4,378 Matching Annotations
  1. Dec 2023
    1. Reviewer #3 (Public Review):

      The manuscript by Li et al. presents an elegant application of sterile insect technology (pgSIT) utilizing a CRISPR-Cas9 system to suppress mosquito vector populations. The pgSIT technique outlined in this paper employs a binary system where Cas9 and gRNA are conjoined in experimental crosses to yield sterile male mosquitoes. Employing a multiplexed strategy, the authors combine multiple gRNA to concurrently target various genes within a single locus. This approach successfully showcases the disruption of three distinct genes at different genomic positions, resulting in the creation of highly effective sterile mosquitoes for population control. The pioneering work of the Akbari lab has been instrumental in developing this technology, previously demonstrating its efficacy in Drosophila and Aedes aegypti.

      By targeting the female-specific splice isoform (exon-5) of doublesex in conjunction with intersex and β-tubulin, the researchers induce female lethality, leading to a predominance of sterile male mosquitoes. This innovation is particularly noteworthy as the deployment of sterile mosquitoes on a large scale typically requires substantial investment in sex sorting. However, this study circumvents this challenge through genetic manipulation.

    1. Reviewer #3 (Public Review):

      The authors use a set of reporter assays to probe the impact of TnpB on IS605 transposition. This is an innovative approach to studying transposition that will be of interest to other groups. The authors conclude that TnpB likely has two activities: (ii) promoting "homing", where the transposon is restored following excision, and (ii) promoting the transposition activity of the transposase TnpA. The paper provides an independent validation of the recently reported homing activity of TnpB, where the transposon is restored following excision, and suggests an additional function for TnpB in enhancing the transposase activity of the TnpA transposase.

      Strengths<br /> - The innovative use of reporter assays is an excellent way to infer the details of transposition, making a convincing case that TnpB plays two distinct roles.

      Weaknesses<br /> - The authors need to discuss their conclusions in light of a very relevant recent paper from the Sternberg group demonstrating a role for TnpB in homing.<br /> - There doesn't appear to be an assessment of how well the model fits the experimental data, or any attempt to test how accurately the model can predict the effects of perturbing the system.<br /> - The figures could be presented more clearly.

    1. Reviewer #3 (Public Review):

      George et al. present a convincing new Python toolbox that allows researchers to generate synthetic behavior and neural data specifically focusing on hippocampal functional cell types (place cells, grid cells, boundary vector cells, head direction cells). This is highly useful for theory-driven research where synthetic benchmarks should be used. Beyond just navigation, it can be highly useful for novel tool development that requires jointly modeling behavior and neural data. The code is well organized and written and it was easy for us to test.

      We have a few constructive points that they might want to consider.

      - Right now the code only supports X,Y movements, but Z is also critical and opens new questions in 3D coding of space (such as grid cells in bats, etc). Many animals effectively navigate in 2D, as a whole, but they certainly make a large number of 3D head movements, and modeling this will become increasingly important and the authors should consider how to support this.

      - What about other environments that are not "Boxes" as in the name - can the environment only be a Box, what about a circular environment? Or Bat flight? This also has implications for the velocity of the agent, etc. What are the parameters for the motion model to simulate a bat, which likely has a higher velocity than a rat?

      - Semi-related, the name suggests limitations: why Rat? Why Not Agent? (But its a personal choice)

      - A future extension (or now) could be the ability to interface with common trajectory estimation tools; for example, taking in the (X, Y, (Z), time) outputs of animal pose estimation tools (like DeepLabCut or such) would also allow experimentalists to generate neural synthetic data from other sources of real-behavior.

      - What if a place cell is not encoding place but is influenced by reward or encodes a more abstract concept? Should a PlaceCell class inherit from an AbstractPlaceCell class, which could be used for encoding more conceptual spaces? How could their tool support this?

      - This a bit odd in the Discussion: "If there is a small contribution you would like to make, please open a pull request. If there is a larger contribution you are considering, please contact the corresponding author3" This should be left to the repo contribution guide, which ideally shows people how to contribute and your expectations (code formatting guide, how to use git, etc). Also this can be very off-putting to new contributors: what is small? What is big? we suggest use more inclusive language.

      - Could you expand on the run time for BoundaryVectorCells, namely, for how long of an exploration period? We found it was on the order of 1 min to simulate 30 min of exploration (which is of course fast, but mentioning relative times would be useful).

      - Regarding the Geometry and Boundary conditions, would supporting hyperbolic distance might be useful, given the interest in alternative geometry of representations (ie, https://www.nature.com/articles/s41593-022-01212-4)?

      - In general, the set of default parameters might want to be included in the main text (vs in the supplement).

      - It still says you can only simulate 4 velocity or head directions, which might be limiting.

      - The code license should be mentioned in the Methods.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors aim to demonstrate the effectiveness of their developed methodology, which utilizes super-resolution microscopy and single-molecule tracking in live cells on a high-throughput scale. Their study focuses on measuring the diffusion state of a molecule target, the estrogen receptor, in both ligand-bound and unbound forms in live cells. By showcasing the ability to screen 5067 compounds and measure the diffusive state of the estrogen receptor for each compound in live cells, they illustrate the capability and power of their methodology.

      Strengths:<br /> Readers are well introduced to the principles in the initial stages of the manuscript with highly convincing video examples. The methods and metrics used (fbound) are robust. The authors demonstrate high reproducibility of their screening method (R2=0.92). They also showcase the great sensitivity of their method in predicting the proliferation/viability state of cells (R2=0.84). The outcome of the screen is sound, with multiple compounds clustering identified in line with known estrogen receptor biology.

      Weaknesses:<br /> - Potential overstatement on the relationship of low diffusion state of ER bound to compound and chromatin state without any work on chromatin level.<br /> - Could the authors clarify if the identified lead compound effects are novel at any level?<br /> - More video example cases on the final lead compounds identified would be a good addition to the current data package.

    1. Reviewer #3 (Public Review):

      Summary of Author's Results/Intended Achievements<br /> The authors were trying to ascertain the underlying learning mechanisms and network structure that could explain their primary experimental finding: passive exposure to a stimulus (independent of when the exposure occurs) can lead to improvements in active (supervised) learning. They modeled their task with 5 progressively more complex shallow neural networks classifying vectors drawn from multi-variate Gaussian distributions.

      Account of Major Strengths:<br /> Overall, the experimental findings were interesting. The modelling was also appropriate, with a solid attempt at matching the experimental condition to simplified network models.

    1. Reviewer #3 (Public Review):

      Complex behavior requires complex neural control involving multiple brain regions. The currently available tools to measure neural activity in multiple brain regions in small animals are limited and often involve obligatory head-fixation. The latter, obviously, impacts the behaviors under study. Hur and colleagues present a novel recording device, the E-Scope, that combines optical imaging of fluorescent calcium imaging in one brain region with high-density electrodes in another. Importantly, the E-Scope can be implanted and is, therefore, compatible with usage in freely moving mice. The authors used their new E-Scope to study neural activity during social interactions in mice. They demonstrate the presence of neural correlates of social interaction that happen simultaneously in the cerebellum and the anterior cingulate cortex.

      The major accomplishment of this study is the development and introduction of the E-Scope. The evaluation of this part can be short: it works, so the authors succeeded.

      The authors managed to reduce the weight of the implant to 4.5 g, which is - given all functionality - quite an accomplishment in my view. However, a mouse weighs between 20 and 40 g, so that an implant of 4.5 g is still quite considerable. It can be expected that this has an impact on the behavior and, possibly, the well-being of the animals. Whether this is the case or not, is not really addressed in this study. The authors suffice with the statement that "Recorded animals made more contact with the other mouse than with the object (Figure 2A), suggesting a normal preference for social contact with the E-Scope attached." A direct comparison between mice before and after implant, or between mice with and without an implant would provide more insight into the putative impact of the E-Scope on (social) behavior.

      In Figure 1 D-G, the authors present raw data from the neurophysiological recordings. In panel D, we see events with vastly different amplitudes. It would be very insightful if the authors would describe which events they considered to be action potentials, and which not. Similarly, indicating the detected complex spikes in the raw traces of Figure 1E would provide more insight into the interpretation of the data. Although the authors mention to consider the occurrence of complex spikes and simple spikes, a clear definition of what is considered a single unit recording is lacking. As there is quite a wide range in reported firing rates in Figure 2 - figure supplement 3, more clarity on this aspect would be insightful. Furthermore, in their text, the authors state that the pause in simple spike firing following a complex spike normally lasts until around 40 ms, and for this statement they refer to Figure 1G that shows a pause of less than 10 ms.

      The number of Purkinje cells recorded during social interactions is quite low: only 11 cells showed a modulation in their spiking activity (unclear whether in complex spikes, simple spikes or both. During object interaction, only 4 cells showed a significant modulation. Unclear is whether the latter 4 are a subset of the former 11, or whether "social cells" and "object cells" are different categories. Having so few cells, and with these having different types of modulation, the group of cells for each type of modulation is really small, going down to 2 cells/group. The small group sizes complicate the interpretation of the data - in particular also on the analysis of movement-related activity that is now very noisy (Figure 2 - figure supplement 4).

      In conclusion, the authors present a novel method to record neural activity with single cell-resolution in two brain regions in freely moving mice. Given the challenges associated with understanding of complex behaviors, this approach can be useful for many neuroscientists. The authors demonstrate the potential of their approach by studying social interactions in mice. Clearly, there are correlations in activity of neurons in the anterior cingulate cortex and the cerebellum related to social interactions. To bring our understanding of these patterns to a higher level, more detailed analyses (and probably also larger group sizes of cerebellar neurons) are required, though.

    1. Reviewer #3 (Public Review):

      The authors report a study in which they use intracranial recordings to dissociate subjectively aware and subjectively unaware stimuli, focusing mainly on prefrontal cortex.

      The authors have dealt successfully with some of my previous concerns, especially the more direct link to the Gaillard et al., (2009) paper, and the associated analyses, has improved the manuscript. Some of my other concerns regarding the theoretical embedding of the findings have only been partially mitigated and some interesting results derived from suggestions for additional analyses will be used for future papers.

    1. Reviewer #3 (Public Review):

      This study examines context-dependent stimulus selection by recording neural activity from several sensory and motor cortical areas along a sensorimotor pathway, including S1, S2, MM, and ALM. Mice are trained to either withhold licking or perform directional licking in response to visual or tactile stimulus. Depending on the task rule, the mice have to respond to one stimulus modality while ignoring the other. Neural activity to the same tactile stimulus is modulated by task in all the areas recorded, with significant activity changes in a subset of neurons and population activity occupying distinct activity subspaces. Recordings further reveal a contextual signal in the pre-stimulus baseline activity that differentiates task context. This signal is correlated with subsequent task modulation of stimulus activity. Comparison across brain areas shows that this contextual signal is stronger in frontal cortical regions than in sensory regions. Analyses link this signal to behavior by showing that it tracks the behavioral performance switch during task rule transitions. Silencing activity in frontal cortical regions during the baseline period impairs behavioral performance.

      Overall, this is a superb study with solid results and thorough controls. The results are relevant for context-specific neural computation and provide a neural substrate that will surely inspire follow-up mechanistic investigations. We only have a couple of suggestions to help the authors further improve the paper.

      1. We have a comment regarding the calculation of the choice CD in Fig S3. The text on page 7 concludes that "Choice coding dimensions change with task rule". However, the motor choice response is different across blocks, i.e. lick right vs. no lick for one task and lick left vs. no lick for the other task. Therefore, the differences in the choice CD may be simply due to the motor response being different across the tasks and not due to the task rule per se. The authors may consider adding this caveat in their interpretation. This should not affect their main conclusion.

      2. We have a couple of questions about the effect size on single neurons vs. population dynamics. From Fig 1, about 20% of neurons in frontal cortical regions show task rule modulation in their stimulus activity. This seems like a small effect in terms of population dynamics. There is somewhat of a disconnect from Figs 4 and S3 (for stimulus CD), which show remarkably low subspace overlap in population activity across tasks. Can the authors help bridge this disconnect? Is this because the neurons showing a difference in Fig 1 are disproportionally stimulus selective neurons?

    1. Reviewer #3 (Public Review):

      Summary:<br /> This article aims to investigate the impact of neuroprosthesis (intracortical microstimulation) implanted unilaterally on the lesion side in the context of locomotor recovery following unilateral thoracic spinal cord injury.

      Strength:<br /> The study reveals that stimulating the left motor cortex, on the same side as the lesion, not only activates the expected right (contralateral) muscle activity but also influences unexpected muscle activity on the left (ipsilateral) side. These muscle activities resulted in a substantial enhancement in lift during the swing phase of the contralateral limb and improved trunk-limb support for the ipsilateral limb. They used different experimental and stimulation conditions to show the ipsilateral limb control evoked by the stimulation. This outcome holds significance, shedding light on the engagement of the "contralateral projecting" corticospinal tract in activating not only the contralateral but also the ipsilateral spinal network.

      The experimental design and findings align with the investigation of the stimulation effect of contralateral projecting corticospinal tracts. They carefully examined the recovery of ipsilateral limb control with motor maps. They also tested the effective sites of cortical stimulation. The study successfully demonstrates the impact of electrical stimulation on the contralateral projecting neurons on ipsilateral limb control during locomotion, as well as identifying important stimulation spots for such an effect. These results contribute to our understanding of how these neurons influence bilateral spinal circuitry. The study's findings contribute valuable insights to the broader neuroscience and rehabilitation communities.

      Weakness:<br /> The term "ipsilateral" lacks a clear definition in the title, abstract, introduction, and discussion, potentially causing confusion for the reader.

      The unexpected ipsilateral (left) muscle activity is most likely due to the left corticospinal neurons recruiting not only the right spinal network but also the left spinal network. This is probably due to the joint efforts of the neuroprosthesis and activation of spinal motor networks which work bilaterally at the spinal level.

      However, in my opinion, readers can easily link the ipsilateral cortical network to the ipsilateral-projecting corticospinal tract, which is less likely to play a role in ipsilateral limb control in this study since this tract is disrupted by the thoracic spinal injury.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The manuscript explores the behavioral responses of C. elegans to hydrogen sulfide, which is known to exert remarkable effects on animal physiology in a range of contexts. The possibility of genetic and precise neuronal dissection of responses to H2S motivates the study of responses in C. elegans. The manuscript is well-written in communicating the complex physiology around C. elegans behavioral responses to H2S and in appropriately citing prior and related relevant work.

      There are three parts to the manuscript.

      In the first, an immediate behavioral response-increased locomotory rate-upon exposure to H2S is characterized. The experimental conditions are critical, and data are obtained from exposure of animals to 150ppm H2S at 7% O2. The authors provide evidence that this is a chemosensory response to H2S, showing a requirement for genes encoding components of the cilia apparatus and implicating a role for tax-4 and daf-11. Neuron-specific rescue in the ASJ neurons suggests the ASJ neurons contribute to the response to H2S. One caveat is that previous work has shown that the dauer-constitutive phenotype of daf-11 mutants can be suppressed by ASJ ablation, suggesting that there may be pervasive changes in animal nervous system signaling that are ASJ-dependent in daf-11 mutants, which may indirectly alter chemosensory responses to H2S. More direct methods to assess whether ASJ senses H2S, e.g. using calcium imaging, would better assess a direct role for the ASJ neurons in a behavioral response to H2S. The authors also point out interesting parallels between the response to H2S and CO2 though provide some genetic data separating the two responses. Importantly, the authors note that when aerotaxis (O2-sensing and movement) in the presence of bacterial food is intact, as in npr-1 215F animals, the response to H2S is abrogated. Mutation in gcy-35 in the npr-1 215F background restores the H2S chemosensory response.

      There is a second part of the paper that conducts transcriptional profiling of the response to H2S that corroborates and extends prior work in this area.

      The final part of the paper is the most intriguing, but for me, also the most problematic. The authors examine how H2S-evoked locomotory behavioral responses are affected in mutants defective in the stress and detoxification response to H2S, most notably hif-1. Prior genetic studies have established the pathways leading to HIF-1 activation/stabilization, as well as potential downstream mechanisms. The authors conduct logical genetic analysis to complement studies of the hif-1 mutant and in part motivated by their transcriptional profiling studies, examine the role of iron sequestration/free iron in the locomotory response to H2S, and further speculate on how the behavior of mutants defective in mitochondrial function might be affected by exposure to H2S.

      In some regard, this part of the manuscript is interesting because the analysis begins to connect how the behavior of an animal to a toxic compound is affected by mutations that affect sensitivity to the toxic compound. However, what is unclear is what is being studied at this point. In the context, of noting that H2S at 150ppm is known to be lethal, its addition to mutants clearly sensitized to its effects would be anticipated to have pervasive effects on animal physiology and nervous system function. The authors note that the continued increased locomotion of wild-type animals upon H2S exposure might be due to the byproducts of detoxification or the detrimental effects of H2S. The latter explanation seems much more likely, in which case what one may be observing is the effects of general animal sickness, or even a bit more specifically, neuronal dysfunction in the presence of a toxic compound, on locomotion. As such, what is unclear is what conclusions can be taken away from this part of the work.

      Strengths:<br /> 1. Characterization of a motor behavior response to H2S<br /> 2. Transcriptional profiling of the response to H2S corroborating prior work.

      Weaknesses:<br /> Unclear significance and experimental challenges regarding the study of locomotory responses to animals sensitized to the toxic effects of H2S under exposure to H2S.

    1. Reviewer #3 (Public Review):

      Summary:<br /> There is a growing body of literature on the clustering of co-active synapses in adult mice, which has important implications for understanding dendritic integration and sensory processing more broadly. However, it has been unclear when this spatial organization of co-active synapses arises during development. In this manuscript, Leighton et al. investigate the emergence of spatially organized, co-active synapses on pyramidal dendrites in the mouse visual cortex before eye-opening. They find that some dendrite segments contain highly active synapses that are co-active with their neighbors as early as postnatal day (P) 8-10, and that these domains of co-active synapses increase their coverage of the dendritic arbor by P12-13. Interestingly, Leighton et al. demonstrate that synapses co-active with their neighbors are more likely to increase their activity across a single recording session, compared to synapses that are not co-active with their neighbors, suggesting local plasticity driven by coincident activity before eye-opening.

      The current manuscript includes some replication of earlier results from the same research group (Winnubst et al., 2015), including the presence of clustered, co-active synapses in the visual cortex of mouse pups, and the finding that synapses co-active with their neighbors show an increase in transmission frequency during a recording session. The main novelty in the current study compared to Winnubst et al. (2015) is the inclusion of younger animals (P8-13 in the current study compared to P10-15 in Winnubst et al., 2015). The current manuscript is the first demonstration that active synapses are clustered on specific dendrite segments as early as P8-10 in the mouse visual cortex, and the first to show the progression in active synapse distribution along the dendrite during the 2nd postnatal week. These results from the visual cortex may help inform our understanding of sensory development more broadly.

      Strengths:<br /> The authors ask a novel question about the emergence of synaptic spatial organization, and they use well-chosen techniques that directly address their questions despite the challenging nature of these techniques. To capture both structural and functional information from dendrites simultaneously, the authors performed a whole-cell voltage clamp to record synaptic currents arriving at the soma while imaging calcium influx at individual synaptic sites on dendrites. The simultaneous voltage clamp and calcium imaging allowed the authors to isolate individual synaptic inputs without their occlusion by widespread calcium influx from back-propagating action potentials. Achieving in vivo dendrite imaging in live mice that are as young as P8 is challenging, and the resulting data provides a unique view of synaptic activity along individual dendrites in the visual cortex at an early stage in development that is otherwise difficult to assess.

      The authors provide convincing evidence that synapses are more likely to be co-active with their neighbors compared to synapses located farther away (Fig. 6F-H), and that synapses co-active with their neighbors increase their transmission frequency during a recording session (Figure 7C). These findings are particularly interesting given that the recordings occur before eye-opening, suggesting a relationship between co-activity and local synaptic plasticity even before the onset of detailed visual input. These results replicate previously published findings from P10-15 pups (Winnubst et al., 2015), increasing confidence in the reproducibility of the data.

      The authors also provide novel data documenting for the first time spatially organized, co-active synapses in pups as young as P8. Comparing the younger (P8-10) and older (P12-13) pups, provides insight into how clusters of co-active synapses might emerge during development.

      Weaknesses:<br /> This manuscript provides insufficient detail for assessing the rigor and reproducibility of the methods, particularly for age comparisons. The P8-10 vs P12-13 age comparisons are the primary novel finding in this manuscript, and it is, therefore, critical to avoid systematic age differences in the methods and analysis whenever possible. Specific concerns related to the age comparisons are listed below:

      • Given that the same research group previously published P12-13 data (Winnubst et al., 2015), it is unclear whether both age groups in the current study were imaged/analyzed in parallel by the same researcher(s), or whether previous data was used for the P12-13 group.

      • The authors mention that they used 2 different microscopes, and used a fairly wide range of imaging frame rates (5-15 Hz). It is unclear from the current manuscript whether the same imaging parameters were used across the two age groups. If data for the two experimental groups was collected separately, perhaps at different times, by a different person, or on a different microscope, there is a concern that some differences between the groups may not necessarily be due to age.

      • It is unclear whether the image analysis was performed blind to age. Blinding to age during analysis is particularly important for this study, in which it was not possible to blind to age during imaging due to visible differences in size and developmental stage between younger and older pups.

      • The relatively low N (where N is the number of dendrites or the number of mice) in this study is acceptable due to the challenging nature of the techniques used, but unintentional sampling bias is a concern. For example, if higher-order dendrites from the apical tuft were imaged at P12-13, while more segments of the apical trunk were imaged at P8-10, this could inadvertently create apparent age differences that were in fact due to dendrite location on the arbor or dendrite depth.

      Additional general methodological concerns, which are not specifically related to the age comparisons, are listed below:

      • The authors assert that clustered, co-active synapses emerge in the visual cortex before eye-opening, which is an important finding in that it suggests this phenomenon is driven by spontaneous activity rather than visual input. However, this finding hinges on the imaged cells being reliably located in the visual cortex, which is difficult to identify with certainty in animals that have not yet opened their eyes and therefore cannot undergo intrinsic signal imaging to demarcate the boundaries of the visual cortex. If the imaged cells were in, for example, nearby somatosensory cortex, then the observed spatial organization could be due to sensory input rather than spontaneous activity.

      • It is unclear how the authors defined a synaptic transmission event in the GCaMP signal (e.g. whether there was a quantitative deltaF/F threshold).

      • The authors' division of synapses into spine vs shaft is unconvincing due to the difficulty of identifying Z-projecting spines in images from 2-photon microscopy, where the Z resolution is insufficient to definitively identify Z-projecting spines, and the fact that spines in young animals may be thin and dim. The authors' examples of spine synapses (e.g. in Fig. 2A) are convincing, but some of the putative shaft synapses may in fact be on spines.

    1. Reviewer #3 (Public Review):

      Summary:

      "Bridging the gap between presynaptic hair cell function and neural sound encoding" by Jaime Tobon and Moser uses patch-clamp electrophysiology in cochlear preparations to probe the pre- and post-synaptic specializations that give rise to the diverse activity of spiral ganglion afferent neurons (SGN). The experiments are quite an achievement! They use paired recordings from pre-synaptic cochlear inner hair cells (IHC) that allow precise control of voltage and therefore calcium influx, with post-synaptic recordings from type I SGN boutons directly opposed to the IHC for both presynaptic control of membrane voltage and post-synaptic measurement of synaptic function with great temporal resolution.

      Strengths<br /> Any of these techniques by themselves are challenging, but the authors do them in pairs, at physiological temperatures, and in hearing animals, all of which combined make these experiments a real tour de force. The data is carefully analyzed and presented, and the results are convincing. In particular, the authors demonstrate that post-synaptic features that contribute to the spontaneous rate (SR) of predominantly monophasic post-synaptic currents (PSCs), shorter EPSC latency, and higher PSC rates are directly paired with pre-synaptic features such as a lower IHC voltage activation and tighter calcium channel coupling for release to give a higher probability of release and subsequent increase in synaptic depression. Importantly, IHCs paired with Low and High SR afferent fibers had the same total calcium currents, indicating that the same IHC can connect to both low and high SR fibers. These fibers also followed expected organizational patterns, with high SR fibers primarily contacting the pillar IHC face and low SR fibers primarily contacting the modiolar face. The authors also use in vivo-like stimulation paradigms to show different RRP and release dynamics that are similar to results from SGN in vivo recordings. Overall, this work systematically examines many features giving rise to specializations and diversity of SGN neurons.

      Weaknesses / Comments / edits:<br /> 1) The careful analysis of calcium coupling and EPSC metrics is especially nice. Can the authors speculate as to why different synapses (likely in the same IHC) would have different calcium cooperativity?

      2) On the bottom of page 6 it would be helpful to mention earlier how many pillar vs modiolar fibers were recorded from, otherwise the skewness of SRs (figure 2H could be thought to be due to predominantly recordings from modiolar fibers. As is, it reads a bit like a cliff-hanger.

      3) The contrasts for some of the data could be used to point out that while significant differences occur between low and high SR fibers, some of these differences are no longer apparent when comparing modiolar vs pillar fibers (eg by contrasting Figure 2C and 2K). This can indicate that indeed there are differences between the fiber activity, but that the activity likely exists in a gradient across the hair cell faces. Pointing this out at the top of page 10 (end of the first paragraph) would be helpful, it would make the seemingly contradictory voltage-dependence data easier to understand on first read (voltage-dependence of release is significantly different between different SR fibers (figure 3) but is not significantly different between fibers on different HC faces (figure S3).

      4) It should be acknowledged that although the use of post-hearing animals here (P14-23) ensures that SGN have begun to develop more mature activity patterns (Grant et al 2010), the features of the synapses and SGN activity may not be completely mature (Wu et al 2016 PMID: 27733610). Could this explain some of the 'challenges' (authors' section title) detailed on page 28, first full paragraph?

      5) In the discussion on page 24, the authors compare their recorded SR of EPSCs to measure values in vivo which are higher. Could this indicate that in vivo, the resting membrane potential of IHCs is more depolarized than is currently used for in vitro cochlear experiments?

      6) The results showing lower calcium cooperativity of high SR fibers are powerful, but do the authors have an explanation for why the calcium cooperativity of < 2 is different from that (m = 3-4) observed in other manuscripts?

    1. Reviewer #3 (Public Review):

      Summary:<br /> Sang et al. successfully demonstrate that a set of single sensory neurons in the pharynx of _Drosophila_ promotes avoidance of food with high salt concentrations, complementing previous findings on Ir7c neurons with an additional internal sensing mechanism. The experiments are well-conducted and presented, convincingly supporting their important findings and extending the understanding of internal sensing mechanisms. However, a few suggestions could enhance the clarity of the work.

      Strengths:<br /> The authors convincingly demonstrate the avoidance phenotype using different behavioral assays, thus comprehensively analyzing different aspects of the behavior. The experiments are straightforward and well-contextualized within existing literature.

      Weaknesses:<br /> Discussion<br /> While the authors effectively relate their findings to existing literature, expanding the discussion on the surprising role of Ir60b neurons in both sucrose and salt rejection would add depth. Additionally, considering Yang et al. 2021's (https://doi.org/10.1016/j.celrep.2021.109983) result that Ir60b neurons activate feeding-promoting IN1 neurons, the authors should discuss how this aligns with their own findings.

      Lines 187ff: The discussion primarily focuses on taste sensillae outside the labellum, neglecting peg-type sensillae on the inner surface. Clarification on whether these pegs contribute to the described behaviors and if the Poxn mutants described also affect the pegs would strengthen the discussion.

      In line 261 the authors state: "We attempted to induce salt activation in the I-type sensilla by ectopically expressing Ir60b, similar to what was observed with Ir56b 8; however, this did not generate a salt receptor (Figures S6A)"<br /> An obvious explanation would be that these neurons are missing the identified necessary co-receptors Ir76b and Ir25a. The authors should discuss here if the Gr33a neurons they target also express these co-receptors, if yes this would strengthen their conclusion that an additional receptor might be missing.

      Methods<br /> The description of the Droso-X assay seems to be missing some details. Currently, it is not obvious how the two-choice is established. Only one capillary is mentioned, I assume there were two used? Also, the meaning of the variables used in the equation (DrosoX and DrosoXD) are not explained.

      The description of the ex-vivo calcium imaging prep. is unclear in several points:<br /> 1. It is lacking information on how the stimulus was applied (was it manually washed in? If so how was it removed?).<br /> 2. The authors write: "A mild swallow deep well was prepared for sample fixation." I assume they might have wanted to describe a "shallow well"?<br /> 3. "...followed by excising a small portion of the labellum in the extended proboscis region to facilitate tastant access to pharyngeal organs." It is not clear to me how one would excise a small portion of the labellum, the labellum depicts the most distal part of the proboscis that carries the sensillae and pegs. Did the authors mean to say that they cut a part of the proboscis?

    1. Reviewer #3 (Public Review):

      In the current manuscript, Matsuo-Takasaki et al. have demonstrated that the addition of PKCβ and WNT signaling pathway inhibitors to the suspension cultures of iPSCs suppresses spontaneous differentiation. These conditions are suitable for large-scale expansion of iPSCs. The authors have shown that they can perform single-cell cloning, direct cryopreservation, and iPSC derivation from PBMCs in these conditions. Moreover, the authors have performed a thorough characterization of iPSCs cultured in these conditions, including an assessment of undifferentiated stem cell markers and genetic stability. The authors have elegantly shown that iPSCs cultured in these conditions can be differentiated into derivatives of three germ layers. By differentiating iPSCs into dopaminergic neural progenitors, cardiomyocytes, and hepatocytes they have shown that differentiation is comparable to adherent cultures. This new method of expanding iPSCs will benefit the clinical applications of iPSCs.

      Recently, multiple protocols have been optimized for culturing human pluripotent stem cells in suspension conditions and their expansion. Additionally, a variety of commercially available media for suspension cultures are also accessible. However, the authors have not adequately justified why their conditions are superior to previously published protocols (indicated in Table 1) and commercially available media. They have not conducted direct comparisons. Additionally, the authors have not adequately addressed the observed variability among iPSC lines. While they claim in the Materials and Methods section to have tested multiple pluripotent stem cell lines, they do not clarify in the Results section which line they used for specific experiments and the rationale behind their choices. There is a lack of comparison among the different cell lines. It would also be beneficial to include testing with human embryonic stem cell lines. Additionally, there is a lack of information regarding the specific role of the two small molecules in these conditions. The authors have not attempted to elucidate the underlying mechanism other than RNA expression analysis.

      For these reasons some aspects of the manuscript need to be extended:

      1. It is crucial for authors to specify the culture media used for suspension cultures. In the Materials and Methods section, the authors mentioned that cells in suspension were cultured in either StemFit AK02N medium, 415 StemFit AK03N (Cat# AK03N, Ajinomoto, Co., Ltd., Tokyo, Japan), or StemScale PSC416 suspension medium (A4965001, Thermo Fisher Scientific, MA, USA). The authors should clarify in the text which medium was used for suspension cultures and whether they observed any differences among these media.

      2. In the Materials and Methods section, the authors mentioned that they used multiple cell lines for this study. However, it is not clear in the text which cell lines were used for various experiments. Since there is considerable variation among iPSC lines, I suggest that the authors simultaneously compare 2 to 3 pluripotent stem cell lines for expansion, differentiation, etc.

      3. Single-cell sorting can be confusing. Can iPSCs grown in suspensions be single-cell sorted? Additionally, what was the cloning efficiency? The cloning efficiency should be compared with adherent cultures.

      4. The authors have not addressed the naïve pluripotent state in their suspension cultures, even though PKC inhibition has been shown to drive cells toward this state. I suggest the authors measure the expression of a few naïve pluripotent state markers and compare them with adherent cultures

    1. Reviewer #3 (Public Review):

      Summary: Irisin has previously been demonstrated to be a muscle-secreted factor that affects skeletal homeostasis. Through the use of different experimental approaches, such as genetic knockout models, recombinant Irisin treatment, or different cell lines, the role of Irisin on skeletal homeostasis has been revealed to be more complex than previously thought and this warrants further examination of its role. Therefore, the current study sought to rigorously examine the effects of global Irisin knockout (KO) in male and female mouse bone. Authors demonstrated that in calcium-demanding settings, such as lactation or low-calcium diet, female Irisin KO mice lose less bone compared to wild-type (WT) female mice. Interestingly male Irisin KO mice exhibited worse skeletal deterioration compared to WT male mice when fed a low-calcium diet. When examined for transcriptomic profiles of osteocyte-enriched cortical bone, authors found that Irisin KO altered the expression of osteocytic osteolysis genes as well as steroid and fatty acid metabolism genes in males but not in females. These data support the authors' conclusion that Irisin regulates skeletal homeostasis in sex-dependent manner.

      Strengths: The major strength of the study is the rigorous examination of the effects of Irisin deletion in the settings of skeletal maturity and increased calcium demands in female and male mice. Since many of the common musculoskeletal disorders are dependent on sex, examining both sexes in the preclinical setting is crucial. Had the investigators only examined females or males in this study, the conclusions from each sex would have contradicted each other regarding the role of Irisin on bone. Also, the approaches are thorough and comprehensive that assess the functional (mechanical testing), morphological (microCT, BSEM, and histology), and cellular (RNA-seq) properties of bone.

      Weaknesses: One of the weaknesses of this study is a lack of detailed mechanistic analysis of why Irisin has a sex-dependent role on skeletal homeostasis. This absence is particularly notable in the osteocyte transcriptomic results where such data could have been used to further probe potential candidate pathways between LC females vs. LC males.

      Another weakness is authors did not present data that convincingly demonstrate that Irisin secretion is altered in the skeletal muscle between female vs. male WT mice in response to calcium restriction. The supplement skeletal muscle data only present functional and electrophysiolgical outcomes. Since Itgav or Itgb5 were not different in any of the experimental groups, it is assumed that the changes in the level of Irisin is responsible for the phenotypes observed in WT mice. Assessing Irisin expression will further strengthen the conclusion based on observing skeletal changes that occur in Irisin KO male and female mice.

    1. Reviewer #3 (Public Review):

      The work extends earlier studies on the Drosophila Id protein EMC to uncover a potential pathway that explains several tissue-scale developmental abnormalities in emc mutants. It also describes a non-apoptotic role for caspases in cell biology.

      Strengths:<br /> The work adds to an emerging new set of functions for caspases beyond their canonical roles as cell death mediators. This novelty is a major strength as well as its reliance on genetic-based in vivo study. The study will be of interest to those who are curious about caspases in general.

      Weaknesses:<br /> The manuscript relies on imaging experiments using genetic mosaic imaginal discs. It is for the most part a qualitative analysis, showing representative samples with a small number of mutant clones in each. Although the senior author has a long track record of using experiments like this to rigorously discover regulatory mechanisms in this system, it is straightforward in 2023 to use Fiji and other image analysis tools to measure fluorescence. Such measurements could be done for all replicate clones of a given genotype as well as genetic control sampling. These could be presented in plots that would not only provide quantitative and statistical measurements, but will be more reader-friendly to those who are not fly people.

      Likewise, more details are needed to describe how clone areas were measured in Figure 1. Did they measure each clone and its twin spot, and then calculate the area ratio for each clone and its paired twin spot? This would be the correct way to analyze the data, yielding many independent measurements of the ratio. And doing so would obviate the need to log transform the data which is inexplicable unless they were averaging clones and twins within a disc and making replicates. More explanation is needed and if they indeed averaged, then they need to calculate the ratios pairwise for each clone and twin.

    1. Reviewer #3 (Public Review):

      Summary:

      Allosteric regulations are complicated in multi-domain proteins and many large-scale mutational data cannot be explained by current theoretical models,, especially for those that are neither in the functional/allosteric sites nor on the allosteric pathways. This work provides a statistical thermodynamic model for a two-domain protein, in which one domain contains an effector binding site and the other domain contains a functional site. The authors build the model to explain the mutational experimental data of TetR, a transcriptional repress protein that contains a ligand and a DNA-binding domain. They incorporate three basic parameters, the energy change of the ligand and DNA binding domains before and after binding, and the coupling between the two domains to explain the free energy landscape of TetR's conformational and binding states. They go further to quantitatively explain the in vivo expression level of the TetR-regulated gene by fitting into the induction curves of TetR mutants. The effects of most of the mutants studied could be well explained by the model. This approach can be extended to understand the allosteric regulation of other two-domain proteins, especially to explain the effects of widespread mutants not on the allosteric pathways.

      Strengths:

      The effects of mutations that are neither in the functional or allosteric sites nor in the allosteric pathways are difficult to explain and quantify. This work develops a statistical thermodynamic model to explain these complicated effects. For simple two-domain proteins, the model is quite clean and theoretically solid. For the real TetR protein that forms a dimeric structure containing two chains with each of them composed of two domains, the model can explain many of the experimental observations. The model separates intra and inter-domain influences that provide a novel angle to analyse allosteric effects in multi-domain proteins.

      Weaknesses:

      As mentioned above, the TetR protein is not a simple two-main protein, but forms a dimeric structure in which the DNA binding domain in each chain forms contacts with the ligand-binding domain in the other chain. In addition, the two ligand-binding domains have strong interactions. Without considering these interactions, especially those mutants that are on these interfaces, the model may be oversimplified for TetR.

    1. Reviewer #3 (Public Review):

      Summary: This manuscript explores the development of a rodent voluntary oral THC consumption model. The authors use the model to demonstrate that similar effect levels of THC can be observed to what has previously been described for i.p. THC administration.

      Strengths: Overall this is an interesting study with compelling data presented. There is a growing need within the field of cannabinoid research to explore more 'realistic' routes of cannabinoid administration, such as oral consumption or inhalation. The evidence presented here shows the utility of this oral administration model.

      Weaknesses: The main weaknesses of the manuscript revolve around clarification of the Methods section. All of these weaknesses are described in the "Recommendations to authors" section. Revising the manuscript would account for many of these weaknesses.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The paper investigates the effects of long-term linguistic experience on early auditory processing, a subject that has been relatively less studied compared to short-term influences. Using MEG, the study examines brain responses to auditory stimuli in speakers of Spanish and Basque, whose syntactic rules provide different degrees of exposure to durational patterns (long-short vs short-long). The findings suggest that both long-term language experience, as well as short-term transitional probabilities, can shape auditory predictive coding for non-linguistic sound sequences, evidenced by differences in mismatch negativity amplitudes localised to the left auditory cortex.

      Strengths:<br /> The study integrates linguistics and auditory neuroscience in an interesting interdisciplinary way that may interest linguists as well as neuroscientists. The fact that long-term language experience affects early auditory predictive coding is important for understanding group and individual differences in domain-general auditory perception. It has importance for neurocognitive models of auditory perception (e.g. inclusion of long-term priors), and will be of interest to researchers in linguistics, auditory neuroscience, and the relationship between language and perception. The inclusion of a control condition based on pitch is also a strength.

      Weaknesses:<br /> The main weaknesses are the strength of the effects and generalisability. The sample size is also relatively small by today's standards, with N=20 in each group. Furthermore, the crucial effects are all mostly in the .01>P<.05 range, such as the crucial interaction P=.03. It would be nice to see it replicated in the future, with more participants and other languages. It would also have been nice to see behavioural data that could be correlated with neural data to better understand the real-world consequences of the effect.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Hauser et al. provide an exceptional study describing the role of resident mast cells in amphibian epidermis that produce anti-inflammatory cytokines that prevent Batrachochytrium dendrobatidis (Bd) infection from causing harmful inflammation, and also protect frogs from changes in skin microbiomes and loss of mucin in glands and loss of mucus integrity that otherwise cause changes to their skin microbiomes. Neutrophils, in contrast, were not protective against Bd infection. Beyond the beautiful cytology and transcriptional profiling, the authors utilized elegant cell enrichment experiments to enrich mast cells by recombinant stem cell factor, or to enrich neutrophils by recombinant colony-stimulating factor-3, and examined respective infection outcomes in Xenopus.

      Strengths:<br /> Through the use of recombinant IL4, the authors were able to test and eliminate the hypothesis that mast cell production of IL4 was the mechanism of host protection from Bd infection. Instead, impacts on the mucus glands and interaction with the skin microbiome are implicated as the protective mechanism. These results will press disease ecologists to examine the relative importance of this immune defense among species, the influence of mast cells on the skin microbiome and mucosal function, and open the potential for modulating mucosal defense.

      Weaknesses:<br /> A reduction of bacterial diversity upon infection, as described at the end of the results section, may not always be an "adverse effect," particularly given that anti-Bd function of the microbiome increased. Some authors (see Letourneau et al. 2022 ISME, or Woodhams et al. 2023 DCI) consider these short-term alterations as encoding ecological memory, such that continued exposure to a pathogen would encounter an enriched microbial defense. Regardless, mast cell-initiated protection of the mucus layer may negate the need for this microbial memory defense.

      While the description of the mast cell location in the epidermal skin layer in amphibians is novel, it is not known how representative these results are across species ranging in chytridiomycosis susceptibility. No management applications are provided such as methods to increase this defense without the use of recombinant stem cell factor, and more discussion is needed on how the mast cell component (abundance, distribution in the skin) of the epidermis develops or is regulated.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors have examined the 5-HT3 receptor using voltage clamp fluorometry, which enables them to detect structural changes at the same time as the state of receptor activation. These are ensemble measurements, but they enable a picture of the action of different agonists and antagonists to be built up.

      Strengths:<br /> The combination of rigorously tested fluorescence reporters with oocyte electrophysiology is a solid development for this receptor class.

      Weaknesses:<br /> The interpretation of the data is solid but relevant foundational work is ignored. Although the data represent a new way of examining the 5-HT3 receptor, nothing that is found is original in the context of the superfamily. Quantitative information is discussed but not presented.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this report, Ravala et al demonstrate that IP4, the soluble head-group of phosphatiylinositol 3,4,5 - trisphosphate (PIP3), is an inhibitor of pREX-1, a guanine nucleotide exchange factor (GEF) for Rac1 and related small G proteins that regulate cell migration. This finding is perhaps unexpected since pREX-1 activity is PIP3-dependent. By way of Cryo-EM (revealing the structure of the p-REX-1/IP4 complex at 4.2Å resolution), hydrogen-deuterium mass spectrometry, and small angle X-ray scattering, they deduce a mechanism for IP4 activation, and conduct mutagenic and cell-based signaling assays that support it. The major finding is that IP4 stabilizes two interdomain interfaces that block access to the DH domain, which conveys GEF activity towards small G protein substrates. One of these is the interface between the PH domain that binds to IP4 and a 4-helix bundle extension of the IP4 Phosphatase domain and the DEP1 domain. The two interfaces are connected by a long helix that extends from PH to DEP1. Although the structure of fully activated pREX-1 has not been determined, the authors propose a "jackknife" mechanism, similar to that described earlier by Chang et al (2022) (referenced in the author's manuscript) in which binding of IP3 relieves a kink in a helix that links the PH/DH modules and allows the DH-PH-DEP triad to assume an extended conformation in which the DH domain is accessible. While the structure of the activated pREX-1 has not been determined, cysteine mutagenesis that enforces the proposed kink is consistent with this hypothesis. SAXS and HDX-MS experiments suggest that IP4 acts by stiffening the inhibitory interfaces, rather than by reorganizing them. Indeed, the cryo-EM structure of ligand-free pREX-1 shows that interdomain contacts are largely retained in the absence of IP4.

      Strengths:<br /> The manuscript thus describes a novel regulatory role for IP4 and is thus of considerable significance to our understanding of regulatory mechanisms that control cell migration, particularly in immune cell populations. Specifically, they show how the inositol polyphosphate IP4 controls the activity of pREX-1, a guanine nucleotide exchange factor that controls the activity of small G proteins Rac and CDC42 . In their clearly written discussion, the authors explain how PIP3, the cell membrane, and the Gbeta-gamma subunits of heterotrimeric membranes together localize pREX-1 at the membrane and induce activation. The quality of experimental data is high and both in vitro and cell-based assays of site-directed mutants designed to test the author's hypotheses are confirmatory. The results strongly support the conclusions. The combination of cryo-EM data, that describe the static (if heterogeneous) structures with experiments (small angle x-ray scattering and hydrogen-deuterium exchange-mass spectrometry) that report on dynamics are well employed by the authors

      Weaknesses:<br /> There are a few weaknesses. While the resolution of the cryo-EM structure is modest, it is sufficient to identify the domain-domain interactions that are mechanistically important, since higher-resolution structures of various pREX-1 modules are available.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The manuscript by Yao et al. investigates the intracellular trafficking of Botulinum neurotoxin A (BoNT/A), a potent toxin used in clinical and cosmetic applications. Contrary to the prevailing understanding of BoNT/A translocation into the cytosol, the study suggests a retrograde migration from the synapse to the soma-localized Golgi in neurons. Using a genome-wide siRNA screen in genetically engineered neurons, the researchers identified over three hundred genes involved in this process. The study employs organelle-specific split-mNG complementation, revealing that BoNT/A traffics through the Golgi in a retromer-dependent manner before moving to the endoplasmic reticulum (ER). The Sec61 complex is implicated in the retro-translocation of BoNT/A from the ER to the cytosol. Overall, the research challenges the conventional model of BoNT/A translocation, uncovering a complex route from synapse to cytosol for efficient intoxication. The findings are based on a comprehensive approach, including the introduction of a fluorescent reporter for BoNT/A catalytic activity and genetic manipulations in neuronal cell lines. The conclusions highlight the importance of retrograde trafficking and the involvement of specific genes and cellular processes in BoNT/A intoxication.

      Strengths:<br /> The major part of the experiments are convincing. They are well-controlled and the interpretation of their results is balanced and sensitive.

      Weaknesses:<br /> To my opinion, the main weakness of the paper is in the interpretation of the data equating loss of tGFP signal (when using the Red SNAPR assay) with proteolytic cleavage by the toxin. Indeed, the first step for loss of tGFP signal by degradation of the cleaved part is the actual cleavage. However, this needs to be degraded (by the proteasome, I presume), a process that could in principle be affected (in speed or extent) by the toxin.

    1. Reviewer #3 (Public Review):

      In this manuscript, Gustison et al., describe the development of an automated whole-brain mapping pipeline, including the first 3D histological atlas of the prairie vole, and then use that pipeline to quantify Fos immunohistochemistry as a measure of neural activity during mating and pair bonding in male and female prairie voles. Prairie voles have become a useful animal model for examining the neural bases of social bonding due to their socially monogamous mating strategy. Prior studies have focused on identifying the role of a few neuromodulators (oxytocin, vasopressin, dopamine) acting in limited number of brain regions. The authors use this unbiased approach to determine which areas become activated during mating, cohabitation, and pair bonding in both sexes to identify 68 brain regions clustered in seven brain-wide neuronal circuits that are activated over the course of pair bonding. This is an important study because i) it generates a valuable tool and analysis pipeline for other investigators in the prairie vole research community and ii) it highlights potential involvement of many brain regions in regulating sexual behavior, social engagement and pair bonding that have not been previously investigated.

      Strengths of the study include the unbiased assessment of neural activity using the automated whole brain activity mapped onto the 3D histological atlas. The design of the behavioral aspect of study is also a strength. Brains were collected at baseline and 2.5, 6 and 22 hrs after cohabitation with either a sibling or opposite sex partner. These times were strategically chosen to correspond to milestones in pair bond development. Behavior was also quantified during epochs over the 22 hr period providing useful information on the progression of behaviors (e.g. mating) during pair bonding and relating Fos activation to specific behaviors (e.g. sex vs bonding). The sibling co-housed group provided an important control, enabling identification of areas specifically activated by sex and bond formation. The analyses of the data were rigorous, resulting in convincing conclusions. While there was nothing particularly surprising in terms of the structures that were identified to be active during the mating and cohabitation, the statistical analysis revealed interesting relationships in terms of interactions of the various clusters, and also some level of synchrony in brain activation between partners. Furthermore, ejaculation was found to be the strongest predictor of Fos activation in both males and females. The sex differences identified in the study was subtle and less than the authors expected, which is interesting.

