical area of research that warrants further exploration.

    3. Reviewer #2 (Public review):

      The findings in the current manuscript are interesting and valuable contributions to the fields of vascular biology and extracellular vesicle-related mechanisms. They suggest a potential role for smooth muscle cell-derived extracellular vesicles in presenting Type VI collagen to cells to orchestrate their migration, with proposed relevance to aberrant smooth muscle cell movements in the progression of atherosclerotic lesions. A wide range of assays are utilized to test various aspects of this working model, with the resulting data being largely solid and supporting several of the interpretations articulated by the authors. The revised manuscript has adequately addressed key weaknesses.

      The authors present data suggesting a working model in which vascular smooth muscle cells (vSMCs) are stimulated by fibronectin (FN) to generate small extracellular vesicles (sEVs) that harbor Type VI Collagen (collagen VI). These collagen VI-associated sEVs are suggested to accumulate in the extracellular matrix (ECM) and influence cell migration and adhesion dynamics, potentially contributing to disease progression in atherosclerosis. Majors strengths of this manuscript include robust imaging data and the inclusion of human-derived samples in their analysis. The authors also make a reasonable attempt to provide data to support the potential existence of these mechanistic connections, though some minor questions remain regarding data interpretation. The authors largely achieved their aims of finding evidence consistent with their interpretations, and they have presented logical support for their conclusions while acknowledging important limitations and caveats to their current study. This work will likely have a sustained impact on the field of sEV biology and potential intersections with vascular biology, including their methodology e.g., imaging approaches. As biologists continue to explore the role of sEVs in physiological and pathological processes, this work raises an interesting aspect that must be considered more broadly, and that is, what is the role of sEVs that are ECM-associated and not necessarily internalized by recipient cells? Are there discrete mechanisms that govern their role in maintaining and/or disrupting normal physiological processes? This manuscript makes an attempt to address these unresolved yet critical questions.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary

      In this investigation Kapustin et al. demonstrate that vascular smooth muscle cells (VSMCs) exposed to the extracellular matrix fibronectin stimulates the release of small extracellular vesicles (sEVs). The authors provide experimental evidence that stimulation of the actin cytoskeleton boosts sEV secretion and posit that sEVs harbor both fibronectin and collagen IV protein themselves which also, in turn, alter cell migration parameters. It is well established that fibronectin is associated with increased cell migration and adherence; therefore, this association with VSMCs is not novel.

      The reviewer is correct that FN has been associated with migration and adherence in previous studies.  However we have extended these observations to show that the extracellular fibronectin matrix stimulates small extracellular vesicle (sEVs) secretion by modulating the actin cytoskeleton. We also showed that sEVs are trapped in the extracellular matrix and that by presenting collagen VI induce early focal adhesion formation, reduce excessive cellular spreading and guide cell invasion directionality though a 3D matrix. Hence, sEVs mediate cell-matrix cross talk and change cell behaviour in the context of fibronectin matrix. This is critically important for vasculature where regulated VSMC invasion is essential for repair with its deregulation leading to pathology.

      The authors purport that sEV are largely born of filopodia origin; however, this data is not well executed and seems generally at odds with the presented data.

      Our experimental data showed that CD63 MVs are associated with filopodia in fixed and live cells (Fig 2E, 2F and Video S1) and that inhibition of filopodia formation using the formin inhibitor, SMIFH2 reduced sEV secretion on FN (Fig 2B). However, we agree with the reviewer that further studies are required to connect sEV secretion to filopodia.  To address this we have provided further data analysis but also toned down our conclusions regarding this point: . Changes include:

      (1) Title: Matrix-associated extracellular vesicles modulate smooth muscle cell adhesion and directionality by presenting collagen VI.

      (2) Results, section title: 2. FN-induced sEV secretion is modulated by Arp2/3 and formin-dependent actin cytoskeleton remodelling

      (3) Results, page 6 Line 27-44 and conclusion page 7, Ln 3 “Interestingly, CD63+ MVBs can be observed in filopodia-like structures suggesting that sEV secretion can also occur spatially via cellular protrusion-like filopodia but more studies are needed to confirm this hypothesis.”

      (4) Discussion, page 12, line 19. “Curiously we observed CD63+ MVB transport toward the filopodia tips as well as inhibition of sEV-secretion with filopodia formation inhibitors suggesting that sEV secretion can be directly linked to filopodia but further studies are needed to define the contribution of this pathway to the overall sEV secretion by cells.”

      Similarly, the effect of sEVs on parameters of cell migration has almost no magnitude of effect, making mechanism exploration somewhat nebulous.

      VSMC are mesenchymal-type cells with a low migration rate and we agree that the changes in the motility are not of great magnitude even for the positive controls suggesting that this is a complex, multifactorial process for VSMCs. In our experiments we collected data from >5000 individual cells to measure the average speed and found that fibronectin matrix on its own increased VSMC speed from ~0.61 um/min to ~0.68 μm/min (~12% raise) which was statistically significant (Fig 5A). Addition of a sEV inhibitor caused a modest but significant decrease in cellular speed. Interestingly, addition of ECM-associated sEVs did not influence cell speed in 2D or 3D assays. However in a 3D model we observed a 22% change in cell directionality (Fig 5G) and  a 235% change in cell alignment index (FMI, Fig 5H) which we believe is very strong evidence that VSMC-derived sEVs are involved in a regulation of VSMC invasion directionality.  These data are also in agreement with sEV effects in tumour cells (Sung et al., 2015) though this previous study did not identify the factor driving the directionality and we think our Collagen VI data extends significantly these previous observations. 

      Results, page 9: “Hence, ECM-associated sEVs have modest influence on VSMC speed but influence VSMC invasion directionality.”.  

      Lastly, the proposed mechanism of VSMCs responding to, and depositing, ECM proteins via sEVs was not rigorously executed; again, making the conclusions challenging for the reader to interpret.

      We appreciate the reviewer’s comment regarding the mechanistic aspects of VSMCs responding to and depositing ECM proteins via sEVs. In our revised manuscript, we have expanded the data demonstrating that sEVs can be retained within the extracellular matrix (see Figs 3A, 3B, S3A, S3B). Additionally, we show that collagen VI is present on the surface of sEVs, where it may modulate cell adhesion and influence the directionality of cell invasion (Fig 7E). Our results further indicate that both fibronectin (FN) and collagen VI can be recycled through multivesicular bodies (see Figs S3C, S3D, S3E–S3G). However, we acknowledge that the precise mechanisms governing the selective loading of ECM proteins onto sEVs, as well as the specific contributions of sEVs to overall ECM organization, remain to be fully elucidated and warrant further investigation. Based on our current evidence, we propose that collagen VI–loaded sEVs act primarily in a signaling capacity by modulating focal adhesion formation but are not directly involved in ECM structural remodeling.

      Results, page 7: To quantify ECM-trapped sEVs we applied a modified protocol for the sequential extraction of extracellular proteins using salt buffer (0.5M NaCl) to release sEVs which are loosely-attached to ECM via ionic interactions, followed by 4M guanidine HCl buffer (GuHCl) treatment to solubilize strongly-bound sEVs (Fig S3A) [42]. We quantified total sEV and characterised the sEV tetraspanin profile in conditioned media, and the 0.5M NaCl and GuHCl fractions using ExoView. The total particle count showed that EVs are both loosely bound and strongly trapped within the ECM. sEV tetraspanin profiling showed differences between these 3 EV populations.  While there was close similarity between the conditioned media and the 0.5M NaCl fraction with high abundance of CD63+/CD81+ sEVs as well as CD63+/CD81+/CD9+ in both fractions (Fig S3A). In contrast, the GuHCl fraction was particularly enriched with CD63+ and CD63+/CD81+ sEVs with very low abundance of CD9+ EVs (Fig S3A). The abundance of CD63+/CD81+ sEVs was confirmed independently by a CD63+ bead capture assay in the media and loosely bound fractions (Fig S3B).

      Results, page 7: We previously found that the serum protein prothrombin binds to the sEV surface both in the media and MVB lumen showing it is recycled in sEVs and catalyses thrombogenesis being on the sEV surface43. So we investigated whether FN can also be associated with sEV surface where it can be directly involved in sEV-cell cross-talk43.   We treated serum-deprived primary human aortic VSMCs with FN-Alexa568 and found that it was endocytosed and subsequently delivered to early and late endosomes together with fetuin A, another abundant serum protein that is a recycled sEV cargo and elevated in plaques (Figs S3C and S3D). CD63 visualisation with a different fluorophore (Alexa488) confirmed FN colocalization with CD63+ MVBs (Fig S3E). Next, we stained non-serum deprived VSMC cultured in normal growth media (RPMI supplemented with 20% FBS) with an anti-FN antibody and observed colocalization of CD63 and serum-derived FN.  Co-localisation was reducd likely due to competitive bulk protein uptake by non-deprived cells (Fig S3F). Notably, when we compared FN distribution in sparsely growing VSMCs versus confluent cells we found that FN intracellular spots, as well as colocalization with CD63, completely disappeared in the confluent state (Fig S3F and S3G). This correlated with nearly complete loss of CD63+/CD81+ sEV secretion by the confluent cells indicating that confluence abrogates intracellular FN trafficking as well as sEV secretion by VSMCs (Fig S3H). Finally, FN could be co-purified with sEVs from VSMC conditioned media (Fig S3I) and detected on the surface of sEVs by flow cytometry confirming its loading and secretion via sEVs (Fig 3C).

      Results: page 10  Collagen VI was the most abundant protein in VSMC-derived sEVs (Fig 7B, Table S7) and  was previously implicated in the interaction with the proteoglycan NG2[53] and suppression of cell spreading on FN[54]. To confirm the presence of collagen VI in ECM-associated sEVs we analysed sEVs extracted from the 3D matrix using 0.5M NaCl treatment and showed that both collagen VI and FN are present (Fig 7D). Next, we analysed the distribution of collagen VI using dot-blot. Alix staining was bright only upon permeabilization of sEV indicating that it is preferentially a luminal protein (Fig 7E). On the contrary, CD63 staining was similar in both conditions showing that it is surface protein (Fig 7E). Interestingly, collagen VI staining revealed that 40% of the protein is located on the outside surface with 60% in the sEV lumen (Fig 7E). 

      Discussion page 12. “In fact, we observed that an extensive secretion of sEVs effectively ceased protrusion activity; also VSMCs acquired a rounded morphology when “hovering” over the FN matrix decorated with sEVs (data not shown). Hence, it will be interesting in future studies to investigate whether sEVs can stimulate Rho activity by presenting adhesion modulators—particularly collagen VI—on their surface, thereby guiding cell directionality during invasion..”

      Discussion, page 14 “In summary, cooperative activation of integrin signalling and F-actin cytoskeleton pathways results in the secretion of sEVs which associate with the ECM and play a signalling role by controling FA formation and cell-ECM crosstalk. Further studies are needed to test these mechanisms across various cell types and ECM matrices.     

      Strengths

      The authors provide a comprehensive battery of cytoskeletal experiments to test how fibronectin and sEVs impact both sEV release and vascular smooth muscle cell migratory activation.

      We appreciate this comment reflecting our efforts to apply a range of orthogonal methods to show the role of the integrin/actin cytoskeleton in ECM-stimulated sEV secretion.

      Weaknesses

      Unfortunately, this article suffers from many weaknesses. First, the rigor of the experimental approach is low, which calls into question the merit of the conclusions. In this vein, there is a lack of proper controls or inclusion of experiments addressing alternative explanations for the phenotype or lack thereof.

      We acknowledge this comment and agree that there was not sufficient evidence to conclude that sEV secretion occurs via filopodia despite the microscopy/inhibitory data so this claim has now been excluded from the study. However we believe that our experimental data does clearly show that FN stimulates the secretion of collagenVI-loaded sEVs which are trapped by the ECM and have the capacity to modulate VSMC adhesion and invasion directionality. To support this, we have now extended the dataset in the revised version:

      (1) In addition to the use of inhibitors and live cell analysis we have added quantitative data confirming that a large proportion of CD63+ endosomes are associated with F-actin/cortactin tails and this colocalization is increased upon the inhibition of sEV secretion with 3-OMS (Fig  2D, Fig S2B).

      (2) We developed a method to extract ECM-associated sEVs and quantified/characterized these using ExoView Assays further confirming significant sEV entrapment by the ECM (Figs 3B, S3A, S3B).    

      (3) We extended the controls to confirm FN delivery to CD63+ endosomes and showed that FN recycling is stopped upon reaching cell confluence (Figs S3F, S3G and Fig S3H).

      (4) We included more intensive characterisation of human atherosclerotic plaque morphology (H&E, Masson’s trichrome staining, Orcein, elastin fibers staining) to confirm predominant accumulation of sEV in the neointima (Figs S4A, S4B and S4C). We also excluded an endothelial origin for the  CD81+ sEVs (Fig 4G).

      (5) We included individual cellular tracks to the 2D migration analysis to confirm the statistical significance and concluded that ECM-associated sEVs regulate cell invasion directionality but not the cell speed (Figs 5A and 5B).

      (6) We showed surface localisation of collagen VI on sEVs confirming that it can activate signalling pathways leading to early FA formation on the FN matrix  (Figs 7D and 7E).

      (7) We included alternative explanations for some of our data in the discussion.      

      Reviewer #2 (Public Review):

      Extracellular vesicles have recently gained significant attention across a wide variety of fields, and they have therefore been implicated in numerous physiological and pathophysiological processes. When such a discovery and an explosion of interest occur in science, there is often much excitement and hope for answers to mechanisms that have remained elusive and poorly understood. Unfortunately, there is an equal amount of hype and overstatement that may also be put forth in the name of "impact", but this temptation must be avoided so that scientists and the broader public are not misled by overreaching interpretations and statements that lack rigorous and fully convincing evidence.

      Thank you for your comment and we agree that investigating sEVs is particularly challenging due to the their heterogeneity and nano-size, as well as complex biogenesis mechanisms. ECM-associated sEVs is a very new direction for the EV field but one that is particularly relevant to the vasculature where cells must invade through a thick ECM and where the accumulation of ECM-bound EVs is a unique and documented phenomenon.  To further strengthen out conclusions we have included new data to support our statements but also excluded statements re: filopodia as the origin of sEVs, that are out of scope of our study and need to be investigated further.

      The study presented by Kapustin et al. is certainly intriguing and timely, and it offers an interesting working hypothesis for the fields of extracellular vesicles and vascular biology to consider. The authors do a reasonable job at detecting these small extracellular vesicles, though some aspects of data presentation are missing such as full Western blots with accompanying size markers for the viewer to more fully appreciate that data and comparisons being made (see Figures 1 and 7).

      We agree with the reviewer and have now included molecular weight markers (Fig 1F, 7C, 7D, S3I, S4E) and provided all original western blot scans (uncropped and unedited) to the eLife editor. 

      Much of the imaging data from cell-based experiments is strong and conducted with many cutting-edge tools and approaches. That said, the static images and the dynamic imaging fall short of being fully convincing that the small extracellular vesicles found in the neighboring extracellular matrix are indeed being deposited there via the smooth muscle cell filopodia. Many of the lines of evidence presented suggest that this could occur, but alternative hypotheses also exist that were not fully ruled out, such as the ECM-deposited vesicles were secreted more from the soma and/or the lamellipodia that are also emitted and retracted from the cells. In particular, the authors show very nice dynamic imaging (Supplementary Figure S2A and Supplemental Video S1) that is interpreted as "extracellular vesicles being released from the cell" and these are seen as "bursts" of fluorescent signal; however, none of these appear to occur in filopodia as they appear within the cell proper (a "burst" of signal vs. a more intense "streak" of signal), which would be a stronger and more consistent observation predicted by the working model proposed by the authors.

      Our live and fixed cell microscope data as well as inhibitor analysis showed that sEV secretion can be associated with the filopodia. However we agree with the reviewer that the data generated using pHluoron GFP marker clearly indicate that the majority of sEVs are secreted from the cell soma toward the ECM:

      To reflect this, we have added further changes:

      (1) Title: Matrix-associated extracellular vesicles modulate smooth muscle cell adhesion and directionality by presenting collagen VI.

      (2) Results, section title: 2. FN-induced sEV secretion is modulated by Arp2/3 and formin-dependent actin cytoskeleton remodelling

      (3)  Results, page 6 Line 27-36 “Formins and the Arp2/3 complex play a crucial role in the formation of filopodia, a cellular protrusion required for sensing the extracellular environment and cell-ECM interactions36. To test whether MVBs can be delivered to filopodia, we stained VSMCs for Myosin-10 (Myo10)37. We observed no difference between total filopodia number per cell on plastic or FN matrices (n=18±8 and n=14±3, respectively) however the presence of endogenous CD63+ MVBs along the Myo10-positive filopodia were observed in both conditions (Fig 2E, arrows). Filopodia have been implicated in sEV capture and delivery to endocytosis “hot-spots”38, so next we examined the directionality of CD63+ MVB movement in filopodia by overexpressing Myo10-GFP and CD63-RFP in live VSMCs. Importantly, we observed anterograde MVB transport toward the filopodia tip (Fig 2F and Supplementary Video S2) indicative of MVB secretion”.

      (4) Results, page 6, Ln 37-44 “We also attempted to visualise sEV release in filopodia using CD63-pHluorin where fluorescence is only observed upon the fusion of MVBs with the plasma membrane39. Using total internal reflection fluorescence microscopy (TIRF) we observed the typical “burst”-like appearance of sEV secretion at the cell-ECM interface in full agreement with an earlier report showing MVB recruitment to invadopodia-like structures in tumor cells18 (Fig S2B and Supplementary Video S1). Although we also observed an intense CD63-pHluorin staining along filopodia-like structures we were not able to detect typical “burst”-like events to confirm sEV secretion in filopodia. (Fig S2C and Supplemental Video S1)”.

      (5) Results, page 7 Ln 3 “Interestingly, CD63+ MVBs can be observed in filopodia-like structures suggesting that sEV secretion can also occur spatially via cellular protrusion-like filopodia but more studies are needed to confirm this hypothesis.”

      (6) Discussion, page 12, line 19. “Curiously we observed CD63+ MVB transport toward the filopodia tips as well as inhibition of sEV-secretion with filopodia formation inhibitors suggesting that sEV secretion can be directly linked to filopodia but further studies are needed to define the contribution of this pathway to the overall sEV secretion by cells.”

      Imaging of related human samples is certainly a strength of the paper, and the authors are commended for attempting to connect the findings from their cell culture experiments to an important clinical scenario. However, the marker selected for marking extracellular vesicles is CD81, which has been described as present on the endothelium of atherosclerotic plaques with a proposed role in the recruitment of monocytes into diseased arteries (Rohlena et al. Cardiovasc Res 2009). More data should address this potentially confounding interpretation of the signals presented in images within Figure 4.

      We thank the reviewer for this insightful comment that the  sEV marker CD81 can originate from endothelial cells in agreement with Rohlena et al., 2009.   To address this we investigated the spatial overlap between CD81 and the endothelial marker, CD31. We observed very strong CD81 staining in the intact endothelial cell (intima) layer and occasional CD31 positive cells in the neointima. Importantly, quantification of colocalization confirmed that 80% of CD81 in the neointima does not overlap with CD31 excluding an endothelial origin of these sEVs. (Fig 4G).  Moreover, we included complete morphological characterisation of the atherosclerotic plaques confirming that CD81 sEVs were primarily observed in the neointima where VSMCs constitute the cellular majority (Fig S4A, S4B, S4C and S4D).

      On a conceptual level, the idea that the small extracellular vesicles contain Type VI Collagen, and this element of their cargo is modulating smooth muscle cell migration, is an intriguing aspect of the authors' working model. Nevertheless, the evidence supporting this potential mechanism does not quite fit together as presented. It is not entirely clear how the collagen VI within the vesicles is somehow accessed by the smooth muscle cell filopodia during migration. Are the vesicles lysed open once on the extracellular matrix? If so, what is the proposed mechanism for that to occur? If not, how are the adhesion molecules on the smooth muscle cell surface engaging the collagen VI fibers that are contained within the vesicles? This aspect of the model does not quite fit together with the proposed mechanism and may be an interesting speculative interpretation, warranting further investigation, but it should not be considered a strong conclusion with sufficient convincing data supporting this idea.

      We thank the reviewer for their insightful comments regarding the mechanism by which collagen VI associated with sEVs could modulate smooth muscle cell adhesion and migration. To clarify, our new data suggest that collagen VI is predominantly present on the surface of the sEVs, as evidenced by Fig 7E. This surface localization strongly implies that collagen VI can be directly accessed by cell surface adhesion receptors, without the need for vesicle lysis or opening. While we cannot entirely rule out all alternative mechanisms, we consider vesicle rupture or lysis within the extracellular matrix to be a highly unlikely route for collagen VI exposure, given the known stability of sEVs under physiological conditions. We have added these points to clarify:

      (1) Results, page 10, Ln 45 “To confirm the presence of collagen VI in ECM-associated sEVs we analysed sEVs extracted from the 3D matrix using 0.5M NaCl treatment and showed that both collagen VI and FN are present (Fig 7D). Next, we analysed the distribution of collagen VI using dot-blot. Alix staining was bright only upon permeabilization of sEV indicating that it is preferentially a luminal protein (Fig 7E). On the contrary, CD63 staining was similar in both conditions showing that it is surface protein (Fig 7E). Interestingly, collagen VI staining revealed that 40% of the protein is located on the outside surface with 60% in the sEV lumen (Fig 7E).”

      (2) Discussion, page 13, Ln 2 “Hence, it will be interesting in future studies to investigate whether sEVs can stimulate Rho activity by presenting adhesion modulators—particularly collagen VI—on their surface, thereby guiding cell directionality during invasion..”

      (3) Discussion, page 14, Ln 30: In addition to collagen VI the unique adhesion cluster in VSMC-derived sEVS also includes EGF-like repeat and discoidin I-like domain-containing protein (EDIL3), transforming growth factor-beta-induced protein ig-h3 (TGFBI) and the lectin galactoside-binding soluble 3 binding protein (LGALS3BP) and these proteins are also directly implicated in activation of integrin signalling and cellular invasiveness85-87. Although we found that collagen VI plays the key role in sEV-induced early formation of FAs in VSMCs, it is tempting to speculate that the high sEV efficacy in stimulating FA formation is driven by cooperative action of this unique adhesion complex on the sEVs surface and targeting this novel sEV-dependent mechanism of VSMC invasion may open-up new therapeutic opportunities to modulate atherosclerotic plaque development or even to prevent undesired VSMC motility in restenosis.    .   

      (4) Abstract Figure

      On a technical level, some of the statistical analysis is not readily understood from the data presented. It is very much appreciated that the authors show many of the graphs with technical and biological replicate values in addition to the means and standard deviations (though this is not clearly stated in all figure legends). However, in figures such as Figure 5, there are bars shown and indicated to be different by statistical comparison (see panel B in Figure 5). It is not clear how the values for Group 1 (no FN, no 3-OMS, no sEV) are statistically different (denoted by three asterisks but no p value provided in the legend) than Group 3 (no FN, 3-OMS added, no sEV), when their means and standard deviations appear almost identical. If this is an oversight, this needs to be corrected. If this is truly the outcome, further explanation is warranted. A higher level of transparency in such instances would certainly go a long way in helping address the current crisis of mistrust within the scientific community and at the interface with society at-large.

      We thank the reviewer for their careful reading and important comments on the statistical analysis. We acknowledge that the technical and biological replicate data were not clearly reported in all figure legends and that the statistical approach for Figures 5A and 5B required clarification. In response, we have made several changes for greater transparency and rigor:

      First, we have now explicitly included the numbers of biological replicates (N) and technical replicates (n) in all relevant figure legends for Figures 1–7. In addition, the number of individual cell tracks is now annotated for the migration/invasion analyses, along with the mean values for each dataset.

      Upon review, we found that the original statistical analyses for Figures 5A and 5B were conducted using pooled averaged data. To address this, we have repeated the statistical tests using pooled individual cell track data, applying the Kruskal–Wallis test with Dunn’s multiple comparison correction. This more stringent approach revealed revised p-values, which are now indicated in Figures 5A and 5B.

      With these corrections, we reconfirm our major findings: In the 2D model, fibronectin (FN) coating promotes VSMC velocity, while inhibition of sEV secretion with 3-OMS leads to reduced cell speed (Fig. 5A). Addition of sEVs to the ECM had no effect on VSMC speed at baseline but did rescue cell speed and distance in the presence of 3-OMS, consistent with EVs acting primarily on invasion directionality rather than speed in both 2D and 3D models (Fig. 5A, 5D). Furthermore, sEVs continue to significantly impact VSMC invasion directionality (Figs. 5G, 5H), in agreement with previous reports in tumor cells (Sung et al., 2015).

      In summary, we have implemented the following revisions:

      (1) Figures 5A and 5B: Individual cell track data are now shown, and statistical analyses have been repeated using the Kruskal–Wallis test with Dunn’s multiple comparisons.

      (2) Figure legends and results sections: Numbers of biological and technical replicates, as well as individual data points, are now clearly stated.

      Results, page 9, line 14: The text has been updated to clarify the statistical approach and major findings as described above.

      We hope that these changes address the reviewer’s concerns and improve the transparency and reproducibility of our data presentation

      Reviewer #1 (Recommendations For The Authors):

      We are very thankful for the comprehensive review and comments which helped to improve our data.

      Figure 1.<br /> The authors clearly show that FN stimulation (immobilized or cell-derived) promotes sEV secretion via canonical integrin pathways. FN is a promigratory substrate, hence its extensive use as a cell adhesion aid; thus one could assume that simply plating on FN induces a pro-migratory phenotype (later data supports this notion). Does the addition of growth factors also increase sEV release? An endogenous function of FN is siloing of various GFs during clot formation. Also, FAK and SRC networks intersect with canonical RTK signaling in terms of promoting Rac1, CDC42 and other migration mediators. The reason I believe this is important is because the data could be interpreted in two ways: 1) FN induces pro-migration signaling and then sEVs are released, or visa versa, FN induces sEV release and migration is initiated. GF supplementation in the absence of FN would clarify this relationship.

      We thank the reviewer for this insightful comment regarding the possible role of growth factors (GFs) and the mechanistic relationship between FN stimulation, sEV secretion, and cell migration. We agree that FN is a well-established promoter of cell migration, and it is important to distinguish whether FN directly induces a pro-migratory phenotype or does so via sEV-mediated signaling.

      Our data show that FN stimulation markedly increases VSMC motility, as reflected by enhanced cell speed (Fig. 5A), an increased number of focal adhesions (Fig. 6E), and facilitated centripetal movement of FAs (Fig. 6F). Interestingly, ECM-associated sEVs appear to play a complementary but distinct role: they do not significantly affect cell migration speed (Fig. 5A) but instead guide cell invasion directionality (Figs. 5G, 5H), reduce the number of FAs per cell (Fig. 6E), and promote early peripheral FA formation (Fig. 6F). In light of these findings, we have updated our graphical abstract to reflect the unique cross-talk mediated by sEVs between VSMCs and the ECM.

      Regarding the influence of growth factors, we acknowledge that FN can bind and present different GFs, which could also contribute to changes in sEV secretion. Although our inhibition studies and integrin-blocking antibody results support a primary role for β1 integrin activation and actin assembly in triggering sEV secretion, we cannot entirely exclude the possibility that FN-bound growth factors play a role in this process. We have now incorporated this point into the discussion to address the reviewer’s suggestion.

      Discussion, page 14 , Ln 7 “Although our small inhibitors and integrin modulating antibody data clearly indicate that β1 activation triggers sEV secretion via activation of actin assembly we cannot fully rule out that FN may also be modulating growth factor activity which in turn contributes to sEV secretion by VSMCs<sup>23</sup>.  Excessive collagen and elastin matrix breakdown in atheroma has been tightly linked to acute coronary events hence it will be interesting to study the possible link between sEV secretion and plaque stability as sEV-dependent invasion is also likely to influence the necessary ECM degradation induced by invading cells<sup>96</sup>

      Figure 2.<br /> • The authors provide no evidence (or references) that SMIFH2 or CK666 halts filopodia extensions.

      Thank you for this important note. We have included the corresponding references:

      Results, page 5: “So next we tested the contribution of Arp2/3 and formins by using the small molecule inhibitors, CK666 and SMIFH2, respectively31, 32”.  

      • Is there an increase in filopodia density when plated on FN vs plastic? Similarly, if there are more filopodia present is that associated with more sEV? Please provide evidence in this regard.

      We agree that connecting the number of filopodia with the secretion level of sEVs may be an important clue if sEV secretion can be driven by FN-induced filopodia formation. However, Myosin10 staining to quantify filopodia (Fig 2E) showed no difference between VSMCs plated on plastic versus FN matrix. Therefore, we agree with the reviewer that the filopodia contribution to sEV secretion needs to be investigated further.  This idea is reflected in the following comments:

      (1) Results, page 6, Ln 29 “We observed no difference between total filopodia number per cell on plastic or FN matrices (n=18±8 and n=14±3, respectively) however the presence of endogenous CD63+ MVBs along the Myo10-positive filopodia were observed in both conditions (Fig 2E, arrows).

      (2) Results, page 6, Ln 37 “We also attempted to visualise sEV release in filopodia using CD63-pHluorin where fluorescence is only observed upon the fusion of MVBs with the plasma membrane39. Using total internal reflection fluorescence microscopy (TIRF) we observed the typical “burst”-like appearance of sEV secretion at the cell-ECM interface in full agreement with an earlier report showing MVB recruitment to invadopodia-like structures in tumor cells18 (Fig S2B and Supplementary Video S1). Although we also observed an intense CD63-pHluorin staining along filopodia-like structures we were not able to detect typical “burst”-like events to confirm sEV secretion in filopodia. (Fig S2C and Supplemental Video S1)..”

