6,541 Matching Annotations
  1. Feb 2024
    1. Reviewer #2 (Public Review):

      In this manuscript, the authors developed an open-top two-photon light sheet microscopy (OT-TP-LSM) that enables high-throughput and high-depth investigation of 3D cell structures. The data presented here shows that OT-T-LSM could be a complementary technique to traditional imaging workflows of human cancer cells.

      High-speed and high-depth imaging of human cells in an open-top configuration is the main strength of the presented study. An extended depth of field of 180 µm in 0.9 µm thickness was achieved together with an acquisition of 0.24 mm2/s. This was confirmed by 3D visualization of human cancer cells in the skin, pancreas, and prostate.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this work, Liang et al. investigate whether an abstract social space is neurally represented by a grid-like code. They trained participants to 'navigate' around a two-dimensional space of social agents characterized by the traits warmth and competence, then measured neural activity as participants imagined navigating through this space. The primary neural analysis consisted of three procedures: 1) identifying brain regions exhibiting the hexagonal modulation characteristic of a grid-like code, 2) estimating the orientation of each region's grid, and 3) testing whether the strength of the univariate neural signal increases when a participant is navigating in a direction aligned with the grid, compared to a direction that is misaligned with the grid. From these analyses, the authors find the clearest evidence of a grid-like code in the prefrontal cortex and weaker evidence in the entorhinal cortex.

      Strengths:<br /> The work demonstrates the existence of a grid-like neural code for a socially-relevant task, providing evidence that such coding schemes may be relevant for a variety of two-dimensional task spaces.

      Weaknesses:<br /> In the revised manuscript, the authors soften their claims about finding a grid code in the entorhinal cortex and provide additional caveats about limitations in their findings. It seems that the authors and reviewers are in agreement about the following weaknesses, which were part of my original review: Claims about a grid code in the entorhinal cortex are not well-supported by the analyses presented. The whole-brain analysis does not suggest that the entorhinal cortex exhibits hexagonal modulation; the strength of the entorhinal BOLD signal does not track the putative alignment of the grid code there; multivariate analyses do not reveal any evidence of a grid-like representational geometry.

      In the authors' response to reviews, they provide additional clarification about their exploratory analyses examining whether behavior (i.e., reaction times) and individual difference measures (i.e., social anxiety and avoidance) can be predicted by the hexagonal modulation strength in some region X, conditional on region X having a similar estimated grid alignment with some other region Y. My guess is that readers would find it useful if some of this language were included in the main text, especially with regard to an explanation regarding the rationale for these exploratory studies.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The manuscript by Salazar-Lázaro et al. systematically dissects out the different functional properties of the SNARE-domains of syntaxin-1 and syntaxin-2. By systematically substituting the SNARE-domain (or its C- or N-terminal half) into the non-cognate counterpart, the authors find that the C-terminal half of the SNARE-complex is especially important for maintaining RRP size and clamping spontaneous release. They also mutate single residues, to further nail down the effect. Overall, this is an interesting manuscript, which sheds light on the functionality of different co-expressed SNARES.

      Strengths:<br /> The strength of the manuscript is the systematic dissection, using substitution of either SNARE-domain into the other syntaxin, together with the state-of-the art methods. The authors follow up with a substitution of single and paired residues. This is a large undertaking, which has been very well carried out.

      Weaknesses:<br /> No major weaknesses. The large number of experiments paint a somewhat complicated picture because the process under study is complicated.

    1. Reviewer 2 Public Review:

      Summary:

      This manuscript expands previous work from the Haucke group which demonstrated the role of formins in synaptic vesicle endocytosis. The techniques used to address the research question are state-of-the-art. As stated above there is a significant advance in knowledge, with particular respect to Rho/Rac signalling.

      Strengths:

      The major strength of the work was to reveal new information regarding the control of both presynaptic actin dynamics and synaptic vesicle endocytosis via Rho/Rac cascades. In addition, there was further mechanistic insight regarding the specific function of mDia1/3. The methods used were state-of-the-art.

      Weaknesses:

      There are no major weaknesses.

    1. Reviewer #2 (Public Review):

      The strengths of this paper are clear: The authors are asking a novel question about geometric representation that would be relevant to a broad audience. Their question has a clear grounding in pre-existing mathematical concepts, that, to my knowledge, have been only minimally explored in cognitive science. Moreover, the data themselves are quite striking, such that my only concern would be that the data seem almost *too* clean. It is hard to know what to make of that, however. From one perspective, this is even more reason the results should be publicly available. Yet I am of the (perhaps unorthodox) opinion that reviewers should voice these gut reactions, even if it does not influence the evaluation otherwise. Below I offer some more concrete comments:

      (1) The justification for the designs is not well explained. The authors simply tell the audience in a single sentence that they test projective, affine, and Euclidean geometry. But despite my familiarity with these terms -- familiarity that many readers may not have -- I still had to pause for a very long time to make sense of how these considerations led to the stimuli that were created. I think the authors must, for a point that is so central to the paper, thoroughly explain exactly why the stimuli were designed the way that they were and how these designs map onto the theoretical constructs being tested.

      (2) I wondered if the design in Experiment 1 was flawed in one small but critical way. The goal of the parallelism stimuli, I gathered, was to have a set of items that is not parallel to the other set of items. But in doing that, isn't the manipulation effectively the same as the manipulation in the orientation stimuli? Both functionally involve just rotating one set by a fixed amount. (Note: This does not seem to be a problem in Experiment 2, in which the conditions are more clearly delineated.)

      (3) I wondered if the results would hold up for stimuli that were more diverse. It seems that a determined experimenter could easily design an "adversarial" version of these experiments for which the results would be unlikely to replicate. For instance: In the orientation group in Experiment 1, what if the odd-one-out was rotated 90 degrees instead of 180 degrees? Intuitively, it seems like this trial type would now be much easier, and the pattern observed here would not hold up. If it did hold up, that would provide stronger support for the authors' theory.

      It is not enough, in my opinion, to simply have some confirmatory evidence of this theory. One would have to have thoroughly tested many possible ways that theory could fail. I'm unsure that enough has been done here to convince me that these ideas would hold up across a more diverse set of stimuli.

    1. Reviewer #2 (Public Review):

      Animals constantly adjust their behavior and physiology based on internal states. Hungry animals, desperate for food, exhibit physiological changes immediately upon sensing, smelling, or chewing food, known as the cephalic phase response (CPR), involving processes like increased saliva and gastrointestinal secretions. While starvation lowers body temperature, the mechanisms underlying how the sensation of food without nutrients induces behavioral responses remain unclear. Hunger stress induces changes in both behavior and physiological responses, which in flies (or at least in Drosophila melanogaster) leads to a preference for lower temperatures, analogous to the hunger-driven lower body temperature observed in mammals. In this manuscript, the authors have used Drosophila melanogaster to investigate the issue of whether taste cues can robustly trigger behavioral recovery of temperature preference in starving animals. The authors find that food detection triggers a warm preference in flies. Starved flies recover their temperature preference after food intake, with a distinction between partial and full recovery based on the duration of refeeding. Sucralose, an artificial sweetener, induces a warm preference, suggesting the importance of food-sensing cues. The paper compares the effects of sucralose and glucose refeeding, indicating that both taste cues and nutrients contribute to temperature preference recovery. The authors show that sweet gustatory receptors (Grs) and sweet GRNs (Gustatory Receptor Neurons) play a crucial role in taste-evoked warm preference. Optogenetic experiments with CsChrimson support the idea that the excitation of sweet GRNs leads to a warm preference. The authors then examine the internal state's influence on taste-evoked warm preference, focusing on neuropeptide F (NPF) and small neuropeptide F (sNPF), analogous to mammalian neuropeptide Y. Mutations in NPF and sNPF result in a failure to exhibit taste-evoked warm preference, emphasizing their role in this process. However, these neuropeptides appear not to be critical for nutrient-induced warm preference, as indicated by increased temperature preference during glucose and fly food refeeding in mutant flies. The authors also explore the role of hunger-related factors in regulating taste-evoked warm preference. Hunger signals, including diuretic hormone (DH44) and adipokinetic hormone (AKH) neurons, are found to be essential for taste-evoked warm preference but not for nutrient-induced warm preference. Additionally, insulin-like peptides 6 (Ilp6) and Unpaired3 (Upd3), related to nutritional stress, are identified as crucial for taste-evoked warm preference. The investigation then extends into circadian rhythms, revealing that taste-evoked warm preference does not align with the feeding rhythm. While flies exhibit a rhythmic feeding pattern, taste-evoked warm preference occurs consistently, suggesting a lack of parallel coordination. Clock genes, crucial for circadian rhythms, are found to be necessary for taste-evoked warm preference but not for nutrient-induced warm preference.

      Strengths:<br /> A well-written and interesting study, investigating an intriguing issue. The claims, none of which to the best of my knowledge controversial, are backed by a substantial number of experiments.

      Weakness:<br /> The experimental setup used and the procedures for assessing the temperature preferences of flies are rather sparingly described. Additional details and data presentation would enhance the clarity and replicability of the study. I kindly request the authors to consider the following points: i) A schematic drawing or diagram illustrating the experimental setup for the temperature preference assay would greatly aid readers in understanding the spatial arrangement of the apparatus, temperature points, and the positioning of flies during the assay. The drawing should also be accompanied by specific details about the setup (dimensions, material, etc). ii) It would be beneficial to include a visual representation of the distribution of flies within the temperature gradient on the apparatus. A graphical representation, such as a heatmaps or histograms, showing the percentage of flies within each one-degree temperature bin, would offer insights into the preferences and behaviors of the flies during the assay. In addition to the detailed description of the assay and data analysis, the inclusion of actual data plots, especially for key findings or representative trials, would provide readers with a more direct visualization of the experimental outcomes. These additions will not only enhance the clarity of the presented information but also provide the reader with a more comprehensive understanding of the experimental setup and results. I appreciate the authors' attention to these points and look forward to the potential inclusion of these elements in the revised manuscript.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors aimed to understand the heterogeneity of brain aging by analyzing brain imaging data. Based on the concept of structural brain aging, they divided participants into two groups based on the volume and rate of decrease of gray matter volume (GMV). The group with rapid brain aging showed accelerated biological aging and cognitive decline and was found to be vulnerable to certain neuropsychiatric disorders. Furthermore, the authors claimed the existence of a "last in, first out" mirroring pattern between brain aging and brain development, which they argued is more pronounced in the group with rapid brain aging. Lastly, the authors identified genetic differences between the two groups and speculated that the cause of rapid brain aging may lie in genetic differences.

      Strengths:<br /> The authors supported their claims by analyzing a large amount of data using various statistical techniques. There seems to be no doubt about the quality and quantity of the data. Additionally, they demonstrated their strength in integrating diverse data through various analysis techniques to conclude.

      Weaknesses:<br /> There appears to be a lack of connection between the analysis results and their claims. Readers lacking sufficient background knowledge of the brain may find it difficult to understand the paper. It would be beneficial to modify the figures and writing to make the authors' claims clearer to readers. Furthermore, the paper gives an overall impression of being less polished in terms of abbreviations, figure numbering, etc. These aspects should be revised to make the paper easier for readers to understand.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This manuscript introduced a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide 3D tissues and embryos. In terms of technique, this paper is just a minor improvement of the authors' previous work, which is a fluorescence imaging system working at visible wavelength region (https://www.nature.com/articles/s41598-021-95930-7).

      Strengths:<br /> In this study, the authors enhanced the system's resolution and sensitivity by increasing the numerical aperture (NA) of the lens. Furthermore, they achieved volumetric imaging by integrating optical sectioning and computational sectioning. This study encompasses a broad range of biological applications, including imaging and analysis of organoids, mouse brains, and quail embryos, respectively. Overall, this method is useful and versatile.

      Weaknesses:<br /> The unique application that only can be done by this high-throughput system remains vague. Meanwhile, there are also several outstanding issues in this paper, such as the lack of technical advances, unclear method details, and non-standardized figures.

    1. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Petersen et al. aimed for a comprehensive assessment of the relationship between cardiometabolic risk factors and cortical thickness. They found that a latent variable reflecting higher obesity, hypertension, LDL cholesterol, triglyerides, non-fasting glucose, HbA1c and lower HDL cholesterol was associated with lower cortical thickness in orbitofrontal, lateral prefrontal, insular, anterior cingulate and temporal areas as well as lower subcortical volumes. In sensitivity analyses they showed that this pattern replicated across cohorts and was also consistent with a clinical definition of the metabolic syndrome.

      Further, when including cognition into the multivariate analysis, the pattern remained unchanged and mediation analyses showed that the relationship between the first latent variable and worse cognitive performance across several tests was mediated by the brain morphological differences.

      The authors investigated the cell types implicated in the regions associated with cardiometabolic risk using the Allen Brain Atlas and found that the density of excitatory neurons type 8, endothelial cells and microglia reliably co-located with the pattern of cortical thickness. Furthermore, they showed that cortial regions more strongly associated with MetS were more closely structurally & functionally connected than others.