      While the study provides a potentially useful tool and approach that may be general use to the prairie vole community and identifies in an anatomically precise manner areas that may be important for mating or pair bond formation, there are some weaknesses as well. The study is largely descriptive. It is impossible to determine whether the activated areas are simply involved in sex or in the pair bond process itself. In other words, the authors did not use the Fos data to inform functional testing of circuits in pair bonding or mating behaviors. However, that is likely beyond the scope of this paper in which the goal was more to describe the automated, unbiased approach. This weakness is offset by the value of the comprehensive and detailed analysis of the Fos activation data providing temporal and precise anatomical relationships between brain clusters and in relation to behavior. The manuscript concludes with some speculative interpretations of the data, but these speculations may be valuable for guiding future investigations.

    1. Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors present a new automated image analysis pipeline named WormPsyQi which allows researchers to quantify various parameters of synapses in C. elegans. Using a collection of newly generated transgenic strains in which synaptic proteins are tagged with fluorescent proteins, the authors showed that WormPsyQi can reliably detect puncta of synaptic proteins, and measure several parameters, including puncta number, location, and size.

      Strengths:

      The image analysis of fluorescently labeled synaptic (or other types of) puncta pattern requires extensive experience such that one can tell which puncta likely represent bona fide synapse or background noise. The authors showed that WormPsyQi nicely reproduced the quantifications done manually for most of the marker strains they tested. Many researchers conducting such types of quantifications would receive significant benefits in saving their time by utilizing the pipeline developed by the authors. The collection of new markers would also help researchers examine synapse patterning in different neuron types which may have unique mechanisms in synapse assembly and specificity. The authors describe the limitations of the use of toolkits and potential solutions users can take.

    1. Reviewer #3 (Public Review):

      Summary:

      This hybrid experimental/computational study by Hernandez-Hernandez sheds new light on sex-specific differences between male and female arterial myocytes from resistance arteries. The authors conduct careful experiments in isolated myocytes from male and female mice to obtain the data needed to parameterized sex-specific models of two important ionic currents (i.e., those mediated by CaV1.2 and KV2.1). Available experimental data suggest that KV1.5 channel currents from male and female myocytes are similar, but simulations conducted in the novel Hernandez-Hernandez sex-specific models provide a more nuanced view. This gives rise to the first of the authors' three key scientific claims: (1) In males, KV1.5 is the dominant current regulating membrane potential; whereas, in females, KV2.1 plays a primary role in voltage regulation. They further show that this (2) the latter distinction drives drive sex-specific differences in intracellular Ca2+ and cellular excitability. Finally, working with one-dimensional models comprising several copies of the male/female myocyte models linked by resistive junctions, they use simulations to (3) predict that sensitivity of arterial smooth muscle to Ca2+ channel-blocking drugs commonly used to treat hypertension is heightened in female compared to male cells.

      In my opinion, the following strengths of the work are particularly notable:

      • The Methodology is described in exquisite detail in straightforward language that will be easy to understand for most if not all peer groups working in computational physiology. The authors have deployed standard protocols (e.g., parameter fitting as described by Kernik et al., sensitivity analysis as described by Sobie et al.) and appropriate brief explanations of these techniques are provided. The manoeuvre used to represent stochastic effects on voltage dynamics is particularly clever and something I have not personally encountered before. Collectively, these strengthen the credibility of the model and greatly enrich the manuscript.<br /> • The Results section describes findings that robustly support the three key scientific claims outlined in my Summary. It is evident these experiments were carefully designed and carried out with care and intentionality. Several figures show experimental data side-by-side with outputs from the corresponding models. These are an excellent illustration of the power of the authors' novel sex-specific computational simulation platform.

    1. Reviewer #3 (Public Review):

      Summary:<br /> A mechanical model is used with input force patterns to generate output curvature patterns, corresponding to a number of different locomotion behaviors in C. elegans

      Strengths:<br /> The use of a mechanical model to study a variety of locomotor sequences and the grounding in empirical data are strengths. The matching of speeds (though qualitative and shown only on agar) is a strength.

      Weaknesses:<br /> What is the relation between input and output data? How does the input-output relation depend on the parameters of the model? What biological questions are addressed and can significant model predictions be made?

    1. Reviewer #3 (Public Review):

      The manuscript "Mechanical activation of TWIK-related potassium channel by nanoscopic movement and second messenger signaling" presents a new mechanism for the activation of TREK-1 channel. The mechanism suggests that TREK1 is activated by phosphatidic acids that are produced via a mechanosensitive motion of PLD2 to PIP2-enriched domains. Overall, I found the topic interesting but several typos and unclarities reduced the readability of the manuscript. Additionally, I have several major concerns on the interpretation of the results. Therefore, the proposed mechanism is not fully supported by the presented data. Lastly, the mechanism is based on several previous studies from the Hansen lab, however, the novelty of the current manuscript is not clearly stated. For example, in the 2nd result section, the authors stated, "fluid shear causes PLD2 to move from cholesterol dependent GM1 clusters to PIP2 clusters and this activated the enzyme". However, this is also presented as a new finding in section 3 "Mechanism of PLD2 activation by shear."<br /> In the revised manuscript, the authors addressed most of my concerns. I still have the following suggestions/confusions.<br /> 1. the reviewer would highly appreciate verification of the cholesterol assay, either by additional experiment or by citations of independent work.

      2. The claim on "shear thinning" is still very confusing. First, asymmetric insertion of molecules to one monolayer of the membrane is a main mechanism for membrane bending and curvature formation. Second, why is "shear thinning" equivalent to entropy/order?

    1. Reviewer #3 (Public Review):

      Summary:<br /> The paper explores chemosensory behaviour in surface and cave morphs and F2 hybrids in the Mexican cavefish Astyanax mexicanus. The authors develop a new behavioural assay for the long-term imaging of individual fish in a parallel high-throughput setup. The authors first demonstrate that the different morphs show different basal exploratory swimming patterns and that these patterns are stable for individual fish. Next, the authors test the attraction of fish to various concentrations of alanine and other amino acids. They find that the cave morph is a lot more sensitive to chemicals and shows directional chemotaxis along a diffusion gradient of amino acids. For surface fish, although they can detect the chemicals, they do not show marked chemotaxis behaviour and have an overall lower sensitivity. These differences have been reported previously but the authors report longer-term observations on many individual fish of both morphs and their F2 hybrids. The data also indicate that the observed behavior is a quantitative genetic trait. The approach presented will allow the mapping of genes' contribution to these traits. The work will be of general interest to behavioural neuroscientists and those interested in olfactory behaviours and the individual variability in behavioural patterns.

      Strengths:<br /> A particular strength of this paper is the development of a new and improved setup for the behavioural imaging of individual fish for extended periods and under chemosensory stimulation. The authors show that cavefish need up to 24 h of habituation to display a behavioural pattern that is consistent and unlikely to be due to the stressed state of the animals. The setup also uses relatively large tanks that allow the build-up of chemical gradients that are apparently present for at least 30 min.

      The paper is well written, and the presentation of the data and the analyses are clear and to a high standard.

      Weaknesses:<br /> One point that would benefit from some clarification or additional experiments is the diffusion of chemicals within the behavioural chamber. The behavioural data suggest that the chemical gradient is stable for up to 30 min, which is quite surprising. It would be great if the authors could quantify e.g. by the use of a dye the diffusion and stability of chemical gradients.

      The paper starts with a statement that reflects a simplified input-output (sensory-motor) view of the organisation of nervous systems. "Their brains perceive the external world via their sensory systems, compute information and generate appropriate behavioral outputs." The authors' data also clearly show that this is a biased perspective. There is a lot of spontaneous organised activity even in fish that are not exposed to sensory stimulation. This sentence should be reworded, e.g. "The nervous system generates autonomous activity that is modified by sensory systems to adapt the behavioural pattern to the external world." or something along these lines.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In human patients with Huntington's disease (HD), caused by a CAG repeat expansion mutation, the number of uninterrupted CAG repeats at the genomic level influences age-at-onset of clinical signs independent of the number of polyglutamine repeats at the protein level. In most patients, the CAG repeat terminates with a CAA-CAG doublet. However, CAG repeat variants exist that either do not have that doublet or have two doublets. These variants consequently differ in their number of uninterrupted CAG repeats, while the number of glutamine repeats is the same as both CAA and CAG codes for glutamine. The authors first confirm that a shorter uninterrupted CAG repeat number in human HD patients is associated with developing the first clinical signs of HD later. They predict that introducing a further CAA-CAG doublet will result in years of delay of clinical onset. Based on this observation, the authors tested the hypothesis that turning CAG to CAA within a CAG repeat sequence using base editing techniques will benefit HD biology. They show that, indeed, in HD cell models (HEK293 cells expressing 16/17 CAG repeats; a single human stem cell line carrying a CAG repeat expansion in the fully penetrant range with 42 CAG repeats), their base editing strategies do induce the desired CAG-CAA conversion. The efficiency of conversion differed depending on the strategy used. In stem cells, delivery posed a problem, so to test allele specificity, the authors then used a HEK 293 cell line with 51 CAG repeats on the expanded allele. Conversion occurred in both alleles with huntingtin protein and mRNA levels; transcriptomics data was unchanged. In knock-in mice carrying 110 CAG repeats, however, base editing did not work as well for different, mainly technical, reasons.

      Strengths:<br /> The authors use state-of-the-art methods and carefully and thoroughly designed experiments. The data support the conclusions drawn. This work is a very valuable translation from the insight gained from large GWAS studies into HD pathogenesis. It rightly emphasises the potential this has as a causal treatment in HD, while the authors also acknowledge important limitations.

      Weaknesses:<br /> They could dedicate a little more to discussing several of the mentioned challenges. The reader will better understand where base editing is in HD currently and what needs to be done before it can be considered a treatment option. For instance,

      -It is important to clarify what can be gained by examining again the relationship between uninterrupted CAG repeat length and age-at-onset. Could the authors clarify why they do this and what it adds to their already published GWAS findings? What is the n of datasets?<br /> -What do they think an ideal conversion rate would be, and how that could be achieved?<br /> -Is there a dose-effect relationship for base editing, and would it be realistic to achieve the ideal conversion rate in target cells, given the difficulties described by the authors in differentiated neurons from stem cells?<br /> - The liver is a good tool for in-vivo experiments examining repeat instability in mouse models. However, the authors could comment on why they did not examine the brain.<br /> - Is there a limit to judging the effects of base editing on somatic instability with longer repeats, given the difficulties in measuring long CAG repeat expansions?<br /> - Given the methodological challenges for assessing HTT fragments, are there other ways to measure the downstream effects of base editing rather than extrapolate what it will likely be?<br /> - Sequencing errors could mask low-level, but biologically still relevant, off-target effects (such as gRNA-dependent and gRNA-independent DNA, Off-targets, RNA off-targets, bystander editing). How likely is that?<br /> - How worried are the authors about immune responses following base editing? How could this be assessed?

    1. Reviewer #3 (Public Review):

      This research addresses a critical challenge in malaria research, specifically how to effectively access the highly polymorphic var gene family using short-read sequence data. The authors successfully tackled this issue by introducing an optimization of their original de novo assembler, which notably more than doubled the N50 metric and greatly improved the assembly of var genes.

      The most intriguing aspect of this study lies in its methodologies, particularly the longitudinal analysis of assembled var transcripts within subjects. This approach allows for the construction of an unbiased var repertoire for each individual, free from the influence of a reference genome or other samples. These sample-specific var gene repertoires are then tracked over time in culture to evaluate the reliability of using cultured samples for inferences about in vivo expression patterns. The findings from this analysis are thought-provoking. While the authors conclude that culturing parasites can lead to unpredictable transcriptional changes, they also observe that the overall ranking of each var gene remains relatively robust over time. This resilience in the var gene ranking within individuals raises intriguing questions about the mechanisms behind var gene switching and adaptation during short-term culture.

      In addition to the var gene-specific analysis, the study also delves into a comparison of ex vivo samples with generation 1 and generation 2 cultured parasites across the core genome. This analysis reveals substantial shifts in expression due to culture adaptation, shedding light on broader changes in the parasite transcriptome during short-term culture.

      In summary, this research contributes to our understanding of var gene expression and potentially associations with disease. It emphasizes the importance of improved assembly techniques to access var genes and underscores the challenges of using short-term cultured parasites to infer in vivo characteristics. The longitudinal analysis approach offers a fresh perspective on var gene dynamics within individuals and highlights the need for further investigations into var gene switching and adaptation during culture.

    1. Reviewer #3 (Public Review):

      Peng et al. designed a computational framework for identifying pioneer factors using epigenomic data from five cell types. The identification of pioneer factors is important for our understanding of the epigenetic and transcriptional regulation of cells. A computational approach toward this goal can significantly reduce the burden of labor-intensive experimental validation.

      The authors have addressed my previous comments.

      The main issue identified in this re-review is based on the authors' additional experiments to investigate the reproducibility of the pioneer factors identified in the previous analysis that anchored on H1 ESCs.

      The additional analysis that uses the other four cell types (HepG2, HeLa-S3, MCF-7, and K562) as anchors reveals the low reproducibility/concordance and high dependence on the selection of anchor cell type in the computational framework. In particular, now several stem cell related TFs (e.g. ESRRB, POU5F1) are ranked markedly higher when H1 ESC is not used as the anchor cell type as shown in Supplementary Figure 5.

      Of note, the authors have now removed the shape labels that denote Yamanaka factors in Figure 2c (revised manuscript) that was presented in the main Figure 2a in the initial submission. The NFYs and ESRRB labels in Supplementary 4a are also removed and the boxplot comparing NFYs and ESRRB with other TF are also removed in this figure. Removing these results effectively hides the issues of the computational framework we identified in this revision. Please justify why this was done.

      In summary, these new results reveal significant limitations of the proposed computational framework for identifying pioneer factors. The current identifications appear to be highly dependent on the choice of cell types.

    1. Reviewer #3 (Public Review):

      Summary:

      This article demonstrates a Pax1-Col11a1-Mmp3 signaling axis associated with adolescent idiopathic scoliosis and finds that estrogen affects this signaling axis. In addition, the authors have identified a new COL11A1 mutation and verified its effect on the Pax1-Col11a1-Mmp3 axis.

      Strengths:

      1. Col11a1P1335L is verified in multicenter cohorts with high confidence.

      2. The article identified a potential pathogenesis of AIS.

      Weaknesses:

      The SV40-immortalized cell line established from Col11a1fl/fl mouse rib cartilage was applied in the study, and overexpression system was used to confirm that P1335L variant in COL11A1 perturbs its regulation of MMP3. However, due to the absence of P1335L point mutant mice, it cannot be confirmed whether P1335L can actually cause AIS, and the pathogenicity of this mutation cannot be directly verified.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This manuscript by Toth et al reveals a conserved phosphorylation site within the RIN4 (RPM1-interacting protein 4) R protein that is exclusive to two of the four nodulating clades, Fabales and Rosales. The authors present persuasive genetic and biochemical evidence that phosphorylation at the serine residue 143 of GmRIN4b, located within a 15-aa conserved motif with a core five amino acids 'GRDSP' region, by SymRK, is essential for optimal nodulation in soybean. While the experimental design and results are robust, the manuscript's discussion fails to clearly articulate the significance of these findings. Results described here are important to understand how the symbiosis signaling pathway prioritizes associations with beneficial rhizobia, while repressing immunity-related signals.

      Strengths:<br /> The manuscript asks an important question in plant-microbe interaction studies with interesting findings.

      Overall, the experiments are detailed, thorough, and very well-designed. The findings appear to be robust.

      The authors provide results that are not overinterpreted and are instead measured and logical.

      Weaknesses:<br /> No major weaknesses. However, a well-thought-out discussion integrating all the findings and interpreting them is lacking; in its current form, the discussion lacks 'boldness'. The primary question of the study - how plants differentiate between pathogens and symbionts - is not discussed in light of the findings. The concluding remark, "Taken together, our results indicate that successful development of the root nodule symbiosis requires cross-talk between NF-triggered symbiotic signaling and plant immune signaling mediated by RIN4," though accurate, fails to capture the novelty or significance of the findings, and left me wondering how this adds to what is already known. A clear conclusion, for eg, the phosphorylation of RIN4 isoforms by SYMRK at S143 modulates immune responses during symbiotic interactions with rhizobia, or similar, is needed.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Regulated chloroplast breakdown allows plants to modulate these energy-producing organelles, for example during leaf aging, or during changing light conditions. This manuscript investigates how chloroplasts are broken down during light-limiting conditions.

      The authors present very nice time-lapse imaging of multiple proteins as buds form on the surface of chloroplasts and pinch away, then associate with the vacuole. They use mutant analysis and autophagy markers to demonstrate that this process requires the ATG machinery, but not dynamin-related proteins that are required for chloroplast division. The manuscript concludes with a discussion of an internally-consistent model that summarizes the results.

      Strengths:<br /> The main strength of the manuscript is the high-quality microscopy data. The authors use multiple markers and high-resolution time-lapse imaging to track chloroplast dynamics under light-limiting conditions.

      Weaknesses:<br /> The main weakness of the manuscript is the lack of quantitative data. Quantification of multiple events is required to support the authors' claims, for example, claims about which parts of the plastid bud, about the dynamics of the events, about the colocalization between ATG8 and the plastid stroma buds, and the dynamics of this association. Without understanding how often these events occur and how frequently events follow the manner observed by the authors (in the 1 or 2 examples presented in each figure) it is difficult to appreciate the significance of these findings.

    1. Reviewer #3 (Public Review):

      The manuscript reports data collected in awake toddlers recording BOLD while watching videos. The authors analyse the BOLD time series using two different statistical approaches, both very complex but do not require any a priori determination of the movie features or contents to be associated with regressors. The two main messages are that 1) toddlers have occipital visual areas very similar to adults, given that an SRM model derived from adult BOLD is consistent with the infant brains as well; 2) the retinotopic organization and the spatial frequency selectivity of the occipital maps derived by applying correlation analysis are consistent with the maps obtained by standard and conventional mapping.

      Clearly, the data are important, and the author has achieved important and original results. However, the manuscript is totally unclear and very difficult to follow; the figures are not informative; the reader needs to trust the authors because no data to verify the output of the statistical analysis are presented (localization maps with proper statistics) nor so any validation of the statistical analysis provided. Indeed what I think that manuscript means, or better what I understood, may be very far from what the authors want to present, given how obscure the methods and the result presentation are.

      In the present form, this reviewer considers that the manuscript needs to be totally rewritten, the results presented each technique with appropriate validation or comparison that the reader can evaluate.

    1. Reviewer #3 (Public Review):

      Summary:

      Mao and colleagues generated powerful reagents to genetically analyse chemical communication (CCT) in the brain, and in the process uncovered a function for the CNMa neuropeptide expressed in a subset of DN1p neurons that contributes to the temporal organization of locomotor activity, i.e., the timing of morning anticipation.

      Strengths:

      The strength of the manuscript relies on the generation/characterization of new tools for conditional targeting a well-defined set of CCT genes along with the design and testing of improved versions of Cas9 for efficient knockout. Such invaluable resources will be of interest to the whole community. The authors employed these tools and intersectional genetics to provide an alternative profiling of clock neurons, which is complementary to the ones already published. Furthermore, they uncovered a role for CNMamide, expressed in two DN1ps, in the timing of morning anticipation.

      Weaknesses:

      They targeted an extensive set of candidate genes putatively involved in communication (transporters, receptor subunits, neuropeptides, neurotransmitter synthesis, etc); they provide a list of efficient gRNAs to target even a longer list of candidate genes, however, it is not clear if all of those made it into transgenic lines that effectively mediate targeting all chemical transmission genes (as suggested by the authors).

    1. Reviewer #3 (Public Review):

      Though it is speculated that gene-environment interactions (GxE) contribute to disease heritability, they remain challenging to detect. Here, the authors use a massively parallel reporter assay in vascular endothelial cells treated with or without caffeine to explore context-specific gene regulation. They use a library of 200-bp candidate regions selected from a variety of genetic studies (eQTL, GWAS) and demonstrate allelic bias in activity across a large proportion, including variants with caffeine-specific allelic effects. The described assays represent a useful approach for examining GxE in complex traits, thus these results are of broad appeal. I have great enthusiasm for the experimental design, including the large library and sample size, testing the MPRA in an appropriate cell type with a relevant stimulus, and interesting functional analyses including transcription factor motif enrichment and comparison to GTEx data. My main critique is that the description of analyses and results lacks the clarity that would aid the reader in interpretation.

      1. The abstract states that >43k variants are tested in the library while the methods section states that >43k constructs were tested. Because you tested allele pairs, my expectation is that you would have used ~86k constructs, and at various points, you mention denominators that are higher than 43k. Please address this discrepancy.<br /> 2. Previously, you reported allele-specific expression analysis across many conditions, including caffeine treatment. In that study, you observed high levels of differential expression induced by caffeine treatment (on the order of thousands of genes) with only a modest number of SNPs with allele-specific expression after caffeine treatment. In the current study, you report that only ~800 constructs are differentially active after caffeine treatment which you state as evidence that "caffeine overall increases the activity of the regulatory elements," but this is quite a small number given that you tested tens of thousands of constructs. Later you describe >8k constructs with conditional allele-specific expression. Do you mean that the former subset only displays caffeine effects without allele-specific expression? And taking both studies into account, what do you think accounts for the seeming discrepancies between the relative amount of conditional allele-specific expression measured by RNA-seq vs BiT-STARR-seq?<br /> 3. Your transcription factor motif enrichment analyses are interesting, and would benefit from a further grounding in the biology of the cells you're working with. To this end, what proportion of the transcription factor sets that you use for enrichment are expressed in your cell model? For those that are enriched, are they highly expressed, and does that expression vary with caffeine treatment? You provide some of this information for a specific example (rs228271), but a broader discussion is warranted.<br /> 4. I suggest elaborating on the choice of treatment conditions to provide valuable context. Acute responses to caffeine exposure may vary from chronic exposure. In this study, I think a single acute exposure is more than appropriate for reasons of feasibility and many of the regulatory pathways will be shared between acute and long-term; however, given that CAD is a chronic disease that develops over many years, it would be worthwhile to speculate on longer term effects of caffeine exposure in your model system.

    1. Reviewer #3 (Public Review):

      The authors inactivated the MurT-GatD of Mycobacterium bovis BCG using CRISPR interference and found that loss of these enzymes curbs growth but also alters the cell envelope and cell wall composition. As MurT-GatD are required for amidation of D-glutamate residues in the cell wall and amidation is required for cell wall crosslinking, depletion of MurT-GatD leads to envelope defects and increased sensitivity to cell wall-targeting antibiotics. Loss of D-glutamate amidation also leads in the accumulation of cell wall components that are detected by the cellular NOD1-innate immune surveillance system that is normally blind to amidated cell wall components. Such MurT-GatD-depleted BCG cells are more effective in protecting host cells towards infection by Mycobacterium tuberculosis (Mtb) in an in vitro monocyte model, but also in a murine lung infection model of Mtb.

      The use of the cellular and animal models gave consistent findings for the recombinant BCG mutant strain in its protective effect against subsequent Mtb infections, importantly occurring in a concentration-dependent manner that correlates with the levels of CRISPR-mediated inhibition.

      As no efficient vaccine exists against Mtb and the authors showed the potency of the mutant BCG over WT BCG to vaccinate mice against Mtb, this work identifies MurT-GatD-depleted BCG as a strong new and effective vaccine candidate against Mtb. It is possible that enhanced NOD1-signaling caused by loss of D-glutamate has a general self-adjuvanting effect on BCG bacteria and its conserved surface antigens towards Mtb. Alternatively, Mtb bacteria could alter their cell envelope structure during the course of an infection, rendering them more susceptible to immune responses already entrained by MurT-GatD-depleted BCG.

    1. Reviewer #3 (Public Review):

      This paper aims to understand the nature of collaborative hunting. It sets out by first defining simple conditions under which collaborative hunting emerges, which leads to the emergence of a toy environment. The environment itself is simple, K prey chasing a single predator with no occlusions. I find this a little strange, since it was my understanding that collaborative hunting emerges in part because the presence of occlusions allows for more complex strategies that require planning.

      That being said, I do think the environment is sufficient for this paper, and I quite enjoyed using it to run some toy experiments. It reminds me of some of the simpler environments from Petting Zoo, a library for multi-agent learning in reinforcement learning.

      Once a simple environment was established, the authors fit a reinforcement learning model to the environment. In this case, the model is Q-learning. The predator and prey are treated as separate agents in the environment, each with their own independent Q functions. Each agent gets full observability of the surroundings. As far as I understand, the predators do not share an action space, and so they can only collaborate implicitly by inferring the actions of the other predators. However, there is a version of these experiments wherein the reward function is shared, all agents receiving a 1 when the prey is caught. One limitation of the current work is that it does not consider reinforcement learning methods methods wherein a value function is shared. This is a current dominant strategy in multi-agent RL. See for example OpenAI Five and also Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. Missing these algorithms limits the scope of the work.

      Having fit an RL model, the next order of business is to try and search for internal representations in the agent's model that correspond to collaboration. The author's use t-SNE embeddings of the agents last hidden layers in the policy network.

      Analyzing these embeddings in Figure 3, we see that there are some representations that correspond to specific types of collaborative behavior, which indicates that the model is indeed learning to encode collaboration. I should note that this is not surprising from an RL perspective. Certainly, we are aware that Multi-Agent actor critic methods can exhibit cooperative behavior. See Emergent tool use from multi-agent interaction where agents jointly learn to push a table together. It is true that earlier work didn't specifically identify the units responsible for this behavior, and I think this work should be lauded for the novelty it brings to this discussion.

      A large underlying point of this paper seems to be that we we need to consider these simple toy environments where we can easily train Q-learning, because it is impossible to analyze the behaviors that emerge from real animal behavior. See lines 187-189. This makes sense on the surface, because there are no policy weights in the case of real-world behavior. However, it is unfortunately misleading. It is entirely possible to take existing animal behavior, fit a linear model (or a deep net) to this behavior, and then do t-SNE on this fit model. This is referred to as behavioral cloning. What's more, offline RL makes it entirely possible to fit a Q-function to animal behaviors, in which case the exact same t-SNE analysis can be carried out without ever running Q-learning in the environment. From my perspective, the fact that RL is not needed to carry out the paper's main analysis is the biggest weakness of the paper.

      Meanwhile, I do think the comparisons with human players was exceptionally interesting, and I'm glad it was included in this work.

      Finally, I would like to speak to the reinforcement learning sections of this paper, as this is my personal area of expertise. I will note that the RL used in this paper is all valid and correct. The descriptions of Q-learning and its modifications are technically accurate. It's worth noting that the performance offered by the Q-learning methods in this paper is not particularly close to optimal. I mean this in two ways. First, cooperative RL methods are much more performant. Second, the Q-learning implementation considered by the author's is far below state of the art standards.

      I will also note that, from the perspective of RL, there is no novelty in the paper. Indeed, many Deep Mind papers, including the original Q-learning paper, have similar t-SNE embeddings to try and understand the action space. And works such as Sentiment Neuron and Visualizing and Understanding Recurrent Networks, among many many others, have focused on the problem of understanding the correspondence between network weights and behaviors. Thus, the novelty must come from a biological perspective. Or perhaps from a perspective at the intersection of biology and RL. I do believe this is an area worth further studying.

    1. Reviewer #3 (Public Review):

      The authors elucidated the roles of cholecystokinin (CCK)-expressing excitatory neurons, which project from the rhinal cortex to the motor cortex, in motor skill learning. The authors found CCK knock-out mice exhibited learning defects in the pellet reaching task while the baseline success rate of the knock-out mice was similar to that of the wild-type mice. Application of a CCK B receptor (CCKBR) antagonist into the motor cortex lowered the success rate in the motor task. The authors found the population activity which was observed in the in vivo calcium imaging during motor learning was elevated after motor learning, but this increase disappeared in CCK knock-out mice and animals with CCKBR antagonist administration. Anterograde and retrograde viral tracing revealed that CCK-expressing excitatory neurons in the rhinal cortex projected to the motor cortex. Chemogenetic inhibition of the CCK-expressing neurons in the rhinal cortex lowered the ability for motor learning. The application of a CCKBR agonist increased the motor learning ability of CCK knock-out animals as well as long-term potentiation (LTP) observed in the slice of the motor cortex.

      However, the manuscript contains several shortcomings:

      First, the "Discussion" has several statements that are only supported weakly by the results, for example, ll. 429-431, ll. 432-433, and ll. 447-448. In addition, most of the sentences in this section are not divided into subsections. The paragraphs should be composed in multiple subsections with appropriate subheadings, even though the initial section summarizing the results can lack a subheading.

      Second, it would be important that the authors showed which area(s) of the brain is affected by the CCKBR antagonist in the experiments described in ll. 166-206 and Fig. 2. The authors injected the drug into the motor cortex, but the chemical can spread to neighboring cortical areas (e.g. somatosensory cortex) or wider brain regions. If so, the blockade of the CCKBR in the brain areas other than the motor cortex could cause the defects of the motor task learning observed in these experiments. I think it is desirable that such a possibility should be excluded. Conversely, it is possible that the antagonist had an effect on a limited subarea of the motor cortex (e.g. only the primary motor cortex (M1)). In this case, the information about the field altered by the CCKBR blocker would be useful to interpret the results of the learning defects.

      Third, the authors need to show bilateral data about their anterograde and retrograde tracking of CCK-expressing neurons in the rhinal cortex. In ll. 290-292, they described as follows: "Both anterograde and retrograde tracking results indicated that CCK-expressing neurons in the rhinal cortex projecting to the motor cortex were asymmetric, showing a preference for the ipsilateral hemisphere." However, they provided only unilateral data for the anterograde (Fig. 4B) and the retrograde (Fig. 4D) experiments.

      Fourth, unilateral (contralateral to the dominant forelimb) experiments are needed in the chemogenetic inhibition of the CCK neurons. In ll. 301-338 and Fig. 5, the authors inhibited the CCK -expressing neurons in both hemispheres by injecting the virus into both sides. However, the CCKBR antagonist injection into the motor cortex contralateral to the dominant forelimb caused defects in motor learning ability, as described in ll. 166-206. The authors also observed that the population neuronal activity in the motor cortex contralateral to the dominant forelimb changed in accordance with the improvement of the motor skill in ll. 208-269. Therefore, it may be the case that inhibition of CCK neurons only in the side contralateral to the dominant forelimb - not bilaterally, as the authors did - could cause the lowered ability of motor learning. Such unilateral inhibition can be carried out by unilateral injection of the virus.

      In relation to the point above, in the chemogenetic inhibition experiments, it would be important to show which neurons in which cortical area is inhibited. This could be done by examining the distributions of the mCherry-labeled somata in the rhinal cortex using histochemistry.

      Fifth, it would be valuable to further examine differences in task performance across sessions and groups. The paragraph in ll. 138-153 needs a comparison of the "miss" rates of CCK-/- animals between Day 1 vs. Day 6 (related to ll. 429- 431). This paragraph also needs comparisons of the "no-grasp" and "drop" rates of CCK-/- animals between Day 1 vs. Day 6 (related to ll. 432- 433). The paragraph in ll. 175-190 needs comparisons of success rates between Day 1 and Day 5/6 within the antagonist group (related to ll. 447-448).

    1. i have absolutely no doubt about that if we go even to three degrees warming and we're about 1.2 right at the moment above pre-industrial temperatures but if we go to even three degrees warming there isn't an ecosystem on the planet 00:35:24 that will not be shredded by that and there's no prospect for anything resembling liberal democracy to serve to survive in a world that's three degrees warmer than it was pre-industrial times
      • for: 3 Deg C world - catastrophic
    1. Reviewer #3 (Public Review):

      The study by Ngodup and colleagues describes the contribution of sodium leak NALCN conductance on the effects of noradrenaline on cartwheel interneurons of the DCN. The manuscript is very well-written and the experiments are well-controlled. The scope of the study is of high biological relevance and recapitulates a primary finding of the Khaliq lab (Philippart et al., eLife, 2018) in ventral midbrain dopamine neurons, that Gi/o-coupled receptors inhibit NALCN current to reduce neuronal excitability. Together these studies provide unequivocable evidence for NALCN as a downstream target of these receptors.

      In re-review of this study, the authors have addressed the concerns sufficiently. This is a very nice study.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Much of the literature on attention has focused on static, non-contingent stimuli that can be easily controlled and replicated--a mismatch with the actual day-to-day deployment of attention. The same limitation is evident in the developmental literature, which is further hampered by infants' limited behavioral repertoires and the general difficulty in collecting robust and reliable data in the first year of life. The current study engages young infants as they play with age-appropriate toys, capturing visual attention, cardiac measures of arousal, and EEG-based metrics of cognitive processing. The authors find that the temporal relations between measures are different at age 5 months vs. age 10 months. In particular, at 5 months of age, cardiac arousal appears to precede attention, while at 10 months of age attention processes lead to shifts in neural markers of engagement, as captured in theta activity.

      Strengths:<br /> The study brings to the forefront sophisticated analytical and methodological techniques to bring greater validity to the work typically done in the research lab. By using measures in the moment, they can more closely link biological measures to actual behaviors and cognitive stages. Often, we are forced to capture these measures in separate contexts and then infer in-the-moment relations. The data and techniques provide insights for future research work.

      Weaknesses:

      The sample is relatively modest, although this is somewhat balanced by the sheer number of data points generated by the moment-to-moment analyses. In addition, the study is cross-sectional, so the data cannot capture true change over time. Larger samples, followed over time, will provide a stronger test for the robustness and reliability of the preliminary data noted here. Finally, while the method certainly provides for a more active and interactive infant in testing, we are a few steps removed from the complexity of daily life and social interactions.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors are looking for a spatially specific functional brain response to visualise non-invasively with 3T (clinical field strength) MRI. They propose a velocity-nulled weighting to remove the signal from draining veins in a submillimeter multiband acquisition.

      Strengths:<br /> - This manuscript addresses a real need in the cognitive neuroscience community interested in imaging responses in cortical layers in-vivo in humans.<br /> - An additional benefit is the proposed implementation at 3T, a widely available field strength.

      Weaknesses:<br /> - Although the VASO acquisition is discussed in the introduction section, the VN-sequence seems closer to diffusion-weighted functional MRI. The authors should make it more clear to the reader what the differences are, and how results are expected to differ. Generally, it is not so clear why the introduction is so focused on the VASO acquisition (which, curiously, lacks a reference to Lu et al 2013). There are many more alternatives to BOLD-weighted imaging for fMRI. CBF-weighted ASL and GRASE have been around for a while, ABC and double-SE have been proposed more recently.<br /> - The comparison in Figure 2 for different b-values shows % signal changes. However, as the baseline signal changes dramatically with added diffusion weighting, this is rather uninformative. A plot of t-values against cortical depth would be much more insightful.<br /> - Surprisingly, the %-signal change for a b-value of 0 is not significantly different from 0 in the gray matter. This raises some doubts about the task or ROI definition. A finger-tapping task should reliably engage the primary motor cortex, even at 3T, and even in a single participant.<br /> - The BOLD weighted images in Figure 3 show a very clear double-peak pattern. This contradicts the results in Figure 2 and is unexpected given the existing literature on BOLD responses as a function of cortical depth.<br /> - Given that data from Figures 2, 3, and 4 are derived from a single participant each, order and attention affects might have dramatically affected the observed patterns. Especially for Figure 4, neither BOLD nor VN profiles are really different from 0, and without statistical values or inter-subject averaging, these cannot be used to draw conclusions from.<br /> - In Figure 5, a phase regression is added to the data presented in Figure 4. However, for a phase regression to work, there has to be a (macrovascular) response to start with. As none of the responses in Figure 4 are significant for the single participant dataset, phase regression should probably not have been undertaken. In this case, the functional 'responses' appear to increase with phase regression, which is contra-intuitive and deserves an explanation.<br /> - Consistency of responses is indeed expected to increase by a removal of the more variable vascular component. However, the microvascular component is always expected to be smaller than the combination of microvascular+macrovascular responses. Note that the use of %signal changes may obscure this effect somewhat because of the modified baseline. Another expected feature of BOLD profiles containing both micro- and microvasculature is the draining towards the cortical surface. In the profiles shown in Figure 7, this is completely absent. In the group data, no significant responses to the task are shown anywhere in the cortical ribbon.<br /> - Although I'd like to applaud the authors for their ambition with the connectivity analysis, I feel that acquisitions that are so SNR starved as to fail to show a significant response to a motor task should not be used for brain wide directed connectivity analysis.

      The claim of specificity is supported by the observation of the double-peak pattern in the motor cortex, previously shown in multiple non-BOLD studies. However, this same pattern is shown in some of the BOLD weighted data, which seems to suggest that the double-peak pattern is not solely due to the added velocity nulling gradients. In addition, the well-known draining towards the cortical surface is not replicated for the BOLD-weighted data in Figures 3, 4, or 7. This puts some doubt about the data actually having the SNR to draw conclusions about the observed patterns.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This study studied the neural mechanisms underlying the shift of ocular dominance induced by "dichoptic-backward-movie" adaptation. The study is self-consistent.

      Strengths:<br /> The experimental design is solid and progressive (relationship among three studies), and all of the raised research questions were well answered.

      The logic behind the neural mechanisms is solid.

      The findings regarding the cTMS (especially the position/site can be useful for future medical implications).

      Weaknesses:<br /> Why does the "dichoptic-backward-movie" adaptation matter? This part is severely missing. This kind of adaptation is neither intuitive like the classical (Gbison) visual adaptation, nor practical as adaptation as a research paradigm as well as the fundamental neural mechanism. If this part is not clearly stated and discussed, this study is just self-consistent in terms of its own research question. There are tons of "cool" phenomena in which the neural mechanisms are apparent as "FEF controls vision-attention" but never tested using TMS & fMRI, but we all know that this kind of research is just of incremental implications.

    1. Reviewer #3 (Public Review):

      Summary:

      Through a detailed methodology, the authors demonstrated that within 11 different primates, the shape of the brain matched a fractal of dimension 2.5. They enhanced the universality of this result by showing the concordance of their results with a previous study investigating 70 mammalian brains, and the discordance of their results with other folded objects that are not brains. They incidentally illustrated potential applications of this fractal property of the brain by observing a scale-dependent effect of aging on the human brain.

      Strengths:

      - New hierarchical way of expressing cortical shapes at different scales derived from the previous report through the implementation of a coarse-graining procedure.<br /> - Positioning of results in comparison to previous works reinforcing the validity of the observation.<br /> - Illustration of scale-dependence of effects of brain aging in the human.

      Weaknesses:

      - The impact of the contribution should be clarified compared to previous studies (implementation of new coarse graining procedure, dimensionality of primate brain vs previous studies, and brain aging observations).<br /> - The rather small sample sizes, counterbalanced by the strength of the effect demonstrated.<br /> - The use of either averaged or individual brains for the different sub-studies could be made clearer.<br /> - The model discussed hypothetically in the discussion is not very clear, and may not be state-of-the-art (axonal tension driving cortical folding? cf. https://doi.org/10.1115/1.4001683).

    1. Reviewer #3 (Public Review):

      Summary:<br /> The high heterogeneity nature of α-synuclein (α-syn) fibrils posed significant challenges in structural reconstruction of the ex vivo conformation. A deeper understanding of the factors influencing the formation of various α-syn polymorphs remains elusive. The manuscript by Frey et al. provides a comprehensive exploration of how pH variations (ranging from 5.8 to 7.4) affect the selection of α-syn polymorphs (specifically, Type1, 2, and 3) in vitro by using cryo-electron microscopy (cryo-EM) and helical reconstruction techniques. Crucially, the authors identify two novel polymorphs at pH 7.0 in PBS. These polymorphs bear resemblance to the structure of patient-derived juvenile-onset synucleinopathy (JOS) polymorph and diseased tissue amplified α-syn fibrils. The manuscript supports the notion that seeding is non-polymorph-specific in the context of secondary nucleation-dominated aggregation, underscoring the irreplaceable role of pH in polymorph formation. Nevertheless, certain areas within the manuscript would benefit from further refinement and elaboration to more robustly substantiate this hypothesis.

      Strengths:<br /> This study systematically investigates the effects of environmental conditions and seeding on the structure of α-syn fibrils. It emphasizes the significant influence of environmental factors, especially pH, in determining the selection of α-syn polymorphs. The high-resolution structures obtained through cryo-EM enable a clear characterization of the composition and proportion of each polymorph in the sample. Collectively, this work provides strong support for the pronounced sensitivity of α-syn fibril structures to environmental conditions and systematically categorizes previously reported α-syn fibril structures. Furthermore, the identification of JOS-like polymorph also demonstrates the possibility of in vitro reconstruction of brain-derived α-syn fibril structures.

      Weaknesses:<br /> 1. The authors reveal that both Type 1 monofilament fibril polymorph (reminiscent of JOS-like polymorph) and Type 5 polymorph (akin to tissue-amplified-like polymorph) can both form under the same condition. Additionally, this condition also fosters the formation of flat ribbon-like fibril across different batches. Notably, at pH 5.8, variations in experimental groups yield disparate abundance ratios between polymorph 3B and 3C, indicating a degree of instability in fibrillar formation. The variability would potentially pose challenges for replicability in subsequent research. In light of these situations, I propose the following recommendations:

      (1) An explicit elucidation of the factors contributing to these divergent outcomes under similar experimental conditions is warranted. This should include an exploration of whether variations in purified protein batches are contributing factors to the observed heterogeneity.

      (2) To enhance the robustness of the conclusions, additional replicates of the experiments under the same condition should be conducted, ideally a minimum of three times.

      (3) Further investigation into whether different polymorphs formed under the same buffer condition could lead to distinct toxicological and pathology effects would be a valuable addition to the study.

      2. The cross-seeding study presented in the manuscript demonstrates the pivotal role of pH conditions in dictating conformation. However, an intriguing aspect that emerges is the potential role of seed concentration in determining the resultant product structure. This raises a critical question: at what specific seed concentration does the determining factor for polymorph selection shift from pH condition to seed concentration? A methodological robust approach to address this should be conducted through a series of experiments across a range of seed concentrations. Such an approach could delineate a clear boundary at which seed concentration begins to predominantly dictate the conformation, as opposed to pH conditions. Incorporating this aspect into the study would not only clarify the interplay between seed concentration and pH conditions, but also add a fascinating dimension to the understanding of polymorph selection mechanisms.

      Furthermore, the study prompts additional queries regarding the behavior of cross-seeding production under the same pH conditions when employing seeds of distinct conformation. Evidence from various studies, such as those involving E46K and G51D cross-seeding, suggests that seed structure plays a crucial role in dictating polymorph selection. A key question is whether these products consistently mirror the structure of their respective seeds.

      3. In the Results section of "The buffer environment can dictate polymorph during seeded nucleation", the authors reference previous cell biological and biochemical assays to support the polymorph-specific seeding of MSA and PD patients under the same buffer conditions. This discussion is juxtaposed with recent research that compares the in vivo biological activities of hPFF, ampLB as well as LB, particularly in terms of seeding activity and pathology. Notably, this research suggests that ampLB, rather than hPFF, can accurately model the key aspects of Lewy Body Diseases (LBD) (refer to: https://doi.org/10.1038/s41467-023-42705-5). The critical issue here is the need to reconcile the phenomena observed in vitro with those in in-vivo or in-cell models. Given the low seed concentration reported in these studies, it is imperative for the authors to provide a more detailed explanation as to why the possible similar conformation could lead to divergent pathologies, including differences in cell-type preference and seeding capability.

      4. In the Method section of "Image processing", the authors describe the helical reconstruction procedure, without mentioning much detail about the 3D reconstruction and refinement process. For the benefit of reproducibility and to facilitate a deeper understanding among readers, the authors should enrich this part to include more comprehensive information, akin to the level of detail found in similar studies (refer to: https://doi.org/10.1038/nature23002).

      5. The abbreviation of amino acids should be unified. In the Results section "On the structural heterogeneity of Type 1 polymorphs", the amino acids are denoted using three-letter abbreviation. Conversely, in the same section under "On the structural heterogeneity of Type 2 and 3 structures", amino acids are abbreviated using the one-letter format. For clarity and consistency, it is essential that a standardized format for amino acid abbreviations be adopted throughout the manuscript.

    1. Reviewer #3 (Public Review):

      This manuscript focuses on defining the importance of UGGT1/2 in the process of protein degradation within the ER. The authors prepared cells lacking UGGT1, UGGT2, or both UGGT1/UGGT2 (DKO) HCT116 cells and then monitored the degradation of specific ERAD substrates. Initially, they focused on the ER stress sensor ATF6 and showed that loss of UGGT1 increased the degradation of this protein. This degradation was stabilized by deletion of ERAD-specific factors (e.g., SEL1L, EDEM) or treatment with mannose inhibitors such as kifunesine, indicating that this is mediated through a process involving increased mannose trimming of the ATF6 N-glycan. This increased degradation of ATF6 impaired the function of this ER stress sensor, as expected, reducing the activation of downstream reporters of ER stress-induced ATF6 activation. The authors extended this analysis to monitor the degradation of other well-established ERAD substrates including A1AT-NHK and CD3d, demonstrating similar increases in the degradation of destabilized, misfolding protein substrates in cells deficient in UGGT. Importantly, they did experiments to suggest that re-overexpression of wild-type, but not catalytically deficient, UGGT rescues the increased degradation observed in UGGT1 knockout cells. Further, they demonstrated the dependence of this sensitivity to UGGT depletion on N-glycans using ERAD substrates that lack any glycans. Ultimately, these results suggest a model whereby depletion of UGGT (especially UGGT1 which is the most expressed in these cells) increases degradation of ERAD substrates through a mechanism involving impaired re-glucosylation and subsequent re-entry into the calnexin/calreticulin folding pathway.

      I must say that I was under the impression that the main conclusions of this paper (i.e., UGGT1 functions to slow the degradation of ERAD substrates by allowing re-entry into the lectin folding pathway) were well-established in the literature. However, I was not able to find papers explicitly demonstrating this point. Because of this, I do think that this manuscript is valuable, as it supports a previously assumed assertion of the role of UGGT in ER quality control. However, there are a number of issues in the manuscript that should be addressed.

      Notably, the focus on well-established, trafficking-deficient ERAD substrates, while a traditional approach to studying these types of processes, limits our understanding of global ER quality control of proteins that are trafficked to downstream secretory environments where proteins can be degraded through multiple mechanisms. For example, in Figure 1-Figure Supplement 2, UGGT1/2 knockout does not seem to increase the degradation of secretion-competent proteins such as A1AT or EPO, instead appearing to stabilize these proteins against degradation. They do show reductions in secretion, but it isn't clear exactly how UGGT loss is impacting ER Quality Control of these more relevant types of ER-targeted secretory proteins.

      Lastly, I don't understand the link between UGGT, ATF6 degradation, and ATF6 activation. I understand that the idea is that increased ATF6 degradation afforded by UGGT depletion will impair activation of this ER stress sensor, but if that is the case, how does UGGT2 depletion, which only minimally impacts ATF6 degradation (Fig. 1), impact activation to levels similar to the UGGT1 knockout (Fig 4)? This suggests UGGT1/2 may serve different functions beyond just regulating the degradation of this ER stress sensor. Also, the authors should quantify the impaired ATF6 processing shown in Fig 4B-D across multiple replicates.

      Ultimately, I do think the data support a role for UGGT (especially UGGT1) in regulating the degradation of ERAD substrates, which provides experimental support for a role long-predicted in the field. However, there are a number of ways this manuscript could be strengthened to further support this role, some of which can be done with data they have in hand (e.g., the stats) or additional new experiments.

    1. Reviewer #3 (Public Review):

      In their paper entitled "Fear conditioning biases olfactory stem cell receptor fate" Liff et al. address the still enigmatic (and quite fascinating) phenomenon of intergenerationally inherited changes in the olfactory system in response to odor-dependent fear conditioning.