      (3) Discussion, page 12, Ln 15 : “Focal complexes either disassemble or mature into the elongated centripetally located FAs48. In turn, these mature FAs anchor the ECM to actin stress fibres and the traction force generated by actomyosin-mediated contractility pulls the FAs rearward and the cell body forward12, 13. Here we report that β1 integrin activation triggers sEV release followed by sEV entrapment by the ECM. Curiously we observed CD63+ MVB transport toward the filopodia tips as well as inhibition of sEV-secretion with filopodia formation inhibitors suggesting that sEV secretion can be directly linked to filopodia but further studies are needed to define the contribution of this pathway to the overall sEV secretion by cells..”

      As hinted above, this data could be interpreted in the light of generally inhibiting cell migration to blunt sEV shedding. Does cell confluence affect sEV release? If cells are cultured to 100% confluency this would limit filopodia formation regardless of ECM type. If sEV secretion remains elevated on FN in this culture condition it would suggest a lack of dependency on filopodia.

      We thank the reviewer for this thoughtful suggestion regarding the influence of cell confluence on sEV release and filopodia formation. To directly address this hypothesis, we performed additional experiments comparing VSMCs cultured at low and high confluency. As described in the revised Results (page 7, line 39), we found that high cellular confluency reduced FN recycling, as indicated by the marked decrease in intracellular FN-positive spots and loss of colocalization with CD63 (Figs S3F, S3G). Importantly, this was accompanied by a significant reduction in CD63+/CD81+ sEV secretion by confluent cells (Fig S3H). These results suggest that VSMC confluence, which suppresses filopodia formation, nearly abolishes both intracellular FN trafficking and sEV secretion, even in the presence of FN. Thus, under our experimental conditions, sEV secretion by VSMCs appears to be closely linked to dynamic cell–matrix interactions and is dramatically reduced when these processes are limited by confluence:

      (1) Results, page 7, Ln 39 : “Notably, when we compared FN distribution in sparsely growing VSMCs versus confluent cells we found that FN intracellular spots, as well as colocalization with CD63, completely disappeared in the confluent state (Fig S3F and S3G). This correlated with nearly complete loss of CD63+/CD81+ sEV secretion by the confluent cells indicating that confluence abrogates intracellular FN trafficking as well as sEV secretion by VSMCs (Fig S3H)..  

      • Inhibition of branched actin polymerization has been shown to reduce both exocytic and endocytic activity. Thus, it is hard to interpret the results of Fig. 2B than anything more than a generalized effect of losing actin.

      We thank the reviewer for this important point regarding the broad cellular functions of branched actin polymerization, and agree that generalized actin loss can influence both exocytic and endocytic pathways. To address this, we performed additional experiments and analyses to better define the relationship between branched actin structures and sEV-related processes in VSMCs.

      As described in the revised Results (page 6), we overexpressed ARPC2-GFP (an Arp2/3 subunit) together with F-tractin-RFP in VSMCs and carried out live-cell imaging. This approach revealed that Arp2/3 and F-actin organize into lamellipodial scaffolds at the cell cortex, as expected (Fig. S2A; Supplementary Video S2). Additionally, and more unexpectedly, we observed numerous Arp2/3– and F-actin–positive dynamic spots within the VSMC cytoplasm. These structures resemble actin comet tails seen in other systems, previously implicated in endosomal propulsion (Fig. S2A, arrow; Supplementary Video S2).

      Quantitative analysis confirmed that a substantial fraction of these dynamic F-actin/cortactin spots colocalized with CD63+ endosomes (Fig. 2D), and that these structures are indeed branched actin tails based on cortactin immunostaining. Furthermore, inhibition of SMPD3 (with 3-OMS) induced enlarged cortactin/F-actin/CD63+ complexes, morphologically similar to invadopodia (Fig. 2D, arrowheads), supporting a functional link between actin branching and MVB dynamics.

      To quantify the association, we calculated Manders’ colocalization coefficients for F-actin tails and CD63+ endosomal structures in fixed VSMCs, observing that ~50% of F-actin tails were associated with ~13% of endosomes. Upon 3-OMS treatment, this overlap increased further (Fig. S2B).

      Finally, using live-cell imaging (Fig 2C; Supplementary Video S4), we directly observed CD63+ MVBs being propelled through the cytoplasm by Arp2/3-driven actin tails, suggesting a mechanistic role for branched actin assembly in MVB intracellular transport, rather than a generalized effect of actin disruption alone.

      We believe these combined data reinforce a more specific mechanistic role for Arp2/3-mediated branched actin in MVB/endosome transport and, consequently, in sEV secretion in VSMCs—over and above an indirect effect of global actin loss. We hope these additional experiments and quantitative analyses address the reviewer’s concern and clarify the functional relevance of branched actin structures to sEV trafficking:

      (1) Results, page 6, Ln 3 “As regulators of branched actin assembly, the Arp2/3 complex and cortactin are thought to contribute to sEV secretion in tumour cells by mediating MVB intracellular transport and plasma membrane docking[28, 33]. Therefore, we overexpressed the Arp2/3 subunit, ARPC2-GFP and the F-actin marker, F-tractin-RFP in VSMCs and performed live-cell imaging. As expected, Arp2/3 and F-actin bundles formed a distinct lamellipodia scaffold in the cellular cortex (Fig S2A and Supplementary Video S2). Unexpectedly, we also observed numerous  Arp2/3/F-actin positive spots moving  through the VSMC cytoplasm that resembled previously described endosome actin tails observed in Xenopus eggs[33] and parasite infected cells where actin comet tails propel parasites via filopodia to neighbouring cells[34, 35] (Fig S2A, arrow, and Supplementary Video S2). Analysis of the intracellular distribution of Arp2/3 and CD63-positive endosomes in VSMCs showed CD63-MVB propulsion by the F-actin tail in live cells (Fig 2C and Supplementary Video S4).”

      (2) Results, New data Fig 2D, page 6, Ln 14. “we observed numerous F-actin spots in fixed VSMCs that were positive both for F-actin and cortactin indicating that these are branched-actin tails (Fig 2D). Moreover, cortactin/F-actin spots colocalised with CD63+ endosomes and addition of the SMPD3 inhibitor, 3-OMS, induced the appearance of enlarged doughnut-like cortactin/F-actin/CD63 complexes resembling invadopodia-like structures similar to those observed in tumour cells (Fig 2D, arrowheads)[18].”

      (3) Results, New data Fig S2B, page 6, Ln 19 “To quantify CD63 overlap with the actin tail-like structures, we extracted round-shaped actin structures and calculated the thresholded Manders colocalization coefficient (Fig S2B).  We observed overlap between F-actin tails and CD63 as well as close proximity of these markers in fixed VSMCs (Fig S2B). Approximately 50% of the F-actin tails were associated with 13% of all endosomes (tM1=0.44±0.23 and tM2= 0.13±0.06, respectively, N=3). Addition of 3-OMS enhanced this overlap further (tM1=0.75±0.18 and tM2=0.25±0.09) suggesting that Arp2/3-driven branched F-actin tails are involved in CD63+ MVB intracellular transport in VSMCs”

      • In video 1 the author states (lines 8-9; pg6) "intense CD63 staining along filopodia" Although, there is some fluorescence (not strong) in these structures, there was no visible exocytic activity. This data is more suggestive that sEVs (marked by CD63) are not associated with filopodia. The following conclusion statement the authors make is overreaching given this result.

      We thank the reviewer for this careful observation and agree that the previous conclusion regarding sEV release from filopodia was overstated. In response, we have revised both the Results and Discussion sections to more accurately reflect the data..

      (1) Results, page 6, Ln37 “We also attempted to visualise sEV release in filopodia using CD63-pHluorin where fluorescence is only observed upon the fusion of MVBs with the plasma membrane39. Using total internal reflection fluorescence microscopy (TIRF) we observed the typical “burst”-like appearance of sEV secretion at the cell-ECM interface in full agreement with an earlier report showing MVB recruitment to invadopodia-like structures in tumor cells18 (Fig S2B and Supplementary Video S1). Although we also observed an intense CD63-pHluorin staining along filopodia-like structures we were not able to detect typical “burst”-like events to confirm sEV secretion in filopodia. (Fig S2C and Supplemental Video S1)..”

      (2) Discussion, page 12, Ln19 “Curiously we observed CD63+ MVB transport toward the filopodia tips as well as inhibition of sEV-secretion with filopodia formation inhibitors suggesting that sEV secretion can be directly linked to filopodia but further studies are needed to define the contribution of this pathway to the overall sEV secretion by cells.”. 

      • Fig 2D and video 2 are wholly unconvincing with regard to sEV secretion sites. The authors could use their CD63-pHluroin construct to count exocytic events in the filopodia vs the whole cell. Given the movie, I have a suspicion this would not be significant. The authors could also perform staining CD63 in non-permeabilized cells to capture and count exocytic events at the plasma membrane as well as their location between groups.

      We thank the reviewer for these constructive suggestions and their critical assessment of our current data regarding the sites of sEV secretion. We agree that our CD63-pHluorin approach clearly indicates sEV secretion events in the soma at the cell–ECM interface, while we did not observe comparable events in filopodia. Accordingly, we have clarified these points in the revised manuscript.

      (1) Results, page 6, Ln37 “We also attempted to visualise sEV release in filopodia using CD63-pHluorin where fluorescence is only observed upon the fusion of MVBs with the plasma membrane39. Using total internal reflection fluorescence microscopy (TIRF) we observed the typical “burst”-like appearance of sEV secretion at the cell-ECM interface in full agreement with an earlier report showing MVB recruitment to invadopodia-like structures in tumor cells18 (Fig S2B and Supplementary Video S1). Although we also observed an intense CD63-pHluorin staining along filopodia-like structures we were not able to detect typical “burst”-like events to confirm sEV secretion in filopodia. (Fig S2C and Supplemental Video S1)..”

      (2) Discussion, page 12, Ln19 “Curiously we observed CD63+ MVB transport toward the filopodia tips as well as inhibition of sEV-secretion with filopodia formation inhibitors suggesting that sEV secretion can be directly linked to filopodia but further studies are needed to define the contribution of this pathway to the overall sEV secretion by cells.”. 

      • Fig. 2E and video 4. Again, the conclusions drawn from this data are very strained. First, no co-localization quantification is presented on the proportion of CD63 vesicles with actin. Once again, the movie, if anything convinces the reader that 95-99% of all CD63 vesicles are not associated with actin; therefore, this is an unlikely mechanism of transport.

      We thank the reviewer for this valuable comment and for highlighting the need for quantitative co-localization analysis. In response, we developed a method to systematically quantify F-actin and CD63 co-localization in fixed VSMCs, as now presented in new Figures 2D and S2B. We acknowledge that the majority of CD63+ endosomes are not associated with F-actin, consistent with the reviewer’s interpretation. However, our quantitative data now show that a specific subpopulation of MVBs appears to utilize this actin-based mechanism for transport. We believe this addresses the concern and more accurately reflects the prevalence and significance of the mechanism described.

      (1) Results, page 6 , Ln 19. “To quantify CD63 overlap with the actin tail-like structures, we extracted round-shaped actin structures and calculated the thresholded Manders colocalization coefficient (Fig S2B).  We observed overlap between F-actin tails and CD63 as well as close proximity of these markers in fixed VSMCs (Fig S2B). Approximately 50% of the F-actin tails were associated with 13% of all endosomes (tM1=0.44±0.23 and tM2= 0.13±0.06, respectively, N=3). Addition of 3-OMS enhanced this overlap further (tM1=0.75+/-0.18 and tM2=0.25+/-0.09) suggesting that Arp2/3-driven branched F-actin tails are involved in CD63+ MVB intracellular transport in VSMCs.”

      • Are there perturbations that increase filopodia numbers? A gain of function experiment would be valuable here.

      We thank the reviewer for this important suggestion regarding the potential value of gain-of-function experiments to clarify filopodia’s contribution to sEV release. In agreement with the reviewer’s scepticism, we have removed statements linking filopodia to sEV release from both the title and abstract to avoid overinterpretation. At present, our understanding of filopodia biology and the lack of robust tools to selectively and substantially increase filopodia numbers in VSMCs prevent us from directly addressing this question through gain-of-function assays. We acknowledge that future studies using established methods—such as overexpression of filopodia-inducing proteins (e.g., mDia2 or fascin)—could provide insight into whether an increased number of filopodia affects sEV release. However, such experiments are beyond the scope of the current manuscript. We have made the following changes to clarify these points:

      (1) Results, page 6, Ln37 “We also attempted to visualise sEV release in filopodia using CD63-pHluorin where fluorescence is only observed upon the fusion of MVBs with the plasma membrane39. Using total internal reflection fluorescence microscopy (TIRF) we observed the typical “burst”-like appearance of sEV secretion at the cell-ECM interface in full agreement with an earlier report showing MVB recruitment to invadopodia-like structures in tumor cells18 (Fig S2B and Supplementary Video S1). Although we also observed an intense CD63-pHluorin staining along filopodia-like structures we were not able to detect typical “burst”-like events to confirm sEV secretion in filopodia. (Fig S2C and Supplemental Video S1)..”

      (2) Discussion, page 12, Ln19 “Curiously we observed CD63+ MVB transport toward the filopodia tips as well as inhibition of sEV-secretion with filopodia formation inhibitors suggesting that sEV secretion can be directly linked to filopodia but further studies are needed to define the contribution of this pathway to the overall sEV secretion by cells.”. 

      Figure 3<br /> • Fig 3A. The CD63 staining is strongly associated with the entire plasma membrane. How are the authors distinguishing between normal membrane shedding and bona fida sEVs based on this staining alone (?)- this is insufficient as all membrane structures are seemingly positive. Additionally, there are very few sEVs in scrutinizing the provided images. For the "sEV secretion, fold change" graphs in previous figures, could the authors provide absolute values, or an indication of what these values are in absolute terms?

      We thank the reviewer for raising this important point regarding the specificity of CD63 staining and the need to distinguish bona fide sEVs from membrane fragments or general membrane shedding. We agree that CD63 staining alone at the plasma membrane or in the extracellular matrix is not sufficient to unequivocally identify sEVs. To address this, we employed several complementary approaches to rigorously characterize ECM-associated sEVs:

      First, using high-resolution iSIM imaging, we confirmed the association of CD63-positive particles specifically with the FN-rich matrix, and demonstrated that SMPD3 knockdown significantly reduced the number of CD63+ particles in the matrix (Fig. 3B; revised from Fig. S3A).

      Second, by incubating FN matrices with purified and fluorescently labeled sEVs, we directly observed efficient entrapment of these labeled sEVs within the matrices (Fig. 3E), confirming that sEVs can interact with and be retained by the ECM.

      Third, we developed and applied a sequential extraction protocol using mild salt buffer (0.5M NaCl) and strong denaturant (4M guanidine HCl) to selectively extract ECM-associated sEVs based on the strength of their association (see new Figs. S3A and S3B). Extracted vesicles were then characterized by ExoView analysis, which demonstrated a tetraspanin profile (CD63+/CD81+/CD9+) closely matching that of sEVs from conditioned media, providing evidence that these particles are true sEVs and not merely membrane debris. We also found that the more weakly bound (NaCl-extracted) fraction closely resembles media-derived sEVs, while the strongly bound (GuHCl-extracted) fraction is more enriched in CD63+ and CD63+/CD81+ sEVs but contains very few CD9+ vesicles, further supporting distinct extracellular vesicle subpopulations within the ECM.

      In addition, the abundance of CD63+/CD81+ sEVs in both media and ECM-derived fractions was independently validated by CD63 bead-capture assay (Fig. S3B).

      We hope these clarifications and the expanded data set address the reviewer’s concerns about sEV identification and quantification in the extracellular matrix:

      (1) Results, page 7, Ln 16. To quantify ECM-trapped sEVs we applied a modified protocol for the sequential extraction of extracellular proteins using salt buffer (0.5M NaCl) to release sEVs which are loosely-attached to ECM via ionic interactions, followed by 4M guanidine HCl buffer (GuHCl) treatment to solubilize strongly-bound sEVs (Fig S3A) 42. We quantified total sEV and characterised the sEV tetraspanin profile in conditioned media, and the 0.5M NaCl and GuHCl fractions using ExoView. The total particle count showed that EVs are both loosely bound and strongly trapped within the ECM. sEV tetraspanin profiling showed differences between these 3 EV populations.  While there was close similarity between the conditioned media and the 0.5M NaCl fraction with high abundance of CD63+/CD81+ sEVs as well as CD63+/CD81+/CD9+ in both fractions (Fig S3A). In contrast, the GuHCl fraction was particularly enriched with CD63+ and CD63+/CD81+ sEVs with very low abundance of CD9+ EVs (Fig S3A). The abundance of CD63+/CD81+ sEVs was confirmed independently by a CD63+ bead capture assay in the media and loosely bound fractions (Fig S3B).

      • A control of fig 3b would be helpful to parse out random uptake of extracellular debris verses targeted sEV internalization. It would be helpful if the authors added particles of similar size to that of the sEVs to test whether these structures are endocytosed/micropinocytosed at similar levels.

      We thank the reviewer for this useful suggestion regarding the need for better controls to distinguish specific sEV uptake from nonspecific internalization of extracellular debris or similarly sized particles. As a comparison, in our study we analyzed the uptake of both sEVs and serum proteins such as fibronectin and fetuin-A (Figs S3C and S3D), and observed similar patterns of intracellular trafficking. However, we acknowledge that inert nanoparticles or beads of a similar size to sEVs could serve as potential controls to assess nonspecific micropinocytosis or endocytosis.

      It is important to note, however, that the uptake of sEVs is strongly influenced by their surface protein composition and the so-called “protein corona.” Recent work from Prof. Khuloud T. Al-Jamal’s group underscores that exosome uptake mechanisms may be highly specific (Liam-Or et al., 2024), and studies from Mattias Belting’s lab have also shown the importance of heparan sulfate proteoglycans in exosome endocytosis (Cerezo-Magana et al., 2021). As a result, uptake comparisons with inert particles or beads may not fully recapitulate the specificity of sEV internalization, and distinct nanoparticle classes may rely on different uptake pathways.

      Figure 4<br /> • Fig. 4E,F,G. How are the authors determining the neointima and media compartments without ancillary staining for basement membrane or endothelial markers? Anatomic specific markers need to be incorporated here for the reader to evaluate the specificity of the FN and CD81 staining. It is also hard to understand the severity of the atherosclerotic lesion without a companion H&E cross section.

      We thank the reviewer for highlighting the need for more rigorous characterization of atherosclerotic lesion architecture and anatomical compartments in our study. In response, we have incorporated additional histological analyses and now provide ancillary staining and companion images to enable clear identification of the neointima and medial compartments, as well as to assess lesion severity (see new Figs S4A–S4D):

      (1)Results, page  8, Ln 28. . “To test if FN associates with sEV markers in atherosclerosis, we investigated the spatial association of FN with sEV markers using the sEV-specific marker CD81. Staining of atherosclerotic plaques with haematoxylin and eosin revealed well-defined regions with the neointima as well as tunica media layers formed by phenotypically transitioned or contractile VSMCs, respectively (Fig S4A). Masson's trichrome staining of atherosclerotic plaques showed abundant haemorrhages in the neointima, and sporadic haemorrhages in the tunica media (Fig S4B). Staining of atherosclerotic plaques with orcein indicated weak connective tissue staining in the atheroma with a confluent extracellular lipid core, and strong specific staining at the tunica media containing elastic fibres which correlated well with the intact elastin fibrils in the tunica media (Figs S4C and S4D). Using this clear morphological demarcation, we found that FN accumulated both in the neointima and the tunica media where it was significantly colocalised with the sEV marker, CD81 (Fig. 4D, 4E and 4F). Notably CD81 and FN colocalization was particularly prominent in cell-free, matrix-rich plaque regions (Figs. 4E and 4F).”

      • Figs s4c, S4d- proper controls are not provided. Again, a non-FN internalization control as well as a 4oC cold block negative control is required to interpret this data.

      We thank the reviewer for this valuable suggestion. To enhance the rigor of our internalization assays, we have now included several additional controls using alternative treatments, fluorophore combinations, and internalization conditions:

      a) We performed FN-Alexa568 uptake assays, followed by immunostaining for CD63 with a distinct fluorophore (Alexa488), to confirm the colocalization of internalized FN with CD63+ endosomal compartments in VSMCs (new Fig. S3E).

      b) We also stained VSMCs, cultured under normal growth conditions, with an anti-FN antibody to visualize intracellular serum-derived FN and again observed colocalization with CD63 (new Figs. S3F and S3G). Notably, in cells grown to confluence, we observed a complete loss of intracellular FN staining and FN/CD63 colocalization, suggesting that FN recycling is prominent in sparse, motile cells, but not in confluent populations.

      These additional controls strengthen our conclusions regarding FN internalization pathways and the conditions under which FN trafficking to the endosomal system occurs:

      (1) Results, page 7, Ln 31  We treated serum-deprived primary human aortic VSMCs with FN-Alexa568 and found that it was endocytosed and subsequently delivered to early and late endosomes together with fetuin A, another abundant serum protein that is a recycled sEV cargo and elevated in plaques (Figs S3C and S3D). CD63 visualisation with a different fluorophore (Alexa488) confirmed FN colocalization with CD63+ MVBs (Fig S3E). Next, we stained non-serum deprived VSMC cultured in normal growth media (RPMI supplemented with 20% FBS) with an anti-FN antibody and observed colocalization of CD63 and serum-derived FN.  Co-localisation was reduced likely due to competitive bulk protein uptake by non-deprived cells (Fig S3F). Notably, when we compared FN distribution in sparsely growing VSMCs versus confluent cells we found that FN intracellular spots, as well as colocalization with CD63, completely disappeared in the confluent state (Fig S3F and S3G)..

      • Can the authors please provide live and fixed imaging of FN and CD63-mediate filopodial secretion to amply support their conclusions.

      We have observed CD63 MVBs in both fixed (Fig 2E) and live VSMCs (Fig 2F) yet we agree that further studies are required to establish the contribution of filopodia to sEV secretion. Therefore, we have added the following changes:

      (1) Results, page 6, Ln37 “We also attempted to visualise sEV release in filopodia using CD63-pHluorin where fluorescence is only observed upon the fusion of MVBs with the plasma membrane39. Using total internal reflection fluorescence microscopy (TIRF) we observed the typical “burst”-like appearance of sEV secretion at the cell-ECM interface in full agreement with an earlier report showing MVB recruitment to invadopodia-like structures in tumor cells18 (Fig S2B and Supplementary Video S1). Although we also observed an intense CD63-pHluorin staining along filopodia-like structures we were not able to detect typical “burst”-like events to confirm sEV secretion in filopodia. (Fig S2C and Supplemental Video S1)..”

      (2) Discussion, page 12, Ln19 “Curiously we observed CD63+ MVB transport toward the filopodia tips as well as inhibition of sEV-secretion with filopodia formation inhibitors suggesting that sEV secretion can be directly linked to filopodia but further studies are needed to define the contribution of this pathway to the overall sEV secretion by cells.”. 

      Figure 5

      • Fig. 5A,B. The authors claim that sEV supplementation enhances VSMC migration speed and distance. The provided graphs show only a marginal increase in speed with sEV addition (A) but, concerningly, there is a four-star significant difference between the FN condition compared with FN+sEV (B) while the means appear the same. How are these conditions statistically different? The statistics seem off for these comparisons.

      We thank the reviewer for highlighting concerns regarding the statistical analysis in Figures 5A and 5B. In response, we have carefully re-examined our data and statistical approach to ensure accuracy and transparency.

      First, we have now included all individual cell migration tracks in the data representation for these figures. The statistical tests were repeated using the Kruskal–Wallis test with Dunn’s multiple comparison correction across all groups. This more stringent analysis confirmed our key findings: fibronectin (FN) stimulates VSMC migration speed, while inhibition of sEV secretion (with 3-OMS) reduces cellular speed (Fig. 5A). Addition of exogenous ECM-associated sEVs modestly restored cell speed in the presence of 3-OMS, but had no effect on baseline migration speed in 2D or 3D models (Figs. 5A, 5D).

      Regarding the four-star significance observed in the original Fig. 5B, the previous result reflected an analysis based on pooled group averages, which may have overstated marginal differences. The revised analysis, based on individual cell tracks, does not support a substantial difference between FN and FN+sEV groups. The revised p-values and comparisons are now provided directly on the figures and described in the figure legends. We also clearly report the numbers of biological replicates, technical replicates, and individual data points for every condition.

      Further, the modest effect of ECM-associated sEVs on speed is consistent with our observation that sEVs influence invasion directionality rather than baseline migration velocity, in agreement with previous findings in tumor models (Sung et al., 2015).

      The manuscript has been revised accordingly, with updates in:

      (1) Figures 5A and 5B: Individual cell track data are now shown, and statistical analyses have been repeated using the Kruskal–Wallis test with Dunn’s multiple comparisons.

      (2) Figure legends and results sections: Numbers of biological and technical replicates, as well as individual data points, are now clearly stated.

      (3) Results, page 9, line 14:  “FN as a cargo in sEVs promotes FA formation in tumour cells and increases cell speed14, 15. As we found that FN is loaded into VSMC-derived sEVs we hypothesized that ECM-entrapped sEVs can enhance cell migration by increasing cell adhesion and FA formation in the context of a FN-rich ECM. Therefore, we tested the effect of sEV deposition onto the FN matrix on VSMC migration in 2D and 3D models. We found that FN coating promoted VSMC velocity and inhibition of bulk sEV secretion with 3-OMS reduced VSMC speed in a 2D single-cell migration model (Figs. 5A, 5B) in agreement with previous studies using tumour cells14, 15. However, addition of sEVs to the ECM had no effect on VSMC speed at baseline but rescued cell speed and distance in the presence of the sEV secretion inhibitor, 3-OMS suggesting the EVs are not primarily regulating cell speed (Figs 5A and 5B).”

      (4) Results, page 9, Ln 29 “Hence, ECM-associated sEVs have modest influence on VSMC speed but influence VSMC invasion directionality.”.

      We hope that these changes address the reviewer’s concerns and improve the transparency and reproducibility of our data presentation

      • Fig d-h. Generally, the magnitude of the difference between the presented conditions are biologically insignificant. Several of the graphs show a four-star difference with means that appear equivalent with overlapping error bars. Do the authors conclude that a 0.1%, or less, effect between groups is biologically meaningful?

      We thank the reviewer for drawing attention to the apparent mismatch between statistical significance and biological relevance in Figures 5d–h. In response, we have reanalyzed the data using individual cell tracks and more stringent non-parametric statistical tests, as described above. This reanalysis confirmed that the magnitude of differences in migration speed and related parameters between the groups is minimal and not biologically meaningful. Thus, we no longer claim that sEVs significantly affect VSMC migration speed under these conditions in either 2D or 3D assays. Our revised manuscript now accurately reflects this finding in both the Results and Discussion sections, and the updated figures and legends clarify the true extent of any differences observed.

      Figure 6

      • Generally, the author's logic for looking into adhesion, focal adhesion and traction forces is hard to follow. If there are sEV-mediated migration differences, then there would inexorably be focal adhesion alterations. However, the data indicates few differences brought on by sEVs, which speaks to the lack of migration differences presented in Fig. 5. Overall, the sEV migration phenotype has so little of an effect, to then search for a mechanism seems destine to not turn up anything significant.

      We thank the reviewer for highlighting the importance of connecting the observed phenotypic effects of sEVs to the investigation of adhesion and focal adhesion mechanisms. While our revised analysis confirms that sEVs have little to no effect on VSMC migration speed or distance in 2D and 3D models, we did observe a robust effect of sEVs on the directionality of cell invasion (Figs. 5G and 5H). This prompted us to look more closely at pathways involved in cell guidance rather than bulk cell motility.

      Our proteomic comparison between larger EVs (10K fraction) and sEVs (100K fraction) revealed a unique adhesion complex present specifically on the sEVs—comprising collagen VI, TGFBI, LGALS3BP, and EDIL3 (Figs. 7A–C)—each of which has previously been implicated in integrin signaling, cell adhesion, or invasion. Functional blocking and knockdown studies further identified collagen VI as a key mediator in the regulation of cell adhesion and invasion directionality influenced by sEVs (Figs. 7F and 7I).

      In response to this mechanistic insight, we have modified the graphical abstract and discussion to clarify our approach:

      We now explicitly state that our focus has shifted from analyzing baseline migration speed to mechanisms guiding invasion directionality, in line with our key phenotypic findings.We highlight that the unique adhesion cluster identified on sEVs—including collagen VI and its cooperative partners—provides a strong mechanistic rationale for examining focal adhesion dynamics and ECM interactions, even in the absence of changes in migration velocity.Discussion excerpts (pages 13–14) have been updated to reflect this rationale and to summarize the potential significance of these findings for vascular biology and disease.

      We hope this clarifies the logic underlying our approach and justifies the mechanistic studies performed in this context:

      (1) Discussion, page 13, Ln 2  “Hence, it will be interesting in future studies to investigate whether sEVs can stimulate Rho activity by presenting adhesion modulators—particularly collagen VI—on their surface, thereby guiding cell directionality during invasion.”

      (2) Discussion, page 13, Ln 30  “In addition to collagen VI the unique adhesion cluster in VSMC-derived sEVS also includes EGF-like repeat and discoidin I-like domain-containing protein (EDIL3), transforming growth factor-beta-induced protein ig-h3 (TGFBI) and the lectin galactoside-binding soluble 3 binding protein (LGALS3BP) and these proteins are also directly implicated in activation of integrin signalling and cellular invasiveness85-87. Although we found that collagen VI plays the key role in sEV-induced early formation of FAs in VSMCs, it is tempting to speculate that the high sEV efficacy in stimulating FA formation is driven by cooperative action of this unique adhesion complex on the sEVs surface and targeting this novel sEV-dependent mechanism of VSMC invasion may open-up new therapeutic opportunities to modulate atherosclerotic plaque development or even to prevent undesired VSMC motility in restenosis”.    . 