      Strengths:

      This study performed a comprehensive assessment of the combined association of cardiometabolic risk factors and brain structure and investigated micro-and macroscopic underpinnings. A major strength of the study is the methodological approach of partial least squares which allows one to not single out risk factors but to take them into account simultaneously. The large sample size from two cohorts allowed for different sensitivity analyses and convincing evidence for the stability of the first latent variable. The authors demonstrated that the component was also reliably related to cognitive performance and that the association of the individual cardiometabolic risk on cognition was mediated by brain morphological differences, replicating multiple previous studies which evidenced associations of different components of the MetS with worse cognitive performance.

      The novel contribution of the study lies in the virtual histology and brain topology investigation of the cortical pattern related to MetS. The virtual histology provided convincing evidence of the co-localization of endothelial, glial and excitatory neuronal cells with the regions of MetS-associated cortical thinning while the brain topology analysis highlighted the disproportionate structural and functional connectivity between associated regions. This analysis provides insights into the role of inflammatory processes and the intricate link between gray matter morphology and microvasculature, both locally and in relation to long-range connectivity. This information is valuable to inform future mechanistic studies.

      Weaknesses:

      The study is exclusively cross-sectional which does not allow disentangling potential causes from consequences. While studies indicate that most of the differences seen in middle age are probably consequences of the MetS on the vasculature, blood-brain barrier or inflammatory processes, differences in cortical morphology might also represent a risk factor for weight gain.<br /> The study is exploratory in nature and for the contextualization analyses it is difficult to judge whether those were selected from a larger pool of analyses.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, Yan et al. assess the effect of two facets of habitat fragmentation (i.e., habitat loss and habitat fragmentation per se) on biodiversity, ecosystem function, and the biodiversity-ecosystem function (BEF) relationship in grasslands of an agro-pastoral ecotone landscape in northern China. The authors use a stratified random sampling to select 130 study sites located within 500 m - radius landscapes varying along gradients of habitat loss and habitat fragmentation per se. In these study sites, the authors measure grassland specialist and generalist plant richness via field surveys, as well as above-ground biomass by harvesting and dry-weighting the grass communities in each 3 x 1m2 plots of the 130 study sites. The authors find that habitat loss and fragmentation per se have different effects on biodiversity, ecosystem function and the BEF relationship: whereas habitat loss was associated with a decrease in plant richness, fragmentation per se was not; and whereas fragmentation per se was associated with a decrease in above-ground biomass, habitat loss was not. Finally, habitat loss, but not fragmentation per se was linked to a decrease in the magnitude of the positive biodiversity-ecosystem functioning relationship, via reducing the percentage of grassland specialists in the community.

      Strengths:<br /> This study by Yan et al. is an exceptionally well-designed, well-written, clear and concise study shedding light on a longstanding, important question in landscape ecology and biodiversity-ecosystem functioning research. Via a stratified random sampling approach (cf. also "quasi-experimental design" Butsic et al. 2017), Yan et al. create an ideal set of study sites, where habitat loss and habitat fragmentation per se (usually highly correlated) are decorrelated and hence, separate effects of each of these facets on biodiversity and ecosystem function can be assessed statistically in "real-world" (and not experimental, cf. Duffy et al. 2017) communities. The authors use adequate and well-described methods to investigate their questions. The findings of this study add important empirical evidence from real-world grassland ecosystems that help to advance our theoretical understanding on landscape-moderation of biodiversity effects and provide important guidelines for conservation management likewise. Also, all figures are well-designed and clear.

      Weaknesses:<br /> I found only a few minor issues, mostly unclear descriptions that have now been revised for more clarity.

    1. Reviewer #2 (Public Review):

      The authors have used microfluidic channels to study the response of budding yeast to variable environments. Namely, they tested the ability of the cells to divide when the medium was repeatedly switched between two different conditions at various frequencies. They first characterized the response to changes in glucose availability or in the presence of hyper-osmotic stress via the addition of sorbitol to the medium. Subsequently, the two stresses were combined by applying the alternatively or simultaneously (in-phase). Interestingly, they observed that the in-phase stress pattern allowed more divisions and low levels of cell mortality compared to the alternating stresses where cells were dividing slowly and many cells died. A number of mutants in the HOG pathway were tested in these conditions to evaluate their responses. Moreover, the activation of the MAPK Hog1 and the transcriptional induction of the hyper-osmotic stress promoter STL1 were quantified by fluorescence microscopy.

      Overall, the manuscript is well structured and data are presented in a clear way. The time-lapse experiments were analyzed with high precision. The experiments confirm the importance of performing dynamic analysis of signal transduction pathways. While the experiments reveal some unexpected behavior, I find that the biological insights gained on this system remain relatively modest.

      In the discussion section, the authors mention two important behaviors that their data unveil: resource allocation (between glycolysis and HOG-driven adaptation) and regulation of the HOG-pathway based on the presence of glucose. These types of behaviors had been already observed in other reports (Sharifan et al. 2015 or Shen et al. 2023, for instance). The experimental set-up used in this study provides highlights new aspects of the interplay between hyper-osmotic stress response and glucose availability.

      The authors have tested various processes that could explain the slow growth observed in the alternating stress regime. Unfortunately, neither glycogen accumulation, cell-cycle arrest via Sic1 or the inhibition of protein production in starved cells could explain the observed behavior. However, one clear evidence that is presented is the link between glycerol accumulation during the sorbitol treatment and the cell death phenotype upon starvation in alternating stress condition.

      One question which remains open is to what extent the findings presented here can be extended to other types of perturbations which for instance would combine Nitrogen limitation and hyper-osmotic stress.

    1. Reviewer #2 (Public Review):

      The authors examine the use of metformin in the treatment of hepatic ischemia/reperfusion injury (HIRI) and suggest the mechanism of action is mediated in part by the gut microbiota and changes in hepatic ferroptosis. The concept is intriguing and their results have potential to better understand the pleiotropic functions of metformin. The histological and imaging studies were considered a strength and reveal a significant impact of metformin post-HIRI. The connections with GABA producing bacteria adds to our understanding of the chemical signals exchanged between the host and microbiota. While the authors have characterized these connections in mice, how/if these observations translate to humans remains to be determined.

    1. Reviewer #2 (Public Review):

      This is an important and large experimental study examining the effects of plant species richness, plant genotypic richness, and soil water availability on herbivory patterns on Piper species in tropical forests.

      A major strength is the size of the study and the fact that it tackled so many potentially important factors simultaneously. The authors examined both interspecific plant diversity and intraspecific plant diversity. They crossed that with a water availability treatment. And they repeated the experiment across five geographically separated sites.

      The authors find that both water availability and plant diversity, intraspecific and interspecific, influence herbivore diversity and herbivory, but that the effects differ in important ways across sites. I found the study to be solid and the results to be very convincing. The results will help the field grapple with the importance of environmental change and biodiversity loss and how they structure communities and alter species interactions.

    1. Reviewer #2 (Public Review):

      In their manuscript Lin et al. describe an important study on the transcriptional programs associated with the presence of extrachromosomal DNA in a cohort of 870 cancers of different origins. The authors find that compared to cancers lacking such amplifications, ecDNA+ cancers express higher levels of DNA damage repair-associated genes, but lower levels of immune-related gene programs.

      This work is very timely and its findings have the potential to be very impactful, as the transcriptional context differences between ecDNA+ and ecDNA- cancers are currently largely unknown. The observation that immune programs are downregulated in ecDNA+ cancers may initiate new preclinical and translational studies that impact the way ecDNA+ cancers are treated in the future. Thus, this study has important theoretical implications that have the potential to substantially advance our understanding of ecDNA+ cancers.

      Strengths:

      The authors provide compelling evidence for their conclusions based on large patient datasets. The methods they used and analyses are rigorous.

      Weaknesses:

      The biological interpretation of the data remains observational. The direct implication of these genes in ecDNA(+) tumors is not tested experimentally.

    1. Reviewer #2 (Public Review):

      A limitation in using SNPs to understand recent histories of genomes is their low mutation frequency. Tellier et al. explore the possibility of adding hypermutable markers to SNP based methods for better resolution over short time frames. In particular, they hypothesize that epimutations (CG methylation and demethylation) could provide a useful marker for this purpose. Individual CGs in Arabidopsis tends to be either close to 100% methylated or close to 0%, and are inherited stably enough across generations that they can be treated as genetic markers. Small regions containing multiple CGs can also be treated as genetic markers based on their cumulative methylation level. In this manuscript, Tellier et al develop computational methods to use CG methylation as a hypermutable genetic marker and test them on theoretical and real data sets. They do this both for individual CGs and small regions. My review is limited to the simple question of whether using CG methylation for this purpose makes sense at a conceptual level, not at the level of evaluating specific details of the methods. I have a small concern in that it is not clear that CG methylation measurements are nearly as binary in other plants and other eukaryotes as they are in Arabidopsis. However, I see no reason why the concept of this work is not conceptually sound. Especially in the future as new sequencing technologies provide both base calling and methylating calling capabilities, using CG methylation in addition to SNPs could become a useful and feasible tool for population genetics in situations where SNPs are insufficient.

    1. Reviewer #2 (Public Review):

      Summary:

      Conceptually, this study is interesting and is the first attempt to account for the potentially interactive effects of seasonality and blood source on mosquito fitness, which the authors frame as a possible explanation for previously observed host-switching of Culex quinquefasciatus from birds to mammals in the fall. The authors hypothesize that if changes in fitness by blood source change between seasons, higher fitness on birds in the summer and on mammals in the autumn could drive observed host switching. To test this, the authors fed individuals from a colony of Cx. quinquefasciatus on chickens (bird model) and mice (mammal model) and subjected each of these two groups to two different environmental conditions reflecting the high and low temperatures and photoperiod experienced in summer and autumn in Córdoba, Argentina (aka seasonality). They measured fecundity, fertility, and hatchability over two gonotrophic cycles. The authors then used a generalized linear model to evaluate the impact of host species, seasonality, and gonotrophic cycle on fecundity, fertility, and hatchability. The authors were trying to test their hypothesis by determining whether there was an interactive effect of season and host species on mosquito fitness. This is an interesting hypothesis; if it had been supported, it would provide support for a new mechanism driving host switching. While the authors did report an interactive impact of seasonality and host species, the directionality of the effect was the opposite from that hypothesized. The authors have done a very good job of addressing many of the reviewer concerns, with several exception that continue to cause concern about the conclusions of the study.

      Strengths:

      (1) Using a combination of laboratory feedings and incubators to simulate seasonal environmental conditions is a good, controlled way to assess the potentially interactive impact of host species and seasonality on the fitness of Culex quinquefasciatus in the lab.<br /> (2) The driving hypothesis is an interesting and creative way to think about a potential driver of host switching observed in the field.<br /> (3) The manuscript has become a lot clearer and easier to read with the revisions - thank you to the authors for working hard to make many of the suggested changes.

      Weaknesses:

      (1) The authors have decided not to follow the suggestion of conducting experimental replicates of the study. This is understandable given the significant investment of resources and time necessary, however, it leaves the study lacking support. Experimental replication is an important feature of a strong study and helps to provide confidence that the observed patterns are real and replicable. Without replication, I continue to lack confidence in the conclusions of the study.<br /> (2) The authors have included some additional discussion about the counterintuitive nature of their results, but the paragraph discussing this in the discussion was confusing. I believe that this should be revised. This is a key point of the paper and needs to be clear to the reader.<br /> (3) There should be more discussion of the host switching observed in the two studies conducted in Argentina referenced by the authors. Since host switching is the foundation for the hypothesis tested in this paper, it is important to fully explain what is currently known in Argentina.<br /> (4) In some cases, the explanations of referenced papers are not entirely accurate. For example, when referencing Erram et al 2022, I think the authors misrepresented the paper's discussion regarding pre-diuresis- Erram et al. are suggesting that pre-diuresis might be the mechanism by which C. furens compensates for the lower nutritional value of avian blood, leading to no significant difference between avian/mammal blood on fecundity/fertility (rather than leading to higher fecundity on birds, as stated in this manuscript). The study performed by Erram et al. also didn't prove this phenomenon, they just suggest it as a possible mechanism to explain their results, so that should be made clear when referencing the paper.<br /> (5) In some cases, the conclusions continue to be too strongly worded for the evidence available. For example, lines 322-324: I don't think the data is sufficient to conclude that a different physiological state is induced, nor that they are required to feed on a blood source that results in higher fitness.<br /> (6) There is limited mention of the caveat that this experiment performed with simulated seasonality that does not perfectly replicate seasonality in the field. I think this caveat should be discussed in the discussion (e.g. that humidity is held constant).

    1. Reviewer #2 (Public Review):

      Summary: The authors investigate the assembly of the Q-nMT, a stable microtubule structure that is assembled during quiescence. Notably, the authors show that the formation of the Q-nMT cannot be solely explained by changes in the physico-chemical properties of quiescent cells. The authors report that Q-nMT assembly occurs in three regulated steps and identify kinesin motor proteins involved in the assembly and disassembly of the structure.