      In the abstract / summary, the authors raise expectations that are not supported by the data. For example, it is claimed that "increases in F0 were due to biased stem cell receptor choice." While an active field of study that has seen remarkable progress in the past decade, olfactory receptor gene choice and its relevant timing in particular is still unresolved. Here, Liff et al., do not pinpoint at what stage during differentiation the "biased choice" is made.

      Similarly, the concluding statement that the study provides "insight into the heritability of acquired phenotypes" is somewhat misleading. The experiments do not address the mechanisms underlying heritability.

      The statement that "the percentage of newborn M71 cells is 4-5 times that of MOR23 may simply reflect differences in the birth rates of the two cell populations" should, if true, result in similar differences in the occurrence of mature OSNs with either receptor identity. According to Fig. 1H & J, however, this is not the case.

      An important result is that Liff et al., in contrast to results from other studies, "do not observe the inheritance of odor-evoked aversion to the conditioned odor in the F1 generation." This discrepancy needs to be discussed.

      The authors speculate that "the increase in neurons responsive to the conditioned odor could enhance the sensitivity to, or the discrimination of, the paired odor in F0 and F1. This would enable the F1 population to learn that odor predicts shock with fewer training cycles or less odorant when trained with the conditioned odor." This is a fascinating idea that, in fact, could have been readily tested by Liff and coworkers. If this hypothesis were found true, this would substantially enhance the impact of the study for the field.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors food-deprived male and female mice and observed a much stronger reduction of leptin levels, energy consumption in the visual cortex, and visual coding performance in males than females. This indicates a sex-specific strategy for the regulation of the energy budget in the face of low food availability.

      Strengths:<br /> This study extends a previous study demonstrating the effect of food deprivation on visual processing in males, by providing a set of clear experimental results, demonstrating the sex-specific difference. It also provides hypotheses about the strategy used by females to reduce energy budget based on the literature.

      Weaknesses:<br /> The authors do not provide evidence that females are not impacted by visually guided behaviors contrary to what was shown in males in the previous study.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Zhang et al sought to use spatial transcriptomics and single-nucleus RNA sequencing to classify human spinal cord neurons. The authors reported 17 clusters on 10x Visium slides (6 donors) and 21 clusters by single-nucleus sequencing (9 donors). The authors tried to compare the results to those reported in mice and claimed similar patterns with some differing genes.

      Strengths:<br /> The manuscript provides a valuable database for the molecular and cellular organization of adult human spinal cords in addition to published datasets (Andersen, et al. 2023; Yadav, et al. 2023).

      Weaknesses:<br /> The results are largely observatory and lack quantitative analysis. Moreover, the assertions regarding the sex differences in motor neurons and the potential interactions between DRG and spinal cord neuronal subclusters appear preliminary and necessitate more rigorous validation.

    1. Reviewer #3 (Public Review):

      Summary and strengths<br /> The manuscript investigated the factors related to understudied genes in biomedical research. It showed that understudied are largely abandoned at the writing stage and identified biological and experimental factors associated with selection of highlighted genes.

      It is very important for the research community to recognize the systematic bias in research of human genes and take precautions when designing experiments and interpreting results. The authors have tried to profile this issue comprehensively and promoted more awareness and investigation of understudied genes.

      Weaknesses<br /> Regarding result section 1 "Understudied genes are abandoned at synthesis/writing stage", the figures are not clear and do not convey the messages written in the main text. For example, in Figure 1B, figure S5 and S6,<br /> - There is no "numbers to the right of each box plot".<br /> - Do these box plots only show understudied genes? How many genes are there in each box plot? The definition and numbers of understudied genes are not clear.<br /> - "We found that hit genes that are highlighted in the title or abstract are strongly over-represented among the 20% highest-studied genes in all biomedical literature (Figure 1B)". This is not clear from the figure.

      Regarding result section 2 "Subsequent reception by other scientists does not penalize studies on understudied genes", the authors showed in figure 2 that there is a negative correlation between articles per gene before 2015 and median citations to articles published in 2015. Another explanation could be that for popular genes, there are more low-quality articles that didn't get citations, not necessarily that less popular genes attract more citations.

      Regarding result section 3 "Identification of biological and experimental factors associated with selection of highlighted genes", in Figure 3 and table s2, the author stated that "hits with a compound known to affect gene activity are 5.114 times as likely to be mentioned in the title/abstract in an article using transcriptomics", The number 5.144 comes out of nowhere both in the figure and the table. In addition, figure 4 is not informative enough to be included as a main figure.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this manuscript, Schembri et al performed a molecular analysis by WGS of 52 E. coli strains identified as "causing neonatal meningitis" from several countries and isolated from 1974 to 2020. Sequence types, virulence genes content as well as antibiotic-resistant genes are depicted. In the second part, they also described three cases of relapse and analysed their respective strains as well as the microbiome of three neonates during their relapse. For one patient the same E. coli strain was found in blood and stool (this patient had no meningitis). For two patients microbiome analysis revealed a severe dysbiosis.

      Major comments:<br /> Although the authors announce in their title that they study E. coli that cause neonatal meningitis and in methods stipulate that they had a collection of 52 NMEC, we found in Supplementary Table 1, 29 strains (threrefore most of the strains) isolated from blood and not CSF. This is a major limitation since only strains isolated from CSF can be designated with certainty as NMEC even if a pleiocytose is observed in the CSF. A very troubling data is the description of patient two with a relapse infection. As stated in the text line 225, CSF microscopy was normal and culture was negative for this patient! Therefore it is clear that patient without meningitis has been included in this study.

      Another major limitation (not stated in the discussion) is the absence of clinical information on neonates especially the weeks of gestation. It is well known that the risk of infection is dramatically increased in preterm neonates due to their immature immunity. Therefore E. coli causing infection in preterm neonates are not comparable to those causing infection in term neonates notably in their virulence gene content. Indeed, it is mentioned that at least eight strains did not possess a capsule, we can speculate that neonates were preterm, but this information is lacking. The ages of neonates are also lacking. The possible source of infection is not mentioned, notably urinary tract infection. This may have also an impact on the content of VF.

      Sequence analysis reveals the predominance of ST95 and ST1193 in this collection. The high incidence of ST95 is not surprising and well previously described, therefore, the concluding sentence line 132 indicating that ST95 E. coli should exhibit specific virulence features associated with their capacity to cause NM does not add anything. On the contrary, the high incidence of ST1193 is of interest and should have been discussed more in detail. Which specific virulence factors do they harbor? Any hypothesis explaining their emergence in neonates? In the paragraph depicted the VF it is only stated that ST95 contained significantly more VF than the ST1193 strains. And so what? By the way "significantly" is not documented: n=?, p=?<br /> The complete sequence of 18 strains is not clear. Results of Supplementary Table 2 are presented in the text and are not discussed.

      46 years is a very long time for such a small number of strains, making it difficult to put forward epidemiological or evolutionary theories. In the analysis of antibiotic resistance, there are no ESBLs. However, Ding's article (reference 34) and other authors showed that ESBLs are emerging in E. coli neonatal infection. These strains are a major threat that should be studied, unfortunately, the authors haven't had the opportunity to characterize such strains in their manuscript.

      Second part of the manuscript:<br /> The three patients who relapsed had a late neonatal infection (> 3 days) with respective ages of 6 days, 7 weeks, and 3 weeks. We do not know whether they are former preterm newborns (no term specified) or whether they have received antibiotics in the meantime.

      Patient 1: Although this patient had a pleiocytose in CSF, the culture was negative which is surprising and no explanation is provided. Therefore, the diagnosis of meningitis is not certain. Pleiocytose without meningitis has been previously described in neonates with severe sepsis.

      Line 215: no immunological abnormalities were identified (no details are given).

      Patient 2: This patient had a recurrence of bacteremia without meningitis (line 225: CSF microscopy was normal and culture negative!). This case should be deleted.

      Patient 3: This patient had two relapses which is exceptional and may suggest the existence of a congenital malformation or a neurological complication such as abscess or empyema therefore, "imaging studies" should be detailed.

      The authors suggest a link between intestinal dysbiosis and relapse in three patients. However, the fecal microbiomes of patients without relapse were not analysed, so no comparison is possible. Moreover, dysbiosis after several weeks of antibiotic treatment in a patient hospitalized for a long time is not unexpected. Therefore, it's impossible to make any assumption or draw any conclusion. This part of the manuscript is purely descriptive. Finally, the authors should be more prudent when they state in line 289 "we also provide direct evidence to implicate the gut as a reservoir [...] antibiotic treatment". Indeed the gut colonization of the mothers with the same strain may be also a reservoir (as stated in the discussion line 336).

      Finally, the authors do not discuss the potential role of ceftriaxone vs cefotaxime in the dysbiosis observed. Ceftriaxone may have a major impact on the microbiota due to its digestive elimination.

    1. Reviewer #3 (Public Review):

      In this manuscript, Magnuson and colleagues investigate the meiotic functions of ARID1A, a putative DNA binding subunit of the SWI/SNF chromatin remodeler BAF. The authors develop a germ cell specific conditional knockout (cKO) mouse model using Stra8-cre and observe that ARID1A-deficient cells fail to progress beyond pachytene, although due to inefficiency of the Stra8-cre system the mice retain ARID1A-expressing cells that yield sperm and allow fertility. Because ARID1A was found to accumulate at the XY body late in Prophase I, the authors suspected a potential role in meiotic silencing and by RNAseq observe significant misexpression of sex-linked genes that typically are silenced at pachytene. They go on to show that ARID1A is required for exclusion of RNA PolII from the sex body and for limiting promoter accessibility at sex-linked genes, consistent with a meiotic sex chromosome inactivation (MSCI) defect in cKO mice. The authors proceed to investigate the impacts of ARID1A on H3.3 deposition genome-wide. H3.3 is known be regulated by ARID1A and is linked to silencing, and here the authors find that upon loss of ARID1A, overall H3.3 enrichment at the sex body as measured by IF failed to occur, but H3.3 was enriched specifically at transcriptional start sites of sex-linked genes that are normally regulated by ARID1A. The results suggest that ARID1A normally prevents H3.3 accumulation at target promoters on sex chromosomes and based on additional data, restricts H3.3 to intergenic sites. Finally, the authors present data implicating ARID1A and H3.3 occupancy in DSB repair, finding that ARID1A cKO leads to a reduction in focus formation by DMC1, a key repair protein. Overall the paper provides new insights into the process of MSCI from the perspective of chromatin composition and structure, and raises interesting new questions about the interplay between chromatin structure, meiotic silencing and DNA repair.

      In general the data are convincing. The conditional KO mouse model has some inherent limitations due to incomplete recombination and the existence of 'escaper' cells that express ARID1A and progress through meiosis normally. This reviewer feels that the authors have addressed this point thoroughly and have demonstrated clear and specific phenotypes using the best available animal model. The data demonstrate that the mutant cells fail to progress past pachytene, although it is unclear whether this specifically reflects pachytene arrest, as accumulation in other stages of Prophase also is suggested by the data in Table 1. The western blot showing ARID1A expression in WT vs. cKO spermatocytes (Fig. S2) is supportive of the cKO model but raises some questions. The blot shows many bands that are at lower intensity in the cKO, at MWs from 100-250kDa. The text and accompanying figure legend have limited information. Are the various bands with reduced expression different isoforms of ARID1A, or something else? What is the loading control 'NCL'? How was quantification done given the variation in signal across a large range of MWs?

      An additional weakness relates to how the authors describe the relationship between ARID1A and DNA damage response (DDR) signaling. The authors don't see defects in a few DDR markers in ARID1A CKO cells (including a low resolution assessment of ATR), suggesting that ARID1A may not be required for meiotic DDR signaling. However, as previously noted the data do not rule out the possibility that ARID1A is downstream of DDR signaling and the authors even indicate that "it is reasonable to hypothesize that DDR signaling might recruit BAF-A to the sex chromosomes." It therefore is difficult to understand why the authors continue to state that "...the mechanisms underlying ARID1A-mediated repression of the sex-linked transcription are mutually exclusive to DDR pathways regulating sex body formation" (p. 8) and that "BAF-A-mediated transcriptional repression of the sex chromosomes occurs independently of DDR signaling" (p. 16). The data provided do not justify these conclusions, as a role for DDR signaling upstream of ARID1A would mean that these mechanisms are not mutually exclusive or independent of one another.

      A final comment relates to the impacts of ARID1A loss on DMC1 focus formation and the interesting observation of reduced sex chromosome association by DMC1. The authors additionally assess the related recombinase RAD51 and suggest that it is unaffected by ARID1A loss. However, only a single image of RAD51 staining in the cKO is provided (Fig. S11) and there are no associated quantitative data provided. The data are suggestive but it would be appropriate to add a qualifier to the conclusion regarding RAD51 in the discussion which states that "...loss of ARID1a decreases DMC1 foci on the XY chromosomes without affecting RAD51" given that the provided RAD51 data are not rigorous. In the long-term it also would be interesting to quantitatively examine DMC1 and RAD51 focus formation on autosomes as well.

    1. Reviewer #3 (Public Review):

      Summary<br /> The researchers aim add to the literature on faculty career pathways with particular attention to how gender disparities persist in the career and funding opportunities of researchers. The researchers also examine aspects of institutional prestige that can further amplify funding and career disparities. While some factors about individuals' pathways to faculty lines are known, including the prospects of certain K award recipients, the current study provides the only known examination of the K99/R00 awardees and their pathways.

      Strengths<br /> The authors establish a clear overview of the institutional locations of K99 and R00 awardees and the pathways for K99-to-R00 researchers and the gendered and institutional patterns of such pathways. For example, there's a clear institutional hierarchy of hiring for K99/R00 researchers that echo previous research on the rigid faculty hiring networks across fields, and a pivotal difference in the time between awards that can impact faculty careers. Moreover, there's regional clusters of hiring in certain parts of the US where multiple research universities are located. Moreover, documenting the pathways of HBCU faculty is an important extension of the study by Wapman et al. (2022: https://www.nature.com/articles/s41586-022-05222-x), and provides a more nuanced look at the pathways of faculty beyond the oft-discussed high status institutions. (However, there is a need for more refinement in this segment of the analyses). Also, the authors provide important caveats throughout the manuscript about the study's findings that show careful attention to the complexity of these patterns and attempting to limit misinterpretations of readers.

      Weaknesses<br /> The authors have addressed my recommendations in the previous review round in a satisfactory way.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This work aims to understand the contribution of microglia to anesthesia induced by general anesthetics. The authors report that ablation of microglia shortens anesthesia, manifested by the delay of anesthesia induction and the early anesthesia emergence. They show that microglial depletion suppresses activity in the neuronal network of anesthesia-activated brain regions but enhances activity in emergence-activated brain regions. Based on these findings, the authors suggest microglia facilitate and stabilize the anesthesia status. To elucidate the underlying mechanism, they further tested the potential contribution of microglia-mediated dendritic spine plasticity and microglial P2Y12-Ca2+ signaling, and identified the latter as a critical pathway through which microglia regulate anesthesia.

      Strengths:<br /> A major strength of this study is the systematic experimental design, which includes multiple anesthetics and complementary approaches, leading to very compelling data. As a result, a significant contribution of microglia in instating and maintaining the state of anesthesia is convincingly established. In addition, the results also shed light on the potential underlying microglial mechanistic. The findings are of relevance to both medical practice and basic understanding of microglial biology and neuron-glia interactions.

      Weaknesses:<br /> The study produces a large amount of data that is in general cohesive and support the main conclusions, but more thorough considerations on some of their findings may be helpful, as exemplified by the following:

      1) the effect of microglial ablation on chloral hydrate-induced RORR in Fig. 1B appears to be not the same as other anesthetics. what does this mean?

      2) Macrophage ablation impedes anesthesia emergence from pentobarbital (Fig. 3C). how may this occur?

      3) examination of the potential effect of microglial depletion on dendritic spine density is interesting but the experimental design does not seem to align well with the PPR and eEPSC data, which indicate a reduction in presynaptic release (Fig.10E) and increase of postsynaptic function (Fig. 10H), respectively. The PPR data seems to suggest a presynaptic effect of microglia; ablation.

    1. Reviewer #3 (Public Review):

      Perrodin, Verzat and Bendor describe the response of female mice to the playback of male mouse ultrasonic songs. The experiments were performed in a Y-maze-like apparatus with two acoustically separate response chambers. Sounds were presented in 4 trials, alternating strictly between the left and right branches of the Y. Cumulative dwell time in the two chambers was measured, and used as an index of female preference. They first show, consistent with previous observations, that female mice will spend more time near a speaker playing a male mouse song than near a speaker playing nothing. They then performed several manipulations-time reversals, syllable order randomization, phase scrambled replacement, pure tone replacement, and 'hyper-regular' inter-syllable-intervals-which female mice did not discriminate from the normal song in this assay. Finally, they show that females spent more time near normal songs than near songs with more variable inter-syllable-intervals

      The authors' approach to the problem was ethologically sensible -- females were tested in proestrus and estrus, the male odor was used to increase motivation, mouse handling was with tube transfers to reduce stress, mice were age-matched across conditions, and experiments were conducted in the dark (active) phase. In addition, animals were habituated to handling and to the apparatus.

      The acoustics were very good. The acoustic structure of the vocal signals was well described. Specific ranges of dB SPL were reported, speaker flatness was evaluated, the sound amplitude was matched in manipulated and unmanipulated songs, and playback onset timing jittered randomly between manipulated and unmanipulated signals.

      I think it is a reasonable result. My concerns are the following:

      1) The authors use "approach" as it has been used in other publications, but what is actually measured is dwell time. Pomerantz et al, 1983 observed that female mice approached mute and singing males the same number of times (e.g. approached both at the same rate), but spent more time with the singing than the mute male. Their use of "approach" to describe dwell time was a bit confusing to me, but sticking with the way the literature is defensible. However, they also refer to the assay as a "place preference assay", which I found confusing.

      2) I am a bit worried about their method of removing side bias (29% of trials). It certainly seems like a reasonable thing to exclude mice that simply picked one side or the other, but, because the stimulus always alternated between the sides, this exclusion of mice exhibiting a side bias is also excluding, specifically, behavior that would be incorrect.

      3) Given the observation by Hammerschmidt et al, 2009, that female mice would only discriminate male songs in a playback assay on the first presentation, it is important to know whether females were used across the different manipulations. How many conditions did each female experience? How often did a female display positive discrimination in a condition after having displayed no discrimination?

      Specific comments:

      1) For Figure 2L

      The heat map legend is labeled "Towards" indicating a motion towards either the speaker playing the song or the silent speaker. However, there is nothing in the methods that indicates that the direction of movement was ever measured. I may have missed it, but I can't figure out how this heat map was generated and what it represents. The figure legend states: "Normalized temporal profiles of approach behaviour to mouse songs vs silence over the course of 4 sound presentation trials (x-axis, coloured bars) for each of the behavioural sessions (y-axis, each animal is one line, n = 29), calculated as in I. Sessions (lines) are ordered by the amplitude of their last element." 2I states " I. Temporal profile of approach behaviour over the four sound presentation trials in the example session in C, calculated as the cumulative sum of time in the intact song playback (positively weighted) vs silent (negatively weighted) speaker zone." I interpret this to mean that "Towards" is an inaccurate description of what is being plotted, as there is no motion, only dwell time.

      References

      K. Hammerschmidt, K. Radyushkin, H. Ehrenreich & J. Fischer (2009) Female mice respond to male ultrasonic 'songs' with approach behavior. Biol. Lett. 5:589-592.

      Pomerantz, S.M., Nunez, A.A. & Bean, J (1983) Female behavior is affected by male ultrasonic vocalizations in house mouse. Physiol. Behav. 31:91-96.

    1. Reviewer #3 (Public Review):

      In this revised manuscript, Urtecho et al., present an updated version of their earlier submission. They characterized thousands of promoter sequences in E. coli using a massively-parallel reporter assay and built a number of computational models to classify active from inactive promoters or associate the sequence to promoter expression/strength. As eluded in the earlier review cycle, the amount of experimental, bioinformatics, and analytical work presented here is astounding.

      Identifying promoters and associating genomic (or promoter) sequences to promoter strength is nontrivial. Authors report challenges in achieving this grand goal even with the state-of-the-art characterization technology used here. Nevertheless, the experimental work, analytic workflow, and data resource presented here will serve as a milestone for future researchers.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In Hunter, Coulson et al, the authors seek to expand our understanding of how neural activity during developmental critical periods might control the function of the nervous system later in life. To achieve increased excitation, the authors build on their previous results and apply picrotoxin 17-19 hours after egg-laying, which is a critical period of nervous system development. This early enhancement of excitation leads to multiple effects in third-instar larvae, including prolonged recovery from electroshock, increased synchronization of motor neuron networks, and increased AP firing frequency. Using optogenetics and whole-cell patch clamp electrophysiology, the authors elegantly show that picrotoxin-induced over-excitation leads to increased strength of excitatory inputs, and not loss of inhibitory inputs. To enhance inhibition, the authors chose an approach that involved stimulation of mechanosensory neurons; this counteracts picrotoxin-induced signs of increased excitation. This approach to enhancing inhibition requires further validation.

      Strengths:<br /> • The authors confirm their previous results and show that 17-19 hours after egg laying is a critical period of nervous system development.<br /> • Using Ca2+/Sr2+ substitutions, the authors demonstrate that synaptic connections between A18a & aCC show increased mEPSP amplitudes. The authors show that this aCC input is what is driving enhanced excitation.<br /> • The authors demonstrate that the effects of over-excitation attributed to picrotoxin exposure are generalizable and also occur in bss mutant flies.

      Weaknesses:<br /> • The authors build on their previous work and argue that the critical period (17-19h after egg-laying) is a uniquely sensitive period of development. Establishing the developmental window of the critical period is important for the present study. The present study would benefit from demonstrating that exposure to picrotoxin at L1 or L2 do not lead to changes in induced seizure at L3. This would further the authors hypothesis of the criticality of the 17-19h AEL period.<br /> • The ch-related experiments require further controls and explanation. Regarding experiments in Fig 6, what is the effect of ch neuron stimulation alone on time lag and AP frequency? The authors report related pilot experiments have been performed; the present study would be strengthened with inclusion of these data.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This manuscript reports an experiment that compared groups of rats acquisition and performance of a Pavlovian bi-conditional discrimination, in which the presence of one cue, A, signals that the presentation of one CS, X, will be followed by a reinforcer and a second CS, Y, will be nonreinforced. Periods of cue A alternated with periods of cue B, which signaled the opposite relationship, cue X is nonreinforced, and cue Y is reinforced. This is a conditional discrimination problem in which the rats learned to approach the food cup in the presence of each CS conditional on the presence of the third background cue. The comparison groups consisted of the same conditional discrimination with the exception that each CS was paired with a different reinforcer. This makes the problem easier to solve as the background is now priming a differential outcome. A third group received simple discrimination training of X reinforced and Y nonreinforced in cues A and B, and the final group was trained with X and Y reinforced on half the trials (no discrimination). The results were clear that the latter two discrimination learning procedures resulted in rapid learning in comparison to the first. Rats required about 3 times as many 4-session blocks to acquire the bi-conditional discrimination than the other two discrimination groups. Within the biconditional discrimination group, female and male rats spent the same amount of time in the food cup during the rewarded CS, but females spent more time in the food cup during CS- than males. The authors interpret this as a deficit in discrimination performance in females on this task and use a measure that exaggerates the difference in CS+ and CS_ responding (a discrimination ratio) to support their point. When tested after acute restraint stress, the male rats spent less time in the food cup during the reinforced CS in comparison to the female rats, but did not lose discrimination performance entirely. The was also some evidence of more fos-positive cells in the orbitofrontal cortex in females, but this difference was of degree.

      Overall, I think the authors were successful in documenting performance on the biconditional discrimination task. Showing that it is more difficult to perform than other discriminations is valuable and consistent with the proposal that accurate performance requires encoding of conditional information (which the authors refer to as "context"). There is evidence that female rats spend more time in the food cup during CS-, but I hesitate to agree that this is an important sex difference. There is no cost to spending more time in the food cup during CS- and they spend much less time there than during CS+. Males and females also did not differ in their CS+ responses, suggesting similar levels of learning. A number of factors could contribute to more food cup time in CS-, such as smaller body size and more locomotor activity. The number of food cup entries during CS+ and CS- was not reported here. Nevertheless, I think the manuscript will make a useful contribution to the field and hopefully lead readers to follow up on these types of tasks.

      One area for development would be to test the associative properties of the cues controlling the conditional discrimination, can they be shown to have the properties of Pavlovian occasion-setting stimuli? Such work would strengthen the justification/rationale for using the terms "context" and "occasion setter" to refer to these stimuli in this task in the way the authors do in this paper.

      Strengths:<br /> - Nicely designed and conducted experiment.<br /> - Documents performance difference by sex.

      Weaknesses:<br /> - Overstatement of sex differences.<br /> - Inconsistent, confusing, and possibly misleading use of terms to describe/imply the underlying processes contributing to performance.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This manuscript represents a technological development- specifically a micrococcal nuclease chromatin capture approach, termed MChIP-C to identify promoter-centered chromatin interactions at single nucleosome resolution via a specific protein, similar to HiChIP, ChIA-PET, etc.. In general, the manuscript is technically well done. Two major issues raise concerns that need to be addressed. First, it does not appear that novel chromatin interactions identified by MChIP-C which were missed by other approaches such as HiChIP, were validated. This is central to the argument of "improved" sensitivity, which is one of the key factors to assess sensitivity. Second is the question of resolution. Because the authors focus on a histone mark (H3K4me3) it is unclear whether the resolution of the assay truly exceeds other approaches, especially microC. These two issues are not completely supported by the data provided.

      Strengths:<br /> 1) The method appears to hold promise to improve both the sensitivity and resolution of protein-centered chromatin capture approaches.

      Weaknesses:<br /> 1) Specific validation experiments to demonstrate the identification of previously missed novel interactions are missing.

      2) It is unclear if the resolution is really superior based on the data provided.

      3) It is unclear how much advantage the approach has, especially compared to existing approaches such as HiChIP< since sequencing depth as a variable is not adequately addressed.

    1. Reviewer #3 (Public Review):

      Summary:<br /> A central question in ecology is: Why are there so many species? This question gained heightened interest after the development of influential models in theoretical ecology in the 1960s, demonstrating that under certain conditions, two consumer species cannot coexist on the same resource. Since then, several mechanisms have been shown to be capable of breaking the competitive exclusion principle (although, we still lack a general understanding of the relative importance of the various mechanisms in promoting biodiversity).

      One mechanism that allows for breaking the competitive exclusion principle is predator interference. The Beddington-DeAngelis is a simple model that accounts for predator interference in the functional response of a predator. The B-D model is based on the idea that when two predators encounter one another, they waste some time engaging with one another which could otherwise be used to search for resources. While the model has been influential in theoretical ecology, it has also been criticized at times for several unusual assumptions, most critically, that predators interfere with each other regardless of whether they are already engaged in another interaction. However, there has been considerable work since then which has sought either to find sets of assumptions that lead to the B-D equation or to derive alternative equations from a more realistic set of assumptions (Ruxton et al. 1992; Cosner et al. 1999; Broom et al. 2010; Geritz and Gyllenberg 2012). This paper represents another attempt to more rigorously derive a model of predator interference by borrowing concepts from chemical reaction kinetics (the approach is similar to previous work: Ruxton et al. 1992). The main point of difference is that the model in the current manuscript allows for 'chasing pairs', where a predator and prey engage with one another to the exclusion of other interactions, a situation Ruxton et al. (1992) do not consider. While the resulting functional response is quite complex, the authors show that under certain conditions, one can get an analytical expression for the functional response of a predator as a function of predator and resource densities. They then go on to show that including intraspecific interference allows for the coexistence of multiple species on one or a few resources, and demonstrate that this result is robust to demographic stochasticity.

      Strengths:<br /> I appreciate the effort to rigorously derive interaction rates from models of individual behaviors. As currently applied, functional responses (FRs) are estimated by fitting equations to feeding rate data across a range of prey or predator densities. In practice, such experiments are only possible for a limited set of species. This is problematic because whether a particular FR allows stability or coexistence depends on not just its functional form, but also its parameter values. The promise of the approach taken here is that one might be able to derive the functional response parameters of a particular predator species from species traits or more readily measurable behavioral data.

      Weaknesses:<br /> The main weakness of this paper is that it devotes the vast majority of its length to demonstrating results that are already widely known in ecology. We have known for some time that predator interference can relax the CEP (e.g., Cantrell, R. S., Cosner, C., & Ruan, S. 2004).

      While the model presented in this paper differs from the functional form of the B-D in some cases, it would be difficult to formulate a model that includes intraspecific interference (that increases with predator density) that does not allow for coexistence under some parameter range. Thus, I find it strange that most of the main text of the paper deals with demonstrating that predator interference allows for coexistence, given that this result is already well known. A more useful contribution would focus on the extent to which the dynamics of this model differ from those of the B-D model.

      The formulation of chasing-pair engagements assumes that prey being chased by a predator are unavailable to other predators. For one, this seems inconsistent with the ecology of most predator-prey systems. In the system in which I work (coral reef fishes), prey under attack by one predator are much more likely to be attacked by other predators (whether it be a predator of the same species or otherwise). I find it challenging to think of a mechanism that would give rise to chased prey being unavailable to other predators. The authors also critique the B-D model: "However, the functional response of the B-D model involving intraspecific interference can be formally derived from the scenario involving only chasing pairs without predator interference (Wang and Liu, 2020; Huisman and De Boer, 1997) (see Eqs. S8 and S24). Therefore, the validity of applying the B-D model to break the CEP is questionable.".

      However, the way "chasing pairs" are formulated does result in predator interference because a predator attacking prey interferes with the ability of other predators to encounter the prey. I don't follow the author's logic that B-D isn't a valid explanation for coexistence because a model incorporating chasing pairs engagements results in the same functional form as B-D.

      More broadly, the specific functional form used to model predator interference is of secondary importance to the general insight that intraspecific interference (however it is modeled) can allow for coexistence. Mechanisms of predator interference are complex and vary substantially across species. Thus it is unlikely that any one specific functional form is generally applicable.

    1. Reviewer #3 (Public Review):

      In this study, Gumaste et al. aim to determine whether mice can discriminate odor intermittency and whether the olfactory bulb encodes intermittency. Using a Go/No-Go task, the study first showed that mice can be trained to discriminate odor stimuli with a low versus high intermittency value. Next, the authors demonstrated that early olfactory processing in the OSNs and mitral/tufted cells encodes intermittency. Through calcium imaging of olfactory bulb glomeruli, they obtained the glomerular response properties across intermittency and demonstrated the effects of sniff frequency on the glomerular representation of intermittency. Although the results are expected based on previous literature, they do lend support to the notion that intermittency can be used for odor-guided navigation.

      Strengths:

      The counterbalanced olfactometer used in this study keeps the air flow constant while odor concentration changes. This design is very useful for experiments in which odor delivery needs to be precisely controlled.

      In a Go/No-Go task, mice were successfully trained to discriminate CS+ versus CS- odor stimuli with high versus low intermittency values in three different stimulus types (termed naturalistic, binary naturalistic, and square wave).

      The olfactory bulb glomerular activity (from either olfactory sensory neurons or mitral/tufted cells) was monitored while mice performing the behavioral tasks, supporting that intermittency coding could arise from early olfactory processing.

      Weaknesses:

      Alternative interpretations of the behavioral outcome could be better discussed. For instance, the odors delivered with high intermittency values may lead to higher odor concentrations that olfactory sensory neurons encounter in the mucus. Mice might discriminate the total amount of odors present in the mucus rather than intermittency.

      The conclusion that intermittency encoding is odor specific and depends on the spatial patterning/intrinsic glomerular properties is only based on two odorants used in this study.

    1. Reviewer #3 (Public Review):

      This manuscript describes a multiplexed approach for the identification of transcriptional features of neurons projecting to specific target areas at the single-cell level. This approach, called MERGE-seq, begins with multiplexed retrograde tracing by injecting distinctly barcoded rAAV-retro viruses into different target areas. The transcriptomes and barcoding of neurons in the source area are then characterized by single-cell RNA sequencing (scRNAseq) on the 10xGenomics platform. The projection targets of barcoded neurons in the source area can be inferred by matching the detected barcodes to the barcode sequences to of rAAV-retro viruses injected into the target areas.

      The authors validated their approach by injecting five rAAV-retro GFP viruses, each encoding a different barcode, into five known targets of the ventromedial prefrontal cortex (vmPFC). The transcriptomes and barcoding of vmPFC neurons were then analyzed by scRNA-seq with or without enrichment of retrogradely labeled neurons based on GFP fluorescence. The authors confirmed the previously described heterogeneity of vmPFC neurons. In addition, they showed that most transcriptionally defined cell types project to multiple targets and that the five targets received projections from multiple transcriptomic types. The authors further characterized the transcriptomic features of barcoded vmPFC neurons with different projection patterns and defined Pou3f1 as a marker gene of neurons extending collateral branches to the dorsomedial striatum and lateral hypothalamus.

      Overall, the results of the manuscript are convincing: the transcriptomic vmPFC cell types defined by scRNAseq in this study appear to correlate well with previous studies, the bifurcated projection patterns inferred by barcoding are validated using dual-color retro-AAV tracing, and marker genes for projection-specific cell subclasses are validated in retrogradely labeled vmPFC using RNA FISH for marker detection.

      The concept of combining retrograde tracing and scRNAseq is not new. Previous studies have applied recombinase-expressing viruses capable of retrograde labeling, such as CAV, rabies virus, and AAV2-Retro, to retrogradely label and induce the expression of fluorescence markers in projection neurons, therefore facilitating enrichment and analysis of neurons projecting to a specific target. Multiplexed analysis can be achieved with the combination of different reporter viruses or viruses expressing different recombinases and appropriate reporter mouse lines. The advantages of MERGE-seq include that no transgenic lines are required and that it could be applied at even higher levels of multiplexity.

      However, previously existing datasets that have already profiled this region with scRNAseq have not been utilized to their full extent. Therefore, for the proper context with prior literature, bioinformatic integration of these scRNAseq and prior scRNAseq data is needed.

      Moreover, robust detection of barcodes in neurons labeled by barcoded AAV-retro viruses remains a challenge. The authors should clearly discuss the difficulties with barcode detection in this approach, as well as discuss potential solutions, which are important for others interested in its approach.

      While this study is limited to the five known targets of vmPFC, the results suggest that MERGE-seq is a valuable tool that could be used in the future to characterize projection targets and transcriptomes of neurons in a multiplexed manner. As MERGE-seq uses AAVs to deliver barcodes, this method has the potential for application in model organisms for which transgenic lines are not available. Further improvements in experimental design and data analysis should be considered when applying MERGE-seq to poorly characterized source areas or with increased multiplexity of target areas.

      In summary, this is a valuable approach, but the authors should clearly provide the context for their study within the existing literature, transparently discuss the limitations of MERGE-seq, as well as suggest improvements for the future.

    1. Reviewer #3 (Public Review):

      Male seminal fluid proteins play a crucial role in fertility and influence female physiology and behavior after mating. Brown et al. have discovered a new reproductive function for odorant-binding proteins (Obps) in Drosophila. The study shows that Obp56g is expressed in male reproductive tissues that produce seminal fluid proteins and is required for the formation of the mating plug in the mated female. The study demonstrates that RNAi knockdown and CRISPR/Cas9-generated mutations in Obp56g result in a defective mating plug, reduced sperm storage, and subsequent effects on female post-mating responses. The research also suggests that Obp56g has been co-opted for a reproductive function over evolutionary time, as supported by functional and comparative RNAseq data across Drosophila species. Finally, the study reports expression shifts, duplication, and divergence in the evolution of these seminal protein genes.

      Overall, the study represents a significant contribution to our understanding of seminal proteins and their reproductive function. The creation of novel Obp mutants using CRISPR/Cas9 technology is a valuable resource for future research in the Drosophila community. The manuscript successfully conveys the key findings and their potential implications for the field. However, to reinforce the study's conclusions, more quantitative data is necessary. Furthermore, improving the statistical analysis and incorporating additional genetic controls would enhance the quality of the study and provide a stronger foundation for its conclusions.

    1. Reviewer #3 (Public Review):

      This manuscript offers a novel account of history biases in perceptual decisions in terms of bounded rationality, more specifically in terms of finite resources strategy. Bridging two works of literature on the suboptimalities of human decision-making (cognitive biases and bounded rationality) is very valuable per se; the theoretical framework is well derived, building upon the authors' previous work; and the choice of experiment and analysis to test their hypothesis is adequate. However, I do have important concerns regarding the work that do not enable me to fully grasp the impact of the work. Most importantly, I am not sure whether the hypothesis whereby inference is biased towards avoiding high precision posterior is equivalent or not to the standard hypothesis that inference "leaks" across time due to the belief that the environment is not stationary. This and other important issues are detailed below. I also think that the clarity and architecture of the manuscript could be greatly improved.

      1. At this point it remains unclear what is the relationship between the finite resources hypothesis (the only bounded rationality hypothesis supported by the data) and more standard accounts of historical effects in terms of adaptation to a (believed to be) changing environment. The Discussion suggests that the two approaches are similar (if not identical) at the algorithmic level: in one case, the posterior belief is stretched (compared to the Bayesian observer for stationary environments) due to precision cost, in other because of possible changes in the environment. Are the two formalisms equivalent? Or could the two accounts provide dissociable predictions for a different task? In other words, if the finite resources hypothesis is not meant to be taken as brain circuits explicitly minimizing the cost (as stated by the authors), and if it produces the same type of behavior as more classical accounts: is the hypothesis testable experimentally?

      2. The current analysis of history effects may be confounded by effects of the motor responses (independently from the correct response), e.g. a tendency to repeat motor responses instead of (or on top of) tracking the distribution of stimuli.

      3. The authors assume that subjects should reach their asymptotic behavior after passively viewing the first 200 trials but this should be assessed in the data rather than hypothesized. Especially since the subjects are passively looking during the first part of the block, they may well pay very little attention to the statistics.

      4. The experiment methods are described quite poorly: when is the feedback provided? What is the horizontal bar at the bottom of the display? What happens in the analysis with timeout trials and what percentage of trials do they represent? Most importantly, what were the subjects told about the structure of the task? Are they told that probabilities change over blocks but are maintained constant within each block?

    1. Reviewer #3 (Public Review):

      In this study, Yang et al. address a fundamental question of the role of dorsal striatum in neural coding of gait. The authors study the respective roles of D1 and D2 MSNs by linking their balanced activity to detailed gait parameters. In addition, they put in parallel the striatal activity related to whole-body measures such as initiation/cessation of movement or body speed. They are using an elegant combination of high-resolution single-limb motion tracking, identification of bouts of movements, and electrophysiological recordings of striatal neurons to correlate those different parameters. Subpopulations of striatal output neurons (D1 and D2 expressing neurons) are identified in neural recordings with optogenetic tagging. Those complementary approaches show that a subset of striatal neurons have phase-locked activity to individual limbs. In addition, more than a third of MSNs appear to encode all three aspects of motor behavior addressed here, initiation/cessation of movement, body speed, and gait. This activity is balanced between D1 and D2 neurons, with a higher activity of D1 neurons only for movement initiation. Finally, alterations of gait, and the associated striatal activity, are studied in a mouse model of Parkinson's Disease, using 6-OHDA lesions in the medial forebrain bundle (MFB). In the 6OHDA mice, there is an imbalance toward D2 activity.

      Strengths:<br /> There is a long-standing debate on the respective role of D1 and D2 MSNs on the control of movement. This study goes beyond prior work by providing detailed quantification of individual limb kinematics, in parallel with whole-body motion, and showing a high proportion of MSNs to be phase-locked to precise gait cycle and also encoding whole-body motion. The temporal resolution used here highlights the preferential activity of D1 MSN at the movement starts, whereas previous studies described a more balanced involvement. Finally, they reveal neural mechanisms of dopamine depletion-induced gait alterations, with a preponderant phase-locked activity of D2 neurons. The results are convincing, and the methodology supports the conclusions presented here.

      Weaknesses:<br /> Some more detailed explanations would improve the clarity of the results in the corresponding section. Analysis of the 6OHDA experiments could be expanded to extract more relevant information.

    1. Reviewer #3 (Public Review):

      The original research article, titled "mitoBKCa is functionally expressed in murine and human breast cancer cells and promotes metabolic reprogramming" by Bischof et al, has demonstrated the underlying molecular mechanisms of alterations in the function of Ca2+ activated K+ channel of large conductance (BKCa) in the development and progression of breast cancer. The authors also proposed that targeting mitoBKCa in combination with established anti-cancer approaches, could be considered as a novel treatment strategy in breast cancer treatment.

      The paper is clearly written, and the reported results are interesting.

      Strengths:

      Rigorous biophysical experimental proof in support of the hypothesis.

      Weaknesses:

      A combinatorial synergistic study is missing.

    1. Reviewer #3 (Public Review):

      Summary:

      The authors try to elucidate the molecular mechanisms underlying the intra-organ crosstalks that perpetuate intestinal permeability and inflammation.

      Strengths:

      This study identifies a hepatocyte-specific rela/stat3 network as a potential therapeutic target for intestinal diseases via the gut-liver axis using both murine models and human samples.

      Weaknesses:

      1. The mechanism by which DSS administration induces the activation of the Rela and Stat3 pathways and subsequent modification of the bile acid pathway remains clear. As the authors state, intestinal bacteria are one candidate, and this needs to be clarified. I recommend the authors investigate whether gut sterilization by administration of antibiotics or germ-free condition affects 1. the activation of the Rela and Stat3 pathway in the liver by DSS-treated WT mice and 2. the reduction of colitis in DSS-treated relaΔhepstat3Δhep mice.

      2. It has not been shown whether DSS administration causes an increase in primary bile acids, represented by CDCA, in the colon of WT mice following activation of the Rela and Stat3 pathways, as demonstrated in Figure 6.

      3. The implications of these results for IBD treatment, especially in what ways they may lead to therapeutic intervention, need to be discussed.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This paper presents convincing data from technically demanding dual whole-cell patch recordings of stellate cells in medial entorhinal cortex slice preparations during optogenetic stimulation of PV+ interneurons. The authors show that the patterns of postsynaptic activation are consistent with dual recorded cells close to each other receiving shared inhibitory input and sending excitatory connections back to the same PV neurons, supporting a circuitry in which clusters of stellate cells and PV+IN interact with each other with much weaker interactions between clusters. These data are important to our understanding of the dynamics of functional cell responses in the entorhinal cortex. The experiments and analysis are quite complex and would benefit from some revisions to enhance clarity.

      Strengths:<br /> These are technically demanding experiments, but the authors show quite convincing differences in the correlated response of cell pairs that are close to each other in contrast to an absence of correlation in other cell pairs at a range of relative distances. This supports their main point of demonstrating anatomical clusters of cells receiving shared inhibitory input.

      Weaknesses:<br /> The overall technique is complex and the presentation could be more clear about the techniques and analysis. In addition, due to this being a slice preparation they cannot directly relate the inhibitory interactions to the functional properties of grid cells which was possible in the 2-photon in vivo imaging experiment by Heys and Dombeck, 2014.

    1. Reviewer #3 (Public Review):

      The lateral cortex of the inferior colliculus (LC) is a region of the auditory midbrain noted for receiving both auditory and somatosensory input. Anatomical studies have established that somatosensory input primarily impinges on "modular" regions of the LC, which are characterized by high densities of GABAergic neurons, while auditory input is more prominent in the "matrix" regions that surround the modules. However, how auditory and somatosensory stimuli shape activity, both individually and when combined, in the modular and matrix regions of the LC has remained unknown.

      The major obstacle to progress has been the location of the LC on the lateral edge of the inferior colliculus where it cannot be accessed in vivo using conventional imaging approaches. The authors overcame this obstacle by developing methods to implant a microprism adjacent to the LC. By redirecting light from the lateral surface of the LC to the dorsal surface of the microprism, the microprism enabled two-photon imaging of the LC via a dorsal approach in anesthetized and awake mice. Then, by crossing GAD-67-GFP mice with Thy1-jRGECO1a mice, the authors showed that they could identify LC modules in vivo using GFP fluorescence while assessing neural responses to auditory, somatosensory, and multimodal stimuli using Ca2+ imaging. Critically, the authors also validated the accuracy of the microprism technique by directly comparing results obtained with a microprism to data collected using conventional imaging of the dorsal-most LC modules, which are directly visible on the dorsal IC surface, finding good correlations between the approaches.

      Through this innovative combination of techniques, the authors found that matrix neurons were more sensitive to auditory stimuli than modular neurons, modular neurons were more sensitive to somatosensory stimuli than matrix neurons, and bimodal, auditory-somatosensory stimuli were more likely to suppress activity in matrix neurons and enhance activity in modular neurons. Interestingly, despite their higher sensitivity to somatosensory stimuli than matrix neurons, modular neurons in the anesthetized prep were far more responsive to auditory stimuli than somatosensory stimuli (albeit with a tendency to have offset responses to sounds). This suggests that modular neurons should not be thought of as primarily representing somatosensory input, but rather as being more prone to having their auditory responses modified by somatosensory input. However, this trend was reversed in the awake prep, where modular neurons became more responsive to somatosensory stimuli than auditory stimuli. Thus, to this reviewer, the most intriguing result of the present study is the dramatic extent to which neural responses in the LC changed in the awake preparation. While this is not entirely unexpected, the magnitude and stimulus specificity of the changes caused by anesthesia highlight the extent to which higher-level sensory processing is affected by anesthesia and strongly suggest that future studies of LC function should be conducted in awake animals.

      Together, the results of this study expand our understanding of the functional roles of matrix and module neurons by showing that responses in LC subregions are more complicated than might have been expected based on anatomy alone. The development of the microprism technique for imaging the LC will be a boon to the field, finally enabling much-needed studies of LC function in vivo. The experiments were well-designed and well-controlled, and the limitations of two-photon imaging for tracking neural activity are acknowledged. Appropriate statistical tests were used. There are three main issues the authors should address, but otherwise, this study represents an important advance in the field.

      1) Please address whether the Thy1 mouse evenly expresses jRGECO1a in all LC neurons. It is known that these mice express jRGECO1a in subsets of neurons in the cerebral cortex, and similar biases in the LC could have biased the results here.

      2) I suggest adding a paragraph or two to the discussion to address the large differences observed between the anesthetized and awake preparations. For example, somatosensory responses in the modules increased dramatically from 14.4% in the anesthetized prep to 63.6% in the awake prep. At the same time, auditory responses decreased from 52.1% to 22%. (Numbers for anesthetized prep include auditory responses and somatosensory + auditory responses.). In addition, the tonotopy of the DC shifted in the awake condition. These are intriguing changes that are not entirely expected from the switch to an awake prep and therefore warrant discussion.

      3) For somatosensory stimuli, the authors used whisker deflection, but based on the anatomy, this is presumably not the only somatosensory stimulus that affects LC. The authors could help readers place the present results in a broader context by discussing how other somatosensory stimuli might come into play. For example, might a larger percentage of modular neurons be activated by somatosensory stimuli if more diverse stimuli were used?

    1. Reviewer #3 (Public Review):

      Lee, Kyungtae and colleagues have discovered and mapped out alpha-arrestin interactomes in both human and Drosophila through the affinity purification/mass spectrometry and the SAINTexpress method. Their work revealed highly confident interactomes, consisting of 390 protein-protein interactions (PPIs) between six human alpha-arrestins and 307 preproteins, as well as 740 PPIs between twelve Drosophila alpha-arrestins and 467 prey proteins.

      To define and characterize these identified alpha-arrestin interactomes, the team employed a variety of widely recognized bioinformatics tools. These analyses included protein domain enrichment analysis, PANTHER for protein class enrichment, DAVID for subcellular localization analysis, COMPLEAT for the identification of functional complexes, and DIOPT to identify evolutionary conserved interactomes. Through these assessments, they not only confirmed the roles and associated functions of known alpha-arrestin interactors, such as ubiquitin ligase and protease, but also unearthed unexpected biological functions in the newly discovered interactomes. These included involvement in RNA splicing and helicase, GTPase-activating proteins, and ATP synthase.