      (3) Discussion, page 14, Ln 14 “In summary, cooperative activation of integrin signalling and F-actin cytoskeleton pathways results in the secretion of sEVs which associate with the ECM and play a signalling role by controlling FA formation and cell-ECM crosstalk. Further studies are needed to test these mechanisms across various cell types and ECM matrices.     ”.    

      Figure 7<br /> • The authors need to provide additional evidence Col IV is harbored in sEVs and not a contaminant of sEV isolation as VSMCs secrete a copious amount of this in culture. For instance, IHC of isolated sEVs stained for CD63 and Col IV as well as single cell staining of the same sort.

      We thank the reviewer for this important comment regarding the specificity of collagen VI detection in sEVs. To ensure that collagen VI is associated with bona fide sEVs—rather than being a contaminant resulting from high extracellular abundance—we performed a comparative analysis of vesicles isolated from the same conditioned media. Both proteomic mass spectrometry and western blotting revealed that collagen VI was exclusively present in the small EV (100K pellet) fraction and not in the larger EVs (10K pellet), as shown in Figs. 7B and 7C. Collagen VI was further identified in sEVs extracted from the ECM using our salt/guanidine protocol (new Fig. 7D).

      Reviewer #2 (Recommendations For The Authors):

      The authors have presented a nice collection of data with strong approaches to address their hypotheses. Nevertheless, an additional section within the Discussion would be welcome in addressing the potential limitations and important caveats to be considered alongside their study. These caveats and limitations could be reshaped by additional data supporting the ideas that: (1) small extracellular vesicles can be directly observed during their secretion from filopodia, (2) CD81 labeling in tissue can be interpreted clearly as extracellular vesicles and not the cell surface of other cell types (co-staining with an endothelial cell marker such as PECAM-1 perhaps), and (3) collagen VI within the vesicles is somehow accessed by adhesion molecules on the cell surface of migrating cells.

      We thank the reviewer for these important suggestions and we have now added further studies and modified our conclusions to reflect the data more accurately:

      (1) Results. Page 6, Ln37  “We also attempted to visualise sEV release in filopodia using CD63-pHluorin where fluorescence is only observed upon the fusion of MVBs with the plasma membrane39. Using total internal reflection fluorescence microscopy (TIRF) we observed the typical “burst”-like appearance of sEV secretion at the cell-ECM interface in full agreement with an earlier report showing MVB recruitment to invadopodia-like structures in tumor cells18 (Fig S2B and Supplementary Video S1). Although we also observed an intense CD63-pHluorin staining along filopodia-like structures we were not able to detect typical “burst”-like events to confirm sEV secretion in filopodia. (Fig S2C and Supplemental Video S1)”..  

      (2) Discussion, page 12, Ln18: “Here we report that β1 integrin activation triggers sEV release followed by sEV entrapment by the ECM. Curiously we observed CD63+ MVB transport toward the filopodia tips as well as inhibition of sEV-secretion with filopodia formation inhibitors suggesting that sEV secretion can be directly linked to filopodia but further studies are needed to define the contribution of this pathway to the overall sEV secretion by cells”..

      We quantified the colocalization of CD81 and CD31 to exclude the endothelial cell origin of sEVs and extended the characterisation of the atherosclerotic matrix as well as highlighting any limitations to interpretation ie re  CD81 ECM localisation: 

      (1) Results, page 8, Ln 43 “An enhanced expression of CD81 by endothelial cells in early atheroma has been previously reported so to study the contribution of CD81+ sEVs derived from endothelial cells  we investigated the localisation of CD31 and CD8145. In agreement with a previous study, we found that the majority of CD31 colocalises with CD81 (Thresholded Mander's split colocalization coefficient 0.54±0.11, N=6) indicating that endothelial cells express CD81 (Fig 4G)45. However, only a minor fraction of total CD81 colocalised with CD31 (Thresholded Mander's split colocalization coefficient 0.24±0.06, N=6) confirming that the majority of CD81 in the neointima is originating from the most abundant VSMCs.. 

      (2) Results, page 8, Ln 28: “To test if FN associates with sEV markers in atherosclerosis, we investigated the spatial association of FN with sEV markers using the sEV-specific marker CD81. Staining of atherosclerotic plaques with haematoxylin and eosin revealed well-defined regions with the neointima as well as tunica media layers formed by phenotypically transitioned or contractile VSMCs, respectively (Fig S4A). Masson's trichrome staining of atherosclerotic plaques showed abundant haemorrhages in the neointima, and sporadic haemorrhages in the tunica media (Fig S4B). Staining of atherosclerotic plaques with orcein indicated weak connective tissue staining in the atheroma with a confluent extracellular lipid core, and strong specific staining at the tunica media containing elastic fibres which correlated well with the intact elastin fibrils in the tunica media (Figs S4C and S4D). Using this clear morphological demarcation, we found that FN accumulated both in the neointima and the tunica media where it was significantly colocalised with the sEV marker, CD81 (Fig. 4D, 4E and 4F). Notably CD81 and FN colocalization was particularly prominent in cell-free, matrix-rich plaque regions (Figs. 4E and 4F). .”

      We showed that collagen VI is presented on the surface of sEVs:

      (1) Results, page 10, Ln43: “Collagen VI was the most abundant protein in VSMC-derived sEVs (Fig 7B, Table S7) and  was previously implicated in the interaction with the proteoglycan NG253 and suppression of cell spreading on FN54. To confirm the presence of collagen VI in ECM-associated sEVs we analysed sEVs extracted from the 3D matrix using 0.5M NaCl treatment and showed that both collagen VI and FN are present (Fig 7D). Next, we analysed the distribution of collagen VI using dot-blot. Alix staining was bright only upon permeabilization of sEV indicating that it is preferentially a luminal protein (Fig 7E). On the contrary, CD63 staining was similar in both conditions showing that it is surface protein (Fig 7E). Interestingly, collagen VI staining revealed that 40% of the protein is located on the outside surface with 60% in the sEV lumen (Fig 7E)

    1. eLife Assessment

      Decron and colleagues combine common psychiatric treatments with a probabilistic reward learning task and trial-by-trial ratings of affect, confidence, and engagement. Using computational cognitive modeling, they show that, while both treatments serve to counter negative biases in affect and confidence, cognitive distancing and antidepressant medication have dissociable effects on subjective evaluations and reward-based choice behavior. This work provides convincing evidence regarding an important line of investigation into the dynamic integration of affect, cognition, and learning.

    2. Reviewer #1 (Public review):

      Summary:

      This study examines how two common psychiatric treatments, antidepressant medication and cognitive distancing, influence baseline levels and moment-to-moment changes in happiness, confidence, and engagement during a reinforcement learning task. Combining a probabilistic selection task, trial-by-trial affect ratings, psychiatric questionnaires, and computational modeling, the authors demonstrate that each treatment has distinct effects on affective dynamics. Notably, the results highlight the key role of affective biases in how people with mental health conditions experience and update their feelings over time, and suggest that interventions like cognitive distancing and antidepressant medication may work, at least in part, by shifting these biases.

      Strengths:

      (1) Addresses an important question: how common psychiatric treatments impact affective biases, with potential translational relevance for understanding and improving mental health interventions.

      (2) The introduction is strong, clear, and accessible, making the study approachable for readers less familiar with the underlying literature.

      (3) Utilizes a large sample that is broadly representative of the UK population in terms of age and psychiatric symptom history, enhancing generalizability.

      (4) Employs a theory-driven computational modeling framework that links learning processes with subjective emotional experiences.

      (5) Uses cross-validation to support the robustness and generalizability of model comparisons and findings.

      Weaknesses:

      The authors acknowledge the limitations in the discussion section.

      Additional questions:

      (1) Group Balance & Screening for Medication Use: How many participants in the cognitive distancing and control groups were taking antidepressant medication? Why wasn't medication use included as part of the screening to ensure both groups had a similar number of participants taking medication?

      (2) Assessment of the Practice of Cognitive Distancing: Is there a direct or more objective method to evaluate whether participants actively engaged in cognitive distancing during the task, and to what extent? Currently, the study infers engagement indirectly through the outcomes, but does not include explicit measures of participants' use of the technique. Would including self-report check-ins throughout the task, asking participants whether they were actively engaging in cognitive distancing, have been useful? However, including frequent self-report check-ins would increase procedural differences between groups, making perhaps the tasks less comparable beyond the intended treatment manipulation. Maybe incorporating a question at the end of the task, asking how much they engaged in cognitive distancing, could offer a useful measure of subjective engagement without overly disrupting the task flow.

      Conclusion:

      This study advances our understanding of the mechanisms underlying mental health interventions. The combination of computational modeling with behavioral and affective data offers a powerful framework for understanding how treatments influence affective biases and dynamics. These findings are of broad interest across clinical and mental health sciences, cognitive and affective research, and applied translational fields focused on improving psychological well-being.

    3. Reviewer #2 (Public review):

      In this paper, Dercon and colleagues report on affective changes related to components of reinforcement learning and on the effects of brief training in psychological distancing and participants' self-reported antidepressant use. About 1,000 participants were assessed online, with half randomized to a brief training in psychological distancing with reminders to distance during the subsequent reinforcement learning (RL) task. Participants completed a battery of psychiatric questionnaires and answered questions about medication use, with about 14% of participants reporting current antidepressant use. All participants completed the RL task and rated their happiness, confidence, engagement, and (at the end of each block of trials) fatigue throughout the task. Computational models were used to estimate trial-by-trial values of expected value and prediction error and to assess the effects of these values on self-reported affect. Participants' affect ratings decreased over time, and participants with higher psychiatric symptoms (particularly anxiety/depressive symptoms) showed lower baseline affect and greater decreases in affect. Participants randomized to the distancing intervention and who reported antidepressant use differed in their affective ratings: distancing reduced the reductions in happiness over time, while antidepressant use was related to higher baseline happiness. Distancing also reduced the effects of trial-level expected value on happiness, while antidepressant use was related to a more enduring effect of trial-level values on happiness.

      Overall, this is an interesting paper with strong methods and an interesting approach. That psychiatric symptoms and cognitive distancing are related to affective ratings is not terribly novel; the relationship with antidepressant use is a bit more novel. The extension of the mood model to an RL task is a new contribution, as is the relationship of these effects with psychologically related manipulations.

      One major concern is the inference that can be drawn from the two "treatments": one is a brief instruction in a component of psychotherapy, and one is ongoing use of medication. The former is not a treatment in and of itself, but a (presumably) active ingredient of one. How to interpret antidepressant use as measured is unclear, e.g., are the residual symptoms in these participants an early indicator of treatment resistance? Are these participants with better access to health care? Are they receiving antidepressants for a mental health issue?

      There are some clarifications needed in the affect model as well.

    4. Reviewer #3 (Public review):

      Summary:

      The present manuscript investigates and proposes different mechanisms for the effects of two therapeutic approaches - cognitive distancing technique and use of antidepressants - on subjective ratings of happiness, confidence, and task engagement, and on the influence of such subjective experiences on choice behavior. Both approaches were found to link to changes in affective state dynamics in a choice task, specifically reduced drift (cognitive distancing) and increased baseline (antidepressant use). Results also suggest that cognitive distancing may reduce the weighing of recent expected values in the happiness model, while antidepressant use may reduce forgetting of choices and outcomes.

      Strengths:

      This is a timely topic and a significant contribution to ongoing efforts to improve our mechanistic understanding of psychopathology and devise effective novel interventions. The relevance of the manuscript's central question is clear, and the links to previous literature and the broader field of computational psychiatry are well established. The modelling approaches are thoughtful and rigorously tested, with appropriate model checks and persuasive evidence that modelling complements the theoretical argument and empirical findings.

      Weaknesses:

      Some vagueness and lack of clarity in theoretical mechanisms and interpretation of results leave outstanding questions regarding (a) the specific links drawn between affective biases, therapies aimed at mitigating them, and mental health function, and (b) the structure and assumptions of the modelling, and how they support the manuscript's central claims. Broadly, I do not fully understand the distinction between how choice behavior vs. affect are impacted separately or together by cognitive distancing. Clarification on this point is needed, possibly through a more explicit proposal of a mechanism (or several alternative mechanisms?) in the introduction and more explicit interpretation of the modelling results in the context of the cyclical choice-affect mechanism.

      (1) Theoretical framework and proposed mechanisms

      The link between affective biases and negative thinking patterns is a bit unclear. The authors seem to make a causal claim that "affective biases are precipitated and maintained by negative thinking patterns", but it is unclear what precisely these negative patterns are; earlier in the same paragraph, they state that affective biases "cause low mood" and possibly shift choices toward those that maintain low mood. So the directionality of the mechanism here is unclear - possibly explaining a bit more of the cyclic nature of this mechanism, and maybe clarifying what "negative thinking patterns" refer to will be helpful.

      More generally, this link between affect and choices, especially given the modelling results later on, should be clarified further. What is the mechanism by which these two impact each other? How do the models of choice and affect ratings in the RL task test this mechanism? I'm not quite sure the paper answers these questions clearly right now.

      The authors also seem to implicitly make the claim that symptoms of mental ill-health are at least in part related to choice behavior. I find this a persuasive claim generally; however, it is understated and undersupported in the introduction, to the point where a reader may need to rely on significant prior knowledge to understand why mitigating the impact of affective biases on choice behavior would make sense as the target of therapeutic interventions. This is a core tenet of the paper, and it would be beneficial to clarify this earlier on.

      It would be helpful to interpret a bit more clearly the findings from 3.4. on decreased drift in all three subjective assessments in the cognitive distancing group. What is the proposed mechanism for this? The discussion mentions that "attenuated declines [...] over time, [add] to our previously reported findings that this psychotherapeutic technique alters aspects of reward learning" - but this is vague and I do not understand, if an explanation for how this happens is offered, what that explanation is. Given the strong correlation of the drift with fatigue, is the explanation that cognitive distancing mitigates affect drift under fatigue? Or is this merely reporting the result without an interpretation around potential mechanisms?

      (Relatedly, aside from possibly explaining the drift parameter, do the fatigue ratings link with choice behavior in any way? Is it possible that the cognitive distancing was helping participants improve choices under fatigue?)

      (2) Task Structure and Modelling

      It is unclear what counted as a "rewarding" vs. "unrewarding" trial in the model. From my understanding of the task description, participants obtained positive or no reward (no losses), and verbal feedback, Correct/Incorrect. But given the probabilistic nature of the task, it follows that even some correct choices likely had unrewarding results. Was the verbal feedback still "Correct" in those cases, but with no points shown? I did not see any discussion on whether it is the #points earned or the verbal feedback that is considered a reward in the model. I am assuming the former, but based on previous literature, likely both play a role; so it would be interesting - and possibly necessary to strengthen the paper's argument - to see a model that assigns value to positive/negative feedback and earned points separately.

      From a theory perspective, it's interesting that the authors chose to assume separate learning rates for rewarding and non-rewarding trials. Why not, for example, separate reward sensitivity parameters? E.g., rather than a scaling parameter on the PE, a parameter modifying the r term inside the PE equation to, perhaps, assign different values to positive and zero points? (While I think overall the math works out similarly at the fitting time, this type of model should be less flexible on scaling the expected value and more flexible on scaling the actual #points / the subjective experience of the obtained verbal feedback, which seems more in line with the theoretical argument made in the introduction). The introduction explicitly states that negative biases "may cause low mood by making outcomes appear less rewarding" - which in modelling equations seems more likely to translate to different reward-perception biases, and not different learning rates. Alternatively, one might incorporate a perseveration parameter (e.g., similar to Collins et al. 2014) that would also accomplish a negative bias. Either of these two mechanisms seems perhaps worth testing out in a model - especially in a model that defines more clearly what rewarding vs. unrewarding may mean to the participant.

      If I understand correctly, the affect ratings models assume that the Q-value and the PE independently impact rating (so they have different weights, w2 and w3), but there is no parameter allowing for different impact for perceived rewarding and unrewarding outcomes? (I may be misreading equations 4-5, but if not, Q-value and PE impact the model via static rather than dynamic parameters.) Given the joint RL-affect fit, this seems to carry the assumption that any perceptual processing differences leading to different subjective perceptions of reward associated with each outcome only impact choice behavior, but not affect? (whereas affect is more broadly impacted, if I'm understanding this correctly, just by the magnitude of the values and PEs?) This is an interesting assumption, and the authors seem to have tested it a bit more in the Supplementary material, as shown in Figure S4. I'm wondering why this was excluded from the main text - it seems like the more flexible model found some potentially interesting differences which may be worth including, especially as they might shed additional insight into the influence of cognitive distancing on the cyclical choice-affect mechanisms proposed.

      Minor comments:

      If fatigue ratings were strongly associated with drift in the best-fitting model (as per page 13), I wonder if it would make sense to use those fatigue ratings as a proxy rather than allow the parameter to vary freely? (This does not in any way detract from the winning model's explanatory power, but if a parameter seems to be strongly explained by a variable we have empirical data for, it's not clear what extra benefit is earned by having that parameter in the model).

    1. eLife Assessment

      This important study describes the development and validation of an Automated Reproducible Mechano-stimulator (ARM), a tool for standardizing and automating tactile behavior experiments. The data supporting the use of the ARM system are compelling, and demonstrate that by removing experimenter effects on animals, it reduces variability in various parameters of stimulus application. Moreover, the authors demonstrate that any noise emitted from the ARM does not induce an increased stress state. Once commercially available, the ARM system has the potential to increase experimental reproducibility between laboratories in the somatosentation and pain fields.

    2. Reviewer #1 (Public review):

      Allodynia is commonly measured in the pain field using von Frey filaments, which are applied to a body region (usually hindpaw if studying rodents) by a human. While humans perceive themselves as being objective, as the authors noted, humans are far from consistent when applying these filaments. Not to mention, odors from humans, including of different sexes, can influence animal behavior. There is thus a major unmet need for a way to automate this tedious von Frey testing process, and to remove humans from the experiment. I have no major scientific concerns with the study, as the authors did an outstanding job of comparing this automated system to human experimenters in a rigorous and quantitative manner. They even demonstrated that their automated system can be used in conjunction with in vivo imaging techniques.

      While it is somewhat unclear how easy and inexpensive this device will be, I anticipate everyone in the pain field will be clamoring to get their hands on a system like this. And given the mechanical nature of the device, and propensity for mice to urinate on things, I also wonder how frequently the device breaks/needs to be repaired. Perhaps some details regarding cost and reliability of the device would be helpful to include, as these are the two things that could make researchers hesitant to adopt immediately.

      The only major technical concern, which is easy to address, is whether the device generates ultrasounic sounds that rodents can hear when idle or operational, across the ultrasonic frequencies that are of biological relevance (20-110 kHz). These sounds are generally alarm vocalizations and can create stress in animals, and/or serve as cues of an impending stimulus (if indeed they are produced by the device).

      Comments on revisions:

      Was Fig. 1 updated with the new apparatus design? i.e. to address issue of animal waste affecting function over time?

      I have no further comments.

    3. Reviewer #2 (Public review):

      Summary:

      Burdge, Juhmka et al describe the development and validation of a new automated system for applying plantar stimuli in rodent somatosensory behavior tasks. This platform allows the users to run behavior experiments remotely, removing experimenter effects on animals and reducing variability in manual application of stimuli. The system integrates well with other automated analysis programs that the lab has developed, providing a complete package for standardizing behavior data collection and analysis. The authors present extensive validations of the system against manual stimulus application. Proof of concept studies also show how the system can be used to better understand the effect of experimenters on behavior and the effects of how stimuli are presented on the micro features of the animal withdrawal response.

      Strengths:

      If widely adopted, ARM has the potential to reduce variability in plantar behavior studies across and within labs and provide a means to standardize results. It provides a way to circumvent the confounds that humans bring into performing sensitive plantar behavior tests (e.g. experimenter odors, experince, physical abilities, variation in stimulus application, sex). Furthermore, it can be integrated with other automated platforms, allowing for quicker analysis and potentially automated stimulus delivery. The manuscript also presents some compelling evidence on the effects of stimulus application time and height on withdrawals, which can potentially help labs that are manually applying stimuli standardize applications. The system is well validated and the results are clear and convincingly presented. Claims are well supported by experimental evidence.

      Weaknesses:

      ARM seems like a fantastic system that could be widely adopted, a primary weakness is that it is not currently available to other labs. This will eventually be remedied as it is commercialised.

    4. Reviewer #3 (Public review):

      Summary:

      This report describes the development and initial applications of the ARM (Automated Reproducible Mechano-stimulator), a programmable tool that delivers various mechanical stimuli to a select target (most frequently, a rodent hindpaw). Comparisons to traditional testing methods (e.g., experimenter application of stimuli) reveal that the ARM reduces variability in the anatomical targeting, height, velocity, and total time of stimulus application. Given that the ARM can be controlled remotely, this device was also used to assess effects of experimenter presence on reflexive responses to mechanical stimulation. Although not every experimenter had notable sex-dependent effects on animal behavior, use of the ARM never had this effect (for obvious reasons!). Lastly, the ARM was used to stimulate rodent hindpaws while measuring neuronal activity in the basolateral nucleus of the amygdala (BLA), a brain region that is associated with the negative affect of pain. This device, and similar automated devices, will undoubtedly reduce experimenter-related variability in reflexive mechanical behavior tests; this may increase experimental reproducibility between laboratories who are able to invest in this type of technology.

      Strengths:

      Clear examples of variability in experimenter stimulus application are provided and then contrasted with uniform stimulus application that is inherent to the ARM.

      The ARM is able to quickly oscillate between delivery of various mechanical stimuli; this is advantageous for experimental efficiency.

      New additions to the ARM and PAWS platforms have been methodically tested to ensure reproducibility and reliability.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      (1) Given the mechanical nature of the device and the propensity for mice to urinate on things, I also wonder how frequently the device breaks/needs to be repaired. Perhaps some details regarding the cost and reliability of the device would be helpful to include, as these are the two things that could make researchers hesitant to adopt immediately.

      We thank the reviewer for their astute observations. We also noted the problem of mouse waste and incorporated this concern into the redesign we mention in the text.

      “Mouse waste getting on mechanical parts was found to be a major concern for the initial version of the device. As part of the redesign, the linear stages were moved out from under the mice to avoid this problem. Despite this problem, the original version of the device has not had any of its stages break down yet. A common problem though was that stimulus tips would blunt or break if they hit the mesh of the mesh table, requiring replacement. This has been solved in the latest version through a new feature where the mesh is detected via the force sensor, prompting immediate stimulus withdrawal, avoiding damage.”

      In regards to cost and adoption, we have added this sentence to the final line of the discussion:

      “To promote wide adaptation of this device across as many labs as possible, a company, Tactorum Inc., has been formed.”

      (2) The only major technical concern, which is easy to address, is whether the device generates ultrasonic sounds that rodents can hear when idle or operational, across the ultrasonic frequencies that are of biological relevance (20-110 kHz). These sounds are generally alarm vocalizations and can create stress in animals, and/or serve as cues of an impending stimulus (if indeed they are produced by the device).

      The reviewer brings up an interesting question. The ARM does not make a lot of noise, but some of the noise it emits does range into the 20-110 kHz range, though besides this does not qualitatively have other similarities to a mouse vocalization. Based on this we tested whether the noise produced by the ARM causes stress in naïve mice.

      “A concern was raised that the noise of the ARM may cause stress in the mice tested. To test this, the open field test was performed with naïve mice (n=10) 2 feet from the ARM while the ARM either sat silent or ran through its habituation program, producing noise. The mouse's center point movement was then tracked in relation to the chamber, its edges, and center. No significant differences were found in distance traveled, center entrances, center, time in center, and latency to center entrance based on a student’s two-tailed t-test (Figure S1D-G). Based on this, neither stress nor locomotion differences were detected by this test, indicating the ARM does not induce an increased stress state due to its noise, even in non-habituated mice.”

      (3) This sentence in the intro may be inaccurate: "or the recent emergence of a therapeutic targeting voltage-gated sodium channels, that block pain in both rodents and humans such as VX-548 for NaV1.8 (Jones 2023)" Despite extensive searching, I have been unable to find a reference showing that VX-548 is antinociceptive in rodents (rats or mice). As for why this is the case, I do not know. One speculation: this drug may be selective for the human Nav1.8 channel (but again, I have found no references comparing specificity on human vs rodent Nav1.8 channels). To not mislead the field into thinking VX-548 works for rodents and humans, please remove "both rodents and" from the sentence above (unless you find a reference supporting VX-548 as being effective in pain assays with rodents. There is a PK/PD paper with rodents, but that only looks at drug metabolism, not efficacy with pain assays).

      We agree with the reviewer and have removed mention of the new Nav1.8 therapeutic also working in rodents.

      (4) In the intro paragraph where variability in measuring mechanical stimuli is described, there is a new reference from the Stucky lab that further supports the need for an automated way to measure allodynia, as they also found variability between experimenters. This would be a relevant reference to include: Rodriguez Garcia (2024) PMID: 38314814.

      Thanks to the reviewer for this relevant citation and we have updated the text to incorporate this:

      “Recent studies utilizing the manual highspeed analysis of withdrawal behavior analysis developed by Abdus-Saboor et al. 2019 has reproduced this sizable experimenter effect using the new technique. (Rodríguez García 2024)”

      (5) "a simple sin wave motion": should be "sine", correct throughout (multiple instances of "sin")

      Corrections made where relevant.

      Reviewer #2 (Public review):

      (1) ARM seems like a fantastic system that could be widely adopted, but no details are given on how a lab could build ARM, thus its usefulness is limited.

      The reviewer raises a good point, unfortunately the authors are constrained by university policies around patent law. That said efforts are being made to make the ARM widely available to interested researchers. As mentioned above to Reviewer 1’s comments, we end the discussion section with this sentence:

      “To promote wide adaptation of this device across as many labs as possible, a company, Tactorum Inc., has been formed.”

      (2) The ARM system appears to stop short of hitting the desired forces that von Frey filaments are calibrated toward (Figure 2). This may affect the interpretation of results.

      The reviewer gives an important observation. We amended the text to include more clarity on the max forces induced, and comments on causes beyond the delivery mechanism. It should be noted that a newly bought fresh set of von Frey’s was used.

      “With the same 1.4 and 2 g von Frey filaments Researcher 1 delivered max average forces of 1.5 g and 2.7 g, and Researcher 2 1.35 g and 2.4 g. The ARM delivered average max forces closest to the targeted forces, with 1.36 g and 1.9 g. (Figure 2C) Some of the error observed could be due to the error rate (+/- 0.05 g) in the force gauge and the von Frey set used.”

      (3) The authors mention that ARM generates minimal noise; however, if those sounds are paired with stimulus presentation, they could still prompt a withdrawal response. Including some 'catch' trials in an experiment could test for this.

      The reviewer makes a very useful suggestion that we incorporated into our carrageenan experiments. This new data can be found in Supplemental Figure 3F.

      “For the carrageenan model, three replicates of the force ramp stimulus were delivered to each paw, and catch trials were performed every 3<sup>rd</sup> trial to test whether the mice would respond to the noise of the ARM alone. During catch trials, the stimulus was delivered to the open air behind the mouse, and any movement within 5 seconds of stimulus delivery was counted as a response. These trials found a 96% response rate in true trials, with only a 7% rate in catch trials, indicating responses were not being driven by device noise.”

      (4) The experimental design in Figure 2 is unclear- did each experimenter have their own cohort of 10 mice, or was a single cohort of mice shared? If shared, there's some concern about repeat testing.

      Further clarification was added to avoid confusion on the methods used here.

      “Separate cohorts of 10 mice were used for ARM and manual delivery, with a week given between each researcher to avoid sensitization.”

      (5) In Figure 5 and S4, the order of the legends does not match the order of the graphs. This can be particularly confusing as the color scheme is not colorblind-friendly. Please consider revising the presentation of these figures.

      Corrections made where relevant.

      Reviewer #3 (Public review):

      (1) Limited details are provided for statistical tests and inappropriate claims are cited for individual tests. For example, in Figure 2, differences between researchers at specific forces are reported to be supported by a 2-way ANOVA; these differences should be derived from a post-hoc test that was completed only if the independent variable effects (or interaction effect) were found to be significant in the 2-way ANOVA. In other instances, statistical test details are not provided at all (e.g., Figures 3B, 3C, Figure 4, Figure 6G).

      We would like to thank the reviewer for pointing out the lack of clarity in the text on these statistical methods. We have added further details across the manuscript and shown below here in order to address this concern.

      “Both manual delivery and the ARM produced significant paw withdrawal percentage curves, a standard traditional measurement of mechanical sensitivity in the field (von Frey 1896, Dixon 1980, Chaplan 1994)(Figure 2E), with a 2-way ANOVA and a posthoc Tukey test detecting significant increases in comparing the 3 lower force VFH’s (0.02g, 0.07g, 0.16g) to the 2 highest force VFH’s (1g, 1.4g). This demonstrates that the ARM delivers results comparable to highly experienced researchers. However, a 2-way ANOVA and a posthoc Tukey test found that Researcher 2 elicited a significantly higher (p=0.0008) paw withdrawal frequency than Researcher 1 (Figure S2A) which corresponded with Researcher 2’s higher VFH application time as measured by the force sensor (Figure 2B).”

      “Adjustments were then made to the PAWS software to automate the measurement of withdrawal latency based on pose tracking data of the withdrawal response and the trajectory of the stimulus delivery encoded into the ARM. Testing of C57/BL6J (n=15) at baseline found significant decreases in withdrawal latency for pinprick compared to cotton swab stimuli delivered in identical ways by the ARM (Figure 3B) based on a 2-tailed student t-test.”

      “Mice injected with carrageenan (n=15) showed elevated shaking behavior (p=0.0385, 2-way ANOVA and a posthoc Tukey test) in response to pinprick stimuli in comparison to measurements at baseline (Figure 3C).”

