118 Matching Annotations
  1. Apr 2024
    1. W analizowanych badaniach znaleźliśmy wskazania do rozregulowania autonomicznego, głównie w odniesieniu do modulacji współczulnej u dorosłych pacjentów z ADHD. Rozregulowanie było szczególnie widoczne w zadaniach wymagających regulacji uwagi i reakcji. Zagregowane odkrycia dotyczące dysfunkcji autonomicznej mogą zapewnić psychofizjologiczne ramy dla patogenezy ADHD. W przeciwieństwie do innych chorób psychicznych, w których badania psychofizjologiczne donosiły głównie o dysregulacji autonomicznej w postaci dysregulacji przywspółczulnej, patofizjologia związana z ADHD wydaje się dotyczyć głównie modulacji współczulnej. Przyszłe badania obejmujące autonomiczną modulację w ADHD mogą rozważyć zastosowanie standaryzowanych, wymagających fizycznie i psychicznie zadań. Dodatkowy zbiór czynników związanych z ADHD, takich jak status leku, podtyp, choroby współistniejące, nasilenie objawów, wiek, płeć i styl życia, może pomóc w wyjaśnieniu związku między ryzykownymi zachowaniami zdrowotnymi a autonomiczną modulacją układu sercowo-naczyniowego.

      Dysregulacja (hipopobudzenie współczule w ADHD - konklucja

    2. Pomimo wyników wskazujących na zmienioną modulację autonomiczną w ADHD, ogólne wyniki recenzowanych badań były niejednorodne. Kilka czynników w obecnie dostępnych badaniach pierwotnych mogło potencjalnie przyczynić się do niespójności wyników: Np. Oliver i in. (2012) zrekrutowali swoją próbę badawczą spośród studentów, dlatego uczestnicy badania prawdopodobnie wykazywali mniejsze nasilenie objawów niż pacjenci kliniczni poszukujący leczenia, co może częściowo tłumaczyć nieistotność niektórych wyników badań pierwotnych (Oliver i wsp., 2012). Ogólnie rzecz biorąc, różnice płci i odmienności podtypów są jeszcze niedostatecznie zbadanymi aspektami ADHS. W kilku publikacjach odnotowano różnicę płci w zakresie rozpowszechnienia podtypów, przy czym kobiety częściej wykazywały głównie objawy nieuwagi, a mężczyźni częściej wykazywali nadpobudliwość i impulsywność, a także objawy złożone (Stibbe i in., 2020). Biorąc pod uwagę, że objawy nieuwagi częściej utrzymują się od dzieciństwa do dorosłości, możemy zaobserwować inny wzorzec w badaniach obejmujących dzieciństwo i okres dojrzewania.Spośród włączonych badań tylko Hermens i in. (2004) oraz Fischer (2013) dalej badali podtypy (Fischer, 2013; Hermens i inni, 2004). Podczas gdy Fischer (2013) nie znalazł korelacji między podtypami ADHD a parametrami autonomicznej modulacji sercowo-naczyniowej, Hermens i in. (2004) stwierdzili, że kobiety z ADHD wykazywały znacznie zmniejszoną aktywność współczulną, gdy podtyp ADHD był stosowany jako zmienna towarzysząca (Fischer, 2013; Hermens i inni, 2004).Stan przyjmowania leków był niejednorodny w badanych populacjach i kontrolowany w kilku, ale nie we wszystkich badaniach (Tabela 1). Na przykład Schubiner i in. (2006) włączyli do swojego badania tylko leczonych pacjentów z ADHD, którzy przyjmowali stałe dawki leków pobudzających przez co najmniej dwa miesiące i zostali poinstruowani, aby przyjmować leki pobudzające w dniu badania (Schubiner i in., 2006). W badaniu O'Connell i in. (2009) dziewięciu pacjentów przyjmowało obecnie leki psychostymulujące, czterech przyjmowało leki pobudzające w przeszłości, ale przestało, a pięciu nie było wcześniej leczonych stymulantami, podczas gdy Spencer i in. (2017) rekrutowali wyłącznie pacjentów z ADHD bez wcześniejszego leczenia farmakologicznego (O'Connell i in., 2008; Spencer i in., 2017). W żadnym z włączonych badań nie stosowano protokołu z włączaniem/wyłączaniem leków w celu sprawdzenia działania leków specyficznych dla ADHD, w związku z czym nie było dostępnych danych na temat wpływu leków psychotropowych na autonomiczną modulację sercowo-naczyniową u pacjentów z ADHD.Większość analizowanych badań pozwoliła na włączenie pacjentów z ADHD ze współistniejącymi chorobami psychicznymi. Najczęstsze choroby współistniejące w ADHD, a mianowicie zaburzenia związane z używaniem substancji, zaburzenia nastroju, zaburzenia lękowe i zaburzenia osobowości (Choi i in., 2022), są związane ze zmianami w modulacji autonomicznej (Baur, 2016; Geiss i in., 2021; Hirvikoski i in., 2011; Lackschewitz i in., 2008; Maier i in., 2014; O'Connell i in., 2009; Wilbertz i in., 2012, 2013, 2017), stąd współistniejące zaburzenia psychiczne mogły mieć dodatkowy wpływ na autonomiczną modulację układu sercowo-naczyniowego. W związku z tym nie jest pewne, czy część zaobserwowanych zmian pojawiła się raczej z powodu ADHD, czy też znaczna część obserwowanych zmian to współistniejące wpływy na autonomiczny układ nerwowy. Prawdopodobnie, ponieważ współwystępowanie ADHD jest wysokie, ekskluzywny protokół badania dopuszczający brak chorób współistniejących w próbie badawczej byłby oczywiście ograniczony pod względem możliwości uogólnienia na populację aADHD. W przyszłych pracach dotyczących autonomicznej modulacji sercowo-naczyniowej w ADHD badacze mogą rozważyć uwzględnienie chorób współistniejących jako zmiennych towarzyszących w swoich analizach, aby dokładniej odpowiedzieć na to pytanie.Różnorodność paradygmatów i podejść eksperymentalnych stosowanych w analizowanych badaniach, w tym zadań emocjonalnych, poznawczych i somatycznych, utrudnia bezpośrednie porównanie różnych badań. Wykorzystanie standaryzowanych zadań, takich jak test stresu społecznego w Trewirze lub bateria Ewinga, może pomóc w zwiększeniu porównywalności badań podstawowych (Ewing i Clarke, 1982; Kirschbaum i in., 1993). Parametry autonomiczne oceniane w badaniach pierwotnych były również niejednorodne, co można znaleźć w Tabeli 2.Liczba badań mieszczących się w zakresie naszego przeglądu była niewielka, a kilka z włączonych badań obejmowało stosunkowo niewielką liczbę uczestników, a w niektórych badaniach pomiary autonomicznego układu nerwowego nie były pierwszorzędowym punktem końcowym. Liczebność próby w badaniach pierwotnych wahała się od 12 do 73 osób badanych, co ma duży wpływ na indywidualną moc statystyczną.Ze względu na heterogeniczność w zakresie socjodemografii, statusu leków, ocenianych parametrów, współwystępowania w pierwotnych próbach badawczych, metaanaliza lub nawet dalsza analiza jakościowa dotycząca wpływów socjodemograficznych nie była możliwa.

      Ograniczenia przeglądu badań - Geiss, L., Stemmler, M., Beck, B., Hillemacher, T., Widder, M., & Hösl, K. M. (2023). Dysregulation of the autonomic nervous system in adult attention deficit hyperactivity disorder. A systematic review. Cognitive Neuropsychiatry, 28(4), 285–306. https://doi.org/10.1080/13546805.2023.2255336

    3. Ostatnie prace sugerowały zwiększoną częstość występowania zespołu hipermobilności stawów u pacjentów z ADHD, z pięciokrotnie zwiększonymi szansami w porównaniu z pacjentami bez ADHD (Glans i in., 2021). Zespół hipermobilności stawów wiąże się z objawami dysfunkcji autonomicznej, zwłaszcza nietolerancją ortostatyczną (Csecs i in., 2022). Csecs i in. (2022) zgłosili znacznie większą częstość występowania nietolerancji ortostatycznej u dorosłych pacjentów, u których zdiagnozowano autyzm lub ADHD i stwierdzili, że hipermobilność była czynnikiem pośredniczącym w opisanym związku między dysfunkcją autonomiczną a wspomnianymi zaburzeniami (Csecs i in., 2022). Kora wyspowa przetwarza informacje fizjologiczne dotyczące aktualnego stanu organizmu, dlatego zmieniona funkcja wyspowa w ADHD i autyzmie może zakłócać integrację sygnałów interoceptywnych, co skutkuje częstszymi objawami nietolerancji ortostatycznej w tych populacjach pacjentów (Csecs i in., 2022). Sugeruje to, że wspólny mechanizm patofizjologiczny jest jeszcze niedostatecznie zbadany i może być interesującym tematem przyszłych badań i interwencji terapeutycznych.

      Nietoleracja ortostatyczna u osób z ADHD (zabroty głowy, a nawet omdlenia przy zmianie pozycji ciała (np. przy wstawaniu) związana z dysfunkcją autonomiczną 5 razy częstrza u osób z ADHD niż w grupie kontrolnej

      Powodem nietoleracji ortostatycznej jest zaburzone interocepcja ( czucie sygnałów z wnętrza ciała - możliwe więc, że również rozpoznawanie emocji)

    4. W porównaniu z obecnie dostępnymi danymi z psychiatrii dziecięcej warto zauważyć kilka różnic między niemowlętami a dorosłymi: Zagregowane dane z metaanaliz Koeniga i in. (2017a) oraz Robe i in. (2019) sugerują, że modulacja przywspółczulna jest upośledzona podczas zadań, ale nie podczas stanu spoczynku u nieletnich pacjentów z ADHD (Koenig i in., 2017; Robe i in., 2019). U dorosłych z ADHD nie stwierdzono zmian przywspółczulnych związanych z zadaniem, ale modulacja przywspółczulna była zmniejszona w stanie spoczynku w jednym badaniu (Fischer, 2013; Lackschewitz i in., 2008; Oliver i in., 2012; Schubiner i in., 2006). Wyniki badań pierwotnych dotyczących modulacji współczulnej u nieletnich pacjentów z ADHD były porównywalne z ich dorosłymi odpowiednikami, ogólnie wskazując na zmienioną modulację współczulną, ale z szerszym rozkładem wyników: Beauchaine (2001) oraz Negrao i in. (2011) zgłaszali współczulne pobudzenie spoczynkowe u dzieci z ADHD (Beauchaine, 2001; Negrao i in., 2011). Tenenbaum i in. (2019) odnotowali zmniejszoną reaktywność współczulną u dzieci z ADHD w porównaniu z typowo rozwijającą się młodzieżą w dwóch warunkach zadaniowych, neutralnych i strachu (Tenenbaum i in., 2019). Conzelmann i in. (2014) doszli do tych samych wyników u dzieci z ADHD bez leków podczas odpoczynku i w odpowiedzi na bodźce, w przeciwieństwie do dzieci z ADHD leczonych stymulantami, które nigdy nie różniły się od dzieci z grupy kontrolnej (Conzelmann i in., 2014). Natomiast Musser i in. (2011) nie zgłosili żadnych zmian współczulnych u dzieci z ADHD podczas indukcji emocjonalnej i tłumienia emocji, podczas gdy Morris i in. (2020) stwierdzili podwyższoną reaktywność współczulną na zadania emocjonalne u dzieci z ADHD (Morris i in., 2020; Musser i in., 2011).

      Dzieci z ADHD nie mają upośledzonej modulacji przywspółczulnej w stanie spoczynku, a podczas zadań - podobnie jak wcześniej hiperaktywacja i regulacja emocji.

      Hipoaktywność układu współczólnego się jednak utrzymauje jak u dorosłych (również w spoczynku)

      Dzieci leczone stymulantami nie różniły się od grupy kontrolnej

    5. Jak wspomniano powyżej, wszystkie z wyjątkiem jednego z analizowanych badań wykazały zmniejszoną aktywację współczulną podczas wykonywania zadań. To jedno badanie przeprowadzone przez Wilbertza i in. (2013) było badaniem neuroobrazowym, które wykazało różnicę grupową między pacjentami z ADHD a grupą kontrolną w odpowiedzi na zmiany opóźnienia w prawym ciele migdałowatym: aktywność uczestników kontrolnych zmniejszyła się, podczas gdy aktywność ciała migdałowatego miała tendencję do wzrostu wraz z dłuższymi opóźnieniami u pacjentów z ADHD (Wilbertz i in., 2013). Ponadto pacjenci z ADHD wykazywali wyższy poziom tętna i przewodnictwa skóry niż grupa kontrolna, co było zgodne z tym, że pacjenci z ADHD zgłaszali więcej negatywnych emocji, takich jak nuda i niecierpliwość podczas eksperymentalnie wywołanych opóźnień, a także podczas sytuacji oczekiwania w życiu codziennym. Autorzy zwracają uwagę, że ogólnie zmniejszona tolerancja na frustrację u pacjentów z ADHD mogła powodować bardziej intensywną reakcję współczulną na bodźce prezentowane badanym osobom. W związku z tym wyniki Wilbertza i in. (2013) mogą kontrastować z innymi wynikami badań, ponieważ pacjenci z ADHD oceniają rosnące opóźnienie jako znacznie bardziej stresujące niż osoby niebędące pacjentami, co ponownie wywołuje bardziej intensywną odpowiedź autonomiczną w grupie z ADHD niż w grupie kontrolnej (Wilbertz i in., 2013)

      Zmniejszona modulacja przywspółczulna w jednym z badań - możliwe wyjaśnienie to element emocjonalny który szybko mógł "aktywować" ludzi z ADHD.

      W stanie spoczynku było brak różnic

      Osoba z ADHD może być w homeostazie, ale bodźce emocjnalne mogą ja nieproporcjonalnie szybko wzbudzić prowadząc do hiperaktywności w zadaniach z możliwą negatywną emocjonalnością

    6. Dane, które zebraliśmy w trakcie analizy, pozwoliły nam odpowiedzieć na wstępne zapytanie zawarte we wstępie. Podsumowując, wyniki badań pierwotnych sugerują, że zmniejszona reaktywność współczulna na stres emocjonalny i wymagania poznawcze może być ważnym czynnikiem psychofizjologicznym w patologii ADHD, co może wyjaśnić korzystny wpływ przyjmowania leków sympatykomimetycznych (np. metylofenidatu) w tej kohorcie pacjentów.

      Zmniejszona reaktywność współczulna u dorosłych z ADHD.

    7. Zmiany modulacji współczulnej odnotowano w ośmiu z dwunastu badań, w których stosowano zadania poznawcze i/lub emocjonalne, wszystkie z wyjątkiem jednego w kierunku zmniejszonej aktywacji współczulnej podczas wymagań zadaniowych (Baur, 2016; Hirvikoski i in., 2011; James i in., 2016; Lackschewitz i in., 2008; Maier i in., 2014; O'Connell i in., 2009; Wilbertz i in., 2012; Wilbertz i in., 2013).

      Zmiany współczulne w AUN u dorosłych z ADHD

    1. KonkluzjaWykazano, że ostra i powtarzana guanfacyna (GF), agonista receptorów α2A-adrenergicznych, wpływa na wrodzone i wyuczone zachowania u szczurów DAT-KO, a także na elektrofizjologiczne korelaty aktywności mózgu.Uzyskane wyniki, w połączeniu z naszymi wcześniejszymi badaniami, pokazują, że modulacja noradrenergiczna poprawia różne aspekty zachowania u szczurów z nokautem hiperdopaminergicznym.Administracja GF poprawiła wypełnianie wyuczonych zadań przestrzennych i poprawiła PPI u szczurów DAT-KO.Zmiany w aktywności elektrofizjologicznej mózgu pod wpływem GF okazały się podobne do tych obserwowanych u ludzi.Stwierdzono, że wpływ powtarzanego GF jest w większości porównywalny z ostrym podawaniem, z wyjątkiem aktywności lokomotorycznej, która uległa dalszej poprawie przy długotrwałym podawaniu, oraz niektórych parametrów elektrofizjologicznych u szczurów DAT-KO.Wyniki uzyskane u szczurów DAT-KO i WT w warunkach ostrej i powtarzanej GF pozwalają na opracowanie dalszych hipotez dotyczących zróżnicowanego wpływu sieci DA i NE na różne formy zachowania i ewentualnie na różne zaburzenia poznawcze i psychiczne

      Poprawa bramkowania sensorycznego i zdolności przestrzennych ( także aktywności) w zwierzęcym modelu ADHD ( nokaut transportera dopaminy), zwiększeniu sygnalizacji noradenergicznej

    2. Analiza porównawcza parametrów behawioralnych szczurów WT i DAT-KO wykazała, że po ostrym podaniu GF poziom wszystkich parametrów behawioralnych był wyższy w DAT-KO w porównaniu ze szczurami WT po soli fizjologicznej (p < 0,05 dla przebytej odległości i czasu dotarcia do strefy mety).Wielokrotne podawanie GF skutkowało zmniejszeniem odległości przebytej przez szczury DAT-KO do poziomów obserwowanych u odpowiedników WT (Figura 2A).Czas, który szczury DAT-KO spędziły na arenie, zanim szczury dotarły do pola bramkowego, w porównaniu z grupą kontrolną WT (Figura 2B), był dłuższy po podaniu soli fizjologicznej i ostrego GF (p < 0,05), ale nie po wielokrotnym podaniu GF.SEM; ** p < 0,01 zgodnie z post-testem LSD Fishera; # p < 0,05; ns – (nieistotne) dwukierunkowe.Porównanie wartości indeksu PPI dla szczurów WT i DAT-KO po podaniu soli fizjologicznej i wielokrotnych porównań Dunna w teście post-hoc.Dane te pokazują, że szczury WT mają normalne procesy zamieszkiwania i bramkowania sensomotorycznego, podczas gdy u szczurów DAT-KO wskaźnik PPI jest obniżony, upośledzona percepcja informacji sensorycznych.

      Zwiększenie neuroprzekaźnictwa noraadenergicznego zmiejsza aktywność w zwierzęcym modelu ADHD ( nokaut transportera dopaminy)

    3. Administracja GF doprowadziła do wzrostu wskaźnika PPI w.Aby przeanalizować moc neuronów w soli fizjologicznej kory przedczołowej (nokaut P zwierząt i widma, które stały się podobne do tej bezczynności, po której WT (ryc. 5B).Wzrost wskaźnika PPI u szczurów DAT-KO po ostrej analizie LFP i wielokrotnym podawaniu prążkowia grzbietowego (Str), zastosowaliśmy tradycyjny oparty na dec sygnału, wskazuje na poprawę bramkowania sensomotorycznego.

      Poprawa bramkowania sensorycznego w zwierzęcym modelu ADHD ( nokaut transportera dopaminy), zwiększeniu sygnalizacji noradenergicznej

    1. Znormalizowane wyniki dla każdej grupy były podobne, co sugeruje, że obie grupy miały podobne tempo uczenia się. Warto zauważyć, że grupa ADHD miała wzorzec zwiększonego błędu w każdej fazie nowego paradygmatu wzrokowo-ruchowego. Chociaż nie osiągnęło to istotności statystycznej w obecnym badaniu, może to być kierunek przyszłych badań. Chociaż nie jesteśmy w stanie wyciągnąć wyraźnych wniosków grupowych z tych danych, możliwość zwiększonego błędu u osób z ADHD może być związana ze zwiększonym N18 i zmniejszonym N30 oraz ich podstawową aktywnością neuronalną. Dalsze zwiększanie wielkości próby i/lub trudności zadania w przyszłości może pozwolić na lepsze zrozumienie, w jaki sposób cechy behawioralne związane z uczeniem się nowego zadania motorycznego mogą odnosić się do wyników neuronalnych obecnego badania.

      Grupa ADHD miała wzorzec zwiększonego błędu w każdej fazie nowego paradygmatu wzrokowo-ruchowego, zadanie mogłobyć za proste (śledzenie palcem lini na ekranie)

    2. Każdy pik SEP został znormalizowany do wyjściowej (przed) amplitudy piku SEP tego uczestnika. ADHD, zespół nadpobudliwości psychoruchowej z deficytem uwagi; SEP, potencjał wywołany somatosensorycznie.pik N18 SEP może zapewnić wgląd w SMI móżdżku [57]. Podobnie jak w obecnym badaniu, wcześniejsze prace wykorzystujące zadanie treningu motorycznego wykazały znacznie zmniejszone N18 po akwizycji motorycznej u neurotypowych dorosłych z grupy kontrolnej [57, 76]. To zmniejszenie N18 u uczestników kontrolnych może być wynikiem zmniejszenia aktywności hamującej lub hamującej na poziomie jądra klinowego i dolnych oliwek, co skutkuje zmianami w integracji sensomotorycznej i móżdżku, oprócz zwiększonego przetwarzania na poziomie S1 [57]. Przypuszcza się, że redukcja tego procesu, odzwierciedlająca zmniejszenie efektu filtrowania przed przetwarzaniem korowym, jest prawdopodobnie ważnym aspektem wczesnego uczenia się motorycznego [57].Neurotypowe grupy kontrolne w obecnym badaniu wykazywały takie same, wcześniej odnotowane, zmniejszenie zmian piku N18 SEP, co może odzwierciedlać zmniejszenie aktywności hamującej przetwarzania móżdżku w odpowiedzi na nowe zadanie wzrokowo-motoryczne. Potencjalnie sugeruje to większe poleganie na wzrokowo-motorycznym sprzężeniu zwrotnym potrzebnym do wykonania tego zadania motorycznego. Alternatywnie, w obecnym badaniu, zauważono, że N18 wzrasta u osób z ADHD. Sugeruje to zwiększoną aktywność hamującą przetwarzania oliwary-móżdżek-M1 w ADHD. W wyniku zwiększonej aktywności hamującej u osób z ADHD może to sugerować zmniejszoną zdolność do efektywnego wykorzystania odpowiednich sensorycznych informacji zwrotnych do tworzenia nowych połączeń synaptycznych w procesie uczenia się. Sugeruje to, że wzrost N18 odzwierciedla, że struktury klinowo-móżdżkowe mogą odfiltrować więcej informacji niż to, co jest optymalne przed zajęciem kory mózgowej u osób z ADHD, podczas gdy zmniejszenie efektu filtrowania stwierdzono w grupie kontrolnej w odpowiedzi na akwizycję motoryczną. Innymi słowy, osoby z ADHD mogą nie wykorzystywać sensorycznego sprzężenia zwrotnego tak skutecznie, jak neurotypowe grupy kontrolne podczas uczenia się motorycznego. Jest to zgodne z wcześniejszymi pracami, które sugerowały, że przetwarzanie móżdżku jest zmienione w ADHD [15, 17, 25, 26].