      The authors carried out further study into the role of human TXNIP in transcription and epigenetic regulation, as well as the role of ARRDC5 in osteoclast differentiation. It is particularly commendable that the authors conducted comprehensive testing of TXNIP's role in HDAC2 in gene expression and provided a compelling model while revising the manuscript. Additionally, the quantification of the immunocytochemistry data presented in Figure 6 convincingly supports the authors' hypothesis.

      Overall, this study holds important value, as the newly identified alpha-arrestin interactomes are likely aiding functional studies of this protein group and advance alpha-arrestin research.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The paper makes a convincing argument that physical interactions of proteins do not cause substantial evolutionary co-variation.

      Strengths:<br /> The presented analyses are reasonable and look correct and the conclusions make sense.

      Weaknesses:<br /> The overall problem of the analysis is that nobody who has followed the literature on evolutionary rate variation over the last 20 years would think that physical interactions are a major cause of evolutionary rate variation. First, there have been probably hundreds of studies showing that gene expression level is the primary driver of evolutionary rate variation (see, for example, [1]). The present study doesn't mention this once. People can argue the causes or the strength of the effect, but entirely ignoring this body of literature is a serious lack of scholarship. Second, interacting proteins will likely be co-expressed, so the obvious null hypothesis would be to ask whether their observed rates are higher or lower than expected given their respective gene expression levels. Third, protein-protein interfaces exert a relatively weak selection pressure so I wouldn't expect them to play much role in the overall evolutionary rate of a protein.

      On point 3, the authors seem confused though, as they claim a co-evolving interface would evolve *faster* than the rest of the protein (Figure 1, caption). Instead, the observation is they evolve slower (see, for example, [2]). This makes sense: A binding interface adds additional constraint that reduces the rate at which mutations accumulate. However, the effect is rather weak.

      All in all, I'm fine with the analysis the authors perform, and I think the conclusions make sense, but the authors have to put some serious effort into reading the relevant literature and then reassess whether they are actually asking a meaningful question and, if so, whether they're doing the best analysis they could do or whether alternative hypotheses or analyses would make more sense.

      [1] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523088/<br /> [2] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854464/

    1. Reviewer #3 (Public Review):

      Summary:<br /> The protein kinase, Aurora B, is a critical regulator of mitosis and cytokinesis in eukaryotes, exhibiting a dynamic localisation. As part of the Chromosomal Passenger Complex (CPC), along with the Aurora B activator, INCENP, and the CPC localisation module comprised of Borealin and Survivin, Aurora B travels from the kinetochores at metaphase to the spindle midzone at anaphase, which ensures its substrates are phosphorylated in a time- and space-dependent manner. In the kinetoplastid parasite, T. brucei, the Aurora B orthologue (AUK1), along with an INCENP orthologue known as CPC1, and a kinetoplastid-specific protein CPC2, also displays a dynamic localisation, moving from the kinetochores at metaphase to the spindle midzone at anaphase, to the anterior end of the newly synthesised flagellum attachment zone (FAZ) at cytokinesis. However, the trypanosome CPC lacks orthologues of Borealin and Survivin, and T. brucei kinetochores also have a unique composition, being comprised of dozens of kinetoplastid-specific proteins (KKTs). Of particular importance for this study are KKT7 and the KKT8 complex (comprising KKT8, KKT9, KKT11, and KKT12). Here, Ballmer and Akiyoshi seek to understand how the CPC assembles and is targeted to its different locations during the cell cycle in T. brucei.

      Strengths & Weaknesses:<br /> Using immunoprecipitation and mass-spectrometry approaches, Ballmer and Akiyoshi show that AUK1, CPC1, and CPC2 associate with two orphan kinesins, KIN-A and KIN-B, and with the use of endogenously expressed fluorescent fusion proteins, demonstrate for the first time that KIN-A and KIN-B display a dynamic localisation pattern similar to other components of the CPC. Most of these data provide convincing evidence for KIN-A and KIN-B being bona fide CPC proteins, although the evidence that KIN-A and KIN-B translocate to the anterior end of the new FAZ at cytokinesis is weak - the KIN-A/B signals are very faint and difficult to see, and cell outlines/brightfield images are not presented to allow the reader to determine the cellular location of these faint signals (Fig S1B).

      They then demonstrate, by using RNAi to deplete individual components, that the CPC proteins have hierarchical interdependencies for their localisation to the kinetochores at metaphase. These experiments appear to have been well performed, although only images of cell nuclei were shown (Fig 2A), meaning that the reader cannot properly assess whether CPC components have localised elsewhere in the cell, or if their abundance changes in response to depletion of another CPC protein.

      Ballmer and Akiyoshi then go on to determine the kinetochore localisation domains of KIN-A and KIN-B. Using ectopically expressed GFP-tagged truncations, they show that coiled-coil domains within KIN-A and KIN-B, as well as a disordered C-terminal tail present only in KIN-A, but not the N-terminal motor domains of KIN-A or KIN-B, are required for kinetochore localisation. These data are strengthened by immunoprecipitating CPC complexes and crosslinking them prior to mass spectrometry analysis (IP-CLMS), a state-of-the-art approach, to determine the contacts between the CPC components. Structural predictions of the CPC structure are also made using AlphaFold2, suggesting that coiled coils form between KIN-A and KIN-B, and that KIN-A/B interact with the N termini of CPC1 and CPC2. Experimental results show that CPC1 and CPC2 are unable to localise to kinetochores if they lack their N-terminal domains consistent with these predictions. Altogether these data provide convincing evidence of the protein domains required for CPC kinetochore localisation and CPC protein interactions. However, the authors also conclude that KIN-B plays a minor role in localising the CPC to kinetochores compared to KIN-A. This conclusion is not particularly compelling as it stems from the observation that ectopically expressed GFP-NLS-KIN-A (full length or coiled-coil domain + tail) is also present at kinetochores during anaphase unlike endogenously expressed YFP-KIN-A. Not only is this localisation probably an artifact of the ectopic expression, but the KIN-B coiled-coil domain localises to kinetochores from S to metaphase and Fig S2G appears to show a portion of the expressed KIN-B coiled-coil domain colocalising with KKT2 at anaphase. It is unclear why KIN-B has been discounted here.

      Next, using a mixture of RNAi depletion and LacI-LacO recruitment experiments, the authors show that kinetochore proteins KKT7 and KKT9 are required for AUK1 to localise to kinetochores (other KKT8 complex components were not tested here) and that all components of the KKT8 complex are required for KIN-A kinetochore localisation. Further, both KKT7 and KKT8 were able to recruit AUK1 to an ectopic locus in the S phase, and KKT7 recruited KKT8 complex proteins, which the authors suggest indicates it is upstream of KKT8. However, while these experiments have been performed well, the reciprocal experiment to show that KKT8 complex proteins cannot recruit KKT7, which could have confirmed this hierarchy, does not appear to have been performed. Further, since the LacI fusion proteins used in these experiments were ectopically expressed, they were retained (artificially) at kinetochores into anaphase; KKT8 and KIN-A were both able to recruit AUK1 to LacO foci in anaphase, while KKT7 was not. The authors conclude that this suggests the KKT8 complex is the main kinetochore receptor of the CPC - while very plausible, this conclusion is based on a likely artifact of ectopic expression, and for that reason, should be interpreted with a degree of caution.

      Further IP-CLMS experiments, in combination with recombinant protein pull-down assays and structural predictions, suggested that within the KKT8 complex, there are two subcomplexes of KKT8:KKT12 and KKT9:KKT11, and that KKT7 interacts with KKT9:KKT11 to recruit the remainder of the KKT8 complex. The authors also assess the interdependencies between KKT8 complex components for localisation and expression, showing that all four subunits are required for the assembly of a stable KKT8 complex and present AlphaFold2 structural modelling data to support the two subcomplex models. In general, these data are of high quality and convincing with a few exceptions. The recombinant pulldown assay (Fig. 4H) is not particularly convincing as the 3rd eluate gel appears to show a band at the size of KKT11 (despite the labelling indicating no KKT11 was present in the input) but no pulldown of KKT9, which was present in the input according to the figure legend (although this may be mislabeled since not consistent with the text). The text also states that 6HIS-KKT8 was insoluble in the absence of KKT12, but this is not possible to assess from the data presented. It is also surprising that data showing the effects of KKT8, KKT9, and KKT12 depletion on KKT11 localisation and abundance are not presented alongside the reciprocal experiments in Fig S4G-J.

      The authors also convincingly show that AlphaFold2 predictions of interactions between KKT9:KKT11 and a conserved domain (CD1) in the C-terminal tail of KIN-A are likely correct, with CD1 and a second conserved domain, CD2, identified through sequence analysis, acting synergistically to promote KIN-A kinetochore localisation at metaphase, but not being required for KIN-A to move to the central spindle at anaphase. They then hypothesise that the kinesin motor domain of KIN-A (but not KIN-B which is predicted to be inactive based on non-conservation of residues key for activity) determines its central spindle localisation at anaphase through binding to microtubules. In support of this hypothesis, the authors show that KIN-A, but not KIN-B can bind microtubules in vitro and in vivo. However, ectopically expressed GFP-NLS fusions of full-length KIN-A or KIN-A motor domain did not localise to the central spindle at anaphase. The authors suggest this is due to the GPF fusion disrupting the ATPase activity of the motor domain, but they provide no evidence that this is the case. Instead, they replace endogenous KIN-A with a predicted ATPase-defective mutant (G209A), showing that while this still localises to kinetochores, the kinetochores were frequently misaligned at metaphase, and that it no longer concentrates at the central spindle (with concomitant mis-localisation of AUK1), causing cells to accumulate at anaphase. From these data, the authors conclude that KIN-A ATPase activity is required for chromosome congression to the metaphase plate and its central spindle localisation at anaphase. While potentially very interesting, these data are incomplete in the absence of any experimental data to show that KIN-A possesses ATPase activity or that this activity is abrogated by the G209A mutation, and the conclusions of this section are rather speculative.

      Impact:<br /> Overall, this work uses a wide range of cutting-edge molecular and structural predictive tools to provide a significant amount of new and detailed molecular data that shed light on the composition of the unusual trypanosome CPC and how it is assembled and targeted to different cellular locations during cell division. Given the fundamental nature of this research, it will be of interest to many parasitology researchers as well as cell biologists more generally, especially those working on aspects of mitosis and cell division, and those interested in the evolution of the CPC.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This study investigates the continuous effect of MetS components - namely, obesity, arterial hypertension, dyslipidemia, and insulin resistance - on cortical thickness. It also examines the spatial correlations between MetS effects on cortical thickness with brain cellular and network topological attributes. Additionally, the authors attempt to explore the complex interplay among MetS, cognitive function, and cortical thickness.

      The results reveal a latent relationship between MetS and cortical thickness based on a clinical-anatomical dimension. Furthermore, the effect of MetS on cortical thickness is linked to local cell types and network topological attributes. These findings suggest that the authors achieved most, though not all, of their research objectives.

      The conclusions are mostly well supported by data and results. However, the use of "was governed by" in the conclusion section suggests a causal relationship. This phrasing is inappropriate given that the study primarily employs correlational analyses.

      Strengths<br /> The study presents several strengths:

      This study undertakes a comprehensive assessment encompassing the full range of MetS components, such as obesity or arterial hypertension, rather than adopting a case-control study approach (categorizing participants into MetS or non-MetS groups) as seen in some previous research. Utilizing Partial Least Squares (PLS) for correlational analysis effectively addresses issues of multicollinearity (or high covariance among MetS components) and explores the relationship between MetS and brain morphology.

      The study leverages two datasets, examining a large sample size of 40,087 individuals. This substantial sample potentially aids in identifying nuanced and underexplored brain anomalies. By incorporating high-quality MRI images, standardized data, and statistical analysis procedures, as well as sensitivity analyses, the results gain robustness, which addresses the limitations of small samples and low reproducibility.

      In the context of MetS, this research uniquely employs the concept of imaging transcriptomics, i.e. virtual histology analysis. This approach allows the study to explore intricate relationships between cellular types and cortical thickness anomalies.

      Weaknesses<br /> While this work has foundational strengths, the analyses and data seem inadequate to fully support the key claim and analysis. In particular:

      After a thorough review of the methods and results sections, I found no direct or strong evidence supporting the authors' claim that the identified latent variables were related to more severe MetS to worse cognitive performance. While a sub-group comparison was conducted, it did not adequately account for confounding factors such as educational level. Additionally, the strength of evidence from such a sub-group comparison is substantially weaker than that from randomized controlled trials or longitudinal cohort studies. Therefore, it is inaccurate for the authors to assert a direct relationship between MetS and cognitive function based on the presented data. A more appropriate research design or data analysis approach, such as mediation analysis, can be employed to address this issue.

      The use of the imaging transcriptomics pipeline (virtual histology analysis) to explore the microscale associations with MetS effects on the brain is commendable and has shown promising results. Nevertheless, variations in gene sets may introduce a degree of heterogeneity in the results (Seidlitz, et al., 2020; Martins et al., 2021). Consequently, further validation or exploratory analyses utilizing different gene sets can yield more compelling results and conclusions.

    1. the GS2 transition was more painful than GS1, and so very likely, the GS3 transition will be harder
      • for: GS3, Global System Three transition, mutual coordination economics

      • paraphrase

        • GS3 will be more difficult than GS2
        • social contract needs to be updated to include
          • new relation with nature and non-human beings
          • stronger multilateral relasionships to protect the planet
        • In Michel's view, a cosmolocal coordination will be required
        • The alternative is coercive eco-fascism to prevent massive ecological damage while we continue to overconsume planetary resources
        • definition: mutual coordination economics
          • an economic system that maximizes freedom of choice within earth system boundaries with minimal coercion
          • it is a new synthesis of markets, states and commons via decentralized p2p networks
    1. Reviewer #3 (Public Review):

      Summary: The present study sought to investigate the role ERα expressed in Gabaergic neurons of the rostral periventricular aspect of the third ventricle (RP3V) and medial preoptic nucleus (MPN) in the positive feedback using genetically driven Crispr-Cas9 mediated knockdown of ESR1 in VGAT expressing neurons. ESR1 Knockdown in preoptic gabaergic neurons led to an absence of LH surge and acyclicity when associated with severely reduced kisspeptin (Kp) expression suggesting that a subpopulation of neurons co-expressing Kp and VGAT are key for LH surge since total absence of Kp is associated with an absence of GnRH neuron activation and reduced LH surge. Although the implication of kisspeptin neurons was highly suspected already, the novelty of these results lies in the fact that estrogen signaling is necessary in only a selected fraction of them to maintain both regular cycles and LH surge capacity.

      Strengths:<br /> Remarkable aspects of this study are, its dataset which allowed them to segregate animals based on distinct neuronal phenotype matching specific physiological outcomes, the transparency in reporting the results (e.g. all statistical values being reported, all grouping variables being clearly defined, clarity about animals that were excluded and why) and the clarity of the writing. Another remarkable feature of this work lies in the analysis of the dataset. As opposed to the cre-lox approach which theoretically allows for the complete ablation of specific neuronal populations, but may lack specificity regarding timing of action and location, genetically driven in vivo Crispr-Cas9 editing offers both temporal and neuroanatomic selectivity but cannot achieve a complete knock down. This approach based on stereotaxic delivery of the AAV encoded guide RNAs comes with inevitable variability in the location where gene knockdown is achieved. By adjusting their original grouping of the animals based on the evaluation of the extent of kisspeptin expression in the target region, the authors obtained a much clearer and interpretable picture. Although only few animals (n=4) displayed absent kisspeptin expression, the convergence of observations suggesting a central impairment of the reproductive axis is convincing. Finally, the observation that the pulsatile secretion of LH is maintained in the absence of Kp expression in the RP3V lends support to the notion that LH surge and pulsatility are regulated independently by distinct neuronal populations, a model put forward by corresponding author a few years ago.

    1. Reviewer #3 (Public Review):

      The main problem with the work is that the results are only descriptive and do not allow any inferences or conclusions about the importance of the function of G4 structures. The discussion and conclusions are poor. The results are preliminary and in order to try to make the analysis more interesting, it should be further extended and the data must be explored in a much greater depth.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this manuscript, Chiolo and colleagues adapt a Drosophila induced-DSB repair outcome assay to the spermatogonia. In order to compare the outcomes in H3K9me-rich centromeric heterochromatin with a euchromatic site they use a cross to a silencing mutant to reveal the sequence changes in the reporter, which otherwise are not expressed. The authors corroborate that homologous recombination (HR) is up-regulated in this chromatin context, consistent with prior studies. Applying sequencing to mutagenic products the authors reveal context-dependent preferences in mutagenic end joining pathways and mechanisms, although these seem less categorical in terms of hetero- and euchromatin and instead sensitive to more subtle aspects of the local chromatin landscape. One theme, however, is that the microhomologies used for synthesis-dependent end joining are nearer to the induced DSB in heterochromatin than seen for the euchromatic DSB.

      Strengths:<br /> 1. The use of the mitotically active spermatogonia and transient expression of the I-SceI to induce the DSB mitigates some caveats of prior experimental approaches including the fact that the cells are universally mitotically active. This approach also enables the outcomes to be assayed in the next generation, which is necessary for reporters expressed within heterochromatin. Thus, this is a technological tool that will be useful to other groups.

      2. The observations suggest that MMEJ within heterochromatin (inferred to be Pol theta-dependent) prefers to use microhomologies close to the DSB. This suggests that either DSB end resection or RPA loading/removal is modulated by chromatin context, which is a new finding.

      Weaknesses:<br /> 1. The observation that HR is preferred in heterochromatin has been documented in many prior systems.

      2. Although the conclusions of the authors are well-supported by the data, the study is somewhat limited in mechanistic detail and would be strengthened by additional use of the genetic tools in the model system, particularly with regard to whether the preference for using microhomologies near the DSB in heterochromatin arises due to modulation of resection or RPA loading stability (the latter is the preferred interpretation of the authors, but goes untested). Nucleosome stability, presence of HP1, etc. seem attractive.

      3. Given the variability observed for EJ pathway usage at the four heterochromatic genomic sites probed in the manuscript there is some concern that a single euchromatic site may not be sufficient for rigorous comparisons. This is particularly true because there seems to be little transcription at the "euchromatic" region (Fig. S5). Given that we do not know what matters to dictate the outcomes (epigenetic modifications and/or transcriptional status), this is concerning.

      4. (Minor) Some caution should be stated in comparing the HR frequency between this system (low single digits) and prior induction/tissue systems (~20%) because the time domain of cut and repair cycles is vastly different.

      5. (Minor) While there are certainly strengths to using the spermatogonia system, one also wonders if it might not have some unique biology given the importance of maintaining genome integrity in this tissue (e.g. the piRNA pathways to repress transposon mobilization). A comment on this point would be welcomed.

      6. (Minor) The authors argue that alt-EJ is less mutagenic as a consequence of the observed use of microhomologues closer to the DSB, but what they really mean perhaps is that less sequence is lost? A mutagenic outcome can be equally deleterious in other cases if 1, 5, or 20+ bps are lost, depending on the context.

    1. Reviewer #3 (Public Review):

      Summary:

      Gaynes et al. investigated the presynaptic and postsynaptic mechanisms of starburst amacrine cell (SAC) direction selectivity in the mouse retina by computational modeling and glutamate sensitivity (iGluSnFR) imaging methods. Using the SAC computational simulation, the authors initially tested bipolar cell contributions (space-time wiring model, presynaptic effect) and SAC axial resistance contributions (postsynaptic effect) to the SAC DS. Then, the authors conducted two-photon iGluSnFR imaging from SACs to examine the presynaptic glutamate release and found seven clusters of ON-responding and six clusters of OFF-responding bipolar cells. They were categorized based on their response kinetics: delay, onset phase, decay time, and others. Finally, the authors used cluster data to reconstruct bipolar cell inputs to SACs that generate direction selectivity. They concluded that presynaptic effects through the space-time wiring model only account for a fraction of SAC DS.

      The article has many interesting findings, and the data presentation is superb. Strengths and weaknesses are summarized below.

      Major Strengths:

      The authors utilized solid technology to conduct computational modeling with Neuron software and a machine-learning approach based on evolutionary algorithms. Results are effectively and thoroughly presented.

      The space-time wiring model was evaluated by changing bipolar cell response properties in the proximal and distal SAC dendrites. Many response parameters in bipolar cells are compared, and DSI is compared in Figure 3. These parameter comparisons are valuable to the field.

      Two-photon microscopy was used to measure the bipolar cell glutamate outputs onto SACs by conducting iGluSnFR imaging. All the data sets, including images and transients, are elegantly presented. The authors analyzed the response based on various parameters, which generated more than several response clusters. The clustering is convincing.

      Major Weaknesses:

      The computational modeling demonstrates intriguing results: SAC dendritic morphology produces dendritic isolation, and a massive input overcomes the dendritic isolation (Figure 1). This modeling seems to be generated by basic dendritic cable properties. However, it has been reported that SAC dendrites express Kv3 and voltage-gated Ca channels. Are they incorporated into this model? If not, how about comparing these channel contributions?

      In Figure 9 the authors generated the bipolar cell cluster alignment based on the space-time wiring model. The space-time wiring model has been proposed based on the EM study that distinct types of bipolar cells synapse on distinct parts of SAC dendrites (Green et al 2016, Kim et al 2014). While this is one of the representative Reicardt models, it is not fully agreed upon in the field (see Stincic et al 2016). Therefore, the authors' approach might be only hypothetical without concrete evidence for geographical cluster distributions. Is there any data suggesting each cluster's location on the SAC dendrites? I assume that the iGluSnFR imaging was conducted on the SAC dendritic network, which does not provide geographical information. How about injecting the iGluSnFR-AAV at a lower titer, which labels only some SACs in a tissue? This method may reveal each cluster's location on SAC dendrites.

      The authors found that there are seven ON clusters and six OFF clusters, which are supposed to be bipolar cell terminals. However, bipolar cells reported to provide synaptic inputs are T-7, T-6, and multiple T-5s for ON SACs and T-1, T-2, and T-3s for OFF SACs. The number of types is less than the number of clusters. Is there a possibility of clusters belonging to glutamatergic amacrine cells? Please provide a discussion regarding the relations between clusters and cell types.

      In Figure 5B, representative traces are shown responding to moving bars in horizontal directions. These did not show different responses to two directional stimuli. Is there any directional preference from other ROIs? Yonehara's group recently exhibited the bipolar cells' direction selectivity (Matsumoto et al 2021). Did you see any correlations with their results? Please discuss.

    1. Reviewer #3 (Public Review):

      Summary: The manuscript by Ryan and colleagues uses a well-established object recognition task to examine memory retrieval and forgetting. They show that memory retrieval requires activation of the acquisition engram in the dentate gyrus and failure to do so leads to forgetting. Using a variety of clever behavioural methods, the authors show that memories can be maintained and retrieval slowed when animals are reared in environmental enrichment and that normally retrieved memories can be forgotten if exposed to the environment in which the expected objects are no longer presented. Using a series of neural methods, the authors also show that activation or inhibition of the acquisition engram is key to memory expression and that forgetting is due to Rac1.

      Strengths:<br /> This is an exemplary examination of different conditions that affect successful retrieval vs forgetting of object memory. Furthermore, the computational modelling that captures in a formal way how certain parameters may influence memory provides an important and testable approach to understanding forgetting.<br /> The use of the Rescorla-Wagner model in the context of object recognition and the idea of relevance being captured in negative prediction error are novel (but see below).<br /> The use of gain and loss of function approaches are a considerable strength and the dissociable effects on behaviour eliminate the possibility of extraneous variables such as light artifacts as potential explanations for the effects.

      Weaknesses:<br /> Knowing what process (object retrieval vs familiarity) governed the behavioural effect in the present investigation would have been of even greater significance.

      The impact of the paper is somewhat limited by the use of only one sex.

      While relevance is an interesting concept that has been operationalized in the paper, it is unclear how distinct it is from extinction. Specifically, in the case where the animals are exposed to the context in the absence of the object, the paper currently expresses this as a process of relevance - the objects are no longer relevant in that context. Another way to think about this is in terms of extinction - the association between the context and the objects is reduced results in a disrupted ability of the context to activate the object engram.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Nguyen et al show data indicating that the vomeronasal organ (VNO) and ventromedial hypothalamus (VMH) are part of a circuit that elicits defensive responses induced by predator odors. They also show that using fresh or old predator saliva may be a method to change the perceived imminence of predation. The authors also identify a family of VNO receptors that are activated by cat saliva. Next, the authors show how different components of this defensive circuit are activated by saliva, as measured by fos expression. Though interesting, the findings are not all integrated into a single narrative, and some of the results are only replications of earlier findings using modern methods. Overall, these findings provide incremental advance.

      Strengths:<br /> 1 Predator saliva is a stimulus of high ethological relevance<br /> 2 The authors performed a careful quantification of fos induction across the anterior-posterior axis in Figure 6.

      Weaknesses:<br /> 1 It is unclear if fresh and old saliva indeed alter the perceived imminence predation, as claimed by the authors. Prior work indicates that lower imminence induces anxiety-related actions, such as re-organization of meal patterns and avoidance of open spaces, while slightly higher imminence produces freezing. Here, the authors show that fresh and old predator saliva only provoke different amounts of freezing, rather than changing the topography of defensive behaviors, as explained above. Another prediction of predatory imminence theory would be that lower imminence induced by old saliva should produce stronger cortical activation, while fresh saliva would activate the amygdala, if these stimuli indeed correspond to significantly different levels of predation imminence.

      2 It is known that predator odors activate and require AOB, VNO, and VMH, thus replications of these findings are not novel, decreasing the impact of this work.

      3 There is a lack of standard circuit dissection methods, such as characterizing the behavioral effects of increasing and decreasing the neural activity of relevant cell bodies and axonal projections, significantly decreasing the mechanistic insights generated by this work.

      4 The correlation shown in Figure 5c may be spurious. It appears that the correlation is primarily driven by a single point (the green square point near the bottom left corner). All correlations should be calculated using Spearman correlation, which is non-parametric and less likely to show a large correlation due to a small number of outliers. Regardless of the correlation method used, there are too few points in Figure 5c to establish a reliable correlation. Please add more points to 5c.

      5 Some of the findings are disconnected from the story. For example, the authors show that V2R-A4-expressing cells are activated by predator odors. Are these cells more likely to be connected to the rest of the predatory defense circuit than other VNO cells?

      6 Were there other behavioral differences induced by fresh compared to old saliva? Do they provoke differences in stretch-attend risk evaluation postures, number of approaches, the average distance to odor stimulus, the velocity of movements towards and away from the odor stimulus, etc?

    1. Reviewer #3 (Public Review):

      Summary: In this manuscript, Mure et al. describe interactions between diet, microbiome, and host development using Drosophila as a model. By characterizing microbial communities in food sources and animals, the authors showed that microbial community dynamics in the food source is critical for host development.

      Strengths: This is a very interesting study where authors managed to tackle a difficult question in an elegant manner. How the interactions between different microbial species within the microbiome shape host physiology is an area of great interest but equally challenging due to the complexity of intercellular interactions in complex, host-associated microbial communities. By using a simplified model and interrogating not only microbe-microbe and host-microbe interactions, but also the role played by diet, authors were able to identify significant interactions during fly development.

      Weaknesses: All weaknesses observed in the original manuscript have been corrected in the current version.

    1. What is the E°cell?

      Exercise 19.5.1 The voltage will be given to us correct?

    2. Using the same information in Question 19.3.6, which electrode is consumed?

      Exercise 19.3.7 What would the answer look like if both electrodes are consumed?

    3. Mn2+(aq)+4H2O(l)→MnO−4(aq)+8H+(aq)+5e−(19.8)

      Exercise 19.2.1b Does it matter which side these are displayed? Mine tend to be on the opposite sides

    4. What is the Cu2+ concentration at 25°C in the cell Zn(s) | Zn2+ (1.0 M) || Cu2+(aq) | Cu(s)? The cell emf is 1.03 V. The standard cell emf is 1.10 V.

      Exercise 19.23 Similar to our last Quiz Question

    5. E0cell=E0cathode+E0anode

      Equation put on index card

    6. The Nernst Equation

      Write equation on index card, will be on exam

    7. Which one can occur at the cathode of an electrochemical cell?

      19.3.4 Cathode is reducing and an anode is oxidating

    8. Electrochemical Cell Notation

      Quiz Question, will be on exam

      • for: visualizations - sea level rise at 3 Deg C

      • comment

        • Look to canal cities like Venice or Amsterdam for inspiration because if it cities are salvagable, parts of them will become canal cities.
    1. Reviewer #3 (Public Review):

      In this article, Faisal et. al., use a combinatorial approach to look at the mechanisms of HIV-capsid inhibition by the highly potent drug Lenacepavir (LEN). The authors conclude that LEN induces capsid opening, but hyper-stabilizes the remaining capsid lattice during the early stages, and adversely affects the assembly of capsids during late stages of HIV-1 infection. Additionally, they suggest that hyper-stabilization effects of LEN on the capsid-lattice are induced by a low occupancy of this highly potent drug, while less potent inhibitors like PF74 need high occupancy on the lattice to induce similar effects. Taken together their findings shine a light on the importance of the capsid binding pocket targeted by multiple inhibitors including LEN, PF74, BI-2, and host-factor CPSF6 on overall capsid assembly, its stability in cells, and its role in HIV-1 infection.

      Strengths:<br /> 1. Combinatorial approach using single-molecule imaging, cryoET and cellular assays show the adverse effects of LEN on HIV-1 capsid assembly, capsid disassembly, and block to virus infectivity.<br /> 2. Several novel insights are obtained in this paper, including the cryoET-data showing 2-layers of capsid formation in the presence of LEN. CPSF6-peptide binding to capsids, and their effect on stability.

      Weakness:<br /> 1. Interpretation of the capsid stability data is focused on single virus traces rather than population analysis, which might paint a different picture of the conclusions.<br /> 2. The description and interpretation of the data in the results sections and the conclusions are inconsistent, and somewhat confusingly presented for the general non-expert audience.

    1. Reviewer #3 (Public Review):

      To identify direct targets of BMP signal in Nematostella, the authors performed ChIP-seq using an antibody against phosphorylated SMAD1/5 (pSMAD1/5) at late gastrula and late planula stages. In accordance with the highly dynamic BMP activity detected using immunofluorescence, pSMAD1/5 binding profiles change drastically as the larvae develop, with only a fraction of target genes shared between these two time points. The authors then followed up with RNA-seq in control versus BMP2/4 KD embryos and identified significant expression changes in many transcription factors and signaling molecules, including the Gbx-Hox genes, which are known to regulate endoderm patterning. These results, in conjunction with a thorough validation using in situ hybridization, strongly support the authors' claim that the BMP signal in Nematostella directly controls a small set of second-tier targets which in turn execute the morphogenic functions.

      Next, the authors explored the conservation of BMP downstream targets by intersecting their candidate list with two published datasets from Drosophila (2-3hpf) and Xenopus (NF20 stage). Results from such an analysis should be taken with a grain of salt, as the developmental time points and biological context examined here are not necessarily comparable. Furthermore, whole genome duplication in vertebrates means multiple copies of transcription factors and signaling molecules belonging to the same family exist in Xenopus, making a homology-based comparison difficult. A handful of shared targets were identified between different species, although no statics were provided to support the significance of such an observation.

      The authors then focused on Zswim4-6, one of the identified BMP targets with a high pSMAD1/5 enrichment level, and dissected its regulatory properties on BMP activity. Using complimentary knockdown and overexpression experiments, the authors rigorously demonstrated that Zswim4-6 is crucial to maintaining the proper pSMAD1/5 gradient at the late gastrula stage. By ectopically overexpressing a GFP tagged form of Zswim4-6, the authors performed low input ChIP-qPCR and confirmed that Zswim4-6 selectively binds to a regulatory region of a BMP-repressed gene, suggesting it may function as a co-repressor for certain BMP targets.<br /> Lastly, the authors examined the effect of Zswim5, a bilaterian homolog of Zswim4-6, during zebrafish D-V axis establishment. Overexpression of Zswim5 leads to a dampened pSMAD1/5 gradient and dorsalization of the fish larvae, hinting at the possibility that Zswim5 may function as a BMP modulator in zebrafish as well.

      Overall, despite certain caveats, the experimental evidence supports the claims from the authors that Zswim4-6 is directly activated by and reciprocally modulates the BMP activity in Nematostella. The work presented here opens exciting possibilities to further dissect the gene regulatory networks downstream of the cnidarian BMP signaling pathway and expands our knowledge on the evolution of a bilaterally symmetric body plan.

    1. Reviewer #3 (Public Review):

      The study is interesting and the results are informative in how well people can report colors of two superimposed dot clouds. It reveals that there are trade-offs between reporting two colors. However, I have a few basic but major concerns with the present study and its conclusions about people's abilities to continuously track color values and the rate at which attention may be allocated across the two streams which I am outlining below.

      1) The first concern regards the task that was used to measure continuous tracking of feature values, which in my view is ambiguous in whether it truly assesses active tracking of features or rather short-term memory of the last-seen colors. Specifically, participants were viewing two colored dot clouds that then turned gray, and were asked to report each of the colors they saw using continuous report. The test usually occurred after 6-8s (in Exp. 1 &2), so while not completely predictable, participants could easily perform the task without tracking both feature streams continuously and simply perform the color report based on the very last colors they saw. In other words, it does not seem necessary to know which color belonged to which stream, or what color it was before, to perform the task successfully. Thus, it is unclear to what extent this task is actually measuring active tracking, the same way tracking of spatial locations in multiple-object tracking tasks has been studied, which is the literature that the authors are trying to draw parallels to. In multiple-object tracking tasks, targets and nontarget objects look identical and so to keep track of which of the moving objects are targets, participants need to attend to them actively and selectively. (Similarly, the original feature-tracking study by Blaser et al., at least in their main experiment, people were asked to track an object superimposed on a second object which required continuous and selective tracking of that object).

      2) The main claim that tracking two colors relies on a shared and strictly limited resource is primarily based on the relation between the two responses people give, such that the first response about one color tends to be higher accuracy than for the second response of the other color across participants. In my view, this is a relatively weak version of looking at trade-offs in resources, and it would have been more compelling to show such trade-offs at a single-trial level, or assess them with well-established methods that have been developed to look at attentional bottlenecks such as attention-operating characteristics that allow quantifying the cost of adding an additional task in a precise and much more direct manner.

      3) Finally, the data of the last experiment is taken as evidence that feature-based selection oscillates at 1Hz between the two streams. This is based on response errors changing across time points with respect to an exogenous cue that is thought to "reset" attentional allocation to one stream. Only one of three data sets (which uses relatively sparse temporal sampling) shows a significant interaction between cue and time, and given that there was no a priori prediction of when such interaction should occur, this result begs for a replication to ensure that this is not a false positive result. Furthermore, based on the analyses done in the paper, it may very well be the case that the presumed "switching rate" is entirely non-oscillatory based on a recent very important paper by Geoffrey Brookshire (2022, Nature Human Behavior) that demonstrates that frequency analysis are not just sensitive to periodic but also aperiodic temporal structures. The paper also has a series of suggested analyses that could be used here to further test the current conclusions.

    1. Reviewer #3 (Public Review):

      This paper studies the role of the core PCP pathway on tissue morphogenesis of the Drosophila pupil wing. The authors used three different core PCP mutants to compare the cell dynamics with the wild type and conclude that core PCP does not guide the global patterns of cell dynamics during pupal wing morphogenesis. They use the previously published "triangle method" to extract modes of deformation (total shear, cell elongation, cell rearrangements) and find that they are the same (to within error) in the core PCP mutants. Moreover, the global shape of the wing at the end of the process is nearly the same, too.

      Using laser ablation and a rheological model, the paper also investigates the effect of the core PCP pathway on the short-time mechanical properties of the tissue. The authors find that the short-time mechanical response is different in core PCP mutants. This is surprising, as most researchers in the field assume that the short-time recoil velocity is a proxy for tissue mechanics, and therefore also predictive of global tissue deformations. So the observation that the short-time recoils are different, while the global response is the same, is important for the field to understand.

      A challenge with the paper as written is that it does not clearly explain how to reconcile these two observations, stating in the discussion that "the proportionality factor [which relates short-time recoil to tissue mechanics] can depend on the genotype and can change in time". It is possible that the data and model in the paper could be used to make a more convincing and clear statement.

      The paper is conceptually interesting, methodologically sound, and likely impactful to the broad area of tissue mechanics and mechanobiology.

    1. Reviewer #3 (Public Review):

      In this study, the authors present the first comprehensive transcriptome map of the human locus coeruleus using two independent but complementary approaches, spatial transcriptomics and single-nucleus RNA sequencing. Several canonical features of locus coeruleus neurons that have been described in rodents were conserved, but potentially important species differences were also identified. This work lays the foundation for future descriptive and experimental approaches to understanding the contribution of the locus coeruleus to healthy brain function and disease.

      This study has many strengths. It is the first reported comprehensive map of the human LC transcriptome and uses two independent but complementary approaches (spatial transcriptomics and snRNA-seq). Some of the key findings confirmed what has been described in the rodent LC, as well as some intriguing potential genes and modules identified that may be unique to humans and have the potential to explain LC-related disease states. The main limitations of the study were acknowledged by the authors and include the spatial resolution probably not being at the single cell level and the relatively small number of samples (and questionable quality) for the snRNA-seq data. Overall, the strengths greatly outweigh the limitations. This dataset will be a valuable resource for the neuroscience community, both in terms of methodology development and results that will no doubt enable important comparisons and follow-up studies.

    1. Reviewer #3 (Public Review):

      In this manuscript, the authors define the developmental trajectory resulting in a diverse mTEC compartment. Using a variety of approaches, including a novel CCL21-fate mapping model, data is presented to argue that embryonic CCL21-expressing thymocyte attracting mTECs naturally convert to into self-antigen displaying mTEC subsets, including Aire+ mTECs and thymic tuft cells. Perhaps somewhat surprisingly, a large fraction of cTECs were also marked for having expressed CCL21, suggesting that there exists some conversion of mTEC (progenitors) into cTEC, a developmentally interesting observation that could be followed up later. Overall, the experimental setup, writing, and conclusions, are all outstanding.

    1. Reviewer #3 (Public Review):

      Summary: Despite being preventable and treatable, cervical cancer remains the second most common cause of cancer death globally. This cancer, and associated deaths, occur overwhelmingly in low- and middle-income countries (LMIC), reflecting a lack of access to vaccination, screening and treatment services. Cervical screening is the second pillar in the WHO strategy to eliminate cervical cancer as a public health problem and will be critical in delivering early gains in cervical cancer prevention as the impact of vaccination will not be realized for several decades. However, screening strategies implemented in high income countries are not feasible or affordable in LMICs. This ambitious multi-center study aims to address these issues by developing and systematically evaluating a novel approach to cervical screening. The approach, based on primary screening with self-collected specimens for HPV testing, is focused on optimizing triage of people in whom HPV is detected, so that sensitivity for the detection of pre-cancer and cancer is maximized while treatment of people without pre-cancer or cancer is minimized.

      Strengths:

      The triage proposed for this study builds on the authors' previously published work in designing the ScreenFire test to appropriately group the 13 detected genotypes into four channels and to develop automated visual evaluation (AVE) of images of the cervix, taken by health workers.

      The move from mobile telephone devices to a dedicated device to acquire and evaluate images, overcomes challenges previously encountered whereby updates of mobile phone models required retraining of the AVE algorithm.

      The separation of the study into two phases, an efficacy phase in which screen positive people will be triaged and treated according to local standard of care and the performance of AVE will be evaluated against biopsy outcomes will be followed by the second phase in which the effectiveness, cost-effectiveness, feasibility and acceptability will be evaluated.

      The setting in a range of low resource settings which are geographically well spread and reflective of where the global cancer burden is highest.

      Weaknesses:

      Potential ascertainment bias due to the lack of specified biopsy (such as small four quadrant biopsies or small biopsies across the transformation zone) when aceto-white areas are not identified. This has the potential lead to lead to an over-estimate of sensitivity of the triage approach, particularly in the setting of VIA as compared to colposcopy. While the authors specify endocervical sampling in this setting, using curette or brush (for cytology), this may not be as sensitive unless clinicians are experienced in endocervical curette procedures.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors focus on the role of formin-like protein 2 in the mouse oocyte, which could play an important role in actin filament dynamics. The cytoskeleton is known to influence a number of cellular processes from transcription to cytokinesis. The results show that downregulation of FMNL2 affects spindle migration with resulting abnormalities in cytokinesis in oocyte meiosis I.

      Weaknesses:<br /> The overall description of methods and figures is overall dismissively poor. The description of the sample types and number of replicate experiments is impossible to interpret throughout, and the quantitative analysis methods are not adequately described. The number of data points presented is unconvincing and unlikely to support the conclusions. On the basis of the data presented, the conclusions appear to be preliminary, overstated, and therefore unconvincing.

  2. Nov 2023
    1. Reviewer #3 (Public Review):

      In this improved version of the manuscript, Chang et al set out to find direct interactions with the Eph-B2 receptor, as our knowledge of its function/regulation is still incomplete. Using proteomic analysis of Hela cells expressing EPHB2, they identified MYCBP2 a potential binder, which they then confirm using extensive biochemical analyses, an interaction that seems to be negatively affected by binding of ephrin-B2 (but not B1). Furthermore, they find that FBXO45, a known MYCBP2 interaction, strongly facilitates its binding to EPHB2. Intriguingly, these interactions depend on the extracellular domains of EPHB2, suggesting the involvement of additional proteins as MYCBP2 is thought to be a cytoplasmic protein. Finally, they find that, in contrast to what could be expected given the known function of MYCBP2 as a ubiquitin E3 ligase, it actually positively regulates EPHB2 protein stability, and function.

      The strength of this manuscript is the extensive biochemical analysis of the EPHB2/MYCBP2/FBXO43 interactions. The vast majority of the conclusions are supported by the data.

      The attempt to extend the study to an in vivo animal using the worm is important, however the additive insight is, unfortunately, minimal.

    1. Reviewer #3 (Public Review):

      Summary:

      In this manuscript, Krause and colleagues identify miR-182 as diabetes-associated microRNA: miR-182 is increased in bariatric surgery patients with versus without T2D; miR-182 was the only microRNA associated with three metabolic traits; miR-182 levels were associated with increased body weight in mice under different dietary manipulations; overexpression in Hep-G2 led to a decrease in LRP6; and overexpression in HFD fed mice led to increased insulin and liver TG. The manuscript provides a potentially useful resource for microRNA expression in human livers, though the functional importance of miR-182 remains unclear.

      Strengths:

      The use of human tissues and good sample sizes is strong.

      Weaknesses:

      The study is primarily correlative; the in vivo overexpression is non-physiological; and the mechanisms by which miR-182 exerts its effects are not rigorously tested.

    1. Reviewer #3 (Public Review):

      In this work, Kita et al., aim to understand the activation mechanisms of the kinesin-3 motors KLP-6 and UNC-104 from C. elegans. As many other motor proteins involved in intracellular transport processes, KLP-6 and UNC-104 motors suppress their ATPase activities in the absence of cargo molecules. Relieving the autoinhibition is thus a crucial step that initiates directional transport of intracellular cargo. To investigate the activation mechanisms, the authors make use of mass photometry to determine the oligomeric states of the full length KLP-6 and the truncated UNC-104(1-653) motors at sub-micromolar concentrations. While full length KLP-6 remains monomeric, the truncated UNC-104(1-653) displays a sub-population of dimeric motors that is much more pronounced at high concentrations, suggesting a monomer-to-dimer conversion. The authors push this equilibrium towards dimeric UNC-104(1-653) motors solely by introducing a point mutation into the coiled-coil domain and ultimately unleash a robust processivity of the UNC-104 dimer. The authors find that the same mechanistic concept does not apply to the KLP-6 kinesin-3 motor, suggesting an alternative activation mechanism of the KLP-6 that remains to be resolved. The present study encourages further dissection of the kinesin-3 motors with the goal of uncovering the main factors needed to overcome the 'self-inflicted' deactivation.

    1. Reviewer #3 (Public Review):

      In this study, Kierdorf and colleagues investigated the function of hemocytes in oxidative stress response and found that non-canonical DNA damage response (DDR) is critical for controlling JNK activity and the expression of cytokine unpaired3. Hemocyte-mediated expression of upd3 and JNK determines the susceptibility to oxidative stress and systemic energy metabolism required for animal survival, suggesting a new role for hemocytes in the direct mediation of stress response and animal survival.

      In the revised manuscript, the authors provide additional evidence to support the role of DNA damage-modulated cytokine release by hemocytes during oxidative stress responses and strengthen the connection between DNA damage and the regulation of upd3 release from hemocytes. The authors have also included new analyses to emphasize the significance of hemocytes in the regulation of energy during oxidative stress. Following the reviewers' suggestions, the authors made improvements to the manuscript and the graphical abstract to better display their findings. Overall, the revised manuscript makes it easier to understand the main points, flows better, and is supported by convincing data and analysis throughout.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The manuscript by Coberski et al describes a combined experimental and computational study aimed to shed light on the catalytic mechanism in a methyltransferase that transfers a methyl group from S-adenosylmethionine (SAM) to a substrate adenosine to form N6-methyladenosine (m6A).

      Strengths:<br /> The authors determine crystal structures in complex with so-called bi-substrate analogs that can bridge across the SAM and adenosine binding sites and mimic a transition state or intermediate of the methyl-transfer reaction. The crystal structures suggest dynamical motions of the substrate(s) that are examined further using classical MD simulations. The authors then use QM/MM calculations to study the methyl-transfer process. Together with biochemical assays of ligand/substrate binding and enzyme turnover, the authors use this information to suggest what the key steps are in the catalytic cycle. The manuscript is in most places easy to read.

      Weaknesses:<br /> My main suggestion for the authors is that they show better how their conclusions are supported by the data. This includes how the electron density maps for example support the key interactions and water molecules in the active site and a better error analysis of the computational analyses.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors were trying to show that a novel neuronal metallothionein of poorly defined function, GIF/MT3, is actually heavily persulfidated in both the Zn-bound and apo (metal-free) forms of the molecule as purified from a heterologous or native host. Evidence in support of this conclusion is compelling, with both spectroscopic and mass spectrometry evidence strongly consistent with this general conclusion. The authors would appear to have achieved their aims.

      Strengths:<br /> The analytical data are compelling in support of the author's primary conclusions are strong. The authors also provide some modeling evidence that strongly supports the contention that MT3 (and other MTs) can readily accommodate sulfane sulfur on each of the 20 cysteines in the Zn-bound structure, with little perturbation of the structure. This is not the case with Cys trisulfides, which suggests that the persulfide-metallated state is clearly positioned at lower energy relative to the immediately adjacent thiolate- or trisulfidated metal coordination complexes.

      Weaknesses:<br /> The biological significance of the findings is not entirely clear. On the one hand, the analytical data are clearly solid (albeit using a protein derived from a bacterial over-expression experiment), and yes, it's true that sulfane S can protect Cys from overoxidation, but everything shown in the summary figure (Fig. 8D) can be done with Zn release from a thiol by ROS, and subsequent reduction by the Trx/TR system. In addition, it's long been known that Zn itself can protect Cys from oxidation. I view this as a minor weakness that will motivate follow-up studies. Fig. 1 was incomplete in its discussion and only suggests that a few S atoms may be covalently bound to MT3 as isolated. This is in contrast to the sulfate S "release" experiment, which I find quite compelling.