      “Remote habituated mice showed a significant decrease (p=0.0217, 2-way ANOVA) in time to rest over the 3 days (Figure 4B), but no significant differences for any single day. The number of turns was measured for each group during the first 10 minutes of day 1 to act as a baseline, and then from 20 to 30 minutes for each day. Turn counts were then compared as a percentage of the baseline count for each group. This period was chosen as it the period when experiments start after the day of habituation on experimental days. It was found that remote-habituated mice showed significantly less turning on day 2 compared to mice habituated with a researcher present (p=0.024, 2-way ANOVA posthoc Tukey test), and that only the remote-habituated mice showed significantly decreased turning behavior on day 3 compared to day 1 (p=0.0234, 2-way ANOVA posthoc Tukey test) (Figure 4C).”

      “Sex-dependent differences were found in reflexive and affective behavioral components of the mouse withdrawal response when a researcher was present versus not for both reactions to innocuous and noxious stimuli. A 2-way ANOVA and a posthoc Tukey test found that cotton swab stimuli elicited increased male mouse reflexive paw withdrawal features, including max paw height (p=0.0413) and max paw velocity (Y-axis) (p=0.0424) when Researcher 1 was present compared to when no researcher was present (Figure 4E-F). Pinprick stimuli (Figure 4H-I) on the other hand led to increased max paw height (p=0.0436) and max paw velocity (Y-axis) (p=0.0406) in male mice compared to female mice when Researcher 1 was present.

      Analysis of the shaking behavior elicited by cotton swab and pinprick stimuli found no significant differences in shaking behavior duration (Figure 4SA-B) but found sex-dependent differences in paw distance traveled after the initial withdrawal, including during shaking and guarding behaviors. For cotton swab (Figure 4G) male mice showed significantly increased paw distance traveled compared to female mice when Researcher 2 was present (p=0.0468, 2-way ANOVA posthoc Tukey test) but not when Researcher 2 was present or no researcher was present. Pinprick stimuli also elicited sex-based increases in paw distance traveled (Figure 4J) in male mice when Researcher 2 was present compared to both male mice when no researcher was present (p=0.0149, 2-way ANOVA posthoc Tukey test) and female mice when Researcher 1 was present (p=0.0038, 2-way ANOVA posthoc Tukey test).”

      (2) In the current manuscript, the effects of the experimenter's presence on both habituation time and aspects of the withdrawal reflex are minimal for Researcher 2 and non-existent for Research 1. This is surprising given that Researcher 2 is female; the effect of experimenter presence was previously documented for male experiments as the authors appropriately point out (Sorge et al. PMID: 24776635). In general, this argument could be strengthened (or perhaps negated) if more than N=2 experiments were included in this assessment.

      The reviewer makes an important point regarding this data and the need for further experiments. We designed a new set of experiments to examine the effect of male and female researchers overall. It should be noted that this is rather noisy data given it was collected by three sets of male and female researchers over 3 weeks. That said a significant difference was found between mouse sexes when a male researcher was present. This is consistent with previous data, but as we discuss this does not invalidate previous data as researcher gender appears to be only one of the factors at work in researcher presence effects on mouse behavior, leading to individuals having the potential for greater or lesser effects than their overall gender. Our new results can be found in Figure 4K.

      “These results indicate that researcher presence at baseline can lead to significant differences in reflexive and affective pain behavior. In this case, male mice showed increased behavioral responses to both touch and pain behavior depending on whether the researcher was present. This led to sex differences in the affective and reflexive component of the withdrawal response when a researcher is present, which disappears when no researcher is present, or a different researcher is present. For this set of researchers, the female researcher elicited the greater behavioral effect. This appeared at first to contradict previous findings (Sorge 2024, Sorge 2014), but it was hypothesized that the effect of an individual researcher could easily vary compared to their larger gender group. To test this, 6 new researchers, half male and half female, were recruited and a new cohort of mice (n=15 male, n=15 female) was tested in each of their presence over the course of 3 weeks, controlling for circadian rhythms (Figure 4K). The newly added force ramp stimulus type was used for these experiments, with three replicates per trial, to efficiently measure mechanical threshold in a manner comparable to previous work. It was found that female mice showed significantly decreased mechanical threshold compared to male mice (p=0.034, Šídák's multiple comparisons test and student’s t-test) when a male researcher was present. This did not occur when a female researcher or no researcher was present. In the latter case of slight trend towards this effect was observed, but it was not significant (p=0.21), and may be the result of a single male researcher being responsible for handling and setting up the mice for all experiments.”

      “These findings indicate that sex-dependent differences in evoked pain behavior can appear and disappear based on which researcher/s are in the room. There is a trend towards male researchers overall having a greater effect, but individuals may have a greater or lesser effect on mouse behavior, independent of the gender or sex. This presents a confound that must be considered in the analysis of sex differences in pain and touch behavior which may explain some of the variation in findings from different researchers. Together, these results suggest that remote stimulus delivery may be the best way to eliminate variation caused by experimenter presence while making it easier to compare with data from researchers in your lab and others.”

      (3) The in vivo BLA calcium imaging data feel out of place in this manuscript. Is the point of Figure 6 to illustrate how the ARM can be coupled to Inscopix (or other external inputs) software? If yes, the following should be addressed: why do the up-regulated and down-regulated cell activities start increasing/decreasing before the "event" (i.e., stimulus application) in Figure 6F? Why are the paw withdrawal latencies and paw distanced travelled values in Figures 6I and 6J respectively so much faster/shorter than those illustrated in Figure 5 where the same approach was used?

      Thanks to the reviewer for bringing up this concern. We have included further text discussing this behavioral data and how it compares to previous work in this study.

      “Paw height and paw velocity were found to be consistent with data from figures 4E-I (male researcher and male mice) and 5C (stimulus intensity 2.5 and 4.5) for similar data, with slightly elevated measures of paw distance traveled and decreased paw withdrawal latency for the pinprick stimulus. This was likely caused by sensitization due to multiple stimulus deliveries over the course of the experiment, as due to logistics, 30 stimulus trials were delivered per session due to logistical constraints vs the max of 3 that were performed during previous experiments.”

      “This data indicates that the ARM is an effective tool for efficiently correlating in vivo imaging data with evoked behavioral data, including sub-second behavior. One limitation is that the neural response appears to begin slightly before stimulus impact (Figure 6F, 6SB). This was likely caused by a combination of the imprecise nature of ARM v1 paw contact detection and slight delays in the paw contact signal reaching the Inscopix device due to flaws in the software and hardware used, slowing down the signal. Improvements have been made to eliminate this delay as part of the ARM v2, which have been shown to eliminate this delay in vivo fiber photometry data recorded as part of new projects using the device.”

      (4) Another advance of this manuscript is the integration of a 500 fps camera (as opposed to a 2000 fps camera) in the PAWS platform. To convince readers that the use of this more accessible camera yields similar data, a comparison of the results for cotton swabs and pinprick should be completed between the 500 fps and 2000 fps cameras. In other words, repeat Supplementary Figure 3 with the 2000 fps camera and compare those results to the data currently illustrated in this figure.

      The reviewer makes a good point about the need for direct comparison between 500 fps and 2000 fps data. To address this we added data from same mice, from 2 weeks prior with a comparable set up. These new results can be found in Supplemental Figure 3.

      “Changes were made to PAWS to make it compatible with framerates lower than 2000 fps. This was tested using a 0.4 MP, 522 FPS, Sony IMX287 camera recording at 500 fps, and data recorded at 2000 fps by the previously used photron fastcam (Figure 3SC-F). The camera paired with PAWS was found to be sufficient to separate between cotton swab and pinprick withdrawal responses, suggesting it may be a useful tool for labs that cannot invest in a more expensive device. PAWS features measured from 500 fps video data were not significantly different from the 2000 fps data based on a 2 way ANOVA.”

      (5) In Figure 2F, the authors demonstrate that a von Frey experiment can be completed much faster with the ARM vs. manually. I don't disagree with that fact - the data clearly show this. I do, however, wonder if the framing of this feature is perhaps too positive; many labs wait > 30 s between von Frey filament applications to prevent receptive field sensitization. The fact that an entire set of ten filaments can be applied in < 50 s (< 3 s between filaments given that each filament is applied for 2 s), while impressive, may never be a feature that is used in a real experiment.

      The reviewer makes an important point about how different researchers perform these tests and the relevant timings. We have moderated the framing of these results to address this concern.

      “Further, we found that the ARM decreased the time needed to apply a stimulus 10 times to a mouse paw by 50.9% compared to manual delivery (Figure 2F). This effect size may decrease for researchers who leave longer delays between stimulus delivery, but the device should still speed up experiments by reducing aiming time and allowing researchers to quickly switch to a new mouse while waiting for the first.”

      (6) Why are different affective aspects of the hindpaw withdrawal shown in different figures? For example, the number of paw shakes is shown in Figure 3C, whereas paw shaking duration is shown in Figure 5D. It would be helpful - and strengthen the argument for either of these measures as being a reproducible, reliable measure of pain - if the same measure was used throughout.

      Thanks to the reviewer for pointing out this discrepancy. We have adjusted the figures and text to only use the Number of Paw Shakes for better consistency (Figure 5D and Figure 5-figure supplement 1C).

      (7) Is the distance the paw traveled an effective feature of the paw withdrawal (Figure 5E)? Please provide a reference that supports this statement.

      A relevant citation and discussion of this metric based on previous studies has been added.

      “Mice injected with carrageenan (n=15) showed elevated shaking behavior (p=0.0385) in response to pinprick stimuli in comparison to measurements at baseline (Figure 3C). This aligned with previous findings where PAWS has detected elevations in shaking and/or guarding behavior, examples of affective pain behavior, and post-peak paw distance traveled, which correlates with these behaviors in carrageenan pain models and has been to found to be a good measure of them in past studies (Bohic et al. 2023).”

      (8) Dedek et al. (PMID: 37992707) recently developed a similar robot that can also be used to deliver mechanical stimuli. The authors acknowledge this device's ability to deliver optogenetic and thermal stimuli but fail to mention that this device can deliver mechanical stimuli in a similar manner to the device described in this paper, even without experimenter targeting. Additional discussion of the Dedek et al. device is warranted.

      We would like to thank the reviewer for identifying  this omission. Discussion of this as well as further discussion of Dedek et al.’s automation prototyping work has been added.

      “Previous attempts at automating mechanical stimulus delivery, including the electronic von Frey (Martinov 2013) and dynamic plantar asthesiometer (Nirogi 2012), have focused on eliminating variability in stimulus delivery. In contrast to the ARM, both of these devices rely upon a researcher being present to aim or deliver the stimulus, can only deliver vFH-like touch stimuli, and only measure withdrawal latency/force threshold. Additionally, progress has been made in automating stimulus assays by creating devices with the goal of delivering precise optogenetic and thermal stimuli to the mouse’s hind paw (Dedek 2023, Schorscher-Petchu 2021). The Prescott team went farther and incorporated a component into their design to allow for mechanical stimulation but this piece appears to be limited to a single filament type that can only deliver a force ramp. As a result these devices and those previously discussed lack of customization for delivering distinct modalities of mechanosensation that the ARM allows for. Moreover, in its current form the automated aiming of some of these devices may not provide the same resolution or reliability of the ARM in targeting defined targets (Figure 1C), such as regions of the mouse paw that might be sensitized during chronic pain states. Due to the nature of machine learning pose estimation, substantial work, beyond the capacity of a single academic lab, in standardizing the mouse environment and building a robust model based on an extensive and diverse training data set will be necessary for automated aiming to match the reliability or flexibility of manual aiming. That said, we believe this work along with that of that of the other groups mentioned has set the groundwork from which a new standard for evoked somatosensory behavior experiments in rodents will be built.”

      (9) Page 2: von Frey's reference year should be 1896, not 1986.

      This typo has been fixed, thanks to the reviewer for noting it.

      “For more than 50 years, these stimuli have primarily been the von Frey hair (vFH) filaments that are delivered to the mouse paw from an experimenter below the rodent aiming, poking, and subsequently recording a paw lift (von Frey 1896, Dixon 1980, Chaplan 1994).”

      (10) Page 2: Zumbusch et al. 2024 also demonstrated that experimenter identification can impact mechanical thresholds, not just thermal thresholds.

      Text has been updated in order to note this important point.

      “A meta-analysis of thermal and mechanical sensitivity testing (Chesler 2002, Zumbusch 2024) found that the experimenter has a greater effect on results than the mouse genotype, making data from different individual experimenters difficult to merge.”

      (11) Page 2: One does not "deliver pain in the periphery". Noxious stimuli or injury can be delivered to the periphery, but by definition, pain is a sensation that requires a central nervous system.

      Text has been updated for improved accuracy.

      “Combining approaches to deliver painful stimuli with techniques mapping behavior and brain activity could provide important insights into brain-body connectivity that drives the sensory encoding of pain.”

    1. eLife Assessment

      This paper discusses the cognitive implications of potential intentional burial, wall engraving creation, and fire as light source use behaviors by relatively small-brained Homo naledi hominins. The discussion presented in the paper is valuable theoretically in its healthy questioning of prior assumptions concerning the socio-biological constraints of hominin meaning-making behavior. The discussion also contributes practically given that these behaviors have been ascribed to Homo naledi in two associated papers. Still, the strength of evidence in this contribution relies on the validity of the conclusions from the two associated papers, which remain actively questioned. The ultimate assessment of this work will vary among individual readers depending on how they view this debate, but if the conclusions from the associated papers hold up, the conclusions in the current paper can be considered solid.

    1. eLife Assessment

      This manuscript introduces a useful protein-stability-based fitness model for simulating protein evolution and unifying non-neutral models of molecular evolution with phylogenetic models. The model is applied to five viral proteins that are of structural and functional importance. While the general modelling approach is solid, and effectively preserves folding stability, the evidence for the model's predictive power remains limited, since it shows little improvement over neutral models in predicting protein evolution. The work should be of interest to researchers developing theoretical models of molecular evolution.

    2. Reviewer #1 (Public review):

      Summary:

      Ferreiro et al. present a method to simulate protein sequence evolution under a birth-death model where sequence evolution is guided by structural constraints on protein stability. The authors then use this model to explore the predictability of sequence evolution in several viral proteins. In principle, this work is of great interest to molecular evolution and phylodynamics, which has struggled to couple non-neutral models of sequence evolution to phylodynamic models like birth-death processes. Unfortunately, though, the model shows little improvement over neutral models in predicting protein sequence evolution, although it can predict protein stability better than models assuming neutral evolution. It appears that more work is needed to determine exactly what aspects of protein sequence evolution are predictable under such non-neutral phylogenetic models.

      Major concerns:

      (1) The authors have clarified the mapping between birth-death model parameters and fitness, but how fitness is modeled still appears somewhat problematic. The authors assume the death rate = 1 - birth rate. So a variant with a birth rate b = 1 would have a death rate d = 0 and so would be immortal and never die, which does not seem plausible. Also I'm not sure that this would "allow a constant global (birth-death) rate" as stated in line 172, as selection would still act to increase the population mean growth rate r = b - d. It seems more reasonable to assume that protein stability affects only either the birth or death rate and assume the other rate is constant, as in the Neher 2014 model.

      (2) It is difficult to evaluate the predictive performance of protein sequence evolution. This is in part due to the fact that performance is compared in terms of percent divergence, which is difficult to compare across viral proteins and datasets. Some protein sequences would be expected to diverge more because they are evolving over longer time scales, under higher substitution rates or under weaker purifying selection. It might therefore help to normalize the divergence between predicted and observed sequences by the expected or empirically observed amount of divergence seen over the timescale of prediction.

      (3) Predictability may also vary significantly across different sites in a protein. For example, mutations at many sites may have little impact on structural stability (in which case we would expect poor predictive performance) while even conservative changes at other sites may disrupt folding. I therefore feel that there remains much work to be done here in terms of figuring out where and when sequence evolution might be predictable under these types of models, and when sequence evolution might just be fundamentally unpredictable due to the high entropy of sequence space.

    3. Reviewer #2 (Public review):

      In this study, the authors aim to forecast the evolution of viral proteins by simulating sequence changes under a constraint of folding stability. The central idea is that proteins must retain a certain level of structural stability (quantified by folding free energy, ΔG) to remain functional, and that this constraint can shape and restrict the space of viable evolutionary trajectories. The authors integrate a birth-death population model with a structurally constrained substitution (SCS) model and apply this simulation framework to several viral proteins from HIV-1, SARS-CoV-2, and influenza.

      The motivation to incorporate biophysical constraints into evolutionary models is scientifically sound, and the general approach aligns with a growing interest in bridging molecular evolution and structural biology. The authors focus on proteins where immune pressure is limited and stability is likely to be a dominant constraint, which is conceptually appropriate. The method generates sequence variants that preserve folding stability, suggesting that stability-based filtering may capture certain evolutionary patterns.

      However, the study does not substantiate its central claim of forecasting. The model does not predict future sequences with measurable accuracy, nor does it reproduce observed evolutionary paths. Validation is limited to endpoint comparisons in a few datasets. While KL divergence is used to compare amino acid distributions, this analysis is only applied to a single protein (HIV-1 MA), and there is no assessment of mutation-level predictive accuracy or quantification of how well simulated sequences recapitulate real evolutionary paths. No comparison is made to real intermediate variants available from extensive viral sequencing datasets which gather thousands of sequences with detailed collection date annotation (SARS-CoV-2, Influenza, RSV).

      The selection of proteins is narrow and the rationale for including or excluding specific proteins is not clearly justified.

      The analyzed datasets are also under-characterized: we are not given insight into how variable the sequences are or how surprising the simulated sequences might be relative to natural diversity. Furthermore, the use of consensus sequences to represent timepoints is problematic, particularly in the context of viral evolution, where divergent subclades often coexist - a consensus sequence may not accurately reflect the underlying population structure.

      The fitness function used in the main simulations is based on absolute ΔG and rewards increased stability without testing whether real evolutionary trajectories tend to maintain, increase, or reduce folding stability over time for the particular systems (proteins) that are studied. While a variant of the model does attempt to center selection around empirical ΔG values, this more biologically plausible version is underutilized and not well validated.

      Ultimately, the model constrains sequence evolution to stability-compatible trajectories but does not forecast which of these trajectories are likely to occur. It is better understood as a filter of biophysically plausible outcomes than as a predictive tool. The distinction between constraint-based plausibility and sequence-level forecasting should be made clearer. Despite these limitations, the work may be of interest to researchers developing simulation frameworks or exploring the role of protein stability in viral evolution, and it raises interesting questions about how biophysical constraints shape sequence space over time.

    4. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public review): 

      Summary: 

      Ferreiro et al. present a method to simulate protein sequence evolution under a birth-death model where sequence evolution is guided by structural constraints on protein stability. The authors then use this model to explore the predictability of sequence evolution in several viral proteins. In principle, this work is of great interest to molecular evolution and phylodynamics, which has struggled to couple non-neutral models of sequence evolution to phylodynamic models like birth-death processes. Unfortunately, though, the model shows little improvement over neutral models in predicting protein sequence evolution, although it can predict protein stability better than models assuming neutral evolution. It appears that more work is needed to determine exactly what aspects of protein sequence evolution are predictable under such non-neutral phylogenetic models. 

      We thank the reviewer for the positive comments about our work. We agree that further work is needed in the field of substitution models of molecular evolution to enable more accurate predictions of specific amino acid sequences in evolutionary processes.

      Major concerns: 

      (1) The authors have clarified the mapping between birth-death model parameters and fitness, but how fitness is modeled still appears somewhat problematic. The authors assume the death rate = 1 - birth rate. So a variant with a birth rate b = 1 would have a death rate d = 0 and so would be immortal and never die, which does not seem plausible. Also I'm not sure that this would "allow a constant global (birth-death) rate" as stated in line 172, as selection would still act to increase the population mean growth rate r = b - d. It seems more reasonable to assume that protein stability affects only either the birth or death rate and assume the other rate is constant, as in the Neher 2014 model. 

      The model proposed by Neher, et al. (2014), which incorporates a death rate (d) higher than 0 for any variant, was implemented and applied in the present method. In general, this model did not yield results different from those obtained using the model that assumes d = 1 – b, suggesting that this aspect may not be crucial for the study system. Next, the imposition of arbitrary death events based on an arbitrary death rate could be a point of concern. Regarding the original model, a variant with d = 0 can experience a decrease in fitness through the mutation process. In an evolutionary process, each variant is subject to mutation, and Markov models allow for the incorporation of mutations that decrease fitness (albeit with lower probability than beneficial ones, but they can still occur). All this information is included in the manuscript.

      (2) It is difficult to evaluate the predictive performance of protein sequence evolution. This is in part due to the fact that performance is compared in terms of percent divergence, which is difficult to compare across viral proteins and datasets. Some protein sequences would be expected to diverge more because they are evolving over longer time scales, under higher substitution rates or under weaker purifying selection. It might therefore help to normalize the divergence between predicted and observed sequences by the expected or empirically observed amount of divergence seen over the timescale of prediction. 

      AU: The study protein datasets showed different levels of sequence divergence over their evolutionary times, as indicated for each dataset in the manuscript. For some metrics, we evaluated the accuracy (or error) of the predictions through direct comparisons between real and predicted protein variants using percentages to facilitate interpretation: 0% indicates a perfect prediction (no error), while 100% indicates a completely incorrect prediction (total error). Regarding normalization of these evaluations, we respectfully disagree with the suggestion because diverse factors can affect (not only the substitution rate, but also the sample size, structural features of the protein that may affect stability when accommodating different sequences, among others) and this complicates defining a consistent and meaningful normalization criterion. Given that the manuscript provides detailed information for each dataset, we believe that the presentation of the prediction accuracy through direct comparisons between real and predicted protein variants, expressed as percentages of similarity, is the clearest way.

      (3) Predictability may also vary significantly across different sites in a protein. For example, mutations at many sites may have little impact on structural stability (in which case we would expect poor predictive performance) while even conservative changes at other sites may disrupt folding. I therefore feel that there remains much work to be done here in terms of figuring out where and when sequence evolution might be predictable under these types of models, and when sequence evolution might just be fundamentally unpredictable due to the high entropy of sequence space. 

      We agree with this reflection. Mutations can have different effects on folding stability, which are accounted for by the model presented in this study. However, accurately predicting the exact sequences of protein variants with similar stability remains difficult with current structurally constrained substitution models, and therefore, further work is needed in this regard. This aspect is indicated in the manuscript.

      We want to thank the reviewer again for taking the time to revise our work and for the insightful and helpful comments.

      Reviewer #2 (Public review): 

      In this study, the authors aim to forecast the evolution of viral proteins by simulating sequence changes under a constraint of folding stability. The central idea is that proteins must retain a certain level of structural stability (quantified by folding free energy, ΔG) to remain functional, and that this constraint can shape and restrict the space of viable evolutionary trajectories. The authors integrate a birth-death population model with a structurally constrained substitution (SCS) model and apply this simulation framework to several viral proteins from HIV-1, SARS-CoV-2, and influenza.

      The motivation to incorporate biophysical constraints into evolutionary models is scientifically sound, and the general approach aligns with a growing interest in bridging molecular evolution and structural biology. The authors focus on proteins where immune pressure is limited and stability is likely to be a dominant constraint, which is conceptually appropriate. The method generates sequence variants that preserve folding stability, suggesting that stability-based filtering may capture certain evolutionary patterns. 

      Correct. We thank the reviewer for the positive comments about our study.

      However, the study does not substantiate its central claim of forecasting. The model does not predict future sequences with measurable accuracy, nor does it reproduce observed evolutionary paths. Validation is limited to endpoint comparisons in a few datasets. While KL divergence is used to compare amino acid distributions, this analysis is only applied to a single protein (HIV-1 MA), and there is no assessment of mutation-level predictive accuracy or quantification of how well simulated sequences recapitulate real evolutionary paths. No comparison is made to real intermediate variants available from extensive viral sequencing datasets which gather thousands of sequences with detailed collection date annotation (SARS-CoV-2, Influenza, RSV). 

      There are several points in this comment.

      The presented method accurately predicts folding stability of forecasted variants, as shown through comparisons between real and predicted protein variants. However, as the reviewer correctly indicates, predicting the exact amino acid sequences remains challenging. This limitation is discussed in detail in the manuscript, where we also suggest that further improvements in substitution models of protein evolution are needed to better capture the evolutionary signatures of amino acid change at the sequence level, even between amino acids with similar physicochemical properties. Regarding the time points used for validation, the studied influenza NS1 dataset included two validation points. A key limitation in increasing the number of time points is the scarcity of datasets derived from monitoring protein evolution with sufficient molecular diversity between samples collected at consecutive time points (i.e., at least more than five polymorphic amino acid sites). 

      As described in the manuscript, calculating Kullback-Leibler (KL) divergence requires more than one sequence per studied time point. However, most datasets in the literature include only a single sequence per time point, typically a consensus sequence derived from bulk population sequencing. Generating multiple sequences per time point is experimentally more demanding, often requiring advanced methods such as single-virus sequencing or amplification of sublineages in viral subpopulations, as was done for the first dataset used in the study (Arenas, et al. 2016), which enabled the calculation of KL divergence. The extent to which the simulated sequences resemble real evolution is evaluated in the method validation. As noted, intermediate time point validation was performed using the influenza NS1 protein dataset. Although, as the reviewer indicates, thousands of viral sequences are available, these are usually consensus sequences from bulk sequencing. Indeed, many viral variants mainly differ through synonymous mutations, where the number of accumulated nonsynonymous mutations is small. For example, from the original Wuhan strain to the Omicron variant, the SARS-CoV-2 proteins Mpro and PLpro accumulated only 10 and 22 amino acid changes, respectively.

      Analyzing intermediate variants of concern (i.e., Gamma or Delta) would reduce this number affecting statistics. In addition, many available viral sequences are not consecutive in evolutionary terms (one dataset does not represent the direct origin of another dataset at a subsequent time point), which further limits their applicability in this study. There is little data from monitored protein evolution with consecutive samples. The most suitable studies usually involve in vitro virus evolution, but the data from these studies often show low genetic variability between samples collected at different time points. Finally, it is important to note that the presented method can only be applied to proteins with known 3D structures, as it relies on selection based on folding stability. Non-structural proteins cannot be analyzed using this approach. Future work could incorporate additional selection constraints, which may improve the accuracy of predictions. These considerations and limitations are indicated in the manuscript.

      The selection of proteins is narrow and the rationale for including or excluding specific proteins is not clearly justified. 

      The viral proteins included in the study were selected based on two main criteria, general interest and data availability. In particular, we included proteins from viruses that affect humans and for which data from monitored protein evolution, with sufficient molecular diversity between consecutive time points, is available. These aspects are indicated in the manuscript.

      The analyzed datasets are also under-characterized: we are not given insight into how variable the sequences are or how surprising the simulated sequences might be relative to natural diversity. Furthermore, the use of consensus sequences to represent timepoints is problematic, particularly in the context of viral evolution, where divergent subclades often coexist - a consensus sequence may not accurately reflect the underlying population structure. 

      The manuscript indicates the sequence identity among protein datasets of different time points, along with other technical details. Next, the evaluation based on comparisons between simulated and real sequences reflects how surprising the simulated sequences might be relative to natural diversity, considering that the real dataset is representative. We believe that the diverse study real datasets are useful to evaluate the accuracy of the method in predicting different molecular patterns. Regarding the use of consensus sequences, we agree that they provide an approximation. However, as previously indicated, most of the available data from monitored protein evolution consist of consensus sequences obtained through bulk sequencing. Additionally, analyzing every individual viral sequence within a viral population, which is typically large, would be ideal but computationally intractable.

      The fitness function used in the main simulations is based on absolute ΔG and rewards increased stability without testing whether real evolutionary trajectories tend to maintain, increase, or reduce folding stability over time for the particular systems (proteins) that are studied. While a variant of the model does attempt to center selection around empirical ΔG values, this more biologically plausible version is underutilized and not well validated.

      The applied fitness function, based on absolute ΔG, is well stablished in the field (Sella and Hirsh 2005; Goldstein 2013). The present study independently predicts ΔG for the real and simulated protein variants at each sampling point. This ΔG prediction accounts not only for negative design, informed by empirical data, but also for positive design based on the study data (Arenas, et al. 2013; Minning, et al. 2013), thereby enabling the detection of variation in folding stability among protein variants. These aspects are indicated in the manuscript. Therefore, in our view, the study provides a proper comparison of real and predicted evolutionary trajectories in terms of folding stability.

      Ultimately, the model constrains sequence evolution to stability-compatible trajectories but does not forecast which of these trajectories are likely to occur. It is better understood as a filter of biophysically plausible outcomes than as a predictive tool. The distinction between constraint-based plausibility and sequence-level forecasting should be made clearer. Despite these limitations, the work may be of interest to researchers developing simulation frameworks or exploring the role of protein stability in viral evolution, and it raises interesting questions about how biophysical constraints shape sequence space over time. 

      The presented method estimates the fitness of each protein variant, which can reflect the relative survival capacity of the variant. Therefore, despite the error due to evolutionary constraints not considered by the method, it indicates which variants are more likely to become fixed over time. In our view, the method does not merely filter plausible variants, rather, it generates predictions of variant survival through predicted fitness based on folding stability and simulations of protein evolution under structurally constrained substitution models integrated with birth-death population genetics approaches. The use of simulation-based approaches for prediction is well established in population genetics. For example, approaches such as approximate Bayesian computation (Beaumont, et al. 2002) rely on this strategy, and it has also been applied in other studies of forecasting evolution (e.g., Neher, et al. 2014). We believe that the distinction between forecasting folding stability and amino acid sequence is clearly shown in the manuscript, including the main text and the figures.

      Reviewer #2 (Recommendations for the authors): 

      I thank the authors for addressing the question about template switching, their clarification was helpful. However, the core concerns I raised remain unresolved: the claim that the method is useful for forecasting is not substantiated.  In order to support the paper's central claims or to prove its usefulness, several key improvements could be incorporated: 

      (1) Systematic analysis of more proteins: 

      The manuscript would be significantly strengthened by a systematic evaluation of model performance across a broader set of viral proteins, beyond the examples currently shown. Many human influenza and SARS-CoV-2 proteins have wellcharacterized structures or high-quality homology templates, making them suitable candidates. In the light of limited success of the method, presenting the model's behavior across a more comprehensive protein set, including those with varying structural constraints and immune pressures, would help assess generalizability and clarify the specific conditions under which the model is applicable. 