      Zmiany neuronalne u młodych dorosłych z ADHD sugerujące, że mają one deficyt w hamowaniu bodźców sensorycznych i ich przetwarzaniu ( co może wpływać na uwagę) CD.

    3. SEP są nazywane na podstawie ich polaryzacji i opóźnienia oraz odzwierciedlają aktywność neuronalną w określonych strukturach nerwowych i między nimi [41]. Każdy pik SEP został zlokalizowany tak, aby odzwierciedlał aktywność w określonych regionach i strukturach neuronalnych, a tym samym dostarczał bezcennych informacji na temat funkcji tych struktur podczas różnych procesów i między grupami. N18, N20, P25, N24 i N30 wykazały zmiany w pomiarach po akwizycji w obecnym badaniu.Przewód klinowo-móżdżkowy, móżdżek i oliwki dodatkowe, w wyniku aktywności w obrębie rdzenia i przyśrodkowego lemniscus [72]. Oliwki dolne działają jako kanał przewodni między rdzeniem kręgowym a móżdżkiem, pracując nad integracją zarówno informacji motorycznych, jak i czuciowych, umożliwiając sprzężenie zwrotne z móżdżkiem [74]. Gdy dolne oliwki otrzymują informację, aksony wysyłające sygnały aferentne rozgałęziają się na pnące i omszałe włókna, które wznoszą się do móżdżku i wpływają na komórki Purkinjego [74, 75]. Wyjście z oliwek gorszej jakości odzwierciedla to, co nazywa się "sygnałem błędu", w którym komórki Purkinjego wykorzystają te informacje do obliczenia wzorców ruchu [74]. W związku z tym postuluje się, aby wszelkie zmianyN18 Szczyt SEP.N18 odzwierciedla aktywność hamującą z regionu śródmózgowia i mostu oraz między dolnym rdzeniem, a dokładniej w jądrach kolumny grzbietowej i dodatkowych dolnych oliwkach [71,72,73]. Ponadto N18 może odzwierciedlać działalność w ramach

      Proces integracji sensorycznej przez móżdżek

    4. Wyniki obecnego badania pokazują, że ADHD jest związane ze zmianami w przetwarzaniu neuronalnym w odpowiedzi na bodźce somatosensoryczne po nabyciu nowego zadania śledzenia wzrokowo-ruchowego. W szczególności dorośli z ADHD mieli unikalne zmiany w pikach N18 i N30 SEP po uczeniu się motorycznym w porównaniu z grupą kontrolną neurotypową. Alternatywnie, N20, P25 i N24 wykazywały jednolite zmiany w obu grupach po uczeniu się motorycznym, niezależnie od obecności ADHD lub nie. Te zmiany w N18 i N30 sugerują, że struktury nerwowe funkcjonują inaczej u dorosłych z ADHD, potencjalnie wpływając na ich percepcję i reakcję podczas wykonywania nowych zadań motorycznych. Obie grupy wykazały poprawę wydajności w zakresie pomiarów post-i retencji w porównaniu z wartością wyjściową. Efekt grupy był nieobecny, co sugeruje, że behawioralnie nie było różnic w wydajności w obecnej próbie uczestników. Biorąc pod uwagę zarówno behawioralne, jak i neurofizjologiczne wyniki obecnego badania, możemy stworzyć lepszązrozumienie roli, jaką struktury neuronalne odgrywają w uczeniu się motorycznym u młodych dorosłych z ADHD.

      Zmiany neuronalne u młodych dorosłych z ADHD sugerujące, że mają one deficyt w hamowaniu bodźców sensorycznych i ich przetwarzaniu ( co może wpływać na uwagę)

    1. Główny wniosek z badania – a mianowicie, że aktywność motoryczna dzieci wzrosła ponad dwukrotnie w stosunku do wyjściowego stanu kontrolnego do poziomu bezwzględnego w czterech warunkach zadań poznawczych – był zgodny z wyjaśnieniem "wszystko albo nic". Ogólna wielkość wzrostu aktywności motorycznej dużej była zadziwiająco podobna dla obu grup, chociaż dzieci z ADHD konsekwentnie wykazywały wyższy poziom ruchu w porównaniu z dziećmi TD. Odkrycie, że regulacja w górę ruchu fizycznego nie różni się znacząco po nałożeniu ogólnych (np. kodowanie/krótkie zachowywanie informacji związanych z zadaniem) i wyższego poziomu wymagań dotyczących przetwarzania poznawczego (tj. stabilizowania, aktualizowania i działania na informacji) sugeruje, że umiarkowany poziom ruchu fizycznego jest potrzebny do promowania mechanizmów związanych z pobudzeniem, gdy jest zaangażowany w czynnościach poznawczych związanych z układem WM i że po osiągnięciu tego poziomu dodatkowy ruch jest zbędny (Hebb, 1955; Yerkes & Dodson, 1908). Dynamika leżąca u podstaw tej proponowanej relacji pozostaje jednak spekulatywna i wymaga empirycznej analizy obejmującej nałożenie wymagań poznawczych i jednoczesny pomiar poziomu aktywności i mechanizmów pobudzenia związanych z mózgiem.

      Obie grupy (dzieci z ADHD i bez) były bardziej aktywne fizycznie podczas wykonywania zadań poznawczych

    2. Gwałtowne pogorszenie wyników obserwowane u wszystkich dzieci, związane z narzucaniem trudniejszych wymagań w zakresie przetwarzania poznawczego, było oczekiwane ze względu na coraz większe obciążenie zdolności dzieci nie tylko do utrzymywania informacji w centrum uwagi, ale także do wykorzystywania dodatkowych zasobów do stabilizacji, przetwarzania i aktualizowania informacji (Cowan i in., 2006 r.; Shipstead i in., 2015). Łącznie odkrycia te potwierdzają wyniki wcześniejszych badań eksperymentalnych (Alderson et al., 2013; Rapport i in., 2008; Dovis i in., 2013; Kofler i in., 2010) oraz przeglądy metaanalityczne (Kasper i in., 2012; Martinussen i in., 2005; Willcutt i inni, 2005) w wykazywaniu dużych deficytów związanych z ADHD w zadaniach wymagających procesów poznawczych wyższego poziomu i rozszerza te wyniki, ilustrując negatywny wpływ na wydajność dzieci w obliczu zadania, które wymaga od nich sekwencyjnego stosowania wielu procesów poznawczych. Nieproporcjonalny spadek wydajności grupy ADHD jest również zgodny z wynikami obrazowania mózgu, które ujawniają słabo rozwinięte czołowe/przedczołowe regiony mózgu, które wspierają funkcje wykonawcze wyższego rzędu, takie jak WM, do przetwarzania informacji u dzieci z ADHD (Shaw i in., 2007, 2018).

      Skuteczność dzieci z ADHD załamuje się szybciej przy nakładaniu coraz trudniejszych wymagań poznawczych ze względu na ograniczoną pojemność pamięci roboczej

    3. Elementarna natura dużej aktywności motorycznej i jej związek z wydajnością poznawczą u dzieci z ADHD w porównaniu z dziećmi normalnie rozwijającymi się (TD) jest dość dobrze ugruntowana – większość dzieci wykazuje wyższy poziom motoryki dużej podczas wykonywania czynności wymagających funkcji poznawczych, dzieci z ADHD wykazują nieproporcjonalnie wyższy poziom w porównaniu z rówieśnikami w tym samym wieku (Alderson i wsp., 2012 r.; Rapport i in., 2009; Hudec i in., 2015; Kofler i in., 2016; Orban i in., 2018; Sarver i in., 2015), a poziom aktywności może się różnić w zależności od przewidywalności informacji, które mają być przetwarzane (Kofler i in., 2020).

      Większa aktywność motoryczna u dzieci z ADHD podczas wykonywania zadań poczawczych

    1. ADHD były mniej pobudzone i (prawdopodobnie) mniej obciążone poznawczo podczas skuteczniejszego rozwiązywania zadań, podczas gdy dzieci bez ADHD reagowały w dokładnie odwrotny sposób.Dzieci z ADHD miały podobną średnią temperaturę czubka nosa i wyższą średnią temperaturę czoła w porównaniu z dziećmi bez ADHD (ryc. 7). Temperatura czubka nosa u dzieci z ADHD i dzieci bez ADHD na ogół spadała wraz z większą skutecznością rozwiązywania testów, podczas gdy temperatura czoła wzrastała.

      Dzieci z ADHD bardzie pobudzone przy wykonywani zadań poznawczych.

    2. Uczestnicy osiągali najlepsze wyniki głównie w aktywnym siedzeniu, które było również najpopularniejszym wyborem. Dzieci z ADHD najczęściej osiągały najgorsze wyniki na szkolnym krześle, a dzieci bez ADHD na piłce terapeutycznej. Możemy więc stwierdzić, że aktywny siedzisko jest najlepszym wyborem dla obu grup dzieci, ale jego działanie nie jest wystarczająco wyraźne, aby znacząco przyczynić się do poprawy sprawności poznawczej dzieci.

      Preferencja wyboru siedzenia podczas testów poznawczych, piłka terepeutyczna - problemy sensoryczne, motoryczne i kontrola?

    3. Badanie to wykazało najlepsze wyniki dzieci z ADHD w rozwiązywaniu zadań w aktywnym siedzeniu.Poruszali się przy tym bardzo intensywnie, zachowując się w większości prawidłowo w pozycji siedzącej, ponieważ machali głównie nogami, a nie tułowiem, i zgodnie z parametrami psychofizjologicznymi nie byli zbytnio wymagający ani zaniepokojeni zadaniem.Aktywny fotelik nie był w stanie utrzymać w foteliku dzieci z ciężką nadpobudliwością.Wysokość miejsca pracy, podobnie jak w przypadku biurek stojących, umożliwiała dzieciom wygodne pisanie w pozycji stojącej i pomagała im skupić uwagę na zadaniu

      Aktywne fotele w porównaniu z piłką terapeutyczną i zwykłym krzesłem dało lepsze efekty w postaci lepiej wykonanaego zdania u dzieci z ADHD

    1. EndeavorRx (ProjectEVO, AKL-T01) to pierwsze w swoim rodzaju cyfrowe urządzenie terapeutyczne oparte na grach dla dzieci w wieku 8–12 lat z ADHD, zatwierdzone przez FDA w czerwcu 2020 r. (FDA, 2020). Został opracowany, aby zaangażować dzieci poprzez wykorzystanie wysokiej jakości grafiki i pętli nagród oraz dostarczanie informacji zwrotnych na temat postępów i zgodności. EndeavorRx ma celować w te obszary mózgu, które są odpowiedzialne za funkcję uwagi, co prowadzi do poprawy uwagi, kontroli hamującej i pamięci roboczej, które są najbardziej dotknięte u pacjentów z ADHD (Davis i in., 2018). W związku z tym można stwierdzić, że urządzenia są obiecującą szybko rozwijającą się bezlekową alternatywą leczenia ADHD

      Terapeutyczna Gra komputerowa dla dzieci z ADHD (8-12 lat

    2. Od 2021 roku istnieją co najmniej dwa urządzenia, które otrzymały aprobatę FDA do leczenia ADHD: Monarch eTNS System i EndeavorRx. System Monarch eTNS to pierwsza terapia ADHD oparta na urządzeniu, która uzyskała zgodę FDA (FDA, 2019). Jest to nieinwazyjne, małe, elektroniczne urządzenie, które generuje sygnały elektryczne, aby zapewnić niskopoziomową stymulację gałęzi nerwu trójdzielnego. I chociaż dokładny mechanizm stymulacji nerwu trójdzielnego zewnętrznego (eTNS) jest nadal nieznany, uważa się, że zwiększa aktywność w obszarach mózgu, takich jak przedni zakręt obręczy, dolny zakręt czołowy, przyśrodkowy i środkowy zakręt czołowy, o którym wiadomo, że jest ważny w regulacji funkcji wykonawczych, które są upośledzone u pacjentów z ADHD (Cook i in., 2014; Loo i in., 2021). Obecnie system Monarch eTNS stosowany jest jako monoterapia u pacjentów z ADHD w wieku 7–12 lat pod nadzorem opiekuna.

      Stymulacja nerwu trójdzielnego jako jedyna zatwierdzona technika leczenia ADHD

  2. Dec 2023
    1. W tekście omówiono zastosowanie pobudzających DREADD do aktywacji neuronów cholinergicznych w podstawie przodomózgowia i pomiaru fMRI w stanie spoczynku.Wyniki wskazują na tłumienie aktywności w stanie spoczynku podczas aktywacji neuronów cholinergicznych.Do symulacji tego efektu wykorzystano model obliczeniowy, wykazujący zmniejszenie aktywności w stanie spoczynku i sprzężenia funkcjonalnego po aktywacji cholinergicznej.Badanie sugeruje, że selektywna modulacja cholinergiczna sieci trybu domyślnego (DMN) może ułatwić przejście między stanami zorientowanymi wewnętrznie i zewnętrznie.Tekst wspomina o trudnościach w badaniu ludzkiej łączności i sugeruje, że ważne regiony DMN są bardziej dotknięte uwalnianiem cholinergicznym.W badaniu zbadano jedynie cholinergiczną modulację podstawy przodomózgowia i nie uwzględniono projekcji glutaminergicznych i GABA-ergicznych.Model obliczeniowy wychwytuje kilka cech fMRI w stanie spoczynku u ludzi, ale uznaje ograniczenia w dokładności traktografii ludzkiego mózgu.Tekst kończy się omówieniem korelacji między łącznością strukturalną i funkcjonalną oraz wpływem parametrów przetwarzania wstępnego na eksperymentalne wartości łączności funkcjonalnej.

      Układ cholinergiczny moduluje aktywcję DMN

    1. Końce cholinergiczne odzyskują cholinę ze szczeliny synaptycznej po degradacji ACh przez AChE, przez wrażliwy na hemicholinium-3 (HC-3) transporter choliny o wysokim powinowactwie (CHT). Ponieważ synapsy cholinergiczne w dużym stopniu polegają na cholinie do produkcji ACh, zdolność do importu choliny do presynaptycznych przedziałów cholinergicznych za pośrednictwem CHT dyktuje szybkość syntezy i uwalniania ACh (Ferguson i Blakely 2004; Sarter i Parikh 2005). Wychwyt choliny za pośrednictwem CHT był zwiększony w synaptosomach wyizolowanych z przyśrodkowej PFC szczurów wykonujących SAT; takich wzrostów wychwytu choliny nie zaobserwowano u zwierząt, które ukończyły sesję kontroli behawioralnej (Apparsundaram i wsp. 2005). W tym samym badaniu wykazano również związany z wydajnością uwagi wzrost gęstości CHT na błonie powierzchniowej synaptosomów przedczołowych w stosunku do pul wewnątrzkomórkowych (transport CHT na zewnątrz). Inne badanie wykazało spadek zdolności do generowania przedczołowych cholinergicznych stanów przejściowych po długotrwałej stymulacji BF u myszy heterozygotycznych CHT (Parikh i in. 2013). Co więcej, mutanty te wykazywały wysoką podatność na działanie wizualnych dystraktorów w SAT i zaburzały transport subkomórkowych CHT. Podobnie, niedawne badanie fMRI, w którym uczestniczyli ludzie wykazujący ekspresję wariantu I89V CHT (niska pojemność CHT), nie wykazało wzrostu aktywności prawej części przedczołowej u tych osób podczas wzrostu zapotrzebowania na uwagę, które zwykle obserwuje się u zdrowych osób (Berry i in. 2015). Podsumowując, te interesujące odkrycia wskazują na ważną rolę funkcji CHT w regulacji presynaptycznej neuromodulacji cholinergicznej i w podtrzymywaniu fazowej sygnalizacji cholinergicznej w sytuacjach, które nakładają zwiększone wymagania na neurony cholinergiczne BF, takich jak odgórna kontrola uwagi.Istotne dowody wskazują, że podawanie agonistów nikotyny i nAChR, w szczególności tych, które aktywują α4β2 nAChR, wywiera korzystny wpływ na uwagę i związane z nią zdolności poznawcze (Allison i Shoaib 2013; Howe i in. 2010; Newhouse i in. 2004; Sarter i in. 2009a; Stolerman i in. 2000; Wilens i Decker 2007). α4β2 nAChR zlokalizowane na wypustkach glutaminergicznych wzgórza w przyśrodkowym PFC są ważnym składnikiem obwodów uwagi, a stymulacja tych receptorów zwiększa aktywność glutaminergiczną (Lambe i wsp. 2003; LucasMeunier i in. 2009). Co więcej, badania neurofarmakologiczne z wykorzystaniem amperometrii in vivo wykazały, że stymulacja α4β2 nAChR powoduje przejściowy wzrost uwalniania glutaminianu i ACh w przyśrodkowym PFC oraz że wzgórzowo-korowe zakończenia glutaminergiczne są niezbędne do generowania cholinergicznych stanów przejściowych (Parikh i in. 2008, 2010). Co więcej, ogólnoustrojowe podawanie pełnego agonisty α4β2 nAChR S38232 poprawiło wydajność uwagi po prezentacji dystraktora u szczurów (Howe i wsp. 2010). Jak wspomniano powyżej, kontrola uwagi wymaga neuromodulacji cholinergicznej i możliwe jest, że aktywacja α4β2 nAChR ułatwia fazową sygnalizację cholinergiczną poprzez toniczną modulację interakcji glutaminergiczno-cholinergicznych (Hasselmo i Sarter 2011). Chociaż donoszono również, że agoniści α7 nAChR zwiększają przedczołową transmisję glutaminergiczną, nie wytwarzają szybszych cholinergicznych stanów przejściowych, jak obserwowano przy stymulacji α4β2 nAChR (Bortz i in. 2013; Parikh i in. 2010). Możliwe, że α7 nAChR rekrutują inne modulatory wstępujące, takie jak monoaminy, które wpływają na dynamikę sygnalizacji cholinergicznej BF w inny sposób, powodując bardziej złożony wpływ na uwagę.

      Ach wpływa na uwagę

    2. Badanie to wykazało fazowe sygnały cholinergiczne (cholinergiczne stany przejściowe) wywołane przez "wykryte" wskazówki (bodziec wizualny), które generowały wyraźną zmianę z trwającego zachowania (np. pielęgnacji) w kierunku monitorowania portów nagrody, a następnie zbliżania się do portu i pobierania nagrody w odpowiedzi na dostarczenie nagrody. Początek przejściowego cholinergicznego był silnie skorelowany z początkiem zmiany zachowania. Co więcej, przedczołowe stany przejściowe cholinergiczne były specyficznie związane z wykrytymi wskazówkami i nie występowały z innymi zdarzeniami zadaniowymi, takimi jak dostarczanie nagrody i pobieranie nagrody. W badaniach z pominięciem wskazówek, w których zwierzę zorientowało się na wskazówkę, ale nie zainicjowało żadnej reakcji, nie obserwowano sygnałów cholinergicznych. Usunięcie cholinergicznych wejść do regionu rejestrującego poprzez miejscowe infuzję cholino-immunotoksyny 192-IgG saporyny, całkowicie zniosło fazowe sygnały cholinergiczne wywołane sygnałem w wykrytych badaniach potwierdzających, że sygnały pochodzą z zakończeń cholinergicznych. Podsumowując, odkrycia te sugerują, że przejściowy lub fazowy wzrost przedczołowej aktywności cholinergicznej pośredniczy w operacjach poznawczych wywołanych wskazówkami w kontekstach wymagających uwagi.

      Wykrywanie wskazówek przez Ach

    1. Ponieważ ADHD jest złożonym zaburzeniem, na które wpływają zarówno czynniki genetyczne, jak i środowiskowe, dostępność odpowiednich modeli zwierzęcych jest dużym krokiem w kierunku zrozumienia mechanizmu tego zaburzenia [14]. Dlatego badania molekularne i komórkowe z wykorzystaniem modeli zwierzęcych stanów patologicznych pomogą nam zrozumieć związane z tym mechanizmy u człowieka. W tym badaniu sugerujemy udział glejowego GABA u myszy GIT1 KO, ponieważ w astrocytach móżdżku występuje obniżony poziom GABA, co skutkuje mniejszym prądem hamującym tonik, w którym pośredniczy zmniejszone toniczne uwalnianie GABA, co prowadzi do wzrostu stosunku E / I i nadpobudliwości (ryc. 4).