      Strengths: The findings provide new insight into the assembly and possible function of the Q-nMT with respect to the response of haploid budding yeast to glucose starvation.

      Weaknesses: The manuscript would benefit from more precise language and requires additional clarification regarding how claims are supported by the evidence. Clear definitions are also required, for example "active process" is not defined. Some conclusions are not supported by the results, for example the claim that the Q-nMT functions as a checkpoint effector that inhibits re-entry into the cell cycle.

      After reviewing the responses of the authors and the revised manuscript I am now satisfied with the study in its current form.

    1. Reviewer #2 (Public Review):

      Transposable elements are known to have a strong potential to generate diversity and impact gene regulation, and they are thought to play an important role in plant adaptation to changing environments. Nevertheless, very few studies have performed genome-wide analyses to understand the global effect of selection on TEs in natural populations. Horvath et al., used available whole-genome re-sequencing data from a representative panel of B. distachyon accessions to detect TE insertion polymorphisms (TIPs) and estimate their time of origin. Using a thorough combination of population genomics approaches, the authors demonstrate that only a small amount of the TE polymorphisms are targeted by positive selection or potentially involved in adaptation. By comparing the age-adjusted population frequencies of TE polymorphisms and neutral SNPs, the authors found that retrotransposons are affected by purifying selection independently of their distance to genes. Finally, using forward simulations they were able to quantify the strength of selection acting on TE polymorphisms, finding that retrotransposons are mainly under moderate purifying selection, with only a minority of the insertions evolving neutrally.

      Horvath et al., use a convincing set of strategies and their conclusions are well supported by the data. I think that incorporating polymorphism's age to the analysis of purifying selection is an interesting way to reduce the possible bias introduced by the fact that SNPs and TEs polymorphisms do not occur at the same pace. The fact that TE polymorphisms far from genes are also under purifying selection is an interesting result that reinforces the idea that trans-regulatory effect of TE insertions might not be a rare phenomenon, a matter that may be demonstrated in future studies.

    1. Reviewer #2 (Public Review):

      Summary:

      This manuscript by Latini et al describes a methodology to develop Boolean-based predictive logic models that can be applied to uncover altered protein/signalling networks in cancer cells and discover potential new therapeutic targets. As a proof-of-concept, they have implemented their strategy on a hematopoietic cell line engineered to express one of two types of FLT3 internal tandem mutations (FLT3-ITD) found in patients, FLT3-ITD-TKD (which are less sensitive to tyrosine kinase inhibitors/TKIs) and FLT3-ITD-JMD (which are more sensitive to TKIs).

      Strengths:

      This useful work could potentially represent a step forward towards personalised targeted therapy, by describing a methodology using Boolean-based predictive logic models to uncover altered protein/signalling networks within cancer cells.

      Authors have validated their approach by analysing independent, real-world data

      Weaknesses:

      No weaknesses were observed by this reviewer for the revised version.

    1. Reviewer #2 (Public Review):

      The authors set out to discover a developmental pathway leading to functionally diverse mTEC subsets. They show that Ccl21 is expressed early during thymus ontogeny in the medullary area. Fate-mapping gives evidence for the Ccl21 positive history of Aire positive mTECs as well as of thymic tuft cells and postnatally of a certain percentage of cTECs. Therefore, the differentiation potential of Ccl21+ TECs is tested in reaggregate thymus experiments - using embryonic or postnatal Ccl21+ TECs. From these experiments, the authors conclude that at least embryonic mTECs in large part pass through a Ccl21 positive stage prior to differentiation towards an Aire expressing or tuft cell stage.

      The authors are using Ccl21a as a marker for a bipotent progenitor that is detectable in the embryonic thymus and is still present at the adult stage mainly giving rise to mTECs. The choice of this marker gene is very interesting since Ccl21 expression can directly be linked to an important aspect in thymus biology: the expression of Ccl21 by cells in the thymic medulla allows trafficking of T cells into the medulla in order to undergo T cell selection. Making use of the Ccl21 detection, the authors can nicely show that cells actively expressing Ccl21 are localized throughout the medulla at an embryonic stage but also in adult thymus tissue. This suggests, that this progenitor is not accumulating at a specific area inside the medulla. This is a new finding. Moreover, the finding that a Ccl21+ progenitor population plays a functional role in thymocyte trafficking towards the medulla has not been described. Thus, Ccl21 expression may be used to localize a late bipotent progenitor in the thymic lobes. In addition, in Fig.8, the authors provide evidence that these progenitor cells have the potential to self-maintain as well as to differentiate in reaggregate experiments at E17 (not at 4 weeks of age). The first point is of great interest and importance since these cells in theory can be of therapeutic use.

      Overall assessment:

      The authors highlight a developmental pathway starting from a Ccl21-expressing TEC progenitor that contributes to a functionally diverse mTEC repertoire. This is a welcome addition to current knowledge of TEC differentiation.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors aimed to determine to what extent root morphology, chemistry, and soil characteristics explained the relative abundance of functional groups of bacteria and fungi associated with roots. To do so, they sample roots and rhizhospheric soil of trees along an elevation gradient. This type of work is common in the field of microbial ecology. The main novelties I see are two: a) a focus on the functional groups of bacteria and fungi rather than just taxonomic abundance. I think this approach is valuable because it provides information about the potential functions of these microorganisms; b) using the root economic spectrum to frame the findings. The root economic spectrum reflects a gradient along which plant roots can be allocated from 'short-lived that provide fast investment return' to 'long-lived that provide a slow investment return'. It is logical to expect (as the authors did) that variation along this gradient will be an important factor in explaining the variation in functional groups.

      Strengths:<br /> The main strength is using the root economic spectrum as a framework to interpret the data. There are countless studies addressing variation in the relative abundance of microbial communities along environmental gradients which tend to be more descriptive. I think using this framework advances the field by suggesting that while the root economic spectrum exists it is not a very important explanatory variable to predict changes in functional diversity. I also think the authors use state-of-the art methods to collect and process the sample (i.e. to obtain the data).

      Weaknesses:<br /> The main weakness is with the presentation of statistical methods as it currently stands. The authors use distance-based redundancy analysis as the main statistical method. However, my understanding is that this method is not advised for a relative abundance of communities. At least not with Euclidean distances which is the default option of the functions dbrda in vegan. The use of this distance would group together communities with no species in common as close to each other (which is an incorrect interpretation). I think the authors should specify what distance they use. My guess is that they actually used bray-curtis in which case this weakness does not apply. However, as it stands it is not specified what metric they use and if they indeed use Euclidean distances it may lead to inaccurate conclusions. In addition, they also mention they use PCA on the relative abundance of functional groups. By definition, PCA is also based on Euclidean distances, which gives a similar problem as dbrda. Thus, I encourage the authors to use bray-curtis distance and specify it in the text.

    1. Reviewer #2 (Public Review):

      Li et al. used a four-day fMRI design to investigate how unimodal feature information is combined, integrated, or abstracted to form a multimodal object representation. The experimental question is of great interest and understanding how the human brain combines featural information to form complex representations is relevant for a wide range of researchers in neuroscience, cognitive science, and AI. While most fMRI research on object representations is limited to visual information, the authors examined how visual and auditory information is integrated to form a multimodal object representation. The experimental design is elegant and clever. Three visual shapes and three auditory sounds were used as the unimodal features; the visual shapes were used to create 3D-printed objects. On Day 1, the participants interacted with the 3D objects to learn the visual features, but the objects were not paired with the auditory features, which were played separately. On Day 2, participants were scanned with fMRI while they were exposed to the unimodal visual and auditory features as well as pairs of visual-auditory cues. On Day 3, participants again interacted with the 3D objects but now each was paired with one of the three sounds that played from an internal speaker. On Day 4, participants completed the same fMRI scanning runs they completed on Day 2, except now some visual-auditory feature pairs corresponded with Congruent (learned) objects, and some with Incongruent (unlearned) objects. Using the same fMRI design on Days 2 and 4 enables a well-controlled comparison between feature- and object-evoked neural representations before and after learning. The notable results corresponded to findings in the perirhinal cortex and temporal pole. The authors report (1) that a visual bias on Day 2 for unimodal features in the perirhinal cortex was attenuated after learning on Day 4, (2) a decreased univariate response to congruent vs. incongruent visual-auditory objects in the temporal pole on Day 4, (3) decreased pattern similarity between congruent vs. incongruent pairs of visual and auditory unimodal features in the temporal pole on Day 4, (4) in the perirhinal cortex, visual unimodal features on Day 2 do not correlate with their respective visual-auditory objects on Day 4, and (5) in the perirhinal cortex, multimodal object representations across Days 2 and 4 are uncorrelated for congruent objects and anticorrelated for incongruent. The authors claim that each of these results supports the theory that multimodal objects are represented in an "explicit integrative" code separate from feature representations. While these data are valuable and the results are interesting, the authors' claims are not well supported by their findings.

      (1) In the introduction, the authors contrast two theories: (a) multimodal objects are represented in the co-activation of unimodal features, and (b) multimodal objects are represented in an explicit integrative code such that the whole is different than the sum of its parts. However, the distinction between these two theories is not straightforward. An explanation of what is precisely meant by "explicit" and "integrative" would clarify the authors' theoretical stance. Perhaps we can assume that an "explicit" representation is a new representation that is created to represent a multimodal object. What is meant by "integrative" is more ambiguous-unimodal features could be integrated within a representation in a manner that preserves the decodability of the unimodal features, or alternatively the multimodal representation could be completely abstracted away from the constituent features such that the features are no longer decodable. Even if the object representation is "explicit" and distinct from the unimodal feature representations, it can in theory still contain featural information, though perhaps warped or transformed. The authors do not clearly commit to a degree of featural abstraction in their theory of "explicit integrative" multimodal object representations which makes it difficult to assess the validity of their claims.

      (2) After participants learned the multimodal objects, the authors report a decreased univariate response to congruent visual-auditory objects relative to incongruent objects in the temporal pole. This is claimed to support the existence of an explicit, integrative code for multimodal objects. Given the number of alternative explanations for this finding, this claim seems unwarranted. A simpler interpretation of these results is that the temporal pole is responding to the novelty of the incongruent visual-auditory objects. If there is in fact an explicit, integrative multimodal object representation in the temporal pole, it is unclear why this would manifest in a decreased univariate response.

      (3) The authors ran a neural pattern similarity analysis on the unimodal features before and after multimodal object learning. They found that the similarity between visual and auditory features that composed congruent objects decreased in the temporal pole after multimodal object learning. This was interpreted to reflect an explicit integrative code for multimodal objects, though it is not clear why. First, behavioral data show that participants reported increased similarity between the visual and auditory unimodal features within congruent objects after learning, the opposite of what was found in the temporal pole. Second, it is unclear why an analysis of the unimodal features would be interpreted to reflect the nature of the multimodal object representations. Since the same features corresponded with both congruent and incongruent objects, the nature of the feature representations cannot be interpreted to reflect the nature of the object representations per se. Third, using unimodal feature representations to make claims about object representations seems to contradict the theoretical claim that explicit, integrative object representations are distinct from unimodal features. If the learned multimodal object representation exists separately from the unimodal feature representations, there is no reason why the unimodal features themselves would be influenced by the formation of the object representation. Instead, these results seem to more strongly support the theory that multimodal object learning results in a transformation or warping of feature space.

      (4) The most compelling evidence the authors provide for their theoretical claims is the finding that, in the perirhinal cortex, the unimodal feature representations on Day 2 do not correlate with the multimodal objects they comprise on Day 4. This suggests that the learned multimodal object representations are not combinations of their unimodal features. If unimodal features are not decodable within the congruent object representations, this would support the authors' explicit integrative hypothesis. However, the analyses provided do not go all the way in convincing the reader of this claim. First, the analyses reported do not differentiate between congruent and incongruent objects. If this result in the perirhinal cortex reflects the formation of new multimodal object representations, it should only be true for congruent objects but not incongruent objects. Since the analyses combine congruent and incongruent objects it is not possible to know whether this was the case. Second, just because feature representations on Day 2 do not correlate with multimodal object patterns on Day 4 does not mean that the object representations on Day 4 do not contain featural information. This could be directly tested by correlating feature representations on Day 4 with congruent vs. incongruent object representations on Day 4. It could be that representations in the perirhinal cortex are not stable over time and all representations-including unimodal feature representations-shift between sessions, which could explain these results yet not entail the existence of abstracted object representations.

      In sum, the authors have collected a fantastic dataset that has the potential to answer questions about the formation of multimodal object representations in the brain. A more precise delineation of different theoretical accounts and additional analyses are needed to provide convincing support for the theory that "explicit integrative" multimodal object representations are formed during learning.