      Following a comment from the reviewer in a previous revision of the study, we included the analysis of an influenza NS1 protein dataset that contains two evaluation time points. Next, to validate the prediction method, it is necessary to have monitored protein sequences collected at least at two consecutive time points, with sufficient divergence between them to capture evolutionary signatures that allow for proper evaluation. Additionally, many data involve sequences that are not consecutive in evolutionary terms (one dataset is not a direct ancestor of another dataset existing at a posterior time point), which disallows their applicability in this study. Little data from monitored protein evolution with trustable consecutive (ancestor-descendant) samples exist. The most suitable studies often involve in vitro virus evolution, but they usually show low genetic variability between samples collected at different time points. Although thousands of sequences are available for some viruses, they are usually consensus sequences from bulk sequencing and often show a low number of nonsynonymous mutations at the study protein-coding gene between time points. For example, from the original Wuhan strain and the Omicron variant, the SARS-CoV-2 proteins Mpro and PLpro accumulated only 10 and 22 amino acid changes, respectively. Analyzing intermediate variants of concern (i.e., Gamma or Delta) would reduce this number affecting statistics. Thus, in practice, we found scarcity of data derived from monitoring protein evolution, with trustable ancestor and corresponding descendant data at consecutive time points and with sufficient molecular diversity between them (i.e., at least more than five polymorphic amino acid sites). In all, we believe that the diverse viral protein datasets used in the present study, along with the multiple analyzed datasets collected from monitored HIV-1 populations present in different patients, provide a representative application of the method, since notice that similar patterns were generally generated from the analysis of the different datasets.

      (2) Present clear data statistics: For each analyzed dataset, the authors should provide basic information about the number of unique sequences, levels of variability, and evolutionary divergence between start and end sequences. This would contextualize the forecasting task and clarify whether the simulations are non-trivial. In particular, it should be shown that the consensus sequence is indeed representative of the viral population at a given time point. In viral evolution we frequently observe co-circulation of subclades and the consensus sequence is then not representative. 

      For each dataset analyzed, the manuscript provides the sequence identity between samples at the study time points (which also informs about sequence variability), sample sizes, representative protein structure, and other technical details. The study assumes that consensus sequences, typically generated by bulk sequencing, are representative of the viral population. Next, samples at different time points should involve ancestor-descendant relationships, which is a requirement and one of the limitations to find appropriate data for this study, as noted in our previous response.

      (3) Explore other metrics for population level sequence comparison: 

      In the light of possible existence of subclades, mentioned above, the currently used metrics for sequence comparison may underestimate performance of the simulations. It would be sufficient to see some overlap of simulated clades and and the observed clades. 

      We found this to be a good idea. However, in practice, we believe that the criteria used to define subclades could introduce biases into the results. For some metrics, we evaluated the accuracy of the predictions through direct comparisons between all real and predicted protein variants, using percentages to facilitate interpretation. We believe that using subclades could potentially reduce the current prediction errors, but this would complicate the interpretation of the results, as they would be influenced by the subjective criteria used to define the subclades.

      Currently, the manuscript presents a plausible filtering framework rather than a predictive model. Without these additional analyses, the main claims remain only partially supported. 

      Please see our reply to the comment of the reviewer just before the section titled “Recommendations for the authors”.

      Response to some rebuttal statements: 

      (1) "Sequence comparisons based on the KL divergence require, at the studied time point, an observed distribution of amino acid frequencies among sites and an estimated distribution of amino acid frequencies among sites. In the study datasets, this is only the case for the HIV-1 MA dataset, which belongs to a previous study from one of us and collaborators where we obtained at least 20 independent sequences at each sampling point (Arenas, et al. 2016)" 

      The available Influenza and SARS-CoV-2 data gathers isolates annotated with exact collection dates, providing reach datasets for such analysis. 

      The available influenza and SARS-CoV-2 sequences are typically derived from bulk sequencing and, therefore, they are consensus sequences. As a result, they cannot be used to calculate KL divergence. Additionally, many of the indicated sequences from databases are not demonstrated to be consecutive in evolutionary terms (one dataset is not a direct ancestor of another dataset existing at a posterior time point), which disallows their applicability in this study. The most suitable studies often involve in vitro virus evolution, but they usually show low genetic variability between samples collected at different time points.

      (2) "Regarding extending the analysis to other time points (other variants of concern), we kindly disagree because Omicron is the variant of concern with the highest genetic distance to the Wuhan variant, and a high genetic distance is  required to properly evaluate the prediction method." 

      There have been many more variants of concern subsequent to Omicron which circulated in 2021. 

      A key aspect is the accumulation of diversity in the study proteins across different time points. The SARS-CoV-2 proteins Mpro and PLpro accumulated only 10 and 22 amino acid changes from the original Wuhan variant to Omicron, respectively.

      Analyzing intermediate variants of concern (e.g., Gamma or Delta) or those closely related to Omicron would reduce the number of accumulated mutations even further.   

      We want to thank the reviewer again for taking the time to revise our work and for the insightful and helpful comments.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      Ferreiro et al. present a method to simulate protein sequence evolution under a birth-death model where sequence evolution is constrained by structural constraints on protein stability. The authors then use this model to explore the predictability of sequence evolution in several viral structural proteins. In principle, this work is of great interest to molecular evolution and phylodynamics, which have struggled to couple non-neutral models of sequence evolution to phylodynamic models like birth-death. Unfortunately, though, the model shows little improvement over neutral models in predicting protein evolution, and this ultimately appears to be due to fundamental conceptual problems with how fitness is modeled and linked to the phylodynamic birth-death model. 

      AU: We thank the reviewer for the positive comments about our work.

      Regarding predictive power, the study showed a good accuracy in predicting the real folding stability of forecasted protein variants under a selection model, but not under a neutral model. Next, predicting the exact sequences was more challenging. In this revised version, where we added additional real data, we found that the accuracy of this prediction can vary among proteins (i.e., the SCS model was more accurate than the neutral model in predicting sequences of the influenza NS1 protein at different time points). Still, we consider that efforts are required in the field of substitution models of molecular evolution. For example, amino acids with similar physicochemical properties can result in predictions with appropriate folding stability while different specific sequence. The development of accurate substitution models of molecular evolution is an active area of research with ongoing progress, but further efforts are still needed. Next, forecasting the folding stability of future real proteins is fundamental for proper forecasting protein evolution, given the essential role of folding stability in protein function and its variety of applications. Regarding the conceptual concerns related to fitness modeling, we clarify them in detail in our responses to the specific comments below.

      Major concerns:

      (1) Fitness model: All lineages have the same growth rate r = b-d because the authors assume b+d=1. But under a birth-death model, the growth r is equivalent to fitness, so this is essentially assuming all lineages have the same absolute fitness since increases in reproductive fitness (b) will simply trade off with decreases in survival (d). Thus, even if the SCS model constrains sequence evolution, the birthdeath model does not really allow for non-neutral evolution such that mutations can feed back and alter the structure of the phylogeny. 

      We thank the reviewer for this comment that aims to improve the realism of our model. In the model presented (but see later another model, derived from the proposal of the reviewer, that we have now implemented into the framework and applied it to the study data), the fitness predicted from a protein variant is used to obtain the corresponding birth rate of that variant. In this way, protein variants with high fitness have high birth rates leading to overall more birth events, while protein variants with low fitness have low birth rates resulting in overall more extinction events, which has biological meaning for the study system. The statement “All lineages have the same growth rate r = b-d” in our model is incorrect because, in our model, b and d can vary among lineages according to the fitness. For example, a lineage might have b=0.9, d=0.1, r=0.8, while another lineage could have b=0.6, d=0.4, r=0.2. Indeed, the statement “this is essentially assuming all lineages have the same absolute fitness” is incorrect. Clearly, assuming that all lineages have the same fitness would not make sense, in that situation the folding stability of the forecasted protein variants would be similar under any model, which is not the case as shown in the results. In our model, the fitness affects the reproductive success, where protein variants with a high fitness have higher birth rates leading to more birth events, while those with lower fitness have higher death rates leading to more extinction events. This parameterization is meaningful for protein evolution because the fitness of a protein variant can affect its survival (birth or extinction) without necessarily affecting its rate of evolution. While faster growth rate can sometimes be associated with higher fitness, a variant with high fitness does not necessarily accumulate substitutions at a faster rate. Regarding the phylogenetic structure, the model presented considers variable birth and death events across different lineages according to the fitness of the corresponding protein variants, and this affects the derived phylogeny (i.e., protein variants selected against can go extinct while others with high fitness can produce descendants). We are not sure about the meaning of the term “mutations can feed back” in the context of our system. Note that we use Markov models of evolution, which are well-stablished in the field (despite their limitations), and substitutions are fixed mutations, which still could be reverted later if selected by the substitution model (Yang 2006). Altogether, we find that the presented birth-death model is technically correct and appropriate for modeling our biological system. Its integration with structurally constrained substitution (SCS) models of protein evolution as Markov models follows general approaches of molecular evolution in population genetics (Yang 2006; Carvajal-Rodriguez 2010; Arenas 2012; Hoban, et al. 2012). We have now provided a more detailed description of the models in the manuscript.

      Apart from these clarifications about the birth-death model used, we could understand the point of the reviewer and following the suggestion we have now incorporated an additional birth-death model that accounts for variable global birth-death rate among lineages. Specifically, we followed the model proposed by Neher et al (2014), where the death rate is considered as 1 and the birth rate is modeled as 1 + fitness. In this model, the global birth-death rate can vary among lineages. We implemented this model into the computer framework and applied it to the data used for the evaluation of the models. The results indicated that, in general, this model yields similar predictive accuracy compared to the previous birth-death model. Thus, accounting for variability in the global birth-death rate does not appear to play a major role in the studied systems of protein evolution. We have now presented this additional birth-death model and its results in the manuscript.

      (2) Predictive performance: Similar performance in predicting amino acid frequencies is observed under both the SCS model and the neutral model. I suspect that this rather disappointing result owes to the fact that the absolute fitness of different viral variants could not actually change during the simulations (see comment #1). 

      As indicated in our previous answer, our study shows a good accuracy in predicting the real folding stability of forecasted protein variants under a selection model, but not under a neutral model. Next, predicting the exact sequences was more challenging, which was not surprising considering previous studies. In particular, inferring specific sequences is considerably challenging even for ancestral molecular reconstruction (Arenas, et al. 2017; Arenas and Bastolla 2020). Indeed, observed sequence diversity is much greater than observed structural diversity (Illergard, et al. 2009; Pascual-Garcia, et al. 2010), and substitutions between amino acids with similar physicochemical properties can yield modeled protein variants with more accurate folding stability, even when the exact amino acid sequences differ. As indicated, further work is demanded in the field of substitution models of molecular evolution. Next, in this revised version, where we included analyses of additional real datasets, we found that the accuracy of sequence prediction can vary among datasets. Notably, the analysis of an influenza NS1 protein dataset, with higher diversity than the other datasets studied, showed that the SCS model was more accurate than the neutral model in predicting sequences across different time points. Datasets with relatively high sequence diversity can contain more evolutionary information, which can improve prediction quality. In any case, as previously indicated, we believe that efforts are required in the field of substitution models of molecular evolution. Apart from that, forecasting the folding stability of future real proteins is an important advance in forecasting protein evolution, given the essential role of folding stability in protein function (Scheiblhofer, et al. 2017; Bloom and Neher 2023) and its variety of applications.

      Next, also as indicated in our previous response, the birth-death model used in this study accounts for variation in fitness among lineages producing variable reproductive success. The additional birth-death model that we have now incorporated, which considers variation of the global birth-death rate among lineages, produced similar prediction accuracy, suggesting a limited role in protein evolution modeling. Molecular evolution parameters, particularly the substitution model, appear to be more critical in this regard. We have now included these aspects in the manuscript.

      (3) Model assessment: It would be interesting to know how much the predictions were informed by the structurally constrained sequence evolution model versus the birth-death model. To explore this, the authors could consider three different models: 1) neutral, 2) SCS, and 3) SCS + BD. Simulations under the SCS model could be performed by simulating molecular evolution along just one hypothetical lineage. Seeing if the SCS + BD model improves over the SCS model alone would be another way of testing whether mutations could actually impact the evolutionary dynamics of lineages in the phylogeny. 

      In the present study, we compared the neutral model + birth-death (BD) with the SCS model + BD. Markov substitution models Q are applied upon an evolutionary time (i.e., branch length, t) and this allows to determine the probability of substitution events during that time period [P(t) = exp (Qt)]. This approach is traditionally used in phylogenetics to model the incorporation of substitution events over time. Therefore, to compare the neutral and SCS models in terms of evolutionary inference, an evolutionary time is required, in this case it is provided by the birth-death process. Thus, the cases 1) and 2) cannot be compared without an underlined evolutionary history. Next, comparisons in terms of likelihood, and other aspects, between models that ignore the protein structure and the implemented SCS models are already available in previous studies based on coalescent simulations or given phylogenetic trees (Arenas, et al. 2013; Arenas, et al. 2015). There, SCS models outperformed models that ignore evolutionary constraints from the protein structure, and those findings are consistent with the results obtained in the present study where we explored the application of these models to forecasting protein evolution. We would like to emphasize that forecasting the folding stability of future real proteins is a significant finding, folding stability is fundamental to protein function and has a variety of applications. We have now indicated these aspects in the manuscript.

      (4) Background fitness effects: The model ignores background genetic variation in fitness. I think this is particularly important as the fitness effects of mutations in any one protein may be overshadowed by the fitness effects of mutations elsewhere in the genome. The model also ignores background changes in fitness due to the environment, but I acknowledge that might be beyond the scope of the current work. 

      AU: This comment made us realize that more information about the features of the implemented SCS models should be included in the manuscript. In particular, the implemented SCS models consider a negative design based on the observed residue contacts in nearly all proteins available in the Protein Data Bank (Arenas, et al. 2013; Arenas, et al. 2015). This data is distributed with the framework, and it can be updated to incorporate new structures (further details are provided in the distributed framework documentation and practical examples). Therefore, the prediction of folding stability is a combination of positive design (direct analysis of the target protein) and negative design (consideration of background proteins from a database to improve the predictions), thus incorporating background molecular diversity. We have now indicated this important aspect in the manuscript. Regarding the fitness caused by the environment, we agree with the reviewer. This is a challenge for any method aiming to forecast evolution, as future environmental shifts are inherently unpredictable and may affect the accuracy of the predictions. Although one might attempt to incorporate such effects into the model, doing so risks overparameterization, especially when the additional factors are uncertain or speculative. We have now mentioned this aspect in the manuscript.

      (5) In contrast to the model explored here, recent work on multi-type birth-death processes has considered models where lineages have type-specific birth and/or death rates and therefore also type-specific growth rates and fitness (Stadler and Bonhoeffer, 2013; Kunhert et al., 2017; Barido-Sottani, 2023). Rasmussen & Stadler (eLife, 2019) even consider a multi-type birth-death model where the fitness effects of multiple mutations in a protein or viral genome collectively determine the overall fitness of a lineage. The key difference with this work presented here is that these models allow lineages to have different growth rates and fitness, so these models truly allow for non-neutral evolutionary dynamics. It would appear the authors might need to adopt a similar approach to successfully predict protein evolution. 

      We agree with the reviewer that robust birth-death models have been developed applying statistics and, in many cases, the primary aim of those studies is the development and refinement of the model itself. Regarding the study by Rasmussen and Stadler 2019, it incorporates an external evaluation of mutation events where the used fitness is specific for the proteins investigated in that study, which may pose challenges for users interested in analyzing other proteins. In contrast, our study takes a different approach. We implement a fitness function that can be predicted and evaluated for any type of structural protein (Goldstein 2013), making it broadly applicable. Actually, in this revised version we added the analysis of additional data of another protein (influenza NS1 protein) with predictions at different time points. In addition, we provide a freely available and well-documented computational framework to facilitate its use. The primary aim of our study is not the development of novel or complex birthdeath models. Rather, we aim to explore the integration of a standard birth-death model with SCS models for the purpose of predicting protein evolution. In the context of protein evolution, substitution models are a critical factor (Liberles, et al. 2012; Wilke 2012; Bordner and Mittelmann 2013; Echave, et al. 2016; Arenas, et al. 2017; Echave and Wilke 2017), and the presented combination with a birth-death model constitutes a first approximation upon which next studies can build to better understand this evolutionary system. We have now indicated these considerations in the manuscript.

      Reviewer #2 (Public review): 

      Summary: 

      In this study, "Forecasting protein evolution by integrating birth-death population models with structurally constrained substitution models", David Ferreiro and coauthors present a forward-in-time evolutionary simulation framework that integrates a birth-death population model with a fitness function based on protein folding stability. By incorporating structurally constrained substitution models and estimating fitness from ΔG values using homology-modeled structures, the authors aim to capture biophysically realistic evolutionary dynamics. The approach is implemented in a new version of their open-source software, ProteinEvolver2, and is applied to four viral proteins from HIV-1 and SARS-CoV-2. 

      Overall, the study presents a compelling rationale for using folding stability as a constraint in evolutionary simulations and offers a novel framework and software to explore such dynamics. While the results are promising, particularly for predicting biophysical properties, the current analysis provides only partial evidence for true evolutionary forecasting, especially at the sequence level. The work offers a meaningful conceptual advance and a useful simulation tool, and sets the stage for more extensive validation in future studies.

      We thank the reviewer for the positive comments on our study. Regarding the predictive power, the results showed good accuracy in predicting the folding stability of the forecasted protein variants. In this revised version, where we included analyses of additional real datasets, we found that the accuracy of sequence prediction can vary among datasets. Notably, the analysis of an influenza NS1 protein dataset, with higher diversity than the other datasets studied, showed that the SCS model was more accurate than the neutral model in predicting sequences across different time points. Datasets with relatively high sequence diversity can contain more evolutionary information, which can improve prediction quality. Still, we believe that further efforts are required in the field in improving the accuracy of substitution models of molecular evolution. Altogether, accurately forecasting the folding stability of future real proteins is fundamental for predicting their protein function and enabling a variety of applications. Also, we implemented the models into a freely available computer framework, with detailed documentation and a variety of practical examples.

      Strengths: 

      The results demonstrate that fitness constraints based on protein stability can prevent the emergence of unrealistic, destabilized variants - a limitation of traditional, neutral substitution models. In particular, the predicted folding stabilities of simulated protein variants closely match those observed in real variants, suggesting that the model captures relevant biophysical constraints. 

      We agree with the reviewer and appreciate the consideration that forecasting the folding stability of future real proteins is a relevant finding. For instance, folding stability is fundamental for protein function and affects several other molecular properties.

      Weaknesses: 

      The predictive scope of the method remains limited. While the model effectively preserves folding stability, its ability to forecast specific sequence content is not well supported. 

      Our study showed a good accuracy in predicting the real folding stability of forecasted protein variants under a selection model, but not under a neutral model. Predicting the exact sequences was more challenging, which was not surprising considering previous studies. In particular, inferring specific sequences is considerably challenging even for ancestral molecular reconstruction (Arenas, et al. 2017; Arenas and Bastolla 2020). Indeed, observed sequence diversity is much greater than observed structural diversity (Illergard, et al. 2009; Pascual-Garcia, et al. 2010), and substitutions between amino acids with similar physicochemical properties can yield modeled protein variants with more accurate folding stability, even when the exact amino acid sequences differ. As indicated, further work is demanded in the field of substitution models of molecular evolution. Next, in this revised version, where we included analyses of additional real datasets, we found that the accuracy of sequence prediction can vary among datasets. Notably, the analysis of an influenza NS1 protein dataset, with higher diversity than the other datasets studied, showed that the SCS model was more accurate than the neutral model in predicting sequences across different time points. Datasets with relatively high sequence diversity can contain more evolutionary information, which can improve prediction quality. In any case, as previously indicated, we believe that efforts are required in the field of substitution models of molecular evolution. Apart from that, forecasting the folding stability of future real proteins is an important advance in forecasting protein evolution, given the essential role of folding stability in protein function (Scheiblhofer, et al. 2017; Bloom and Neher 2023) and its variety of applications. We have now expanded these aspects in the manuscript.

      Only one dataset (HIV-1 MA) is evaluated for sequence-level divergence using KL divergence; this analysis is absent for the other proteins. The authors use a consensus Omicron sequence as a representative endpoint for SARS-CoV-2, which overlooks the rich longitudinal sequence data available from GISAID. The use of just one consensus from a single time point is not fully justified, given the extensive temporal and geographical sampling available. Extending the analysis to include multiple timepoints, particularly for SARS-CoV-2, would strengthen the predictive claims. Similarly, applying the model to other well-sampled viral proteins, such as those from influenza or RSV, would broaden its relevance and test its generalizability. 

      The evaluation of forecasting evolution using real datasets is complex due to several conceptual and practical aspects. In contrast to traditional phylogenetic reconstruction of past evolutionary events and ancestral sequences, forecasting evolution often begins with a variant that is evolved forward in time and requires a rough fitness landscape to select among possible future variants (Lässig, et al. 2017). Another concern for validating the method is the need to know the initial variant that gives rise to the corresponding future (forecasted) variants, and it is not always known. Thus, we investigated systems where the initial variant, or a close approximation, is known, such as scenarios of in vitro monitored evolution. In the case of SARS-CoV-2, the Wuhan variant is commonly used as the starting variant of the pandemic. Next, since forecasting evolution is highly dependent on the used model of evolution, unexpected external factors can be dramatic for the predictions. For this reason, systems with minimal external influences provide a more controlled context for evaluating forecasting evolution. For instance, scenarios of in vitro monitored virus evolution avoid some external factors such as host immune responses. Another important aspect is the availability of data at two (i.e., present and future) or more time points along the evolutionary trajectory, with sufficient genetic diversity between them to identify clear evolutionary signatures. Additionally, using consensus sequences can help mitigate effects from unfixed mutations, which should not be modeled by a substitution model of evolution. Altogether, not all datasets are appropriate to properly evaluate or apply forecasting evolution. These aspects are indicated in the manuscript. Sequence comparisons based on the KL divergence require, at the studied time point, an observed distribution of amino acid frequencies among sites and an estimated distribution of amino acid frequencies among sites. In the study datasets, this is only the case for the HIV-1 MA dataset, which belongs to a previous study from one of us and collaborators where we obtained at least 20 independent sequences at each sampling point (Arenas, et al. 2016). This aspect is now more clearly indicated in the manuscript. Regarding the Omicron datasets, we used 384 curated sequences of the Omicron variant of concern to construct the study data and we believe that it is a representative sample. The sequence used for the initial time point was the Wuhan variant (Wu, et al. 2020), which is commonly assumed to be the origin of the pandemic in SARS-CoV-2 studies. As previously indicated, the use of consensus sequences is convenient to avoid variants with unfixed mutations. Regarding extending the analysis to other time points (other variants of concern), we kindly disagree because Omicron is the variant of concern with the highest genetic distance to the Wuhan variant, and a high genetic distance is required to properly evaluate the prediction method. Actually, we noted that earlier variants of concern show a small number of fixed mutations in the study proteins, despite the availability of large numbers of sequences in databases such as GISAID. Additionally, we investigated the evolutionary trajectories of HIV-1 protease (PR) in 12 intra-host viral populations with predictions for up to four different time points. Apart from those aspects, following the proposal of the reviewer, we have now incorporated the analysis of an additional dataset of influenza NS1 protein (Bao, et al. 2008), with predictions for two different time points, to further assess the generalizability of the method. We have now included details of this influenza NS1 protein dataset and the predictions derived from it in the manuscript.

      It would also be informative to include a retrospective analysis of the evolution of protein stability along known historical trajectories. This would allow the authors to assess whether folding stability is indeed preserved in real-world evolution, as assumed in their model.

      Our present study does not aim to investigate the evolution of the folding stability over time, although it provides this information indirectly at the studied time points. Instead, the present study shows that the folding stability of the forecasted protein variants is similar to the folding stability of the corresponding real protein variants for diverse viral proteins, which provides an important evaluation of the prediction method. Next, the folding stability can indeed vary over time in both real and modeled evolutionary scenarios, and our present study is not in conflict with this. In that regard, which is not the aim of our present study, some previous phylogenetic-based studies have reported temporal fluctuations in folding stability for diverse protein data (Arenas, et al. 2017; Olabode, et al. 2017; Arenas and Bastolla 2020; Ferreiro, et al. 2022).

      Finally, a discussion on the impact of structural templates - and whether the fixed template remains valid across divergent sequences - would be valuable. Addressing the possibility of structural remodeling or template switching during evolution would improve confidence in the model's applicability to more divergent evolutionary scenarios.

      This is an important point. For the datasets that required homology modeling (in several cases it was not necessary because the sequence was present in a protein structure of the PDB), the structural templates were selected using SWISS-MODEL, and we applied the best-fitting template. We have now included in a supplementary table details about the fitting of the structural templates. Indeed, our proposal assumes that the protein structure is maintained over the studied evolutionary time, which can be generally reasonable for short timescales where the structure is conserved (Illergard, et al. 2009; Pascual-Garcia, et al. 2010). Over longer evolutionary timescales, structural changes may occur and, in such cases, modeling the evolution of the protein structure would be necessary. To our knowledge, modeling the evolution of the protein structure remains a challenging task that requires substantial methodological developments. Recent advances in artificial intelligence, particularly in protein structure prediction from sequence, may offer promising tools for addressing this challenge. However, we believe that evaluating such approaches in the context of structural evolution would be difficult, especially given the limited availability of real data with known evolutionary trajectories involving structural change. In any case, this is probably an important direction for future research. We have now included this discussion in the manuscript.

      Reviewer #1 (Recommendations for the authors): 

      (1) Abstract: "expectedly, the errors grew up in the prediction of the corresponding sequences" <- Not entirely clear what is meant by "errors grew up" or what the errors grew with.

      This sentence refers to the accuracy of sequence prediction in comparison to that of folding stability prediction. We have now clarified this aspect in the manuscript.

      (2) Lines 162-165: "Alternatively, if the fitness is determined based on the similarity in folding stability between the modeled variant and a real variant, the birth rate is assumed to be 1 minus the root mean square deviation (RMSD) in folding stability." <- What is the biological motivation for using the RMSD? It seems like a more stable variant would always have higher fitness, at least according to Equation 1.

      RMSD is commonly used in molecular biology to compare proteins in terms of structural distance, folding stability, kinetics, and other properties. It offers advantages such as minimizing the influence of small deviations while amplifying larger differences, thereby enhancing the detection of remarkable molecular changes. Additionally, RMSD would facilitate the incorporation of other biophysical parameters, such as structural divergences from a wild-type variant or entropy, which could be informative for fitness in future versions of the method. We have now included this consideration in the manuscript.

      (3) Lines 165-166: "In both cases, the death rate (d) is considered as 1-b to allow a constant global (birth-death) rate" <- This would give a constant R = b / (1-b) over the entire phylogenetic tree. For applications to pathogens like viruses with epidemic dynamics, this is extremely implausible. Is there any need to make such a restrictive assumption? 

      Regarding technical considerations of the model, we refer to our answer to the first public review comment. Next, a constant global rate of evolution was observed in numerous genes and proteins of diverse organisms, including viruses (Gojobori, et al.1990; Leitner and Albert 1999; Shankarappa, et al. 1999; Liu, et al. 2004; Lu, et al. 2018; Zhou, et al. 2019). However, following the comment of the reviewer, and as we indicated in our answer to the first public review comment, we have now implemented and evaluated an additional birth-death model that allows for variation in the global birth-death rate among lineages. We have implemented this additional model in the framework and described it along with its results in the manuscript.

      (4) Lines 187-188: "As a consequence, since b+d=1 at each node, tn is consistent across all nodes, according to (Harmon, 2019)." <- This would also imply that all lineages have a growth rate r = b - d, which under a birth-death model is equivalent to saying all lineages have the same fitness! 

      We clarified this aspect in our answer to the first public review comment. In particular, in the model presented, protein variants with higher fitness have higher birth rates, leading to more birth events, while protein variants with lower fitness have lower birth rates leading to more extinction events, which presents biological meaning for the study system. In our model b and d can vary among lineages according to the corresponding fitness (i.e., a lineage may have b=0.9, d=0.1, r=0.8; while another one may have b=0.6, d=0.4, r=0.2). Since the reproductive success varies among lineages in our model, the statement “this is essentially assuming all lineages have the same absolute fitness” is incorrect, although it could be interpreted like that in certain models. Fitness affects reproductive success, but fitness and growth rate of evolution are different biological processes (despite a faster growth rate can sometimes be associated with higher fitness, a variant with a high fitness not necessarily has to accumulate substitutions at a higher rate). An example in molecular adaptation studies is the traditional nonsynonymous to synonymous substitution rates ratio (dN/dS), where dN/dS (that informs about selection derived from fitness) can be constant at different rates of evolution (dN and dS). In any case, we thank the reviewer for raising this point, which led us to incorporate an additional birth-death model and inspired some ideas.  Thus, following the comment of the reviewer and as indicated in the answer to the first public review comment, we have now implemented and evaluated an additional birthdeath model that allows for variation in the global birth-death rate among lineages. The results indicated that this model yields similar predictive accuracy compared to the previous birth-death model. We have now included these aspects, along with the results from the additional model, in the manuscript.

      (5) Line 321-322: "For the case of neutral evolution, all protein variants equally fit and are allowed, leading to only birth events," <- Why would there only be birth events? Lineages can die regardless of their fitness. 