      Impact:<br /> The impact will be high since the finding is potentially disruptive to the metals in the biology field in general and the MT field for sure. The sulfane sulfur counting experiment (the HPE-IAM electrophile trapping experiment) may well be widely adopted by the field. Those of us in the metals field always knew that this was a possibility, and it will interesting to see the extent to which metal-binding thiolates broadly incorporate sulfate sulfur into their first coordination shells.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This manuscript describes some biochemical experiments on the crucial virulence factor EsxA (ESAT-6) of Mycobacterium tuberculosis. EsxA is secreted via the ESX-1 secretion system. Although this system is recognized to be crucial for virulence the actual mechanisms employed by the ESX-1 substrates are still mostly unknown. The EsxA substrate is attracting the most attention as the central player in virulence, especially phagosomal membrane disruption. EsxA is secreted as a dimer together with EsxB. The authors show that EsxA is also able to form homodimers and even tetramers, albeit at very low pH (below 5). Furthermore, the addition of a nanobody that specifically binds EsxA blocks intracellular survival, as well as if the nanobody is produced in the cytosol of the infected macrophages.

      Strengths:<br /> -Decent biochemical characterization of EsxA and identification of a new and interesting tool to study the function of EsxA (nanobody).

      -The manuscript is well-written.

      Weaknesses:<br /> The findings are not critically evaluated using extra experiments or controls.

      For instance, tetrameric EsxA in itself is interesting and could reveal how EsxA works. But one would say that this is a starting point to make small point mutations that specifically affect tetramer formation and then evaluate what the effect is on phagosomal membrane lysis. Also one would like to see experiments to indicate whether these structures can be produced under in vitro conditions, especially because it seems that this mainly happens when the pH is lower than 5, which is not normally happening in phagosomes that are loaded with M. tuberculosis.

      Also, the fact that the addition of the nanobody, either directly to the bacteria or produced in the cytosol of macrophages is interesting, but again it is the starting point for further experimentation. As a control, one would like to see the effect on an Esx-1 secretion mutant. Furthermore, does cytosolic production or direct addition of the nanobody affect phagosomal escape? What happens if an EsxA mutant is produced that does not bind the nanobody?

      Finally, it is a bit strange that the authors use a non-native version of esxA that has not only an additional His-tag but also an additional 12 amino acids, which makes the protein in total almost 20% bigger. Of course, these additions do not have to alter the characteristics, but they might. On the other hand, they easily discard the natural acetylation of EsxA by mycobacteria itself (proven for M. marinum) as not relevant for the function because it might not happen in (the close homologue) M. tuberculosis.

    1. Reviewer #3 (Public Review):

      Summary:

      This article demonstrates a Pax1-Col11a1-Mmp3 signaling axis associated with adolescent idiopathic scoliosis and finds that estrogen affects this signaling axis. In addition, the authors have identified a new COL11A1 mutation and verified its effect on the Pax1-Col11a1-Mmp3 axis.

      Strengths:

      1. Col11a1P1335L is verified in multicenter cohorts with high confidence.

      2. The article identified a potential pathogenesis of AIS.

      Weaknesses:

      The SV40-immortalized cell line established from Col11a1fl/fl mouse rib cartilage was applied in the study, and overexpression system was used to confirm that P1335L variant in COL11A1 perturbs its regulation of MMP3. However, due to the absence of P1335L point mutant mice, it cannot be confirmed whether P1335L can actually cause AIS, and the pathogenicity of this mutation cannot be directly verified.

    1. Reviewer #3 (Public Review):

      Summary:

      In this study, Warfvinge and colleagues use CITE-seq to interrogate how CML stem cells change between diagnosis and after one year of TKI therapy. This provides important insight into why some CML patients are "optimal responders" to TKI therapy while others experience treatment failure. CITE-seq in CML patients revealed several important findings. First, substantial cellular heterogeneity was observed at diagnosis, suggesting that this is a hallmark of CML. Further, patients who experienced treatment failure demonstrated increased numbers of primitive cells at diagnosis compared to optimal responders. This finding was validated in a bulk gene expression dataset from 59 CML patients, in which it was shown that the proportion of primitive cells versus lineage-primed cells correlates to treatment outcome. Even more importantly, because CITE-seq quantifies cell surface protein in addition to gene expression data, the authors were able to identify that BCR/ABL+ and BCR/ABL- CML stem cells express distinct cell surface markers (CD26+/CD35- and CD26-/CD35+, respectively). In optimal responders, BCR/ABL- CD26-/CD35+ CML stem cells were predominant, while the opposite was true in patients with treatment failure. Together, these findings represent a critical step forward for the CML field and may allow more informed development of CML therapies, as well as the ability to predict patient outcomes prior to treatment.

      Strengths:

      This is an important, beautifully written, well-referenced study that represents a fundamental advance in the CML field. The data are clean and compelling, demonstrating convincingly that optimal responders and patients with treatment failure display significant differences in the proportion of primitive cells at diagnosis, and the ratio of BCR-ABL+ versus negative LSCs. The finding that BCR/ABL+ versus negative LSCs display distinct surface markers is also key and will allow for a more detailed interrogation of these cell populations at a molecular level.

      Weaknesses:

      CITE-seq was performed in only 9 CML patient samples and 2 healthy donors. Additional samples would greatly strengthen the very interesting and notable findings.

    1. Reviewer #3 (Public Review):

      Peng et al. designed a computational framework for identifying pioneer factors using epigenomic data from five cell types. The identification of pioneer factors is important for our understanding of the epigenetic and transcriptional regulation of cells. A computational approach toward this goal can significantly reduce the burden of labor-intensive experimental validation.

      The authors have addressed my previous comments.

      The main issue identified in this re-review is based on the authors' additional experiments to investigate the reproducibility of the pioneer factors identified in the previously analysis that anchored on H1 ESCs.

      The additional analysis that uses the other four cell types (HepG2, HeLa-S3, MCF-7, and K562) as anchors reveals the low reproducibility/concordance and high dependence on the selection of anchor cell type in the computational framework. In particular, now several stem cell related TFs (e.g. ESRRB, POU5F1) are ranked markedly higher when H1 ESC is not used as the anchor cell type as shown in Supplementary Figure 5.

      Of note, the authors have now removed the shape labels that denote Yamanaka factors in Figure 2c (revised manuscript) that was presented in the main Figure 2a in the initial submission. The NFYs and ESRRB labels in Supplementary 4a are also removed and the boxplot comparing NFYs and ESRRB with other TF are also removed in this figure. Removing these results effectively hides the issues of the computational framework we identified in this revision. Please justify why this was done.

      In summary, these new results reveal significant limitations of the proposed computational framework for identifying pioneer factors. The current identifications appear to be highly dependent on the choice of cell types.

    1. Reviewer #3 (Public Review):

      The authors introduce two new concepts for antimicrobial resistance borrowed from pharmacology, "variant vulnerability" (how susceptible a particular resistance gene variant is across a class of drugs) and "drug applicability" (how useful a particular drug is against multiple allelic variants). They group both terms under an umbrella term "drugability". They demonstrate these features for an important class of antibiotics, the beta-lactams, and allelic variants of TEM-1 beta-lactamase. In the revised version, they investigate a second drug class that targets dihydrofolate reductase in Plasmodium (the causative agent of malaria).

      The strength of the result is in its conceptual advance and that the concepts seem to work for beta-lactam resistance and DHFR inhibitors in a protozoan. However, I do not necessarily see the advance of lumping both terms under "drugability", as this adds an extra layer of complicaton in my opinion.

      I think that the utility of the terms will be more comprehensively demonstrated by using examples across a breadth of drug classes classes and/or resistance genes. For instance, another good bacterial model with published data might have been trimethoprim resistance, which arises through point mutations in the folA gene (although, clinical resistance tends to be instead conferred by a suite of horizontally acquired dihydrofolate reductase genes, which are not so closely related as the TEM variants explored here).

      The impact of the work on the field depends on a more comprehensive demonstration of the applicability of these new concepts to other drugs. This would be demonstrated in future work.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors have undertaken a study to rigorously characterize the possible role of eIF2A in regulating translation in yeast. The authors test for the role of eIF2A in the absence or presence of cellular stress and conclude that eIF2A does not play any significant role in regulating translation initiation in yeast.

      Strengths:<br /> The authors have used rigorous experimental approaches, including genome-wide ribosome profiling analysis in the absence or presence of stress, to show that eIF2A does not function in translation initiation on most mRNAs in yeast. Interestingly, the authors do identify a small number of mRNAs that possess some eIF2A dependency, so they constructed reporters to rigorously test them. One mRNA, HKR1, appears to possess a degree of eIF2A-dependent translation regulation.

      Weaknesses:<br /> While no role of eIF2A in translation initiation is apparent, the authors do not determine what function eIF2A does play in yeast. Whether it plays a role in regulating translation in a different stress response is not determined.

    1. Reviewer #3 (Public Review):

      The manuscript from Mandal et al. aims to show that the actin cytoskeleton is the key mechanosensitive element in cytotoxic T lymphocytes, enabling them to discriminate between target cells of different cortical stiffness. They further examine whether WASP activation is sensitive to substrate stiffness, and thus modulates actin polymerization and early T cell signaling in a mechanosensitive manner. Overall, the mechanosensitivity of CTLs has attracted a lot of attention in the last few years and this study explores new and interesting facets. The manuscript asks an important question regarding the mechanisms underlying the stiffness dependent response observed in T cells. The authors have used a variety of techniques ranging from mouse models and in vivo studies, cell biological manipulations and biophysical measurements which is commendable. Their work suggests that the actin cytoskeleton regulated by WASP plays a key role in mechanosensitivity - which is an intriguing finding.

      While this manuscript has wide-ranging experiments and interesting results, a number of points need to be carefully addressed to support the central claims.

      The first major issue is that the irreversible actin inhibitor myca can have a number of non-specific effects on CTL activation. It is not clear that the effects observed are due to the change in stiffness alone. Since Myca depolymerizes actin, the B16 target cells would have altered MHC mobility or impaired receptor-ligand engagement - which might affect actin foci formation and signaling. There is also no gain of function experiment, wherein the stiffness of the target cell is enhanced. Moreover, there are two populations in both the control and myca-treated Young's modulus histograms for B16 cells. Are these sub-populations fundamentally different in their cytoskeletal organization? This can also confound or introduce variability in results on stiffness-dependence of CTL function, given the second sub-population of Myca-treated cells overlaps with the first sub-population of control cells. The authors need to provide a justification for these.

      Secondly, the WASP knockout still shows mechanosensitivity but at reduced force levels (Fig. 3B). Similarly, other measures (Fig. 3) still show increases with stiffness. Thus, it is not clear whether WASP is necessary for mechanosensing but simply for maintaining force levels and (expectedly) lower actin levels and foci in the WASP knockout. In fact, Fig 3 implies WASP is required for signaling and not for mechanosensing, undermining the main claim of the paper. At the very least, ANOVA or factor analysis (stiffness x WASP) needs to be done to demonstrate the requirement of WASP for CTL mechanosensitivity.

      Third, there are some concerns regarding the traction force microscopy. The authors do not present key details in the manuscript about the methods used. Secondly, the traction values are entirely too high compared to reported values in the literature for CTLs. A back-of-the-envelope calculation of the total force yields ~30 nN for wild-type cells) on 10 kPa gels, which is about an order of magnitude higher than reported values (Tamzalit et al. 2020, Hui et al. 2017, Bashour et al. 2014, Pathni et al. 2022). The authors should clearly demonstrate and justify that their measured values are reasonable and accurate. The lack of representative movies and displacement maps used for the traction force measurements make it hard to evaluate the results. Typical bead displacements for CTLs on softer gels are on the order of 1 micron (Mustapha et al. 2022), which should decrease to 0.1 micron or less on 50 kPa gels. These would make the tractions hard to estimate accurately. The authors should evaluate and show the displacements underneath the cell and outside the cell boundaries to give estimates of the noise floor for tractions. Finally, there is no discussion of how the tractions were calculated from the displacements - was Fourier Transform or Finite element method used? What is the noise level of the measurements and how were the traction estimates regularized?

      Fourth, many of the plots in the manuscripts are not accompanied by representative images to show how these aspects (distribution of actin and signaling markers for example) change qualitatively under different conditions (e.g. stiffness). Details of analysis and quantification need to be provided for a clearer understanding of the results and interpretations. All figures and captions should include information about the number of cells and experiments. Along these lines, there is very little detail in the methods, statistical power, calculations are not mentioned, there is little description of the pmel-1 knockout mouse, all of which make it hard to evaluate the soundness of the results.

      Finally, the study as presented, doesn't conclusively show that WASP is required for mechanosensitive CTL function. The results presented show that WASP is required for early and longer-term signaling events and cytolytic activity, and that knocking out WASP reduces early TCR signaling, actin foci formation in response to substrate stiffness. To make the claim of WASP-mediated regulation of CTL mechanosensitivity stronger, it would be helpful to see how WASP knockout affects CTL killing in response to softened and (possibly) stiffened B16 targets.

    1. Reviewer #3 (Public Review):

      The authors investigate the role of commensal microbes and molecules in the antigen presentation pathway in the development and phenotype of CD8 T cells specific for the Qa-1b-restricted peptide FL9 (QFL). The studies track both endogenous QFL-specific T cells and utilize a recently generated TCR transgenic model. The authors confirm that QFL-specific T cells in the spleen and small intestine intraepithelial lymphocyte (IEL) pool show an antigen-experienced phenotype as well as unique phenotypic and innate-like functional traits, especially among CD8+ T cells expressing Va3.2+ TCRs. They find that deficiency in the TAP transporter leads to almost complete loss of QFL-specific T cells but that loss of either Qa1 or the ERAAP aminopeptidase does not impact QFL+ T cell numbers but does cause them to maintain a more conventional, naïve-like phenotype. In germ-free (GF) mice, the QFL-specific T cells are present at similar numbers and with a similar phenotype to SPF animals, but in older animals (>18w) there is a notable loss of IEL QFL-specific cells. This drop can be avoided by neonatal colonization of GF mice with the commensal microbe Pediococcus pentosaceus but not a different commensal, Lactobacillus johnsonii, and the authors show that P. pentosaceus encodes a peptide that weakly stimulates QFL-specific T cells, while the homologous peptide from L. johnsonii does not stimulate such cells.

      This study provides new insights into the way in which the differentiation, phenotype, and function of CD8+ T cells specific for Qa-1b/FL9 is regulated by peptide processing and Qa1 expression, and by interactions with the microbiota. The approaches are well designed, the data compelling, and the interpretation, for the most part, appropriate.

      The response to several of my concerns involved reference to a different manuscript from the authors (which has not been through peer review), and for point #3, it would have been useful to provide experimental evidence (e.g., competitive inhibition assays) to justify their hypothesis that P4 serves as a TCR contact while P6 may be a Qa-1b contact residue. Nevertheless, the authors have made considerable efforts to clarify their approaches and interpretation, which strengthens the manuscript.

    1. Reviewer #3 (Public Review):

      In this work, the authors conduct transcriptional profiling experiments with Mtb under various different stress conditions (oxidative, nitrosative, low pH, starvation, and SDS). The Mtb transcriptional responses to these stress conditions are not particularly new, having been reported extensively in the literature over the past ~20 years in various forms. A common theme from the current work is that L-cysteine synthesis genes are seemingly up-regulated by many stresses. Thus, the authors focused on deleting two of the three L-cysteine synthesis genes (cysM and cysK2) in Mtb to better understand the roles of these genes in Mtb physiology.

      The cysM and cysK2 mutants display fitness defects in various media (Sautons media, starvation, oxidative and nitrosative stress) noted by CFU reductions. Transcriptional profiling studies with the cysM and cysK2 mutants revealed that divergent gene signatures are generated in each of these strains under oxidative stress, suggesting that cysM and cysK2 have non-redundant roles in Mtb's oxidative stress response which likely reflects the different substrates used by these enzymes, CysO-L-cysteine and O-phospho-L-serine, respectively. Note that these studies lack genetic complementation and are thus not rigorously controlled for the engineered deletion mutations.

      The authors quantify the levels of sulfur-containing metabolites (methionine, ergothioneine, mycothiol, mycothionine) produced by the mutants following exposure to oxidative stress. Both the cysM or cysK2 mutants produce more methionine, ergothioneine, and mycothionine relative to WT under oxidative stress. Both mutants produce less mycothiol relative to WT under the same condition. These studies lack genetic complementation and thus, do not rigorously control for the engineered mutations.

      Next, the mutants were evaluated in infection models to reveal fitness defects associated with oxidative and nitrosative stress in the cysM or cysK2 mutants. In LPS/IFNg activated peritoneal macrophages, the cysM or cysK2 mutants display marked fitness defects which can be rescued with exogenous cysteine added to the cell culture media. Peritoneal macrophages lacking the NADPH oxidase (Phox) or IFNg fail to produce fitness phenotypes in the cysM or cysK2 mutants suggesting that oxidative stress is responsible for the phenotypes. Similarly, chemical inhibition of iNOS partly abrogated the fitness defect of the cysM or cysK2 mutants. Similar studies were conducted in mice lacking IFNg and Phox establishing that cysM or cysK2 mutants have fitness defects in vivo that are dependent on oxidative and nitrosative stress.

      Lastly, the authors use small molecule compounds to inhibit cysteine synthases. It is demonstrated that the compounds display inhibition of Mtb growth in 7H9 ADC media. No evidence is provided to demonstrate that these compounds are specifically inhibiting the cysteine synthases via "on-target inhibition" in the whole Mtb cells. Additionally, it is wrongly stated in the discussion that "combinations of L-cys synthase inhibitors with front-line TB drugs like INH, significantly reduced the bacterial load inside the host". This statement suggests that the INH + cysteine synthase inhibitor combinations reduce Mtb loads within a host in an infection assay. No data is presented to support this statement.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Here, Osnes et al examine the population dynamics of Neisseria gonorrhoeae. They develop new methodologies to deal with the issue of recombination, as well as using ancestral state reconstruction approaches to quantify the number of import and export transmission events occurring in different regions in the world. Overall, they provide a framework for understanding intercontinental transmission that could be applied to other microbial pathogens.

      Strengths:<br /> A major strength of this study is the incredibly large number of genomes analysed, which span a wide temporal range with significant geographical diversity. The use of ancestral state reconstruction to quantitatively determine the number of import and export events of N. gonorrhoeae in densely sampled Norway and Victoria, Australia, is an interesting application of this well-known method and could be applied to other bacterial species that have been well-sampled.

      Weaknesses:<br /> The methods development to deal with the issue of recombination in their dataset to ensure that the recombination signal does not affect their dating estimates and effective population size analysis is thorough but has likely not been able to remove all bias. Additionally, the authors discuss the utility of using the identified transmission lineages in this study to better type N. gonorrhoeae as there are issues with traditional typing, such as MLST, due to the highly recombinogenic nature of this species. However, no method seems to be provided to enable future researchers to easily assign their genomes to the transmission lineages identified in this study.

    1. Reviewer #3 (Public Review):

      The authors develop a variational autoencoder (VAE), termed d-VAE (or distill VAE) that aims to tease apart the behaviorally relevant and irrelevant sections of each neuron's firing rate. The input to the VAE is the population activity for a given time step, and the output is the inferred behaviorally relevant section of the population activity at that time step. The residual is referred to as behaviorally irrelevant: total neural activity = behaviorally relevant + behaviorally irrelevant (x = x_r + x_i). The mapping from the raw neural signals (x) to the bottlenecked latent in the autoencoder (called z, z=f(x)) and back to the inferred behaviorally relevant single-neuron activities (x_r = g(z)) is applied per time step (does not incorporate any info from past/future time steps) and, critically, it is nonlinear (f and g are nonlinear feedforward neural networks). The key technical novelty that encourages x_r to encode behaviorally relevant information is a term added to the loss, which penalizes bad linear behavior decoding from the latent z. Otherwise the method is very similar to a prior method called pi-VAE, which should be explained more thoroughly in the manuscript to clearly highlight the technical novelty.

      The authors apply their method to 3 non-human primate datasets to infer behaviorally relevant signals and contrast them with the raw neural signals and the residual behaviorally irrelevant signals. As a key performance metric, they compute the accuracy of decoding behavior from the inferred behaviorally relevant signals (x_r) using a linear Kalman filter (KF) or alternatively using a nonlinear feed forward neural network (ANN). They highlight 3 main conclusions in the abstract: first, that single neurons from which behavior is very poorly decodable do encode considerable behavior information in a nonlinear manner, which the ANN can decode. Second, they conclude from various analyses that behavior is occupying a higher dimensional neural space than previously thought. Third, they find that linear KF decoding and nonlinear ANN decoding perform similarly when provided with the inferred behaviorally relevant signals (x_r), from which they conclude that a linear readout must be performed in motor cortex.

      The paper is well-written in many places and has high-quality graphics. The questions that it aims to address are also of considerable interest in neuroscience. However, unfortunately, several main conclusions, including but not limited to all 3 conclusions that are highlighted in the abstract, are not fully supported by the results due to confounds, some of which are fundamental to the method. Several statements in the text also seem inaccurate due to use of imprecise language. Moreover, the authors fail to compare with some more relevant existing methods that are specifically designed for extracting behaviorally relevant signals. In addition, for some of the methods they compare with, they do not use an appropriate setup for the benchmark methods, rendering the validation of the proposed method unconvincing. Finally, in many places imprecise language that is not accompanied with an operational definition (e.g., smaller R2 [of what], similar [per what metric]) makes results hard to follow, unless most of the text is read very carefully. Some key details of the methods are also not explained anywhere.

    1. Reviewer #3 (Public Review):

      Summary: The authors present a thought-provoking and comprehensive re-analysis of previously published human cell genomics data that seeks to understand the relationship between the sites where the Origin Recognition Complex (ORC) binds chromatin, where the replicative helicase (Mcm2-7) is loaded, and where DNA replication actually beings (origins). The view that these should coincide is influenced by studies in yeast where ORC binds site-specifically to dedicated nucleosome-free origins where Mcm2-7 can be loaded and remains stably positioned for subsequent replication initiation. However, this is most certainly not the case in metazoans where it has already been reported that chromatin bindings sites of ORC and Mcm2-7 do not necessarily overlap, nor do they always overlap with origins. This is likely due to Mcm2-7 possessing linear mobility on DNA (i.e., it can slide) such that other chromatin-contextualized processes can displace it from the site in which it was originally loaded. Additionally, Mcm2-7 is loaded in excess and thus only a fraction of Mcm2-7 would be predicted to coincide with replication start sites. This study reaches a very similar conclusion of these previous studies: they find a high degree of discordance between ORC, Mcm2-7, and origin positions in human cells.

      Strengths: The strength of this work is its comprehensive and unbiased analysis of all relevant genomics datasets. To my knowledge, this is the first attempt to integrate these observations. It also is an important cautionary tale to not confuse replication factor binding sites with the genomic loci where replication actually begins, although this point is already widely appreciated in the field.

      Weaknesses: The major weakness of this paper is the lack of novel biological insight and that the comprehensive approach taken failed to provide any additional mechanistic insight regarding how and why ORC, Mcm2-7, and origin sites are selected or why they may not coincide.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Non-enzymatic replication of RNA or a similar polymer is likely to be important for the origin of life. The authors present a model of how a functional catalytic sequence could emerge from a mixture of sequences undergoing non-enzymatic replication.

      Strengths:<br /> Interesting model describing details of the proposed replication mechanism.

      Weaknesses:<br /> A discussion of the virtual circular genome idea proposed in [33] is included in the discussion section together with the problem of sequence scrambling faced by this mechanism that was raised in [34]. However, the authors state that sequence scrambling is a special case of the classical error catastrophe. This should be reworded, because these phenomena are completely different. The error catastrophe occurs due to single-point mutational errors in a model that assumes that a complete template is being copied in one cycle. Sequence scrambling arises in models that assume cycles of melting and reannealing, in which case only part of a template is copied in one cycle. Scrambling is due to the many alternative ways in which pairs of sequences can reanneal. Many of these alternatives are incorrect and this leads to the disappearance of the original sequence. This problem exists even in the limit where there is zero mutational error rate. Therefore, it cannot be called a special case of the error catastrophe problem.

      The authors seem to believe that their model avoids the scrambling problem. If this is the case, a clear explanation should be added about why this problem is avoided. Two possible points are mentioned.<br /> (i) Replication is bidirectional in this model. This seems like a small detail to me. I don't think it makes any difference to whether scrambling occurs.<br /> (ii) The functional activity is located in a short sequence region. I can imagine that if the length of a strand that is synthesized in a single cycle is long enough to cover the complete functional region, then sometimes the complete functional sequence can be copied in one cycle. Is this what is being argued? If so, it depends a lot on rates of primer extension and lengths of melting cycles etc, and some comment on this should be made.

    1. Reviewer #3 (Public Review):

      In their study the authors analyze the localization of multiple organelles and subcellular structure of blood stage malaria parasites with unprecedented detail. They use a 3D super-resolution imaging technique that has gained popularity in the protozoan field, ultrastructure expansion microscopy. Building on markers and labels established in the field they generate an appealing collection of images for all stages of the intraerythrocytic developmental stages of asexual blood stage parasites with some focus on nuclear division and cell segmentation stages.

      The authors have made a very good effort to address all the comments raised by the reviewers providing more clarity to the manuscript and appropriate interpretations of their results. Particularly the sharing of their image data in the Dryad repository adds significant value to their work.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this work, the authors propose a novel method for analyzing spiking neuron network models with delays. By modeling the delay as an additional axonal component to relay spikes, the infinite-dimensional system of the delayed network is transformed into a system of finite dimensions. This allows the calculation of the entire spectrum of Lyapunov exponents which provide information on the dimensionality of attractor and noise entropy of network responses. The authors demonstrate that chaos intensifies at the onset of oscillations as synaptic delay increases. This is surprising since network oscillation has been thought to indicate regular firing activity. The authors find similar results in different types of networks and in networks driven by oscillatory inputs, suggesting that the boosting of chaos by oscillation can be a general feature of spiking networks.

      Strengths:<br /> This work builds on the authors' past work on characterizing chaos in spiking networks and extends to include synaptic delays. The transformation of a delayed network into a network of two-compartment neurons, modeling the spike generation and transmission, is novel and interesting. This allows for an analytical expression of the single spike Jacobian of the network dynamics, which can be used to calculate the full spectrum of Lyapunov exponents.

      The analysis is rigorous and the parameter study is comprehensive.

      Weaknesses:<br /> Because the delayed interaction is spike-triggered, effectively it only requires N variables to count the remaining time since the last spike from each neuron. The axon component only implements the delay time to transmit a spike with no interaction with other neurons. It seems that the axon component can be simply modeled as a variable counting the time since the last spike and does not need to be modeled as a QIF model. Is there any advantage of modeling the axon component as a QIF model? The supplemental figure S2 considers the case of "dynamic delay", where delay time can depend on network activity, but the Lyapunov exponents seem to be largely independent of the reset parameter.

      In most of the results, the network mean firing rate is kept at a fixed value while the delay time parameter varies. What would be the results if only the delay parameter changes? It would be helpful if the authors could provide some reasoning as to why it is a better comparison with the network rate kept as a constant.

      The majority of the neurons have a CV below 1 (Fig 2d and Fig S3c). This indicates that many neurons are in the mean-driven regime. This is different from balanced networks where CVs are around 1. It would be helpful for the authors to comment on this discrepancy.

    1. Reviewer #3 (Public Review):

      This study utilizes saccade metrics to explore, what the authors term the "past and future" of working memory. The study features an original design: in each trial, two pairs of stimuli are presented, first a vertical pair and then a horizontal one. Between these two pairs comes the cue that points the participant to one target of the first pair and another of the second pair. The task is to compare the two cued targets. The design is novel and original but it can be split into two known tasks - the first is a classic working memory task (a post-cue informs participants which of two memorized items is the target), which the authors have used before; and the second is a classic spatial attention task (a pre-cue signal that attention should be oriented left or right), which was used by numerous other studies in the past. The combination of these two tasks in one design is novel and important, as it enables the examination of the dynamics and overlapping processes of these tasks, and this has a lot of merit. However, each task separately is not new. There are quite a few studies on working memory and microsaccades and many on spatial attention and microsaccades. I am concerned that the interpretation of "past vs. future" could mislead readers to think that this is a new field of research, when in fact it is the (nice) extension of an existing one. Since there are so many studies that examined pre-cues and post-cues relative to microsaccades, I expected the interpretation here to rely more heavily on the existing knowledge base in this field. I believe this would have provided a better context of these findings, which are not only on "past" vs. "future" but also on "working memory" vs. "spatial attention".

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors used cTBS TMS, magnetic resonance spectroscopy (MRS), and functional magnetic resonance imaging (fMRI) as the main methods of investigation. Their data show that cTBS modulates GABA concentration and task-dependent BOLD in the ATL, whereby greater GABA increase following ATL cTBS showed greater reductions in BOLD changes in ATL. This effect was also reflected in the performance of the behavioural task response times, which did not subsume to practice effects after AL cTBS as opposed to the associated control site and control task. This is in line with their first hypothesis. The data further indicates that regional GABA concentrations in the ATL play a crucial role in semantic memory because individuals with higher (but not excessive) GABA concentrations in the ATLs performed better on the semantic task. This is in line with their second prediction. Finally, the authors conducted additional analyses to explore the mechanistic link between ATL inhibitory GABAergic action and semantic task performance. They show that this link is best captured by an inverted U-shaped function as a result of a quadratic linear regression model. Fitting this model to their data indicates that increasing GABA levels led to better task performance as long as they were not excessively low or excessively high. This was first tested as a relationship between GABA levels in the ATL and semantic task performance; then the same analyses were performed on the pre and post-cTBS TMS stimulation data, showing the same pattern. These results are in line with the conclusions of the authors.

      Strengths:<br /> I thoroughly enjoyed reading the manuscript and appreciate its contribution to the field of the role of the ATL in semantic processing, especially given the efforts to overcome the immense challenges of investigating ATL function by neuroscientific methods such as MRS, fMRI & TMS. The main strengths are summarised as follows:

      • The work is methodologically rigorous and dwells on complex and complementary multimethod approaches implemented to inform about ATL function in semantic memory as reflected in changes in regional GABA concentrations. Although the authors previously demonstrated a negative relationship between increased GABA levels and BOLD signal changes during semantic processing, the unique contribution of this work lies within evidence on the effects of cTBS TMS over the ATL given by direct observations of GABA concentration changes and further exploring inter-individual variability in ATL neuroplasticity and consequent semantic task performance.

      • Another major asset of the present study is implementing a quadratic regression model to provide insights into the non-linear relationship between inhibitory GABAergic activity within the ATLs and semantic cognition, which improves with increasing GABA levels but only as long as GABA levels are not extremely high or low. Based on this finding, the authors further pinpoint the role of inter-individual differences in GABA levels and cTBS TMS responsiveness, which is a novel explanation not previously considered (according to my best knowledge) in research investigating the effect of TMS on ATLs.

      • There are also many examples of good research practice throughout the manuscript, such as the explicitly stated exploratory analyses, calculation of TMS electric fields, using ATL optimised dual echo fRMI, links to open source resources, and a part of data replicates a previous study by Jung et. al (2017).

      Weaknesses:<br /> • Research on the role of neurotransmitters in semantic memory is still very rare and therefore the manuscript would benefit from more context on how GABA contributes to individual differences in cognition/behaviour and more justification on why the focus is on semantic memory. A recommendation to the authors is to highlight and explain in more depth the particular gaps in evidence in this regard.

      • The focus across the experiments is on the left ATL; how do the authors justify this decision? Highlighting the justification for this methodological decision will be important, especially given that a substantial body of evidence suggests that the ATL should be involved in semantics bilaterally (e.g. Hoffman & Lambon Ralph, 2018; Lambon Ralph et al., 2009; Rice et al., 2017; Rice, Hoffman, et al., 2015; Rice, Ralph, et al., 2015; Visser et al., 2010).

      • When describing the results, (Pg. 11; lines 233-243), the authors first show that the higher the BOLD signal intensity in ATL as a response to the semantic task, the lower the GABA concentration. Then, they state that individuals with higher GABA concentrations in the ATL perform the semantic task better. Although it becomes clearer with the exploratory analysis described later, at this point, the results seem rather contradictory and make the reader question the following: if increased GABA leads to less task-induced ATL activation, why at this point increased GABA also leads to facilitating and not inhibiting semantic task performance? It would be beneficial to acknowledge this contradiction and explain how the following analyses will address this discrepancy.

      • There is an inconsistency in reporting behavioural outcomes from the performance on the semantic task. While experiment 1 (cTBS modulates regional GANA concentrations and task-related BOLD signal changes in the ATL) reports the effects of cTBS TMS on response times, experiment 2 (Regional GABA concentrations in the ATL play a crucial role in semantic memory) and experiment 3 (The inverted U-shaped function of ATL GABA concentration in semantic processing) report results on accuracy. For full transparency, the manuscript would benefit from reporting all results (either in the main text or supplementary materials) and providing further explanations on why only one or the other outcome is sensitive to the experimental manipulations across the three experiments.

      Overall, the most notable impact of this work is the contribution to a better understanding of individual differences in semantic behaviour and the potential to guide therapeutic interventions to restore semantic abilities in neurological populations. While I appreciate that this is certainly the case, I would be curious to read more about how this could be achieved.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The study investigates the longitudinal changes in hearing threshold, speech recognition behavior, and speech neural responses in 2 years, and how these changes correlate with each other. A slight change in the hearing threshold is observed in 2 years (1.2 dB on average) but the speech recognition performance remains stable. The main conclusion is that there is no significant correlation between longitudinal changes in neural and behavioral measures.

      Strengths:<br /> The sample size (N>100) is remarkable, especially for longitudinal studies.

      Weaknesses:<br /> The participants are only tracked for 2 years and relatively weak longitudinal changes are observed, limiting how the data may shed light on the relationships between basic auditory function, speech recognition behavior, and speech neural responses.

      Suggestions<br /> First, it's not surprising that a 1.2 dB change in hearing threshold does not affect speech recognition, especially for the dichotic listening task and when speech is always presented 50 dB above the hearing threshold. For the same listener, if the speech level is adjusted for 1.2 dB or much more, the performance will not be influenced during the dichotic listening task. Therefore, it is important to mention in the abstract that "sensory acuity" is measured using the hearing threshold and the change in hearing threshold is only 1.2 dB.

      Second, the lack of correlation between age-related changes in "neuronal filtering" and behavior may not suggest that they follow independent development trajectories. The index for "neuronal filtering" does not seem to be stable and the correlation between the two tests is only R = 0.21. This low correlation probably indicates low test-retest reliability, instead of a dramatic change in the brain between the two tests. In other words, if the "neuronal filtering" index only very weakly correlates with itself between the two tests, it is not surprising that it does not correlate with other measures in a different test. If the "neuronal filtering" index is measured on two consecutive days and the index remains highly stable, I'm more convinced that it is a reliable measure that just changes a lot within 2 years, and the change is dissociated with the changes in behavior.

      The authors attempted to solve the problem in the section entitled "Neural filtering reliably supports listening performance independent of age and hearing status", but I didn't follow the logic. As far as I could tell, the section pooled together the measurements from two tests and did not address the test-retest stability issue.

      Third, the behavioral measure that is not correlated with "neuronal filtering" is the response speed. I wonder if the participants are asked to respond as soon as possible (not mentioned in the method). If not, the response speed may strongly reflect general cognitive function or a personal style, which is not correlated with the changes in auditory functions. This can also explain why the hearing threshold affects speech recognition accuracy but not the response speed (lines 263-264).

    1. Reviewer #3 (Public Review):

      Summary:<br /> This manuscript shows that mutations that disable the gene encoding the PTTH gene cause an increase in female receptivity (they mate more quickly), a phenotype that can be reversed by feeding these mutants the molting hormone, 20-hydoxyecdysone (20E). The use of an inducible system reveals that inhibition or activation of PTTH neurons during the larval stages increases and decreases female receptivity, respectively, suggesting that PTTH is required during the larval stages to affect the receptivity of the (adult) female fly. Showing that these neurons express the sex-determining gene dsx leads the authors to show that interfering with 20E actions in pC1 neurons, which are dsx-positive neurons known to regulate female receptivity, reduces female receptivity and increases the arborization pattern of pC1 neurons. The work concludes by showing that targeted knockdown of EcRA in pC1 neurons causes 527 genes to be differentially expressed in the brains of female flies, of which 123 passed a false discovery rate cutoff of 0.01; interestingly, the gene showing the greatest down-regulation was the gene encoding dopamine beta-monooxygenase.

      Stengths<br /> This is an interesting piece of work, which may shed light on the basis for the observation noted previously that flies lacking PTTH neurons show reproductive defects ("... females show reduced fecundity"; McBrayer, 2007; DOI 10.1016/j.devcel.2007.11.003).

      Weaknesses:<br /> There are some results whose interpretation seem ambiguous and findings whose causal relationship is implied but not demonstrated.<br /> 1- At some level, the findings reported here are not at all surprising. Since 20E regulates the profound changes that occur in the central nervous system (CNS) during metamorphosis, it is not surprising that PTTH would play a role in this process. Although animals lacking PTTH (rather paradoxically) live to adulthood, they do show greatly extended larval instars and a corresponding great delay in the 20E rise that signals the start of metamorphosis. For this reason, concluding that PTTH plays a SPECIFIC role in regulating female receptivity seems a little misleading, since the metamorphic remodeling of the entire CNS is likely altered in PTTH mutants. Since these mutants produce overall normal (albeit larger--due to their prolonged larval stages) adults, these alterations are likely to be subtle. Courtship has been reported as one defect expressed by animals lacking PTTH neurons, but this behavior may stand out because reduced fertility and increased male-male courtship (McBrayer, 2007) would be noticeable defects to researchers handling these flies. By contrast, detecting defects in other behaviors (e.g., optomotor responses, learning and memory, sleep, etc) would require closer examination. For this reason, I would ask the authors to temper their statement that PTTH is SPECIFICALLY involved in regulating female receptivity.<br /> 2- The link between PTTH and the role of pC1 neurons in regulating female receptivity is not clear. Again, since 20E controls the metamorphic changes that occur in the CNS, it is not surprising that 20E would regulate the arborization of pC1 neurons. And since these neurons have been implicated in female receptivity, it would therefore be expected that altering 20E signaling in pC1 neurons would affect this phenotype. However, this does not mean that the defects in female receptivity expressed by PTTH mutants are due to defects in pC1 arborization. For this, the authors would at least have to show that PTTH mutants show the changes in pC1 arborization shown in Fig. 6. And even then the most that could be said is that the changes observed in these neurons "may contribute" to the observed behavioral changes. Indeed, the changes observed in female receptivity may be caused by PTTH/20E actions on different neurons.<br /> 3- Some of the results need commenting on, or refining, or revising:<br /> a- For some assays PTTH behaves sometimes like a recessive gene and at other times like a semi-dominant, and yet at others like a dominant gene. For instance, in Fig. 1D-G, PTTH[-]/+ flies behave like wildtype (D), express an intermediate phenotype (E-F), or behave like the mutant (G). This may all be correct but merits some comment.<br /> b- Some of the conclusions are overstated. i) Although Fig. 2E-G does show that silencing the PTTH neurons during the larval stages affects copulation rate (E) the strength of the conclusion is tempered by the behavior of one of the controls (tub-GAL80[ts]/+, UAS-Kir2.1/+) in panels F and G, where it behaves essentially the same as the experimental group (and quite differently from the PTTH-GAL4/+ control; blue line).(Incidentally, the corresponding copulation latency should also be shown for these data.). ii) For Fig. 5I-K, the conclusion stated is that "Knock-down of EcR-A during pupal stage significantly decreased the copulation rate." Although strictly correct, the problem is that panel J is the only one for which the behavior of the control lacking the RNAi is not the same as that of the experimental group. Thus, it could just be that when the experiment was done at the pupal stage is the only situation when the controls were both different from the experimental. Again, the results shown in J are strictly speaking correct but the statement is too definitive given the behavior of one of the controls in panels I and K. Note also that panel F shows that the UAS-RNAi control causes a massive decrease in female fertility, yet no mention is made of this fact.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In humans, short photoperiods are associated with hypersomnolence. The mechanisms underlying these effects are, however, unknown. Chen et al. use the fly Drosophila to determine the mechanisms regulating sleep under short photoperiods. They find that mutations in the circadian photoreceptor cryptochrome (cry) increase sleep specifically under short photoperiods (e.g. 4h light : 20 h dark). They go on to show that cry is required in GABAergic neurons. Further, they suggest that the relevant subset of GABAergic neurons are the well-studied small ventral lateral neurons that they suggest inhibit the arousal-promoting large ventral neurons via GABA signalling.

      Strengths:<br /> Genetic analysis to show that cryptochrome (but not other core clock genes) mediates the increase in sleep in short photoperiods, and circuit analysis to localise cry function to GABAergic neurons.

      Weaknesses:<br /> The authors' conclusion that the sLNvs are GABAergic is not well supported by the data. Better immunostaining experiments and perhaps more specific genetic driver lines would help with this point (details below).

      1. The sLNvs are well known as a key component of the circadian network. The finding that they are GABAergic would if true, be of great interest to the community. However, the data presented in support of this conclusion are not convincing. Much of the confocal images are of insufficient resolution to evaluate the paper's claims. The Anti-GABA immunostaining in Fig 4 and 5 seem to have a high background, and the GRASP experiments in Fig 4 supplement 1 low signal.

      Transcriptomic datasets are available for the components of the circadian network (e.g. PMID 33438579, and PMID 19966839). It would be of interest to determine if transcripts for GAD or other GABA synthesis/transport components were detected in sLNvs. Further, there are also more specific driver lines for GAD, and the lLNvs, sLNVs that could be used.

      2. The authors' model posits that in short photoperiods, cry functions to suppress GABA secretion from sLNvs thereby disinhibiting the lNVs. In Fig 4I they find that activating the lLNvs (and other peptidergic cells) by c929>NaChBac in a cryb background reduces sleep compared to activating lLNVs in a wild-type background. It's not clear how this follows from the model. A similar trend is observable in Fig 4H with TRP-mediated activation of lNVs, although it is not clear from the figure if the difference b/w cryb vs wild-type background is significant.

    1. Reviewer #3 (Public Review):

      In the manuscript by Klug and colleagues, the investigators use a rabies virus-based methodology to explore potential differences in connectivity from cortical inputs to the dorsal striatum. They report that the connectivity from cortical inputs onto D1 and D2 MSNs differs in terms of their projections onto the opposing cell type, and use these data to infer that there are differences in cross-talk between cortical cells that project to D1 vs. D2 MSNs. Overall, this manuscript adds to the overall body of work indicating that there are differential functions of different striatal pathways which likely arise at least in part by differences in connectivity that have been difficult to resolve due to difficulty in isolating pathways within striatal connectivity and several interesting and provocative observations were reported. Several different methodologies are used, with partially convergent results, to support their main points.

      However, I have significant technical concerns about the manuscript as presented that make it difficult for me to interpret the results of the experiments. My comments are below.

      Major:<br /> There is generally a large caveat to the rabies studies performed here, which is that both TVA and the ChR2-expressing rabies virus have the same fluorophore. It is thus essentially impossible to determine how many starter cells there are, what the efficiency of tracing is, and which part of the striatum is being sampled in any given experiment. This is a major caveat given the spatial topography of the cortico-striatal projections. Furthermore, the authors make a point in the introduction about previous studies not having explored absolute numbers of inputs, yet this is not at all controlled in this study. It could be that their rabies virus simply replicates better in D1-MSNs than D2-MSNs. No quantifications are done, and these possibilities do not appear to have been considered. Without a greater standardization of the rabies experiments across conditions, it is difficult to interpret the results.

      The authors claim using a few current clamp optical stimulation experiments that the cortical cells are healthy, but this result was far from comprehensive. For example, membrane resistance, capacitance, general excitability curves, etc are not reported. In Figure S2, some of the conditions look quite different (e.g., S2B, input D2-record D2, the method used yields quite different results that the authors write off as not different). Furthermore, these experiments do not consider the likely sickness and death that occurs in starter cells, as has been reported elsewhere. The health of cells in the circuit is overall a substantial concern that alone could invalidate a large portion, if not all, of the behavioral results. This is a major confound given those neurons are thought to play critical roles in the behaviors being studied. This is a major reason why first-generation rabies viruses have not been used in combination with behavior, but this significant caveat does not appear to have been considered, and controls e.g., uninfected animals, infected with AAV helpers, etc, were not included.

      The overall purity (e.g., EnvA pseudotyping efficiency) of the RABV prep is not shown. If there was a virus that was not well EnvA-pseudotyped and thus could directly infect cortical (or other) inputs, it would degrade specificity.

      While most of the study focuses on the cortical inputs, in slice recordings, inputs from the thalamus are not considered, yet likely contribute to the observed results. Related to this, in in vivo optogenetic experiments, technically, if the thalamic or other inputs to the dorsal striatum project to the cortex, their method will not only target cortical neurons but also terminals of other excitatory inputs. If this cannot be ruled it, stating that the authors are able to selectively activate the cortical inputs to one or the other population should be toned down.

      The statements about specificity of connectivity are not well-founded. It may be that in the specific case where they are assessing outside of the area of injections, their conclusions may hold (e.g., excitatory inputs onto D2s have more inputs onto D1s than vice versa). However, how this relates to the actual site of injection is not clear. At face value, if such a connectivity exists, it would suggest that D1-MSNs receive substantially more overall excitatory inputs than D2s. It is thus possible that this observation would not hold over other spatial intervals. This was not explored and thus the conclusions are over-generalized. e.g., the distance from the area of red cells in the striatum to recordings was not quantified, what constituted a high level of cortical labeling was not quantified, etc. Without more rigorous quantification of what was being done, it is difficult to interpret the results.

      The results in figure 3 are not well controlled. The authors show contrasting effects of optogenetic stimulation of D1-MSNs and D2-MSNs in the DMS and DLS, results which are largely consistent with the canon of basal ganglia function. However, when stimulating cortical inputs, stimulating the inputs from D1-MSNs gives the expected results (increased locomotion) while stimulating putative inputs to D2-MSNs had no effect. This is not the same as showing a decrease in locomotion - showing no effect here is not possible to interpret.

      In light of their circuit model, the result showing that inputs to D2-MSNs drive ICSS is confusing. How can the authors account for the fact that these cells are not locomotor-activating, stimulation of their putative downstream cells (D2-MSNs) does not drive ICSS, yet the cortical inputs drive ICSS? Is the idea that these inputs somehow also drive D1s? If this is the case, how do D2s get activated, if all of the cortical inputs tested net activate D1s and not D2s? Same with the results in figure 4 - the inputs and putative downstream cells do not have the same effects. Given the potential caveats of differences in viral efficiency, spatial location of injections, and cellular toxicity, I cannot interpret these experiments.

    1. Reviewer #3 (Public Review):

      Summary: Well-illustrated new material is documented for Acanthomeridion, a formerly incompletely known Cambrian arthropod. The formerly known facial sutures are shown to be associated with ventral plates that the authors very reasonably homologise with the free cheeks of trilobites. A slight update of a phylogenetic dataset developed by Du et al, then refined slightly by Chen et al, then by Schmidt et al, and again here, permits another attempt to optimise the number of origins of dorsal ecdysial sutures in trilobites and their relatives.

      Strengths: Documentation of an ontogenetic series makes a sound case that the proposed diagnostic characters of a second species of Acanthomeridion are variations within a single species. New microtomographic data shed some light on appendage morphology that was not formerly known. The new data on ventral plates and their association with the ecdysial sutures are valuable in underpinning homologies with trilobites.

      Weaknesses: The main conclusion remains clouded in ambiguity because of a poorly resolved Bayesian consensus and is consistent with work led by the lead author in 2019 (thus compromising the novelty of the findings). The Bayesian trees being majority rules consensus trees, optimising characters onto them (Figure 7b, d) is problematic. Optimising on a consensus tree can produce spurious optimisations that inflate tree length or distort other metrics of fit. Line 264 refers to at least three independent origins of cephalic sutures in artiopodans but the fully resolved Figure 7c requires only two origins. We can't say how many origins are required by Figures 7b and 7d.