      Deficyt GABA w mysim modelu ADHD, z genem GIT1, kóry może być odpowiedzialny za nadpobuliwość

    1. Istnieją istotne dowody na to, że osoby z zespołem nadpobudliwości psychoruchowej z deficytem uwagi (ADHD) mają pamięć roboczą poniżej średniej[1,2,3] i trudności z hamowaniem odpowiedzi[4,5,6]. Deficyty te można wytłumaczyć zmniejszoną aktywacją w obszarach mózgu, takich jak grzbietowo-boczna kora przedczołowa (DLPFC), przednia kora zakrętu obręczy (ACC), tylna kora ciemieniowa (PPC), brzuszno-boczna kora przedczołowa (VLPFC), wyspa wzgórza i prążkowie, które okazały się różnić u osób z ADHD w metaanalizach funkcjonalnego rezonansu magnetycznego zadania kontroli hamowania, pamięci roboczej i uwagi[7,8,9]

      Deficyty struktur w ADHD

    1. Móżdżek (dosłownie "mały mózg" po łacinie) zawiera 80,2% wszystkich neuronów w ludzkim mózgu, a także 19% wszystkich komórek nienerwowych w mózgu (Azevedo i in., 2009). Przedni płat móżdżku otrzymuje aferenty z rdzenia kręgowego przez drogi rdzeniowo-móżdżkowe i z kory mózgowej poprzez wypustki korowo-opontynowe (Brodal, 1978; Hartmann-von Monakow i inni, 1981; Schmahmann i inni, 2004). Tylny płat otrzymuje dane wejściowe głównie z pnia mózgu i kory mózgowej (Siegel i Sapru, 2006). Robak móżdżku i jądro fastigial są połączone z jądrami przedsionkowymi i innymi jądrami pnia mózgu zaangażowanymi w kontrolę motoryczną, chód i równowagę oraz z jądrami pnia mózgu połączonymi z limbicznymi i paralimbicznymi regionami korowymi i podkorowymi (Voogd, 2004).Móżdżek jest połączony nie tylko ze strukturami związanymi z kontrolą motoryczną. Duże części móżdżku tworzą wzajemne połączenia z obszarami asocjacyjnymi kory mózgowej, w tym z korą przedczołową, tylną korą ciemieniową, górnymi obszarami polimodalnymi skroniowymi, zakrętem obręczy i tylnym obszarem przyhipokampa (Strick i in., 2009; Bostan i in., 2013). Obwody anatomiczne łączące móżdżek z korą mózgową są zorganizowane w dwustopniową pętlę sprzężenia zwrotnego (projekcja kortykoopontyna i mostowo-móżdżkowa) oraz dwustopniową pętlę sprzężenia zwrotnego (projekcja móżdżkowo-wzgórzowo-korowa). Pętle te składają się z wielu równoległych, ale częściowo nakładających się na siebie podobwodów, które łączą różne obszary kory mózgowej z określonymi regionami móżdżku (Brodal, 1978; Voogd i Glickstein, 1998; Voogd, 2004; Apps i Garwicz, 2005). Móżdżek jest również wzajemnie połączony ze zwojami podstawy za pośrednictwem pętli oligosynaptycznych (Hintzen i in., 2018). Te anatomiczne połączenia wskazują, że móżdżek odgrywa rolę, która wykracza poza kontrolę motoryczną. Rzeczywiście, jak omówimy poniżej, dowody z ostatnich dziesięcioleci sugerują, że móżdżek jest silnie zaangażowany w szerokie spektrum funkcji poznawczych.Wyjście z kory móżdżku przechodzi przez jądra móżdżku. Jądro przyśrodkowe (fastigalne) wystaje głównie do pnia mózgu i rdzenia kręgowego; Jądro interwencyjne (obejmujące zator i kulistą) celuje głównie w śródmózgowie i wzgórze; a jądro boczne (ząbkowane) wystaje głównie na wzgórze. Niektóre neurony w jądrach móżdżku rzutują bezpośrednio na jądro czerwone, które następnie rzutuje na inne jądra kontrolujące mięśnie. W ten sposób móżdżek może wywoływać reakcje mrugania nawet pod nieobecność kory mózgowej (Hesslow i Yeo, 2002). Niedawno odkryto, że jądra móżdżku zawierają również neurony, które wystają na komórki Purkinjego, tworząc szlak jąderkowo-korowy móżdżku (Ankri i in., 2015). Oprócz hamującego wkładu z komórek Purkinjego, jądra móżdżku otrzymują również bodźce pobudzające zarówno włókien omszałych, jak i włókien pnących (Ten Brinke i in., 2017).

      Anatomia móżdżku

    2. Użyliśmy terminów takich jak "ADHD", "ASD" i "SCA3" w połączeniu z terminami związanymi z móżdżkiem, funkcjami móżdżku oraz domenami neuropoznawczymi i profilami neuropoznawczymi, takimi jak "poznanie", "inteligencja", "percepcja/konstrukcja wzrokowa", "szybkość przetwarzania", "integracja sensomotoryczna", "funkcja wykonawcza" i "pamięć". Móżdżek.Móżdżek zawiera 80,2% wszystkich neuronów w ludzkim mózgu, a także 19% wszystkich komórek nienerwowych w mózgu (Azevedo i in., 2009).Przedni płat móżdżku otrzymuje aferenty z rdzenia kręgowego przez drogi rdzeniowo-móżdżkowe i z kory mózgowej poprzez wypustki korowo-opontynowe (Brodal, 1978; Hartmann-von Monakow i inni, 1981; Schmahmann i inni, 2004).Tylny płat otrzymuje dane wejściowe głównie z pnia mózgu i kory mózgowej (Siegel i Sapru, 2006).Robak móżdżku i jądro fastigial są połączone z jądrami przedsionkowymi i innymi jądrami pnia mózgu zaangażowanymi w kontrolę motoryczną, chód i równowagę oraz z jądrami pnia mózgu połączonymi z limbicznymi i paralimbicznymi regionami korowymi i podkorowymi (Voogd, 2004)

      Funkcje móżdżku

    1. Związek między funkcjami poznawczymi a łącznością SPL zaobserwowano w obustronnych węzłach DMN, ale najsilniejszy zaobserwowany wynik zaobserwowano lateralnieZwiązek między funkcjami poznawczymi a łącznością w tych węzłach był transdiagnostyczny i obserwowany zarówno u uczestników neurotypowych, jak i u osób z zaburzeniami psychotycznymi, mimo że uczestnicy z zaburzeniami psychotycznymi wykonywali, średnio, pełne odchylenie standardowe gorsze niż dorośli neurotypowi. Jest to zgodne z modelem, w którym łączność móżdżkowo-ciemieniowa pośredniczy w związku między diagnozą a społecznymi zdolnościami poznawczymi

      Sieć DMN - umiejęsności zaburzone społeczne połączenia funkcjonalne

    2. Zespół proponuje, aby przyszłe badania mogły zbadać związek między indywidualną zmiennością społecznych zdolności poznawczych u osób z ASD a łącznością móżdżkowo-ciemieniową. Eksperymenty na myszach sugerują związek przyczynowo-skutkowy między tym obwodem a poznaniem społecznym. Obwód ten jest potencjalnym modelem do zrozumienia, w jaki sposób dysfunkcja obwodu przyczynia się do społecznych fenotypów poznawczych w zaburzeniach psychicznych. Nieinwazyjna manipulacja tym obwodem sprawia, że jest on obiecującym celem interwencji mających na celu poprawę społecznych deficytów poznawczych.

      Fenotyp móżdżkowo cieniieniowy targetem w przeszłych badaniach jako wyjaśnienie.

    3. Analiza ta wykazała, że poznanie społeczne jest dodatnio skorelowane z funkcjonalną łącznością między lewym płatem ciemieniowym a innymi regionami sieci trybu domyślnego (DMN), w tym węzłami DMN zarówno w obustronnych płatach ciemieniowych, jak i obustronnym móżdżku

      Fenotyp móżdżkowo cieniieniowy targetem w przeszłych badaniach jako wyjaśnienie.

    1. Zmiany stężenia oksyhemoglobiny w obu M1 wystąpiły około 10 minut po anodowym tDCS móżdżku, z tendencją do zwiększania się w okresie stymulacji, a nawet po zakończeniu stymulacji, co może sugerować, że wpływ na hemodynamikę neuronów może wymagać wystarczająco długotrwałej stymulacji. Inną fascynującą obserwacją jest to, że anodowy tDCS móżdżku zmniejszył stężenie oksyhemoglobiny

      Stymulacja móżdżku powinna trwać dłuższy czas, oraz efekt może wystąpić po jakimś czasie

    1. Jeśli wzgórze jest funkcjonalnym węzłem disynaptycznego obwodu DCN-BLA, spodziewalibyśmy się znaleźć aksony wejścia DCN odbierające neurony wzgórzowe w BLAW tym celu zobrazowaliśmy wycinki zawierające BLA z transsynaptycznych eksperymentów Cre (N = 5; Rysunek 4A).Odkrycie to sugeruje, że aksony neuronów wzgórzowych otrzymujące dane wejściowe móżdżku tworzą synapsy morfologiczne w BLA.Airyscan konfokalne obrazowanie warstw z eksperymentów z podwójnym znacznikiem (Figura 1) ujawniło znakowane fluorescencyjnie aksony DCN w kontakcie z neuronami, które były znakowane wstecznie z BLA zarówno w jądrach CM (ryc. 5B1, B2), jak i PF (ryc. 5B3-B5).W połączeniu z wynikami obrazowania (Figura 5), nasze wyniki elektrofizjologiczne silnie przemawiają za obwodem dynaptycznym DCN-BLA, który rekrutuje jądra CM / PF jako węzeł

      Połączenie móżdżku z układem limbicznym

    2. Jak wspomniano wcześniej, ten rodzaj upośledzenia jest analogiczny do tego, co obserwuje się w układzie sensomotorycznym szczurów, gdy jądra wyjściowe móżdżku są zahamowane, a spójność między korą czuciową i ruchową jest zakłócona, podczas gdy przetwarzanie miejscowe pozostaje nienaruszone (Popa i in., 2013).Ten rodzaj upośledzenia jest analogiczny do tego, co obserwuje się w układzie sensomotorycznym szczurów, gdy jądra wyjściowe móżdżku są zahamowane, przy czym spójność między korą czuciową i ruchową jest zakłócona, podczas gdy przetwarzanie lokalne pozostaje nienaruszone (Popa i in., 2013)Inne niedawne badanie wykazało, w jaki sposób zachowanie podobne do ASD u myszy jest powiązane z aktywnością w określonych projekcjach korowych móżdżkowo-wzgórzowo-przedczołowych (Kelly i in., 2020).Odkrycia te sugerują bezpośredni związek między deficytami funkcji móżdżku a deficytami w regulacji dopaminy w korze czołowej, która jest powszechnie uważana za kluczową przyczynę schizofrenii

      Hamowanie w móżdżku zaburza komunikację między korą czuciową i ruchową, mimo, że lokalne połączenia są nienaruszone.

    3. Ważną właściwością zsynchronizowanego hamowania jest jego zdolność do indukowania precyzyjnie zaplanowanej aktywności skokowej w DCN (Gauck i Jaeger, 2000; Person i Raman, 2012), które mogą odgrywać rolę w przekazywaniu sygnałów resetowania fazy z DCN do wzgórza

      Rola wzgórza w oscylacjach móżdżkowych

    4. Ostatnie badania pokazują, że GC, które to otrzymują, wydają się być biofizycznie dostrojone do różnych informacji fazowych w ramach tego wejścia – wzdłuż głębokości warstwy GC neurony reagują preferencyjnie na sygnały wejściowe o rosnącej częstotliwości, tworząc w ten sposób gradient dostrojony do różnych faz w sygnale mostowo-móżdżkowym (Straub i in., 2020; Rysunek 4C).Włókna równoległe wykazują zależność od głębokości prędkości przewodzenia, przy czym głębsze GC przewodzą potencjały czynnościowe z większą prędkością (Straub i in., 2020)Modelowanie wykazało, że te właściwości GC razem prowadzą do bardziej precyzyjnych odpowiedzi komórek Purkinjego na dane wejście MF modulowane częstotliwością skoków

      Komórki zaiarniste potrafią się dostroić do różnych częstotliwości fazowych kierowanych przez móżdżek.

    5. Dokonamy przeglądu dowodów na to, że móżdżek jest niezbędny dla spójności mózgowych oscylacji gamma w dobrze zdefiniowanej sieci funkcjonalnej i że aktywność móżdżku odzwierciedla informacje o oscylacjach mózgu w szerokim zakresie częstotliwościSugerujemy, że te odkrycia, wraz ze skarbnicą dowodów anatomicznych, fizjologicznych i obrazowych, wspierają ideę, że móżdżek odgrywa kluczową rolę w modulacji koherencji gamma w różnych obszarach kory mózgowej.Proponujemy, aby osiągnąć to poprzez kodowanie sub-gamma oscylacji mózgowych przez móżdżek i późniejsze generowanie sprzężenia zwrotnego móżdżkowo-korowego.Stymulacja móżdżku w tym badaniu wydawała się indukować spójną zależność fazową theta z M1 prowadzącym S1, czego nie spodziewalibyśmy się promować propagacji pasma gamma od S1 do M1

      Móżdżek wytwarza przwidiwyania poprze kodowanie oscylacj sub-gamma oraz późniejsze generowanie sprzężenia zwrotnego móżdżkowo-korowego.

    1. Trajektorie i stany aktywności (b) Pętla korowo-móżdżkowa (c). Stany aktywności kory nowej i pętla korowo-móżdżkowa. (a) Wzorce aktywności kory nowej są specyficznymi stanami w przestrzeni aktywności.W teoriach kontroli motorycznej sensoryczne sprzężenie zwrotne lub nieoczekiwane perturbacje nie wywołują natychmiastowej reakcji motorycznej [35], ale są zintegrowane z aktualnym stanem motorycznym i zamierzonymi celami ruchowymi w celu wygenerowania odpowiedniej wydajności behawioralnej [36,37,38].Stworzyło to krótki "bufor" oddzielający wyjście kory ruchowej od natychmiastowej aktywności sensorycznego sprzężenia zwrotnego, co później mogło zmienić wymiary aktywności kontrolujące ruch w celu wytworzenia odpowiednich korekt [40,41]Odkrycia te sugerują, że nieoczekiwane sensoryczne sprzężenie zwrotne może szybko zmienić kształt stanów aktywności kory nowej reprezentujących nadchodzące ruchy i generować odpowiednie reakcje motoryczne.Zgodnie z tą ideą, uszkodzenia kory ruchowej u szczurów upośledzają ich zdolność do reagowania na nieoczekiwane zaburzenia www.sciencedirect.com [42].

      Jak móżdżek przewiduje i kordynuje ruchj

    1. Czy obserwowane pobudzenie jest zatem oznaką przedczołowego deficytu hamującego leżącego u podstaw ADHD, czy raczej stanem niepokoju, minimalnym wyrazem dysfunkcji móżdżku, charakteryzującym etiologicznie odrębną jednostkę? Związek ASD ze zmianami w określonych regionach mózgu staje się coraz wyraźniejszy. Dotknięte regiony obejmują korę oczodołowo-czołową, górną bruzdę skroniową, zakręt wrzecionowaty, ciało migdałowate i móżdżek [12], a ten ostatni odgrywa rolę w procesach uczenia się, zapamiętywaniu, kilku funkcjach wykonawczych i poznaniu. Czy w świetle tych faktów zdiagnozowanie ADHD, zaburzenia związanego ze zmienioną korą przedczołową, w populacji osób z ASD nie byłoby ryzykowne?ADHD i ASD są opisywane jako często współwystępujące, dzielące pewne fenotypy poznawcze. Jednak ważne jest, aby móc prześledzić te wspólne cechy wstecz do wspólnej fizjopatologii i zidentyfikować fizjopatologiczne cechy chorób współistniejących, które mogą powodować dodatkowe deficyty neurofunkcjonalne. Chantiluke i wsp. [13] porównali funkcje przedczołowe w czterech grupach młodzieży z ASD, ADHD, współistniejącym ASD i ADHD lub żadnym z tych zaburzeń (grupa kontrolna) poprzez czasowe zadanie dyskontujące, przy użyciu fMRI. Odkryli anomalie wspólne dla grup niekontrolnych, a także odrębne cechy unikalne dla każdej z tych trzech grup. W porównaniu z grupami niewspółistniejącymi i kontrolnymi, grupa z chorobami współistniejącymi wykazywała unikalne i poważniejsze upośledzenia wpływające na boczną i brzuszno-przyśrodkową korę przedczołową, brzuszne prążkowie i przednią korę obręczy. Te fizjopatologiczne odkrycia sugerują, że współwystępowanie ASD i ADHD nie odpowiada zwykłemu połączeniu lub dodaniu obu zaburzeń: jest neurofunkcjonalnie odrębne i zasługuje na dalsze badania w celu dokładniejszej charakterystyki.Jak wykazali Lau-Zhu i wsp. [14], ASD i ADHD są związane z unikalnymi cechami przetwarzania uwagi. Badania potencjałów związanych ze zdarzeniami (ERP) – związane z kontrolą hamującą i monitorowaniem wydajności w ADHD [15,16,17] oraz przetwarzaniem społecznym lub emocjonalnym, a także funkcjonowaniem wykonawczym w ASD [18] – głównie z udziałem nastolatków wykazały wyraźne nieprawidłowe profile poznawcze dla ADHD i ASD . Oba zaburzenia są związane z nietypową alokacją zasobów uwagi i nietypowym monitorowaniem wydajności. Jednak leżące u ich podstaw strukturalne upośledzenie jest bardzo różne. Jeśli chodzi o uwagę, upośledzenie ADHD ma tendencję do odzwierciedlania trudności w wykrywaniu wskazówek, które w przeciwnym razie umożliwiłyby przewidywanie, podczas gdy upośledzenie ASD jest bardziej bezpośrednio związane ze zwiększoną zdolnością percepcyjną i słabszą orientacją na nowe dane wejściowe, z dłuższym zatrzymywaniem bodźców w pamięci roboczej i unikalnymi cechami społecznymi, emocjonalnymi i wykonawczymi. ADHD, w przeciwieństwie do ASD, jest bardziej bezpośrednio związane z upośledzonym hamowaniem. Należy pamiętać, że upośledzone hamowanie, podstawowa cecha fizjopatologiczna ADHD, nie była badana w kohortach pacjentów z ASD. Zaburzenia przetwarzania sensorycznego, takie jak te obserwowane w ASD, ostatecznie mają wpływ na procesy uwagi. Przyczyny niedoborów uwagi obserwowanych w tych dwóch zaburzeniach wydają się zatem bardzo różne.

      Różnice strkturalne w ADHD i ASD

    2. Hochhauser i wsp. [10] opisali specyficzne cechy uwagi związane z interakcjami społecznymi u młodych dorosłych z ASD, które mogą być jednak konsekwencjami innej formy upośledzenia funkcji poznawczych. W kilku badaniach wykazano funkcje poznawcze1https://caddra.ca/pdfs/caddraGuidelines2011Rozdział02.pdf.cechy wpływające na umiejętności uwagi w populacji ASD, w tym trudności z wycofaniem się, znacznie większe przetwarzanie lokalnych szczegółów lub zwiększona percepcja, ale "ślepota kontekstu". Te elementy z kolei wpływają na szybkość przetwarzania. Szybkość przetwarzania nie jest zatem bezpośrednio upośledzona, ale raczej różnice w sposobie przetwarzania danych percepcyjnych mają wpływ na uwagę. Dlatego wydaje się, że bardziej odpowiednie byłoby mówienie o cechach uwagi ASD, a nie o anomaliach lub deficytach uwagi, odróżniając je w ten sposób od ADHD.Mayes i wsp. [11] wykazali, że destrukcyjne zaburzenie regulacji nastroju było niezwykle rozpowszechnione wśród dzieci z ASD, znacznie częściej niż wśród dzieci z ADHD i neurotypowych. Co więcej, 91% dzieci z objawami destrukcyjnych zaburzeń rozregulowania nastroju spełniało również kryteria zaburzeń opozycyjno-buntowniczych, co ujawnia bardzo wysoką częstość występowania zachowań eksternalizacyjnych w ASD. Obecność pobudzenia psychomotorycznego nie może być automatycznie przypisana nadpobudliwości ruchowej ADHD, ale sugeruje zaburzenie dysregulacji emocjonalnej bardziej bezpośrednio związane z behawioralnymi skutkami drażliwości.

      ASD i zaburzenia uwagi, inne niż w ADHD

    3. Sprenger i wsp. [5] doszli do wniosku, że objawy autyzmu były istotnie bardziej nasilone, zwłaszcza w obszarze interakcji społecznych (ocenianych za pomocą skali reakcji społecznej i wywiadu diagnostycznego autyzmu), u pacjentów z podwójnym rozpoznaniem ASD-ADHD niż u osób z samym ASD. Jednak ten wniosek może również ilustrować częste kliniczne zamieszanie związane z tymi zaburzeniami: czy ciężki autyzm, który opisują, nie może być równie dobrze przyczyną bardziej objawowego deficytu uwagi, nie sugerując obecności ADHD? Podobnie Green i wsp. [6] stwierdzili, że objawy autystyczne były bardziej rozpowszechnione u dzieci z ADHD. W badaniu wzięto pod uwagę grupę dzieci w wieku od 6 do 10 lat podzieloną na podgrupę ADHD i podgrupę kontrolną bez ADHD. Wątpliwe wydaje się stwierdzenie, że objawy autystyczne są bardziej rozpowszechnione u pacjentów z ADHD bez uznania, że nasilenie ASD jest niezależnie od źródła wyraźnych niedoborów uwagi. W badaniu stwierdzono również, że intensywność objawów nadpobudliwości i impulsywności bezpośrednio wpływa na nasilenie objawów ASD, bez odwrotnego uwzględnienia, że nasilenie ASD może niezależnie wyjaśniać oznaki pobudzenia psychomotorycznego i niedoborów uwagi. Co więcej, wyniki nie różniły się w zależności od podtypu ADHD, co dodatkowo potwierdza hipotezę, że obserwowany deficyt uwagi i nadpobudliwość ruchowa są bardziej bezpośrednio wyjaśnione ciężkim autyzmem niż współistniejącym ADHD.Niektóre badania wykazały strukturalne różnice w funkcjach uwagi między pacjentami z ASD i ADHD, podczas gdy inne sugerują, że zaburzenia te wykazują identyczne niedobory [7, 8].Barnard-Brak [9] donosił o różnej zdolności do odróżniania osób z ASD od osób z ADHD na podstawie ich wyników w różnych zadaniach poznawczych, które oceniają trwałą uwagę. Jednak zadanie szybkiego nazywania liter, które uważa się za przewidywanie zdolności czytania powierzchownego i innych umiejętności czytania, ujawniło znaczące różnice między dziećmi z ASD i ADHD: te pierwsze spędzały więcej czasu nad zadaniem i osiągały lepsze wyniki. Tak więc interpretacja wyników w zadaniach poznawczo-uwagowych oceniających trwałą uwagę wymaga szczególnej ostrożności, aby uniknąć pomylenia tych dwóch zaburzeń. Badanie to podkreśliło również wpływ środowiska na wykonywanie zadań związanych z uwagą przez osoby z ASD: otoczenie, w którym osoby wykonują testy diagnostyczne, może mieć duży wpływ na wyniki.

