Reviewer #2 (Public Review):
Embryonic development requires differential gene expression, which is regulated by enhancer elements. Regulatory proteins bind to these DNA elements to regulate close-by promoters. Key insights into the molecular mechanisms of enhancer function have been gained by studying fly segmentation, where a hierarchical cascade of gene regulation subdivides the embryo into ever smaller units. However, segmentation in other insects and arthropods as well as in vertebrates relies on a much more dynamic process where repetitive gene expression patterns appear to migrate across tissues similar to waves. Only recently, models have been proposed that make predictions on the underlying gene regulatory networks (GRN) and the properties of the respective enhancers. Specifically, the previously suggested model of the authors, the enhancer switching model, predicted that each gene expression wave should actually be regulated by two GRNS - one based on a "dynamic enhancer", which directs the early wave-like pattern and the other involving a "static enhancer", which directs the more stable expression defining the segment anlagen at the end of each cycle. However, these predicted enhancer types have not been described so far. In flies, where the respective methodology would be available, the segmentation does not show prominent wave-like patterns. In beetles, where pronounced wave-like patterns have been described, the respective methodology has been missing.
With this work, the authors establish a genomic resource and a transgenic line in the red flour beetle in order to establish it as a model system to tackle questions on enhancers driving dynamic expressions during development. First, they determine the open chromatin at early embryonic stages thereby generating a valuable resource for enhancer detection. They did so by dissecting the embryos of two temporal stages into three parts (head, middle part, and growth zone) and then determined open chromatin via ATAC-seq. This setup allowed for a comparison across tissues and stages to identify dynamically regulated chromatin. Indeed, Mau et al. find that dynamic chromatin regulation is a good criterion to enrich for active enhancers.
Second, they established an enhancer reporter system, which allows for visualization of de novo transcription by both in situ hybridization and in vivo. This MS2 system has for the first time been implemented in this beetle and the authors convincingly show its functionality. Indeed, the expression dynamics can be very nicely visualized in vivo at blastoderm stages.
Combing these two resources, they predicted enhancers based on the criterion of dynamic chromatin regulation (from their ATAC-seq resource) and tested them using their novel MS2 system. Out of 9 tested enhancers located close to the gap genes hunchback and Krüppel and the pair-rule gene runt, 4 drove expression. Combining these data with previously published beetle enhancers, they show that DNA regions with differential accessibility were indeed enriched in active enhancers (appr. 60%), providing a good selection criterion.
Finally, they characterize two of the newly identified enhancers that reflect wave-like expression patterns in fixed embryos and in vivo by using the MS2 system to test predictions of the enhancer switching model. The results are compared with an elaboration of their previously suggested enhancer-switching model, which predicts different patterns for static vs. dynamic enhancers. Indeed, they think that the runB enhancer fits the predictions of a static enhancer.
The authors have generated a genomic resource that will be of very high value to the community in the future. The fact that they dissected the embryos for that purpose makes it even more precise and valuable. Likewise, the transgenic system that allows for testing enhancer activity in vivo will be very valuable for the highly active research field dealing with the prediction and analyses of enhancers.
The analysis of the identified enhancers provides partial confirmation for their model. As the authors state in the discussion, finding at least one pair of such enhancers for one gene would be a great test of their hypothesis - finding pairs of static and dynamic enhancers in several genes would be strong support. Unfortunately, they found only one of the two enhancer types in runt and one in hunchback, respectively. Hence, the prediction of the model remains to be tested in the future.
The authors provide a lot of high-quality data visualized nicely in the figures. The text would profit from some re-formulation, re-structuring, and shortening.
Open questions:<br /> What happens with the runB enhancer at later stages of embryogenesis? With what kind of dynamics do the anterior-most stripes fade and does that agree with the model? Do they show the same dynamics throughout segmentation? I think later stages need to be shown because the prediction from the model would be that the dynamics are repeated with each wave. I am not so sure about the prediction for ageing stripes - yet it would have been interesting to see the model prediction and the activity of the static enhancer.<br /> I understand that the mRNA of the reporter gene yellow is more stable than the runt mRNA. This might interfere with the possibility to test your prediction for static enhancers: The criterion is that the stripes should increase in strength as the wave migrates towards the anterior. You show this for runB - but given that yellow has a more stable transcript - could this lead to a "false positive" increase in intensity with the slower migration and accumulation of transcripts? I would feel more comfortable with the statement that this is a static enhancer if you could exclude that the signal is blurred by an artifact based on different mRNA stability. What about re-running the simulation (with the parameters that have shown to well reflect endogenous runt mRNA levels) but increasing the parameter for the stability of the mRNA? Are static and dynamic enhancers still distinguishable? The claim of having found a static enhancer rests on this increase in signal, hence, other explanations need to be excluded carefully.<br /> What about the head domain of the runB enhancer (e.g. Fig. 6A lowest row): This seems to be different from endogenous expression in your work and in Choe et al. Is that aspect different from endogenous expression and can this be reconciled with your model?<br /> The claim of similar dynamics of expression visualized by in situ and MS2 in vivo relies on comparing Fig. 6C with 6A. To compare these two panels, I would need to know to what stage in A the embryo in C should be compared. Actually, the stripe in 6C appears more crisp than the stripes in 6A.<br /> Were the enhancer dynamics tested in vivo at later stages as well? I would appreciate a clear statement on what stages can be visualized and where the technical boundaries are because this will influence any considerations by others using this system.<br /> How do the reported accessibility dynamics of runA enhancer correlate with the activity of the reporter: E.g. is the enhancer open in the middle body region but closed at the posterior part of the embryo? Or is it closed at the anterior - and if so: why is there a signal of the reporter in the head?<br /> You show that chromatin accessibility dynamics help in identifying active enhancers. Is this idea new or is it based on previous experience with Drosophila (e.g. PMID: 29539636 or works cited in https://doi.org/10.1002/bies.201900188)? Or in what respect is this novel?