      AU: In the neutral evolution model, all protein variants have the same fitness, resulting in a flat fitness landscape. Since variants are observed, we allowed birth events. However, it assumed the absence of death events as no information independent of fitness is available to support their inclusion and quantification, thereby avoiding the imposition of arbitrary death events based on an arbitrary death rate. We have now provided a justification of this assumption in the manuscript.

      Reviewer #2 (Recommendations for the authors): 

      (1) Clarify the purpose of the alternative fitness mode ("ΔG similarity to a target variant"): 

      The manuscript briefly introduces an alternative fitness function based on the similarity of a simulated protein's folding stability to that of a real protein variant, but does not provide a clear motivation, usage scenario, or results derived from it. 

      The presented model provides two approaches for deriving fitness from predicted folding stability. The simpler approach assumes that a more stable protein variant has higher fitness than a less stable one. The alternative approach assigns high fitness to protein variants whose stability closely matches observed stability, acknowledging that the real observed stability is derived from the real selection process, and this approach considers negative design by contrasting the prediction with real information. For the analyses of real data in this study, we used the second approach, guided by these considerations. We have now clarified this aspect in the manuscript.

      (2) Report structural template quality and modeling confidence: 

      Since folding stability (ΔG) estimates rely on structural models derived from homology templates, the accuracy of these predictions will be sensitive to the choice and quality of the template structure. I recommend that the authors report, for each protein modeled, the template's sequence identity, coverage, and modeling quality scores. This will help readers assess the confidence in the ΔG estimates and interpret how template quality might impact simulation outcomes. 

      We agree with the reviewer and we have now included additional information in a supplementary table regarding sequence identity, modeling quality and coverage of the structural templates for the proteins that required homology modeling. The selection of templates was performed using the well-established framework SWISS-MODEL and the best-fitting template was chosen. Next, a large number of protein structures are available in the PDB for the study proteins, which favors the accuracy of the homology modeling. For some datasets, homology modeling was not required, as the modeled sequence was already present in an available protein structure. We have now included this information in the manuscript and in a supplementary table.

      (3) Clarify whether structural remodeling occurs during simulation: 

      It appears that folding stability (ΔG) for all simulated protein variants is computed by mapping them onto a single initial homology model, without remodeling the structure as sequences evolve. If correct, this should be clearly stated, as it assumes that the structural fold remains valid across all simulated variants. A discussion on the potential impact of structural drift would be welcome.

      We agree with the reviewer. As indicated in our answer to a previous comment, our method assumes that the protein structure is maintained over the studied evolutionary time, which is generally acceptable for short timescales where the structure is conserved (Illergard, et al. 2009; Pascual-Garcia, et al. 2010). At longer timescales the protein structure could change, requiring the modeling of structural evolution over the evolutionary time. To our knowledge, modeling the evolution of the protein structure remains a challenging task that requires substantial methodological developments. Recent advances in artificial intelligence, particularly in protein structure prediction from sequence, can be promising tools for addressing this challenge. However, we believe that evaluating such approaches in the context of structural evolution would be difficult, especially given the limited availability of real datasets with known evolutionary trajectories involving structural change. In any case, this is probably an important direction for future research. We have now included this discussion in the manuscript.

    1. eLife Assessment

      This work characterizes the function and localization of SLC4A1 variants associated with distal renal tubular acidosis in human patients. Cell culture and limited animal studies provide partial but incomplete support to the authors' claim that the variants disrupt normal protein degradative flux by alkalinizing the intracellular pH. The study is valuable in providing preliminary evidence for future exploration of the link between intracellular pH regulation by SLC4A1 and kidney cell function in vivo.

    2. Reviewer #1 (Public review):

      Summary:

      This study is an evaluation of patient variants in the kidney isoform of AE1 linked to distal renal tubular acidosis. Drawing on observations in the mouse kidney, this study extends findings to autophagy pathways in a kidney epithelial cell line.

      Strengths:

      Experimental data are convincing and nicely done.

      Weaknesses:

      Some data are lacking or not explained clearly. Mutations are not consistently evaluated throughout the study, which makes it difficult to draw meaningful conclusions.

    3. Reviewer #2 (Public review):

      Context and significance:

      Distal renal tubular acidosis (dRTA) can be caused by mutations in a Cl-/HCO3- exchanger (kAE1) encoded by the SLC4A1 gene. The precise mechanisms underlying the pathogenesis of the disease due to these mutations are unclear, but it is thought that loss of the renal intercalated cells (ICs) that express kAE1 and/or aberrant autophagy pathway function in the remaining ICs may contribute to the disease. Understanding how mutations in SLC4A1 affect cell physiology and cells within the kidney, a major goal of this study, is an important first step to unraveling the pathophysiology of this complex heritable kidney disease.

      Summary:

      The authors identify a number of new mutations in the SLC4A1 gene in patients with diagnosed dRTA that they use for heterologous experiments in vitro. They also use a dRTA mouse model with a different SLC4A1 mutation for experiments in mouse kidneys. Contrary to previous work that speculated dRTA was caused mainly by trafficking defects of kAE1, the authors observe that their new mutants (with the exception of Y413H, which they only use in Figure 1) traffic and localize at least partly to the basolateral membrane of polarized heterologous mIMCD3 cells, an immortalized murine collecting duct cell line. They go on to show that the remaining mutants induce abnormalities in the expression of autophagy markers and increased numbers of autophagosomes, along with an alkalinized intracellular pH. They also reported that cells expressing the mutated kAE1 had increased mitochondrial content coupled with lower rates of ATP synthesis. The authors also observed a partial rescue of the effects of kAE1 variants through artificially acidifying the intracellular pH. Taken together, this suggests a mechanism for dRTA independent of impaired kAE1 trafficking and dependent on intracellular pH changes that future studies should explore.

      Strengths:

      The authors corroborate their findings in cell culture with a well-characterized dRTA KI mouse and provide convincing quantification of their images from the in vitro and mouse experiments.

      Weaknesses:

      The data largely support the claims as stated, with some minor suggestions for improving the clarity of the work. Some of the mutants induce different strengths of effects on autophagy and the various assays than others, and it is not clear why this is from the present manuscript, given that they propose pHi and the unifying mechanism.

    4. Reviewer #3 (Public review):

      Summary:

      The authors have identified novel dRTA causing SLC4A1 mutations and studied the resulting kAE1 proteins to determine how they cause dRTA. Based on a previous study on mice expressing the dRTA kAE1 R607H variant, the authors hypothesize that kAE1 variants cause an increase in intracellular pH, which disrupts autophagic and degradative flux pathways. The authors clone these new kAE1 variants and study their transport function and subcellular localization in mIMCD cells. The authors show increased abundance of LC3B II in mIMCD cells expressing some of the kAE1 variants, as well as reduced autophagic flux using eGFP-RFP-LC3. These data, as well as the abundance of autophagosomes, serve as the key evidence that these kAE1 mutants disrupt autophagy. Furthermore, the authors demonstrate that decreasing the intracellular pH abrogates the expression of LC3B II in mIMCD cells expressing mutant SLC4A1. Lastly, the authors argue that mitochondrial function, and specifically ATP synthesis, is suppressed in mIMCD cells expressing dRTA variants and that mitochondria are less abundant in AICs from the kidney of R607H kAE1 mice. While the manuscript does reveal some interesting new results about novel dRTA causing kAE1 mutations, the quality of the data to support the hypothesis that these mutations cause a reduction in autophagic flux can be improved. In particular, the precise method of how the western blots and the immunofluorescence data were quantified, with included controls, would enhance the quality of the data and offer more supportive evidence of the authors' conclusions.

      Strengths:

      The authors cloned novel dRTA causing kAE1 mutants into expression vectors to study the subcellular localization and transport properties of the variants. The immunofluorescence images are generally of high quality, and the authors do well to include multiple samples for all of their western blots.

      Weaknesses:

      Inconsistent results are reported for some of the variants. For example, R295H causes intracellular alkalinization but also has no effect on intracellular pH when measured by BCECF. The authors also appear to have performed these in vitro studies on mIMCD cells that were not polarized, and therefore, the localization of kAE1 to the basolateral membrane seems unlikely, based upon images included in the manuscript. Additionally, there is no in vivo work to demonstrate that these kAE1 variants alter intracellular pH, including the R607H mouse, which is available to the authors. The western blots are of varying quality, and it is often unclear which of the bands are being quantified. For example, LAMP1 is reported at 100kDa, the authors show three bands, and it is unclear which one(s) are used to quantify protein abundance. Strikingly, the authors report a nonsensical value for their quantification of LCRB II in Figure 2, where the ratio of LCRB II to total LCRB (I + II) is greater than one. The control experiments with starvation and bafilomyocin are not supportive and significantly reduce enthusiasm for the authors' findings regarding autophagy. There are labeling errors between the manuscript and the figures, which suggest a lack of vigilance in the drafting process.

    1. eLife Assessment

      This study presents the important finding that lysosomal damage triggers inflammatory signaling through ubiquitination and the TAB-TAK1-IKK-NF-kB axis. The data obtained from the unbiased transcriptomic and proteomic analyses are convincing and provide invaluable information to the field. Although further experiments will be required to clarify how TAB2/3 are recruited after various types of lysosome damage, this work will be of interest to researchers in the fields of organelle biology and inflammation.

    2. Reviewer #1 (Public review):

      Summary:

      Lysosomal damage is commonly found in many diseases including normal aging and age-related disease. However, the transcriptional programs activated by lysosomal damage has not been thoroughly characterized. This study aims to investigate lysosome damage-induced major transcriptional responses and the underlying signaling basis. The authors have convincingly shown that lysosomal damage activates a ubiquitination-dependent signaling axis involving TAB, TAK1, and IKK, which culminate in the activation of NF-kB and subsequent transcriptional upregulation of pro-inflammatory genes and pro-survival genes. Overall, the major aims of this study are successfully achieved.

      Strengths:

      This study is well-conceived and strictly executed, leading to clear and well-supported conclusions. Through unbiased transcriptomics and proteomics screens, the authors identifies NF-kB as a major transcriptional program activated upon lysosome damage. TAK1 activation by lysosome damage-induced ubiquitination is found to be essential for NF-kB activation and MAP kinase signaling. The transcriptional and proteomic changes are shown to be largely driven by TAK1 signaling. Finally, the TAK1-IKK signaling is shown to provide resistance to apoptosis during lysosomal damage response. The main signaling axis of this pathway has been convincingly demonstrated.

      Overall, this study identifies major transcriptional responses following lysosomal damage through unbiased approaches. It is important to consider the impact of these pathways in disease settings where lysosomal integrity is compromised.

      Comments on revisions:

      The authors have adequately addressed all previous comments. I have no further recommendations.

    3. Reviewer #2 (Public review):

      Summary:

      Endo et al. investigate the novel role of ubiquitin response upon lysosomal damage in activating cellular signaling for cell survival. The authors provide a comprehensive transcriptome and proteome analysis of aging-related cells experiencing lysosomal damage, identifying transcription factors involved in transcriptome and proteome remodeling with a focus on the NF-κB signaling pathway. They further characterized the K63-ubiquitin-TAB-TAK1-NF-κB signaling axis in controlling gene expression, inflammatory responses, and apoptotic processes.

      Strengths:

      In the aging-related model, the authors provide a comprehensive transcriptome and characterize the K63-ubiquitin-TAB-TAK1-NF-κB signaling axis. Through compelling experiments and advanced tools, they elucidate its critical role in controlling gene expression, inflammatory responses, and apoptotic processes.

      Weaknesses:

      The study lacks deeper connections with previous research, particularly:

      • The established role of TAB-TAK1 in AMPK activation during lysosomal damage

      • The potential significance of TBK1 in NF-κB signaling pathways

      Comments on revisions:

      The authors have successfully addressed all the raised questions and the manuscript is now significantly improved.

    4. Reviewer #3 (Public review):

      Summary:

      The response to lysosomal damage is a fast-moving and timely field. Besides repair and degradation pathways, increasing interest has been focusing on damaged-induced signaling. The authors conducted both transcriptomics and proteomics to characterize the cellular response to lysosomal damage. They identify a signaling pathway leading to activation of NFkappaB. Based on this and supported by Western blot and microscopy data, the authors nicely show that TAB2/3 and TAK1 are activated at damaged lysosomes and kick off the pathway to alter gene expression, which induces cytokines and protect from cell death. TAB2/3 activation is proposed to occur through K63 ubiquitin chain formation. Generally, this is a careful and well conducted study that nicely delineates the pathway under lysosomal stress. The "omics" data serves a valuable resource for the field. More work should be invested into how TAB2/3 are activated at the damaged lysosomes, also to increase novelty in light of previous reports.

      Strengths:

      Generally, this is a careful and well-conducted study that nicely delineates how the NFkB pathway is activated under lysosomal stress and modulates cell behavior. The "omics" data serves as a valuable resource for the field.

      Weaknesses:

      While activation of TAB2/3 by K63-linked Ub chains is convincing, more work needs to be done on how they are recruited by distinct damage types to probe relevance for different pathophysiological conditions."

      Comments on revisions:

      The authors have addressed much of my criticism. Specifically, they have put (with new experiments) the data on the TAB2/3-TAK1 pathway in perspective to the previously reported LUBAC-mediated activation of NFkB. They also addressed the question about the significance of K63-linked chains for TAB2/3 activation with new complementation experiments (a K63-specific NZF mutant failed to rescue).

      The third point (types of damage as triggers) raises more questions, though. The authors find that, in contrast to LLOMe, GPN or DC661-induced damage does not activate TAK1 (consistent with lower damage levels). However, the authors still observe K63 ubiquitylation. This goes along with their finding that TAB2 is recruited in the absence of any ubiquitylation (blocked by TAK-243). It argues that TAB2 is recruited by an unknown cue (that may be damage-specific) and then activated by K63. The authors need to clarify whether TAB2 is or is not recruited in the GPN/DC661 conditions (in which K63 occurs, but TAK1 is not activated). The point about the effects of other damage types was also raised by reviewer #1 and should be solved. The fact that TAB2 is recruited independently of K63 should also be visualized in the model. The manuscript will then be an important contribution to the field.

    5. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Lysosomal damage is commonly found in many diseases including normal aging and age-related disease. However, the transcriptional programs activated by lysosomal damage have not been thoroughly characterized. This study aimed to investigate lysosome damage-induced major transcriptional responses and the underlying signaling basis. The authors have convincingly shown that lysosomal damage activates a ubiquitination-dependent signaling axis involving TAB, TAK1, and IKK, which culminates in the activation of NF-kB and subsequent transcriptional upregulation of pro-inflammatory genes and pro-survival genes. Overall, the major aims of this study were successfully achieved.

      Strengths:

      This study is well-conceived and strictly executed, leading to clear and well-supported conclusions. Through unbiased transcriptomics and proteomics screens, the authors identified NF-kB as a major transcriptional program activated upon lysosome damage. TAK1 activation by lysosome damage-induced ubiquitination was found to be essential for NF-kB activation and MAP kinase signaling. The transcriptional and proteomic changes were shown to be largely driven by TAK1 signaling. Finally, the TAK1-IKK signaling was shown to provide resistance to apoptosis during lysosomal damage response. The main signaling axis of this pathway was convincingly demonstrated.

      Weaknesses:

      One weakness was the claim of K63-linked ubiquitination in lysosomal damage-induced NF-kB activation. While it was clear that K63 ubiquitin chains were present on damaged lysosomes, no evidence was shown in the current study to demonstrate the specific requirement of K63 ubiquitin chains in the signaling axis being studied. Clarifying the roles of K63-linked versus other types of ubiquitin chains in lysosomal damage-induced NF-kB activation may improve the mechanistic insights and overall impact of this study.

      Another weakness was that the main conclusions of this study were all dependent on an artificial lysosomal damage agent. It will be beneficial to confirm key findings in other contexts involving lysosomal damage.

      We would like to thank Reviewer #1 for the positive and constructive comments on our study. For a main concern regarding the molecular mechanism by which TAB proteins are activated in response to lysosomal damage, we have added the experimental results to support that the lysosomal accumulation of K63 ubiquitin chains serves as a trigger to activate the TAB-TAK1 pathway. We also investigated and discussed the role of LUBAC-mediated M1 ubiquitin chains in NF-kB activation and the effects of other lysosomal-damaging compounds. Please see the response to “Reviewer #3 (Public review): Suggestions:”.

      Reviewer #2 (Public review):

      Summary:

      Endo et al. investigate the novel role of ubiquitin response upon lysosomal damage in activating cellular signaling for cell survival. The authors provide a comprehensive transcriptome and proteome analysis of aging-related cells experiencing lysosomal damage, identifying transcription factors involved in transcriptome and proteome remodeling with a focus on the NF-κB signaling pathway. They further characterized the K63-ubiquitin-TAB-TAK1-NF-κB signaling axis in controlling gene expression, inflammatory responses, and apoptotic processes.

      Strengths:

      In the aging-related model, the authors provide a comprehensive transcriptome and characterize the K63-ubiquitin-TAB-TAK1-NF-κB signaling axis. Through compelling experiments and advanced tools, they elucidate its critical role in controlling gene expression, inflammatory responses, and apoptotic processes.

      Weaknesses:

      The study lacks deeper connections with previous research, particularly:

      • The established role of TAB-TAK1 in AMPK activation during lysosomal damage

      • The potential significance of TBK1 in NF-κB signaling pathways

      We would like to thank Reviewer #2 for the helpful comments on our study. To achieve a more comprehensive understanding of the signaling pathways involved in the lysosomal damage response, we investigated additional related signal mediators, such as TBK1 and LUBAC. The citations related to AMPK have been incorporated.

      Reviewer #3 (Public review):

      Summary:

      The response to lysosomal damage is a fast-moving and timely field. Besides repair and degradation pathways, increasing interest has been focusing on damaged-induced signaling. The authors conducted both transcriptomics and proteomics to characterize the cellular response to lysosomal damage. They identify a signaling pathway leading to activation of NFkappaB. Based on this and supported by Western blot and microscopy data, the authors nicely show that TAB2/3 and TAK1 are activated at damaged lysosomes and kick off the pathway to alter gene expression, which induces cytokines and protect from cell death. TAB2/3 activation is proposed to occur through K63 ubiquitin chain formation. Generally, this is a careful and well conducted study that nicely delineates the pathway under lysosomal stress. The "omics" data serves as a valuable resource for the field. More work should be invested into how TAB2/3 are activated at the damaged lysosomes, also to increase novelty in light of previous reports.

      Strengths:

      Generally, this is a careful and well-conducted study that nicely delineates the pathway under lysosomal stress. The "omics" data serves as a valuable resource for the field.

      Weaknesses:

      More work should be invested into how TAB2/3 are activated at the damaged lysosomes, also to increase novelty in light of previous reports. Moreover, different damage types should be tested to probe relevance for different pathophysiological conditions.

      We would like to thank Reviewer #3 for the valuable comments on our study. We have added the experimental results to address two concerns raised by Reviewer #3. Please see the response to “Reviewer #3 (Public review): Suggestions:”.

      Suggestions:

      (1) A recent paper claims that NFkappaB is activated by Otulin/M1 chains upon lysosome damage through TBK1 (PMID: 39744815). In contrast, Endo et al. nicely show that ubiquitylation is needed (shown by TAK-243) for NFkB activation but only have correlative data to link it specifically to K63 chains. On page 15, line 11, the authors even argue a "potential" involvement of K63. This point should be better dealt with. Can the authors specifically block K63 formation? K63R overexpression or swapping would be one way. Is the K63 ligase ITCH involved (PMID: 38503285) or any other NEDD4-like ligase? This could be compared to LUBAC inhibition. Also, the point needs to be dealt with more controversially in the discussion as these are alternative claims (M1 vs K63, TAB vs TBK1).

      It is well-characterized that the NZF domain of TAB proteins preferentially associates with K63-linked ubiquitin chains. Therefore, we performed the add-back experiment using siRNA-resistant TAB2 WT and mutants incapable of binding to K63-linked ubiquitin chains, dNZF and E685A, to elucidate the requirement of K63 ubiquitin chains for TAK1 activation. We investigated whether the add-back of TAB2 mutants rescues the activation of TAK1 in TAB2-depleted cells (Fig. 2E). TAB2 WT, but not dNZF and E685A, rescued TAK1 activation in response to LLOMe, suggesting that the specific interaction of TAB proteins and K63 ubiquitin chains is a key mechanism to activate TAK1. We also found that the treatment of an E1 inhibitor TAK-243 effectively prevented the lysosomal accumulation of K63 ubiquitin chains, but TAB2 was recruited to damaged lysosomes (Fig. S2B). This suggests that the recruitment of TAB proteins to damaged lysosomes is independent of the association with K63 ubiquitin chains. Collectively, it is postulated that TAB proteins require interaction with K63 ubiquitin chains for TAK1 activation, but not for recruitment to damaged lysosomes. We have added the sentences (p9, lines 7-20, and p10, lines 8-10).

      Next, we confirmed that LUBAC functions are essential for NF-kB activation in the lysosomal damage response. RNF31/HOIP is a component of LUBAC that catalyzes M1 ubiquitination. The depletion of RNF31 showed no significant effects on TAK1 activation, but abolished IKK activation (Fig. S4G). It is well-characterized that LUBAC-mediated M1 ubiquitin chains recruit IKK subunits and transduce the signaling to downstream in the canonical pathway. We assume that K63 ubiquitin chains in damaged lysosomes initially activate TAB-TAK1 and trigger LUBAC-mediated M1 ubiquitination, and subsequently, M1 ubiquitination functions to recruit the IKK complex. Consequently, activated TAK1 phosphorylates IKK subunits in damaged lysosomes, leading to NF-kB activation. We also examined whether TBK1 is involved in the activation of NF-kB. TBK1 was phosphorylated upon LLOMe, and depletion of TAB and TAK1 resulted in a slight reduction of TBK1 phosphorylation (Fig. S4D, E). The treatment of a TBK1 inhibitor BX-795 exhibited no or little effects on TAK1 activation, but abolished phosphorylation of IKK and IkBa (Fig. S4F). These suggest that TBK1 is required for the activation of NF-kB. We have added the sentences (p13, line 13-p14, line 10).

      As mentioned by Reviewer #3, it is important to identify the E3 ligase responsible for K63 ubiquitination in the lysosomal damage response. We have been aiming to identify such E3 ligase(s). However, depletions of ITCH and other E3 ligases that have been tested exhibited no or little effects on K63 ubiquitination and TAK1 activation.  We would like to explore E3 ligase(s) in future study.

      (2) It would be interesting to know what the trigger is that induces the pathway. Lipid perturbation by LLOMe is a good model, but does activation also occur with GPN (osmotic swelling) or lipid peroxidation (oxidative stress) that may be more broadly relevant in a pathophysiological way? Moreover, what damage threshold is needed? Does loss of protons suffice? Can activation be induced with a Ca2+ agonist in the absence of damage?

      To further clarify the initial trigger that induces TAB-TAK1 activation coupled with lysosomal damage, we examined other damage sources, GPN and DC661, which induce hyperosmotic stress and lipid peroxidation in lysosomes, respectively, thereby resulting in lysosomal membrane damage. Under our experimental conditions, the treatment of these compounds did not result in significant accumulation of Gal-3, indicating a reduced level of lysosomal membrane permeabilization compared with LLOMe (Fig. S2C, D), and no or little TAK1 activation was observed (Fig. S2E). TAB proteins require their association with K63 ubiquitin chains for TAK1 activation. It is therefore postulated that the severe lysosomal membrane permeabilization that triggers the formation and cytosolic exposure of K63 ubiquitin chains may be a determinant of TAB-TAK1 activation. In our future work, we would like to examine broad stimulation of lysosomal damage and further elucidate the initial mechanism of TAB-TAK1 activation. We have added the sentences (p9, line 21-p10, line 7).

      (3) The authors nicely define JNK and p38 activation. This should be emphasized more, possibly also in the abstract, as it may contribute to the claim of increased survival fitness.

      We further tested whether the inhibition of JNK affects the anti-apoptotic effect (Fig. S5B). The inhibition of JNK resulted in an increase in the cleaved caspase-3. This suggests that the anti-apoptotic action in the lysosomal damage response requires JNK as well as IKK. We have added the sentences in results to emphasize the pivotal role of stress-induced MAPKs (p15, lines 7-11).

      Reviewer #1 (Recommendations for the authors):

      (1) Although the ubiquitination-TAB-TAK1-IKK axis was previously characterized in other contexts, specific evidence supporting lysosomal recruitment of these components by ubiquitination during lysosome damage would be beneficial.

      We found that the treatment of an E1 inhibitor TAK-243 abolished the lysosomal accumulation of K63 ubiquitin chains, but TAB2 and TAK1 were recruited to damaged lysosomes (Fig. S2B). This suggests that the recruitment of TAB proteins to damaged lysosomes is independent of the association with K63-linked ubiquitin chains. Next, we investigated whether the add-back of TAB2 mutants incapable of binding K63 ubiquitin chains rescues the activation of TAK1 in TAB2-depleted cells (Fig. 2E). K63 ubiquitin binding of TAB2 was essential for TAK1 activation in response to LLOMe. Taken together, it is suggested that TAB proteins require their interaction with K63 ubiquitin chains for TAK1 activation, but not for recruitment to damaged lysosomes. We have added the sentences (p9, lines 7-20, and p10, lines 8-10). Please also see the response to “Reviewer #3 (Public review): Suggestions:”.

      (2) The activation of p38 and JNK by lysosomal damage does not fit well into the main conclusions of the paper, since IKK knockdown was sufficient to block cellular resistance to apoptosis (caspase cleavage in Fig. 5f). Are p38 and JNK also important for cell survival during lysosomal damage?

      We found that the inhibition of JNK resulted in an increase in the cleaved caspase-3, suggesting that the anti-apoptotic action in the lysosomal damage response requires both IKK and JNK (Fig. S5B). We have added the sentences (p15, lines 7-11).

      (3) Cell death tests are recommended to support the conclusions related to apoptosis.

      As suggested by Reviewer #1, we performed the cell death assay using propidium iodide (PI) and confirmed that HeLa cells co-treated with LLOMe and TAK-243 or HS-276 exhibited increased cell death (Fig. 5E). This indicates a direct correlation between the degree of caspase-3 cleavage and cell death, possibly apoptosis.

      (4) Page 8, line 19-21, gal3 is not exposed upon lysosomal damage. It is recruited from the cytosol by the exposed beta-galactoside-containing glycans on lysosomal membrane proteins.

      We have corrected the corresponding sentence (p7, lines 17-20).

      (5) Carefully checking grammar throughout the text is recommended. Below are a few examples:

      a) Page 4, line 10, remove "that".

      b) "K63 ubiquitin" shall be replaced with "K63 ubiquitination" or "K63 ubiquitin chains".

      c) Page 8, line 9, "remain" should be "remains".

      We have carefully checked the revised manuscript.

      Reviewer #2 (Recommendations for the authors):

      Despite the novelty and significance of these findings in advancing the field, several technical and experimental limitations require further clarification:

      We have responded to each comment. Please see below.

      The manuscript should introduce or discuss previous research showing that TAB-TAK1 facilitates AMPK activation during lysosomal damage and TAK1's increased association with damaged lysosomes (PMID: 31995728).

      We have added the reference (PMID: 31995728) and the sentences (p17, lines 15-20).

      Figure 2A: The differential LAMP1 staining intensity between control and LLOMe-treated cells needs explanation. The weaker LAMP1 signal in control and puncta changes, especially during 5-minute LLOMe treatment, require detailed clarification

      We have added the explanation (p8, lines 17-21).

      Recent literature (PMID: 34585663) reports TBK1 activation during lysosomal damage. The authors should investigate or discuss whether TBK1 potentially contributes to NF-κB signaling in this context.

      We experimentally investigated whether TBK1 is involved in the TAB-TAK1 pathway. We confirmed that TBK1 was activated upon LLOMe (Fig. S4D). Depletions of TAB and TAK1 exhibited a modest decrease in TBK1 phosphorylation (Fig. S4E). The inhibition of TBK1 by BX-795 did not affect TAK1 activation, but abolished phosphorylation of IKK and IkBa (Fig. S4F). This suggests that TBK1 is required for NF-kB activation. We have added the reference (PMID: 34585663) and the sentences (p13, lines 13-21, p14, lines 8-10, and p18, lines 15-20).

      The introduction of lysosomal damage response lacks comprehensive mechanistic information. For example, while ESCRT is discussed, other critical mechanisms such as lipid transfer and stress granule formation in lysosomal repair should be incorporated. Moreover, mTOR and AMPK signaling pathways undergo significant changes upon lysosomal damage.

      We have added the sentences (p3, lines 16-18, and p3, line 21-p4, line 1).

      The statement "lysosomal permeabilization causes the dissociation of mTORC1 from lysosomes" should explicitly reference PMID: 29625033.

      We have added the suggested reference (PMID: 29625033, p4, line 19).

      The claim that "The elimination of damaged lysosomes through lysophagy requires a period of more than half a day" needs a specific publication citation.

      We have added the reference (PMID: 23921551) to claim the time-scale of lysosomal clearance (p4, line 21).

      Figure 1G: The label "WO after 2h" lacks explanation in the figure legend and requires detailed interpretation.

      To simplify the figures, we have deleted the label “WO after 2 h” (Fig. 1G, 3F, 5D, F-J, S4G, S5A). Instead, we have added the explanation in the figure legends (Fig. 1G).

      Reviewer #3 (Recommendations for the authors):

      (1) page 8, line 13: it is recommended to phrase colocalisation "at" damaged lysosomes rather than "in" damaged lysosomes as the resolution does not allow the claim of influx into lysosomes.

      We have corrected the word (p8, line 17).

      (2) page 11, line 22: why is "whereas" used to link two events driven by the same mechanism.

      We have corrected the word (p13, line 8).

    1. eLife Assessment

      This important work describes the adaptation and evaluation of two red-shifted anion channelrhodopsins (RubyACRs) for optogenetic inhibition in Drosophila. The study provides convincing evidence for the effectiveness of RubyACRs in fly neurons, including electrophysiology, calcium imaging, and behavioral analysis. With minor revisions to address potential toxicity and compatibility with 2-photon imaging, this paper and the publicly available fly lines it describes will be resources that are of value to the neuroscience community.