      ADHD i ASD, objawy, co różbni

    1. Wpływ życia z ADHDTradycyjnie badacze koncentrowali się na charakterystyce ADHD, a klinicyści na swoich wysiłkach terapeutycznych, przede wszystkim na podstawowych objawach; nieuwaga, nadpobudliwość i impulsywność. Jednak w ostatnich latach zaczęło dominować bardziej holistyczne i skoncentrowane na osobie skupienie się na wpływie życia z ADHD pod względem upośledzenia funkcjonalnego, jakości życia (QoL) i stygmatyzacji.Upośledzenie jest cechą definiującą ADHD i można je zaobserwować w wielu domenach – wyłaniając się ze złożonej interakcji między zdolnościami i niepełnosprawnościami danej osoby a kontekstem środowiskowym, w którym żyje i działa. Profile upośledzenia różnią się znacznie u osób z ADHD, ale podstawowe wyzwania funkcjonalne są szeroko rozpowszechnione (Bo€lte i in., 2018). W różnych kulturach ADHD negatywnie wpływa na relacje rówieśnicze i rodzeństwo (Ros i Graziano, 2018). ADHD wiąże się z ryzykownymi zachowaniami charakteryzującymi się wyższymi wskaźnikami ciąż wśród nastolatek, hazardu, wypadków i przedwczesnej śmierci (Shoham et al., 2021). Objawy nadpobudliwości i impulsywności korelują z podejmowaniem ryzyka, wypadkami i wykluczeniem społecznym przez rówieśników, podczas gdy objawy nieuwagi korelują z niskimi wynikami w nauce/zawodu i niską pewnością siebie (Willcutt i in., 2012). Upośledzenie utrzymuje się w wieku dorosłym w ponad połowie przypadków (Song i in., 2021) i jest pogarszane przez obecność innych schorzeń neurorozwojowych i psychicznych (Jangmo i in., 2021). Upośledzenie może być niedoceniane u kobiet w dzieciństwie (Mowlem et al., 2019), co może być związane z różnicami płci w profilach współwystępujących schorzeń (Rucklidge, 2010). Kobiety mogą również podejmować większe wysiłki, aby ukryć wyzwania i sprostać oczekiwaniom społecznym (de Schipper i in., 2015).Jakość życia i, co za tym idzie, dobre samopoczucie i satysfakcja z życia są znacznie zmniejszone w ADHD – chociaż istnieje duża zmienność międzyosobnicza. Ogólnie rzecz biorąc, samoocena globalnej jakości życia jest zmniejszona we wszystkich domenach życia i w czasie w porównaniu z typowo rozwijającymi się osobami, przy czym dotyczy to zarówno dzieci (Jonsson i in., 2017), jak i dorosłych (Lensing et al., 2015). Jakość życia jest bardziej zaburzona, gdy występują warunki współwystępujące (Klassen, Miller i Fine, 2004). Skutki ADHD są porównywalne z tymi obserwowanymi w poważnych schorzeniach pediatrycznych (Coghill i Hodgkins, 2016). Zmniejsza się również jakość życia rodziców i rodzeństwa (Peasgood i in., 2021).Osoby z ADHD mogą doświadczać uprzedzeń, stereotypów i dyskryminacji często z powodu etykiety diagnostycznej. Te formy stygmatyzacji, gdy są internalizowane, mogą prowadzić do poczucia wyobcowania, które zmniejsza poszukiwanie pomocy i obniża poczucie własnej wartości (Clement i in., 2015). Stygmatyzacja ADHD, napędzana błędnymi przekonaniami na temat jego przyczyn i dezinformacją na temat leków (Hinshaw i Scheffler, 2014), jest powszechna wśród rodziny, społeczeństwa i profesjonalistów (Lebowitz, 2016). Stygmatyzacja związana z ADHD jest bardziej wyraźna niż w przypadku specyficznych trudności w uczeniu się, ale mniej niż w przypadku choroby afektywnej dwubiegunowej (Kaushik et al., 2016). Używanie terminów biomedycznych przez klinicystów i naukowców (np. choroba, nieprawidłowość) w odniesieniu do doświadczenia odmienności może być stygmatyzujące, chociaż niektóre terminy, takie jak "pacjent", są nadal bardziej akceptowane w ADHD niż w innych stanach neurorozwojowych (np. Kenny i in., 2016).

      Wpływ środowiska na kształtowanie się ADHD

    2. . Problemy ze snem w ADHD wiążą się z niższą jakością życia, gorszym funkcjonowaniem rodziny oraz zwiększonym ODD i depresją (Lunsford-Avery, Krystal i Kollins, 2016). ERD zwiększa się po utracie snu (Short, Booth, Omar, Ostlundh i Arora, 2020). ERD i SCT są skorelowane ze złym snem w nocy i sennością w ciągu dnia (Fredrick et al., 2022; LunsfordAvery i in., 2016).

      ERD, SCT, a sen?

    3. Zarówno ERD, jak i SCT przyczyniają się do upośledzenia związanego z ADHD (Becker i in., 2016; Faraone i in., 2019). ERD związane z ADHD wiąże się z obniżoną jakością życia (QoL), upośledzeniem społecznym i gorszymi wynikami edukacyjnymi/zawodowymi u dzieci i dorosłych (Faraone i in., 2019). SCT wiąże się z wycofaniem społecznym, objawami internalizacyjnymi (zwłaszcza depresją) i gorszymi wynikami funkcjonalnymi (Becker i in., 2016). SCT i ERD, choć statystycznie i klinicznie odrębne, są często skorelowane (Becker i in., 2016). Jednak ERD rozszczepia się szczególnie z nadpobudliwością/impulsywnością (Faraone i in., 2019), a SCT z nieuwagą (Becker i in., 2016).

      SCT i ERD jako dwa kontinua. SCT rozszczepia się z nieuwagą ((deficyt szukania wskazówek? ACh?)_, a ERD z impulsywnością/nadpobuliwością ( wyrównana stymulacja, ale deficyty w móżdżku i układzie sensorycznym?)

    4. Perspektywy wymiarowe mogą ujawnić unikalne spostrzeżenia. Dane wyjściowe ABCD rfMRI zostały również zbadane wymiarowo (Karcher et al., 2021). Co ciekawe, stwierdzono, że zarówno ogólny czynnik psychopatologii, jak i czynnik neurorozwojowy, łączący nieuwagę, nadpobudliwość, impulsywność, niezdarność i powtarzające się zachowania, są związane ze zmniejszoną łącznością DMN (ta ostatnia ma silniejszy efekt), przy czym czynnik neurorozwojowy jest również związany z silniejszymi korelacjami między DMN oraz sieć cingulo-operkularna (istotność). Niemniej jednak te i inne zależności między mózgiem a zachowaniem stanowiły mniej niż 1% wariancji.

      Główne czynniki symptopatologii ADHD

    1. Jednym z trudnych aspektów badań nad drażliwością i jej przydatnością w identyfikacji wczesnego ryzyka psychopatologii jest fakt, że objawy behawioralne, takie jak napady złości, mogą być przykładami typowego rozwoju odpowiedniego do wieku lub mogą być potencjalnym markerem klinicznego zagrożenia (Wakschlag i in., 2012).W celu opracowania miar, które odróżniają normatywną drażliwość od klinicznie istotnej, naukowcy wykorzystali wymiarowe miary zachowań związanych z drażliwością w grupach uczestników o pełnym zakresie nasilenia drażliwościBadania te wykazały, że oceny wymiarowe mają dobrą czułość i swoistość w odróżnianiu rozwoju normatywnego od klinicznie istotnej drażliwości predykcyjnej podłużnego prawdopodobieństwa rozpoznania zaburzenia DSM (Wakschlag i in., 2015; Wiggins i in., 2018).Negatywność N2 w EEG może odróżnić przedszkolaki o wysokim i niskim poziomie zachowań destrukcyjnych (Grabell i in., 2017), a aktywność kory przedczołowej mierzona za pomocą fNIRS jest skorelowana z drażliwością i elastycznością poznawczą u dzieci w wieku przedszkolnym (Li i in., 2017)Znaczenie tych odkryć neurokognitywnych i neurofizjologicznych u dzieci w wieku przedszkolnym polega na tym, że objawy drażliwości można odwzorować na określone domeny RDoC i obwody mózgowe, nawet zanim dziecko spełni kryteria diagnostyczne DSM.Umożliwienie badaniom uwolnienia się od ograniczeń diagnozy klinicznej może otworzyć pole do odkrycia nowych relacji, które nie były oczywiste przy użyciu kategorii diagnostycznych do definiowania grup badawczych

      Pomiar i różnicowanie "drażliwości"

    2. Umieszczenie w bazie danych NLM nie oznacza poparcia lub zgody na zawartość przez NLM lub National Institutes of Health.Dowiedz się więcej: Zrzeczenie się odpowiedzialności PMC | Informacja o prawach autorskich PMC.Ostateczna wersja tego artykułu jest dostępna na stronie J Child Psychiatry.Patrz komentarz w tomie 63 na stronie 377WprowadzenieW 2009 roku Narodowy Instytut Zdrowia Psychicznego (NIMH) uruchomił inicjatywę Research Domain Criteria (RDoC), której strategicznym celem jest ułatwienie nowatorskich podejść badawczych do klasyfikacji zaburzeń psychicznychByło to motywowane potrzebą zajęcia się problemem naukowym, że dziedzina ta zrównała choroby psychiczne z zespołami opartymi na klinicznie obserwowanych kryteriach diagnostycznych, które nie były dobrze powiązane z mechanizmami neuronalnymi i psychologicznymi.Zwołano grupy ekspertów dla każdej z domen i, korzystając z aktualnych danych i dowodów empirycznych, zaproponowano sugestie dotyczące rozgraniczenia każdej domeny w użyteczne konstrukty oparte na wspólnych dowodach dotyczących funkcjonalnego wymiaru zachowania i implementacji obwodu lub systemu neuronowego.Dostarczyły one elementów, które były istotne dla każdej "jednostki analizy".Matryca jest postrzegana jako zasób pomagający w formułowaniu wstępnych pytań naukowych i projektowaniu, a nie jako ograniczenie zakresu badań naukowychRysunek ten jest wizualną reprezentacją struktury RDoC.Chociaż macierz nie obejmuje rozwoju jako domeny lub konstruktu, zrozumienie trajektorii rozwojowych w różnych fazach życia stanowi krytyczną kwestię, która jest nieodłącznie związana z ramami RDoC.W fundamentalnym rozdziale RDoC stwierdzono: "Jeden bardzo istotny aspekt dotyczy procesów rozwojowych, postrzeganych jako krytyczne z wielu powodów" (Cuthbert i Insel, 2013, s. 1078)Jak wyjaśniono w innym wczesnym artykule: "Konceptualizacja RDoC obejmuje procesy rozwojowe i interakcje ze środowiskiem jako wymiary ortogonalne, które powinny informować o hipotezach i wnioskach wynikających ze struktury organizacyjnej RDoC.Ich nieobecność w matrycy wynika jedynie z ograniczeń reprezentacji dwuwymiarowej i nie powinna być błędnie interpretowana jako wskazująca, że te ważne względy nie są istotne dla ram badawczych RDoC" (Morris i Cuthbert, 2012, s. 33).Autorzy przyglądają się wpływowi, jaki RDoC wywarł na portfel finansowanych grantów w NIMH, a także wpływowi na całą dziedzinę – pod względem wpływu badań, rozwoju leczenia, projektowania badań i skupienia się na szkoleniach dla pokolenia naukowców

      Koncepcja RDoC jako sposób na szukanie pierwotnych przyczyn powstawania zaburzeń psychicznych w oderwaniu od kategorii DSM, a skupiając się na kategoriach bechawioralnych i ich biologicznych podstawach.

    3. Niedawne badania inspirowane RDoC wykazały, że umiejętności wykonawczej pamięci roboczej (EWM) można konceptualizować jako promowanie elastyczności selektywnej uwagi mierzonej zadaniami wymagającymi zmiany lub aktualizacji uwagi (Błędowski i in., 2010) – nadając stabilność reprezentacjom WM poprzez odfiltrowywanie zbędnych, rozpraszających informacji lub tłumienie zakłóceń informacji nieinformacyjnych.Te deficyty behawioralne zadań EWM są zdecydowanie najsilniejszymi deficytami WM w ADHD, silniejszymi niż deficyty w przechowywaniu WM.Może to być jeden z powodów, dla których trening przechowywania WM nie wykazał korzyści klinicznych.Niewielka liczba badaczy zaczęła koncentrować wysiłki związane z opracowywaniem leczenia na ukierunkowaniu tych umiejętności EWM, aby określić, czy pośredniczą one w poprawie wyników klinicznych (Kofler i in., 2018; Kofler i in., 2020; Stevens i in., 2016)

      Elastyczność poznawcza zaburzona z uwagi na deficyt w układzie hamowania/schematyczności i pobudzania/elastyczności i odfiltowywania niepotrzebnych informacji

    4. Tak jak praca ze starszymi dziećmi i młodzieżą koncentrowała się na procesach nagradzania i kontroli poznawczej, tak samo te domeny zostały zbadane u dzieci w wieku przedszkolnym na początku lub podczas kolejnych wizyt kontrolnych. Na przykład Dougherty i in. (2018) stwierdzili, że dzieci, które miały cięższy poziom drażliwości w przedszkolu, miały zmienioną łączność ciała migdałowatego i brzusznego prążkowia z innymi obszarami kory mózgowej podczas zadania opóźnienia bodźca pieniężnego niż dzieci z łagodną drażliwością przedszkolną. Wysoki poziom frustracji w badaniach bez nagrody był również związany z wyższymi poziomami aktywacji bocznej kory przedczołowej mierzonymi za pomocą funkcjonalnej spektroskopii bliskiej podczerwieni (fNIRS) u dzieci w wieku 3-5 lat (Perlman i in., 2014). Podobnie, wyższe wyniki utraty temperamentu wiązały się z większą amplitudą N2 w EEG i zmniejszoną dokładnością no-go podczas prób frustracji u dzieci w wieku 4-7 lat (Deveney i in., 2019). Niektóre badania koncentrowały się na kontroli poznawczej i elastyczności poznawczej, mierzonej za pomocą zadań Go/No Go lub Stroopa. Negatywność N2 w EEG może odróżnić przedszkolaki o wysokim i niskim poziomie zachowań destrukcyjnych (Grabell i in., 2017), a aktywność kory przedczołowej mierzona za pomocą fNIRS jest skorelowana z drażliwością i elastycznością poznawczą u dzieci w wieku przedszkolnym (Li i in., 2017). Znaczenie tych odkryć neurokognitywnych i neurofizjologicznych u dzieci w wieku przedszkolnym polega na tym, że objawy drażliwości można odwzorować na określone domeny RDoC i obwody mózgowe, nawet zanim dziecko spełni kryteria diagnostyczne DSM. Te markery biobehawioralne mogą w znaczący sposób odróżnić normatywne poziomy drażliwości u małych dzieci od klinicznie istotnych poziomów drażliwości, które są skorelowane z neuronalnymi i behawioralnymi wskaźnikami ryzyka. Eksplozja pasywnych, zdalnych czujników umożliwia obecnie jeszcze wcześniejsze badanie fizjologicznych korelatów drażliwości i podatności na psychopatologię poprzez ułatwienie zbierania wokalizacji niemowląt, zmienności rytmu serca, snu i aktywności motorycznej (Wakschlag i in., 2014).

      Drażliwość jako wczesna miara diagnostyczna w róznych zaburzeniach, która koreluje również, z badaniami obrazowymi.

    5. Drażliwość dziecięca – przykład nieswoistości objawowejDrażliwość jest najczęstszym powodem, dla którego dzieci są przywożone na izbę przyjęć lub do oceny ambulatoryjnej (Brotman i in., 2006; Collishaw i in., 2010; Kelly i in., 2010; Leibenluft i inni, 2003; Peterson i inni, 1996; Stringaris i in., 2009). Drażliwość we wczesnym dzieciństwie często utrzymuje się wraz z wiekiem dzieci (Dougherty i in., 2013; Wiggins i in., 2014), przewiduje późniejsze choroby psychiczne (Brotman i in., 2006; Copeland i in., 2014; Stringaris i in., 2009) oraz gorsze wyniki społeczno-ekonomiczne (Brotman i in., 2006). Jednak obecność drażliwych objawów jest skorelowana z wieloma diagnozami z Podręcznika diagnostycznego i statystycznego (DSM), w tym manią, chorobą afektywną dwubiegunową, dużym epizodem depresyjnym, uogólnionym zaburzeniem lękowym, ADHD, zaburzeniem opozycyjno-buntowniczym i destrukcyjnym zaburzeniem rozregulowania nastroju. Obecność drażliwości w wielu chorobach psychicznych utrudnia jej przydatność jako biomarkera diagnostycznego lub predykcyjnego. Warsztaty NIMH na temat drażliwości u dzieci (luty 2014 r.) i Pierwszy Kongres na temat drażliwości u dzieci (wrzesień 2015 r.) zidentyfikowały potrzebę transdiagnostycznych, wielowymiarowych badań nad drażliwością w celu lepszej charakterystyki fenotypu drażliwości i głębszego zrozumienia leżących u podstaw procesów biologicznych i psychospołecznych, w celu zidentyfikowania biomarkerów diagnostycznych i reagujących na leczenie oraz celów interwencji (Avenevoli i wsp., 2015). W latach następujących po tych fundamentalnych spotkaniach wielu badaczy wykorzystało ramy badawcze RDoC, aby przejść od opartych na objawach, kategorycznych ocen drażliwości do miar wymiarowych mających na celu odkrycie biotypów przydatnych do klasyfikacji, przewidywania klinicznego i eksperymentalnych terapii.Jednym z trudnych aspektów badań nad drażliwością i jej przydatnością w identyfikacji wczesnego ryzyka psychopatologii jest fakt, że objawy behawioralne, takie jak napady złości, mogą być przykładami typowego rozwoju odpowiedniego do wieku lub mogą być potencjalnym markerem klinicznego zagrożenia (Wakschlag i in., 2012). Podłużna obserwacja kohorty 3-latków ze znaczną drażliwością była predyktorem rozpoznań klinicznych w wieku 6 lat (Dougherty i in., 2013) i 9 lat (Dougherty i in., 2015). W celu opracowania miar, które odróżniają normatywną drażliwość od klinicznie istotnej, naukowcy wykorzystali wymiarowe miary zachowań związanych z drażliwością (np. łatwo sfrustrowane lub destrukcyjne napady złości) w grupach uczestników o pełnym zakresie nasilenia drażliwości. Badania te wykazały, że oceny wymiarowe mają dobrą czułość i swoistość w odróżnianiu rozwoju normatywnego od tego, co się dzieje. klinicznie istotna drażliwość predykcyjna podłużnego prawdopodobieństwa rozpoznania zaburzenia DSM (Wakschlag i in., 2015; Wiggins i in., 2018). Nacisk RDoC na domeny i konstrukty funkcjonalne był szczególnie pomocny w identyfikacji podstawowych procesów, które mogą nadawać predyspozycje rozwojowe do psychopatologii (Wakschlag i in., 2014).

      Drażliwośc dziecięca (dysregulacja emocjonalna i somatosensoryczna?) jako transdiagnostyczny wskaźnik chorób psychicznych

    6. Klasycznie, badania skoncentrowane na uwadze wykazały, że osoby z ADHD wykazują deficyty w kilku różnych formach uwagi (np. uwaga ukryta, uwaga selektywna, uwaga podtrzymywana i zdolność uwagi) (Barkley, 1997); jednak dowody wskazują, że lepiej myśleć o tym jako o deficycie z regulacją uwagi (Hinshaw, 2018). Dowody behawioralne potwierdzają pogląd, że ADHD może być w rzeczywistości niezdolnością do oderwania uwagi od nieodpartych bodźców lub hiperfokusem (Hinshaw, 2018), a prace neuroobrazowe pokazują intruzje sieci w stanie spoczynku i trybie domyślnym, gdy powinny być zaangażowane sieci skoncentrowane na uwadze (Raichle i Snyder, 2007).

      Potwierdzenie założeń naszego modelu, w którym uwaga aktywnie poszukuje stymulacji, mogąc wtedy hamować inne bodźce

    7. Jednym z głównych założeń RDoC jest jego użyteczność do badania heterogeniczności za pomocą jednej kategorii diagnostycznej. Ostatnie prace nad ADHD podkreślają tę zaletę. ADHD jest powszechnym i uporczywym zaburzeniem rozwojowym, które pojawia się we wczesnym dzieciństwie, charakteryzującym się nadmierną nieuwagą, nadpobudliwością lub impulsywnością (APA, 2013). Chociaż początek może nastąpić bardzo wcześnie w dzieciństwie, diagnoza ADHD jest zwykle ustalana w wieku szkolnym, co sprawia, że ADHD jest jedną z najczęstszych diagnoz w placówkach edukacyjnych (Matthews i in., 2014). Dzieci z ADHD częściej osiągają słabe wyniki w szkole (Loe i Feldman, 2007), są bardziej narażone na nadużywanie substancji (Adisetiyo i Gray, 2017), a także są bardziej narażone na rozwój kolejnych chorób psychicznych w wieku dorosłym (Hinshaw, 2018). Chociaż nazwa zaburzenia sugeruje, że problem jest z natury deficytem uwagi, przeprowadzono wiele prac, które pokazują, że deficyty doświadczane w ADHD mogą w rzeczywistości wpływać na więcej niż tylko ten jeden system (Nigg, Karalunas, Feczko i in., 2020) i istnieje duży stopień międzyosobniczej zmienności w manifestacji tych problemów (Hinshaw, 2018 r.; Kofler i in., 2013; Nigg i inni, 2002; Nigg, Karalunas, Feczko i in., 2020).