    1. Reviewer #2 (Public Review):

      This manuscript presents measurements of proteolytic digestion and structural studies using both hydrogen-deuterium exchange and NMR. The data test the idea that membrane association leads to a rearrangement of the MA domain of the MPMV Gag protein, as the myristate chain at the N-terminus of the protein is "switched" from a hydrophobic pocket within the protein into lipid layers, finally rendering the protein efficiently digestible by the viral protease. In my opinion, the data are highly convincing, and the underlying hypothesis is a useful contribution to the field, providing for this retrovirus a solution to the long-standing problem of how proteolytic maturation is activated.

    1. Reviewer #2 (Public Review):

      Many of the questions about type I interferon and photosensitivity have already been studied in murine lupus models but most importantly in skin biopsies from both lesional and non-lesional cutaneous lupus. The authors should try to link their data to the existing literature and validate their results by using human samples, as not all murine lupus models have a strong interferon-mediated disease. Other important aspects of the work include whether or not the authors have considered knocking out the mice for ADAM17 and reassessing the function of the Langerhans cells? Last but not least, some of the data presented will need to be validated by more in vitro work that will shed more light on the functional properties of ADAM17 in Langerhans cells and inflammatory response in cutaneous lupus.

    1. Reviewer #2 (Public Review):

      To measure the role of gastric state in emotion, the authors used an ingestible smart pill to measure pH, pressure, and temperature in the gastrointestinal tract (stomach, small bowel, large bowel) while participants watched videos that induced disgust, fear, happiness, sadness, or a control (neutral). The study has a number of strengths, including the novelty of the measurement (very few studies have ever measured these gut properties during emotion processing) and the apparent robustness of their main finding (that during disgusting video clips, participants who experienced more feelings of disgust (and to a lesser degree which might not survive more stringent multiple comparison correction, fear) had more acidic stomach measurements, while participants who experienced more happiness during the disgusting video clips had a less acidic (more basic) stomach pH. Although the study is correlational (which all discussion should carefully reflect) and is restricted to a moderately-sized, homogenous sample, the results support their general conclusion that stomach pH is related to emotion experience during disgust induction. There may be additional analyses to conduct in order for the authors to claim this effect is specific to the stomach. Nevertheless, this work is likely to have a large impact on the field, which currently tends to rely on noninvasive measures of gastric activity such as electrogastrography (which the authors also collect for comparison); the authors' minimally-invasive approach yields new and useful measurements of gastric state. These new measures could have relevance beyond emotion processing in understanding the role of gut pH (and perhaps temperature and pressure) in cognitive processes (e.g. interoception) as well as mental and physical health.

    1. Reviewer #2 (Public Review):

      This study aims to test the role of awake replay in short-term memory, a type of memory that operates on the timescale of seconds and minutes. Replay refers to a time-compressed burst of neuronal population activity during a particular oscillatory local field potential event in the hippocampus, called the sharp-wave ripple (SWR). SWRs are found during sleep and in the awake state and are always associated with the animal being quiescent. The paper compares results from three different behavioral tasks ranging in memory requirements and memory timescales. First, rats were trained on either a spatial match-to-sample task (MTS), a non-match-to-sample task (NMTS), or a task requiring the memorization of sequences (maze arms to be visited in a specific temporal order). In this initial training phase, the animals were allowed to learn the maze structure and the rules governing these tasks for all these behavioral paradigms. Then, awake sharp-SWRs were disrupted as the animal performed these tasks (both during instruction and test phases) via an online detection system combined with closed-loop electrical stimulation of the ventral hippocampal commissure. Notably, this manipulation appeared not to affect performance in all three tasks, as determined using various behavioral parameters. Trials with no stimulation or delayed stimulation serve as controls. Thus, the authors conclude that awake SWRs are not involved in these short-term memory-guided behaviors. I do have a few comments that the authors should discuss or address:

      (1) This study adds to a large number of studies investigating the role of awake SWRs in spatial learning and memory tasks. The results of these previous studies are quite contradictory and range from awake SWRs are not crucial in guiding decisions at all to SWRs are only essential during task rule learning to SWRs do guide behavior. Could the authors comment on these seemingly contradictory results? Why are these experiments now the right ones?<br /> (2) None of the experiments presented here test the role of replay. I suggest making this distinction in the paper and the title clear. As the results are presented now, is it possible that the SWR content is not affected sufficiently to have a behavioral effect or that there is a bias towards detecting specific SWRs, e.g., longer SWRs?

    1. Reviewer #2 (Public Review):

      I enjoyed reading this paper and appreciate the careful analysis performed by the investigators examining whether 'ancient' cofactors are preferentially bound by the first-available amino acids, and whether later 'LUCA' cofactors are bound by the late-arriving amino acids. I've always found this question fascinating as there is a contradiction in inorganic metal-protein complexes (not what is focused on here). Metal coordination of Fe, Ni heavily relies on softer ligands like His and Cys - which are by most models latecomer amino acids. There are no traces of thiols or imidazoles in meteorites - although work by Dvorkin has indicated that could very well be due to acid degradation during extraction. Chris Dupont (PNAS 2005) showed that metal speciation in the early earth (such as proposed by Anbar and prior RJP Williams) matched the purported order of fold emergence.

      As such, cofactor-protein interactions as a driving force for evolution has always made sense to me and I admittedly read this paper biased in its favor. But to make sure, I started to play around with the data that the authors kindly and importantly shared in the supplementary files. Here's what I found:

      Point 1: The correlation between abundance of amino acids and protein age is dominated by glycine.

      There is a small, but visible difference in old vs new amino acid fractional abundance between Ancient and LUCA proteins (Figure 3, Supplementary Table 3). However, the bias is not evenly distributed among the amino acids - which Figure 4A shows but is hard to digest as presented. So instead I used the spreadsheet in Supplement 3 to calculate the fractional difference FDaa = F(old aa)-F(new aa). As expected from Figure 3, the mean FD for Ancient is greater than the mean FD for LUCA. But when you look at the same table for each amino acid FDcofactor = F(ancient cofactor) - F(LUCA cofactor), you now see that the bias is not evenly distributed between older and newer amino acids at all. In fact, most of the difference can be explained by glycine (FDcofactor = 3.8) and the rest by also including tryptophan (FDcofactor = -3.8). If you remove these two amino acids from the analysis, the trend seen in Figure 3 all but disappears.

      Troubling - so you might argue that Gly is the oldest of the old and Trp is the newest of the new so the argument still stands. Unfortunately, Gly is a lot of things - flexible, small, polar - so what is the real correlation, age, or chemistry? This leads to point 2.

      Point 2 - The correlation is dominated by phosphate.

      In the ancient cofactor list, all but 4 comprise at least one phosphate (SAM, tetrahydrofolic acid, biopterin, and heme). Except for SAM, the rest have very low Gly abundance. The overall high Gly abundance in the ancient enzymes is due to the chemical property of glycine that can occupy the right-hand side of the Ramachandran plot. This allows it to make the alternating alphaleft-alpharight conformation of the P-loop forming Milner-White's anionic nest. If you remove phosphate binding folds from the analysis the trend in Figure 3 vanishes.

      Likewise, Trp is an important functional residue for binding quinones and tuning its redox potential. The LUCA cofactor set is dominated by quinone and derivatives, which likely drives up the new amino acid score for this class of cofactors.

      In summary, while I still believe the premise that cofactors drove the shape of peptides and the folds that came from them - and that Rossmann folds are ancient phosphate-binding proteins, this analysis does not really bring anything new to these ideas that have already been stated by Tawfik/Longo, Milner-White/Russell, and many others.

      I did this analysis ad hoc on a slice of the data the authors provided and could easily have missed something and I encourage the authors to check my work. If it holds up it should be noted that negative results can often be as informative as strong positive ones. I think the signal here is too weak to see in the noise using the current approach.

    1. Reviewer #2 (Public Review):

      Important findings:

      • Knockdown of UBE2D increases HTT aggregation.

      • Knockdown of UBE2D leads to an accumulation of ubiquitinated proteins and reduces the lifespan of Drosophila, which is rescued by an ectopic expression of the human homolog.

      • UBE2D protein levels decline with aging.

      • UBE2D knockdown is associated with an up- and downregulation of several different cellular pathways, including proteostasis components.

      Caveats:

      • The readout of HTT aggregation (with methods that are not suitable) as a proxy for the role of UBE2D in proteostasis is not convincing. It would probably improve the manuscript to start with the proteomic analysis of UBE2D to demonstrate that its protein levels decrease with aging. The authors could then induce UBE2D in aged animals to assess the role of UBE2D in the proteome with aging.

      • UBE2D knockdown increases the number of HTT foci (Figure 1A), but the quantification is less convincing as depicted in Figure 1B, and other E2 enzymes show a stronger effect (e.g. Ubc6 that is only studied in Figures 1 and 2 without an explanation and Ubc84D). The graph is hard to interpret. What is the sample size and which genetic conditions show a significant change? P values and statistical analyses are missing.

      • The quantification of the HTT fluorescence cannot be used as a proxy for HTT aggregation. The authors should assess HTT aggregation by e.g. SDD-AGE, FRAP, filter retardation, etc. The quantification of the higher MW species of HTT in the SDS-PAGE is not ideal either as this simply reflects material that is stuck in the wells that could not enter the gel. Aggregation and hence high MW size could be one reason, but it can also be HTT trapped in cell debris, etc.

      • Does UBE2D ubiquitinate HTT? And thus, is HTT accumulation a suitable readout for the functional assessment of the E2 enzyme UBE2D?

      • The proteomic analyses could help to identify potential substrates for UBE2D.

      • Are there mutants available for UBE2D or conditional mutants? One caveat of RNAi is: first not complete knockdown and second, variable knockdown efficiencies that increase variability.

      • The analysis of the E3 enzymes does not add anything to this manuscript.

      • Figure 2B: the fluorescence intensities in images 2 and 4 are rather similar, yet the quantification shows significant differences.

      • The proteomic analyses could provide insights into the functional spectrum of UBE2D or even the identification of substrates. Yet apart from a DAVID analysis, none of the hits were followed up. In addition, only a few hits were labelled in the volcano plots (Figure 5). On what basis did the authors select those?

      • The manuscript remains at this stage rather descriptive.

    1. Reviewer #3 (Public Review):

      This study is a fine example of a recent productive trend in the integration of neuroimaging and molecular biology of the brain: in brief, overlaying some neuroimaging data (usually from a large cohort) onto the high spatial resolution gene expression in the Allen Human Brain Atlas data, derived from 6 individuals. By projecting structural MRI images over cell type proportions identified in the Allen data, the authors can represent various diseases in terms of their spatially-associated cell types. The result has implications for prioritizing the contributions of various cell types to each disease and creates an even-handed cell type profile through which the 11 diseases can be compared.

    1. Reviewer #3 (Public Review):

      Summary:

      Zai et al. test whether birds can modify their vocal behavior in a manner consistent with planning. They point out that while some animals are known to be capable of volitional control of vocalizations, it has been unclear if animals are capable of planning vocalizations-that is, modifying vocalizations towards a desired target without the need to learn this modification by practicing and comparing sensory feedback of practiced behavior to the behavioral target. They study zebra finches that have been trained to shift the pitch of song syllables away from their baseline values. It is known that once this training ends, zebra finches have a drive to modify pitch so that it is restored back to its baseline value. They take advantage of this drive to ask whether birds can implement this targeted pitch modification in a manner that looks like planning, by comparing the time course and magnitude of pitch modification in separate groups of birds who have undergone different manipulations of sensory and motor capabilities. A key finding is that birds who are deafened immediately before the onset of this pitch restoration paradigm, but after they have been shifted away from baseline, are able to shift pitch partially back towards their baseline target. In other words, this targeted pitch shift occurs even when birds don't have access to auditory feedback, which argues that this shift is not due to reinforcement-learning-guided practice, but is instead planned based on the difference between an internal representation of the target (baseline pitch) and current behavior (pitch the bird was singing immediately before deafening).

      The authors present additional behavioral studies arguing that this pitch shift requires auditory experience of song in its state after it has been shifted away from baseline (birds deafened early on, before the initial pitch shift away from baseline, do not exhibit any shift back towards baseline), and that a full shift back to baseline requires auditory feedback. The authors synthesize these results to argue that different mechanisms operate for small shifts (planning, which does not need auditory feedback) and large shifts (through a mechanism that requires auditory feedback).

      The authors also make a distinction between two kinds of planning: covert-not requiring any motor practice-and overt-requiring motor practice, but without access to auditory experience from which target mismatch could be computed. They argue that birds plan overtly, based on these deafening experiments as well as an analogous experiment involving temporary muting, which suggest that indeed motor practice is required for pitch shifts.

      Strengths:

      The primary finding (that partially restorative pitch shift occurs even after deafening) rests on strong behavioral evidence. It is less clear to what extent this shift requires practice, since their analysis of pitch after deafening takes the average over within the first two hours of singing. If this shift is already evident in the first few renditions then this would be evidence for covert planning. Technical hurdles, such as limited sample sizes and unstable song after surgical deafening, make this difficult to test. (Similarly, the authors could test whether the first few renditions after recovery from muting already exhibit a shift back towards baseline.)