    2. Reviewer #1 (Public review):

      Summary:

      This study by Bushey et al., focuses on two newly released red-shifted anion-Channelrhodopsins (A1ACR and HfACR, referred as Ruby-ACRs) in Drosophila. Here, the authors use a combination of electrophysiology, calcium imaging, and behavioral analyses to demonstrate the advantages of Ruby-ACRs over previous optogenetic silencers like the green-shifted GtACR1 and the blue-shifted GtACR2: higher photocurrent, faster kinetics, and operating at a light spectrum range that prevents unwanted behavioral effects in the fly. The availability of these new red-shifted silencers constitutes a great addition to the Drosophila genetic toolkit.

      Strengths:

      (1) The authors generate both UAS and LexAop RubyACR reagents and test them in a variety of preparations (electrophysiological recordings, calcium imaging, different behavioral paradigms) that cover the breadth of the fly research environment.

      (2) The optical stimulation parameters are carefully measured and characterized. Especially impressive is that they managed to titrate over both wavelength and intensity across their various assays. This provides a comprehensive dataset to the community.

      (3) Tools are made available to the community through the stock center.

      Weaknesses:

      (1) The authors could better describe their construct and choice of parameters for the chosen construct. I am specifically wondering about the following points:

      a) Why use that particular backbone (not the most commonly used one across recent literature (pJFRC7 is more common).

      b) Why do the CsChrimson and GTACR1 have a Kir sequence in it, and why did the authors not put this in the RubyACRs? I would also prefer if authors don't refer to GtACR1 as GTACR-Kir in text (e.g., in line 72); instead, they should either refer to it as GtACR1 or GtACR1-kir-mVenus (based on the full genotype mentioned in their table at the end). Same for CsChrimson-kir. From what I understand, this is just a Kir trafficking sequence and not the entire Kir sequence, which can confuse the readers.

      c) Finally, I would also encourage authors to deposit plasmids on Addgene.

      (2) Figure 2 is interesting, but it is a bit unfortunate that there is a YFP baseline in most of the samples here (except Chrimson88; this should also be mentioned). I wonder how the YFP baseline impacts this data. Could the high intensity stimulation (red light) lead to bleaching of YFP or tdTomato that reduces the baseline in the green channel? All this also makes me wonder if authors tried tagging the RubyACRs with other fluorophores or non-fluorescent tags and how that impacted their functioning. Non-YFP-tagged versions would be more useful for applications involving GCaMP imaging.

      (3) Another point for Figure 2: Since RubyACRs seem to have such a broad activation range, I wonder how much the imaging light (920nm) impacts the baseline in these experiments. If there were plots without the red light stimulation and just varying imaging light intensity, that could be useful to the research community.

      (4) Also, for Figures 2C - D, in the methods authors indicate that the stimulation light intensities were progressively increased. Could this lead to desensitization of opsin? Wouldn't randomized intensities be a better way to do this? Perhaps it should be mentioned as a caveat.

      (5) In Figure 3E the bottom middle panel Vglut-Gal4,GtACR1 shows a major increase in walking at light onset. This seems very different than all other conditions, and I could not find any discussion of this. It would help if some explanation were provided for this.

    3. Reviewer #2 (Public review):

      Summary:

      Bushey et al. investigate the feasibility of using RubyACRs, specifically A1ACR1 and HfACR1 (described previously in (Govorunova et al., 2020)) as red-shifted inhibitory opsins in Drosophila melanogaster. The study employs a wide range of techniques to demonstrate successful neuronal inhibition. Electrophysiology experiments established that HfACR1 was most effective at hyperpolarizing cells, compared to A1ACR1 and GtACR1; both RubyACRs also appeared to be more effective than GtACR1 when the latter was actuated by green light. The authors further demonstrate successful neuronal inhibition using calcium imaging. RubyACRs were also shown to be useful in in vivo behavioral setups, specifically in spontaneous locomotion, associative learning, and courtship paradigms. In the courtship assay, in particular, the authors test multiple wavelengths of light at various light intensities, thus providing a rigorous analysis of the RubyACRs' efficacy under different light conditions.

      Strengths:

      The work provides the Drosophila field with a promising new tool. Red-shifted opsins are particularly advantageous in behavioral assays as red light penetrates the cuticle better than green or blue light, and provides less visual stimulation to the fly. It is also ideal for imaging as it allows for simultaneous optogenetic stimulation and GCamp imaging. A particular strength of the paper is the direct demonstration of RubyACR's capacity to inhibit neurons via electrophysiology and calcium imaging. Furthermore, inhibition effects in the three behavioral assays are strong and convincing. Given the apparent efficacy of RubyACRs and the advantages of a red-sensitive anion channelrhodopsin, this tool has great potential.

      Weaknesses:

      This work convincingly demonstrates the efficacy and potential utility of RubyACRs in Drosophila for imaging and behavior. However, the lethality/toxicity of RubyACRs is a relevant concern that should be addressed in-depth rather than glossed over, as it may pose a major obstacle to use. Discussing this issue in the present study will also help guide potential users and will set the stage for potential future efforts to ameliorate RubyACRs as optogenetic inhibitors.

      Major concerns:

      (1) Table 1 demonstrates high lethality in the RubyACRs compared to GtACR1. For example, in the MI04979-VGlut driver, GtACR1 expression resulted in 32.9% lethality, while HfACR1 expression resulted in 98.7% lethality. This lethality presents an obstacle to the potential adoption of this tool, and should be discussed in detail, rather than in passing. The authors might like to present "% lethality" rather than "% survived", as the former is more relevant when discussing the relative yield and health of flies that can be used in experiments.

      (2) In Figure 3D, driver>opsin flies have lower locomotion during the baseline (i.e., dark) phase, compared to opsin-only controls or GtACR1 flies. For some comparisons, flies are walking around 10-fold slower. For example, in the case of VGlut-GAL4>HfACR1, test flies are walking at <1 mm/s, while "Empty" test flies are walking at ~10 mm/s. This suggests that, for these drivers, neuronal and/or network function is affected. It opens the possibility that the lethality and locomotor defects could be due to cell-autonomous toxicity. We ask the authors to provide a description of this effect in the Results and to discuss it in the Discussion. Relatedly, VGlut-GAL4>GtACR1 flies in red light exhibit a locomotion increase, but this data is not mentioned in the text. The use of differing scales for the Y-axes in these panels can be confusing when the reader is expected to compare velocity across different panels. It would be best if the y-axes were set to a single range, e.g., 0 to 12 mm/s.

      (3) Lethality in broad drivers could result from cell-autonomous toxicity or neuronal dysfunction resulting from RubyACR expression. Ideally, the authors would address or even investigate the possible mechanisms of toxicity of the RubyACRs. Do cells and/or synapses expressing RubyACRs have normal morphology and function? For example, the authors could compare cell survival between flies with RubyACR expression and flies with a fluorescent protein with no opsin. The authors may also want to present lethality data for other, less broad drivers (such as MB320C, which was used for the associative memory assay) in order to demonstrate whether this problem is confined to broad drivers such as VGlut-GAL4, or if this is a problem with narrow drivers as well. If new experiments are not possible, these issues should at least be mentioned in the Discussion.

      Minor concerns

      (1) The specific method used for quantifying lethality is mentioned briefly in Table 1 but is not detailed in the Methods. The authors derive lethality by comparing to a sibling control group with either the opsin or the driver alone, but the opsin alone or driver alone may cause some lethality by themselves. We suggest the use of a viability assay, e.g. (Rockwell et al., 2019), which would give potential users a clearer picture of which developmental stage is most affected by opsin expression, as well as allow opsin-only, driver-only and experimental groups to be assessed separately (lethality would then be reported as the % of embryos that reach each stage of development, and eventually enclosure).

      (2) For the calcium imaging analysis in Figure 2, the U-shaped curve observed for mean ΔF/F0 for A1ACR1 and HfACR1 may not be due to actual desensitization for the channels, as the authors suggest (lines 143-145), but may be due simply to a shifting baseline. The authors use the 5-s period preceding stimulation onset as F0, but in some cases (e.g., HfACR1 at 250 uW/mm2), calcium fluorescence rises above baseline and remains high post-stimulation (ΔF/F0 of +0.5, which we observe is the same magnitude as the ΔF/F0 of -0.5 observed during inhibition), thus affecting the ΔF/F0 for subsequent trials. The authors should discuss this incomplete recovery in the text, or (if available) use a static channel instead to provide a stable F0 for calculating ΔF/F0. Alternatively, if the authors wish to rigorously test the hypothesis that high light intensity indeed results in desensitization of these channels, they may consider using different flies for each light intensity or longer inter-stimulus intervals.

      (3) For Figure 3C (Flybowl assay), the authors mention that "simply expressing the opsins decreased baseline locomotor activity compared to empty driver lines". However, the "Empty" controls in 3C appear to refer to opsin-only controls, not driver-only controls. The driver-only controls are not presented in the figure. The use of "empty" differs between the text and the figure, as the text refers to "empty" driver lines, while the figure uses "empty" to apparently refer to opsin-only controls. We recommend changing the terminology across all figures to be unambiguous, e.g., by using "opsin-only" or "driver-only" as opposed to the ambiguous "empty". In addition, the fact that opsin-only controls move less than driver-only controls may suggest some toxicity as a result of the opsin-only construct; this should be discussed further.

      (4) Figures 4 and 5 lack the reporting of driver-only controls.

      (5) Figures 3 and 4 lack positive controls; that is, the benchmarking of the efficacy of RubyACRs in their respective behavioral paradigms against a known inhibitor, e.g., GtACR1 with green light. To confirm that this GtACR1 transgene is functional, the authors could include GtACR1 with green light as a positive control for these two figures, as they have done for Figure 5-supplement 2 and 3.

      (6) Several citations are missing. In their discussion, the authors highlight that shorter wavelengths of light are more attenuated by tissue (lines 278-281); this should be accompanied by the relevant citations (Inagaki et al., 2014). Similarly, the claim that behavioral experiments exhibit greater sensitivity to shorter wavelengths should be substantiated (lines 281-283).

      References:

      Govorunova EG, Sineshchekov OA, Li H, Wang Y, Brown LS, Spudich JL. 2020. RubyACRs, nonalgal anion channelrhodopsins with highly red-shifted absorption. Proc Natl Acad Sci U S A 117:22833-22840.

      Inagaki HK, Jung Y, Hoopfer ED, Wong AM, Mishra N, Lin JY, Tsien RY, Anderson DJ. 2014. Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat Methods 11:325-332.

      Rockwell AL, Beaver I, Hongay CF. 2019. A direct and simple method to assess Drosophila melanogaster's viability from embryo to adult. J Vis Exp e59996.

    4. Reviewer #3 (Public review):

      Summary:

      This study by Bushey et al. adapts and evaluates two newly developed red-shifted optogenetic inhibitors, A1ACR1 and HfACR1, collectively referred to as RubyACRs, for neuronal silencing in Drosophila melanogaster. Traditional optogenetic inhibitors such as GtACR1 and GtACR2 are activated by green (~515 nm) and blue (~470 nm) light, respectively, which poses several limitations in Drosophila. Specifically, shorter-wavelength light suffers from reduced tissue penetration and increased absorption, and is visible to flies, potentially confounding behavioral assays, particularly those involving visual processing. In contrast, RubyACRs are activated by red light (~610-660 nm), which penetrates the cuticle more effectively and thus can be more potent in manipulating fly behavior. In the current manuscript, the authors first demonstrate that both A1ACR1 and HfACR1 can be robustly expressed in fly neurons and are properly trafficked to the plasma membrane. Upon red-light stimulation, both opsins produce strong and sustained hyperpolarization in larval motor neurons, outperforming GtACR1 in both magnitude and temporal dynamics. Next, using two-photon calcium imaging in the visual system, the authors further demonstrate that activation of RubyACRs significantly reduces GCaMP6s signal, indicating that they can reliably inhibit neuronal activity. Importantly, unlike reported in some mammalian studies, RubyACRs do not appear to trigger paradoxical depolarization at axon terminals in the fly visual system, as no evidence of aberrant depolarization is observed in motion-detecting Mi1 neurons.

      In the second part of the manuscript, the authors characterize the effects of RubyACRs on fly behavior (walking, learning, and courtship song). Using the inhibition of genetically labelled neurons that regulate these behaviors, the authors demonstrate that stimulation of RubyACRs leads to potent suppression of locomotion, courtship song, or dopamine-dependent associative learning.

      Strengths:

      Altogether, the experiments conducted in this manuscript demonstrate that RubyACRs are powerful tools for optogenetic inhibition in Drosophila, with advantages in spectral compatibility, behavioral specificity, and potential applications in vivo two-photon calcium imaging.

      Weaknesses:

      The manuscript is strong, but it can be further improved with a few additional analyses and minor revisions. Especially, a more detailed evaluation of RubyACRs with two-photon excitation will help clarify to what extent these opsins can be simultaneously used together with green GECIs, such as GCaMPs.

    5. Author response:

      We thank the reviewers for their thoughtful and thorough consideration of the work. We appreciate the positive reception they give the work, and plan to address several of the comments with further experiments. To outline that work (and ensure that we are on the right track to addressing those concerns), we summarize the core concerns that prompt new experiments:

      (1) Does the YFP tag on the ACRs interfere with simultaneous GCaMP imaging of RubyACR-expressing cells and could bleaching of the YFP complicate interpretation of the experiments here?

      We will test whether 920 nm (2p) and 650 nm (1p) excitation cause YFP bleaching that interferes with interpretation of inhibitory calcium (i.e. GCaMP) signals. Because the YFP tag enhances opsin sensitivity, we prioritized these tagged RubyACRs for initial characterization. FLAG-tagged ACRs are in progress, but will take time to fully characterize. Considering that the RubyACR-EYFP versions work very well, and in many cases people will want the YFP tag, either for visualizing expression or to maximize sensitivity, we feel the current work is a valuable contribution on its own. Indeed several labs have already requested these lines.

      (2) Are the ACRs activated by two-photon illumination?

      We will examine GCaMP signals at increasing 2p intensities to determine whether imaging unintentionally activates RubyACRs, as well as whether 2p illumination could be used for intentional opsin activation.

      (3) How toxic is the expression of these opsins?

      We will update the quantification of toxicity in Table 1 to include all the drivers we used in this study. In fact the toxicity we observed was primarily with the vGlut driver, which was why that was the only information in the table. The other drivers we used did not appreciably reduce survival rate, but showing the one case where it did have a big effect left a strong and understandably inaccurate impression that toxicity was a big pitfall. We note that the widely used CSChrimson has similar % survival to the RubyACRs when expressed with these vGlut drivers.

      We also plan to examine whether ACR expression leads to cell-autonomous perturbations. We will determine whether expression leads to some frequency of neuronal cell death, and we will evaluate whether any morphological effects occur.

      We will also clarify in the Discussion that potential toxicity may be driver-specific (as it is here) and should be evaluated case-by-case by investigators using the tool.

      (4) Use functional imaging to confirm inhibition of the neurons used only for behavioral experiments (pIP10 & PPL1-γ1pedc)

      We will perform these imaging experiments. One caveat is that inhibition may not be readily detectable with GCaMP, as the resting calcium levels in pIP10 and PPL1-γ1pedc neurons may already be quite low. This differs from the non-spiking Mi1 neurons, where inhibition was clearly observed with GCaMP. For this reason, we consider the behavioral results stronger evidence of efficacy, but we agree that imaging could provide useful supporting evidence, recognizing that a negative result would be difficult to interpret.

      (5) Confirm that the GtACR1 will inhibit locomotion in the flybowl when activated with green light, its spectral peak.

      We will perform this benchmark experiment. Please note that our intention with this study was to find an effective red-light activated opto-inhibitor because these wavelengths are much less perturbing to behavior. In that respect, regardless of GtACR1’s performance with green light, the RubyACRs clearly provide important new tools for Drosophila behavioral neuroscience.

    1. eLife Assessment

      This manuscript is useful as it demonstrates that Rv2577, a Fe³⁺/Zn²⁺-dependent metallophosphatase, is secreted by Mycobacterium bovis BCG and localizes to the nucleus of mammalian cells, altering transcriptional and inflammatory responses. However, the study is incomplete as it lacks activity validation in macrophage cells and with virulent Mycobacterium tuberculosis strains. It is necessary to confirm Rv2577 secretion from a virulent strain and to clarify the direct or indirect role of MmpE in modulating host pathways, together with mechanistic insight into how MmpE influences lysosomal biogenesis and trafficking.

    2. Reviewer #1 (Public review):

      Summary:

      Review of the manuscript titled " Mycobacterial Metallophosphatase MmpE acts as a nucleomodulin to regulate host gene expression and promotes intracellular survival".

      The study provides an insightful characterization of the mycobacterial secreted effector protein MmpE, which translocates to the host nucleus and exhibits phosphatase activity. The study characterizes the nuclear localization signal sequences and residues critical for the phosphatase activity, both of which are required for intracellular survival.

      Strengths:

      (1) The study addresses the role of nucleomodulins, an understudied aspect in mycobacterial infections.

      (2) The authors employ a combination of biochemical and computational analyses along with in vitro and in vivo validations to characterize the role of MmpE.

      Weaknesses:

      (1) While the study establishes that the phosphatase activity of MmpE operates independently of its NLS, there is a clear gap in understanding how this phosphatase activity supports mycobacterial infection. The investigation lacks experimental data on specific substrates of MmpE or pathways influenced by this virulence factor.

      (2) The study does not explore whether the phosphatase activity of MmpE is dependent on the NLS within macrophages, which would provide critical insights into its biological relevance in host cells. Conducting experiments with double knockout/mutant strains and comparing their intracellular survival with single mutants could elucidate these dependencies and further validate the significance of MmpE's dual functions.

      (3) The study does not provide direct experimental validation of the MmpE deletion on lysosomal trafficking of the bacteria.

      (4) The role of MmpE as a mycobacterial effector would be more relevant using virulent mycobacterial strains such as H37Rv.

    3. Reviewer #2 (Public review):

      Summary:

      In this paper, the authors have characterized Rv2577 as a Fe3+/Zn2+ -dependent metallophosphatase and a nucleomodulin protein. The authors have also identified His348 and Asn359 as critical residues for Fe3+ coordination. The authors show that the proteins encode for two nuclease localization signals. Using C-terminal Flag expression constructs, the authors have shown that the MmpE protein is secretory. The authors have prepared genetic deletion strains and show that MmpE is essential for intracellular survival of M. bovis BCG in THP-1 macrophages, RAW264.7 macrophages, and a mouse model of infection. The authors have also performed RNA-seq analysis to compare the transcriptional profiles of macrophages infected with wild-type and MmpE mutant strains. The relative levels of ~ 175 transcripts were altered in MmpE mutant-infected macrophages and the majority of these were associated with various immune and inflammatory signalling pathways. Using these deletion strains, the authors proposed that MmpE inhibits inflammatory gene expression by binding to the promoter region of a vitamin D receptor. The authors also showed that MmpE arrests phagosome maturation by regulating the expression of several lysosome-associated genes such as TFEB, LAMP1, LAMP2, etc. These findings reveal a sophisticated mechanism by which a bacterial effector protein manipulates gene transcription and promotes intracellular survival.

      Strength:

      The authors have used a combination of cell biology, microbiology, and transcriptomics to elucidate the mechanisms by which Rv2577 contributes to intracellular survival.

      Weakness:

      The authors should thoroughly check the mice data and show individual replicate values in bar graphs.

    4. Reviewer #3 (Public review):

      Summary:

      In this manuscript titled "Mycobacterial Metallophosphatase MmpE Acts as a Nucleomodulin to Regulate Host Gene Expression and Promote Intracellular Survival", Chen et al describe biochemical characterisation, localisation and potential functions of the gene using a genetic approach in M. bovis BCG and perform macrophage and mice infections to understand the roles of this potentially secreted protein in the host cell nucleus. The findings demonstrate the role of a secreted phosphatase of M. bovis BCG in shaping the transcriptional profile of infected macrophages, potentially through nuclear localisation and direct binding to transcriptional start sites, thereby regulating the inflammatory response to infection.

      Strengths:

      The authors demonstrate using a transient transfection method that MmpE when expressed as a GFP-tagged protein in HEK293T cells, exhibits nuclear localisation. The authors identify two NLS motifs that together are required for nuclear localisation of the protein. A deletion of the gene in M. bovis BCG results in poorer survival compared to the wild-type parent strain, which is also killed by macrophages. Relative to the WT strain-infected macrophages, macrophages infected with the ∆mmpE strain exhibited differential gene expression. Overexpression of the gene in HEK293T led to occupancy of the transcription start site of several genes, including the Vitamin D Receptor. Expression of VDR in THP1 macrophages was lower in the case of ∆mmpE infection compared to WT infection. This data supports the utility of the overexpression system in identifying potential target loci of MmpE using the HEK293T transfection model. The authors also demonstrate that the protein is a phosphatase, and the phosphatase activity of the protein is partially required for bacterial survival but not for the regulation of the VDR gene expression.

      Weaknesses:

      (1) While the motifs can most certainly behave as NLSs, the overexpression of a mycobacterial protein in HEK293T cells can also result in artefacts of nuclear localisation. This is not unprecedented. Therefore, to prove that the protein is indeed secreted from BCG, and is able to elicit transcriptional changes during infection, I recommend that the authors (i) establish that the protein is indeed secreted into the host cell nucleus, and (ii) the NLS mutation prevents its localisation to the nucleus without disrupting its secretion.

      Demonstration that the protein is secreted: Supplementary Figure 3 - Immunoblotting should be performed for a cytosolic protein, also to rule out detection of proteins from lysis of dead cells. Also, for detecting proteins in the secreted fraction, it would be better to use Sauton's media without detergent, and grow the cultures without agitation or with gentle agitation. The method used by the authors is not a recommended protocol for obtaining the secreted fraction of mycobacteria.

      Demonstration that the protein localises to the host cell nucleus upon infection: Perform an infection followed by immunofluorescence to demonstrate that the endogenous protein of BCG can translocate to the host cell nucleus. This should be done for an NLS1-2 mutant expressing cell also.

      (2) In the RNA-seq analysis, the directionality of change of each of the reported pathways is not apparent in the way the data have been presented. For example, are genes in the cytokine-cytokine receptor interaction or TNF signalling pathway expressed more, or less in the ∆mmpE strain?

      (3) Several of these pathways are affected as a result of infection, while others are not induced by BCG infection. For example, BCG infection does not, on its own, produce changes in IL1β levels. As the authors did not compare the uninfected macrophages as a control, it is difficult to interpret whether ∆mmpE induced higher expression than the WT strain, or simply did not induce a gene while the WT strain suppressed expression of a gene. This is particularly important because the strain is attenuated. Does the attenuation have anything to do with the ability of the protein to induce lysosomal pathway genes? Does induction of this pathway lead to attenuation of the strain? Similarly, for pathways that seem to be downregulated in the ∆mmpE strain compared to the WT strain, these might have been induced upon infection with the WT strain but not sufficiently by the ∆mmpE strain due to its attenuation/ lower bacterial burden.

      (4) CHIP-seq should be performed in THP1 macrophages, and not in HEK293T. Overexpression of a nuclear-localised protein in a non-relevant line is likely to lead to several transcriptional changes that do not inform us of the role of the gene as a transcriptional regulator during infection.

      (5) I would not expect to see such large inflammatory reactions persisting 56 days post-infection with M. bovis BCG. Is this something peculiar for an intratracheal infection with 1x107 bacilli? For images of animal tissue, the authors should provide images of the entire lung lobe with the zoomed-in image indicated as an inset.

      (6) For the qRT-PCR based validation, infections should be performed with the MmpE-complemented strain in the same experiments as those for the WT and ∆mmpE strain so that they can be on the same graph, in the main manuscript file. Supplementary Figure 4 has three complementary strains. Again, the absence of the uninfected, WT, and ∆mmpE infected condition makes interpretation of these data very difficult.

      (7) The abstract mentions that MmpE represses the PI3K-Akt-mTOR pathway, which arrests phagosome maturation. There is not enough data in this manuscript in support of this claim. Supplementary Figure 5 does provide qRT-PCR validation of genes of this pathway, but the data do not indicate that higher expression of these pathways, whether by VDR repression or otherwise, is driving the growth restriction of the ∆mmpE strain.

      (8) The relevance of the NLS and the phosphatase activity is not completely clear in the CFU assays and in the gene expression data. Firstly, there needs to be immunoblot data provided for the expression and secretion of the NLS-deficient and phosphatase mutants. Secondly, CFU data in Figure 3A, C, and E must consistently include both the WT and ∆mmpE strain.

    5. Author response:

      Reviewer #1 (Public review):

      Summary:

      Review of the manuscript titled " Mycobacterial Metallophosphatase MmpE acts as a nucleomodulin to regulate host gene expression and promotes intracellular survival".

      The study provides an insightful characterization of the mycobacterial secreted effector protein MmpE, which translocates to the host nucleus and exhibits phosphatase activity. The study characterizes the nuclear localization signal sequences and residues critical for the phosphatase activity, both of which are required for intracellular survival.

      Strengths:

      (1) The study addresses the role of nucleomodulins, an understudied aspect in mycobacterial infections.

      (2) The authors employ a combination of biochemical and computational analyses along with in vitro and in vivo validations to characterize the role of MmpE.

      Weaknesses:

      (1) While the study establishes that the phosphatase activity of MmpE operates independently of its NLS, there is a clear gap in understanding how this phosphatase activity supports mycobacterial infection. The investigation lacks experimental data on specific substrates of MmpE or pathways influenced by this virulence factor.

      We thank the reviewer for this insightful comment and agree that identification of the substrate of MmpE is important to fully understand its role in mycobacterial infection.

      MmpE is a putative purple acid phosphatase (PAP) and a member of the metallophosphoesterase (MPE) superfamily. Enzymes in this family are known for their catalytic promiscuity and broad substrate specificity, acting on phosphomonoesters, phosphodiesters, and phosphotriesters (Matange et al., Biochem J., 2015). In bacteria, several characterized MPEs have been shown to hydrolyze substrates such as cyclic nucleotides (e.g., cAMP) (Keppetipola et al., J Biol Chem, 2008; Shenoy et al., J Mol Biol, 2007), nucleotide derivatives (e.g., AMP, UDP-glucose) (Innokentev et al., mBio, 2025), and pyrophosphate-containing compounds (e.g., Ap4A, UDP-DAGn) (Matange et al., Biochem J., 2015). Although the binding motif of MmpE has been identified, determining its physiological substrates remains challenging due to the low abundance and instability of potential metabolites, as well as the limited sensitivity and coverage of current metabolomic technologies in mycobacteria.

      (2) The study does not explore whether the phosphatase activity of MmpE is dependent on the NLS within macrophages, which would provide critical insights into its biological relevance in host cells. Conducting experiments with double knockout/mutant strains and comparing their intracellular survival with single mutants could elucidate these dependencies and further validate the significance of MmpE's dual functions.

      We thank the reviewer for the comment. In our study, we demonstrate that both the nuclear localization and phosphatase activity of MmpE are required for full virulence (Figure 3D–E). Importantly, deletion of the NLS motifs did not impair MmpE’s phosphatase activity in vitro (Figure 2F), indicating that its enzymatic function is structurally independent of its nuclear localization. These findings suggest that MmpE functions as a bifunctional protein, with distinct and non-overlapping roles for its nuclear trafficking and phosphatase activity. We have expanded on this point in the Discussion section “MmpE Functions as a Bifunctional Protein with Nuclear Localization and Phosphatase Activity”.

      (3) The study does not provide direct experimental validation of the MmpE deletion on lysosomal trafficking of the bacteria.

      We thank the reviewer for the comment. The role of Rv2577/MmpE in phagosome maturation has been demonstrated in M. tuberculosis, where its deletion increases colocalization with lysosomal markers such as LAMP-2 and LAMP-3 (Forrellad et al., Front Microbiol, 2020). In our study, we found that mmpE deletion in M. bovis BCG led to upregulation of lysosomal genes, including TFEB, LAMP1, LAMP2, and v-ATPase subunits, compared to the wild-type strain. These results suggest that MmpE may regulate lysosomal trafficking by interfering with phagosome–lysosome fusion.

      To further validate MmpE’s role in phagosome maturation, we will perform fluorescence colocalization assays in THP-1 macrophages infected with BCG/wt, ∆mmpE, complemented, and NLS-mutant strains. Co-staining with LAMP1 and LysoTracker will allow us to assess whether the ∆mmpE mutant is more efficiently trafficked to lysosomes.

      (4) The role of MmpE as a mycobacterial effector would be more relevant using virulent mycobacterial strains such as H37Rv.

      We thank the reviewer for the comment. Previously, the role of Rv2577/MmpE as a virulence factor has been demonstrated in M. tuberculosis CDC 1551, where its deletion significantly reduced bacterial replication in mouse lungs at 30 days post-infection (Forrellad et al., Front Microbiol, 2020). However, that study did not explore the underlying mechanism of MmpE function. In our work, we found that MmpE enhances M. bovis BCG survival in both macrophages (THP-1 and RAW264.7) and mice (Figure 2A-B, Figure 6A), consistent with its proposed role in virulence. To investigate the molecular mechanism by which MmpE promotes intracellular survival, we used M. bovis BCG as a biosafe surrogate and this model is widely accepted for studying mycobacterial pathogenesis (Wang et al., Nat Immunol, 2025; Wang et al., Nat Commun, 2017; Péan et al., Nat Commun, 2017).