      Ogólnie o ADHD i trudnościach w diagnozie

  3. Nov 2023
    1. Żadnych ruchówModel mysi LID opracowano przez codzienne podawanie L-DOPA myszom leczonym 6-OHDA.Hamowanie indukowane korowo było w dużym stopniu stłumione w SNr ( ryc. 2 , bradykinezja w PD ),[ 14 ] podczas gdy po wstrzyknięciu L-DOPA, gdy myszy wykazywały nieprawidłowe ruchy mimowolne, indukowane korowo hamowanie zostało odzyskane i wzmocnione, a późne pobudzenie było w dużej mierze tłumione ( ryc. 2 , LID w PD ) [ 14 ].Wyraźne wzmocnienie indukowanego korowo hamowania w GPi / SNr powoduje uwolnienie niezamierzonych ruchów w losowych momentach, a stłumienie późnego pobudzenia nie może zatrzymać raz uwolnionych ruchów, co objawia się LID .[ 14 ]

      Związek dopaminy i istoty czarnej w inicjowaniu ruchów wyrównujących stymulację ?

    2. Dynamiczny model aktywności funkcji BGAby zbadać, w jaki sposób BG kontroluje ruchy dobrowolne, autorzy od dawna badają reakcję GPi / SNr wywołaną stymulacją korową, która, jak się przypuszcza, naśladuje pobudzenie korowe w celu zainicjowania ruchów dobrowolnych ( ryc. 1 ).Stymulacja elektryczna w korze ruchowej i korze przedczołowej indukuje reakcję trójfazową składającą się z wczesnego wzbudzenia ( ryc. 1 B, magenta), hamowania i późnego wzbudzenia w GPi / SNr małp, gryzoni i prawdopodobnie ludzi.W każdym ze składników pośredniczą odpowiednio pośrednie szlaki korowo-podwzgórzowe (STN)-GPi / SNr , korowo-prążkowane (Str) -GPi / SNr bezpośrednie i korowo- podwzgórze zewnętrzne (GPe)-STN- GPi / SNr ( ryc . 1 A ) . [ 4,5,6,7,8 ] . _ _ _ _Kiedy mają zostać zainicjowane ruchy dobrowolne, sygnały drogą hiperbezpośrednią docierają najpierw do GPi / SNr , hamują aktywność wzgórzowo-korową, resetują aktywność korową związaną z trwającymi ruchami i przygotowują się do działania.Sygnały drogą bezpośrednią docierają do GPi / SNr , odhamowują aktywność wzgórzowo-korową i wyzwalają odpowiedni ruch w odpowiednim czasie.Sygnały drogą pośrednią docierają do GPi / SNr , hamują aktywność wzgórzowo-korową i zatrzymują ruch uwalniany drogą bezpośrednią.Bodźce hamujące szlakiem bezpośrednim kończą się na stosunkowo małym, ograniczonym obszarze w GPi / SNr ( ryc. 1 C, kolor niebieski) , podczas gdy bodźce pobudzające szlakami hiperbezpośrednimi i pośrednimi kończą się na dużym obszarze[ 9,10 ], tworząc w ten sposób organizacja przestrzenna centrum hamującego i otoczenie pobudzające w GPi / SNr . Zahamowanie w obszarze środkowym wyzwoli wybrany ruch, podczas gdy wzbudzenie w obszarze otaczającym będzie w sposób ciągły hamowało inne niezamierzone ruchy.Aktywacja ścieżki hiperbezpośredniej i pośredniej tłumiła ruchy, podczas gdy aktywacja ścieżki bezpośredniej ułatwiała ruchy.[ 4 , 7 , 8 , 11 , 12 ].Autorzy badali, jak wzorce odpowiedzi indukowanej korowo w GPi / SNr zmieniają się w różnych modelach zaburzeń ruchowych ( ryc. 2 , naniesione w płaszczyźnie hiperkinetyczno-hipokinetycznej i hipertoniczno-hipotonicznej) i chcieliby omówić ich patofizjologię w oparciu o analizę dynamiczną model działania

      Proces inicjowania lub hamowania ruchów dobrowolnych lub mimowolnych, przez zwoje podstawy. Prawdopodobna ścieżka dla stymulacji w ADHD/ASD?

    1. przykład – kiedy otwieram oczy i obserwuję, moja "kontrola ciała" nad oczami jest oczywistą propriocepcją. Jeśli nie mam intencji, tego rodzaju obserwacja jest nie do odróżnienia, a informacja wizualna, którą otrzymuję, jest "równa", nie mogę znaleźć celu, aby dać intencję "oczu otwartych", więc propriocepcja ma rodzaj "meta bezcelowości". Następnie rozważamy sytuację ekstremalną: terapię awersyjną, która polega na tym, że ludzie osiągają efekt terapeutyczny poprzez ciągłą obserwację tego samego. Zmusimy nasz wzrok do skupienia się na określonej treści. Ta zmiana otwartych oczu na skupione oczy, wraz z generowaniem naszego intencjonalnego działania, sprawia, że "skupianie się na tej treści" staje się rodzajem praktycznej wiedzy. Innym przypadkiem jest odruch skoku kolanowego, który polega na tym, że gdy kolano jest do połowy zgięte, a noga może swobodnie opadać, ścięgno kolana jest lekko uderzone, a noga szybko kopie do przodu. W tej sytuacji, gdy noga zostaje uderzona, nie ma to nic wspólnego z intencją osoby uderzonej. Ruch nóg jest również niezamierzony, ale w propriocepcji może wyczuć działanie ciała (nawet jeśli jego oczy są zawiązane) i zapamiętać to odczucie w odruchu skoku kolanem, tworząc w ten sposób rodzaj cielesnej samowiedzy. To pokazuje, że wiedza praktyczna i fizyczna samowiedza nie są ze sobą spójne. Dlatego z przypadku 1.2 możemy stwierdzić, że propriocepcja nie jest wiedzą praktyczną, a w rzeczywistości jest podstawą wiedzy praktycznej i gwarantuje związek między umysłem a intencjonalnym działaniem.

      Połączenie prioprocepcji i umysłu

    2. 2.1. Wiedza cielesna oparta na propriocepcjiTutaj, aby ułatwić późniejsze porównanie, dzielę ten rodzaj wiedzy na dwie kategorie, jedną z nich jest to, że możemy wyczuć nasze kończyny i ich status, położenie, tak jakbyśmy nigdy nie byli podejrzliwi co do istnienia naszych kończyn (w normalnych warunkach). Drugim jest to, w jaki sposób kontrolujemy nasze ciało, jak treść działania naszych kończyn.Powodem, dla którego dzielę te dwie kategorie, jest to, że pierwsza z nich może być porównywalna z wiedzą percepcyjną, a druga odnosi się do wiedzy praktycznej. Muszę powiedzieć, że nie jest to precyzyjna klasyfikacja, głównie po to, aby dać dwa układy odniesienia do dyskusji o propriocepcji. W niektórych pracach dane wejściowe propriocepcji zostaną odróżnione od wyjścia czucia motorycznego w bardziej szczegółowy sposób. (Alisa Mandrigin, 2021), ale nie chodzi mi tutaj o takie rozróżnienie.

      Opisy prioprocepcji

    1. M2 mAChR jest cholinergicznym autoreceptorem hamującym zlokalizowanym na zakończeniach presynaptycznych w wielu regionach mózgu.M2 mAChR są obecne na dużych interneuronach cholinergicznych w prążkowiu i mają wysoką ekspresję w móżdżku, wzgórzu i jądrze podstawnym Meynerta wraz z niektórymi strukturami limbicznymi, np. ciałem migdałowatym i hipokampem.

      Funkcja hamująca ACTH w móżdżku?

    2. Proponuje się, aby toniczna aktywność cholinergiczna odzwierciedlała odgórnie neuromodulacyjną rolę neuronów cholinergicznych BF w regulowaniu obwodów wykrywania kory mózgowej w celu utrzymania wydajności zadań w warunkach rozproszenia uwagi (Sarter i Lustig 2019).

      Rugulowanie uwagi kiedy coś rozprasza przez ACh

    1. Dla porównania, koherencja jądrowo-kinematyczna móżdżku przyśrodkowego i koherencja kinematyczna kory móżdżku była równie silna podczas ruchu i spoczynku. Ponieważ całkowita amplituda drżenia znacznie wzrosła podczas ruchu, może to sugerować, że źródło pozamóżdżkowe jest zaangażowane w modulację amplitudy drżenia i tremoroscillacji wzgórza wraz z ruchem. Na przykład aferentne sprzężenie zwrotne drżenia behawioralnego może wzmacniać drgania wzgórza. Mechanoreceptory w skórze, mięśniach i stawach otrzymują informacje o dotyku, wibracjach i propriocepcji, a receptory te wychodzą przez szlak przyśrodkowo-lemniscalny kolumny grzbietowej do kompleksu jąder kolumny grzbietowej (DCN), który obejmuje jądra gracile i klinate (Loutit i in., 2021). Kompleks DCN z kolei ma wypustki pobudzające do brzusznych tylnych bocznych i brzusznych tylnych przyśrodkowych (tj. somatosensorycznych) jąder wzgórza (Kramer i in., 2017; Uemura i in., 2020), a także projekcje do zona incerta, jądra czerwonego, kory móżdżku i IO (Boivie, 1971; Robinson i inni, 1987; McCurdy i inni, 1998; Quy i in., 2011). Dlatego połączenie somatosensorycznego sprzężenia zwrotnego drżenia i bezpośrednich projekcji móżdżkowo-wzgórzowych może przyczynić się do wzmocnienia lub rozprzestrzenienia drgań drżenia we wzgórzu podczas ruchu.

      Drżenie wywołane Harmalina związane z wzgórzem

    2. Konieczne będzie wzniesienie i kora mózgowa z manipulacjami specyficznymi dla typu komórki szlakami połączeń móżdżku w celu dostarczenia szczegółowych informacji na temat zaangażowanych obwodów, zachowań, na które wpływa i możliwego wpływu przekaźników neuromodulacyjnych. Obecnie dobrze udokumentowany wpływ aktywności móżdżku na uwalnianie dopaminy w korze przedczołowej (Mittleman i in., 2008; Rogers i in., 2011) zasugerowano, że pełni funkcje związane z nagrodą (Wagner i in., 2017; Carta i in., 2019) ale może również wpływać na siłę oscylacji kory czołowej w zakresie częstotliwości delta i theta. Tutaj skupiliśmy się na funkcji poznawczej jako najbardziej intrygującej nowej roli móżdżku. Jednak zaangażowanie móżdżku w kontrolę sensomotoryczną może wywoływać te same zasady koordynacji zależnej od zadania CTC. W końcu koordynacja koherencji móżdżku w korze mózgowej została po raz pierwszy zademonstrowana między pierwotną korą czuciową i ruchową u szczurów (Popa i in., 2013), a ostatnio w układzie wąsów u myszy (Lindeman i in., 2021).Zasada koordynacji móżdżkowej zdarzeń precyzyjnie zaplanowanych w czasie, występująca w kontroli skurczów mięśni w celu optymalizacji koordynacji ruchowej, jest tutaj stosowana do koordynacji oscylacji neuronalnych w celu optymalizacji komunikacji korowej mózgu podczas procesów poznawczych. Elegancja tej nowej perspektywy interakcji móżdżku polega na jej intuicyjnej prostocie, która nie wymaga dodatkowych założeń dotyczących funkcji móżdżku i może zapewnić funkcjonalną interpretację architektury sieci korowej móżdżku.

      Podsumowanie kordynacji móżdżkowej i poszukiwanie neuromodulatorów dla tych procesów

    3. Niedawne badanie przeprowadzone przez Wagnera i in. (2019) dostarczyło ważnych nowych informacji na temat reprezentacji móżdżku w stanach aktywności kory mózgowej. Na potrzeby swoich badań myszy z głową nauczyły się przesuwać dźwignię w lewo lub w prawo, aby otrzymać nagrodę wodną, podczas gdy aktywność neuronów warstwy V (L5) w obszarze przedruchowym kończyn przednich i aktywność GC w zraziku móżdżku VI były monitorowane za pomocą obrazowania 2P-wapnia przez cały proces uczenia się. Wraz z poprawą wydajności zadań wzorce aktywności neuronów kory przedruchowej L5 i GC zrazika VI stają się coraz bardziej podobne (Wagner i in., 2019). Interakcja móżdżku podczas wyuczonego zadania motorycznego może ostatecznie skutkować stanami aktywności kory mózgowej, które mają być reprezentowane w warstwie wejściowej kory móżdżku. Co ważne, jest to zgodne z innymi badaniami wykazującymi wzrost funkcjonalnej łączności między móżdżkiem a korą mózgową podczas uczenia się motorycznego (Mehrkanoon i in., 2016), co sugeruje, że uczenie się ułatwia przekazywanie informacji między obszarami mózgu i móżdżku zaangażowanymi w wyuczone zadanie . Oba powyższe badania koncentrowały się na interakcji móżdżku z pojedynczym obszarem kory mózgowej oraz w kontekście kontroli motorycznej (Mehrkanoon i in., 2016; Wagner i in., 2019). Jeśli ten mechanizm jest prawdziwy w przypadku interakcji móżdżku z innymi obszarami kory mózgowej, zapewnia on móżdżkowi mechanizm dostępu do stanów aktywności w obszarach kory mózgowej, z którymi oddziałuje w kontekście uczenia się

      Komunikacja między móżdżkiem, a innmi obszarami sprawia, że na podstawie uczenia się to połączenie jest później łatwiej dostępne

    4. Niedawne badanie przeprowadzone przez Wagnera i in. (2019) dostarczyło ważnych nowych informacji na temat reprezentacji móżdżku w stanach aktywności kory mózgowej. Na potrzeby swoich badań myszy z głową nauczyły się przesuwać dźwignię w lewo lub w prawo, aby otrzymać nagrodę wodną, podczas gdy aktywność neuronów warstwy V (L5) w obszarze przedruchowym kończyn przednich i aktywność GC w zraziku móżdżku VI były monitorowane za pomocą obrazowania 2P-wapnia przez cały proces uczenia się. Wraz z poprawą wydajności zadań wzorce aktywności neuronów kory przedruchowej L5 i GC zrazika VI stają się coraz bardziej podobne (Wagner i in., 2019). Interakcja móżdżku podczas wyuczonego zadania motorycznego może ostatecznie skutkować stanami aktywności kory mózgowej, które mają być reprezentowane w warstwie wejściowej kory móżdżku. Co ważne, jest to zgodne z innymi badaniami wykazującymi wzrost funkcjonalnej łączności między móżdżkiem a korą mózgową podczas uczenia się motorycznego (Mehrkanoon i in., 2016), co sugeruje, że uczenie się ułatwia przekazywanie informacji między obszarami mózgu i móżdżku zaangażowanymi w wyuczone zadanie . Oba powyższe badania koncentrowały się na interakcji móżdżku z pojedynczym obszarem kory mózgowej oraz w kontekście kontroli motorycznej (Mehrkanoon i in., 2016; Wagner i in., 2019).

      Komunikacja między móżdżkiem, a innmi obszarami sprawia, że na podstawie uczenia się to połączenie jest później łatwiej dostępne

    5. . W bardziej ogólnym sensie twierdzimy, że móżdżek koduje stan korowy w oparciu o charakterystyczny układ rozproszonych oscylacji kory nowej, a następnie generuje wyjścia, które napędzają neurony wzgórza do modulowania aktywności oscylacyjnej w celu osiągnięcia pożądanego nowego stanu korowego. W szczególności sugerujemy, że projekcje móżdżku do wzgórza mogą wpływać na neurony macierzy wzgórza, które kończą się preferencyjnie na interneuronach hamujących w warstwie korowej I (Cruikshank i in., 2012), które odgrywają kluczową rolę w generowaniu i modulowaniu oscylacji korowych, zwłaszcza rytmów gamma (Atallah i Scanziani, 2009; Cardin i in., 2009).

      Udział wzgórza w oscylacji kodowanych przez móżdżek

    6. W innym badaniu przeprowadzonym przez Oldehinkel i in. (2019) zbadano łączność fMRI móżdżku w móżdżku bardziej bezpośrednio i stwierdzono, że osoby z ASD wykazywały wzrost łączności między móżdżkiem a pierwotnymi sieciami czuciowymi i motorycznymi. Jednocześnie łączność funkcjonalna w tych sieciach była nienormalnie niska, a stopień deficytu łączności był skorelowany z nasileniem objawów, takich jak przetwarzanie sensoryczne, powtarzające się zachowania i upośledzenie społeczne.

      Hipperłącznośc między móżdżkiem i innymi obszarami i hipołączność w tych obszarach.

    7. Nieprawidłowości koherencji/łączności funkcjonalnej w zaburzeniach ze spektrum autyzmuFrith (1997) zasugerowała, że wiele nieprawidłowości percepcyjnych i uwagowych u osób z ASD można interpretować jako "słabą spójność centralną", którą definiuje jako zmniejszenie kontekstowej integracji informacji i skłonność do przetwarzania lokalnego, a nie globalnego, tj. niezdolność do zintegrowania fragmentów informacji w spójną całość. Inni autorzy przypisywali słabą koherencję centralną upośledzeniu "czasowego wiązania" między sieciami lokalnymi, podczas gdy zakładano, że wiązanie czasowe w sieciach lokalnych jest nienaruszone lub nawet wzmocnione (Brock i in., 2002). Badania na zwierzętach dostarczają pewnych wskazówek co do mechanizmów neuronalnych leżących u podstaw tego typu deficytu i tego, jak może on wynikać z dysfunkcji móżdżku. Jak wspomniano wcześniej, ten rodzaj upośledzenia jest analogiczny do tego, co obserwuje się w układzie sensomotorycznym szczurów, gdy jądra wyjściowe móżdżku są zahamowane, a spójność między korą czuciową i ruchową jest zakłócona, podczas gdy przetwarzanie miejscowe pozostaje nienaruszone (Popa i in., 2013). Inne niedawne badanie wykazało, w jaki sposób zachowanie podobne do ASD u myszy jest powiązane z aktywnością w określonych projekcjach korowych móżdżkowo-wzgórzowo-przedczołowych (Kelly i in., 2020). Znaczniki wirusowe zostały użyte do wywołania ekspresji rodopsyny kanałowej lub archerodopsyny w projekcjach polisynaptycznych do mPFC pochodzącego z prawego Crus I. Zwiększona aktywność w tych terminalach poprzez stymulację optyczną zwiększyła zachowania podobne do ASD, podczas gdy hamowanie optyczne zmniejszyło je. Uważa się, że zwiększona aktywność w tym szlaku jest związana z utratą komórek Purkinjego w korze móżdżku, która występuje w ASD (Fatemi i in., 2012), co skutkuje trwałym wyjściem pobudzającym. W odniesieniu do CTC, dysfunkcja lub utrata komórek Purkinjego prawdopodobnie skutkuje mniejszą szansą na selektywną synchronizację czasoprzestrzenną, ponieważ pobudzający sygnał wyjściowy z móżdżku jest zwykle modulowany w odpowiedzi na wzorce aktywności mózgowej. Synchronizacja selektywna zachodzi, gdy aktywacja w wybranych regionach kory nowej wyróżnia się na tle poziomu aktywności neuronalnej, co staje się coraz trudniejsze wraz ze wzrostem poziomu aktywności tła.

      Deficyt móżdżku w ASD i zmniejszona liczba komórek purkinjego

    8. Zaangażowanie móżdżku w interakcjach hipokamp-przedczołowyZaangażowanie móżdżku w funkcje poznawcze i zaburzenia poznawcze, które są związane z neuropatologią móżdżku, obejmuje interakcje móżdżku z czołowymi obszarami kory mózgowej (Ramnani, 2006; Schmahmann i in., 2019; Wagner i Luo, 2019). Ostatnio podstawowe funkcje przestrzenne, takie jakWykazano, że kodowanie przez komórki miejsca lub pamięć przestrzenną wymaga nienaruszonego móżdżku (Tomlinson i in., 2014; Lefort i in., 2015, 2019). W związku z tym śledzenie transneuronalne wykazało projekcje z płata głównego móżdżku VI i zrazika półkuli Crus I do wzgórza grzbietowego (Watson i in., 2019). Powiązania między hipokampem a Crus I są godne uwagi w kontekście funkcji poznawczych móżdżku, ponieważ Crus I ma również wzajemne połączenia z korą przedczołową (Middleton i Strick, 2001), które ostatnio zostały bezpośrednio powiązane z kontrolą zachowań społecznych u myszy (Kelly i in., 2020). Kora przedczołowa i hipokamp grzbietowy są wspólnie potrzebne do funkcjonowania przestrzennej pamięci roboczej u gryzoni (Jones i Wilson, 2005; Benchenane i in., 2011; Wirt i Hyman, 2017; NegronOyarzo i in., 2018) i ich związek z móżdżkiem mogą pomóc wyjaśnić odkrycia dotyczące zaangażowania móżdżku w orientację przestrzenną (Burguiere i in., 2005; Rochefort i in., 2011) oraz przestrzenna pamięć robocza (Tomlinson i in., 2014).Aby określić fizjologiczną naturę interakcji hipokampa móżdżku, Watson i in. (2019) wszczepili myszom elektrody rejestrujące w hipokampie grzbietowym, płatku grzbietowym VI i Crus I. Następnie wyszkolili myszy w prostym zachowaniu ukierunkowanym na cel, wymagając od myszy przejścia liniowej ścieżki, aby otrzymać nagrodę składającą się z elektrycznej stymulacji przyśrodkowej wiązki przodomózgowia (Carlezon i Chartoff, 2007) na końcu ścieżki (Watson i in., 2019). W miarę jak myszy poprawiały swoją wydajność w tym zachowaniu ukierunkowanym na cel, koherencja oscylacji theta (6-12 Hz) między hipokampem grzbietowym a Crus I selektywnie wzrosła (Watson i in., 2019), co sugeruje, że komunikacja między Crus I a hipokampem grzbietowym obejmuje związaną z zadaniem spójność oscylacji neuronalnych (Watson i in., 2019).