      This work will be a valuable addition to others studying birdsong learning and its neural mechanisms. It documents features of birdsong plasticity that are unexpected in standard models of birdsong learning based on reinforcement and are consistent with an additional, perhaps more cognitive, mechanism involving planning. As the authors point out, perhaps this framework offers a reinterpretation of the neural mechanisms underlying a prior finding of covert pitch learning in songbirds (Charlesworth et al., 2012).

      A strength of this work is the variety and detail in its behavioral studies, combined with sensory and motor manipulations, which on their own form a rich set of observations that are useful behavioral constraints on future studies.

      Weaknesses:

      The argument that pitch modification in deafened birds requires some experience hearing their song in its shifted state prior to deafening (Fig. 4) is solid, but has an important caveat. Their argument rests on comparing two experimental conditions: one with and one without auditory experience of shifted pitch. However, these conditions also differ in the pitch training paradigm: the "with experience" condition was performed using white noise training, while the "without experience" condition used "lights off" training (Fig. 4A). It is possible that the differences in ability for these two groups to restore pitch to baseline reflects the training paradigm, not whether subjects had auditory experience of the pitch shift. Ideally, a control study would use one of the training paradigms for both conditions, which would be "lights off" or electrical stimulation (McGregor et al. 2022), since WN training cannot be performed in deafened birds. In the Discussion, in response to this point the authors point out that birds are known to recover their pitch shift if those shifts are driven using electrical stimulation as reinforcement (McGregor et al. 2022); however, it is arguably still relevant to know whether a similar recovery occurs for the "lights off" paradigm used here.

    1. Reviewer #2 (Public Review):

      When people help others is an important psychological and neuroscientific question. It has received much attention from the psychological side, but comparatively less from neuroscience. The paper translates some ideas from a social Psychology domain to neuroscience using a neuroeconomically oriented computational approach. In particular, the paper is concerned with the idea that people help others based on perceptions of merit/deservingness, but also because they require/need help. To this end, the authors conduct two experiments with an overlapping participant pool:

      (1) A social perception task in which people see images of people that have previously been rated on merit and need scales by other participants. In a blockwise fashion, people decide to whether the depicted person a) deserves help, b) needs help, and c) whether the person uses both hands (== control condition)<br /> (2) In an altruism task, people make costly helping decisions by deciding between giving a certain amount of money to themselves or another person. It is manipulated how much the other person needs and deserves the money.<br /> The authors use sound and robust computational modelling approach for both tasks using evidence accumulation models. They analyse behavioural data for both tasks, showing that the behaviour is indeed influenced, as expected, by the deservingness and the need of the shown people. Neurally, the authors use a block-wise analysis approach to find differences in activity levels across conditions of the social perception task. The authors do find large activation clusters in areas related to theory of mind. Interestingly, they also find that activity in TPJ that relates to the deservingness condition correlates with people's deservingness ratings while they do the task, but also with computational parameters related to helping others in the second task, the one that was conducted many months later. Also some behavioural parameters correlate across the two tasks, suggesting that how deserving of help others are perceived reflects a relatively stable feature that translates into concrete helping decisions later-on.

      The conclusions of the paper are overall well supported by the data.

      (1) I found that the modelling was done very thoroughly for both tasks. Overall, I had the impression that the methods are very solid with many supplementary analyses. The computational modelling is done very well.<br /> (2) A slight caveat, however, regarding this aspect, is that, in my view, the tasks are relatively simplistic, so that even the complex computational models do not as much as they can in the case of more complex paradigms. For example, the bias term in the model seems to correspond to the mean response rate in a very direct way (please correct me if I am wrong).<br /> (3) Related to the simple tasks: The fMRI data is analysed in a simple block-fashion. This is in my view not appropriate to discern the more subtle neural substrates of merit/need-based decision making or person perception. Correspondingly, the neural activation patterns (merit > control, need > control) are relatively broad and unspecific. They do not seem to differ in the classic theory of mind regions, that are the focus of the analyses.<br /> (4) However, the relationship between neural signal and behavioural merit sensitivity in TPJ is noteworthy.<br /> (5) The latter is even more the case, as the neural signal and aspects of the behaviour are correlated across subjects with the second task that is conducted much later. Such a correlation is very impressive and suggests that the tasks are sensitive for important individual differences in helping perception/behaviour.<br /> (6) That being said, the number of participants in the latter analyses are at the lower end of the number of participants that are these days used for across-participant correlations.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors develop a normative account of automaticity-control trade-offs using the mathematics of information theory, which they apply to abstract neural networks. They use this framework to derive optimal trade-off solutions under particular task conditions.

      Strengths:<br /> On the positive side, I appreciate the effort to rigorously synthesize ideas about multi-tasking within an information-theoretic framework. There is potentially a lot of promise in this approach. The analyis is quite comprehensive and careful.

      Weaknesses:<br /> Generally speaking, the paper is very long and dense. I don't in principle mind reading long and dense papers (though conciseness is a virtue); it becomes more of a slog when it's not clear what new insights are being gained from laboring through the math. For example, after reading the Stroop section, I wasn't sure what new insight was provided by the information-theoretic formalism which goes beyond earlier models. Is this just an elegant formalism for expressing previously conceived ideas, or is there something fundamentally new here that's not predicted by other frameworks? The authors cite multiple related frameworks addressing the same kinds of data, but there is no systematic comparison of predictions or theoretical interpretations. Even in the Discussion, where related work is directly addressed, I didn't see much in terms of explaining how different models made different predictions, or even what predictions any of them make.

      After a discussion of the Stroop task early in the paper, the analysis quickly becomes disconnected from any empirical data. The analysis could be much more impactful if it was more tightly integrated with relevant empirical data.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In "Speech-induced suppression and vocal feedback sensitivity in human cortex", Ozker and colleagues use intracranial EEG to understand audiomotor feedback during speech production using a speech production and delayed auditory feedback task. The purpose of the paper is to understand where and how speaker-induced suppression occurs, and whether this suppression might be related to feedback monitoring. First, they identified sites that showed auditory suppression during speech production using a single-word auditory repetition task and a visual reading task, then observed whether and how these electrodes show sensitivity to auditory feedback using a DAF paradigm. The stimuli were single words played auditorily or shown visually and repeated or read aloud by the participant. Neural data were recorded from regular- and high-density grids from the left and right hemispheres. The main findings were:<br /> • Speaker-induced suppression is strongest in the STG and MTG, and enhancement is generally seen in frontal/motor areas except for small regions of interest in the dorsal sensorimotor cortex and IFG, which can also show suppression.<br /> • Delayed auditory feedback, even when simultaneous, induces larger response amplitudes compared to the typical auditory word repetition and visual reading tasks. The authors presume this may be due to the effort and attention required to perform the DAF task.<br /> • The degree of speaker-induced suppression is correlated with sensitivity to delayed auditory feedback.<br /> • pSTG (behind TTS) is more strongly modulated by DAF than mid-anterior STG

      Strengths:<br /> Overall, I found the manuscript to be clear, the methodology and statistics to be solid, and the findings mostly quite robust. The large number of participants with high-density coverage over both the left and right lateral hemispheres allows for a greater dissection of the topography of speaker-induced suppression and changes due to audiomotor feedback. The tasks were well-designed and controlled for repetition suppression and other potential caveats.

      Weaknesses:<br /> (1) In Figure 1D, it would make more sense to align the results to the onset of articulation rather than the onset of the auditory or visual cue, since the point is to show that the responses during articulation are relatively similar. In this form, the more obvious difference is that there is an auditory response to the auditory stimulus, and none to the visual, which is expected, but not what I think the authors want to convey.<br /> (2) The DAF paradigm includes playing auditory feedback at 0, 50, 100, and 200 ms lag, and it is expected that some of these lags are more likely to induce dysfluencies than others. It would be helpful to include some analysis of whether the degree of suppression or enhancement varies by performance on the task, since some participants may find some lags more interfering than others.<br /> (3) Figure 3 shows data from only two electrodes from one patient. An analysis of how amplitude changes as a function of the lag across all of the participants who performed this task would be helpful to see how replicable these patterns of activity are across patients. Is sensitivity to DAF always seen as a change in amplitude, or are there ever changes in latency as well? The analysis in Figure 4 gets at which electrodes are sensitive to DAF but does not give a sense of whether the temporal profile is similar to those shown in Figure 3.<br /> (4) While the sensitivity index helps to show whether increasing amounts of feedback delay are correlated with increased response enhancement, it is not sensitive to nonlinear changes as a function of feedback delay, and it is not clear from Figure 3 or 4 whether such relationships exist. A deeper investigation into the response types observed during DAF would help to clarify whether this is truly a linear relationship, dependent on behavioral errors, or something else.

    1. Reviewer #2 (Public Review):

      Summary: Torsekar et al. use a leaf litter decomposition experiment across seasons, and in an aridity gradient, to provide a careful test of the role of different-sized soil invertebrates in shaping the rates of leaf litter decomposition. The authors found that large-sized invertebrates are more active in the summer and small-sized invertebrates in the winter. The summed effects of all invets then translated into similar levels of decomposition across seasons. The system breaks down in hyper-arid sites.

      Strengths: This is a well-written manuscript that provides a complete statistical analysis of a nice dataset. The authors provide a complete discussion of their results in the current literature.

      Weaknesses: I have only three minor comments. Please standardize the color across ALL figures (use the same color always for the same thing, and be friendly to color-blind people). Fig 1 may benefit from separating the orange line (micro and meso) into two lines that reflect your experimental setup and results. I would mention the dryland decomposition conundrum earlier in the Introduction. And the manuscript is full of minor grammatical errors. Some careful reading and fixing of all these minor mistakes here and there would be needed.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This study investigates to what extent neural processing of autobiographical memory retrieval is altered in people who are unable to generate mental images ('aphantasia'). Self-report as well as objective measures were used to establish that the aphantasia group indeed had lower imagery vividness than the control group. The aphantasia group also reported fewer sensory and emotional details of autobiographical memories. In terms of brain activity, compared to controls, aphantasics had a reduction in activity in the hippocampus and an increase in activity in the visual cortex during autobiographical memory retrieval. For controls, these two regions were also functionally connected during autobiographical memory retrieval, which did not seem to be the case for aphantasics. Finally, resting-state connectivity between the visual cortex and hippocampus was positively related to autobiographical vividness in the control group but negatively in the aphantasia group. The results are in line with the idea that aphantasia is caused by an increase in noise within the visual system combined with a decrease in top-down communication from the hippocampus.

      Recent years have seen a lot of interest in the influence of aphantasia on other cognitive functions and one of the most consistent findings is deficits in autobiographical memory. This is one of the first studies to investigate the neural correlates underlying this difference, thereby substantially increasing our understanding of aphantasia and the relationship between mental imagery and autobiographical memory.

      Strengths:<br /> One of the major strengths of this study is the use of both self-report as well as objective measures to quantify imagery ability. Furthermore, the fMRI analyses are hypothesis-driven and reveal unambiguous results, with alterations in hippocampal and visual cortex processing seeming to underlie the deficits in autobiographical memory.

      Weaknesses:<br /> In terms of weaknesses, the control task, doing mathematical sums, also differs from the autobiographical memory task in aspects that are unrelated to imagery or memory, such as self-relevance and emotional salience, which makes it hard to conclude that the differences in activity are reflecting only the cognitive processes under investigation.

      Overall, I believe that this is a timely and important contribution to the field and will inspire novel avenues for further investigation.

    1. Reviewer #2 (Public Review):

      Summary:

      An important frontier in research on the mammalian retina is to understand the role of inhibitory amacrine cells in visual processing. These cell types have been found to play roles in tuning the output of the retina to specific visual features like motion and orientation. These cell types are understudied for two main reasons. First, there are many types of them-over 60 types in the mouse--, and second, they are quite unconventional as far as neurons go, as they have dendrites but often lack axons. The manuscript "Molecular identification of wide-field amacrine cells in mouse retina that encode stimulus orientation" by Park et al. provides a characterization of two (or possibly more) cell types within the amacrine cell class. Specifically, they characterize types of widefield amacrine cells (WACs), which they have gained genetic access to using an intersectional transgenic mouse strategy (Bhlhe22 x KOR). The authors used a broad range of experiments to characterize these WACs' anatomical properties, their stimulus tuning, and their wiring within the retina to their postsynaptic partners. These experiments include anatomy, electrophysiology, calcium imaging, and electron microscopy.

      Strengths:

      Overall, the manuscript presents strong evidence that the Bhlhe22 x KOR WACs represent multiple WAC types in the retina and that these cell types are orientation tuned. The most exciting finding is that their orientation tuning is correlated with the physical orientations of the dendrites, which suggests that this anatomical feature supports the tuning in these cells.