      The question of how many times dorsal ecdysial sutures evolved in Artiopoda was addressed by Hou et al (2017), who first documented the facial sutures of Acanthomeridion and optimised them onto a phylogeny to infer multiple origins, as well as in a paper led by the lead author in Cladistics in 2019. Du et al. (2019) presented a phylogeny based on an earlier version of the current dataset wherein they discussed how many times sutures evolved or were lost based on their presence in Zhiwenia/Protosutura, Acanthomeridion, and Trilobita. To their credit, the authors acknowledge this (lines 62-65). The answer here is slightly different (because some topologies unite Acanthomeridion and trilobites).

      The following points are not meant to be "Weaknesses" but rather are refinements:

      I recommend changing the title of the paper from "cephalic sutures" to "dorsal ecdysial sutures" to be more precise about the character that is being tracked evolutionarily. Lots of arthropods have cephalic sutures (e.g., the ventral marginal suture of xiphosurans; the Y-shaped dorsomedian ecdysial line in insects). The text might also be updated to change other instances of "cephalic sutures" to a more precise wording.

      The authors have provided (but not explicitly identified) support values for nodes in their Bayesian trees but not in their parsimony ones. Please do the jackknife or bootstrap for the parsimony analyses and make it clear that the Bayesian values are posterior probabilities.

      In line 65 or somewhere else, it might be noted that a single origin of the dorsal facial sutures in trilobites has itself been called into question. Jell (2003) proposed that separate lineages of Eutrilobita evolved their facial sutures independently from separate sister groups within Olenellina.

      I have provided minor typographic or terminological corrections to the authors in a list of recommendations that may not be publicly available.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), Peters and co-workers showed that the disordered N-terminus of both LRMP and HCN4 are necessary for LRMP to interact with HCN4 and inhibit the cAMP-dependent potentiation of channel opening. Strikingly, they identified two HCN4-specific residues, P545 and T547 in the C-linker of HCN4, that are close in proximity to the cAMP transduction centre (elbow Clinker, S4/S5-linker, HCND) and account for the LRMP effect.

      Strengths:<br /> Based on these data, the authors propose a mechanism in which LRMP specifically binds to HCN4 via its isotype-specific N-terminal sequence and thus prevents the cAMP transduction mechanism by acting at the interface between the elbow Clinker, the S4S5-linker, the HCND.

      Weaknesses:<br /> Although the work is interesting, there are some discrepancies between data that need to be addressed.

      1. I suggest inserting in Table 1 and in the text, the Δ shift values (+cAMP; + LRMP; +cAMP/LRMP). This will help readers.

      2. Figure 1 is not clear, the distribution of values is anomalously high. For instance, in 1B the distribution of values of V1/2 in the presence of cAMP goes from - 85 to -115. I agree that in the absence of cAMP, HCN4 in HEK293 cells shows some variability in V1/2 values, that nonetheless cannot be so wide (here the variability spans sometimes even 30 mV) and usually disappears with cAMP (here not).

      This problem is spread throughout the manuscript, and the measured mean effects are indeed always at the limit of statistical significance. Why so? Is this a problem with the analysis, or with the recordings?

      There are several other problems with Figure 1 and in all figures of the manuscript: the Y scale is very narrow while the mean values are marked with large square boxes. Moreover, the exemplary activation curve of Figure 1A is not representative of the mean values reported in Figure 1B, and the values of 1B are different from those reported in Table 1.

      On this ground, it is difficult to judge the conclusions and it would also greatly help if exemplary current traces would be also shown.

      3. "....HCN4-P545A/T547F was insensitive to LRMP (Figs. 6B and 6C; Table 1), indicating that the unique HCN4 C-linker is necessary for regulation by LRMP. Thus, LRMP appears to regulate HCN4 by altering the interactions between the C-linker, S4-S5 linker, and N-terminus at the cAMP transduction centre."

      Although this is an interesting theory, there are no data supporting it. Indeed, P545 and T547 at the tip of the C-linker elbow (fig 6A) are crucial for LRMP effect, but these two residues are not involved in the cAMP transduction centre (interface between HCND, S4S5 linker, and Clinker elbow), at least for the data accumulated till now in the literature. Indeed, the hypothesis that LRMP somehow inhibits the cAMP transduction mechanism of HCN4 given the fact that the two necessary residues P545 and T547 are close to the cAMP transduction centre, remains to be proven.

      Moreover, I suggest analysing the putative role of P545 and T547 in light of the available HCN4 structures. In particular, T547 (elbow) points towards the underlying shoulder of the adjacent subunit and, therefore, is in a key position for the cAMP transduction mechanism. The presence of bulky hydrophobic residues (very different nature compared to T) in the equivalent position of HCN1 and HCN2 also favours this hypothesis. In this light, it will be also interesting to see whether a single T547F mutation is sufficient to prevent the LRMP effect.

    1. Reviewer #3 (Public Review):

      In this study, O'Brien et al. address the need for scalable and cost-effective approaches to finding lead compounds for the treatment of the growing number of Mendelian diseases. They used state-of-the-art phenotypic screening based on an established high-dimensional phenotypic analysis pipeline in the nematode C. elegans.

      First, a panel of 25 C. elegans models was created by generating CRISPR/Cas9 knock-out lines for conserved human disease genes. These mutant strains underwent behavioral analysis using the group's published methodology. Clustering analysis revealed common features for genes likely operating in similar genetic pathways or biological functions. The study also presents results from a more focused examination of ciliopathy disease models.

      Subsequently, the study focuses on the NALCN channel gene family, comparing the phenotypes of mutants of nca-1, unc-77, and unc-80. This initial characterization identifies three behavioral parameters that exhibit significant differences from the wild type and could serve as indicators for pharmacological modulation.

      As a proof-of-concept, O'Brien et al. present a drug repurposing screen using an FDA-approved compound library, identifying two compounds capable of rescuing the behavioral phenotype in a model with UNC80 deficiency. The relatively short time and low cost associated with creating and phenotyping these strains suggest that high-throughput worm tracking could serve as a scalable approach for drug repurposing, addressing the multitude of Mendelian diseases. Interestingly, by measuring a wide range of behavioural parameters, this strategy also simultaneously reveals deleterious side effects of tested drugs that may confound the analysis.

      Considering the wealth of data generated in this study regarding important human disease genes, it is regrettable that the data is not actually made accessible. This diminishes the study's utility. It would have a far greater impact if an accessible and user-friendly online interface were established to facilitate data querying and feature extraction for specific mutants. This would empower researchers to compare their findings with the extensive dataset created here. Otherwise, one is left with a very limited set of exploitable data.

      Another technical limitation of the study is the use of single alleles. Large deletion alleles were generated by CRISPR/Cas9 gene editing. At first glance, this seems like a good idea because it limits the risk that background mutations, present in chemically-generated alleles, will affect behavioral parameters. However, these large deletions can also remove non-coding RNAs or other regulatory genetic elements, as found, for example, in introns. Therefore, it would be prudent to validate the behavioral effects by testing additional loss-of-function alleles produced through early stop codons or targeted deletion of key functional domains.

    1. Shopify don’t count the emissions footprint of the products sold by merchants in their actual climate data. No shipping, no manufacturing emissions, nothing (Amazon play a similar trick).

      This an interesting point - shopify can argue they do it to avoid double counting, but that’s not really what scope 3 is designed for

    1. Reviewer #3 (Public Review):

      Summary:

      In their article "Theory of systems memory consolidation via recall-gated plasticity ", Jack Lindsey and Ashok Litwin-Kumar describe a new model for systems memory consolidation. Their idea is that a short-term memory acts not as a teacher for a long-term memory - as is common in most complementary learning systems - but as a selection module that determines which memories are eligible for long-term storage. The criterion for the consolidation of a given memory is a sufficient strength of recall in the short-term memory.

      The authors provide an in-depth analysis of the suggested mechanism. They demonstrate that it allows substantially higher SNRs than previous synaptic consolidation models, provide an extensive mathematical treatment of the suggested mechanism, show that the required recall strength can be computed in a biologically plausible way for three different learning paradigms, and illustrate how the mechanism can explain spaced training effects.

      Strengths:

      The suggested consolidation mechanism is novel and provides a very interesting alternative to the classical view of complementary learning systems. The analysis is thorough and convincing.

      Weaknesses:

      The main weakness of the paper is the equation of recall strength with the synaptic changes brought about by the presentation of a stimulus. In most models of learning, synaptic changes are driven by an error signal and hence cease once the task has been learned. The suggested consolidation mechanism would stop at that point, although recall is still fine. The authors should discuss other notions of recall strength that would allow memory consolidation to continue after the initial learning phase. Aside from that, I have only a few technical comments that I'm sure the authors can address with a reasonable amount of work.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Radial muscle growth involves an increase in overall muscle cross-sectional area. For decades this process has been described as the splitting of myofibrils to produce more myofibrils during the growth process. However, a closer look at the original papers shows that the evidence underlying this description was incomplete. In this paper, the authors have developed a novel method using fluorescence microscopy to directly measure myofibril size and number. Using a mouse model of mechanical loading and a human model of resistance exercise they discovered that myofibrillogenesis is playing a key role in the radial growth of muscle fibers.

      Strengths:<br /> 1. Well-written and clear description of hypothesis, background, and experiments.<br /> 2. Compelling series of experiments.<br /> 3. Different approaches to test the hypothesis.<br /> 4. Rigorous study design.<br /> 5. Clear interpretation of results.<br /> 6. Novel findings that will be beneficial to the muscle biology field.<br /> 7. Innovative microscopy methods that should be widely available for use in other muscle biology labs.

      Weaknesses:<br /> Supplemental Figure 1 is not very clear.

    1. Reviewer #3 (Public Review):

      Summary:<br /> By conducting QM/MM free energy simulations, the authors aimed to characterize the mechanism and transition state for the phosphoryl transfer in adenylate kinase. The qualitative reliability of the QM/MM results has been supported by several interesting experimental kinetic studies. However, the interpretation of the QM/MM results is not well supported by the current calculations.

      Strengths:<br /> The QM/MM free energy simulations have been carefully conducted. The accuracy of the semi-empirical QM/MM results was further supported by DFT/MM calculations, as well as qualitatively by several experimental studies.

      Weaknesses:<br /> 1. One key issue is the definition of the transition state ensemble. The authors appear to define this by simply considering structures that lie within a given free energy range from the barrier. However, this is not the rigorous definition of transition state ensemble, which should be defined in terms of committor distribution. This is not simply an issue of semantics, since only a rigorous definition allows a fair comparison between different cases - such as the transition state in an enzyme vs in solution, or with and without the metal ion. For a chemical reaction in a complex environment, it is also possible that many other variables (in addition to the breaking and forming P-O bonds) should be considered when one measures the diversity in the conformational ensemble.

      2. While the experimental observation that the activation entropy differs significantly with and without the Ca2+ ion is interesting, it is difficult to connect this result with the "wide" transition state ensemble observed in the QM/MM simulations so far. Even without considering the definition of the transition state ensemble mentioned above, it is unlikely that a broader range of P-O distances would explain the substantial difference in the activation entropy measured in the experiment. Since the difference is sufficiently large, it should be possible to compute the value by repeating the free energy simulations at different temperatures, which would lead to a much more direct evaluation of the QM/MM model/result and the interpretation.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Jojoa-Cruz et al provide a new structure of At-OSCA3.1. The structure of OSCA 3.1 is similar to previous OSCA cryo-em structures of both OSCA3.1 and other homologues validating the new structure. Using the novel structure of OSCA3.1 as a guide they created several point mutations to investigate two different mechanosensitive modalities: poking and stretching. To investigate the ability of OSCA channels to gate in response to poking they created point mutations in OSCA1.2 to reduce sensitivity to poking based on the differences between the OSCA1.2 and 3.1 structures. Their results suggest that two separate regions are responsible for gating in response to poking and stretching.

      Strengths:<br /> Through a detailed structure-based analysis, the authors identified structural differences between OSCA3.1 and OSCA1.2. These subtle structural changes identify regions in the amphipathic helix and near the pore that are essential for the gating of OSCA1.2 in response to poking and stretching. The use of point mutations to understand how these regions are involved in mechanosensation clearly shows the role of these residues in mechanosensation.

      Weaknesses:<br /> In general, the point mutations selected all show significant alterations to the inherent mechanosensitive regions. This often suggests that any mutation would disrupt the function of the region, additional mutations that are similar in function to the WT channel would support the claims in the manuscript. Mutations in the amphipathic helix at W75 and L80 show reduced gating in response to poking stimuli. The gating observed occurs at poking depths similar to cellular rupture, the similarity in depths suggests that these mutations could be a complete loss of function. For example, a mutation to L80I or L80Q would show that the addition of the negative charge is responsible for this disruption not just a change in the steric space of the residue in an essential region.

    1. Reviewer #3 (Public Review):

      Several labs in the 1970s published fundamental work revealing that almost all eukaryotes organize their DNA into repeating units called nucleosomes, which form the chromatin fiber. Decades of elegant biochemical and structural work indicated a primarily octameric organization of the nucleosome with 2 copies of each histone H2A, H2B, H3 and H4, wrapping 147bp of DNA in a left handed toroid, to which linker histone would bind.

      This was true for most species studied (except, yeast lack linker histone) and was recapitulated in stunning detail by in vitro reconstitutions by salt dialysis or chaperone-mediated assembly of nucleosomes. Thus, these landmark studies set the stage for an exploding number of papers on the topic of chromatin in the past 45 years.

      An emerging counterpoint to the prevailing idea of static particles is that nucleosomes are much more dynamic and can undergo spontaneous transformation. Such dynamics could arise from intrinsic instability due to DNA structural deformation, specific histone variants or their mutations, post-translational histone modifications which weaken the main contacts, protein partners, and predominantly, from active processes like ATP-dependent chromatin remodeling, transcription, repair and replication.

      This paper is important because it tests this idea whole-scale, applying novel cryo-EM tomography tools to examine the state of chromatin in yeast lysates or cryo-sections. The experimental work is meticulously performed, with vast amount of data collected. The main findings are interpreted by the authors to suggest that majority of yeast nucleosomes lack a stable octameric conformation. The findings are not surprising in that alternative conformations of nucleosomes might exist in vivo, but rather in the sheer scale of such particles reported, relative to the traditional form expected from decades of biochemical, biophysical and structural data. Thus, it is likely that this work will be perceived as controversial. Nonetheless, we believe these kinds of tools represent an important advance for in situ analysis of chromatin. We also think the field should have the opportunity to carefully evaluate the data and assess whether the claims are supported, or consider what additional experiments could be done to further test the conceptual claims made. It is our hope that such work will spark thought-provoking debate in a collegial fashion, and lead to the development of exciting new tools which can interrogate native chromatin shape in vivo. Most importantly, it will be critical to assess biological implications associated with more dynamic - or static forms- of nucleosomes, the associated chromatin fiber, and its three-dimensional organization, for nuclear or mitotic function.

    2. Reviewer #3 (Public Review):

      Several labs in the 1970s published fundamental work revealing that almost all eukaryotes organize their DNA into repeating units called nucleosomes, which form the chromatin fiber. Decades of elegant biochemical and structural work indicated a primarily octameric organization of the nucleosome with 2 copies of each histone H2A, H2B, H3 and H4, wrapping 147bp of DNA in a left handed toroid, to which linker histone would bind.

      This was true for most species studied (except, yeast lack linker histone) and was recapitulated in stunning detail by in vitro reconstitutions by salt dialysis or chaperone-mediated assembly of nucleosomes. Thus, these landmark studies set the stage for an exploding number of papers on the topic of chromatin in the past 45 years.

      An emerging counterpoint to the prevailing idea of static particles is that nucleosomes are much more dynamic and can undergo spontaneous transformation. Such dynamics could arise from intrinsic instability due to DNA structural deformation, specific histone variants or their mutations, post-translational histone modifications which weaken the main contacts, protein partners, and predominantly, from active processes like ATP-dependent chromatin remodeling, transcription, repair and replication.

      This paper is important because it tests this idea whole-scale, applying novel cryo-EM tomography tools to examine the state of chromatin in yeast lysates or cryo-sections. The experimental work is meticulously performed, with vast amount of data collected. The main findings are interpreted by the authors to suggest that majority of yeast nucleosomes lack a stable octameric conformation. The findings are not surprising in that alternative conformations of nucleosomes might exist in vivo, but rather in the sheer scale of such particles reported, relative to the traditional form expected from decades of biochemical, biophysical and structural data. Thus, it is likely that this work will be perceived as controversial. Nonetheless, we believe these kinds of tools represent an important advance for in situ analysis of chromatin. We also think the field should have the opportunity to carefully evaluate the data and assess whether the claims are supported, or consider what additional experiments could be done to further test the conceptual claims made. It is our hope that such work will spark thought-provoking debate in a collegial fashion, and lead to the development of exciting new tools which can interrogate native chromatin shape in vivo. Most importantly, it will be critical to assess biological implications associated with more dynamic - or static forms- of nucleosomes, the associated chromatin fiber, and its three-dimensional organization, for nuclear or mitotic function.

    1. Reviewer #3 (Public Review):

      Synopsis:<br /> The lack of visualizing the dynamic nature of biomolecules is a major weakness of crystallography or electron microscopy to study structure-function relationship of proteins. Such a challenge can be exemplified by the case of prestin, which shares high structural similarity to SLC26A9 anion transporter but is not an ion transporter. In this study, Lin et al aimed to use hydrogen-deuterium exchange and mass spectrometry (HDX-MS) to investigate the mobility of prestin and its response to anions. The authors exploited the nature of anion-dependent folding of this type of transporter to systematically analyze the mobility of transmembrane helices of both transporters by HDX. The authors found that the anion-binding helices engage in the stabilization of the anion-binding site. When stripped from Cl-, the site exposes to the transporter's extracellular side. More importantly, the authors narrowed down TM3 and TM10 with experimental data supporting the notion of R399's unique role in prestin's function. The results thus provide a working model of how the charged residue works in conjunction with the cooperativity of helix unfolding at the anion-binding site to drive the electromotive force of prestin.

      Strengths:<br /> The use of HDX-MS to probe the dynamic nature of prestin is a major strength of this study, which provides experimental evidence revealing the global and local differences in the folding events between prestin and SLC26A9. The mass experimental data led to the identification of TM3 and TM10 as the primary contributors to the folding changes, as well as a calculation of ΔΔG of ~2.4 kcal/mol, within the thermodynamic range of the dipole between the two helices. The latter also suggests the role of R399 as previously speculated in cryo-EM structures.

      This study went further to dissect the cooperativity during the folding and unfolding events on TM3, in which the authors observed a helix fraying at the anion-binding site and cooperative unfolding at the distal lipid-facing helices. This provides strong evidence of why prestin can undergo fast electromechanical rearrangement.

      Weakness:<br /> The authors tried to investigate the allostery by probing the intermediate folding/unfolding states by using sulfate or salicylate in the absence of chloride. Sulfate-bound proteins appear in an apo state earlier than normal chloride binding, and salicylate treatment led to a stable TMD state with slower HDX. It is unclear from the data (Fig 4) how the allostery works without titrating chloride ions into the reaction. The sulfate or salicylate experiments seem to show two extreme folding events outside the normal chloride conditions.

      TM3 and TM10 contribute to the anion-binding site together, and the authors beautifully showed the cooperativity of TM3. Does TM10 show the same cooperativity in prestin and SLC26A9? In addition, it is unclear whether the folding model at the anion-binding helices (Fig. 5B) remains the same when expressing prestin on live cells, such as thermodynamic data derived from electrophysiology studies.

      The authors observed increased stability upon chloride binding at the subunit interface in the cytosol for both prestin and SLC26A9 (Fig 1). How does this similarity in the cytosolic region contribute to the differential mechanisms as seen in the TMD in both transporters? It is unclear in this version of the manuscript.

    2. Reviewer #3 (Public Review):

      Synopsis:<br /> The lack of visualizing the dynamic nature of biomolecules is a major weakness of crystallography or electron microscopy to study structure-function relationship of proteins. Such a challenge can be exemplified by the case of prestin, which shares high structural similarity to SLC26A9 anion transporter but is not an ion transporter. In this study, Lin et al aimed to use hydrogen-deuterium exchange and mass spectrometry (HDX-MS) to investigate the mobility of prestin and its response to anions. The authors exploited the nature of anion-dependent folding of this type of transporter to systematically analyze the mobility of transmembrane helices of both transporters by HDX. The authors found that the anion-binding helices engage in the stabilization of the anion-binding site. When stripped from Cl-, the site exposes to the transporter's extracellular side. More importantly, the authors narrowed down TM3 and TM10 with experimental data supporting the notion of R399's unique role in prestin's function. The results thus provide a working model of how the charged residue works in conjunction with the cooperativity of helix unfolding at the anion-binding site to drive the electromotive force of prestin.

      Strengths:<br /> The use of HDX-MS to probe the dynamic nature of prestin is a major strength of this study, which provides experimental evidence revealing the global and local differences in the folding events between prestin and SLC26A9. The mass experimental data led to the identification of TM3 and TM10 as the primary contributors to the folding changes, as well as a calculation of ΔΔG of ~2.4 kcal/mol, within the thermodynamic range of the dipole between the two helices. The latter also suggests the role of R399 as previously speculated in cryo-EM structures.

      This study went further to dissect the cooperativity during the folding and unfolding events on TM3, in which the authors observed a helix fraying at the anion-binding site and cooperative unfolding at the distal lipid-facing helices. This provides strong evidence of why prestin can undergo fast electromechanical rearrangement.

      Weakness:<br /> The authors tried to investigate the allostery by probing the intermediate folding/unfolding states by using sulfate or salicylate in the absence of chloride. Sulfate-bound proteins appear in an apo state earlier than normal chloride binding, and salicylate treatment led to a stable TMD state with slower HDX. It is unclear from the data (Fig 4) how the allostery works without titrating chloride ions into the reaction. The sulfate or salicylate experiments seem to show two extreme folding events outside the normal chloride conditions.

      TM3 and TM10 contribute to the anion-binding site together, and the authors beautifully showed the cooperativity of TM3. Does TM10 show the same cooperativity in prestin and SLC26A9? In addition, it is unclear whether the folding model at the anion-binding helices (Fig. 5B) remains the same when expressing prestin on live cells, such as thermodynamic data derived from electrophysiology studies.

      The authors observed increased stability upon chloride binding at the subunit interface in the cytosol for both prestin and SLC26A9 (Fig 1). How does this similarity in the cytosolic region contribute to the differential mechanisms as seen in the TMD in both transporters? It is unclear in this version of the manuscript.

    1. Reviewer #3 (Public Review):

      SUMMARY:<br /> The manuscript by Bian et al. promotes the idea that creatine is a new neurotransmitter. The authors conduct an impressive combination of mass spectrometry (Fig. 1), genetics (Figs. 2, 3, 6), biochemistry (Figs. 2, 3, 8), immunostaining (Fig. 4), electrophysiology (Figs. 5, 6, 7), and EM (Fig. 8) in order to offer support for the hypothesis that creatine is a CNS neurotransmitter.

      STRENGTHS:<br /> There are many strengths to this study.<br /> • The combinatorial approach is a strength. There is no shortage of data in this study.<br /> • The careful consideration of specific criteria that creatine would need to meet in order to be considered a neurotransmitter is a strength.<br /> • The comparison studies that the authors have done in parallel with classical neurotransmitters are helpful.<br /> • Demonstration that creatine has inhibitory effects is another strength.<br /> • The new genetic mutations for Slc6a8 and AGAT are strengths and potentially incredibly helpful for downstream work.

      WEAKNESSES:<br /> • Some data are indirect. Even though Slc6a8 and AGAT are helpful sentinels for the presence of creatine, they are not creatine themselves. Therefore, the conclusions that are drawn should be circumspect.<br /> • Regarding Slc6a8, it seems to work only as a reuptake transporter - not as a transporter into SVs. Therefore, we do not know what the transporter is.<br /> • Puzzlingly, Slc6a8 and AGAT are in different cells, setting up the complicated model that creatine is created in one cell type and then processed as a neurotransmitter in another.<br /> • No candidate receptor for creatine has been identified postsynaptically.<br /> • Because no candidate receptor has been identified, is it possible that creatine is exerting its effects indirectly through other inhibitory receptors (e.g., GABAergic Rs)?<br /> • More broadly, what are the other possibilities for roles of creatine that would explain these observations other than it being a neurotransmitter? Could it simply be a modifier that exists in the SVs (lots of molecules exist in SVs)?<br /> • The biochemical studies are helpful in terms of comparing relevant molecules (e.g., Figs. 8 and S1), but the images of the westerns are all so fuzzy that there are questions about processing and the accuracy of the quantification.

      APPRAISAL OF WHETHER THE AUTHORS ACHIEVED THEIR AIMS AND WHETHER THE RESULTS SUPPORT THE CONCLUSIONS:<br /> There are several criteria that define a neurotransmitter. The authors nicely delineated many criteria in their discussion, but it is worth it for readers to do the same with their own understanding of the data.

      By this reviewer's understanding (and the Purves' textbook definition) a neurotransmitter: 1) must be present within the presynaptic neuron and stored in vesicles; 2) must be released by depolarization of the presynaptic terminal; 3) must require Ca2+ influx upon depolarization prior to release; 4) must bind specific receptors present on the postsynaptic cell; 5) exogenous transmitter can mimic presynaptic release; 6) there exists a mechanism of removal of the neurotransmitter from the synaptic cleft.

      For a paper to claim that the work has identified a new neurotransmitter, several of these criteria would be met - and the paper would acknowledge in the discussion which ones have not been met. For this particular paper, this reviewer finds that condition 1 is clearly met.

      Conditions 2 and 3 seem to be met by electrophysiology, but there are caveats here. High KCl stimulation is a blunt instrument that will depolarize absolutely everything in the prep all at once and could result in any number of non-specific biological reactions as a result of K+ rushing into all neurons in the prep. Moreover, the results in 0 Ca2+ are puzzling. For creatine (and for the other neurotransmitters), why is there such a massive uptick in release, even when the extracellular saline is devoid of calcium?

      Condition 4 is not discussed in detail at all. In the discussion, the authors elide the criterion of receptors specified by Purves by inferring that the existence of postsynaptic responses implies the existence of receptors. True, but does it specifically imply the existence of creatinergic receptors? This reviewer does not think that is necessarily the case. The authors should be appropriately circumspect and consider other modes of inhibition that are induced by activation or potentiation of other receptors (e.g., GABAergic or glycinergic).

      Condition 5 may be met, because the authors applied exogenous creatine and observed inhibition (Fig. 7). However, this is tough to know without understanding the effects of endogenous release of creatine. if they were to test if the absence of creatine caused excess excitation (at putative creatinergic synapses), then that would be supportive of the same.

      For condition 6, the authors made a great effort with Slc6a8. This is a very tough criterion to understand for many synapses and neurotransmitters.

      DISCUSSION OF THE LIKELY IMPACT OF THE WORK:<br /> In terms of fundamental neuroscience, the story would be impactful if proven correct. There are certainly more neurotransmitters out there than currently identified.

      The impact as framed by the authors in the abstract and introduction for intellectual disability is uncertain (forming a "new basis for ID pathogenesis") and it seems quite speculative beyond the data in this paper.

    2. Reviewer #3 (Public Review):

      SUMMARY:

      The manuscript by Bian et al. promotes the idea that creatine is a new neurotransmitter. The authors conduct an impressive combination of mass spectrometry (Fig. 1), genetics (Figs. 2, 3, 6), biochemistry (Figs. 2, 3, 8), immunostaining (Fig. 4), electrophysiology (Figs. 5, 6, 7), and EM (Fig. 8) in order to offer support for the hypothesis that creatine is a CNS neurotransmitter.

      STRENGTHS:

      There are many strengths to this study.

      • The combinatorial approach is a strength. There is no shortage of data in this study.<br /> • The careful consideration of specific criteria that creatine would need to meet in order to be considered a neurotransmitter is a strength.<br /> • The comparison studies that the authors have done in parallel with classical neurotransmitters is helpful.<br /> • Demonstration that creatine has inhibitory effects is another strength.<br /> • The new genetic mutations for Slc6a8 and AGAT are strengths and potentially incredibly helpful for downstream work.

      WEAKNESSES:

      • Some data are indirect. Even though Slc6a8 and AGAT are helpful sentinels for the presence of creatine, they are not creatine themselves. Of note, these molecules themselves are not essential for making the case that creatine is a neurotransmitter.<br /> • Regarding Slc6a8, it seems to work only as a reuptake transporter - not as a transporter into SVs. Therefore, we do not know what the transporter into the TVs is.<br /> • Puzzlingly, Slc6a8 and AGAT are in different cells, setting up the complicated model that creatine is created in one cell type and then processed as a neurotransmitter in another. This matter will likely need to be resolved in future studies.<br /> • No candidate receptor for creatine has been identified postsynaptically. This will likely need to be resolved in future studies.<br /> • Because no candidate receptor has been identified, it is important to fully consider other possibilities for roles of creatine that would explain these observations other than it being a neurotransmitter? There is some attention to this in the Discussion.

      There are several criteria that define a neurotransmitter. The authors nicely delineated many criteria in their discussion, but it is worth it for readers to do the same with their own understanding of the data.

      By this reviewer's understanding (and combining some textbook definitions together) a neurotransmitter: 1) must be present within the presynaptic neuron and stored in vesicles; 2) must be released by depolarization of the presynaptic terminal; 3) must require Ca2+ influx upon depolarization prior to release; 4) must bind specific receptors present on the postsynaptic cell; 5) exogenous transmitter can mimic presynaptic release; 6) there exists a mechanism of removal of the neurotransmitter from the synaptic cleft.

      For a paper to claim that the published work has identified a new neurotransmitter, several of these criteria would be met - and the paper would acknowledge in the discussion which ones have not been met. For this particular paper, this reviewer finds that condition 1 is clearly met.

      Conditions 2 and 3 seem to be met by electrophysiology, but there are caveats here. High KCl stimulation is a blunt instrument that will depolarize absolutely everything in the prep all at once and could result in any number of non-specific biological reactions as a result of K+ rushing into all neurons in the prep. Moreover, the results in 0 Ca2+ are puzzling. For creatine (and for the other neurotransmitters), why is there such a massive uptick in release, even when the extracellular saline is devoid of calcium?

      Condition 4 is not discussed in detail at all. In the discussion, the authors elide the criterion of receptors specified by Purves by inferring that the existence of postsynaptic responses implies the existence of receptors. True, but does it specifically imply the existence of creatinergic receptors? This reviewer does not think that is necessarily the case. The authors should be appropriately circumspect and consider other modes of inhibition that are induced by activation or potentiation of other receptors (e.g., GABAergic or glycinergic).

      Condition 5 may be met, because authors applied exogenous creatine and observed inhibition. However, this is tough to know without understanding the effects of endogenous release of creatine. if they were to test if the absence of creatine caused excess excitation (at putative creatinergic synapses), then that would be supportive of the same. Nicely, Ghirardini et al., 2023 study cited by the reviewers does provide support for this exact notion in pyramidal neurons.

      For condition 6, the authors made a great effort with Slc6a8. This is a very tough criterion to understand or prove for many synapses and neurotransmitters.

      In terms of fundamental neuroscience, the story should be impactful. There are certainly more neurotransmitters out there than currently identified and by textbook criteria, creatine seems to be one of them taking all of the data in this study and others into account.

    1. Reviewer #3 (Public Review):

      Summary:

      The authors investigated that learning processes relied on distinct reward or punishment outcomes in probabilistic instrumental learning tasks were involved in functional interactions of two different cortico-cortical gamma-band modulations, suggesting that learning signals like reward or punishment prediction errors can be processed by two dominated interactions, such as areas lOFC-vmPFC and areas aINS-dlPFC, and later on integrated together in support of switching conditions between reward and punishment learning. By performing the well-known analyses of mutual information, interaction information, and transfer entropy, the conclusion was accomplished by identifying directional task information flow between redundancy-dominated and synergy-dominated interactions. Also, this integral concept provided a unifying view to explain how functional distributed reward and/or punishment information were segregated and integrated across cortical areas.

      Strengths:

      The dataset used in this manuscript may come from previously published works (Gueguen et al., 2021) or from the same grant project due to the methods. Previous works have shown strong evidence about why gamma-band activities and those 4 areas are important. For further analyses, the current manuscript moved the ideas forward to examine how reward/punishment information transfer between recorded areas corresponding to the task conditions. The standard measurements such mutual information, interaction information, and transfer entropy showed time-series activities in the millisecond level and allowed us to learn the directional information flow during a certain window. In addition, the diagram in Figure 6 summarized the results and proposed an integral concept with functional heterogeneities in cortical areas. These findings in this manuscript will support the ideas from human fMRI studies and add a new insight to electrophysiological studies with the non-human primates.

      Weaknesses:

      After reading through the manuscript, the term "non-selective" in the abstract confused me and I did not actually know what it meant and how it fits the conclusion. If I learned the methods correctly, the 4 areas were studied in this manuscript because of their selective responses to the RPE and PPE signals (Figure 2). The redundancy- and synergy-dominated subsystems indicated that two areas shared similar and complementary information, respectively, due to the negative and positive value of interaction information (Page 6). For me, it doesn't mean they are "non-selective", especially in redundancy-dominated subsystem. I may miss something about how you calculate the mutual information or interaction information. Could you elaborate this and explain what the "non-selective" means?

      The directional information flows identified in this manuscript were evidenced by the recording contacts of iEEG with levels of concurrent neural activities to the task conditions. However, are the conclusions well supported by the anatomical connections? Is it possible that the information was transferred to the target via another area? These questions may remain to be elucidated by using other approaches or animal models. It would be great to point this out here for further investigation.

    1. Reviewer #3 (Public Review):

      The mechanism controlling plant gravity sensing has fascinated researchers for centuries. It has been clear for at least the past decade that starch-filled plastids (termed statoliths) in specialised gravity-sensing columella cells sense changes in root orientation, triggering an asymmetric auxin gradient that alters root growth direction. Nevertheless, exactly how statolith movement triggers PIN auxin efflux carrier activation and auxin gradient formation has remained unclear until very recently. A series of new papers (in Science and Cell) and this manuscript report how LAZY proteins (also referred to as NEGATIVE GRAVITROPIC 50 RESPONSE OF ROOTS; NGR) play a pivotal role in regulating root gravitropism. In terms of their overall significance, their collective findings provide seminal insights into the very earliest steps for how plant roots sense gravity which are arguably the most important papers about root gravitropism in the past decade.

      In the current manuscript, Kulich et al initially report (through creating a functional NGR1-GFP reporter) that "NGR1-GFP displayed a highly specific columella expression, which was most prominent at the PM and the statolith periphery." Is NGR1-GFP expressed in shoot tissues? If yes, is it in starch sheath (the gravity-sensing equivalent of root columella cells)? The authors also note "NGR1-GFP signal from the PM was not evenly distributed, but rather polarized to the lower side of the columella cells in the vicinity of the sedimented statoliths (Fig. 1A)." and (when overexpressing NGR-GFP) "chloroplasts in the vicinity of the PM strongly correlated with NGR1 accumulating at the PM nearby, similar to the scenario in columella" suggesting that NGR1 does not require additional tissue-specific factors (i.e. trafficking proteins or lipids) to assist in its intracellular movement from plastid to PM.

      Next, the authors study the spatiotemporal dynamics of NGR1-GFP re-localisation with other early gravitropic signals and/or components Calcium, auxin, and PIN3. The temporal data presented in Figure 1 illustrates how the GCaMP calcium reporter (in panel E) revealed "the first signaling event in the root gravitropic bending is the statolith removal from the top membrane, rather than its arrival at the bottom" It appeared that the auxin DII-VENUS reporter was also changing rapidly (panel G) - was this detectable BEFORE statolith re-sedimentation?<br /> Please can the authors explain their NPA result in Fig 1E? Why would treatment with the auxin transport inhibitor NPA block Ca signalling (unless the latter was dependent on the former)?<br /> They go on to note "This initial auxin asymmetry is mediated by PIN-dependent auxin transport, despite visible polarization of PIN3 can be detected only later" which suggests that PIN activity was being modified prior to PIN polarisation.

      In contrast to other proteins involved in gravity response like RLDs and PINs, NGR1 localization and gravity-induced polarization does not undergo BFA-sensitive endocytic recycling by ARF-GEF GNOM. This makes sense given NGR1 is initially targeted to plastids, THEN the PM. Does NGR1 contain a cleavable plastid targeting signal? The authors go on to elegantly demonstrate that NGR1 PM targeting relies on palmitoylation through imaging and mutagenesis-based transgenic ngr rescue assays.

      Finally, the authors demonstrate that gravitropic-induced auxin gradient formation is initially dependent on PIN3 auxin efflux activation (prior to PIN3 re-localisation). This early PIN3 activation process is dependent on NGR1 re-targeting D6PK (a PIN3 activating kinase). This elegant molecular mechanism integrates all the regulatory components described in the paper into a comprehensive root gravity sensing model.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The manuscript from Tariq and Maurici et al. presents important biochemical and biophysical data linking protein phosphorylation to phase separation behavior in the repressive arm of the Neurospora circadian clock. This is an important topic that contributes to what is likely a conceptual shift in the field. While I find the connection to the in vivo physiology of the clock to be still unclear, this can be a topic handled in future studies.

      Strengths: The ability to prepare purified versions of unphosphorylated FRQ and P-FRQ phosphorylated by CK-1 is a major advance that allowed the authors to characterize the role of phosphorylation in structural changes in FRQ and its impact on phase separation in vitro.

      Weaknesses: The major question that remains unanswered from my perspective is whether phase separation plays a key role in the feedback loop that sustains oscillation (for example by creating a nonlinear dependence on overall FRQ phosphorylation) or whether it has a distinct physiological role that is not required for sustained oscillation.

    1. Reviewer #3 (Public Review):

      The study presents strong evidence for allosteric activation of plant receptor kinases, which enhances our understanding of the non-catalytic mechanisms employed by this large family of receptors.

      Plant receptor kinases (RKs) play a critical role in transducing extracellular signals. The activation of RKs involves homo- or heterodimerization of the RKs, and it is believed that mutual phosphorylation of their intracellular kinase domains initiates downstream signaling. However, this model faces a challenge in cases where the kinase domain exhibits pseudokinase characteristics. In their recent study, Mühlenbeck et al. reveal the non-catalytic activation mechanisms of the EFR-BAK1 complex in plant receptor kinase signaling. Specifically, they aimed to determine that the EFR kinase domain activates BAK1 not through its kinase activity, but rather by utilizing a "conformational toggle" mechanism to enter an active-like state, enabling allosteric trans-activation of BAK1. The study sought to elucidate the structural elements and mutations of EFR that affect this conformational switch, as well as explore the implications for immune signaling in plants. To investigate the activation mechanisms of the EFR-BAK1 complex, the research team employed a combination of mutational analysis, structural studies, and hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis. For instance, through HDX-MS analysis, Mühlenbeck et al. discovered that the EFR (Y836F) mutation impairs the accessibility of the active-like conformation. On the other hand, they identified the EFR (F761H) mutation as a potent intragenic suppressor capable of stabilizing the active-like conformation, highlighting the pivotal role of allosteric regulation in BAK1 kinase activation. The data obtained from this methodology strengthens their major conclusion. Moreover, the researchers propose that the allosteric activation mechanism may extend beyond the EFR-BAK1 complex, as it may also be partially conserved in the Arabidopsis LRR-RK XIIa kinases. This suggests a broader role for non-catalytic mechanisms in plant RK signaling.

      The allosteric activation mechanism was demonstrated for receptor tyrosine kinases (RTKs) many years ago. A similar mechanism has been suggested for the activation of plant RKs, but experimental evidence for this conclusion is lacking. Data in this study represent a significant advancement in our understanding of non-catalytic mechanisms in plant RK signaling. By shedding light on the allosteric regulation of BAK1, the study provides a new paradigm for future research in this area.

    1. the Americanization of the culture of Alberta and the importance of American capital for the 00:24:23 energy industry but there was a lot of migration from the United States from Nebraska and Montana um up north yeah a third of the people who settled 00:24:35 the Prairies between 1880 and 1913 and a third of the three million who came were American my mother born in the U.S yes a lot of 00:24:48 the established you know people who've been here a while uh on the Canadian prairies we look South and we literally see cousins
      • for: interesting fact - many Albertans are from America

      • interesting fact

        • 3 million people settled the Canadian Praries between 1880 and 1913
        • 30% of them were fromNebrask and Montana
    1. Reviewer #3 (Public Review):

      This is an interesting manuscript that builds off of this group's previous work focused on the interface between Hsf1, heat shock protein (HSP) mRNA production, and 3D genome topology. Here the group subjects the yeast Saccharomyces cerevisiae to either heat stress (HS) or ethanol stress (ES) and examines Hsf1 and Pol II chromatin binding, Histone occupancy, Hsf1 condensates, HSP gene coalescence (by 3C and live cell imaging), and HSP mRNA expression (by RT-qPCR and live cell imaging). The manuscript is well written, and the experiments seem well done, and generally rigorous, with orthogonal approaches performed to support conclusions. The main findings are that both HS and ES result in Hsf1/Pol II-dependent intergenic interactions, along with the formation of Hsf1 condensates. Yet, while HS results in rapid and strong induction of HSP gene expression and Hsf1 condensate resolution, ES results in slow and weak induction of HSP gene expression without Hsf1 condensate resolution. Thus, the conclusion is somewhat phenomenological - that the same transcription factor can drive distinct transcription, topologic, and phase-separation behavior in response to different types of stress. While identifying a mechanistic basis for these results would be a tough task perhaps beyond the scope of this study, it would nevertheless be helpful to place these results in context with a series of other studies demonstrating across various organisms showing Hsf1 driving distinct activities dependent on the context of activation. Perhaps even more importantly, this work left out PMID: 32015439 which is particularly relevant considering that it shows that it is human HSF1 condensate resolution rather than simple condensate formation that is associated with HSF1 transcriptional activity - which is similar to the findings here with this particular dose of HS resulting in resolution and high transcriptional activity versus ES resulting in resolution failure and lower activity. It is also worth noting that the stresses themselves are quite different - ethanol can be used as a carbon source and so beyond inducing proteotoxic stress, the yeast are presumably adapting to this distinct metabolic state. Basically, it is not clear whether these differences are due to the dose of stress, versus we are looking at an early timepoint as ES initiates a genome-wide chromatin restructuring and gene expression reprogramming that goes beyond a response to proteotoxic stress. This reviewer is not suggesting a barrage of new experiments, but perhaps discussion points to contextualize results.

    1. Reviewer #3 (Public Review):

      The study presents a systematic analysis of how a range of dystroglycan mutations alter CCK/CB1 axonal targeting and inhibition in hippocampal CA1 and impact seizure susceptibility. The study follows up on prior literature identifying a role for dystroglycan in CCK/CB1 synapse formation. The careful assay includes comparison of 5 distinct dystroglycan mutation types known to be associated with varying degrees of muscular dystrophy phenotypes: a forebrain specific Dag1 knockout in excitatory neurons at 10.5, a forebrain specific knockout of the glycosyltransferase enzyme in excitatory neurons, mice with deletion of the intracellular domain of beta-Dag1 and 2 lines with missense mutations with milder phenotypes. They show that forebrain glutamatergic deletion of Dag1 or glycosyltransferase alters cortical lamination while lamination is preserved in mice with deletion of the intracellular domain or missense mutation. The study extends prior works by identifying that forebrain deletion of Dag1 or glycosyltransferase in excitatory neurons impairs CCK/CB1 and not PV axonal targeting and CB1 basket formation around CA1 pyramidal cells. Mice with deletion of the intracellular domain or missense mutation show<br /> limited reductions in CCK/CB1 fibers in CA1. Carbachol enhancement of CA1 IPSCs was reduced both in forebrain knockouts. Interestingly, carbachol enhancement of CA1 IPSCs was reduced when the intracellular domain of beta-Dag1was deleted, but not I the missense mutations, suggesting a role of the intracellular domain in synapse maintenance. All lines except the missense mutations , showed increased susceptibility to chemically induced behavioral seizures. Together, the study, is carefully designed, well controlled and systematic. The results advance prior findings of the role for dystroglycans in CCK/CB1 innervations of PCs by demonstrating effects of more selective cellular deletions and site specific mutations in extracellular and intracellular domains.

      Prior concerns regarding CCK/CB1 cell numbers and potential changes in basal synaptic inhibition are addressed in the revision.

    1. Reviewer #3 (Public Review):

      This manuscript investigates how a seemingly random choice of odourant receptor (OR) gene expression is organised into sterotypic zones of OR expression along the olfactory epithelium. Using a varietty of functional genomics methods, the authors find that along the differentiation axis (progenitor to mature olfactory sensory neuron, OSN) multiple ORs are initally transcribed and from among these, only one OR is selected for expression. The rest are suppressed through chromatin silencing. In addition to this, the authors report a dorso-ventral gradient in OR expression at the immature stage - dorsally expressed ORs are also expressed ventrally and these then get silenced. The expression of the ventrally expressed ORs, on the other hand, are restricted to the ventral region. They suggest a role for the transcription factor NF1 in this dorsoventral process.

      This is a valuable study. The data are compelling and generally well presented.

    1. Reviewer #3 (Public Review):

      The manuscript by Lin et al. reveals a novel positive regulatory loop between ZEB2 and ACSL4, which promotes lipid droplets storage to meet the energy needs of breast cancer metastasis.

    1. Reviewer #3 (Public Review):

      This study on drug repurposing presents the identification of potent activators of the Hippo pathway. The authors successfully screen a drug library and identify two CLK kinase inhibitors as YAP activators, with SM04690 targeting specifically CLK2. They further investigate the molecular basis of SM04690-induced YAP activity and identify splicing events in AMOTL2 as strongly affected by CLK2 inhibition. Exon skipping within AMOTL2 decreases the interactions with membrane bound proteins and is sufficient to induce YAP target gene expression. Importantly, inhibitor concentrations that are sufficient to change YAP target gene expression show differential alternative splicing of AMOTL2. Overall the study is well designed, the conclusions are supported by sufficient data and represent an exciting connection between alternative splicing and the HIPPO pathway.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The study by Alfatah et al. presented a role for YBR238C in mediating lifespan through improved mitochondrial function in a TOR1-dependent metabolic pathway. The authors used a dataset comparison approach to identify genes positively modulating yeast chronological (CLS) and Replicative (RLS) lifespan when deleted, and their expression is reduced under Rapamycin treatment condition. This approach revealed an unknown, mitochondria-localized yeast gene YBR238C, and through mechanistic studies, they identified its paralogous gene RMD9 regulating lifespan in an antagonistic effect.

      Strengths:<br /> Findings have valuable implications for understanding the YBR238C-mediated, mitochondrial-dependent yeast lifespan regulation, and the interplay between two paralogous genes in the regulation of mitochondrial function represents an inserting case for gene evolution.

      Weaknesses:<br /> Overall, the implication/findings of this study are restricted only to the yeast model since these two genes do not have any homology in higher eukaryotes. The primary methods must be carefully designed by considering two different metabolic states: respiration-associated with CLS and fermentation-associated with RLS in a single comparative approach. Yeast CLS and RLS are two completely different processes. It is already known that most gene-regulating CLS is not associated with RLS or vice versa. The method section is poorly written and missing important information. The experimental approaches are poorly designed, and variability across the datasets (e.g., media condition "YPD," "SC" etc.) and their experimental conditions are not well described/considered; thus, presented data are not conclusive, which decreases the overall rigor of the study.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this manuscript, the authors use inhibitors and mimetics of juvenile hormone (JH) to demonstrate that JH has a key role in late embryonic development in Thermobia, specifically in gut and eye development but also resorption of the extraembryonic fluid and hatching. They then exogenously apply JH early in development (when it is not normally present) to examine the biological effects of JH at these stages. This causes a plethora of defects including developmental arrest, deposition of chitin, limb development, and enhanced muscle differentiation. The authors interpret these early effects on development as JH being important for the shift from morphogenetic growth to differentiation - a role that they speculate may have facilitated the evolution of metamorphosis (hemi- and holo-metaboly). This paper will be of interest to insect evo-devo researchers, particularly those with interests in the evolution of metamorphosis.