      Związek kodowania oscylacji przez móżdżek z hipokampem

    9. Stymulacja robaka powodowała przesunięcie mocy gamma z lewej czołowej na prawą dominację czołową, podczas gdy stymulacja miejsc kontrolnych w korze potylicznej i półkuli móżdżku nie wywoływała tego efektu (Schutter i in., 2003). Du i in. (2018) byli w stanie wykazać, że stymulacja TMS móżdżku zwiększa synchronizację między lewym i prawym obszarem przedczołowym w zakresie częstotliwości od theta do gamma. To, co wyróżnia ich badanie, to fakt, że byli również w stanie wykazać, że wywołany móżdżkiem wzrost obustronnej synchronizacji przedczołowej wiązał się z lepszą wydajnością pamięci roboczej, łącząc móżdżkową modulację oscylacji kory mózgowej z funkcjami poznawczymi (Du i in., 2018). Badania te pokazują zatem, że aktywność w określonych podregionach móżdżku może wpływać na dynamikę neuronów kory mózgowej w wielu pasmach częstotliwości o specyficzności regionalnej i że wpływ ten można powiązać z procesami poznawczymi.

      Lepsza wydajność pamięci roboczej po synchronizacji móżdżku

    10. W porównaniu z fMRI, elektroencefalografia (EEG) rejestruje aktywność mózgu ze znacznie niższą rozdzielczością przestrzenną, ale znacznie wyższą rozdzielczością czasową, w tym częstotliwościami w zakresie gamma (Freeman i in., 2003). EEG zostało zastosowane do zbadania wpływu móżdżku na aktywność kory mózgowej przy użyciu nieinwazyjnej przezczaszkowej stymulacji magnetycznej (TMS) w celu stymulacji móżdżku (niedawny przegląd patrz Fernandez i in., 2020). Podczas gdy większość badań TMS-EEG móżdżku donosi o potencjałach wywołanych w korze mózgowej, niektóre badały również aktywność oscylacyjną. Wyniki tych ostatnich badań wykazały, że oscylacje kory mózgowej są modulowane przez TMS zastosowany do móżdżku. Na przykład Farzan i in. (2016) zastosowali przerywaną stymulację impulsem theta (iTBS) do robaka i regionu Crus I/II prawej półkuli tylnego móżdżku u zdrowych osób dorosłych. Analiza spektralna mocy po stymulacji wykazała wzrost mocy oscylacji beta do niskich gamma w obszarach czołowych i ciemieniowych po stymulacji wermalnej oraz globalne zmniejszenie theta i wzrost wysokich oscylacji gamma w obszarach czołowo-skroniowych po stymulacji półkuli (Farzan i in., 2016). Przestrzenne rozmieszczenie tych wyników jest zgodne z wzorcami połączeń funkcjonalnych móżdżku w oparciu o mapy aktywności fMRI (Buckner i in., 2011). Podobnie, zastosowanie powtarzalnej przezczaszkowej stymulacji magnetycznej (rTMS) móżdżku o wysokiej częstotliwości w połączeniu z EEG ujawniło specyficzną dla miejsca stymulacji modulację mocy gamma w obszarach kory czołowej (Schutter i in., 2003). Stymulacja robaka powodowała przesunięcie mocy gamma z lewej czołowej na prawą dominację czołową, podczas gdy stymulacja miejsc kontrolnych w korze potylicznej i półkuli móżdżku nie wywoływała tego efektu (Schutter i in., 2003). Du i in. (2018) byli w stanie wykazać, że stymulacja TMS móżdżku zwiększa synchronizację między lewym i prawym obszarem przedczołowym w zakresie częstotliwości od theta do gamma. To, co wyróżnia ich badanie, to fakt, że byli również w stanie wykazać, że wywołany móżdżkiem wzrost obustronnej synchronizacji przedczołowej wiązał się z lepszą wydajnością pamięci roboczej, łącząc móżdżkową modulację oscylacji kory mózgowej z funkcjami poznawczymi (Du i in., 2018). Badania te pokazują zatem, że aktywność w określonych podregionach móżdżku może wpływać na dynamikę neuronów kory mózgowej w wielu pasmach częstotliwości o specyficzności regionalnej i że wpływ ten można powiązać z procesami poznawczymi.

      Stymulacja móżdżku wywołuje synchronizacje w korze przedczołowej

    11. Na tym etapie móżdżek staje się tak osadzony w strukturze sieci, że pozornie działa jako centrum koordynacji komunikacji między rozproszonymi sieciami korowymi (Fair i in., 2009; Kundu i in., 2018). Ponadto regiony móżdżku o najwyższej wariancji międzyosobniczej w mapowaniu funkcjonalnym to te, które odpowiadają obszarom kory mózgowej związanym z funkcjami wykonawczymi i poznawczymi (Marek i in., 2018). Ogólnie rzecz biorąc, dowody te sugerują wiele rzeczy: że związek móżdżku utrzymuje skoordynowaną komunikację międzyobszarową między funkcjonalnie zdefiniowanymi regionami kory mózgowej, że ogniskowa aktywacja móżdżku odpowiada przestrzennie selektywnej koaktywacji mózgu i że te relacje przestrzenne, które definiują organizację sieci korowej mózgu, są wyuczone lub nabyte w trakcie rozwoju. Twierdzimy, że odkrycia te silnie wspierają ideę, że móżdżek integruje informacje z aktywności kory mózgowej i sygnały uczące z dolnej oliwki, aby adaptacyjnie współaktywować regiony i ustanowić przestrzennie selektywną koherencję, prowadząc w ten sposób do znaczącej integracji w obrębie i między sieciami kory mózgowej w trakcie rozwoju. Co ważne, ten nowy pogląd, który tutaj prezentujemy, nie tylko wyjaśnia obserwowane wzorce koaktywności w układzie móżdżkowym dorosłych, ale zapewnia ramy do badania zaburzeń rozwojowych, o których wiadomo, że obejmują móżdżek, takich jak ASD i schizofrenia

      Móżdżek koordynuje informacje między rozproszonymi sieciami korowymi.

    12. Na przykład w jednym z badań zbadano, które obszary mózgu były współaktywne z bruzdą śródciemieniową, regionem asocjacyjnym uważanym za krytyczny dla integracji informacji multisensorycznych do przetwarzania przestrzennego. Co ciekawe, region ten nie współaktywował się z pojedynczym regionem móżdżku, ale zamiast tego współaktywował się z kilkoma nienakładającymi się regionami móżdżku, z których każdy reprezentował, które inne regiony korowe były jednocześnie aktywne (Liu i Duyn, 2013; Rysunek 5B). Pokazuje to, że specyficzne aktywacje ogniskowe w móżdżku odpowiadają rozproszonym wzorcom przestrzennym koaktywacji kory mózgowej, co sugeruje, że selektywna komunikacja międzyobszarowa jest ustanawiana między rozproszonymi sieciami w korze mózgowej, gdy pewne regiony móżdżku są aktywne. Kierunkowość tego związku nie jest jednak znana i może reprezentować kodowanie koaktywacji mózgu przez móżdżek, indukcję koaktywacji mózgu przez móżdżek lub wzajemne oddziaływanie tych dwóch. Badanie opóźnienia między sygnałami BOLD kory mózgowej i móżdżku sugeruje to pierwsze, ale skala czasowa fMRI jest bardzo powolna, a fakt, że BOLD móżdżku jest napędzany głównie przez dane wejściowe warstwy GC (Diedrichsen i in., 2010) utrudnia wykluczenie tego drugiego.

      Integracja informacji sensorycznych w móżdżku z różnych iejsc kory

    13. W jaki sposób moc wyjściowa móżdżku wpłynęłaby na spójność oscylacji w dwóch obszarach kory mózgowej? Uważa się, że wzgórze odgrywa kluczową rolę w koordynacji oscylacji mózgu (Jones, 2001), w tym modulacja ich koherencji (Guillery, 1995; Destexhe i inni, 1999; Saalmann, 2014), a zwłaszcza między mPFC a hipokampem grzbietowym (Hallock i in., 2016). Ogólnie rzecz biorąc, wyjścia móżdżku kończą się na kilku jądrach wzgórza, które zawierają neurony przekaźnikowe, które z kolei wystają w korze mózgowej. Podtypy neuronów przekaźnikowych wzgórza można zdefiniować na podstawie tego, na którą z warstw korowych są skierowane, ponieważ te różne cele sugerują różny wpływ na aktywność korową. Uważa się, że podtyp neuronu przekaźnikowego znany jako macierzowy typ odgrywa kluczową rolę w modulacji oscylacji mózgowych (Jones, 2001) i charakteryzuje się rozległą boczną arboryzacją aksonalną w powierzchownych warstwach kory nowej (Clasca i in., 2012), gdzie oscylacje gamma są najbardziej widoczne. Neurony macierzowe są powszechne w wewnątrzlaminarnych i przyśrodkowych jądrach wzgórza (Clasca i in., 2012), które uważa się za odgrywające szczególnie ważną rolę w koordynacji oscylacji kory mózgowej i które otrzymują bodźce pobudzające z móżdżku (Aumann i Horne, 1996a,b; MelikMusyan i Fanardjyan, 1998; Saalmann, 2014). Neurony przekaźnikowe typu macierzowego można dalej podzielić na grupy ogniskowe i wieloobszarowe, które (jak sama nazwa wskazuje) tworzą gęste zakończenia w jednym lub wielu regionach korowych (Clasca i in., 2012; Rysunek 4E). Co ciekawe, neurony przekaźnikowe typu matrycy ogniskowej mają tendencję do synapsy wyłącznie w warstwach powierzchownych, podczas gdy neurony wieloobszarowe typu macierzowego celują również w warstwę korową V (Clasca i in., 2012). Jednoczesny napęd pobudzający do warstw I, II/III i V został zaproponowany jako mechanizm generowania oscylacji beta w korze mózgowej (Sherman i in., 2016), co sugeruje, że neurony te mogą modulować międzyobszarową koherencję gamma poprzez indukcję zdarzeń beta wzmacniających gamma w wielu regionach jednocześnie. W oparciu o anatomię móżdżkowo-wzgórzowo-korową możliwych jest wiele różnych sposobów modulacji, jednak dokładny mechanizm (mechanizmy) lub ich kombinacje koordynacji móżdżkowej oscylacji kory mózgowej pozostają do ustalenia.

      Połączenie móżdżku z wzgórzem i jego rola w synchronizacji oscylacji neuronalnych

    14. Co ciekawe, przynajmniej w przypadku różnic fazowych w krótkim odstępie czasu, architektura sieci kory móżdżku jest unikalnie zaprojektowana do "obliczania" różnicy faz na podstawie aktywności włókien oscylacyjnych pochodzących z dwóch różnych struktur (ryc. 4D). Transformacja fazowo-różnicowa zachodzi wzdłuż wolno przewodzących włókien równoległych w mechanizmie po raz pierwszy zaproponowanym przez Braitenberga i Atwooda (1958) oraz Braitenberga i in. (1997) jako "hipoteza fali pływowej". Różnice fazowe między oscylacjami przy dowolnej częstotliwości można wyrazić w postaci opóźnień czasowych. MF dostarczające sygnały wejściowe, które są zablokowane fazowo na oscylacjach w odpowiednim miejscu pochodzenia kory mózgowej, wzbudzają sąsiednie GC z opóźnieniami, które są proporcjonalne do różnic fazowych między oscylacjami kory mózgowej. Ponieważ odpowiedzi kolców wywołane w GC propagują się wzdłuż wolno przewodzących aksonów GC, równoległe ułożenie tych włókien w unikalny sposób pozwala na ponowne wyrównanie aktywności asynchronicznej do synchronicznej salwy danych wejściowych do dwuwymiarowych dendrytów komórek Purkinjego (Figura 4D). W okresach silnych oscylacji macierz komórek Purkinjego może pasywnie kodować szereg zależności fazowych wyrażonych przez ich wejścia, umożliwiając synchronizację sygnału (sygnałów) uczenia ze szlaku włókien pnących, aby pomóc w rozróżnieniu kontekstowo znaczących relacji fazowych dla modyfikacji synaptycznej. To, że sieć móżdżku może rzeczywiście przekształcać sekwencyjne dane wejściowe docierające do warstwy GC w synchroniczne salwy równoległych kolców włókien i wywoływać specyficzne dla sekwencji odpowiedzi komórek Purkinjego, zostało wykazane w serii eksperymentów in vitro przez jednego z nas (Heck, 1993, 1995, 1999; patrz także Braitenberg i in., 1997).W tym kontekście ważne jest, aby wziąć pod uwagę specyficzność częstotliwościową wejść MF jako ważny składnik szlaku móżdżkowego. Wejście korowo-pontynowe jest napędzane przez neurony w warstwie korowej V, które przenoszą głównie częstotliwości subgamma (Castro-Alamancos, 2013; Bastos i in., 2018; Rysunek 4A). W przypadku obliczania większej różnicy faz dla niższych częstotliwości (subgamma) prawdopodobnie ważną rolę odgrywają również właściwości rezonansu sieciowego (rysunek 4D).

      Rola komórek ziarnistych w synchronizacji sygnałów

    15. Pomimo różnorodności funkcji w jądrach mostu, neurony przedmóżdżkowe uniwersalnie tłumaczą swój prąd wejściowy na kod szybkości w sposób liniowy (Kolkman i in., 2011; Rysunek 4B). W związku z tym oscylacyjna aktywność populacji z kory mózgowej jest odbierana przez neurony przedmóżdżkowe w moście i natychmiast przekształcana w informacje fazowe poprzez szybkość wypalania. [I odwrotnie, stały prąd stały napędza aktywność neuronalną z nieregularnymi odstępami, co sprawia, że neurony mostowe skutecznie reagują na sygnały oscylacyjne, ale są nieefektywnymi generatorami trwałego wyjścia oscylacyjnego (Schwarz i in., 1997).] Ostatnie badania pokazują, że GC, które to otrzymują, wydają się być biofizycznie dostrojone do różnych informacji fazowych w ramach tego wejścia – wzdłuż głębokości warstwy GC neurony reagują preferencyjnie na sygnały wejściowe o rosnącej częstotliwości, tworząc w ten sposób gradient dostrojony do różnych faz w sygnale mostowo-móżdżkowym (Straub i in., 2020; Rysunek 4C). Włókna równoległe wykazują również zależność od głębokości prędkości przewodzenia, przy czym głębsze GC przewodzą potencjały czynnościowe z większą prędkością (Straub i in., 2020). Modelowanie wykazało, że te właściwości GC razem prowadzą do bardziej precyzyjnych odpowiedzi komórek Purkinjego na dane wejście MF modulowane częstotliwością skoków

      Różne grupy komórek są dostrojone do kodowania różnych informacji fazowych

    16. Sygnały odbierane przez móżdżek: móżdżkowe kodowanie oscylacji mózgowychOmówione powyżej odkrycia Popa i in. (2013) oraz Lindemana i in. (2021) są zgodne z proponowaną przez nas rolą móżdżku jako koordynatora koherencji, ale nie dostarczają informacji o aktywności neuronalnej w samym móżdżku. Aby skutecznie modulować koherencję korową dla danego zadania, ważne jest, aby móżdżek mógł kodować neuronalny "kontekst" wywołany przez zadanie. Prawdopodobnie obejmuje to szereg oscylacji neuronalnych, które są powszechnie obserwowane w różnych sensomotorycznych (np. Baker i in., 1999; Watanabe i Kohn, 2015) i kora związana z funkcjami poznawczymi (np. Osipova i in., 2006; Myers i in., 2014) i które mogą zostać zniwelowane znaczącymi opóźnieniami. Większość neuronów piramidowych warstwy V wystających podkorowo wysyła zabezpieczenia do jąder mostu (Leergaard i Bjaalie, 2007; Suzuki i in., 2012), informacje o aktywności oscylacyjnej w korze mózgowej prawdopodobnie dotrą do móżdżku za pośrednictwem jego włókni omszałej (MF).Kodowanie fazy oscylacyjnej regionu korowego i obliczanie różnicy faz między dwoma współaktywnymi regionami korowymi to możliwości, które idealnie umożliwiłyby wyodrębnienie kontekstu neuronalnego związanego z danym zadaniem. Wyniki naszych własnych badań pokazują, że aktywność prostego kolca komórek Purkinjego w płatku móżdżku pospolitym (LS) i Crus I obudzonych myszy rzeczywiście reprezentuje fazy chwilowe i różnice fazowe między oscylacjami LFP w mPFC i grzbietowym regionie CA1 hipokampa (dCA1) (McAfee i in., 2019). Komórki Purkinjego Crus I i LS różniły się reprezentacją faz chwilowych. W Crus I komórki Purkinjego reprezentowały głównie fazy oscylacji delta w mPFC i dCA1. W LS komórki Purkinjego reprezentowały również fazę oscylacji delta, ale także fazy wysokich oscylacji gamma w mPFC i dCA1 (ryc. 3). Co ciekawe, różnice fazowe między oscylacjami mPFC i dCA1 były reprezentowane jednakowo w obu zrazikach móżdżku dla wszystkich głównych pasm częstotliwości rytmów neuronalnych (delta, theta, beta i gamma) (McAfee i in., 2019; Rysunek 3). Wiadomo, że mPFC i dCA1 wykazują modulacje koherencji w kontekście zadań przestrzennej pamięci roboczej (Gordon, 2011; Spellman i in., 2015), sugerując potencjalny udział móżdżku w modulacji koherencji i związanym z tym zadaniem przestrzennej pamięci roboczej.

      Móżdżek do prawidłowefo kodowania kontekstu zadania i synchroniczności potrzebuje danych somatosensorycznych

    17. Wykonali jednoczesne zapisy oscylacji neuronalnych w pierwotnej korze czuciowej (S1) i pierwotnej korze ruchowej (M1) układu wąsów mistacjalnych u swobodnie poruszających się szczurów. W każdym obszarze umieszczono do ośmiu elektrod, aby umożliwić analizę koherencji w obrębie S1 i M1, a także między tymi dwoma obszarami. Za każdym razem, gdy szczury angażowały się w aktywne ruchy wąsów, koherencja oscylacji gamma w obrębie S1 i M1 wzrastała na czas trwania zachowania (Popa i in., 2013; Rysunek 2A). Kluczowy udział móżdżku w tym związanym z zachowaniem wzroście koherencji stał się jasny, gdy autorzy użyli Muscimol do farmakologicznej dezaktywacji wstawionego jądra móżdżku, tj. jądra, które wystaje do układu wąsów przez wzgórze motoryczne. Inaktywacja interlokowanego jądra wyeliminowała wzrost koherencji gamma S1-M1 podczas ubijania (Popa i in., 2013). Co ważne, generowanie oscylacji gamma w obrębie każdej struktury nie zostało zmienione przez dezaktywację mocy wyjściowej móżdżku. Tak więc generowanie rytmów gamma per se nie wymagało nienaruszonego wyjścia móżdżku, ale koherencja gamma między strukturami już tak. Niedawne badanie potwierdziło te odkrycia przy użyciu optogenetycznego pobudzenia komórek Purkinjego w celu wyciszenia wyjścia móżdżku i zbadało wynikające z tego zmiany koherencji w większej szczegółowości anatomicznej i czasowej. Lindeman i in. (2021) wykorzystali liniowe sondy krzemowe do rejestrowania wzdłuż głębokości kory mózgowej S1 i M1 podczas stymulacji sensorycznej dostarczanej przez podmuch powietrza do wąsów. Jednoczesna stymulacja optyczna komórek Purkinjego w przeciwległej półkuli móżdżku spowodowała tymczasowe tłumienie pojemności móżdżkowej, powodując utratę czuciowej koherencji S1-M1 w zakresie gamma (Figura 2B).

      Sposób synchronizacji zadań za pomocą rytmów gamma

    18. Nowa perspektywa, którą tu proponujemy, godzi niektóre z dominujących teorii w badaniach mózgu i móżdżku. Śledzenie połączeń móżdżkowych za pomocą transneuronalnego transportu wirusów neurotropowych ujawniło wzajemne połączenia między określonym regionem móżdżku a określonym miejscem kory mózgowej, co sugeruje rozdzielenie funkcji poprzez połączenia w pętli zamkniętej (Middleton i Strick, 2001; Kelly i Strick, 2003; Rysunek 1A). Jednak nowsze badania udokumentowały znaczną konwergencję i dywergencję w łączności móżdżku, malując bardziej złożony obraz, który pozwala na bogatszą interakcję między strukturami i funkcjami (Henschke i Pakan, 2020). Ten drugi pogląd jest bardziej zgodny z proponowaną nową perspektywą móżdżku jako koordynatora specyficznej dla zadania komunikacji neuronalnej między strukturami kory mózgowej poprzez modulację koherencji oscylacji (ryc. 1B). Proponujemy, opierając się na najnowszych odkryciach eksperymentalnych z naszych laboratoriów (McAfee i in., 2019) oraz innych (Popa i in., 2013; Lindeman i in., 2021), że móżdżek osiąga to poprzez kodowanie relacji fazowych trwających oscylacji neuronalnych w obszarach kory nowej i dostarczanie odpowiednich zadań

      Móżdżek koduje oscylacje fazowe w komunikacji z korą nową

    19. Co ważne, teoria CTC opisuje mechanizm elastyczności w komunikacji między grupami neuronów, który pozwala na selektywny przepływ informacji, ale nie wyjaśnia mechanizmu neuronalnego samej tej selektywności. Teoria CTC proponuje, że sygnały "odgórne" powstają w celu modulowania efektywnej transmisji z "oddolnych" źródeł informacji sensorycznych, przy czym sygnały "odgórne" pojawiają się jako konsekwencja wewnętrznie utrzymywanych procesów, takich jak poznanie lub uwaga. Źródło (źródła) tych sygnałów pozostaje w wielu przypadkach nieznane. Być może najbardziej intrygującą niepewnością jest to, w jaki sposób zmiany koherencji zachodzą selektywnie, aby doprowadzić do odpowiedniej synchronizacji czasoprzestrzennej dla danego zadania. Sugerujemy, że proces ten wymaga móżdżku jako koordynatora komunikacji specyficznej dla zadania, roli, która jest zgodna z istniejącymi interpretacjami funkcji móżdżku, takimi jak uczenie nadzorowane i wewnętrzne modelowanie funkcji czuciowych i motorycznych.Istnieje wiele dowodów na zaangażowanie móżdżku w funkcje poznawcze, takie jak przetwarzanie języka, pamięć robocza i funkcje wykonawcze (Marvel i Desmond, 2010; Brissenden i in., 2018; Ashida i in., 2019; Heleven i in., 2019).