      Weaknesses:

      (1) The one common thought about widefield amacrine cells (WACs) is that these are spiking cells, which allows them to transmit signals along their long dendrites. The authors state that "none of the recorded cells fired conventional action potentials (spikes)." (p.7) This is a surprising finding, which leads to an interesting question: how do these cells integrate information from their presynaptic partners to generate the orientation tuning observed without the ability to conduct over long distances? However, the authors have not fully ruled out that the cells do spike.<br /> For instance, one possibility is that spiking requires a specific stimulus and the authors did not play that stimulus during their recordings. Most somatic recordings did not result in very large depolarizations, and the cell could still be below threshold. Depolarizing the cell to attempt to evoke spikes directly could be used to explore this possibility. A second possibility is that the dendrites spike, but these spikes are attenuated at the soma. Direct injections of current into the cells to evoke such spikes could be used to observe whether dendritic spiking occurs. A third possibility is that some important machinery for spiking is being washed out by the whole cell recordings. Cell attached recordings could be used to assess whether spiking occurs in an intact cell. The authors may wish to address these possibilities experimentally, but at least should qualify their statement about spiking in these cells and discuss these possibilities.

      (2) It was unclear in this paper how many cell types are present in the intersectional cross. I think the paper would be stronger if they clarified that. For instance, in Fig. 1B: the authors show Bhlhe22 expression in amacrine cells from a previous study. They should also show the expression of the other gene they used in their intersectional strategy, the Kappa Opioid receptor (Oprk1), which is available in the same dataset. Another piece of analysis that could help would be clearer quantification of the anatomical features of the cells. For instance, the cells shown in Fig. 2 A2 vs. B2 have clear differences in number of dendrites and the relative angles of the dendrites. The On cells appear to have more dendrites evenly spread around the soma, while the Off cells appear to have more clumping along a line. Is this the case for all the cells recorded, or just these examples? The authors should present some population-level quantification.

      (3) In Fig. 4E, the preferred orientation of calcium responses and physical orientation of the dendrites appears to clump around specific orientations. The Methods don't mention if the retinas were aligned to the body axis during the dissection. Is this clumping real, or is this an artifact of the analysis? If there are specific preferred orientations to these WAC cell types, that would be important to discuss in the paper - for instance how this relates to the preferred direction in the direction selectivity system or how it might relate to the function of these cells for behavior.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This paper by Howell and colleagues focuses on describing macro patterns of anatomical connections between cortical areas and the thalamus in the human brain. This research topic poses significant challenges due to the inability to apply the gold standard of mapping anatomical connections, and viral tracing, to humans. Moreover, when applied to animal models, viral tracing often has limited scope and resolution. As a result, the field has thus far lacked a comprehensive and validated description of thalamocortical anatomical connectivity in humans.

      The paper focuses on an intriguing question: whether anatomical connections from the cortex to the thalamus exhibit a diffuse pattern, targeting multiple thalamic sub-regions, or a more focal pattern, selectively targeting specific thalamic subregions. This novel and significant question holds substantial implications for our understanding of thalamocortical information processing. The authors have developed a sophisticated and innovative quantitative metric to address this question. The study revealed two main patterns: a focal pattern originating from sensorimotor cortical regions to the posterior thalamus and a more diffuse pattern from associative cortical regions to the anterior-medial thalamus. These findings are then framed within the context of thalamocortical motifs involved in feedforward versus feedback processing.

      While this paper has several strengths, including its significance and methodological sophistication, its extension to non-human primates, and other forms of data for testing hierarchy, there are important limitations. These limitations, discussed in more detail below, primarily concern tracking accuracy and the known limitations of using diffusion data to track thalamocortical connections in humans. These limitations may potentially introduce systematic biases into the results, weakening their support. Addressing these limitations through better validation is crucial, though some may remain unresolved due to the fundamental constraints of diffusion imaging.

      Strengths:<br /> This research holds significant basic, clinical, and translational importance as it contributes to our understanding of how thalamocortical anatomical connectivity is organized. Its relevance spans cognitive, systems, and clinical neuroscientists in various subfields.

      The central question addressed in this study, concerning whether cortico-thalamic projections are focal or diffuse, is both novel and previously unexplored to the best of my knowledge. It offers valuable insights into the potential capabilities of the thalamocortical system in terms of parallel or integrative processing.

      The development of quantitative metrics to analyze anatomical connectivity is highly innovative and suitable for addressing the research questions at hand.

      The findings are not only interesting but also robust, aligning with data from other sources that suggest a hierarchical organization in the brain.

      Using PCA to integrate results across a range of thresholds is innovative.

      The study's sophisticated integration of a diverse range of data and methods provides strong, converging support for its main findings, enhancing the overall credibility of the research.

      Weaknesses:<br /> Structural thalamocortical connectivity was estimated from diffusion imaging data obtained from the HCP dataset. Consequently, the robustness and accuracy of the results depend on the suitability of this data for such a purpose. Conducting tractography on the cortical-thalamic system is recognized as a challenging endeavor for several reasons. First, diffusion directions lose their clearly defined principal orientations once they reach the deep thalamic nuclei, rendering the tracking of structures on the medial side, such as the medial dorsal (MD) and pulvinar nuclei difficult. Somewhat concerning is those are regions that authors found to show diffuse connectivity patterns. Second, the thalamic radiata diverge into several directions, and routes to the lateral surface often lack the clarity necessary for successful tracking. It is unclear if all cortical regions have similar levels of accuracy, and some of the lateral associative regions might have less accurate tracking, making them appear to be more diffuse, biasing the results.

      While the methodology employed by the authors appears to be state-of-the-art, there exists uncertainty regarding its appropriateness for validation, given the well-documented issues of false positives and false negatives in probabilistic diffusion tractography, as discussed by Thomas et al. 2014 PNAS. Although replicating the results in both humans and non-human primates strengthens the study, a more compelling validation approach would involve demonstrating the method's ability to accurately trace known tracts from established tracing studies or, even better, employing phantom track data. Many of the control analyses the authors presented, such as track density, do not speak to accuracy.

      Because the authors included data from all thresholds, it seems likely that false positive tracks were included in the results. The methodology described seems to unavoidably include anatomically implausible pathways in the spatial extent analyses.

      If tracking the medial thalamus is indeed less accurate, characterized by higher false positives and false negatives, it could potentially lead to increased variability among individual subjects. In cases where results are averaged across subjects, as the authors have apparently done, this could inadvertently contribute to the emergence of the "diffuse" motif, as described in the context of the associative cortex. This presents a critical issue that requires a more thorough control analysis and validation process to ensure that the main results are not artifacts resulting from limitations in tractography.

      The thresholding approach taken in the manuscript aimed to control for inter-areal differences in anatomical connection strength that could confound the ED estimates. Here I am not quite clear why inter-areal differences in anatomical connection strength have to be controlled. A global threshold applied on all thalamic voxels might kill some connections that are weak but do exist. Those weak pathways are less likely to survive at high thresholds. In the meantime, the mean ED is weighted, with more conservative thresholds having higher weights. That being said, isn't it possible that more robust pathways might contribute more to the mean ED than weaker pathways?

    1. Reviewer #2 (Public Review):

      Summary:<br /> This computational modeling study addresses the observation that variable observations are interpreted differently depending on how much uncertainty an agent expects from its environment. That is, the same mismatch between a stimulus and an expected stimulus would be less significant, and specifically would represent a smaller prediction error, in an environment with a high degree of variability than in one where observations have historically been similar to each other. The authors show that if two different classes of inhibitory interneurons, the PV and SST cells, (1) encode different aspects of a stimulus distribution and (2) act in different (divisive vs. subtractive) ways, and if (3) synaptic weights evolve in a way that causes the impact of certain inputs to balance the firing rates of the targets of those inputs, then pyramidal neurons in layer 2/3 of canonical cortical circuits can indeed encode uncertainty-modulated prediction errors. To achieve this result, SST neurons learn to represent the mean of a stimulus distribution and PV neurons its variance.

      The impact of uncertainty on prediction errors is an understudied topic, and this study provides an intriguing and elegant new framework for how this impact could be achieved and what effects it could produce. The ideas here differ from past proposals about how neuronal firing represents uncertainty. The developed theory is accompanied by several predictions for future experimental testing, including the existence of different forms of coding by different subclasses of PV interneurons, which target different sets of SST interneurons (as well as pyramidal cells). The authors are able to point to some experimental observations that are at least consistent with their computational results. The simulations shown demonstrate that if we accept its assumptions, then the authors' theory works very well: SSTs learn to represent the mean of a stimulus distribution, PVs learn to estimate its variance, firing rates of other model neurons scale as they should, and the level of uncertainty automatically tunes the learning rate, so that variable observations are less impactful in a high uncertainty setting.

      Strengths:<br /> The ideas in this work are novel and elegant, and they are instantiated in a progression of simulations that demonstrate the behavior of the circuit. The framework used by the authors is biologically plausible and matches some known biological data. The results attained, as well as the assumptions that go into the theory, provide several predictions for future experimental testing.

      Weaknesses:<br /> Overall, I found this manuscript to be frustrating to read and to try to understand in detail, especially the Results section from the UPE/Figure 4 part to the end and parts of the Methods section. I don't think the main ideas are so complicated, and it should be possible to provide a much clearer presentation.

      For me, one source of confusion is the comparison across Figure 1EF, Figure 2A, Figure 3A, Figure 4AB, and Figure 5A. All of these are meant to be schematics of the same circuit (although with an extra neuron in Figure 5), yet other than Figures 1EF and 4AB, no two are the same! There should be a clear, consistent schematic used, with identical labeling of input sources, neuron types, etc. across all of these panels.

      The flow of the Results section overall is clear until the ``Calculation of the UPE in Layer 2/3 error neurons' and Figure 4, where I find that things become significantly more confusing. The mention of NMDA and calcium spikes comes out of the blue, and it's not clear to me how this fits into the authors' theory. Moreover: Why would this property of pyramidal cells cause the PV firing rate to increase as stated? The authors refer to one set of weights (from SSTs to UPE) needing to match two targets (weights from s to UPE and weights from mean representation to UPE); how can one set of weights match two targets? Why do the authors mention ``out-of-distribution detection' here when that property is not explored later in the paper? (see also below for other comments on Figure 4)

      Coming back to one of the points in the previous paragraph: How realistic is this exact matching of weights, as well as the weight matching that the theory requires in terms of the weights from the SSTs to the PVs and the weights from the stimuli to the PVs? This point should receive significant elaboration in the discussion, with biological evidence provided. I would not advocate for the authors' uncertainty prediction theory, despite its elegant aspects, without some evidence that this weight matching occurs in the brain. Also, the authors point out on page 3 that unlike their theory, "...SSTs can also have divisive effects, and PVs can have subtractive effects, dependent on circuit and postsynaptic properties". This should be revisited in the Discussion, and the authors should explain why these effects are not problematic for their theory. In a similar vein, this work assumes the existence of two different populations of SST neurons with distinct UPE (pyramidal) targets. The Discussion doesn't say much about any evidence for this assumption, which should be more thoroughly discussed and justified.

      Finally, I think this is a paper that would have been clearer if the equations had been interspersed within the results. Within the given format, I think the authors should include many more references to the Methods section, with specific equation numbers, where they are relevant throughout the Results section. The lack of clarity is certainly made worse by the current state of the Methods section, where there is far too much repetition and poor ordering of material throughout.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors used 2-photon Ca2+-imaging to study the activity of ventral tegmental area (VTA) and locus coeruleus (LC) axons in the CA1 region of the dorsal hippocampus in head-fixed male mice moving on linear paths in virtual reality (VR) environments.

      The main findings were as follows:

      - In a familiar environment, the activity of both VTA axons and LC axons increased with the mice's running speed on the Styrofoam wheel, with which they could move along a linear track through a VR environment.<br /> - VTA, but not LC, axons showed marked reward position-related activity, showing a ramping-up of activity when mice approached a learned reward position.<br /> - In contrast, the activity of LC axons ramped up before the initiation of movement on the Styrofoam wheel.<br /> - In addition, exposure to a novel VR environment increased LC axon activity, but not VTA axon activity.

      Overall, the study shows that the activity of catecholaminergic axons from VTA and LC to dorsal hippocampal CA1 can partly reflect distinct environmental, behavioral, and cognitive factors. Whereas both VTA and LC activity reflected running speed, VTA, but not LC axon activity reflected the approach of a learned reward, and LC, but not VTA, axon activity reflected initiation of running and novelty of the VR environment.

      I have no specific expertise with respect to 2-photon imaging, so cannot evaluate the validity of the specific methods used to collect and analyse 2-photon calcium imaging data of axonal activity.

      Strengths:

      (1) Using a state-of-the-art approach to record separately the activity of VTA and LC axons with high temporal resolution in awake mice moving through virtual environments, the authors provide convincing evidence that the activity of VTA and LC axons projecting to dorsal CA1 reflect partly distinct environmental, behavioral and cognitive factors.

      (2) The study will help a) to interpret previous findings on how hippocampal dopamine and norepinephrine or selective manipulations of hippocampal LC or VTA inputs modulate behavior and b) to generate specific hypotheses on the impact of selective manipulations of hippocampal LC or VTA inputs on behavior.