      Strengths:<br /> The experiments are generally conducted very well with appropriate controls and the authors have included a very detailed analysis of the phenotypes.<br /> The manuscript significantly advances our understanding of Thermobia development and the role of JH in Thermobia development.<br /> The authors interpret this data to present some hypotheses regarding the role of JH in the evolution of metamorphosis, some aspects of which can be addressed by future studies.

      Weaknesses:<br /> The results are based on using inhibitors and mimetics of JH and there was no attempt to discern immediate effects of JH from downstream effects. The authors show, for instance, that the transcription of myoglianin is responsive to JH levels, it would have been interesting to see if any of the phenotypic effects are due to myoglianin upregulation/suppression (using RNAi for example). These kinds of experiments will be necessary to fully work out if and how the JH regulatory network has been co-opted into metamorphosis.

      The results generally support the authors' conclusions. However, the discussion contains a lot of speculation and some far-reaching conclusions are made about the role of JH and how it became co-opted into controlling metamorphosis. There are some interesting hypotheses presented and the author's speculations are consistent with the data presented. However, it is difficult to make evolutionary inferences from a single data point as although Thermobia is a basally branching insect, the lineage giving rise to Thermobia diverged from the lineages giving rise to the holo- and hemimetabolous insects approx.. 400 mya and it is possible that the effects of JH seen in Thermobia reflect lineage-specific effects rather than the 'ancestral state'. The authors ignore the possibility that there has been substantial rewiring of the networks that are JH responsive across these 400 my. I would encourage the authors to temper some of the discussion of these hypotheses and include some of the limitations of their inferences regarding the role of JH in the evolution of metamorphosis in their discussion.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The paper aims to provide a neurocomputational account of how social perception translates into prosocial behaviors. Participants first completed a novel social perception task during fMRI scanning, in which they were asked to judge the merit or need of people depicted in different situations. Secondly, a separate altruistic choice task was used to examine how the perception of merit and need influences the weights people place on themselves, others, and fairness when deciding to provide help. Finally, a link between perception and action was drawn in those participants who completed both tasks.

      Strengths:<br /> The paper is overall very well written and presented, leaving the reader at ease when describing complex methods and results. The approach used by the author is very compelling, as it combines computational modeling of behavior and neuroimaging data analyses. Despite not being able to comment on the computational model, I find the approach used (to disentangle sensitivity and biases, for merit and need) very well described and derived from previous theoretical work. Results are also clearly described and interpreted.

      Weaknesses:<br /> My main concern relates to the selection of the social perception task, which to me is the weakest point. Such weakness has been also addressed by the same authors in the limitation section, and related to the fact that merit and need are evaluated by means of very different cues that rely on different cognitive processes (more abstract thinking for merit than need). I wonder whether and how such difference can bias the overall computational model and interpretation of the results (e.g. ideal you vary merit and need to leave all other aspects invariant).

      A second weakness is related to the sample size which is quite small for study 2. I wonder, given that study 2 fRMI data are not analyzed, whether is possible to recover some of the participants' behavioral results, at least the ones excluded because of bad MR image quality.

      Finally, on a theoretical note, I would elaborate more on the distinction of merit and need. These concepts tap into very specific aspects of morality, which I suspect have been widely explored. At the moment I am missing a more elaborate account of this.

    1. Reviewer #3 (Public Review):

      Kang, Huang, and colleagues investigated the impact of LRRK1 and LRRK2 deletion, specifically in dopaminergic neurons, using a novel cDKO mouse model. They observed a significant reduction in DAergic neurons in the substantia nigra in their conditional LRRK1 and LRRK2 KO mice and a corresponding increase in markers of apoptosis and gliosis. This work set out to address a long-standing question within the field around the role and importance of LRRK1 and LRRK2 in DAergic neurons and suggests that the loss of both proteins triggers some neurodegeneration and glial activation.

      The studies included in this work are carefully performed and clearly communicated, but additional studies are needed to strengthen further the authors' claims around the consequences of LRRK2 deletion in DAergic neurons.

      1) In Figures 2E and F, the authors assess the protein levels of LRRK1 and LRRK2 in their cDKO mouse model to confirm the deletion of both proteins. They observe a mild loss of LRRK1 and LRRK2 signals in the ventral midbrain compared to wild-type animals. While this is not surprising given other cell types that still express LRRK1 and LRRK2 would be present in their dissected ventral midbrain samples, it does not sufficiently confirm that LRRK1 and LRRK2 are not expressed in DAergic neurons. Additional data is needed to more directly demonstrate that LRRK1 and LRRK2 protein levels are reduced in DAergic neurons, including analysis of LRRK1 and LRRK2 protein levels via immunohistochemistry or FACS-based analysis of TH+ neurons.

      2) The authors observed a significant but modest effect of LRRK1 and LRRK2 deletion on the number of TH+ neurons in the substantia nigra (12-15% loss at 20-24 months of age). It is unclear whether this extent of neuron loss is functionally relevant. To strengthen the impact of these data, additional studies are warranted to determine whether this translates into any PD-relevant deficits in the mice, including motor deficits or alterations in alpha-synuclein accumulation/aggregation.

      3) The authors demonstrate that, unlike in the germline LRRK DKO mice, they do not observe any alterations in electron-dense vacuoles via EM. Given their data showing increased apoptosis and gliosis, it remains unclear how the loss of LRRK proteins leads to DAergic neuronal cell loss. Mechanistic studies would be insightful to understand better potential explanations for how the loss of LRRK1 and LRRK2 may impair cellular survival, and additional text should be added to the discussion to discuss potential hypotheses for how this might occur.

      4) The authors discuss the potential implications of the neuronal cell loss observed in cDKO mice for LRRK1 and LRRK2 for therapeutic approaches targeting LRRK2 and suggest this argues that LRRK2 variants may exert their effects through a loss-of-protein function. However, all of the data generated in this work focus on a mouse in which both LRRK1 and LRRK2 have been deleted, and it is therefore difficult to make any definitive conclusions about the consequences of specifically targeting LRRK2. The authors note potential redundancy between the two LRRK proteins, and they should soften some of their conclusions in the discussion section around implications for the effects of LRRK2 variants. Human subjects that carry LRRK2 loss-of-function alleles do not have an increased risk for developing PD, which argues against the author's conclusions that LRRK2 variants associated with PD are loss-of-function. Additional text should be included in their discussion to better address these nuances and caution should be used in terms of extrapolating their data to effects observed with PD-linked variants in LRRK2.

    1. Reviewer #3 (Public Review):

      Summary:<br /> In this study, Jin et al. report the first evidence of CFAP52 mutations in human male infertility by identifying deleterious compound heterozygous mutations of CFAP52 in infertile human patients with acephalic and multiple morphological abnormalities in flagella (MMAF) phenotypes but without other abnormalities in motile cilia. They validated the pathogenicity of the mutations by an in vitro minigene assay and the absence of proteins in the patient's spermatozoa. Using a Cfap52 knockout mouse model they generated, the authors showed that the animals are hydrocephalic and the sperm have coupling defects, head decapitation, and axonemal structure disruption, supporting what was observed in human patients.

      Strengths:<br /> The major strengths of the study are the rigorous phenotypic and molecular analysis of normal and patient spermatozoa and the demonstration of infertility treatment by ICSI. The authors demonstrated the interaction between CFAP52 and SPATA6, a head-tail coupling regulator and structural protein, and showed that CFAP52 can interact with components of the microtubule inner protein (MIP), radial spoke, and outer dynein arm proteins.

      Weaknesses:<br /> The weakness of the study is some inconsistency in the localization of the CFAP52 protein in human spermatozoa in the figures and the lack of such localization information completely missing in mouse spermatozoa. Putting their findings in the context of the newly available structural information from the recent series of unambiguous and unequivocal identification of CFAP52 as an MIP in the B tubule will not only greatly benefit the interpretation of the study, but also resolve the inconsistent sperm phenotypes reported by an independent study. Since the mouse model is not designed to exactly recapitulate the human mutations but a complete knockout and the knockout mice show hydrocephaly phenotype as well, some of the claims of causality and ICSI as a treatment need to be tempered. Discussing the frequency of acephaly and MMAF in primary male infertility will be beneficial to justify CFAP52 as a practical diagnostic tool.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The authors perform a thorough examination of the phenotypes of a newly generated Trip13 null allele in mice, noting defects in chromosome synapsis and impact on localization of other key proteins (namely HORMADs) on meiotic chromosomes. The vast majority of data confirms observations of several prior studies of Trip13 alleles (moderate and severe hypomorphs). The original or primary aims of the study aren't clear, but it can be assumed that the authors wanted to better study the role of this protein in evicting HORMADs upon synapsis by studying phenotypes of mutants and better characterizing TRIP13 localization data (which they find localizes to the central element of synapsed chromosomes using a new epitope-tagged allele). Their data confirm prior reports and are consistent with localization data of the orthologous Pch2 protein in many other organisms.

      Strengths:<br /> The quality of data is high. Probably the most important data the authors find is that TRIP13 is localized along the CE of synapsed chromosomes. However, this was not unexpected because PCH2 is also similarly localized. Also, the authors use a clear null (deletion allele), whereas prior studies used hypomorphs.

      Weaknesses:<br /> There is limited new data; most are confirmatory or expected (i.e., SC localization), and thus the impact of this report is not high. The claim that TRIP13 "functions as a dosage-sensitive regulator of meiosis" is exaggerated in my opinion. Indeed, the authors make the observation that hets have a phenotype, but numerous genes have haploinsufficient phenotypes. In my opinion, it is a leap to extrapolate this to infer that TRIP13 is a "regulator" of meiosis. What is the definition of a meiosis regulator? Is it at the apex of the meiosis process, or is it a crucial cog of any aspect of meiosis?

    1. Reviewer #3 (Public Review):

      In this study, Lazar-Contes and colleagues aimed to determine whether chromatin accessibility changes in the spermatogonial population during different phases of postnatal mammalian testis development. Because actions of the spermatogonial population set the foundation for continual and robust spermatogenesis and the gene networks regulating their biology are undefined, the goal of the study has merit. To advance knowledge, the authors used mice as a model and isolated spermatogonia from three different postnatal developmental age points using a cell sorting methodology that was based on cell surface markers reported in previous studies and then performed bulk RNA-sequencing and ATAC-sequencing. Overall, the technical aspects of the sequencing analyses and computational/bioinformatics seem sound but there are several concerns with the cell population isolated from testes and lack of acknowledgment for previous studies that have also performed ATAC-sequencing on spermatogonia of mouse and human testes. The limitations, described below, call into question the validity of the interpretations and reduce the potential merit of the findings.

      I suggest changing the acronym for spermatogonial cells from SC to SPG for two reasons. First, SPG is the commonly used acronym in the field of mammalian spermatogenesis. Second, SC is commonly used for Sertoli Cells.

      The authors should provide a rationale for why they used postnatal day 8 and 15 mice.

      The FACS sorting approach used was based on cell surface proteins that are not germline-specific so there were undoubtedly somatic cells in the samples used for both RNA and ATAC sequencing. Thus, it is essential to demonstrate the level of both germ cell and undifferentiated spermatogonial enrichment in the isolated and profiled cell populations. To achieve this, the authors used PLZF as a biomarker of undifferentiated spermatogonia. Although PLZF is indeed expressed by undifferentiated spermatogonia, there have been several studies demonstrating that expression extends into differentiating spermatogonia. In addition, PLZF is not germ-cell specific and single-cell RNA-seq analyses of testicular tissue have revealed that there are somatic cell populations that express Plzf, at least at the mRNA level. For these reasons, I suggest that the authors assess the isolated cell populations using a germ-cell specific biomarker such as DDX4 in combination with PLZF to get a more accurate assessment of the undifferentiated spermatogonial composition. This assessment is essential for the interpretation of the RNA-seq and ATAC-seq data that was generated.

      A previous study by the Namekawa lab (PMID: 29126117) performed ATAC-seq on a similar cell population (THY1+ FACS sorted) that was isolated from pre-pubertal mouse testes. It was surprising to not see this study referenced in the current manuscript. In addition, it seems prudent to cross-reference the two ATAC-seq datasets for commonalities and differences. In addition, there are several published studies on scATAC-seq of human spermatogonia that might be of interest to cross-reference with the ATAC-seq data presented in the current study to provide an understanding of translational merit for the findings.

    1. Reviewer #3 (Public Review):

      Summary:<br /> As SMAD1/5 activities have previously been indistinguishable, these studies provide a new mouse model to finally understand unique downstream activation of SMAD1/5 target genes, a model useful for many scientific fields. Using CUT&RUN analyses with gene overlap comparisons and signaling pathway analyses, specific targets for SMAD1 versus SMAD5 were compared, identified, and interpreted. These data validate previous findings showing strong evidence that SMADs directly govern critical genes required for endometrial receptivity and decidualization, including cell adhesion and vascular development. Further, SMAD targets were overlapped with progesterone receptor binding sites to identify regions of potential synergistic regulation of implantation. The authors report strong correlations between progesterone receptor and SMAD1/5 direct targets to cooperatively promote embryo implantation. Finally, the authors validated SMAD1/5 gene regulation in primary human endometrial stromal cells. These studies provide a data-rich survey of SMAD family transcription, defining its role as a governor of early pregnancy.

      Strengths:<br /> This manuscript provides a valuable survey of SMAD1/5 direct transcriptional events at the time of receptivity. As embryo implantation is controlled by extensive epithelial to stromal molecular crosstalk and hormonal regulation in space and time, the authors state a strong, descriptive narrative defining how SMAD1/5 plays a central role at the site of this molecular orchestration. The implementation of cutting-edge techniques and models and simple comparative analyses provide a straightforward, yet elegant manuscript.

      Although the progesterone receptor exists as a major regulator of early pregnancy, the authors have demonstrated clear evidence that progesterone receptor with SMAD1/5 work in concert to molecularly regulate targets such as Sox17, Id2, Tgfbr2, Runx1, Foxo1 and more at embryo implantation. Additionally, the authors pinpoint other critical transcription factor motifs that work with SMADs and the progesterone receptor to promote early pregnancy transcriptional paradigms.

      Weaknesses:<br /> Although a wonderful new tool to ascertain SMAD1 versus SMAD5 downstream signaling, the importance of these factors in governing early pregnancy is not novel. Furthermore, functional validation studies are needed to confirm interactions at promoter regions. Addtionally, the authors presume that all overlapped genes are shared between progesterone receptor and SMAD1/5, yet some peak representations do not overlap. Although, transcriptional activation can occur at the same time, they may not occur in the same complex. Thus, further confirmation of these transcriptional events is warranted.

      Since whole murine uterus was used for these studies, the specific functions of SMAD1/5 in the stroma versus the epithelium (versus the myometrium) remain unknown. Specific roles for SMAD1/5 in the uterine stroma and epithelial compartments still need to be examined. Also, further work is needed to delineate binding and transcriptional activation of SMAD1/5 and the progesterone receptor in stromal versus epithelial uterine compartments.

      There are asynchronous gene responses in the SMAD1/5 ablated mouse model compared to the siRNA-treated human endometrial stromal cells. These differences can be confounding, and more clarity is required in understanding the meaning of these differences and as they relate to the entire SMAD transcriptome.

    1. Reviewer #3 (Public Review):

      This simulation study presents a valuable finding on the load-dependence (i.e., dependence on a pulling force) of the recognition of a peptide-bound major histocompatibility complex (pMHC) antigen by a T cell receptor (TCR). The evidence supporting the claims of the authors is solid, although inclusion of a larger number of simulations would have strengthened the study. The work will be of interest to computational structural biologists and immunologists.

    1. Reviewer #3 (Public Review):

      This study tackles a major problem with replay detection, which is that different methods can produce vastly different results. It provides compelling evidence that the source of this inconsistency is that biological data often violates assumptions of independent samples. This results in false positive rates that can vary greatly with the precise statistical assumptions of the chosen replay measure, the detection parameters, and the dataset itself. To address this issue, the authors propose to empirically estimate the false positive rate and control for it by adjusting the significance threshold. Remarkably, this reconciles the differences in replay detection methods, as the results of all the replay methods tested converge quite well (see Figure 6B). This suggests that by controlling for the false positive rate, one can get an accurate estimate of replay with any of the standard methods.

      When comparing different replay detection methods, the authors use a sequence-independent log-odds difference score as a validation tool and an indirect measure of replay quality. This takes advantage of the two-track design of the experimental data, and its use here relies on the assumption that a true replay event would be associated with good (discriminable) reactivation of the environment that is being replayed. The other way replay "quality" is estimated is by the number of replay events detected once the false positive rate is taken into account. In this scheme, "better" replay is in the top right corner of Figure 6B: many detected events associated with congruent reactivation.

      There are two possible ways the results from this study can be integrated into future replay research. The first, simpler, way is to take note of the empirically estimated false positive rates reported here and simply avoid the methods that result in high false positive rates (weighted correlation with a place bin shuffle or all-spike Spearman correlation with a spike-id shuffle). The second, perhaps more desirable, way is to integrate the practice of estimating the false positive rate when scoring replay and to take it into account. This is very powerful as it can be applied to any replay method with any choice of parameters and get an accurate estimate of replay.

      How does one estimate the false positive rate in their dataset? The authors propose to use a cell-ID shuffle, which preserves all the firing statistics of replay events (bursts of spikes by the same cell, multi-unit fluctuations, etc.) but randomly swaps the cells' place fields, and to repeat the replay detection on this surrogate randomized dataset. Of course, there is no perfect shuffle, and it is possible that a surrogate dataset based on this particular shuffle may result in one underestimating the true false positive rate if different cell types are present (e.g. place field statistics may differ between CA1 and CA3 cells, or deep vs. superficial CA1 cells, or place cells vs. non-place cells if inclusion criteria are not strict). Moreover, it is crucial that this validation shuffle be independent of any shuffling procedure used to determine replay itself (which may not always be the case, particularly for the pre-decoding place field circular shuffle used by some of the methods here) lest the true false-positive rate be underestimated. Once the false positive rate is estimated, there are different ways one may choose to control for it: adjusting the significance threshold as the current study proposes, or directly comparing the number of events detected in the original vs surrogate data. Either way, with these caveats in mind, controlling for the false positive rate to the best of our ability is a powerful approach that the field should integrate.

      Which replay detection method performed the best? If one does not control for varying false positive rates, there are two methods that resulted in strikingly high (>15%) false positive rates: these were weighted correlation with a place bin shuffle and Spearman correlation (using all spikes) with a spike-id shuffle. However, after controlling for the false positive rate (Figure 6B) all methods largely agree, including those with initially high false positive rates. There is no clear "winner" method, because there is a lot of overlap in the confidence intervals, and there also are some additional reasons for not overly interpreting small differences in the observed results between methods. The confidence intervals are likely to underestimate the true variance in the data because the resampling procedure does not involve hierarchical statistics and thus fails to account for statistical dependencies on the session and animal level. Moreover, it is possible that methods that involve shuffles similar to the cross-validation shuffle ("wcorr 2 shuffles", "wcorr 3 shuffles" both use a pre-decoding place field circular shuffle, which is very similar to the pre-decoding place field swap used in the cross-validation procedure to estimate the false positive rate) may underestimate the false positive rate and therefore inflate adjusted p-value and the proportion of significant events. We should therefore not interpret small differences in the measured values between methods, and the only clear winner and the best way to score replay is using any method after taking the empirically estimated false positive rate into account.

      The authors recommend excluding low-ripple power events in sleep, because no replay was observed in events with low (0-3 z-units) ripple power specifically in sleep, but that no ripple restriction is necessary for awake events. There are problems with this conclusion. First, ripple power is not the only way to detect sharp-wave ripples (the sharp wave is very informative in detecting awake events). Second, when talking about sequence quality in awake non-ripple data, it is imperative for one to exclude theta sequences. The authors' speed threshold of 5 cm/s is not sufficient to guarantee that no theta cycles contaminate the awake replay events. Third, a direct comparison of the results with and without exclusion is lacking (selecting for the lower ripple power events is not the same as not having a threshold), so it is unclear how crucial it is to exclude the minority of the sleep events outside of ripples. The decision of whether or not to select for ripples should depend on the particular study and experimental conditions that can affect this measure (electrode placement, brain state prevalence, noise levels, etc.).

      Finally, the authors address a controversial topic of de-novo preplay. With replay detection corrected for the false positive rate, none of the detection methods produce evidence of preplay sequences nor sequenceless reactivation in the tested dataset. This presents compelling evidence in favour of the view that the sequence of place fields formed on a novel track cannot be predicted by the sequential structure found in pre-task sleep.

    1. Reviewer #3 (Public Review):

      This study tackles a major problem with replay detection, which is that different methods can produce vastly different results. It provides compelling evidence that the source of this inconsistency is that biological data often violates assumptions of independent samples. This results in false positive rates that can vary greatly with the precise statistical assumptions of the chosen replay measure, the detection parameters, and the dataset itself. To address this issue, the authors propose to empirically estimate the false positive rate and control for it by adjusting the significance threshold. Remarkably, this reconciles the differences in replay detection methods, as the results of all the replay methods tested converge quite well (see Figure 6B). This suggests that by controlling for the false positive rate, one can get an accurate estimate of replay with any of the standard methods.

      When comparing different replay detection methods, the authors use a sequence-independent log-odds difference score as a validation tool and an indirect measure of replay quality. This takes advantage of the two-track design of the experimental data, and its use here relies on the assumption that a true replay event would be associated with good (discriminable) reactivation of the environment that is being replayed. The other way replay "quality" is estimated is by the number of replay events detected once the false positive rate is taken into account. In this scheme, "better" replay is in the top right corner of Figure 6B: many detected events associated with congruent reactivation.

      There are two possible ways the results from this study can be integrated into future replay research. The first, simpler, way is to take note of the empirically estimated false positive rates reported here and simply avoid the methods that result in high false positive rates (weighted correlation with a place bin shuffle or all-spike Spearman correlation with a spike-id shuffle). The second, perhaps more desirable, way is to integrate the practice of estimating the false positive rate when scoring replay and to take it into account. This is very powerful as it can be applied to any replay method with any choice of parameters and get an accurate estimate of replay.

      How does one estimate the false positive rate in their dataset? The authors propose to use a cell-ID shuffle, which preserves all the firing statistics of replay events (bursts of spikes by the same cell, multi-unit fluctuations, etc.) but randomly swaps the cells' place fields, and to repeat the replay detection on this surrogate randomized dataset. Of course, there is no perfect shuffle, and it is possible that a surrogate dataset based on this particular shuffle may result in one underestimating the true false positive rate if different cell types are present (e.g. place field statistics may differ between CA1 and CA3 cells, or deep vs. superficial CA1 cells, or place cells vs. non-place cells if inclusion criteria are not strict). Moreover, it is crucial that this validation shuffle be independent of any shuffling procedure used to determine replay itself (which may not always be the case, particularly for the pre-decoding place field circular shuffle used by some of the methods here) lest the true false-positive rate be underestimated. Once the false positive rate is estimated, there are different ways one may choose to control for it: adjusting the significance threshold as the current study proposes, or directly comparing the number of events detected in the original vs surrogate data. Either way, with these caveats in mind, controlling for the false positive rate to the best of our ability is a powerful approach that the field should integrate.

      Which replay detection method performed the best? If one does not control for varying false positive rates, there are two methods that resulted in strikingly high (>15%) false positive rates: these were weighted correlation with a place bin shuffle and Spearman correlation (using all spikes) with a spike-id shuffle. However, after controlling for the false positive rate (Figure 6B) all methods largely agree, including those with initially high false positive rates. There is no clear "winner" method, because there is a lot of overlap in the confidence intervals, and there also are some additional reasons for not overly interpreting small differences in the observed results between methods. The confidence intervals are likely to underestimate the true variance in the data because the resampling procedure does not involve hierarchical statistics and thus fails to account for statistical dependencies on the session and animal level. Moreover, it is possible that methods that involve shuffles similar to the cross-validation shuffle ("wcorr 2 shuffles", "wcorr 3 shuffles" both use a pre-decoding place field circular shuffle, which is very similar to the pre-decoding place field swap used in the cross-validation procedure to estimate the false positive rate) may underestimate the false positive rate and therefore inflate adjusted p-value and the proportion of significant events. We should therefore not interpret small differences in the measured values between methods, and the only clear winner and the best way to score replay is using any method after taking the empirically estimated false positive rate into account.

      The authors recommend excluding low-ripple power events in sleep, because no replay was observed in events with low (0-3 z-units) ripple power specifically in sleep, but that no ripple restriction is necessary for awake events. There are problems with this conclusion. First, ripple power is not the only way to detect sharp-wave ripples (the sharp wave is very informative in detecting awake events). Second, when talking about sequence quality in awake non-ripple data, it is imperative for one to exclude theta sequences. The authors' speed threshold of 5 cm/s is not sufficient to guarantee that no theta cycles contaminate the awake replay events. Third, a direct comparison of the results with and without exclusion is lacking (selecting for the lower ripple power events is not the same as not having a threshold), so it is unclear how crucial it is to exclude the minority of the sleep events outside of ripples. The decision of whether or not to select for ripples should depend on the particular study and experimental conditions that can affect this measure (electrode placement, brain state prevalence, noise levels, etc.).

      Finally, the authors address a controversial topic of de-novo preplay. With replay detection corrected for the false positive rate, none of the detection methods produce evidence of preplay sequences nor sequenceless reactivation in the tested dataset. This presents compelling evidence in favour of the view that the sequence of place fields formed on a novel track cannot be predicted by the sequential structure found in pre-task sleep.

    1. Reviewer #3 (Public Review):

      This work is carried out by the research group led by Shuiqiao Yuan, who has a long interest in and significant contribution to the field of male germ cell development. The authors study a protein for which limited information existed prior to this work, a component of the E3 ubiquitin ligase complex, FBXO24. The authors generated the first FBXO24 KO mouse model reported in the literature using CRISPR, which they complement with HA-tagged FBXO24 transgenic model in the KO background. The authors begin their study with a very careful examination of the expression pattern of the FBXO24 gene at the level of mRNA and the HA-tagged transgene, and they provide conclusive evidence that the protein is expressed exclusively in the mouse testis and specifically in post-meiotic spermatids of stages VI to IX, which include early stages of spermatid elongation and nuclear condensation. The authors report a fully sterile phenotype for male mice, while female mice are normal. Interestingly, the testis size and the populations of spermatogenic cells in the KO mutant mice show a small (but significant) reduction compared to the WT testis. Importantly, the mature sperm from KO animals show a series of defects that were very thoroughly documented in this work by scanning and transmission electron microscopy; this data constitutes a very strong point in this paper. FBXO24 KO sperm have severe defects in the mitochondrial sheath with missing mitochondria near the annulus, and missing outer dense fibers. Collectively these defects cause abnormal bending of the flagellum and severely reduced sperm motility. Moreover, defects in nuclear condensation are observed with faint nuclear staining of elongating and elongated spermatids, and reduction of protein levels of protamine 2 combined with increased levels of histones and transition protein 1. All of the above are in line with the observed male sterility phenotype.

      The authors also performed RNAseq in the KO animal, and found profound changes in the abundance of thousands of mRNAs; and changes in mRNA splicing patterns as well. The data reveal deeply affected gene expression patterns in the FBXO24 KO testis, which further supports the essential role that this factor serves in spermiogenesis. Unfortunately, a molecular explanation of what causes these changes is missing; it is still possible that they are an indirect consequence of the KO and not directly caused by the KO.

      A well-reasoned narrative on if and how the absence of FBXO24 as an E3 ubiquitin ligase is responsible for the observed mRNA and protein differential expression is missing. If FBXO24-mediated ubiquitination is required for normal protein degradation during spermiogenesis, protein level increase should be the direct consequence of genuine FBXO24 targets in the KO testis. Importantly, besides the Miwi ubiquitination experiment which is performed in a heterologous and therefore may not be ideal for extracting conclusions, the possible involvement of ubiquitination was not shown for any other proteins that the authors found that interact with FBXO24. For example splicing factors SRSF2, SRSF3, SRSF9, or any of the other proteins whose levels were found to be changed (reduced, thus the change in the KO is less likely due to the absence of ubiquitination) such as ODF2, AKAP3, TSSK4, PHF7, TSSK6, and RNF8. Interestingly, the authors do observe increased amounts of histones and transition proteins, but reduced amounts of protamines, which directly shows that histone to protamine transition is indeed affected in the FBXO24 KO testis, and is in agreement with the observed less condensed nuclei of spermatozoa. Could histones and transition proteins be targets of the proposed ubiquitin ligase activity of FBXO24, and in its absence, histone replacement is abrogated? Providing experimental evidence to address this possibility would greatly expand our understanding of why FBXO24 is essential during spermiogenesis.

      Regarding the results on Miwi protein and piRNAs, the following remarks can be made:

      The finding that the Miwi protein is upregulated is an important point in this work, and it is in agreement with the observed increased size of the chromatoid body, where most of the Miwi protein is accumulated in round spermatids. This finding needs to be further supported and verified with experiments done in WT and KO mice. Miwi should be immunoprecipitated and Miwi ubiquitination should be detected (with WB or mass spec) in WT testis. It should be expected that Miwi ubiquitination is reduced in KO testis. The experiments that the authors performed in HEK293T cells are informative but experiments with tissue/cells normally expressing Miwi and FBXO24 are missing. With regard to piRNA expression, it is an exaggeration to call the observed increase in piRNA expression remarkable, especially since one replicate small RNA library per condition was sequenced. Although the library is constructed from total small RNA (which includes Mili-bound piRNAs as well), it does seem that the upregulated piRNAs are Miwi-bound piRNAs because the size of the upregulated piRNAs is mostly 29-32 bases. However, the direct comparison of the number of upregulated piRNAs with upregulated miRNAs is not in support of the claim that the increase in piRNA expression is higher compared to miRNAs: there are approximately a few hundred miRNAs expressed in mice, but hundreds of thousands of different piRNA sequences, so upregulation of ~10 times more piRNA species than miRNAs is a smaller proportional increase. Moreover, the observed increase in the overall piRNA levels could be just an epiphenomenon of the increased abundance of the Miwi protein; it has been documented that Piwi proteins stabilize their piRNA cargo, so most likely the increase in iRNA levels in 29-32 nt sizes is probably not a result of altered biogenesis, but increased half-life of the piRNAs as a result of Miwi upregulation. Therefore, the claim that FBXO24 is essential for piRNA biogenesis/production (lines 308, 314) is not appropriately supported.

    1. Reviewer #3 (Public Review):

      Summary:

      The paper points out that non-significance in both the original study and a replication does not ensure that the studies provide evidence for the absence of an effect. Also, it can not be considered a "replication success". The main point of the paper is rather obvious. It may be that both studies are underpowered, in which case their non-significance does not prove anything. The absence of evidence is not evidence of absence! On the other hand, statistical significance is a confusing concept for many, so some extra clarification is always welcome.

      One might wonder if the problem that the paper addresses is really a big issue. The authors point to the "Reproducibility Project: Cancer Biology" (RPCB, Errington et al., 2021). They criticize Errington et al. because they "explicitly defined null results in both the original and the replication study as a criterion for replication success." This is true in a literal sense, but it is also a little bit uncharitable. Errington et al. assessed replication success of "null results" with respect to 5 criteria, just one of which was statistical (non-)significance.

      It is very hard to decide if a replication was "successful" or not. After all, the original significant result could have been a false positive, and the original null-result a false negative. In light of these difficulties, I found the paper of Errington et al. quite balanced and thoughtful. Replication has been called "the cornerstone of science" but it turns out that it's actually very difficult to define "replication success". I find the paper of Pawel, Heyard, Micheloud, and Held to be a useful addition to the discussion.

      Strengths:

      This is a clearly written paper that is a useful addition to the important discussion of what constitutes a successful replication.

      Weaknesses:

      To me, it seems rather obvious that non-significance in both the original study and a replication does not ensure that the studies provide evidence for the absence of an effect. I'm not sure how often this mistake is made.

    1. Reviewer #3 (Public Review):

      Summary<br /> This study investigated the role of the exonuclease Xrn1 in regulating autophagy in response to methionine deprivation in the budding yeast (S. cerevisiae). As a model system, wild-type and xrn1-deletion cells are switched from a nutrient-rich, lactate-based media (YPL) to a synthetic, minimal, lactate media with or without re-addition of methionine. Autophagy is measured by a previously reported Idh-GFP cleavage assay, and in some cases by quantification of alkaline phosphatase activity. The authors conclude that Xrn1 suppresses autophagy in response to methionine depletion based on the results of the Idh-GFP assay. However, the alkaline phosphatase assay could potentially suggest the opposite conclusion, with xnr1 deletion blocking the induction of autophagy relative to baseline in those cells, an interpretation which is complicated by higher basal autophagy induction upon xnr1 deletion. To address the mechanism of Xrn1 regulation of autophagy, a model is presented in which Xrn1 activates Target of Rapamycin Complex 1 (TORC1), which suppresses autophagy. This regulation is proposed to occur through physical association of Xrn1 with known upstream regulators of TORC1 activity, the SEACIT/GATOR1 and Gtr/Rag complexes. However, TORC1 activity is not measured under many key experimental conditions, making it difficult to determine the accuracy of this model. If the model ultimately proves correct, this would be an important finding that establishes a new player in the critical TORC1 pathway that controls cell growth and metabolism in response to changes in nutrient availability.

      Strengths<br /> Clear and highly reproducible results using the Idh-GFP cleavage assay to measure apoptosis.

      Detailed characterization of the metabolic and transcriptomic effects of Xrn1 deletion through metabolomics and RNA-seq.

      Use of a catalytically inactive Xrn1 mutant to demonstrate that its effects on autophagy require its catalytic activity.

      Weaknesses<br /> Predominant use of a single autophagy assay (Idh-GFP cleavage), with potentially conflicting results in another assay (alkaline phosphatase activity).

      TORC1 activity is not measured under many key experimental conditions.

      Protein-protein interactions are studied by overexpression of tagged proteins. While this may be essential for detection, the level of overexpression relative to endogenous protein is unclear, as well as whether this recapitulates the endogenous interactions and regulation.

      Results from some experiments have several possible interpretations.

    1. Reviewer #3 (Public Review):

      The authors use a full-likelihood multispecies coalescent (MSC) approach to identify major introgression events throughout the radiation of Heliconius butterflies, thereby improving estimates of the phylogeny. First, the authors conclude that H. aoede is the likely outgroup relative to other Heliconius species; miocene introgression into the ancestor of H. aoede makes it appear to branch later. Topologies at most loci were not concordant with this scenario, though 'aoede-early' topologies were enriched in regions of the genome where interspecific introgression is expected to be reduced: the Z chromosome and larger autosomes. The revised phylogeny is interesting because it would mean that no extant Heliconius species has reverted to a non-pollen-feeding ancestral state. Second, the authors focus on a particularly challenging clade in which ancient and ongoing gene flow is extensive, concluding that silvaniform species are not monophyletic. Building on these results, a third set of analyses investigates the origin of the P1 inversion, which harbours multiple wing patterning loci, and which is maintained as a balanced polymorphism in H. numata. The authors present data supporting a new scenario in which P1 arises in H. numata or its ancestor and is introduced to the ancestor of H. pardilinus and H. elevatus - introgression in the opposite direction to what has previously been proposed using a smaller set of taxa and different methods.

      The analyses were extensive and methodologically sound. Care was taken to control for potential sources of error arising from incorrect genotype calls and the choice of a reference genome. The argument for H. aoede as the earliest-diverging Heliconius lineage was compelling, and analyses of the melpomene-silvaniform clade were thorough.

      The authors have demonstrated the strengths of a full-likelihood MSC approach when reconstructing the evolutionary history of "difficult" clade. This approach, however, can quickly become intractable in large species complexes where there is extensive gene flow or significant shifts in population size. In such cases, there may be hundreds of potentially important parameters to estimate, and alternate introgression scenarios may be impossible to disentangle. This is particularly challenging in systems unlike Heliconius, where fewer data are available and there is little a priori knowledge of reproductive isolation, genome evolution, and the unique life history traits of each species.

    1. Reviewer #3 (Public Review):

      This study investigated the role of Zn2+ on the maintenance of Ca2+ oscillation upon fertilization. TPEN was used to reduce the level of available Zn2+ in fertilized oocytes and different inhibitors were used to pinpoint the mechanistic involvement of intracellular Zn2+ on the maintenance of Ca2+ oscillation. As also stated in the manuscript, previous studies have demonstrated the role of Zn2+ for the successful completion of meiosis/fertilization. The manuscript expands our understanding of fertilization process by describing how the level of Zn2+ regulates Ca2+ channels and stores. The manuscript is well-organized and the topic is important in early embryo development fields.

      The authors added more information to the manuscript based on reviewers' comments. The quality of the manuscript has been improved and the study addresses important questions in mammalian fertilization.

    1. Reviewer #3 (Public Review):

      Summary:

      The paper investigates which aspects of neural activity in LIP of the macaque give rise to individual decisions (specificity of choice and reaction times) in single trials, by recording simultaneously from hundreds of neurons. Using a variety of dimensionality reduction and decoding techniques, they demonstrate that a population-based drift-diffusion signal, which relies on a small subset of neurons that overlap choice targets, is responsible for the choice and reaction time variability. Analysis of direction-selective neurons in LIP and their correlation with decision-related neurons (T con in neurons ) suggests that evidence integration occurs within area LIP.

      Strengths:

      This is an important and interesting paper, which resolves conflicting hypotheses regarding the mechanisms that underlie decision-making in single trials. This is made possible by exploiting novel technology (Primatepixels recordings), in conjunction with state-of-the-art analyses and well-established dynamic random dot motion discrimination tasks.

    1. Reviewer #3 (Public Review):

      Summary:

      The authors address a very important issue of going beyond a single-copy model obtained by the two principal experimental methods of structural biology, macromolecular crystallography and cryo electron microscopy (cryo-EM). Such multiconformer model is based on the fact that experimental data from both these methods represent a space- and time-average of a huge number of the molecules in a sample, or even in several samples, and that the respective distributions can be multimodal. Different from structure prediction methods, this approach is strongly based on high-resolution experimental information and requires validated single-copy high-quality models as input. Overall, the results support the authors' conclusions.

      In fact, the method addresses two problems which could be considered separately:

      - An automation of construction of multiple conformations when they can be identified visually;<br /> - A determination of multiple conformations when their visual identification is difficult or impossible.

      The first one is a known problem, when missing alternative conformations may cost a few percent in R-factors. While these conformations are relatively easy to detect and build manually, the current procedure may save significant time being quite efficient, as the test results show.

      The second problem is important from the physical point of view and has been addressed first by Burling & Brunger (1994; https://doi.org/10.1002/ijch.199400022). The new procedure deals with a second-order variation in the R-factors, of about 1% or less, like placing riding hydrogen atoms, modeling density deformation or variation of the bulk solvent. In such situations, it is hard to justify model improvement. Keeping Rfree values or their marginal decreasing can be considered as a sign that the model is not overfitted data but hardly as a strong argument in favor of the model.

      In general, overall targets are less appropriate for this kind of problem and local characteristics may be better indicators. Improvement of the model geometry is a good choice. Indeed, yet Cruickshank (1956; https://doi.org/10.1107/S0365110X56002059) showed that averaged density images may lead to a shortening of covalent bonds when interpreting such maps by a single model. However, a total absence of geometric outliers is not necessarily required for the structures solved at a high resolution where diffraction data should have more freedom to place the atoms where the experiments "see" them.

      The key local characteristic for multi conformer models is a closeness of the model map to the experimental one. Actually, the procedure uses a kind of such measure, the Bayesian information criteria (BIC). Unfortunately, there is no information about how sharply it identifies the best model, how much it changes between the initial and final models; in overall there is not any feeling about its values. The Q-score (page 17) can be a tool for the first problem where the multiple conformations are clearly separated and not for the second problem where the contributions from neighboring conformations are merged. In addition to BIC or to even more conventional target functions such as LS or local map correlation, the extreme and mean values of the local difference maps may help to validate the models.

      This method with its results is a strong argument for a need in experimental data and information they contain, differently from a pure structure prediction. At the same time, absence of strong density-based proofs may limit its impact.

      Strengths:

      Addressing an important problem and automatization of model construction for alternative conformations using high-resolution experimental data.

      Weaknesses:

      An insufficient validation of the models when no discrete alternative conformations are visible and essentially missing local real-space validation indicators.

    1. Reviewer #3 (Public Review):

      This paper has high significance because it addresses a prevalent parasitic infection of the nervous system, Neurocysticercosis (NCC). The infection is caused by larvae of the parasitic cestode Taenia solium It is a leading cause of epilepsy in adults worldwide

      To address the effects of cestode larvae, homogenates and excretory/secretory products of larvae were added to organotypic brain slice cultures of rodents or layer 2/3 of human cortical brain slices from patients with refractory epilepsy.

      A self-made pressure ejection system was used to puff larvae homogenate (20 ms puff) onto the soma of patched neurons. The mechanical force could have caused depolarizaton so a vehicle control is critical. On line 150 they appear to have used saline in this regard, and clarification would be good. Were the controls here (and aCSF elsewhere) done with the low Mg2+o aCSF like the larvae homogenates?

      They found that neurons depolarized after larvae homogenate exposure and the effect was mediated by glutamate but not nicotinic receptors for acetylcholine (nAChRs), acid-sensing channels or substance P. To address nAChRs, they used 10uM mecamyline, and for ASICs 2mM amiloride which seems like a high concentration. Could the concentrations be confirmed for their selectivity? Glutamate receptor antagonists, used in combination, were 10uM CNQX, 50uM DAP5, and 2mM kynurenic acid. These concentrations are twice what most use. Please discuss. Also, it would be very interesting to know if the glutamate receptor is AMPA, Kainic acid, or NMDA. Were metabotropic antagonists ever tested? That would be logical because CNQX/DAPR/Kynurenic acid did not block all of the depolarization.

      They also showed the elevated K+ in the homogenate (~11 mM) could not account for the depolarization. However, the experiment with K+ was not done in a low Mg2+o buffer (Or was it -please clarify). They also confirmed that only small molecules led to the depolarization after filtering out very large molecules. That supports the conclusion that glutamate - which is quite small - could be responsible.

      It is logical to test substance P because the Intro points out prior work links the larvae and seizures by inflammation and implicates substance P. However, why focus on nAChRs and ASIC?

      The depolarizations caused seizure-like events in slices. The slices were exposed to a proconvulant buffer though- low Mg2+o. This buffer can cause spontaneous seizure-like events so it is important to know what the buffer did alone.

      They suggest the effects could underlie seizure generation in NCC. However, there is only one event that is seizure-like in the paper and it is just an inset. Were others similar? How frequency were they? How long?

      Using Glutamate-sensing fluorescent reporters they found the larvae contain glutamate and can release it, a strength of the paper.

      Fig. 4. Could an inset be added to show the effects are very fast? That would support an effect of glutamate.

      Why is aspartate relatively weak and glutamate relatively effective as an agonist?

      Could some of the variability in Fig 4G be due to choice of different cell types? That would be consistent with Fig 5B where only a fraction of cells in the culture showed a response to the larvae nearby.

      On what basis was the ROI drawn in Fig. 5B.

      Also in 5B, I don't see anything in the transmitted image. What should be seen exactly?

      Human brain slices were from temporal cortex of patients with refractory epilepsy. Was the temporal cortex devoid of pathology and EEG abnormalities? This area may be quite involved in the epilepsy because refractory epilepsy that goes to surgery is often temporal lobe epilepsy. Please discuss the liitations of studying the temporal cortex of humans with epilepsy since it may be more susceptible to depolarizations of many kinds, not just larvae.

      Please discuss the limitations of the cultures - they are from very young animals and cultured for 6-14 days.

    1. Reviewer #3 (Public Review):

      General comments:

      (1) While Dynasore and Pitstop-2 may impede release site clearance due to an arrest of membrane retrieval, neither Latrunculin-B nor ML-141 specifically acts on AZ scaffold proteins. Interference with actin polymerization may have a number of consequences many of which may be unrelated to release site clearance. Therefore, neither Latrunculin-B nor ML-141 can be considered suitable tools for specifically identifying the role of AZ scaffold proteins (i.e. ELKS family proteins, Piccolo, Bassoon, α-liprin, Unc13, RIM, RBP, etc) in release site clearance which was defined as one of the principal aims of this study.

      (2) Initial EPSC amplitudes more than doubled in the presence of Dynasor at hippocampal SC->CA1 synapses (Figure S2). This unexpected result raises doubts about the specificity of Dynasor as a tool to selectively block SV endocytosis.

      (3) In this study, the application of Dynasore and Pitstop-2 strongly decreases 100 Hz steady-state release at calyx synapses while - quite unexpectedly - strongly accelerates recovery from depression. A previous study found that genetic ablation of dynamin-1 actually enhanced 300 Hz steady-state release while only little affecting recovery from depression (Mahapatra et al., 2016). A similar scenario holds for the Latrunculin-B effects: In this study, Latrunculin-B strongly increased steady-state depression while in Babu et al. (2020), Latrunculin-B did not affect steady-state depression. In Mahapatra et al. (2016), Latrunculin-B marginally enhanced steady-state depression. The authors need to make a serious attempt to explain all these seemingly contradicting results.

      (4) The experimental conditions need to be better specified. It is not clear which recordings were obtained in 1.3 mM and which (if any?) in 2 mM external Ca. It is also unclear whether 'pooled data' are presented (obtained from control recordings and from separate recordings after pre-incubation with the respective drugs), or whether the data actually represent 'before'/'after' comparisons obtained from the same synapses after washing in the respective drugs. The exact protocol of drug application (duration of application/pre-incubation?, measurements after wash-out or in the continuous presence of the drugs?) needs to be clearly described in the methods and needs to be briefly mentioned in Results and/or Figure legends.

      (5) The authors compare results obtained in calyx with those obtained in SC->CA1 synapses which they considered examples for 'fast' and 'slow' synapses, respectively. There is little information given to help readers understand why these two synapse types were chosen, what the attributes 'fast' and 'slow' refer to, and how that may matter for the questions studied here. I assume the authors refer to the maximum frequency these two synapse types are able to transmit rather than to EPSC kinetics?

      (6) Strong presynaptic stimuli such as those illustrated in Figures 1B and C induce massive exocytosis. The illustrated Cm increase of 2 to 2.5 pF represents a fusion of 25,000 to 30,000 SVs (assuming a single SV capacitance of 80 aF) corresponding to a 12 to 15% increase in whole terminal membrane surface (assuming a mean terminal capacitance of ~16 pF). Capacitance measurements can only be considered reliable in the absence of marked changes in series and membrane conductance. Since the data shown in Figs. 1 and 3 are central to the argumentation, illustration of the corresponding conductance traces is mandatory. Merely mentioning that the first 450 ms after stimulation were skipped during analysis is insufficient.

      (7) It is essential for this study to preclude a contamination of the results with postsynaptic effects (AMPAR saturation and desensitization). AMPAR saturation limits the amplitudes of initial responses in EPSC trains and hastens the recovery from depression due to a 'ceiling effect'. AMPAR desensitization occludes paired-pulse facilitation and reduces steady-state responses during EPSC trains while accelerating the initial recovery from depression. The use of, for example, 1 mM kynurenic acid in the bath is a well-established strategy to attenuate postsynaptic effects at calyx synapses. All calyx EPSC recordings should have been performed under such conditions. Otherwise, recovery time courses and STP parameters are likely contaminated by postsynaptic effects. Since the effects of AMPAR saturation on EPSC_1 and desensitization on EPSC_ss may partially cancel each other, an unchanged relative STD in the presence of kynurenic acid is not necessarily a reliable indicator for the absence of postsynaptic effects. The use of kynurenic acid in the bath would have had the beneficial side effect of massively improving voltage-clamp conditions. For the typical values given in this MS (10 nA EPSC, 3 MOhm Rs) the expected voltage escape is ~30 mV corresponding to a change in driving force of 30 mV/80 mV=38%, i.e. initial EPSCs in trains are likely underestimated by 38%. Such large voltage escape usually results in unclamped INa(V) which was suppressed in this study by routinely including 2 mM QX-314 in the pipette solution. That approach does, however, not reduce the voltage escape.