      Teoria komunikacji przez kocherencję i móżdżek jako element tego systemu

    20. RAMKA 1 | Podstawowe zasady teorii komunikacji poprzez koherencję (CTC) i ich rozszerzenie w celu uwzględnienia interakcji móżdżkowo-móżdżkowych.– Oscylacje gamma (>30 Hz) są generowane przez rytmiczne sekwencje pobudzenia i hamowania w lokalnej grupie neuronów kory nowej, tworząc krótkie okna czasowe o wysokiej i niskiej pobudliwości.– Komunikacja między grupami neuronalnymi jest najbardziej efektywna, gdy wyjście grupy presynaptycznej jest wyrównane z oknem o wysokiej pobudliwości grupy postsynaptycznej. Ułatwia to synchronizacja w zakresie gamma.– Grupa neuronalna otrzymująca sygnały wejściowe rytmu gamma z kilku różnych grup presynaptycznych będzie preferencyjnie reagować na grupę najlepiej dopasowaną do jej okien o wysokiej pobudliwości, zapewniając w ten sposób selektywną komunikację.– Na selektywną synchronizację gamma mają wpływ sygnały "odgórne", które zwykle mieszczą się w zakresie alfa/beta (5–30 Hz). Alfa jest zazwyczaj hamująca, ale beta może zwiększyć częstotliwość gamma, aby pomóc w selektywnej synchronizacji.– Amplituda gamma jest najwyższa w warstwach nadziarnistych, które mają tendencję do kierowania swojego wpływu na wyższe kory. Amplituda alfa/beta jest najwyższa w warstwach podkrystalicznych, które wystają do kory dolnej, a także do móżdżku poprzez jądra mostu.– Proponujemy, aby móżdżek kodował rytmy w zakresie alfa/beta, które odzwierciedlają topograficzny wzorzec aktywacji gamma w korze mózgowej i generują sprzężenie zwrotne, aby ułatwić odpowiednią synchronizację rytmu gamma w komunikujących się grupach neuronów.– Ta synchronizacja rytmu gamma może być osiągnięta poprzez bezpośrednią indukcję i modulację gamma kory nowej lub pośrednią modulację gamma poprzez rytmy alfa/beta.aktywność szczytowa i koherencja potencjału pola lokalnego (LFP) i wykazali, że wzrostowi koherencji towarzyszy wzrost porywania aktywności kolców mPFC do fazy koherentnych oscylacji mPFC-hipokamp theta (Jones i Wilson, 2005; Hyman i in., 2010). Dodatkowe przykłady eksperymentalnego wsparcia dla CTC, w tym wpływ koherencji na aktywność szczytową, patrz także (Jones i Wilson, 2005; Siegel i in., 2008; Bosman i in., 2012; Brunet i in., 2014; Sigurdsson i Duvarci, 2016; Bonnefond i in., 2017; Palmigiano i in., 2017; McAfee i in., 2018).

      Móżdżek komunikuje się poprzez synchronizację rytmu gamma, która może być osiągnięta poprzez bezpośrednią indukcję i modulację gamma kory nowej lub pośrednią modulację gamma poprzez rytmy alfa/beta.

    21. Od tego czasu wyniki eksperymentalne dostarczyły znacznego wsparcia dla koncepcji "komunikacji poprzez koherencję" (CTC), pokazując, że zmiany koherencji rzeczywiście korelują ze zmianami w efektywności transmisji neuronalnej oraz że zmiany koherencji zachodzą w sposób specyficzny dla zadania. CTC zostało szczegółowo zbadane w kontekście podejmowania decyzji. U gryzoni podejmowanie decyzji w SWM wymaga skoordynowanej aktywności przyśrodkowej kory przedczołowej (mPFC) i grzbietowego hipokampa (Churchwell i Kesner, 2011; Gordon, 2011). Jednoczesne zapisy elektrofizjologiczne w mPFC i hipokampie podczas wykonywania zadań SWM wykazały, że proces decyzyjny wiąże się ze wzrostem koherencji oscylacji theta między mPFC a hipokampem grzbietowym (Jones i Wilson, 2005; Hyman i in., 2010; Benchenane i in., 2011; Gordon, 2011). Porównanie prawidłowych i nieprawidłowych decyzji wykazało, że koherencja mPFC-hipokamp theta osiągała wyższe wartości podczas prawidłowych decyzji w porównaniu z błędnymi, co potwierdza funkcjonalną rolę koherencji w tym zadaniu (Jones i Wilson, 2005; Hyman i in., 2010). Aby wpłynąć na funkcjonowanie mózgu, zmiany koherencji muszą wpływać na zmiany w aktywności kolców. W kontekście SWM w dwóch badaniach oceniano zarówno

      Teoria koherencji sygnałów neuronalnych

    22. Deficyty rytmiczne są często związane z deficytami poznawczymi i społecznymi, a podejścia terapeutyczne oparte na rytmie i synchronizacji audio-motorycznej, takie jak taniec, są obiecującym narzędziem dla dzieci z rozwojowymi anomaliami móżdżku (DCA), ponieważ wydają się poprawiać zdolności rytmiczne, a także funkcje poznawcze (Bégel i in., 2022a)

      Podejścia oparte na rytmie i synchronizacji zdają się poprawiać zdolności poznawcze

    1. Po trzecie, nasze podejście internetowe pozwala nam odpowiedzieć na pytania zwykle niedostępne dla laboratorium i odkryć nowe predyktory adaptacji sensomotorycznej. Wykorzystując ten duży zbiór danych i podejście oparte na uczeniu maszynowym, odkryliśmy, że płeć, szybkość ruchu i ogólna przyjemność z eksperymentu uczestnika przewidywały zakres strategicznej zmiany celowania. Wiek, poziom wykształcenia, czas powrotu, lokalizacja docelowa i zmienność ruchu przewidywały zakres ukrytej rekalibracji. Wyjaśnienie, dlaczego te nowe, niedoceniane cechy modulują różne procesy uczenia się leżące u podstaw adaptacji sensomotorycznej, będzie ekscytującym obszarem przyszłych badań.

      Przyjemność z ruchu wiąże się z ukrytą rekalibracją somatosensoryczną

    2. Po czwarte, uczestnicy, którzy zgłosili upośledzenie wzroku, przystosowali się mniej niż ci, którzy nie zgłosili żadnych wad wzroku (ryc. 4d). Odkrycie to sugeruje, że skuteczna zmiana strategicznego ukierunkowania może wymagać wysokiej jakości wizualnych danych wejściowych (patrz również rysunek S1, aby zapoznać się z funkcjami uczenia się na podstawie innych predyktorów).

      Uszkodzenie wzroku, zmniejsza adaptację somatosensoryczną

    3. Następnie opisujemy cechy, które selektywnie przewidują zmienność wielkości efektu końcowego (Rysunek 5a), nasz wskaźnik niejawnej rekalibracji. Wpływ wyjściowej zmienności motorycznej na niejawną rekalibrację był kontrowersyjnym tematem [70,71]. Jedna perspektywa sugeruje, że bardziej zmienny układ motoryczny może być uwrażliwiony na korygowanie błędów motorycznych [72,73], a zatem wiązałby się z silniejszą niejawną rekalibracją. Alternatywnie, argumentowano, że duży szum wewnętrzny zmniejsza wrażliwość na zewnętrzne perturbacje poprzez wzmocnienie problemu "przypisywania punktów" [74,75,76]. Zgodnie z tym poglądem większa zmienność linii bazowej wiązałaby się ze słabszą rekalibracją niejawną. Nasze wyniki są zgodne z tą drugą perspektywą: wyższa zmienność wyjściowa wiązała się z niższą asymptotą (Figura 5b).

      Przyczyny niższej utajonej kalibracji sensomotorycznej

    4. Po drugie, czas ruchu przewidywał wczesną i późną adaptację, przy czym szybsze czasy ruchów wiązały się z większą adaptacją (ryc. 4c). Uczestnicy, którzy poruszali się szybciej, mogą być tymi, którzy byli zmotywowani do osiągania dobrych wyników [68]. Alternatywnie, siła sygnału błędu może słabnąć wraz z czasem ruchu – intrygująca hipoteza, którą można rygorystycznie ocenić w laboratorium.

      Ludzie poruszający się szybko, mają szybszą adaptację sensomoatoryczną

    1. W artykule podkreślono znaczenie kontroli czasowej w korze przedczołowej, ponieważ szybka cholinergiczna aktywacja neuronów warstwy 6 odgrywa kluczową rolę w utrzymaniu uwagi. Aby zapewnić prawidłowe funkcjonowanie układu cholinergicznego w korze, stosowane są ścisłe mechanizmy kontrolne, takie jak autohamowanie uwalniania cholinergicznego i rozkładu acetylocholiny przez acetylocholinoesterazę.

      Czasowe znaczenie Acetylocholiny

    2. Przechodząc do behawioralnych konsekwencji uwalniania endogennej acetylocholiny w korze mózgowej, staje się oczywiste, że acetylocholina odgrywa kluczową rolę w percepcji zmysłowej, uczeniu się skojarzeniowym i uwagi. W korze czuciowej uwalnianie acetylocholiny poprawia wykrywanie sygnałów czuciowych i poprawia stosunek sygnału do szumu w odpowiedziach sensorycznych. W korze przedczołowej uwalnianie acetylocholiny wspomaga uwagę i poprawia wykrywanie sygnałów.

      Wpływ ACh na hamowanie i integrację bodźców sensorycznych i poprawienie sygnałów

    1. Ostatnio neurony cholinergiczne podstawy przodomózgowia zostały również podzielone na neurony, które eksprymują białko kalbindyny-D28K (D28K) (ChAT D28K+) i te, które tego nie robią (ChAT D28K-). Ekspresja D28K w jądrach podstawy przodomózgowia waha się znacząco. Około 40% neuronów ChAT w VDB współbarwi D28K, w porównaniu do 30% w SM, 16% w HDB i mniej niż 2% w NBM [29]. Neurony ChAT+, które również barwią się dla D28K, mają mniej procesów i niższą częstotliwość wypalania. Co ciekawe, D28K jest białkiem wiążącym Ca2+, które może działać w celu ochrony komórek przed neurodegeneracją zależną od Ca2+ [29]. Potwierdzają to dane, że białko D28K jest zmniejszone w neuronach cholinergicznych w wyniku starzenia się i w chorobie Alzheimera [30, 31]. Dane potwierdzają, że neurony cholinergiczne są heterogeniczną populacją komórek, a zrozumienie unikalnych profili subpopulacji może prowadzić do lepszego zrozumienia krytycznych procesów behawioralnych, w które są zaangażowane.

      Różne subpopulacje komórek ACh, mają różne właściwości wypalania (synchronizacji między sobą).

    2. Z drugiej strony stwierdzono, że komórki Reg-BFCN mają precyzyjne skoki po wynikach behawioralnych, głównie trafieniach, ale nie fałszywych alarmach, prawidłowych odrzuceniach lub chybieniach. Ponadto stwierdzono wyraźną niejednorodność anatomiczną między tymi typami komórek, przy czym Burst-BFCN znaleziono w przedniej części podstawy przodomózgowia, a komórki Reg-BFCN w podziale tylnym [28]. Odkrycia te oferują unikalny punkt widzenia na obecną debatę toniczną/fazową. Twierdzą oni, że taki podział na sygnalizację toniczną i fazową istnieje i ma podłoże anatomiczne i elektrofizjologiczne. Takie wyjaśnienie wydaje się sugerować, że toniczna sygnalizacja ACh odgrywa znacznie większą rolę w wykrywaniu sygnałów i operacjach poznawczych, niż sugerowaliby Sarter i Lustig [4].

      Różna lokalizacja fazowych i tonicznych komórek ACTH

    3. Jednym ze sposobów, w jaki sygnalizacja cholinergiczna może być osiągnięta w tej skali czasowej, jest działanie acetylocholinoesterazy (AChE), która jest niezwykle skutecznym enzymem hydrolitycznym, co sprawia, że lokalna regulacja AChE jest jednym ze sposobów, w jaki wprowadzany jest stopień heterogeniczności między toniczną i fazową sygnalizacją ACh. Lokalna ekspresja AChE może przyczyniać się do pewnej anatomicznej heterogeniczności między sygnalizacją toniczną i fazową i sprawia, że prawdopodobne jest, że wystąpi sygnalizacja fazowa, ze względu na jej silne działanie katalityczne. Nie zostało to jednak dokładnie zbadane i stanowi przyszły obszar badań. Ponieważ aktywność cholinoesterazy jest prawdopodobnie jednym z najważniejszych regulatorów ograniczonej przestrzennie i czasowo sygnalizacji ACh w korze przedczołowej, nasze zrozumienie jej przestrzennego rozmieszczenia w korze ma ogromne znaczenie.

      acetylocholinoesteraza (AChE), bierze udział w sygnalizacji w skali czasowej (przejście między toniczną i fazową?)

    4. Powyższa praca została później rozwinięta przez Laszlovszky'ego i współpracowników [28]. Naukowcy zarejestrowali komórki myszy zarówno in vivo, jak i in vitro i ustalili, że neurony cholinergiczne podstawy przodomózgowia przyjęły jedną z dwóch form: komórki pobudliwe, wystrzeliwujące impulsy (BurstBFCN) i mniej pobudliwe, rytmiczne komórki (Reg-BFCN). Okazało się, że komórki Burst-BFCN są liczniejsze niż Reg-BFCN zarówno w NbM, jak i poziomej odnodze HDB i składają się z dwóch podtypów, tych z regularnymi odstępami między kolcami, które nazywają Burst-BFCN-SB i tych z interwałami międzykolcami podobnymi do Poissona, które nazywają Burst-BFCN-PL. Odkryli, że komórki Burst-BFCN wykazywały synchroniczność korową i wystrzeliwały wybuchy potencjałów czynnościowych w odpowiedzi zarówno na nagrodę, jak i karę podczas zadania wykrywania sygnałów słuchowych.

      Wystrzeliwanie komórek ACh w zależności od kary i nagrody

    5. Na podstawie prac na myszach wykazano, że wypustki pochodzące z jądra podstawnego Meynerta (NbM) i istoty wewnętrznej (SI), tworzące kompleks NbM, wysyłają swoje aksony do mPFC i są niezbędne do detekcji sygnałów [6]. W szczególności uważa się, że projekcje te są zaangażowane w przejście między czujnością a wykrywaniem sygnałów [6]. Świadczy o tym również fakt, że zakłócenie unerwienia cholinergicznego mPFC upośledza wykrywanie sygnałów, podczas gdy zakłócenie projekcji do innych celów NbM, takich jak kora ruchowa, nie ma wpływu na to zadanie [23]. Sygnalizacja fazowa ACh w tym obwodzie jest prawdopodobnie przyczynowym mediatorem wykrywania sygnałów, ponieważ wykazano, że optogenetyczna stymulacja NbM podczas zadania wykrywania wskazówek poprawiła wydajność podczas prób z sygnalizacją i zwiększyła wskaźnik fałszywych alarmów podczas prób bez wskazówek, co sugeruje, że milisekundowa sygnalizacja cholinergiczna w skali czasu pochodząca z NbM jest bezpośrednio zaangażowana w kodowanie reprezentacji wskazówki w korze przedczołowej u myszy [9].

      Kodowanie wskazówek, przejście między czujnością, a wykrywaniem sygnałów

    6. Ponadto istnieją dowody elektrofizjologiczne sugerujące dychotomię w sygnalizacji cholinergicznej w podstawie przodomózgowia. Unal i wsp. [27] wykazali, że istnieją dwie odrębne populacje neuronów cholinergicznych podstawy przodomózgowia, które różnią się właściwościami elektrofizjologicznymi. Wczesne neurony odpalające były bardziej pobudliwe, szybciej odpalały i miały wyraźniejsze okresy refrakcji po wystrzeleniu, podczas gdy późniejsze neurony wystrzeliwujące były mniej pobudliwe, ale bardziej trwałe w uwalnianiu ACh. Autorzy zasugerowali, że wczesne komórki wypalające mogą być zaangażowane w sygnalizację fazową i dlatego są ważne dla uwagi, podczas gdy komórki późno wypalające mogą być zaangażowane w sygnalizację toniczną, a zatem ważniejsze dla globalnych stanów pobudzenia [27]. Sugeruje to, że dychotomia ma swoje korzenie w korelatach elektrofizjologicznych.

      Różnice w wypalaniu różnych populacji neuronów cholinergicznych, sugerują, że różne populacja komórek nerwowych mogą być odpowiedzialne za fazową i toniczną sygnalizację

    7. Sygnalizacja podczas warunkowania asocjacyjnego może wpływać na siłę asocjacji utworzonej w sposób zależny od czasu. Chociaż NbM jest powszechnie wymieniany jako główne źródło projekcji cholinergicznych do kory przedlimbicznej (PrL), a wstrzyknięcie znacznika wstecznego do PrL ujawniło, że największe źródło unerwienia cholinergicznego pochodzi z poziomego pasma ukośnego (HDB). W związku z tym Tu i in. [11] wzięli na celownik projekcje PrL pochodzące z HDB w celu manipulacji optogenetycznej i stwierdzili, że stymulacja podczas bezwarunkowego bodźca upośledza uczenie się asocjacyjne, podczas gdy hamowanie je ułatwia. Co więcej, odkryli, że stymulacja optogenetyczna podczas bodźca warunkowego nie wpływa na siłę uczenia się asocjacyjnego, ale hamowanie prowadzi do upośledzenia uczenia się. Towarzyszyły temu dane z fotometrii światłowodowej, które pokazują, że poziom wzbudzenia PrL koreluje z siłą pamięci, tak że sygnalizacja ACh podczas bodźca bezwarunkowego wzmacniała się podczas sesji. Dane te sugerują, że sygnalizacja fazowa jest wyjątkowo wrażliwa na czas, tak że funkcjonalna rola projekcji cholinergicznych z HDB do regionu PrL obejmuje specyficzne pobudzenie czasowe, co dodatkowo dostarcza dowodów na rolę ACh w kodowaniu określonych reprezentacji bodźców [11].

      Sygnalizacja fazowa ACh, jest bardzo wrażliwa na czas, uczenie się asosjcacyjne.

    8. Co ważne, wykazali, że zarówno sygnalizacja toniczna, jak i fazowa były wysoce skoordynowane między PFC a hipokampem grzbietowym, co sugeruje, że takie rozróżnienie w trybach transmisji ACh nie tylko istnieje w korze mózgowej, ale prawdopodobnie może być również rozszerzone na hipokamp. Jeśli tak jest, czynniki napędzające to rozróżnienie będą prawdopodobnie napędzane przez wszechobecne mechanizmy, takie jak aktywność cholinoesterazy lub jakaś wewnętrzna właściwość podstawowej anatomii przodomózgowia. Ruivo i wsp. [15] sugerują, że ich wyniki pokazują, że toniczna sygnalizacja ACh, zwłaszcza podczas snu REM, może przygotowywać mPFC i hipokamp do późniejszej czujności i późniejszych wymagań uwagi.

      Toniczna i fozaowa sygnalizacja nie występuje tylko w PFC, została również zuważona w hipokampie i może być właściwością struktur podkorowych

    9. Chociaż dokładny środek między tymi dwoma punktami widzenia nie został jeszcze określony, jedno z badań wykazało zarówno istotną toniczną, jak i fazową sygnalizację ACh jednocześnie w PFC i grzbietowym hipokampie myszy, próbując rozróżnić ich funkcje. Korzystając z elektrochemicznych bioczujników choliny, Teles-Grilo Ruivo i wsp. [15] wykazali, że toniczna sygnalizacja ACh podczas snu była najwyższa wyłącznie podczas snu REM, który poprzedzał czuwanie. Wykazali również, że sygnalizacja toniczna była najwyższa, gdy zwierzę zbliżało się do nagrody w randomizowanym, wymuszonym labiryncie T. Ponadto odkryli, że fazowe ACh było związane z prezentacją nagrody, przy czym sygnalizacja fazowa wykazywała połowę szerokości odpowiedzi znacznie krótszą niż podczas sygnalizacji tonicznej.

      Fazowa sygnalizacja ACh związana z prezentowaniem nagrody, to oniczna z zbliżaniem się do nagrody.

    10. Obecność tak silnego mechanizmu katalitycznego, takiego jak hydroliza ACh przez AChE, skłoniła niektórych do zasugerowania, że toniczna sygnalizacja ACh w przodomózgowiu prawdopodobnie w ogóle nie wpłynie na zachowanie. Z tego punktu widzenia fakt, że etapem ograniczającym szybkość hydrolizy ACh jest dyfuzja ACh do synapsy, a nie hydrolityczne działanie samego AChE, jest dowodem sugerującym, że jest mało prawdopodobne, aby ACh przemieszczał się na odległość poza synapsę, a zatem jest mało prawdopodobne, aby zmiany w zewnątrzkomórkowym stężeniu ACh przyczyniały się do zdarzeń behawioralnych [4]. Jednak inni uważają, że rozróżnienie toniczne/fazowe jest nadmiernym uproszczeniem i że sygnalizacja ACh najprawdopodobniej ma zarówno szybkie, jak i wolne składniki, które przyczyniają się do zachowania. Z tego punktu widzenia sygnalizacja cholinergiczna zmienia się w zależności od anatomii, podtypów receptorów i hydrolizy ACh - a zatem koncepcja tonu ACh może nadal odgrywać pewną funkcjonalną rolę w zachowaniu [26].