      Weaknesses:

      (1) The findings are correlational and do not allow strong conclusions on how VTA or LC inputs to dorsal CA1 affect cognition and behavior. However, as indicated above under Strengths, the findings will aid the interpretation of previous findings and help to generate new hypotheses as to how VTA or LC inputs to dorsal CA1 affect distinct cognitive and behavioral functions.

      (2) Some aspects of the methodology would benefit from clarification.<br /> First, to help others to better scrutinize, evaluate, and potentially to reproduce the research, the authors may wish to check if their reporting follows the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines for the full and transparent reporting of research involving animals (https://arriveguidelines.org/). For example, I think it would be important to include a sample size justification (e.g., based on previous studies, considerations of statistical power, practical considerations, or a combination of these factors). The authors should also include the provenance of the mice. Moreover, although I am not an expert in 2-photon imaging, I think it would be useful to provide a clearer description of exclusion criteria for imaging data.<br /> Second, why were different linear tracks used for studies of VTA and LC axon activity (from line 362)? Could this potentially contribute to the partly distinct activity correlates that were found for VTA and LC axons?<br /> Third, the authors seem to have used two different criteria for defining immobility. Immobility was defined as moving at <5 cm/s for the behavioral analysis in Figure 3a, but as <0.2 cm/s for the imaging data analysis in Figure 4 (see legends to these figures and also see Methods, from line 447, line 469, line 498)? I do not understand why, and it would be good if the authors explained this.

      (3) In the Results section (from line 182) the authors convincingly addressed the possibility that less time spent immobile in the novel environment may have contributed to the novelty-induced increase of LC axon activity in dorsal CA1 (Figure 4). In addition, initially (for the first 2-4 laps), the mice also ran more slowly in the novel environment (Figure 3aIII, top panel). Given that LC and VTA axon activity were both increasing with velocity (Figure 1F), reduced velocity in the novel environment may have reduced LC and VTA axon activity, but this possibility was not addressed. Reduced LC axon activity in the novel environment could have blunted the novelty-induced increase. More importantly, any potential novelty-induced increase in VTA axon activity could have been masked by decreases in VTA axon activity due to reduced velocity. The latter may help to explain the discrepancy between the present study and previous findings that VTA neuron firing was increased by novelty (see Discussion, from line 243). It may be useful for the authors to address these possibilities based on their data in the Results section, or to consider them in their Discussion.

      (4) Sensory properties of the water reward, which the mice may be able to detect, could account for reward-related activity of VTA axons (instead of an expectation of reward). Do the authors have evidence that this is not the case? Occasional probe trials, intermixed with rewarded trials, could be used to test for this possibility.

    1. Reviewer #2 (Public Review):

      The manuscript presents a method for tracking neurons recorded with neuropixels across days, based on the matching of cells' spatial layouts and spike waveforms at the population level. The method is tested on neuropixel recordings of the visual cortex carried over 47 days, with the similarity in visual receptive fields used to verify the matches in cell identity.

      This is an important tool as electrophysiological recordings have been notoriously limited in terms of tracking individual neuron's fate over time, unlike imaging approaches. The method is generally sound and properly tested but I think some clarifications would be helpful regarding the implementation of the method and some of the results.

      (1) Page 6: I am not sure I understand the point of the imposed drift and how the value of 12µm is chosen.<br /> Is it that various values of imposed drift are tried, the EMDs computed to produce histograms as in Fig2c, values of rigid drifts estimated based on the histogram modes, and then the value associated with minimum cost selected? The corresponding manuscript section would need some clarification regarding this aspect.

      (2) The EMD is based on the linear sum, with identical weight, of cell distance and waveform similarity measures. How performance is affected from using a different weighting of the 2 measures (for instance, using only cell distance and no waveform similarity)? It is common that spike waveforms associated to a given neuron appear different on different channels of silicon probes (i.e. the spike waveform changes depending the position of recording sites relative to the neuron), so I wonder if that feature is helping or potentially impeding the tracking.

      (3) Fig.5: I assume the dots are representing time gaps for which cell tracking is estimated. The 3 different groups of colors correspond to the 3 mice used. For a given mouse, I would expect to always see 3 dots (for ref, putative and mixed) for a given tracking gap. However, for mouse AL036 for instance, at tracking duration of 8 days, a dot is visible for mixed but not for ref and putative. How come this is happening?

      (4) Matched visual responses are measured by the sum of correlation of visual fingerprints, which are vectors of cells' average firing rate across visual stimuli, and correlation of PSTHs, which are implemented over all visual stimuli combined. I believe that some information is lost from combining all stimuli in the implementation of PSTHs (assuming that PSTHs show specificity to individual visual stimuli). The authors might consider, as alternative measure of matched visual responses, a correlation of the vector concatenations of all stimulus PSTHs. Such simpler measure would contain both visual fingerprint and PSTH information, and would not lose the information of PSTH specificity across visual stimuli.

      2nd revision

      (1) From reading the authors' response, I could understand several of the points I had previously missed. I still think that some part of the results are not straightforward to understand, the way it is written. Adding a few introductory sentences to the paragraphs (for instance the one related to my previous point #1) would really help the reader comprehend this important work.

      (2) Following on my point #2, the w value used is 1500 and the recovery rate doesn't seems to reach a peak but rather a plateau for larger w values. From such large w value and the absence of a downward trend for increasing values, it would seem that only the 'waveform distance' matter and that the 'location distance' doesn't contribute much to the EMD distance. Is this correct?

    1. Reviewer #2 (Public Review):

      Summary:<br /> TDP-43 mislocalization occurs in nearly all of ALS, roughly half of FTD, and as a co-pathology in roughly half of AD cases. Both gain-of-function and loss-of-function mechanisms associated with this mislocalization likely contribute to disease pathogeneisis.

      Here, the authors describe a new method to induce TDP-43 mislocalization in cellular models. They endogenously-tagged TDP-43 with a C-terminal GFP tag in human iPSCs. They then expressed an intrabody - fused with a nuclear export signal (NES) - that targeted GFP to the cytosol. Expression of this intrabody-NES in human iPSC-derived neurons induced nuclear depletion of homozygous TDP-43-GFP, caused its mislocalization to the cytosol, and at least in some cells appeared to cause cytosolic aggregates. This mislocalization was accompanied by induction of cryptic exons in well characterized transcripts known to be regulated by TDP-43, a hallmark of functional TDP-43 loss and consistent with pathological nuclear TDP-43 depletion. Interestingly, in heterozygous TDP-43-GFP neurons, expression of intrabody-NES appeared to also induce the mislocalization of untagged TDP-43 in roughly half of the neurons, suggesting that this system can also be used to study effects on untagged endogenous TDP-43 as well as TDP-43-GFP fusion protein.

      Strengths:<br /> A clearer understanding of how TDP-43 mislocalization alters cellular function, as well as pathways that mitigate clearance of TDP-43 aggregates, is critical. But modeling TDP-43 mislocalization in disease-relevant cellular systems has proven to be challenging. High levels of overexpression of TDP-43 lacking an NES can drive endogenous TDP-43 mislocalization, but such overexpression has direct and artificial consequences on certain cellular features (e.g. altered exon skipping) not seen in diseased patients. Toxic small molecules such as MG132 and arsenite can induce TDP-43 mislocalization, but co-induce myriad additional cellular dysfunctions unrelated to TDP-43 or ALS. TDP-43 binding oligonucleotides can cause cytosolic mislocalization as well. Each system has pros and cons, and additional ways to induce TDP-43 mislocalization would be useful for the field. The method described in this manuscript could provide researchers with a powerful way to study the combined biology of cytosolic TDP-43 mislocalization and nuclear TDP-43 depletion, with additional temporal control that is lacking in current method. Indeed, the authors see some evidence of differences in RNA splicing caused by pure TDP-43 depletion versus their induced mislocalization model. Finally, their method may be especially useful in determining how TDP-43 aggregates are cleared by cells, potentially revealing new biological pathways that could be therapeutically targeted.

      Weaknesses:<br /> The method and supporting data have limitations in its current form, outlined below, and in its current form the findings are rather preliminary.

      • Tagging of TDP-43 with a bulky GFP tag may alter its normal physiological functions, for example phase separation properties and functions within complex ribonucleoprotein complexes. In addition, alternative isoforms of TDP-43 (e.g. "short" TDP-43, would not be GFP tagged and therefore these species would not be directly manipulatable or visualizable with the tools currently employed in the manuscript.<br /> • The data regarding potential mislocalization of endogenous TDP-43 in the heterozygous TDP-43-GFP lines is especially intriguing and important, yet very little characterization was done. Does untagged TDP-43 co-aggregate with the tagged TDP-43? Is localization of TDP-43 immunostaining the same as the GFP signal in these cells?<br /> • The experiments in which dox was used to induce the nanobody-NES, then dox withdrawn to study potential longer-lasting or self-perpetuating inductions of aggregation is potentially interesting. However, the nanobody was only measured at the RNA level. We know that protein half lives can be very long in neurons, and therefore residual nanobody could be present at these delayed time points. The key measurement to make would be at the protein level of the nanobody if any conclusions are be made from this experiment.<br /> • Potential differences in splicing and microRNAs between TDP-43 knockdown and TDP-43 mislocalization are potentially interesting. However, different patterns of dysregulated RNA splicing can occur at different levels of TDP-knockdown, thus it is difficult to asses whether the changes observed in this paper are due to mislocalization per se, or rather just reflect differences in nuclear TDP-43 abundance.

    1. Faculty members have begun using it tohelp them design their courses, viewing it as a tool that can make instructionmore effective and engaging.In his business-communication class, Carl Follmer, director of the FrankBusiness Communication Center in the University of Iowa’s Tippie College ofBusiness, created an AI chatbot he calls Impy.

      professors are using AI to enhance teaching, like creating chatbots and improving lesson plans, showing AI's potential to improve education.

    2. Some faculty members said theyfeared colleges failed to recognize the potential dangers of AI, and argued for acomplete ban, better detection tools, and a return to in-class, pen-and-papertest-taking.

      I think that we should learn how to use AI correctly,not using it to cheat

    3. That small number may simply reflect that professors who hadexperimented with AI — even if they concluded it is a danger to learning —probably had more reason to write to us.

      It was surprising for professors to realize that many students had limited knowledge about AI

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, the authors reported the biological role of RBM7 deficiency in promoting metastasis of breast cancer. They further used a combination of genomic and molecular biology approaches to discover a novel role of RBM7 in controlling alternative splicing of many genes in cell migration and invasion, which is responsible for the RBM7 activity in suppressing metastasis. They conducted an in-depth mechanistic study on one of the main targets of RBM7, MFGE8, and established a regulatory pathway between RBM7, MFGE8-L/MFGE8-S splicing switch, and NF-κB signaling cascade. This link between RBM7 and cancer pathology was further supported by analysis of clinical data.

      Strengths:<br /> Overall, this is a very comprehensive study with lots of data, and the evidence is consistent and convincing. Their main conclusion was supported by many lines of evidence, and the results in animal models are pretty impressive.

      Weaknesses:<br /> However, there are some controls missing, and the data presentation needs to be improved. The writing of the manuscript needs some grammatical improvements because some of the wording might be confusing.

      Specific comments:<br /> (1) Figure 2. The figure legend is missing for Figure 2C, which caused many mislabels in the rest of the panels. The labels in the main text are correct, but the authors should check the figure legend more carefully. Also in Figure 2C, it is not clear why the authors choose to examine the expression of this subset of genes. The authors only refer to them as "a series of metastasis-related genes", but it is not clear what criteria they used to select these genes for expression analysis.

      (2) Line 218-220. The comparison of PSI changes in different types of AS events is misleading. Because these AS events are regulated in different mechanisms, they cannot draw the conclusion that "the presence of RBM7 may promote the usage of alternative splice sites". For example, the regulators of SE and IR may even be opposite, and thus they should discuss this in different contexts. If they want to conclude this point, they should specifically discuss the SE and A5SS rather than draw an overall conclusion.

      (3) In the section starting at line 243, they first referred to the gene and isoforms as "EFG-E8" or "EFG-E8-L", but later used "EFGE8" and "EFGE8-L". Please be consistent here. In addition, it will be more informative if the authors add a diagram of the difference between two EFGE8 isoforms in terms of protein structure or domain configuration.

      (4) Figure 7B and 7C. The figures need quantification of the inclusion of MFGE exon7 (PSI value) in addition to the RT-PCR gel. The difference seems to be small for some patients.

      Minor comments:<br /> The writing in many places is a little odd or somewhat confusing, I am listing some examples, but the authors need to polish the whole manuscript more to improve the writing.

      (1) Line 169-170, "...followed by profiling high-throughput transcriptome by RNA sequencing", should be "followed by high-throughput transcriptome profiling with RNA sequencing".

      (2) Line 170, "displayed a wide of RBM7-regulated genes were enriched...", they should add a "that" after the "displayed" as the sentence is very long.

      (3) Line 213, "PSI (percent splicing inclusion)" is not correct, PSI stands for "percent spliced in".

      (4) Line 216-217, the sentence is long and fragmented, they should break it into two sentences.