      (8) In the Results section (pages 7 and 8), the authors analyze the time course into STD during 100 Hz trains in the absence and presence of drugs. In the presence of drugs, an additional fast component is observed which is absent from control recordings. Based on this observation, the authors conclude that '... the mechanisms operate predominantly at the beginning of synaptic depression'. However, the consequences of blocking or slowing site clearing are expected to be strongly release-dependent. Assuming a probability of <20% that a fusion event occurs at a given release site, >80% of the sites cannot be affected at the arrival of the second AP even by a total arrest of site clearance simply because no fusion has yet occurred. That number decreases during a train according to (1-0.2)^n, where n is the number of the AP, such that after 10 APs, ~90% of the sites have been used and may potentially be unavailable for new rounds of release after slowing site clearance. Perhaps, the faster time course into STD in the presence of the drugs isn't related to site clearance?

      (9) In the Discussion (page 10), the authors present a calculation that is supposed to explain the reduced size of the second calyx EPSC in a 100 Hz train in the presence of Dynasore or Pitstop-2. Does this calculation assume that all endocytosed SVs are immediately available for release within 10 ms? Please elaborate.

      (10) It is not clear, why the bafilomycin/folimycin data is presented in Fig. S5. The data is also not mentioned in the Discussion. Either explain the purpose of these experiments or remove the data.

      (11) The scheme in Figure 7 is not very helpful.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This study aims to investigate the stoichiometric effect between core factors and partners forming the heterodimeric transcription factor network in living cells at endogenous expression levels. Using state-of-the-art single-molecule analysis techniques, the authors tracked individual RARα and RXRα molecules labeled by HALO-tag knock-in. They discovered an asymmetric response to the overexpression of counter-partners. Specifically, the fact that an increase in RARα did not lead to an increase in RXRα chromatin binding is incompatible with the previous competitive core model. Furthermore, by using a technique that visualizes only molecules proximal to partners, they directly linked transcription factor heterodimerization to chromatin binding.

      Strengths:<br /> The carefully designed experiments, from knock-in cell constructions to single-molecule imaging analysis, strengthen the evidence of the stoichiometric perturbation response of endogenous proteins. The novel finding that RXR, previously thought to be a target of competition among partners, is in excess provides new insight into key factors in dimerization network regulation. By combining the cutting-edge single-molecule imaging analysis with the technique for detecting interactions developed by the authors' group, they have directly illustrated the relationship between the physical interactions of dimeric transcription factors and chromatin binding. This has enabled interaction analysis in live cells that was challenging in single-molecule imaging, proving it is a powerful tool for studying endogenous proteins.

      Weaknesses:<br /> As the authors have mentioned, they have not investigated the effects of other T2NRs or RXR isoforms. These invisible factors leave room for interpretation regarding the origin of chromatin binding of endogenous proteins (Recommendations 4). In the PAPA experiments, overexpressed factors are visualized, but changes in chromatin binding of endogenous proteins due to interactions with the overexpressed proteins have not been investigated. This might be tested by reversing the fluorescent ligands for the Sender and Receiver. Additionally, the PAPA experiments are likely to be strengthened by control experiments (Recommendations 5).

    1. Reviewer #3 (Public Review):

      The authors revisit an old question of how MCAK goes to microtubule ends, partially answered by many groups over the years. The authors seem to have omitted the literature on MCAK in the past 10-15 years. The novelty is limited due to what has previously been done on the question. Previous work showed MCAK targets to microtubule plus-ends in cells through association with EB proteins and Kif18b (work from Wordeman, Medema, Walczak, Welburn, Akhmanova) but none of their work is cited.

      It is not obvious in the paper that these in vitro studies only reveal microtubule end targeting, rather than plus end targeting. MCAK diffuses on the lattice to both ends and its conformation and association with the lattice and ends has also been addressed by other groups-not cited here. I want to particularly highlight the work from Friel's lab where they identified a CDK phosphomimetic mutant close to helix4 which reduces the end preference of MCAK. This residue is very close to the one mutated in this study and is highly relevant because it is a site that is phosphorylated in vivo. This study and the mutant produced here suggest a charge-based recognition of the end of microtubules.

      Here the authors analyze this MCAK recognition of the lattice and microtubule ends, with different nucleotide states of MCAK and in the presence of different nucleotide states for the microtubule lattice. The main conclusion is that MCAK affinity for microtubules varies in the presence of different nucleotides (ATP and analogs) which was partially known already. How different nucleotide states of the microtubule lattice influence MCAK binding is novel. This information will be interesting to researchers working on the mechanism of motors and microtubules. However, there are some issues with some experiments. In the paper, the authors say they measure MCAK residency of growing end microtubules, but in the kymographs, the microtubules don't appear dynamic- in addition, in Figure 1A, MCAK is at microtubule ends and does not cause depolymerization. I would have expected to see depolymerization of the microtubule after MCAK targeting. The MCAK mutants are not well characterized. Do they still have ATPase activity? Are they folded? Can the authors also highlight T537 and discuss this?

      Finally, a few experiments are done with MCAK and XMAP215, after the authors say they have demonstrated the binding sites overlap. The data supporting this statement were not obvious and the conclusions that the effect of the two molecules are additive would argue against competing binding sites. Overall, while there are some interesting quantitative measurements of MCAK on microtubules - in particular in relation to the nucleotide state of the microtubule lattice - the insights into end-recognition are modest and do not address or discuss how it might happen in cells. Often the number of events is not recorded. Histograms with large SEM bars are presented, so it is hard to get a good idea of data distribution and robustness. Figures lack annotations. This compromises therefore their quantifications and conclusions. The discussion was hard to follow and needs streamlining, as well as putting their work in the context of what is known from other groups who produced work on this in the past few years.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This manuscript details the characterization of ClpL from L. monocytogenes as a potent and autonomous AAA+ disaggregase. The authors demonstrate that ClpL has potent and DnaK-independent disaggregase activity towards a variety of aggregated model substrates and that this disaggregase activity appears to be greater than that observed with the canonical DnaK/ClpB co-chaperone. Furthermore, Lm ClpL appears to have greater thermostability as compared to Lm DnaK, suggesting that ClpL-expressing cells may be able to withstand more severe heat stress conditions. Interestingly, Lm ClpP can provide thermotolerance to E. coli that have been genetically depleted of either ClpB or in cells expressing a mutant DnaK103. The authors further characterized the mechanisms by which ClpL interacts with protein aggregates, identifying that the N-terminal domain of ClpL is essential for disaggregase function. Lastly, by EM and mutagenesis analysis, the authors report that ClpL can exist in a variety of larger macromolecular complexes, including dimer or trimers of hexamers/heptamers, and they provide evidence that the N-terminal domains of ClpL prevent dimer ring formation, thus promoting an active and substrate-binding ClpL complex. Throughout this manuscript the authors compare Lm ClpL to ClpG, another potent and autonomous disaggregase found in gram-negative bacteria that have been reported on previously, demonstrating that these two enzymes share homologous activity and qualities. Taken together this report clearly establishes ClpL as a novel and autonomous disaggregase.

      Strengths:<br /> The work presented in this report amounts to a significant body of novel and significant work that will be of interest to the protein chaperone community. Furthermore, by providing examples of how ClpL can provide in vivo thermotolerance to both E. coli and L. gasseri the authors have expanded the significance of this work and provided novel insight into potential mechanisms responsible for thermotolerance in food-borne pathogens.

      Weaknesses:<br /> The figures are clearly depicted and easy to understand, though some of the axis labeling is a bit misleading or confusing and may warrant revision. While I do feel that the results and discussion as presented support the authors' hypothesis and overall goal of demonstrating ClpL as a novel disaggregase, interpretation of the data is hindered as no statistical tests are provided throughout the manuscript. Because of this only qualitative analysis can be made, and as such many of the concluding statements involving pairwise comparisons need to be revisited or quantitative data with stats needs to be provided. The addition of statistical analysis is critical and should not be difficult, nor do I anticipate that it will change the conclusions of this report.

    1. Reviewer #3 (Public Review):

      Summary: The authors are trying to find out whether the levels of omega-6 and omega-3 fatty acids in the blood are linked to the likelihood of dying from anything, of dying from cancer and of dying from cardiovascular disease. They use a large dataset called UK Biobank where fatty acid levels were measured in blood at the start of the study and what happened to the participants over the following years (average of 12.7 years) was followed. They find that both omega-6 AND omega-3 fatty acids were linked with less likelihood of dying from anything, from cancer and from cardiovascular disease. The effects of omega-3s were stronger. They then made a ratio of omega-6 to omega-3 fatty acids and found that as that ratio increased risk of dying also increased,. This supports the idea that omega-3s have stronger effects than omega-6s.

      Strengths: This is a large study (over 85,000 participants) with a good follow up period (average 12.7 years). Using blood levels of fatty acids is superior to using estimated dietary intakes. The authors take account of many variables that could interfere with the findings (confounding variables) - they do this using statistical methods.

      Weaknesses: There are several omega-6 and omega-3 fatty acids - it is not clear which ones were actually measured in this study.

    1. Reviewer #3 (Public Review):

      Freire and co-authors examine the role of the exocyst complex during the formation and secretion of mucins from secretory granules in the larval salivary gland of Drosophila melanogaster. Using transgenic lines with a tagged Sgs3 mucin the authors KD expression of exocyst subunit members and observe a defect in secretory granules with a heterogeneity of phenotypes. By carefully controlling RNAi expression using a Gal4-based system the authors can KD exocyst subunit expression to varying degrees. The authors find that the stronger the inhibition of expression of exocyst the earlier in the secretory pathway the defect. The manuscript is well written, the model system is physiological, and the techniques are innovative.

      My major concern is that the evidence underlying the fundamental claim of the manuscript that "the exocyst complex participates" in multiple secretory processes lacks direct evidence. It is clear from multiple lines of evidence, which are discussed by the authors, that exocyst is essential for an array of exocytic events. The fundamental concern is that loss of homeostasis on the plasma membrane proteome and lipidome might have severe pleiotropic effects on the cell. Indeed exocyst is essential, even in tissue culture conditions, and loss is lethal. Therefore, is an alternative explanation not that they are observing varying degrees of pleiotropic defect on the secretory pathway? Perhaps the authors have more evidence that exocyst is important for homeotypic fusion of the SGs, as supported by the localisation of Sec15 on the fusion sites.

      The second question that I think is important to address is, what exactly do the varying RNAi levels correspond to in terms of experiments, and have these been validated? Due to the fundamental claim being that the severity of the phenotype being correlated with the level of KD, I think validation of this model is absolutely essential.

    1. Reviewer #3 (Public Review):

      Summary:

      This study uses a state-of-the-art artificial skin assay to determine the quantity of P. falciparum sporozoites expelled during feeding using mosquito infection (by standardised membrane feeding assay SMFA) using both cultured gametocytes and natural infection. Sporozoite densities in salivary glands and expelled into the skin are quantified using a well-validated molecular assay. These studies show clear positive correlations between mosquito infection levels (as determined by oocyst numbers), sporozoite numbers in salivary glands, and sporozoites expelled during feeding. This indicates potentially significant heterogeneity in infectiousness between mosquitoes with different infection loads and thus challenges the often-made assumption that all infected mosquitoes are equally infectious.

      Strengths:

      Very rigorously designed studies using very well validated, state-of-the-art methods for studying malaria infections in the mosquito and quantifying load of expelled sporozoites. This resulted in very high-quality data that was well-analyzed and presented. Both sources of gametocytes (cultures vs. natural infection) show consistent results further strengthening the quality of the results obtained.

      Weaknesses:

      As is generally the case when using SMFAs, the mosquito infections levels are often relatively high compared to wild-caught mosquitoes (e.g. Bombard et al 2020 IJP: median 3-4 ), and the strength of the observed correlations between oocyst sheet and salivary gland sporozoite load even more so between salivary gland sporozoite load and expelled sporozoite number may be dominated by results from mosquitoes with infection levels rarely observed in wild-caught mosquitoes. This could result in an overestimation of the importance of these well-observed positive relationships under natural transmission conditions.

      The results obtained from these excellently designed and executed studies very well supported their conclusion - with a slight caveat regarding their application to natural transmission scenarios

      This work very convincingly highlights the potential for significant heterogeneity in the infectiousness between individual P. falciparum-infected mosquitoes. Such heterogeneity needs to be further investigated and if again confirmed taken into account both when modelling malaria transmission and when evaluating the importance of low-density infections in sustaining malaria transmission.

    1. Reviewer #3 (Public Review):

      Summary:

      This important paper describes improvements to the measurement of enkephalins in vivo using microdialysis and LC-MS. The key improvement is the oxidation of met- to prevent having a mix of reduced and oxidized methionine in the sample which makes quantification more difficult. It then shows measurements of enkephalins in the nucleus accumbens in two different stress situations - handling and exposure to predator odor. It also reports the ratio of released met- and leu-enkephalin matching what is expected from the digestion of proenkephalin. Measurements are also made by photometry of Ca2+ changes for the fox odor stressor. Some key takeaways are the reliable measurement of met-enkephalin, the significance of directly measuring peptides as opposed to proxy measurements, and the opening of a new avenue into the research of enkephalins due to stress based on these direct measurements.

      Strengths:

      -Improved methods for measurement of enkephalins in vivo.

      -Compelling examples of using this method.

      -Opening a new area of looking at stress responses through the lens of enkephalin concentrations.

      Weaknesses:

      1) It is not clear if oxidized met-enk is endogenous or not and this method eliminates being able to discern that.

      2) It is not clear if the spatial resolution is really better as claimed since other probes of similar dimensions have been used.

      3) Claims of having the first concentration measurement are not quite accurate.

      4) Without a report of technical replicates, the reliability of the method is not as well-evaluated as might be expected.

    1. Reviewer #3 (Public Review):

      Summary: This is a careful examination of the distribution of mitochondria in the basal dendrites of ferret visual cortex in a previously published volume electron microscopy dataset. The authors report that mitochondria are sparsely, as opposed to continuously distributed in the dendritic shafts, and that they tend to cluster near dendritic spines with heterogeneous orientation selectivity.

      Strengths: Volume EM is the gold standard for quantification of organelle morphology. An unusual strength of this particular dataset is that the orientation selectivity of the dendritic spines was measured by calcium imaging prior to EM reconstruction. This allowed the authors to assess how spines with varying selectivity are organized relative to mitochondria, leading to an intriguing observation that they localize to heterogeneous spine clusters. The analysis is carefully performed. An additional strength is the use of a carnivore with a sophisticated visual system.

      Weaknesses: Using threshold distances between mitochondria and synapses as opposed to absolute distances may overlook important relationships in the data.

    1. Reviewer #3 (Public Review):

      In this manuscript, Millard et al. investigate the effects of nicotine on pain sensitivity and peak alpha frequency (PAF) in resting state EEG. To this end, they ran a pre-registered, randomized, double-blind, placebo-controlled experiment involving 62 healthy adults who received either 4 mg nicotine gum (n=29) or placebo (n=33). Prolonged heat and pressure were used as pain models. Resting state EEG and pain intensity (assessed with a visual analog scale) were measured before and after the intervention. Additionally, several covariates (sex at birth, depression and anxiety symptoms, stress, sleep quality, among others) were recorded. Data was analyzed using ANCOVA-equivalent two-wave latent change score models, as well as repeated measures analysis of variance. Results do not show *experimentally relevant* changes of PAF or pain intensity scores for either of the prolonged pain models due to nicotine intake.

      The main strengths of the manuscript are its solid conceptual framework and the thorough experimental design. The researchers make a good case in the introduction and discussion for the need to further investigate the association of PAF and pain sensitivity. Furthermore, they proceed to carefully describe every aspect of the experiment in great detail, which is excellent for reproducibility purposes. Finally, they analyze the data from almost every possible angle and provide an extensive report of their results.<br /> The main weakness of the manuscript is the interpretation of these results. Even though some of the differences are statistically significant (e.g., global PAF, pain intensity ratings during heat pain), these differences are far from being experimentally or clinically relevant. The effect sizes observed are not sufficiently large to consider that pain sensitivity was modulated by the nicotine intake, which puts into question all the answers to the research questions posed in the study.

    1. Reviewer #3 (Public Review):

      Summary: in this manuscript, Hansen and co-authors investigated the role of R-coils in the multimerization and ice nucleation activity of PbINP, an ice nucleation protein identified in Pseudomonas borealis. The results of this work suggest that the length, localization, and amino acid composition of R-coils are crucial for the formation of PbINP multimers.

      Strengths: The authors use a rational mutagenesis approach to identify the role of the length, localisation, and amino acid composition of R-coils in ice nucleation activity. Based on these results, the authors hypothesize a multimerization model. Overall, this is a multidisciplinary work that provides new insights into the molecular mechanisms underlying ice nucleation activity.

      Weaknesses: Several parts of the work appear cryptic and unsuitable for non-expert readers. The results of this work should be better described and presented.

    1. Reviewer #3 (Public Review):

      Summary:

      The authors generate and characterize two phosphospecific antisera for FFA2 receptor and claim a "bar code" difference between white fat and Peyers patches.

      Strengths:

      The question is interesting and the antibody characterization is convincing.

      Weaknesses:

      The mass spectrometry analysis is not convincing because the method is not quantitative (no SILAC, TMT, internal standards etc). Figure 1 shows single tryptic peptides with one and two phosphorylation fragmentations as claimed, but there is no data testing the abundance of these so the differences claimed between cell treatment conditions are not established.

      The blot analysis cannot distinguish 296/7 but it does convincingly show an agonist increase. Can the authors clarify why the amount of constitutive phosphorylation is much higher in the example blot in Figure 2 than in Figure 3? It would be helpful to quantify this across more than one example, like in Figures 4 and 5 for tissue.

      Compound 101 is shown in Figure 2 to block barrestin recruitment. I agree this suggests phosphorylation mediated by GRK2/3 but this is not tested. The new antibodies should be good for this so I don't understand why the indirect approach.

      The conditions used to inhibit dephosphorylation are not specified, the method only says "phosphatase inhibitors". How do the authors know that low P at 306/7 in white fat is not a result of dephosphorylation during sample preparation? If these sites are GRK2/3 dependent (see above) then does adipose tissue lack this GRK?

    1. Reviewer #3 (Public Review):

      In this manuscript, Zhou et al. demonstrate that the pseudokinase ULK4 has an important role in Hedgehog signaling by scaffolding the active kinase Stk36 and the transcription factor Gli2, enabling Gli2 to be phosphorylated and activated.<br /> Through nice biochemistry experiments, they show convincingly that the N-terminal pseudokinase domain of ULK4 binds Stk36 and the C-terminal Heat repeats bind Gli2.

      Lastly, they show that upon Sonic Hedgehog signaling, ULK4 localizes to the cilia and is needed to localize Stk36 and Gli2 for proper activation.

      This manuscript is very solid and methodically shows the role of ULK4 and STK36 throughout the whole paper, with well controlled experiments. The phosphomimetic and incapable mutations are very convincing as well.<br /> I think this manuscript is strong and stands as is, and there is no need for additional experiments.

      Overall, the strengths are the rigor of the methods, and the convincing case they bring for the formation of the ULK4-Gli2-Stk36 complex. There are no weaknesses noted. I think a little additional context for what is being observed in the immunofluorescence might benefit readers who are not familiar with these cell types and structures.

      The revised manuscript has improved some of the unclear areas.

    1. Reviewer #3 (Public Review):

      The manuscript by Boyd and co-authors "A Vibrio cholerae viral satellite maximizes its spread and inhibits phage by remodelling hijacked phage coat proteins into small capsids" reports important results related to self-defending mechanisms that bacteria are used against phages that infect them. It has been shown previously that bacteria produce phage-inducible chromosomal island-like elements (PLE) that encode proteins that are integrated into bacterial genome. These proteins are used by bacteria to amend the phage capsids and to create phage-like particles (satellites) that move between cells and transfer the genetic material of PLE to another bacteria. That study highlights the interactions between a PLE-encoded protein, TcaP, and capsid proteins of the phage ICP1.

      The manuscript is well written, provides a lot of new information and the results are supported by biochemical analysis.

    1. Reviewer #3 (Public Review):

      This paper describes an algorithm that provides a general mechanism for goal-directed behaviour in a biologically plausible neural form.

      The method depends on substantial simplifying assumptions. The simulated animal effectively moves through an environment consisting of discrete locations and can reliably detect when it is in each location. Whenever it moves from one location to an adjacent location, it perfectly learns the connectivity between these two locations (changes the value in an adjacency matrix to 1). This creates a graph of connections that reflects the explored environment. In this graph, the current location gets input activation and this spreads to all connected nodes multiplied by a constant decay (adjusted to the branching number of the graph) so that as the number of connection steps increases the activation decreases. Some locations will be marked as goals through experiencing a resource of a specific identity there and subsequently will be activated by an amount proportional to their distance in the graph from the current location, i.e., their activation will increase if the agent moves a step closer and decrease if it moves a step further away. Hence by making such exploratory movements, the animal can decide which way to move to obtain a specified goal.

      Although the algorithm is presented within a conceptual framework of chemotaxis, I.e., making movements to sample a local gradient and move up it, the approach relates closely to previous models of exploration, learning, and navigation that similarly establish (through experience) a graph structure to represent how locations are connected and use some form of activity-propagation from the current node or goal node to identify a (shortest) route between them. Many of these similarly claim to be plausible neural circuits. The current authors argue that the current algorithm has several desirable features with respect to such previous work: for example, the 'readout' of the path does not require explicit 'look-up' and activation of the goal node (although it does require a choice of which goal node is currently connected to behavior); and does not require any separate control or rules for learning vs. navigation phases. By comparison to the successor representation method used in RL, which also appears related, they note that the gain (decay) factor is not equivalent to a temporal discount and that their method learns only state-state transitions, allowing the value of actions to be externalised, I.e., calculated by trying alternative actions to see which increases the activation at the goal node the most. On the other hand, it should be noted that some issues addressed in previous models, such as uncertainty over the current state or probabilistic state(-action) transitions are not addressed in this work.

      The algorithm presents some elegant features with respect to previous work such as conceptually separating the 'goal' nodes from the state (location) graph (I.e. 'goals' are not just special target states within the graph) so that a small number of goals can become associated to (potentially) multiple regions of the state graph where they are satisfied, or near to being satisfied. This architecture is suggested, in the discussion, to resemble the insect mushroom body (MB), where it is known that a small number of output neurons (MBONs, putative goal neurons) are activated by plastic connections from Kenyon cells (KCs, putative state neurons). However, it goes substantially beyond any available evidence to claim that KC connectivity could support the acquisition of a graph (in the form of an adjacency matrix) representing the structure of the environment: KCs show sparse distributed activity (not one active node per state); it seems unlikely that any two arbitrary KCs can (rapidly) become connected; and as yet has not been demonstrated that KC connectivity is plastic at all.

      The results presented are fairly straightforward given the simplification of the tasks, as described above. They show 1) in practical terms, the spreading signal travels further for a larger decay but becomes erratic as the decay parameter (map neuron gain) approaches its theoretical upper bound and decreases below noise levels beyond a certain distance. Both follow the theory but it is perhaps helpful to see that there is a viable range of values of the gain for which the mechanism works, that is, it is not highly dependent on precise tuning. 2) That different graph structures can be acquired and used to approach goal locations (not surprising). 3) That simultaneous learning and exploitation of the graph only minimally affects the performance over starting with perfect knowledge of the graph. 4) That the parameters interact in expected ways. 5) That the separation of goals from states can be used flexibly e.g. the homing behaviour (a goal state is learned before any of the map is learned) and the patrolling behaviour (a goal cell that monitors all states for how recently they were visited). It is also interesting to link the mechanism of exploration of neighbouring states to observed scanning behaviours in navigating animals. It would have been interesting to explore whether the parameters could be dynamically tuned, based on the overall graph activity.

    1. Reviewer #3 (Public Review):

      In this manuscript, Lewis et al. investigate the role of tetraspanins in the formation of discs- the key structure of vertebrate photoreceptors essential for light reception. Two tetraspanin proteins play a role in this process: PRPH2 and ROM1. The critical contribution of PRPH2 has been well established and loss of its function is not tolerated and result in gross anatomical pathology and degeneration in both mice and humans. However, the role of ROM1 is much less understood and has been considered somewhat redundant. This paper provides a definitive answer about the long-standing uncertainty regarding the contribution of ROM1 firmly establishing its role in outer segment morphogenesis. First, using ingenious quantitative proteomic technique the authors show PRPH2 compensatory increase in ROM1 knockout explaining the redundancy of its function. Second, they uncover that despite this compensation, ROM1 is still needed and its loss delays disc enclosure and result in the failure to form incisures. Third, the authors used a transgenic mouse model and show that deficits seen in ROM1 KO could be completely compensated by the overexpression of PRPH2. Finally, they analyzed yet another mouse model based on double manipulation with both ROM1 loss and expression of PRPH2 mutant unable to form dimerizing disulfide bonds further arguing that PRPH2-ROM1 interactions are not required for disc enclosure. To top it off the authors complement their in vivo studies by series of biochemical assays done upon reconstitution of tetraspanins in transfected cultured cell as well as fractionations of native retinas. This report is timely, addresses significant questions in cell biology of photoreceptors and pushes the field forward in a classical area of photoreceptor biology and mechanics of membrane structure as well. The manuscript is executed at the top level of technical standard, exceptionally well written and does not leave much more to desire. It also pushes standards of the field- one such domain is quantitative approach to analysis of the EM images which is notoriously open to alternative interpretations - yet this study does an exceptional job unbiasing this approach.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Ishii et al used molecular genetics and behavioral analyses in mice to study the functional role of a subset of MPOA neurons in the regulation of female sexual drive. They first employed a self-paced mating assay during which a female could control the amount of interaction time with a male to assess female sexual drive after completion of mating. The authors observed that after mating completion females spent significantly less time interacting with the mated males, indicating that their sexual drive was reduced. Next, the authors performed a brain-wide analysis of neurons activated during the completion of mating and identified the MPOA as a strong candidate region. However, their activity labeling was not exclusive to neurons activated during mating completion but included all neurons activated before, during, and after the mating encounter. This makes it difficult to interpret these data. Importantly, the authors do provide in vivo calcium imaging data showing that a subset of MPOA neurons responds significantly and specifically to mating completion and not other behaviors during the social encounter. The authors performed these studies in both excitatory and inhibitory populations of the MPOA. Their analysis identified a subpopulation of inhibitory neurons that exhibit sustained increased activity for 90 sec following mating completion. Finally, the authors used chemogenetics to activate MPOA neurons during home cage mating, condition place preference, pup retrieval, and the self-paced mating assay. They found that activation of these neurons significantly reduced mating behaviors and time spent interacting with a male during the self-paced mating assay. The authors suggest that their chemogenetic activation is restricted to neurons activated during mating completion, but their activity-dependent labeling strategy resulted in chemogenetic activation of all MPOA neurons activated either before, during, or after mating.

      The authors' experimental execution is rigorous and well-performed. Their data identify inhibitory neurons in the female MPOA as a neural locus that is activated following the completion of mating and potentially a key neural population in the regulation of female sexual motivation. However, the conclusions and interpretation of the data extend beyond what is reasonable given the limitations of the activity-dependent labeling strategy employed.

      Strengths:<br /> 1) The use of the self-paced mating assay in combination with neural imaging and manipulation to assess female sexual drive is innovative. The authors correctly assert that relatively little is known about how mating completion affects sexual motivation in females as compared to males. Therefore, the data collected from these studies is important and valuable.

      2) The authors provide convincing histological data and analyses to verify and validate their brain-wide activity labeling, neural imaging, and chemogenetic studies.

      3) The single-cell in vivo calcium imaging data are well performed and analyzed. They provide key insights into the activity profiles of both excitatory and inhibitory neurons in the female MPOA during mating encounters. The authors' identification of an inhibitory subpopulation of female MPOA neurons that are selectively activated following the completion of mating is fundamental for future experiments which could potentially find a molecular marker for this population and specifically manipulate these neurons to understand their role in female sexual motivation in greater detail.

      Weaknesses:<br /> 1) Their activity-dependent labeling strategy is not exclusive to mating completion but instead includes all neurons active before, during, and after the social encounter. In the manuscript, the authors did not discuss the time course of Fos activation or the timeframe of the FosTRAP labeling strategy. Fos continues to be expressed and is detectable for hours following neural activation. Therefore, the FosTRAP strategy also labels neurons that were activated 3 hours before the injection of 4-OHT. The original FosTRAP2 paper which is cited in this manuscript (DeNardo et al, 2019) performed a detailed analysis of the labeling window in Supplementary Figure 2 of that paper. Here is quoted text from that paper: "Resultant patterns of tdTomato expression revealed that the majority of TRAPing occurred within a 6-hour window centered around the 4-OHT injection." Thus, the FosTRAP "mating completion" groups throughout this manuscript also include neurons activated 3 hours before mating completion, which includes neurons activated during appetitive and consummatory mating behaviors.

      This makes all of the FosTRAP data very difficult to interpret. Compounding this is the issue that the two groups the authors compare in their experiments are females administered 4-OHT following appetitive investigation behaviors (with the male removed before mating behaviors occurred) and females administered 4-OHT following mating completion. The "appetitive" group labeled neurons activated only during appetitive investigation, but the "completion" group labeled neurons activated during appetitive investigations, consummatory mating bouts, and mating completion. Therefore, in the brain-wide analysis of Figure 2, it is impossible to identify brain regions that were activated exclusively by mating completion and not by consummatory mating behaviors. This could have been achieved if the "completion" group was compared to a group of females that had commenced consummatory mating behaviors but were separated from the male before mating was completed. Then, any neurons labeled by the "completion" FosTRAP but not the "consummatory" FosTRAP would be neurons specifically activated by mating completion. In the current brain-wide analysis experiments, neurons activated by consummatory behaviors and mating completion can not be disassociated.

      This same issue is present in the interpretation of the chemogenetic activation data in Figure 6. In the experiments of Figure 6, the authors are activating neurons naturally activated during consummatory mating behaviors as well as those activated during mating completion.

      2) This study does not definitively show that the female mice used in this study display decreased sexual motivation after the completion of mating. The females exhibit reduced interaction with males that had also just completed mating, but it is unclear if the females would continue to show reduced interaction time if given the choice to interact with a male that was not in the post-ejaculatory refractory period. Perhaps, these females have a natural preference to interact more with sexually motivated males compared to recently mated (not sexually motivated) males. To definitively show that these females exhibit decreased sexual motivation the authors should perform two control experiments: 1) provide the females with access to a fully sexually motivated male after the females have completed mating with a different male to see if interaction time changes, and 2) compare interaction time toward mated and non-mated males using the self-paced mating assay. These controls would show that the reduction in the interaction time is because the females have reduced sexual motivation and not because these females just naturally interact with sexually motivated males more than males in the post-ejaculatory refractory period.

      3) It is unclear how the transient 90-second response of these MPOA neurons following the completion of mating causes the prolonged reduction in female sexual motivation that is at the minutes to hours timeframe. No molecular or cellular mechanism is discussed.

      4) The authors discuss potential cell types and neural population markers within the MPOA and go into some detail in Figure S3. However, their experiments are performed with only the larger excitatory and inhibitory MPOA neural populations.

    1. Reviewer #3 (Public Review):

      This is an interesting work reporting ferroptosis that is involved in the tooth morphogenesis. The authors showed that Gpx4, the core anti-lipid peroxidation enzyme in ferroptosis, is upregulated in tooth development using ex vivo culture system.

    1. Reviewer #3 (Public Review):

      Summary:<br /> Grob and colleagues investigated the causal role of the angular gyrus in insight-driven memory reconfiguration. Participants watched unrelated movie scenes while EEG was recorded prior to receiving either active or sham continuous theta burst stimulation (cTBS) over the left angular gyrus. Following stimulation, participants either observed or imagined links or non-links between scenes watched before stimulation. Next, participants rated their comprehension of the links. Following this part, participants completed questionnaires for 30 minutes, followed by a free recall test of details from the videos. Subjects then watched the videos again while EEG was recorded and engaged in a recognition test to determine whether they retained information about the linking events. Participants showed strong evidence of insight-driven linking between videos. The results indicate that overall memory of video details was stronger for the Sham group compared to the cTBS group, but only for the linked videos. An RSA analysis using pre- and post-video observation indicated that similarity increased for imagined and linked videos for the sham group, but not for the cTBS group, in sensors in parieto-temporal regions. Similarity for imagined, non-linked videos increased for the cTBS group, but not for the sham group, in frontal sensors. Coherence between fronto-parietal sensors decreased during the viewing of videos linked by imagination for the cTBS group, but not the sham group. Coherence between the same sensors increased while watching videos that were linked by observation in the cTBS group, but decreased for the sham group. The authors conclude that the angular gyrus is causally related to memory-insight reconfiguration.

      Strengths:<br /> The paper is nicely written, and the rigor of the experimental design is strong. The paper is pre-registered, and the authors used a double-blind sham-controlled design to eliminate the possibility of bias and non-specific effects of rTMS on their results. The behavioral results are striking and provide strong evidence that their intervention significantly decreased memory for details of linked events. The authors also took care to leave time between stimulation and recall to reduce the influence of carry-over rTMS effects on memory. There are also strong behaviorally-relevant neural changes.

      Weaknesses:<br /> My major criticism relates to the main claim of the paper regarding causality between the angular gyrus and the authors' behavior of interest. Specifically, I am not convinced by the evidence that the effects of stimulation noted in the paper are attributable specifically to the angular gyrus, and not other regions/networks.

    1. Reviewer #3 (Public Review):

      Summary:<br /> The current manuscript shows that 14-3-3 are binding partners of spastin, preventing its degradation. It is additionally shown, using complementary methods, that both 14-3-3 and spastin are necessary for axon regeneration in vitro and in vivo. While interesting in vitro and vivo data is provided, some of the claims of the authors are not convincingly supported.

      Major strengths:<br /> Very interesting effect of FC-A in functional recovery after spinal cord injury.

      Major Weaknesses:<br /> Some of the in vitro data, including colocalizations, and analysis of microtubule severing fall short to support the claims of the authors.<br /> The in vivo selectivity of FC-A towards spastin is not adequately supported by the data presented.<br /> There are aspects of the spinal cord injury site histology that are unclear.

    1. Reviewer #3 (Public Review):

      The authors attempt to dissociate differences in resting vs active vs perturbed movement biases in people with motor deficits resulting from stroke. The analysis of movement utilizes techniques that are similar to previous motor control in both humans and non-human primates, to assess impairments related to sensorimotor injuries. In this regard, the authors provide additional support to the extensive literature describing movement abnormalities in patients with hemiparesis both at rest and during active movement. The authors describe their intention to separate out the contribution of holding still at a position vs active movement as a demonstration that these two aspects of motor control are controlled by two separate control regimes.

      Strengths:<br /> 1. The authors utilize a device that is the same or similar to devices previously used to investigate motor control of movement in normal and impaired conditions in humans and non-human primates. This allows comparisons to existing motor control studies.<br /> 2. Experiment 1 demonstrates resting flexion biases both in supported and unsupported forelimb conditions. These biases show a correlated relationship with FM-UE scores, suggesting that the degree of motor impairment and the degree of resting bias are related.<br /> 3. The stroke patient participant population had a wide range of both levels of impairment and time since stroke, including both sub-acute and chronic cases allowing the results to be compared across impairment levels.

      The authors describe several results from their study: 1. Postural biases were systematically toward the body (flexion) and increased with distance from the body (when the arm was more extended) and were stronger when the arm was unsupported. 2. These postural biases were correlated with FM-UE score. 3. They found no evidence of postural biases impacting movement, even when that movement was perturbed. 4. When holding a position at the end of a movement, if the position was perturbed opposite of the direction of bias, movement back to the target was improved compared to the perturbation in the direction of bias. Taken together, the authors suggest that there are at least two separate motor controls for tasks at rest versus with motion. Further, the authors propose that these results indicate that there is an imbalance between cortical control of movement (through the corticospinal tracts) and postural control (through the reticulospinal tract). There are several weaknesses related to the interpretation of the results:

      In Experiment 1, the participants are instructed to keep their limbs in a passive position after being moved. The authors show that, in the impaired limb, these resting biases are significantly higher when the limb is unsupported and increase when the arm is moved to a more extended position.

      When supported by the air sled, the arm is in a purely passive position, not requiring the same anti-gravity response so will have less RST but also less CST involvement. While the unsupported task invokes more involvement of the reticulospinal tract (RST), it likely also has significantly higher CST involvement due to the increased difficulty and novelty of the task.

      If there were an imbalance in CST regulating RST as proposed by the authors, the bias should be higher in the supported condition as there should be relatively less CST activation/involvement/modulation leading to less moderating input onto the RST and introducing postural biases. In the unsupported condition, there is likely more CST involvement, potentially leading to an increased modulatory effect on RST. If the proportion of CST involvement significantly outweighs the RST activation in the unsupported task, then it isn't obvious that there is a clear differentiation of motor control. As the degree of resting force bias and FM-UE score are correlated, an argument could be made that they are both measuring the impairment of the CST unrelated to any RST output. If it is purely the balance of CST integrity compared to RST, then the degree of bias should have been the same in both conditions. In this idea of controller vs modulator, it is unclear when this switch occurs or how to weigh individual contributions of CST vs. extrapyramidal tracts. Further, it isn't clear why less modulation on the RST would lead only to abnormal flexion.

      This resting bias could be explained by an imbalance in the activation of flexors vs extensors which follows the results that this bias is larger as the arm is extended further, and/or in a disconnect in sensory integration that is overcome during active movement. Neither would necessitate separate motor control for holding vs active movement.

      In Experiment 2, the participants are actively moving to and holding at targets for all trials while being supported by the air sled. Even with the support, the paretic participants all showed start- and end-point force biases around the movement despite not showing systematic deviations in force direction during active movement start or stop. There could be several factors that limit systematic deviations in force direction. The most obvious is that the measured biases are significantly higher when the limb is unsupported and by testing with a supported limb the authors are artificially limiting any effect of the bias. It is also possible that significant adaptation or plasticity with the CST or rubrospinal tracts could give rise to motor output that already accounts for any intrinsic resting bias. In any case, the results from the reaching phase of Experiment 2 do not definitively show that directional biases are not present during active reaching, just that the authors were unable to detect them with their design. The authors do acknowledge the limitations in this design (a 2D constrained task) in explaining motor impairment in 3D unconstrained tasks.

      It would have been useful, in Experiment 2, to use FM-UE scores (and time from injury) as a factor to determine the relationship between movement and rest biases. Using a GLMM would have allowed a similar comparison to Experiment 1 of how impairment level is related to static perturbation responses. While not a surrogate for imaging tractography data showing a degree of CST involvement in stroke, FM-UE may serve as an appropriate proxy so that this perturbation at hold responses may be put into context relative to impairment.

      It is not clear that even in the static perturbation trials that the hold (and subsequent move from perturbation) is being driven by reticulospinal projections. Given a task where ~20% of the trials are going to be perturbed, there is likely a significant amount of anticipatory or preparatory signaling from the CST. How does this balance with any proposed contribution that the RST may have with increased grip?

      In general, the weakness of the interpretation of the results with respect to the CST/RST framework is that it is necessary to ascribe relative contributions of different tracts to different phases of movement and hold using limited or indirect measures. Barring any quantification of this data during these tasks, different investigators are likely to assess these contributions in different ways and proportions limiting the framework's utility.

    1. Reviewer #3 (Public Review):

      Observers make judgements about expected stimuli faster and more accurately. How expectations facilitate such perceptual decisions remains an ongoing area of investigation, however, as expectations may exert their effects in multiple ways. Expectations may directly influence the encoding of sensory signals. Alternatively (or additionally), expectations may influence later stages of decision-making, such as motor preparation, when they bear on the appropriate behavioral response.

      In the present study, Walsh and colleagues directly measured the effect of expectations on sensory and motor signals by making clever use of the encephalogram (EEG) recorded from human observers performing a contrast discrimination task. On each trial, a predictive cue indicated which of two superimposed stimuli would likely be higher contrast and, therefore, whether a left or right button press was likely to yield a correct response. Deft design choices allowed the authors to extract both contrast-dependent sensory signals and motor preparation signals from the EEG. The authors provide compelling evidence that, when predictive cues provide information about both a forthcoming stimulus and the appropriate behavioral response, expectation effects are immediately manifest in motor preparation signals and only emerge in sensory signals after extensive training.

      Future work should attempt to reconcile these results with related investigations in the field. As the authors note, several groups have reported expectation-induced modulation of sensory signals (using both fMRI and EEG/MEG) on shorter timescales (e.g. just one or two sessions of a few hundred trials, versus the intensive multi-session study reported here). One interesting possibility is that perceptual expectations are not automatic but demand the deployment of feature-based attention, while motor preparation is comparatively less effortful and so dominates when both sources of information are available, as in the present study. This hypothesis is consistent with the authors' thoughtful analysis showing decreased neural signatures of attention over posterior electrodes following predictive cues. Therefore, observing the timescale of sensory effects using the same design and methods (facilitating direct comparison with the present work), but altering task demands slightly such that cues are no longer predictive of the appropriate behavioral response, could be illuminating.

    1. Reviewer #3 (Public Review):

      In their study, Bolivar et al. set out to explore whether four distinct neuronal subtypes within the peripheral nervous system exhibit varying potentials for axon regeneration following nerve injury. To investigate this question, they harnessed the power of four distinct reporter mouse models featuring fluorescent labeling of these neuronal subtypes. Their findings reveal that axons of nociceptor neurons exhibit faster regeneration than those of motor neurons, with mechanoreceptors, and proprioceptors displaying the slowest regeneration rate.

      To delve into the molecular mechanisms underlying this divergence in regeneration potential, the authors employed the Ribotag technique in mice. This approach enabled them to dissect the differential translatomes of these four neuronal populations after nerve injury, comparing them to uninjured neurons. Their comprehensive expression profiling data uncovers a remarkably heterogeneous response among these neuron subtypes to axon injury.

      To focus on one identified target with a mechanistic experiment as a proof of concept, their analysis highlights a striking upregulation of MED12 in proprioceptors, leading to the hypothesis that this molecule may play an inhibitory role, contributing to the comparatively slower regeneration of proprioceptor axons when compared to other neuronal subtypes. This hypothesis gains support from their in vitro model, where siRNA-mediated downregulation of MED12 results in a significant increase in neurite outgrowth in proprioceptive neurons after plating in cell culture dishes.

      Overall, this is an interesting study, and in conjunction with similar work from others will be highly valuable for neurobiologists studying how to modulate the regeneration of axons from distinct neuronal subtypes. The quality of data presentation appears to be very good in general, and the manuscript is appropriately written.

    1. Reviewer #3 (Public Review):

      The study of Weber et al. provides a thorough investigation of the roles of four individual dopamine neurons for aversive associative learning in the Drosophila larva. They focus on the neurons of the DL-1 cluster which already have been shown to signal aversive teaching signals. However, the authors go far beyond the previous publications and test whether each of these dopamine neurons responds to salt or sugar, is necessary for learning about salt, bitter, or sugar, and is sufficient to induce a memory when optogenetically activated. In addition, previously published connectomic data is used to analyze the synaptic input to each of these dopamine neurons. The authors conclude that the aversive teaching signal induced by salt is distributed across the four DL-1 dopamine neurons, with two of them, DAN-f1 and DAN-g1, being particularly important. Overall, the experiments are well designed and performed, support the authors' conclusions, and deepen our understanding of the dopaminergic punishment system.

      Strengths:<br /> 1. This study provides, at least to my knowledge, the first in vivo imaging of larval dopamine neurons in response to tastants. Although the selection of tastants is limited, the results close an important gap in our understanding of the function of these neurons.

      2. The authors performed a large number of experiments to probe for the necessity of each individual dopamine neuron, as well as combinations of neurons, for associative learning. This includes two different training regimens (1 or 3 trials), three different tastants (salt, quinine, and fructose) and two different effectors, one ablating the neuron, the other one acutely silencing it. This thorough work is highly commendable, and the results prove that it was worth it. The authors find that only one neuron, DAN-g1, is partially necessary for salt learning when acutely silenced, whereas a combination of two neurons, DAN-f1 and DAN-g1, are necessary for salt learning when either being ablated or silenced.

      3. In addition, the authors probe whether any of the DL-1 neurons is sufficient for inducing an aversive memory. They found this to be the case for three of the neurons, largely confirming previous results obtained by a different learning paradigm, parameters, and effector.

      4. This study also takes into account connectomic data to analyze the sensory input that each of the dopamine neurons receives. This analysis provides a welcome addition to previous studies and helps to gain a more complete understanding. The authors find large differences in inputs that each neuron receives, and little overlap in input that the dopamine neurons of the "aversive" DL-1 cluster and the "appetitive" pPAM cluster seem to receive.

      5. Finally, the authors try to link all the gathered information in order to describe an updated working model of how aversive teaching signals are carried by dopamine neurons to the larva's memory center. This includes important comparisons both between two different aversive stimuli (salt and nociception) and between the larval and adult stages.

      Weaknesses:<br /> 1. The authors repeatedly claim that they found/proved salt-specific memories. I think this is problematic to some extent.

      1a. With respect to the necessity of the DL-1 neurons for aversive memories, the authors' notion of salt-specificity relies on a significant reduction in salt memory after ablating DAN-f1 and g1, and the lack of such a reduction in quinine memory. However, Fig. 5K shows a quite suspicious trend of an impaired quinine memory which might have been significant with a higher sample size. I therefore think it is not fully clear yet whether DAN-f1 and DAN-g1 are really specifically necessary for salt learning, and the conclusions should be phrased carefully.

      1b. With respect to the results of the optogenetic activation of DL-1 neurons, the authors conclude that specific salt memories were established because the aversive memories were observed in the presence of salt. However, this does not prove that the established memory is specific to salt - it could be an unspecific aversive memory that potentially could be observed in the presence of any other aversive stimuli. In the case of DAN-f1, the authors show that the neuron does not even get activated by salt, but is inhibited by sugar. Why should activation of such a neuron establish a specific salt memory? At the current state, the authors clearly showed that optogenetic activation of the neurons does induce aversive memories - the "content" of those memories, however, remains unknown.

      2. In many figures (e.g. figures 4, 5, 6, supplementary figures S2, S3, S5), the same behavioural data of the effector control is plotted in several sub-figures. Were these experiments done in parallel? If not, the data should not be presented together with results not gathered in parallel. If yes, this should be clearly stated in the figure legends.

    1. Reviewer #3 (Public Review):

      Summary:<br /> ISR contributes to the pathogenesis of multiple neurodegenerative diseases, such as ALS, FTD, VWMD, etc. Targeting ISR is a promising avenue for potential therapeutics. However, previously identified ways to target ISR present some challenges. PERK inhibitors suppress ISR by inhibiting eIF2alpha phosphorylation and cause pancreatic toxicity in mice. In order to bypass eIF2alpha, previous studies have identified ISR suppressors that target eIF2B, such as ISRIB and 2BAct. These molecules suppress neurodegeneration but do not cause detrimental effects in mouse models. However, ISRIB is water-insoluble, and 2BAct causes cardiovascular complications in dogs, preventing their use in clinics. Here, the authors showed that DNL343, a new ISR inhibitor targeting eIF2B, suppresses neurodegeneration in mouse models. Combined with their previous results of a clinical phase I trial showing the safety of DNL343, these findings suggest the promise of DNL343 as a potential drug for neurodegenerative diseases in which ISR contributes to pathogenesis.

      Strengths:<br /> The finding is important and has disease implications, and the conclusion is not surprising.

      Weaknesses:<br /> The experimental design and data are hard to comprehend for an audience with a basic research background. This reviewer suggests that the authors use the same way that previous studies on ISRIB and 2BAct (e.g., Wong et al; eLife, 2019) designed experiments and interpret data.