      Reviewer #2 (Public review):

      Summary:

      In this paper, the authors have characterized Rv2577 as a Fe3+/Zn2+ -dependent metallophosphatase and a nucleomodulin protein. The authors have also identified His348 and Asn359 as critical residues for Fe3+ coordination. The authors show that the proteins encode for two nuclease localization signals. Using C-terminal Flag expression constructs, the authors have shown that the MmpE protein is secretory. The authors have prepared genetic deletion strains and show that MmpE is essential for intracellular survival of M. bovis BCG in THP-1 macrophages, RAW264.7 macrophages, and a mouse model of infection. The authors have also performed RNA-seq analysis to compare the transcriptional profiles of macrophages infected with wild-type and MmpE mutant strains. The relative levels of ~ 175 transcripts were altered in MmpE mutant-infected macrophages and the majority of these were associated with various immune and inflammatory signalling pathways. Using these deletion strains, the authors proposed that MmpE inhibits inflammatory gene expression by binding to the promoter region of a vitamin D receptor. The authors also showed that MmpE arrests phagosome maturation by regulating the expression of several lysosome-associated genes such as TFEB, LAMP1, LAMP2, etc. These findings reveal a sophisticated mechanism by which a bacterial effector protein manipulates gene transcription and promotes intracellular survival.

      Strength:

      The authors have used a combination of cell biology, microbiology, and transcriptomics to elucidate the mechanisms by which Rv2577 contributes to intracellular survival.

      Weakness:

      The authors should thoroughly check the mice data and show individual replicate values in bar graphs.

      We kindly appreciate the reviewer for the advice. We will update the relevant mice data in the revised manuscript.

      Reviewer #3 (Public review):

      Summary:

      In this manuscript titled "Mycobacterial Metallophosphatase MmpE Acts as a Nucleomodulin to Regulate Host Gene Expression and Promote Intracellular Survival", Chen et al describe biochemical characterisation, localisation and potential functions of the gene using a genetic approach in M. bovis BCG and perform macrophage and mice infections to understand the roles of this potentially secreted protein in the host cell nucleus. The findings demonstrate the role of a secreted phosphatase of M. bovis BCG in shaping the transcriptional profile of infected macrophages, potentially through nuclear localisation and direct binding to transcriptional start sites, thereby regulating the inflammatory response to infection.

      Strengths:

      The authors demonstrate using a transient transfection method that MmpE when expressed as a GFP-tagged protein in HEK293T cells, exhibits nuclear localisation. The authors identify two NLS motifs that together are required for nuclear localisation of the protein. A deletion of the gene in M. bovis BCG results in poorer survival compared to the wild-type parent strain, which is also killed by macrophages. Relative to the WT strain-infected macrophages, macrophages infected with the ∆mmpE strain exhibited differential gene expression. Overexpression of the gene in HEK293T led to occupancy of the transcription start site of several genes, including the Vitamin D Receptor. Expression of VDR in THP1 macrophages was lower in the case of ∆mmpE infection compared to WT infection. This data supports the utility of the overexpression system in identifying potential target loci of MmpE using the HEK293T transfection model. The authors also demonstrate that the protein is a phosphatase, and the phosphatase activity of the protein is partially required for bacterial survival but not for the regulation of the VDR gene expression.

      Weaknesses:

      (1)   While the motifs can most certainly behave as NLSs, the overexpression of a mycobacterial protein in HEK293T cells can also result in artefacts of nuclear localisation. This is not unprecedented. Therefore, to prove that the protein is indeed secreted from BCG, and is able to elicit transcriptional changes during infection, I recommend that the authors (i) establish that the protein is indeed secreted into the host cell nucleus, and (ii) the NLS mutation prevents its localisation to the nucleus without disrupting its secretion.

      We kindly appreciate the reviewer for the advice and will include the relevant experiments in the revised manuscript. The localization of WT MmpE and the NLS mutated MmpE will be tested in the BCG infected macrophages.

      Demonstration that the protein is secreted: Supplementary Figure 3 - Immunoblotting should be performed for a cytosolic protein, also to rule out detection of proteins from lysis of dead cells. Also, for detecting proteins in the secreted fraction, it would be better to use Sauton's media without detergent, and grow the cultures without agitation or with gentle agitation. The method used by the authors is not a recommended protocol for obtaining the secreted fraction of mycobacteria.

      We agree with the reviewer and we will further validate the secretion of MmpE using the tested protocol.

      Demonstration that the protein localises to the host cell nucleus upon infection: Perform an infection followed by immunofluorescence to demonstrate that the endogenous protein of BCG can translocate to the host cell nucleus. This should be done for an NLS1-2 mutant expressing cell also.

      We will add this experiment in the revised manuscript.

      (2) In the RNA-seq analysis, the directionality of change of each of the reported pathways is not apparent in the way the data have been presented. For example, are genes in the cytokine-cytokine receptor interaction or TNF signalling pathway expressed more, or less in the ∆mmpE strain?

      We thank the reviewer for pointing this out and fully agree that conventional KEGG pathway enrichment diagrams do not convey the directionality of individual gene expression changes within each pathway. While KEGG enrichment analysis identifies pathways that are statistically overrepresented among differentially expressed genes, it does not indicate whether individual genes within those pathways are upregulated or downregulated.

      To address this, we re-analyzed the expression trends of DEGs within each significantly enriched KEGG pathway. The results show that key immune-related pathways, including cytokine–cytokine receptor interaction, TNF signaling, NF-κB signaling, and chemokine signaling, are collectively upregulated in THP-1 macrophages infected with ∆mmpE strain compared to those infected with the wild-type BCG strain. The full list of DEGs will be provided in the supplementary materials. The complete RNA-seq dataset has been deposited in the GEO database, and the accession number will be included in the revised manuscript.

      (3) Several of these pathways are affected as a result of infection, while others are not induced by BCG infection. For example, BCG infection does not, on its own, produce changes in IL1β levels. As the author s did not compare the uninfected macrophages as a control, it is difficult to interpret whether ∆mmpE induced higher expression than the WT strain, or simply did not induce a gene while the WT strain suppressed expression of a gene. This is particularly important because the strain is attenuated. Does the attenuation have anything to do with the ability of the protein to induce lysosomal pathway genes? Does induction of this pathway lead to attenuation of the strain? Similarly, for pathways that seem to be downregulated in the ∆mmpE strain compared to the WT strain, these might have been induced upon infection with the WT strain but not sufficiently by the ∆mmpE strain due to its attenuation/ lower bacterial burden.

      We thank the reviewer for the comment. We will update qRT-PCR data with the uninfected macrophages as a control in the revised manuscript.

      Wild-type Mycobacterium bovis BCG strain still has the function of inhibiting phagosome maturation (Branzk et al., Nat Immunol, 2014; Weng et al., Nat Commun, 2022). Forrellad et al. previously identified Rv2577/MmpE as a virulence factor in M. tuberculosis and disruption of the MmpE gene impairs the ability of M. tuberculosis to arrest phagosome maturation (Forrellad et al., Front Microbiol, 2020). In our study, transcriptomic and qRTPCR data (Figures 4C and G, S4C) show that deletion of mmpE in M. bovis BCG leads to upregulation of lysosomal biogenesis and acidification genes, including TFEB, LAMP1, and vATPase. To further validate MmpE’s role in phagosome maturation, we will perform fluorescence colocalization assays in THP-1 macrophages infected with BCG/wt, ∆mmpE, complemented, and NLS-mutant strains. Co-staining with LAMP1 and LysoTracker will assess whether the ∆mmpE mutant is more efficiently trafficked to lysosomes.

      Furthermore, CFU assays demonstrated that the ∆mmpE strain exhibits markedly reduced bacterial survival in both human THP-1 and murine RAW264.7 macrophages, as well as in mice, compared to the wild-type strain (Figures 4A and C, 6A). These findings suggest that the loss of MmpE compromises bacterial survival, likely due to enhanced lysosomal trafficking and acidification. This supports previous studies showing that increased lysosomal activity promotes mycobacterial clearance (Gutierrez et al., Cell, 2004; Pilli et al., Immunity, 2012).

      (4) CHIP-seq should be performed in THP1 macrophages, and not in HEK293T. Overexpression of a nuclear-localised protein in a non-relevant line is likely to lead to several transcriptional changes that do not inform us of the role of the gene as a transcriptional regulator during infection.

      We thank the reviewer for the comment. We performed ChIP-seq in HEK293T cells is based on the fact that this cell line is widely used in ChIP-based assays due to its high transfection efficiency, robust nuclear protein expression, and well-annotated genome (Lampe et al., Nat Biotechnol, 2024; Marasco et al., Cell, 2022). These features make HEK293T an ideal system for the initial identification of genome wide chromatin binding profiles of novel nuclear effectors such as MmpE.

      Furthermore, we validated the major observations in THP-1 macrophages, including (i) RNAseq of THP-1 cells infected with either WT BCG or ∆mmpE strains revealed significant transcriptional changes in immune and lysosomal pathways (Figure 4A); (ii) Integrated analysis of CUT&Tag and RNA-seq data identified 298 genes in infected THP-1 cells that exhibited both MmpE binding and corresponding expression changes. Among these, VDR was validated as a direct transcriptional target of MmpE using EMSA and ChIP-PCR (Figures 5E-J, S5D-F). Notably, the signaling pathways associated with MmpE-bound genes, including PI3K-Akt-mTOR signaling and lysosomal function, substantially overlap with those transcriptionally modulated in infected THP-1 macrophages (Figures 4B-G, S4B-C, S5C-D), further supporting the biological relevance of the ChIP-seq data obtained from HEK293T cells.

      (5) I would not expect to see such large inflammatory reactions persisting 56 days postinfection with M. bovis BCG. Is this something peculiar for an intratracheal infection with 1x107 bacilli? For images of animal tissue, the authors should provide images of the entire lung lobe with the zoomed-in image indicated as an inset.

      We thank the reviewer for the comment. The lung inflammation peaked at days 21–28 and had clearly subsided by day 56 across all groups (Figure 6B), consistent with the expected resolution of immune responses to an attenuated strain like M. bovis BCG. This temporal pattern is in line with previous studies using intravenous or intratracheal BCG vaccination in mice and macaques, which also demonstrated robust early immune activation followed by resolution over time (Smith et al., Nat Microbiol, 2025; Darrah et al., Nature, 2020).

      In this study, the infectious dose (1×10⁷ CFU intratracheally) was selected based on previous studies in which intratracheal delivery of 1×10⁷CFU produced consistent and measurable lung immune responses and pathology without causing overt illness or mortality (Xu et al., Sci Rep, 2017; Niroula et al., Sci Rep, 2025). We will provide whole-lung lobe images with zoomed-in insets in the revised manuscript.

      (6) For the qRT-PCR based validation, infections should be performed with the MmpEcomplemented strain in the same experiments as those for the WT and ∆mmpE strain so that they can be on the same graph, in the main manuscript file. Supplementary Figure 4 has three complementary strains. Again, the absence of the uninfected, WT, and∆mmpE infected condition makes interpretation of these data very difficult.

      We thank the reviewer for the comment. As suggested, we will conduct the qRT-PCR experiment including the uninfected, WT, ∆mmpE, Comp-MmpE, and the three complementary strains infecting THP-1 cells. The updated data will be provided in the revised manuscript.

      (7) The abstract mentions that MmpE represses the PI3K-Akt-mTOR pathway, which arrests phagosome maturation. There is not enough data in this manuscript in support of this claim. Supplementary Figure 5 does provide qRT-PCR validation of genes of this pathway, but the data do not indicate that higher expression of these pathways, whether by VDR repression or otherwise, is driving the growth restriction of the ∆mmpE strain.

      We thank the reviewer for the comment. The role of MmpE in phagosome maturation was previously characterized. Disruption of mmpE impairs the ability of M. tuberculosis to arrest lysosomal trafficking (Forrellad et al., Front Microbiol, 2020). In this study, we further found that MmpE suppresses the expression of key lysosomal genes, including TFEB, LAMP1, LAMP2, and ATPase subunits (Figure 4G), suggesting MmpE is involved in arresting phagosome maturation. As noted, the genes in the PI3K–Akt–mTOR pathway are upregulated in ∆mmpE-infected macrophages (Figure S5C).

      To functionally validate this, we will conduct two complementary experimental approaches:

      (i) Immunofluorescence assays: We will assess phagosome maturation and lysosomal fusion in THP-1 cells infected with BCG/wt, ∆mmpE, Comp-MmpE, and NLS mutant strains. Colocalization of intracellular bacteria with LAMP1 and LysoTracker will be quantified to determine whether the ∆mmpE strain is more efficiently trafficked to lysosomes.

      (ii) CFU assays: We will perform CFU assays in THP-1 cells infected with BCG/wt or ∆mmpE in the presence or absence of PI3K-Akt-mTOR pathway inhibitors (e.g., Dactolisib), to assess whether activation of this pathway contributes to the intracellular growth restriction observed in the ∆mmpE strain.

      (8) The relevance of the NLS and the phosphatase activity is not completely clear in the CFU assays and in the gene expression data. Firstly, there needs to be immunoblot data provided for the expression and secretion of the NLS-deficient and phosphatase mutants. Secondly, CFU data in Figure 3A, C, and E must consistently include both the WT and ∆mmpE strain.

      We thank the reviewer for the comment. We will provide immunoblot data for the expression and secretion of the NLS-deficient and phosphatase mutants. Additionally, we will revise Figure 3A, 3C, and 3E to consistently include both the WT and ΔmmpE strains in the CFU assays.

      Reference

      Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD, Papayannopoulos V (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens Nat Immunol 15:1017-25.

      Darrah PA, Zeppa JJ, Maiello P, Hackney JA, Wadsworth MH 2nd, Hughes TK, Pokkali S, Swanson PA 2nd, Grant NL, Rodgers MA, Kamath M, Causgrove CM, Laddy DJ, Bonavia A, Casimiro D, Lin PL, Klein E, White AG, Scanga CA, Shalek AK, Roederer M, Flynn JL, Seder RA (2020) Prevention of tuberculosis in macaques after intravenous BCG immunization Nature 577:95-102.

      Forrellad MA, Blanco FC, Marrero Diaz de Villegas R, Vázquez CL, Yaneff A, García EA, Gutierrez MG, Durán R, Villarino A, Bigi F (2020) Rv2577 of Mycobacterium tuberculosis Is a virulence factor with dual phosphatase and phosphodiesterase functions Front Microbiol 11:570794.

      Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages Cell 119:753-66.

      Innokentev A, Sanchez AM, Monetti M, Schwer B, Shuman S (2025) Efn1 and Efn2 are extracellular 5'-nucleotidases induced during the fission yeast response to phosphate starvation mBio 16: e0299224.

      Keppetipola N, Shuman S (2008) A phosphate-binding histidine of binuclear metallophosphodiesterase enzymes is a determinant of 2',3'-cyclic nucleotide phosphodiesterase activity J Biol Chem 283:30942-9.

      Lampe GD, King RT, Halpin-Healy TS, Klompe SE, Hogan MI, Vo PLH, Tang S, Chavez A, Sternberg SH (2024) Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases Nat Biotechnol 42:87-98.

      Marasco LE, Dujardin G, Sousa-Luís R, Liu YH, Stigliano JN, Nomakuchi T, Proudfoot NJ, Krainer AR, Kornblihtt AR (2022) Counteracting chromatin effects of a splicing-correcting antisense oligonucleotide improves its therapeutic efficacy in spinal muscular atrophy Cell 185:2057-2070.e15.

      Matange N, Podobnik M, Visweswariah SS (2015) Metallophosphoesterases: structural fidelity with functional promiscuity Biochem J 467:201-16.

      Niroula N, Ghodasara P, Marreros N, Fuller B, Sanderson H, Zriba S, Walker S, Shury TK, Chen JM (2025) Orally administered live BCG and heat-inactivated Mycobacterium bovis protect bison against experimental bovine tuberculosis Sci Rep 15:3764.

      Péan CB, Schiebler M, Tan SW, Sharrock JA, Kierdorf K, Brown KP, Maserumule MC,

      Menezes S, Pilátová M, Bronda K, Guermonprez P, Stramer BM, Andres Floto R, Dionne MS (2017) Regulation of phagocyte triglyceride by a STAT-ATG2 pathway controls mycobacterial infection Nat Commun 8:14642.

      Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, Dupont N, Ornatowski W, Jiang S, Bradfute SB, Bruun JA, Hansen TE, Johansen T, Deretic V (2012) TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation Immunity 37:223-34.

      Shenoy AR, Capuder M, Draskovic P, Lamba D, Visweswariah SS, Podobnik M (2007) Structural and biochemical analysis of the Rv0805 cyclic nucleotide phosphodiesterase from Mycobacterium tuberculosis J Mol Biol 365:211-25.

      Smith AA, Su H, Wallach J, Liu Y, Maiello P, Borish HJ, Winchell C, Simonson AW, Lin PL, Rodgers M, Fillmore D, Sakal J, Lin K, Vinette V, Schnappinger D, Ehrt S, Flynn JL (2025) A BCG kill switch strain protects against Mycobacterium tuberculosis in mice and non-human primates with improved safety and immunogenicity Nat Microbiol 10:468-481.

      Wang J, Ge P, Qiang L, Tian F, Zhao D, Chai Q, Zhu M, Zhou R, Meng G, Iwakura Y, Gao GF, Liu CH (2017) The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation Nat Commun 8:244.

      Wang J, Li BX, Ge PP, Li J, Wang Q, Gao GF, Qiu XB, Liu CH (2015) Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system Nat Immunol 16:237–245

      Weng Y, Shepherd D, Liu Y, Krishnan N, Robertson BD, Platt N, Larrouy-Maumus G, Platt FM (2022) Inhibition of the Niemann-Pick C1 protein is a conserved feature of multiple strains of pathogenic mycobacteria Nat Commun 13:5320.

      Xu X, Lu X, Dong X, Luo Y, Wang Q, Liu X, Fu J, Zhang Y, Zhu B, Ma X (2017) Effects of hMASP2 on the formation of BCG infection-induced granuloma in the lungs of BALB/c mice Sci Rep 7:2300.

    1. eLife Assessment

      This important study applies a novel signal decomposition method to disentangle distinct signals contributing to the decision-making process, and provides convincing evidence for the operation of separate sensory encoding, attentional orienting, and ramping evidence accumulation signals. These findings are consistent with previous work, except for the absence of a motor component, which may relate to limitations of the analysis approach.

    2. Reviewer #1 (Public review):

      From my reading, this study aimed to achieve two things:

      (1) A neurally-informed account of how Pieron's and Fechner's laws can apply in concert at distinct processing levels.

      (2) A comprehensive map in time and space of all neural events intervening between stimulus and response in an immediately-reported perceptual decision.

      I believe that the authors achieved the first point, mainly owing to a clever contrast comparison paradigm, but with good help also from a new topographic parsing algorithm they created. With this, they found that the time intervening between an early initial sensory evoked potential and an "N2" type process associated with launching the decision process varies inversely with contrast according to Pieron's law. Meanwhile, the interval from that second event up to a neural event peaking just before response increases with contrast, fitting Fechner's law, and a very nice finding is that a diffusion model whose drift rates are scaled by Fechner's law, fit to RT, predicts the observed proportion of correct responses very well. These are all strengths of the study.

      The second, generally stated aim above is, in the opinion of this reviewer, unconvincing and ill-defined. Presumably, the full sequence of neural events is massively task-dependent, and surely it is more in number than just three. Even the sensory evoked potential typically observed for average ERPs, even for passive viewing, would include a series of 3 or more components - C1, P1, N1, etc. So are some events being missed? Perhaps the authors are identifying key events that impressively demarcate Pieron- and Fechner-adherent sections of the RT, but they might want to temper the claim that they are finding ALL events. In addition, the propensity for topographic parsing algorithms to potentially lump together distinct processes that partially co-evolve should be acknowledged.

      To take a salient example, the last neural event seems to blend the centroparietal positivity with a more frontal midline negativity, some of which would capture the CNV and some motor-execution related components that are more tightly time-locked to, of course, the response. If the authors plotted the traditional single-electrode ERP at the frontal focus and centroparietal focus separately, they are likely to see very different dynamics and contrast- and SAT-dependency. What does this mean for the validity of the multivariate method? If two or more components are being lumped into one neural event, wouldn't it mean that properties of one (e.g., frontal burstiness at response) are being misattributed to the other (centroparietal signal that also peaks but less sharply at response)?

      Also related to the method, why must the neural events all be 50 ms wide, and what happens if that is changed? Is it realistic that these neural events would be the same duration on every trial, even if their duration was a free parameter? This might be reasonable for sensory and motor components, but unlikely for cognitive.

      In general, I wonder about the analytic advantage of the parsing method - the paradigm itself is so well-designed that the story may be clear from standard average event-related potential analysis, and this might sidestep the doubts around whether the algorithm is correctly parsing all neural events.

      In particular, would the authors consider plotting CPP waveforms in the traditional way, across contrast levels? The elegant design is such that the C1 component (which has similar topography) will show up negative and early, giving way to the CPP, and these two components will show opposite amplitude variations (not just temporal intervals as is this paper's main focus), because the brighter the two gratings, the stronger the aggregate early sensory response but the weaker the decision evidence due to Fechner. I believe this would provide a simple, helpful corroborating analysis to back up the main functional interpretation in the paper.

      The first component is picking up on the C1 component (which is negative for these stimulus locations), not a "P100". Please consult any visual evoked potential study (e.g., Luck, Hillyard, etc).

      It is unexpected that this does not vary in latency with contrast - see, for example. Gebodh et al (2017, Brain Topography) - and there is little discussion of this. Could it be that nonlinear trends were not correctly tested for?

      There is very little analysis or discussion of the second stage linked to attention orientation - what would the role of attention orientation be in this task? Is it spatial attention directed to the higher contrast grating (and if so, should it lateralise accordingly?), or is it more of an alerting function the authors have in mind here?

    3. Reviewer #2 (Public review):

      Summary:

      The authors decomposed response times into component processes and manipulated the duration of these processes in opposing directions by varying contrast, and overall by manipulating speed-accuracy tradeoffs. They identify different processes and their durations by identifying neural states in time and validate their functional significance by showing that their properties vary selectively as expected with the predicted effects of the contrast manipulation. They identify 3 processes: stimulus encoding, attention orienting, and decision. These map onto classical event-related potentials. The decision-making component matched the CPP, and its properties varied with contrast and predicted decision-accuracy, while also exhibiting a burst not characteristic of evidence accumulation.

      Strengths:

      The design of the experiment is remarkable and offers crucial insights. The analysis techniques are beyond state-of-the-art, and the analyses are well motivated and offer clear insights.

      Weaknesses:

      It is not clear to me that the results confirm that there are only 3 processes, since e.g., motor preparation and execution were not captured. While the authors discuss this, this is a clear weakness of the approach, as other components may also have been missed. It is also unclear to what extent topographies map onto processes, since, e.g., different combinations of sources can lead to the same scalp topography.

    4. Reviewer #3 (Public review):

      Summary:

      In this manuscript, the authors examine the processing stages involved in perceptual decision-making using a new approach to analysing EEG data, combined with a critical stimulus manipulation. This new EEG analysis method enables single-trial estimates of the timing and amplitude of transient changes in EEG time-series, recurrent across trials in a behavioural task. The authors find evidence for three events between stimulus onset and the response in a two-spatial-interval visual discrimination task. By analysing the timing and amplitude of these events in relation to behaviour and the stimulus manipulation, the authors interpret these events as related to separable processing stages for stimulus encoding, attention orientation, and decision (deliberation). This is largely consistent with previous findings from both event-related potentials (across trials) and single-trial estimates using decoding techniques and neural network approaches.

      Strengths:

      This work is not only important for the conceptual advance, but also in promoting this new analysis technique, which will likely prove useful in future research. For the broader picture, this work is an excellent example of the utility of neural measures for mental chronometry.

      Weaknesses:

      The manuscript would benefit from some conceptual clarifications, which are important for readers to understand this manuscript as a stand-alone work. This includes clearer definitions of Piéron's and Fechner's laws, and a fuller description of the EEG analysis technique. The manuscript, broadly, but the introduction especially, may be improved by clearly delineating the multiple aims of this project: examining the processes for decision-making, obtaining single-trial estimates of meaningful EEG-events, and whether central parietal positivity reflects ramping activity or steps averaged across trials. A fuller discussion of the limitations of the work, in particular, the absence of motor contributions to reaction time, would also be appreciated.

      At times, the novelty of the work is perhaps overstated. Rather, readers may appreciate a more comprehensive discussion of the distinctions between the current work and previous techniques to gauge single-trial estimates of decision-related activity, as well as previous findings concerning distinct processing stages in decision-making. Moreover, a discussion of how the events described in this study might generalise to different decision-making tasks in different contexts (for example, in auditory perception, or even value-based decision-making) would also be appreciated.

    1. eLife Assessment

      This important report describes the changing antiviral activity of IFIT1 across mammals and in response to distinct viruses, likely as a result of past arms races. One of the main strengths of the manuscript is the breadth of mammalian IFIT1 orthologs and viruses that were tested, as well as the thoroughness of the positive selection analysis. Overall the evidence is convincing, and the discussion conveys well the limitations due to physical interactions with other IFITs that are not accounted for.

    2. Reviewer #2 (Public review):

      McDougal et al. describe the surprising finding that IFIT1 proteins from different mammalian species inhibit replication of different viruses, indicating that evolution of IFIT1 across mammals has resulted in host species-specific antiviral specificity. Before this work, research into the antiviral activity and specificity of IFIT1 had mostly focused on the human ortholog, which was described to inhibit viruses including vesicular stomatitis virus (VSV) and Venezuelan equine encephalitis virus (VEEV) but not other viruses including Sindbis virus (SINV) and parainfluenza virus type 3 (PIV3). In the current work, the authors first perform evolutionary analyses on IFIT1 genes across a wide range of mammalian species and reveal that IFIT1 genes have evolved under positive selection in primates, bats, carnivores, and ungulates. Based on these data, they hypothesize that IFIT1 proteins from these diverse mammalian groups may show distinct antiviral specificities against a panel of viruses. By generating human cells that express IFIT1 proteins from different mammalian species, the authors show a wide range of antiviral activities of mammalian IFIT1s. Most strikingly, they find several IFIT1 proteins that have completely different antiviral specificities relative to human IFIT1, including IFIT1s that fail to inhibit VSV or VEEV, but strongly inhibit PIV3 or SINV. These results indicate that there is potential for IFIT1 to inhibit a much wider range of viruses than human IFIT1 inhibits. Electrophoretic mobility shift assays (EMSAs) suggest that some of these changes in antiviral specificity can be ascribed to changes in direct binding of viral RNAs. Interestingly, they also find that chimpanzee IFIT1, which is >98% identical to human IFIT1, fails to inhibit any tested virus. Replacing three residues from chimpanzee IFIT1 with those from human IFIT1, one of which has evolved under positive selection in primates, restores activity to chimpanzee IFIT1. Together, these data reveal a vast diversity of IFIT1 antiviral specificity encoded by mammals, consistent with an IFIT1-virus evolutionary "arms race".

      Overall, this is a very interesting and well-written manuscript that combines evolutionary and functional approaches to provide new insight into IFIT1 antiviral activity and species-specific antiviral immunity. The conclusion that IFIT1 genes in several mammalian lineages are evolving under positive selection is supported by the data. The virology results, which convincingly show that IFIT1s from different species have distinct antiviral specificity, are the most surprising and exciting part of the paper. As such, this paper will be interesting for researchers studying mechanisms of innate antiviral immunity, as well as those interested in species-specific antiviral immunity. Moreover, it may prompt others to test a wide range of orthologs of antiviral factors beyond those from humans or mice, which could further the concept of host-specific innate antiviral specificity. Additional areas for improvement, which are mostly to clarify the presentation of data and conclusions, are described below.

      Strengths:

      (1) This paper is a very strong demonstration of the concept that orthologous innate immune proteins can evolve distinct antiviral specificities. Specifically, the authors show that IFIT1 proteins from different mammalian species are able to inhibit replication of distinct groups of viruses, which is most clearly illustrated in Figure 4G. This is an unexpected finding, as the mechanism by which IFIT1 inhibits viral replication was assumed to be similar across orthologs. While the molecular basis for these differences remains unresolved, this is a clear indication that IFIT1 evolution functionally impacts host-specific antiviral immunity and that IFIT1 has the potential to inhibit a much wider range of viruses than previously described.

      (2) By revealing these differences in antiviral specificity across IFIT1 orthologs, the authors highlight the importance of sampling antiviral proteins from different mammalian species to understand what functions are conserved and what functions are lineage- or species-specific. These results might therefore prompt similar investigations with other antiviral proteins, which could reveal a previously undiscovered diversity of specificities for other antiviral immunity proteins.

      (3) The authors also surprisingly reveal that chimpanzee IFIT1 shows no antiviral activity against any tested virus despite only differing from human IFIT1 by eight amino acids. By mapping this loss of function to three residues on one helix of the protein, the authors shed new light on a region of the protein with no previously known function.

      (4) Combined with evolutionary analyses that indicate that IFIT1 genes are evolving under positive selection in several mammalian groups, these functional data indicate that IFIT1 is engaged in an evolutionary "arms race" with viruses, which results in distinct antiviral specificities of IFIT1 proteins from different species.

      Weaknesses:

      (1) Some of the results and discussion text could be more focused on the model of evolution-driven changes in IFIT1 specificity. In particular, the majority of the residue mapping is on the chimpanzee protein, where it would appear that this protein has lost all antiviral function, rather than changing its antiviral specificity like some other examples in this paper. As such, the connection between the functional mapping of individual residues with the positive selection analysis and changes in antiviral specificity is not present. While the model that changes in antiviral specificity have been positively selected for is intriguing, it is not supported by data in the paper.

      (2) The strength of the differences in antiviral specificity could be highlighted to a greater degree. Specifically, the text describes a number of interesting examples of differences in inhibition of viruses from Figure 3C and 3D, and 4C-F. The revised version has added some clarity by at least providing raw data for 3C and 3D for the reader to make their own comparisons, but it is still difficult to quickly assess which are the most interesting comparisons to make (e.g. for future mapping of residues that might be important).