      Hydrozliza ACh, Tak samo toniczna i fazowa sygnalizacja ACh mogą przyczyniać się do zachowania.

    11. Nie można jednak wykluczyć możliwości, że zadania uwagi wzrokowej wymagają zarówno nienaruszonej tonicznej, jak i fazowej sygnalizacji ACh w mPFC i możliwe jest, że wykonanie tych zadań wymaga czujnego stanu uwagi regulowanego przez sygnalizację toniczną, która, jak wykazano, pośredniczy w zmianach uwagi, a także sygnalizacji fazowej w celu kodowania określonych epok behawioralnych i służy jako wskaźnik prezentacji wskazówek. Taki mechanizm zostałby pominięty w metodach mikrodializy. Tak więc nie można wykluczyć możliwości, że wykonywanie zadań zależy od sygnalizacji fazowej, podczas gdy zaangażowanie behawioralne zależy od tonicznej sygnalizacji otoczenia, która jest stale obecna w korze mózgowej, a rozgraniczenie tych dwóch jest potencjalnym obszarem przyszłych badań.

      Współdziałanie tonicznej i fazowej sygnalizacji ACTH

    12. Sygnalizacja fazowa ACh w tym obwodzie jest prawdopodobnie przyczynowym mediatorem wykrywania sygnałów, ponieważ wykazano, że optogenetyczna stymulacja NbM podczas zadania wykrywania wskazówek poprawiła wydajność podczas prób z sygnalizacją i zwiększyła wskaźnik fałszywych alarmów podczas prób bez wskazówek, co sugeruje, że milisekundowa sygnalizacja cholinergiczna w skali czasu pochodząca z NbM jest bezpośrednio zaangażowana w kodowanie reprezentacji wskazówki w korze przedczołowej u myszy [9].

      Sygnalizacja fozowa jako poszukiwanie wskazówek

    13. Nie można jednak wykluczyć możliwości, że zadania uwagi wzrokowej wymagają zarówno nienaruszonej tonicznej, jak i fazowej sygnalizacji ACh w mPFC i możliwe jest, że wykonanie tych zadań wymaga czujnego stanu uwagi regulowanego przez sygnalizację toniczną, która, jak wykazano, pośredniczy w zmianach uwagi, a także sygnalizacji fazowej w celu kodowania określonych epok behawioralnych i służy jako wskaźnik prezentacji wskazówek. Taki mechanizm zostałby pominięty w metodach mikrodializy. Tak więc nie można wykluczyć możliwości, że wykonywanie zadań zależy od sygnalizacji fazowej, podczas gdy zaangażowanie behawioralne zależy od tonicznej sygnalizacji otoczenia, która jest stale obecna w korze mózgowej, a rozgraniczenie tych dwóch jest potencjalnym obszarem przyszłych badań.

      Działanie sygnalizacji tonicznej i fazowej w ACTH

    14. Układ cholinergiczny przodomózgowia jest ważnym mediatorem pobudzenia, uwagi, pamięci i innych procesów poznawczych. Sygnalizacja cholinergiczna jest zwykle podzielona na dwa wzorce, sygnalizację toniczną, która obejmuje trwałe zmiany tonu acetylocholiny otoczenia (ACh) w ciągu sekund do minut, oraz sygnalizację fazową, która obejmuje szybko zmieniające się, przestrzennie specyficzne uwalnianie ACh w milisekundowej skali czasowej. Istnieją dowody sugerujące unikalne role funkcjonalne dla obu typów sygnalizacji w korze przedczołowej: uważa się, że fazowe uwalnianie ACh jest niezbędne do procesów uwagi, a także wykrywania sygnałów, podczas gdy uważa się, że sygnalizacja toniczna jest zaangażowana w regulację globalnych stanów pobudzenia i wykazano, że wzrasta wraz z ogólnym zapotrzebowaniem poznawczym. Różnice między tymi dwoma typami sygnalizacji mogą wynikać z właściwości elektrofizjologicznych typów komórek cholinergicznych, odrębnego wykorzystania i / lub ekspresji receptorów muskarynowych i nikotynowych i / lub zróżnicowanej hydrolizy ACh przez acetylocholinoesterazy. Niniejszy przegląd podsumuje obecne poglądy na temat funkcjonalnej roli każdego rodzaju sygnalizacji, podczas gdy zbadany zostanie wkład receptorów ACh, hydrolizy i podstawowej anatomii przodomózgowia. Dodatkowo zbadane zostaną implikacje tych czynników w sygnalizacji ACh pod kątem dysfunkcji obwodu cholinergicznego, która występuje w chorobach neurodegeneracyjnych.

      Działanie sygnalizacji tonicznej i fazowej w ACTH

    1. Biorąc pod uwagę te dowody, obszar, który wymaga zbadania, dotyczy potencjalnego wpływu zachowań związanych z poszukiwaniem sensoryki na plastyczność mózgu w typowo i nietypowo rozwijających się populacjach. Twierdzimy, że różnice w zachowaniach związanych z poszukiwaniem sensoryki mogą prowadzić do zmian w środowisku poporodowym doświadczanym przez dzieci, co z kolei wpływa na plastyczność mózgu poprzez uczenie się. Jako strategia kompensacji trudności w przetwarzaniu sensorycznym we wczesnym rozwoju ASD, zmniejszone poszukiwanie sensoryczne może również ograniczać możliwości uczenia się, dodatkowo wzmacniając zmiany neurorozwojowe prowadzące do późniejszego nietypowego rozwoju. I odwrotnie, podwyższone poszukiwanie sensoryczne w obliczu istniejących trudności sensorycznych może być czynnikiem ochronnym we wczesnym rozwoju, poszerzając możliwości uczenia się i socjalizacji oraz łagodząc wpływ zmian neurorozwojowych na późniejsze wyniki. Przewidywanie to można empirycznie ocenić za pomocą projektów podłużnych, w których te same miary przetwarzania neuronalnego do stymulacji sensorycznej i poszukiwania sensorycznego są zbierane na różnych etapach rozwoju. Oczekiwalibyśmy, że poszukiwanie sensoryczne będzie działać jako moderator podłużny, tak że niemowlęta

      Mechanizm poszukiwania i unikania bodźców sensorycznych i wpływ na plastyczność mógu

    2. Opierając się na hipotezie priorytetyzacji informacji, twierdzimy, że niejednoznaczny charakter tego badania wynika z ograniczonej próby ilościowego określenia zawartości informacji i zmienności w jej priorytetyzacji. Jeśli niskie wzmocnienie charakteryzuje przetwarzanie informacji u dzieci z ASD, przewidujemy, że dzieci te będą szybciej wycofywać się z treści o wysokiej wartości, ale wolniej z treści mniej pouczających.

      Priorytetyzacja informacji, przy poszukiwaniu stymulacji

    1. Wreszcie,w całej próbie stwierdziliśmy istotne korelacje pomiędzy profilem rozwojowym (DP-3 całkowity i podskale) a objawami behawioralnymi związanymi ze zmysłami (SPM-P) i powtarzalnymi ruchami (RBS-R), co przedstawiono w tabeli 3.Partycypacja społeczna (rho = −0,567; p < 0,001); Widzenie (rho = −0,339; p = 0,030).Stereotypowa Wynik Zachowania (rho = −0,329; p = 0,036); Popieranie stereotypowych zachowań (rho = −0,383; p = 0,013); Potwierdzenie ograniczonych interesów (rho = −0,310; p = 0,048).

      Stereotypowe zachowania związne z deficytem sensorycznym

    1. Jednakże problemy społeczne, problemy z myśleniem i problemy z uwagą były dodatnio skorelowane z nadreaktywnością sensoryczną w grupie ASD . Korelacje te potwierdzają wcześniejsze badania [ 51 , 148 ].

      Nadreaktywność sensoryczna jest skorelowana z problemami z myśleniem, problemami z uwagą.

    2. 4.2.4. AleksytymiaCo ciekawe,odkryliśmy to w grupie osób z ASD , która wykazuje znacznie więcejaleksytymianiż obie grupy TD i DCD ,zwiększona nadreaktywność sensoryczna była związana ze zwiększoną aleksytymią. Wcześniejsze badania wykazały zależności pomiędzyprzetwarzanie sensoryczneIaleksytymiaw ASD ; jednak wyniki były mieszane, a niektóre raporty wykazały korelacje między niewystarczającą reakcją aaleksytymia[ 65 , 69 , 70 , 147 ]. Zróżnicowane wyniki tych badań i nasze własne ustalenia pokazują niuanseprzetwarzanie sensorycznew grupach ASD i w jaki sposób mogą one w różny sposób odnosić się do obecnościaleksytymia. Nie było żadnych korelacji pomiędzyaleksytymiaIprzetwarzanie sensorycznedla grup TD lub DCD .

      Związek między odczuwaniem emocji, a zaburzeniem przetwarzania senorycznego

    1. Tutaj,badamy in silico wpływ czasowo statycznej, ale ograniczonej przestrzennie, heterogenicznej aktywacji receptorów muskarynowych ACh na wzorce aktywności pobudzających hamujących(EI) sieci neuronowe. Wyniki naszych symulacji wskazują, że zlokalizowane rytmy aktywności pasma theta (* 5 - 10 Hz) i gamma (* 30 - 100 Hz) pojawiają się w odpowiedzi na przestrzennie segregowaną modulację pobudliwości nerwowej ACh. Tutaj,modelowane przestrzenne rozkłady cholinergiczne mają reprezentować krótką migawkę dowodów na przestrzennie ograniczoną sygnalizację ACh w badaniach rejestracyjnych u gryzoni( ryc. 1 D),gdzie zaobserwowano dyskretne lokalizacje o wysokim poziomie sygnalizacji cholinergicznej w sąsiedztwie lokalizacji o niskim poziomie aktywności cholinergicznej. Przeanalizowaliśmy pojawiające się wzorce aktywności neuronalnej w obecności stacjonarnych wysokich poziomów sygnalizacji cholinergicznej w jednej i wielu lokalizacjach sieci. Zlokalizowane,Rytmy aktywności pasma gamma pojawiły się w komórkach poddanych wysokiemu poziomowi stymulacji cholinergicznej. Co więcej, w przypadku wielu „gorących punktów” o wysokim ACh te oscylacje gamma pojawiały się tylko w aktualnie aktywnych obszarach sieci, co skutkowało ich modulacją z częstotliwością theta.Nasze wyniki postulują, że sprzężenie theta-gamma jest wyłaniającą się właściwością przestrzennie segregowanej modulacji ACh właściwości odpowiedzi neuronowej.Mydalej zidentyfikowano mechanizmy leżące u podstaw zależności aktywności sprzężonej theta-gamma od przestrzennego rozkładu symulowanej neuromodulacji ACh. W szczególności aktywność pasma gamma była wspierana w regionach o wysokim ACh poprzez mechanizm piramidalno-interneuron gamma ( PING ) [ 11 ], gdzie interneurony hamujące silnie modulują i synchronizują aktywność komórek piramidalnych [ 11 , 12 ]. Modulacja pasma theta aktywności gamma w obrębie lub pomiędzy regionami o wysokim ACh została powiązana z adaptacją częstotliwości szczytowej, powiązaną z wpływem aktywacji receptora muskarynowego na prądy K+ typu M [ 13 ] . Mechanizmy te doprowadziły do ​​wewnętrznie ścisłego sprzężenia między aktywnością pasma gamma i theta, gdzie stopień sprzężenia theta-gamma korelował z bliskością regionów o wysokim ACh. Dodatkowo,zbadaliśmy konsekwencje przestrzennie heterogenicznej modulacji ACh na uważne przetwarzanie bodźców zewnętrznych (zmysłowych).Uważa się, że aktywność sprzężona theta-gamma w obszarach kory mózgowej i hipokampa jest cechą charakterystyczną uważnego przetwarzania poznawczego [ 14 ], a liczne badania eksperymentalne wykazały, że sygnalizacja ACh promuje sprzężenie theta-gamma w tych obwodach [ 15 , 16 ] (patrz Dyskusja). Nasze wyniki modelowania sugerują, że ten istotny poznawczo wzór odpalania jest bezpośrednio spowodowany przestrzennie niejednorodną modulacją właściwości neuronowych w wyniku przestrzennie ograniczonego uwalniania ACh.

      Modulacja Theta-gamma podczas sygnalizacji cholinergicznej ma cechy charakterystyczne dla uważnego przetwarzania poznawczego , a także sensorycznego.

    1. Jak szczegółowo omówiono wcześniej ( Sarter i Kim, 2015 ; Sarter i in., 2016b ), czasy narastania cholinergicznegostany przejściowe, zazwyczaj ponad 0,2–0,5 s po bodźcu lub zdarzeniu wywołującym przejściowe skutki, są ściśle skorelowane z zachowaniem. Natomiast stosunkowo opóźniony o kilka sekund moment szczytowych amplitud prądów cholinowych odzwierciedla konkurencyjne procesy komórkowe (produkcja i hydroliza ACh w porównaniu z klirensem choliny), a zatem jest mało prawdopodobne, aby wskazywało na szczytowe uwalnianie ACh. Biorąc pod uwagę ograniczenia związane z pomiarami, prawdopodobnie nie można twierdzić, że dowody uzyskane metodami elektrochemicznymi ujawniają „prawdziwą” czasową rozdzielczość sygnalizacji synaptycznej. Istotna jest jednak obecność substancji cholinergicznych drugiej zasadystany przejściowe, związane z konkretnymi zachowaniami i próbami zadaniowymi, w przeciwieństwie do nichdo minutowych zmian związanych ze stosunkowo trwałymi stanami „pobudzenia”, wskazuje, że cholinergiczna przejściowa sygnalizacja, przynajmniej w korze mózgowej, jest wystarczająca do wspierania operacji poznawczych.

      Charakterystyka procesu sygnalizacji cholinergicznej od percepcji do bodźca

    1. Złożoność interakcji między noradrenergicznymi iukład cholinergicznyw modulowaniu przesunięć topologicznych sieci nadal nie jest w pełni poznany na poziomie szczegółowym (tj. mikroukładu). Na przykład istnieje wiele dowodów na niejednorodną ekspresję receptorów cholinergicznych w różnych populacjach interneuronów hamujących ( Que i in., 2019 ), co sugeruje, że w mikroobwodach kory mózgowej mogą działać bardziej subtelne mechanizmy.wiele z tych szczegółów nie zostało włączonych do standardowych modeli obliczeniowych dynamiki mózgu na poziomie systemów( John i in., 2022 ; Shine i in., 2019).Elastyczność tego podejścia oferuje wiele ekscytujących możliwości postępu na tym froncie. Na przykład w niedawnym badaniu uwzględniono „wzmocnienie hamowania”termin do istniejącego modelu obliczeniowego w celu naśladowania działania układu cholinergicznego – umożliwiło to kontrolę zarówno interneuronów hamujących, jak i rozhamowujących, które z kolei kontrolowały wzbudzenie ze sprzężeniem zwrotnym w sposób zapewniający ściślejszą kontrolę nad równowagą między segregacją a integracją( Coronel-Oliveros i in., 2020 ). Jest również wysoce prawdopodobne, że przekaźniki neuromodulacyjne inne niż cholinergiczne isystemy noradrenergiczne są odpowiedzialne za zróżnicowane zmiany w dynamicznych rekonfiguracjach sieci. Na przykład liczne badania wykazały, że agoniści receptora 5HT2A (zwykle klasyfikowani jako „psychedeliki”)

      Hamowanie i rozchamowanie w sieci ACTH i NE, mikroukłady mogą mieć bardziej subtelne funkcje niż makro układy

    2. natomiastukład cholinergicznypośredniczy w sieci segregowanejtopologiapoprzez zlokalizowane selektywne projekcje do kory ( Zaborszky i in., 2015 ) poprzez selektywne zwiększanie pobudliwości docelowych regionów w sieciach rozproszonych w inny sposób (Połysk, 2019 ; Thiele i Bellgrove, 2018 ).Uważa się, że mechanizm ten pomaga udoskonalić stabilność stanów mózgu, co w kontekście funkcji poznawczych może pomóc w wyjaśnieniudlaczego układ cholinergiczny wiąże się ze zwiększoną precyzją uwagi( Hasselmo i Sarter, 2011 ; Schmitz i Duncan, 2018 ).

      układ ACTH, zwiększa pobudliwość innych sieci w mózgu

    3. Zaobserwowaliśmy znaczącą dodatnią korelację między aktywnością fazową po LC, krajobrazem energetycznym ELC i siłą łączności między LC i nbM, która została zlokalizowana w oknie 2 TR po wybuchu fazowym (ryc. 4 B ) . Odkrycie to sugeruje, że bezpośrednio po wybuchach fazowych LC jest mało prawdopodobne, aby osoba z silnymi powiązaniami między LC i nbM miała duże odchylenia w dynamice stanu mózgu.

      Po wybuchu sygnalizacji NE, mało prawdopodbne jest by mózg przesedł w stan dynamiczny, elastyczny

    4. Co ciekawe, pomimo podobnych mechanizmów działania, noradrenergiczne iukłady cholinergicznesą powiązane z odrębnymi sygnaturami poznawczymi:układ cholinergicznypowiązano z selekcją uwagi, wzmocnionym wykrywaniem sygnałów, kodowaniem pamięci i specyficznością poznawczą ( Hasselmo i Sarter, 2011 ; Noudoost i Moore, 2011 ), podczas gdy układ noradrenergiczny bierze udział w koordynowaniu pobudzenia ( Samuels i Szabadi, 2008 ), optymalizując równowagę pomiędzy wykonanie zadania ( Aston-Jones i Cohen, 2005 ) wykrywanie istotności (Sara i Bouret, 2012 ) oraz zachowania eksploracyjne (Sara i Bouret, 2012 ).

      Funkcje systemu noradenergicznego i cholinergicznego

    5. Zaobserwowaliśmy zwiększoną integrację po szczytach LC w stosunku do aktywności nbM w kilku obszarach kory, w tym w korze czołowo-ciemieniowej i korze wzrokowej ( ryc. 3 D). Aby dokładniej zbadać ten wynik, zbadaliśmy korelację między całkowitą ważoną łącznością linii strumienia a indywidualnymi korelacjami krzyżowymi między impulsami fazowymi LC ( ryc. 3 ; środek) lub nbM ( ryc. 3 ; po prawej) a sieciątopologia. Co ciekawe, zaobserwowaliśmy znaczące ujemne korelacje między pikami post- nbM a silnie segregowanym stanem sieci ( ryc. 3 C) w rozproszonych regionach kory ( ryc. 3 F).

      Wzrost sygnalizacji NE oznacza segregację i skupienie, a ACTH poszukiwanie nowości i eksplorację środowiska

    6. Noradrenergiczne iukłady cholinergicznemają także różne wzorce projekcji w mózgu. Podczas gdy noradrenergiczna LC wysyła rozległe projekcje wokół całej kory (Kim i in., 2016 ; Samuels i Szabadi, 2008 ) ( ryc. 1 A), cholinergiczny nbM projektuje w znacznie bardziej ukierunkowany sposób do różnych miejsc wokół kory mózgowej (Kim i in., 2016 ;Zaborszky i in., 2015 ) ( ryc. 1 D).W oparciu o te cechyniedawno zaproponowaliśmy, że rekrutacja układu noradrenergicznego przesunie sieci mózgu w stan zwiększonej integracji sieci( Shine, Aburn i in., 2018 ; Shine, van den Brink i in., 2018),podczas gdy układ cholinergiczny jest powiązany ze względną segregacją topologii sieci(Zaborszky i in., 2015 ). W poprzedniej pracy zaobserwowaliśmy dowody na te efekty sieciowe w stanie spoczynku 7TfMRIdane ( Munn i in., 2021 ).

      Układ noradenergiczny przesuwa system w kierunku integracji, skupienia na bodźcu/zadaniu, natomiast system cholinergiczny w stronę elastyczności, eksploracji.

    7. Chociaż w mózgu istnieje wiele różnych układów neuromodulacyjnych, noradrenergiczny iukłady cholinergicznesą głównymi kandydatami do wywierania wpływu na neurony na szeroką skalędynamikai przesunięcie siecitopologia(Shine, 2019 ) ( ryc. 1 B, E). Główne wystające korowo węzły tych układów – noradrenergicznemiejsce sinawe( LC ) ( Carter i in., 2010 ) i cholinergicznejądro podstawne Meynerta( nbM ) ( Lee i Dan, 2012 ) – są zdolne do zmiany aktywności oscylacyjnej w mózgu: zazwyczaj poprzez zmniejszenie synchronicznej aktywności mózgu o niskiej częstotliwości, przy jednoczesnym zwiększeniu aktywności mózgu o wysokiej częstotliwości ( Castro-Alamancos i Gulati, 2014 ; Lin i in. in., 2015 ; Mena-Segovia i in., 2008 ).

      Stymulacja o wysokiej częstotliwości (!!!!!) jako funkcja układu ACTH i NE.

    1. Mysi model ASD z PTZ wyraźnie pokazuje, że heteropentameryczny podtyp α4β2 nAChR może być zaangażowany w zwiększoną pobudliwość centralną, co znajduje odzwierciedlenie w obniżeniu progu klonicznej aktywności napadowej i upośledzonej towarzyskości.Agresja wykazywana przez samce myszy z heterozygotycznymi delecjami Chrna (tj. myszami α7 HET), a tym samym haploniewystarczającą ekspresją α7 nAChR została zwiększona, w porównaniu z ich rodzeństwem z miotu typu dzikiego, w paradygmacie behawioralnym "rezydent-intruz" (Lewis i in. 2018).W tym paradygmacie umieszczenie myszy intruza w klatce domowej myszy rezydenta wywołuje u myszy rezydenta powtarzające się napady agresji.Wysoka gęstość α7 nAChR ulegała ekspresji w hipokampie myszy typu dzikiego, aw szczególności warstwa komórek ziarnistych zakrętu zębatego została "aktywowana" u agresywnych myszy rezydentnych; Aktywację oceniano na podstawie ekspresji Arc, natychmiastowego wczesnego genu, w komórkach ziarnistych (Lewis i in. 2018).