Reviewer #3:
In this manuscript, the authors utilize single-cell/single-nucleus RNA-sequencing to perform a comparative analysis of the cellular composition of the dorsal lateral geniculate nucleus (dLGN) in mice, non-human primates, and humans. This topic is important for a number of reasons, including (1) the dLGN is a critical center of visual processing about which we know relatively little; (2) the dLGN has emerged as a widely used experimental model of neural circuit development; and (3) in general, the integration of cross-species data at the transcriptomic level is important for identifying conserved mechanisms of brain function that may shed light upon neurological disease states. By employing a relatively deep RNA-sequencing approach (Smart-Seq) the authors identify major excitatory and inhibitory dLGN cell types within each species. While the multiple inhibitory neuron subtypes were relatively similar across species, excitatory neurons displayed major differences particularly between mouse and both primate classes. The authors identified four major excitatory cell types in primate and human dLGN corresponding with known functional heterogeneity that places these neurons into magnocellular, parvocellular, and koniocellular populations. Interestingly, koniocellular neurons could be broken into two distinct subtypes. Somewhat surprisingly, the authors noted a lack of excitatory neuron diversity in the mouse, despite prior evidence suggesting these neurons can have different morphological and physiological features. Yet, although all excitatory neurons in the mouse clustered together, there were subtle differences in excitatory neurons in the mouse that aligned with different regions of mouse dLGN (shell vs core), suggesting that excitatory neuron heterogeneity may still exist along a more subtle continuum. Consistently, neurons in the shell region in mouse dLGN more strongly resembled koniocellular neurons in primates versus the core region, suggesting some level of conservation between excitatory neuron identity across species. While the study is largely descriptive, the authors are creative in their use of bioinformatics to uncover particularly interesting observations that the transcriptomic analysis yielded, and the paper is very interesting because of that. The major weakness of the paper is a paucity of robust FISH analyses to quantitatively validate the transcriptomic findings in all species. Overall, it is my opinion that this work is very important and that, at a broader level, it may help to define the relationship between transcriptomic cell type, functional/physiological cell type, and anatomical cell type within a brain region that is critical for visual function and that has emerged as a fascinating model of neural circuit development in the mouse.
Strengths:
The Smart-Seq transcriptomic technique chosen is appropriate to address the authors' questions.
The data were generated rigorously and subjected to an in-depth quality control pipeline prior to analysis. As a result, the quality of the transcriptomic data is high.
The paper includes a detailed, transparent description of the approach taken in the Results and Methods. The authors point out caveats and weaknesses - and how they were addressed - throughout the text.
The inclusion of tissue from thalamic nuclei surrounding the dLGN as a way to control for the unintentional inclusion of non-dLGN tissue in the experimental dissection was well-designed and effective.
Despite a couple of exceptions, the authors do an excellent job of placing their findings within the context of what is already known about dLGN cell types across different species, and how these cell types function differently in physiological, morphological, and anatomical terms.
The study is descriptive in nature but the authors do a nice job of laying out several interesting findings, such as the observation that GABAergic neurons are more conserved across species than relay neurons, with mouse neurons being particularly distinct. Another fascinating observation is that shell-located neurons in mouse dLGN are transcriptomically related to koniocellular neurons suggesting the possibility of a close relationship between thalamocortical connectivity and molecular identity across species.
Weaknesses:
The characterization of gene expression patterns through sequencing-based transcriptomics has emerged as a powerful tool for dissecting the brain, but it is important to couple such approaches with techniques like fluorescence in situ hybridization (FISH) to verify sequencing results in a histological context. While here the authors show 3 - 4 validations of mouse genes that seem to be restricted to or excluded from the shell versus the core dLGN regions (Figures 4G and S4E), the conclusions of the study would be better supported by a more extensive and rigorous analysis of cell-type-specific gene expression within all species described.
It is not entirely clear from the manuscript how the authors dissected the shell from the core region of the dLGN, given these regions are not as clearly distinct as the dLGN lamina in other species. One possibility would be to take advantage of the fact that the shell receives input from specific RGCs that can be targeted genetically by crossing a Cre driver to the TdTomato line, but I do not believe that that is what was done here. I also noted that the authors use ventral LGN (vLGN) as one of their controls for the precision of their micro-dissections, but given that the vLGN does not directly contact the dLGN, this had me wondering exactly how cleanly the shell and core regions of the mouse dLGN were isolated.
On lines 101 - 103, the authors state "...differentially expressed genes between donors were related to neuronal signaling and connectivity and not to metabolic or activity-dependent effects." Table S2 is cited, but the columns are not labeled such that a common reader could interpret them and confirm the statement in the text. Moreover, the text does not state how the authors made the determination that these differentially expressed genes are not related to "activity-dependent effects".