      (5) Line 224, the "tethering" should be changed to "recognizing". There is a subtle difference in the mechanistic implication between these two words.

      (6) Line 250, should be changed to "..in the ratio of two MFGE8 isoforms".

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors generated proteome profiles of 51 cancer cell lines treated with pharmacologic ascorbate. The idea was to identify players responsible for the sensitivity or relative resistance to ascorbate to delineate mechanisms of action of this potentially transformative new treatment.

      Strengths:<br /> The proteomic profiles themselves. The identification of MAPK and mTOR as overrepresented proteomic elements and close correlations between proliferation, cell cycle mediators, and sensitivity to ascorbate indicate that rapidly proliferating cancer may be more sensitive to ascorbate. Also, the finding that sensitivity to ascorbate is correlated to different pathways in different types of cancer is interesting. For instance, in some pancreatic and lung cancers sensitivity seemed to be related to iron handling while in breast DNA damage/repair seemed to be most involved.

      Weaknesses:<br /> The study is quite descriptive. Although the proteomes indicate what pathways are more or less represented after ascorbate challenge there is little mechanistic information about their relevance to the sensitivity to ascorbate. Since activity is not assessed, proteins may be present in higher or lower abundance but not necessarily at the peak of their activity. Also, many statements are made as "known facts" but no references are provided.

    1. Reviewer #2 (Public Review):

      In this manuscript by Kang et. al., the authors investigated the mechanisms of K+-efflux-coupled SOCE in NLRP3 inflammasome activation by LP(LPS+PA, and identified an essential role of TRPM2-mediated lysosomal Ca2+ release and subsequent IP3Rs-mediated ER Ca2+ release and store depletion in the process. K+ efflux is shown to be mediated by a Ca2+-activated K+ channel (KCa3.1). LP-induced cytosolic Ca2+ elevation also induced a delayed activation of ASK1 and JNK, leading to ASC oligomerization and NLRP3 inflammasome activation. Overall, this is an interesting and comprehensive study that has identified several novel molecular players in metabolic inflammation. The manuscript can benefit if the following concerns could be addressed.

      (1) The expression of TRPM2 in the lysosomes of macrophages needs to more definitively established. For instance, the cADPR-induced TRPM2 currents should be abolished in the TRPM2 KO macrophages. Can you show the lysosomal expression of TRPM2, either with an antibody if available or with a fluorescently-tagged TRPM2 overexpression construct?

      In the revised manuscript, the authors did not perform the KO control experiment to support that cADPR-induced currents were indeed mediated by TRPM2. Additonally, the co-localization analyses failed to convincingly establish the lysosomal perimeter membrane residence of TRPM2.

      (2) Can you use your TRPM2 inhibitor ACA to pharmacologically phenocopy some results, e.g., about [Ca2+]ER, [Ca2+]LY, and [Ca2+]i from the TRPM2 knockout?

      In the revised manuscript, most suggested experiments were not performed. In the only experiment that was conducted, Figure 3-figure supplement 1A, the effect of ACA was marginal.

      (3) In Fig. S4A, bathing the cells in zero Ca2+ for three hours might not be ideal. Can you use a SOCE inhibitor, e.g, YM-58483, to make the point?

      The specific suggested experiment was not performed.

      (4) In Fig. 1A, you need a positive control, e.g., ionomycin, to show that the GPN response was selectively reduced upon LP treatment.

      Results in a previous study cannot be used to substitute the missing control experiments in the current study.

    1. Reviewer #2 (Public Review):

      Summary:

      In this work, the authors report a role for the well-studied GTPase Rab7 in gut homeostasis. The study combines cell culture experiments with mouse models and human ulcerative colitis patient tissues to propose a model where, Rab7 by delivering a key mucous component CLCA1 to lysosomes, regulates its secretion in the goblet cells. This is important for the maintenance of mucous permeability and gut microbiota composition. In the absence of Rab7, CLCA1 protein levels are higher in tissues as well as the mucus layer, corroborating with the anti-correlation of Rab7 (reduced) and CLCA1 (increased) from ulcerative colitis patients. The authors conclude that Rab7 maintains CLCA1 level by controlling its lysosomal degradation, thereby playing a vital role in mucous composition, colon integrity, and gut homeostasis.

      Strengths:

      The biggest strength of this manuscript is the combination of cell culture, mouse model, and human tissues. The experiments are largely well done and in most cases, the results support their conclusions. The authors go to substantial lengths to find a link, such as alteration in microbiota, or mucus proteomics.

      Weaknesses:

      There are also some weaknesses that need to be addressed. The association of Rab7 with UC in both mice and humans is clear, however, claims on the underlying mechanisms are less clear. Does Rab7 regulate specifically CLCA1 delivery to lysosomes, or is it an outcome of a generic trafficking defect? CLCA1 is a secretory protein, how does it get routed to lysosomes, i.e. through Golgi-derived vesicles, or by endocytosis of mucous components? Mechanistic details on how CLCA1 is routed to lysosomes will add substantial value.

      Why does the level of Rab7 fluctuate during DSS treatment (Fig 1B)? Does the reduction seen in Rab7 levels (by WB) also reflect in reduced Rab7 endosome numbers? Are other late endosomal (and lysosomal) populations also reduced upon DSS treatment and UC? Is there a general defect in lysosomal function?

      While it is clear that the pattern of Muc2 in WT and Rab7-/- cells are different, how this corroborates with the in vivo data on alterations in mucus layer permeability - as claimed - is not clear.

      The use of an in vivo intestine-specific Rab7 silencing model is good. Why does Rab7 KD itself not capitulate aspects of DSS treatment, rather it seems to exacerbate it.

      The use of mucous proteomics to identify mechanisms of Rab7-mediated phenotype is a good approach. The replicates in the proteomics dataset (Fig 6F) do not seem to match. Detailing of methodology used for analysis will help to overcome these doubts.

      The work shows a role for a well-studied GTPase, Rab7, in gut homeostasis. This is an important finding and could provide scope and testable hypotheses for future studies aimed at understanding in detail the mechanisms involved.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Pluripotent stem cells are powerful tools for understanding development, differentiation, and disease modeling. The capacity of stem cells to differentiate into various cell types holds great promise for therapeutic applications. However, ethical concerns restrict the use of human embryonic stem cells (hESCs). Consequently, induced human pluripotent stem cells (ihPSCs) offer an attractive alternative for modeling rare diseases, drug screening, and regenerative medicine. A comprehensive understanding of ihPSCs is crucial to establish their similarities and differences compared to hESCs. This work demonstrates systematic differences in the reprogramming of nuclear and non-nuclear proteomes in ihPSCs.

      Strengths:<br /> The authors employed quantitative mass spectrometry to compare protein expression differences between independently derived ihPSC and hESC cell lines. Qualitatively, protein expression profiles in ihPSC and hESC were found to be very similar. However, when comparing protein concentration at a cellular level, it became evident that ihPSCs express higher levels of proteins in the cytoplasm, mitochondria, and plasma membrane, while the expression of nuclear proteins is similar between ihPSCs and hESCs. A higher expression of proteins in ihPSCs was verified by an independent approach, and flow cytometry confirmed that ihPSCs had larger cell sizes than hESCs. The differences in protein expression were reflected in functional distinctions. For instance, the higher expression of mitochondrial metabolic enzymes, glutamine transporters, and lipid biosynthesis enzymes in ihPSCs was associated with enhanced mitochondrial potential, increased ability to uptake glutamine, and increased ability to form lipid droplets.

      Weaknesses:<br /> While this finding is intriguing and interesting, the study falls short of explaining the mechanistic reasons for the observed quantitative proteome differences. It remains unclear whether the increased expression of proteins in ihPSCs is due to enhanced transcription of the genes encoding this group of proteins or due to other reasons, for example, differences in mRNA translation efficiency. Another unresolved question pertains to how the cell type origin influences ihPSC proteomes. For instance, whether ihPSCs derived from fibroblasts, lymphocytes, and other cell types all exhibit differences in their cell size and increased expression of cytoplasmic and mitochondrial proteins. Analyzing ihPSCs derived from different cell types and by different investigators would be necessary to address these questions.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors constructed multi-scale modeling and simulation methods to investigate the electrical and mechanical properties of acute and chronic myocardial infarction (MI). They simulated three acute MI conditions and two chronic MI conditions. They showed that these conditions gave rise to distinct ECG characteristics that have been seen in clinical settings. They showed that the post-MI remodeling reduced ejection fraction up to 10% due to weaker calcium current or SR calcium uptake, but the reduction of ejection fraction is not sensitive to remodeling of the repolarization heterogeneities.

      Strengths:<br /> The major strength of this study is the construction of computer modeling that simulates both electrical behavior and mechanical behavior for post-MI remodeling. The links of different heterogeneities due to MI remodeling to different ECG characteristics provide some useful information for understanding complex clinical problems.

      Weaknesses:<br /> The rationale (e.g., physiological or medical bases) for choosing the 3 acute MI and 2 chronic MI settings is not clear. Although the authors presented a huge number of simulation data, in particular in the supplemental materials, it is not clearly stated what novel findings or mechanistic insights this study gained beyond the current understanding of the problem.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Two hypotheses could explain the observation that genes of more complex organisms tend to undergo more alternative splicing. On one hand, alternative splicing could be adaptive since it provides the functional diversity required for complexity. On the other hand, increased rates of alternative splicing could result through nonadaptive processes since more complex organisms tend to have smaller effective population sizes and are thus more prone to deleterious mutations resulting in more spurious splicing events (drift-barrier hypothesis). To evaluate the latter, B́enitiere et al. analyzed transcriptome sequencing data across 53 metazoan species. They show that proxies for effective population size and alternative splicing rates are negatively correlated. Furthermore, the authors find that rare, nonfunctional (and likely erroneous) isoforms occur more frequently in more complex species. Additionally, they show evidence that the strength of selection on splice sites increases with increasing effective population size and that the abundance of rare splice variants decreases with increased gene expression. All of these findings are consistent with the drift-barrier hypothesis.

      This study conducts a comprehensive set of separate analyses that all converge on the same overall result and the manuscript is well organized. Furthermore, this study is useful in that it provides a modified null hypothesis that can be used for future tests of adaptive explanations for variation in alternative splicing.

      Strengths:<br /> The major strength of this study lies in its complementary approach combining comparative and population genomics. Comparing evolutionary trends across phylogenetic diversity is a powerful way to test hypotheses about the origins of genome complexity. This approach alone reveals several convincing lines of evidence in support of the drift-barrier hypothesis. However, the authors also provide evidence from a population genetics perspective (using resequencing data for humans and fruit flies), making results even more convincing.

      The authors are forward about the study's limitations and explain them in detail. They elaborate on possible confounding factors as well as the issues with data quality (e.g. proxies for Ne, inadequacies of short reads, heterogeneity in RNA-sequencing data).

      Weaknesses:<br /> The authors primarily consider insects and mammals in their study. This only represents a small fraction of metazoan diversity. Sampling from a greater diversity of metazoan lineages would make these results and their relevance to broader metazoans substantially more convincing. Although the authors are careful about their tone, it is challenging to reconcile these results with trends across greater metazoans when the underlying dataset exhibits ascertainment bias and represents samples from only a few phylogenetic groups. Relatedly, some trends (such as Figure 1B-C) seem to be driven primarily by non-insect species, raising the question of whether some results may be primarily explained by specific phylogenetic groups (although the authors do correct for phylogeny in their statistics). How might results look if insects and mammals (or vertebrates) are considered independently?

      Throughout the manuscript, the authors refer to infrequently spliced (mode <5%) introns as "minor introns" and frequently spliced (mode >95%) as "major introns". This is extremely confusing since "minor introns" typically represent introns spliced by the U12 spliceosome, whereas "major introns" are those spliced by the U2 spliceosome. Furthermore, it remains unclear whether the study only considers major introns or both major and minor introns. Minor introns typically have AT-AC splice sites whereas major introns usually have GT/GC-AG splice sites, although in rare cases the U2 can recognize AT-AC (see Wu and Krainer 1997 for example). The authors also note that some introns show noncanonical AT-AC splice sites while these are actually canonical splice sites for minor introns.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors investigated if obesity is associated with elevated working memory deficits. Prior theorizing would suggest that individuals with a higher BMI would be worse at working memory updating, potentially due to impaired dopaminergic signaling in the striatum. However, the authors find that higher BMI was associated with worse working memory performance, irrespective of having to ignore or update new information. To further explore the putative dopaminergic mechanisms, participants are stratified according to genetic polymorphisms in COMT, Taq1A, DARPP, and C957T and the ratio of the amino acids phenylalanine and tyrosine, all implicated in dopamine-signaling. They find that especially for working memory updating, carriers of a risk allele of Taq1A and DARPP, but not of COMT and C957T, performed worse with increasing BMI. The detrimental effects of these polymorphisms on updating only surfaced for individuals with high but not low BMI.

      Although the authors allude to potential imbalances in the striatal go/no-go dopamine pathways to explain these findings, the dopaminergic mechanisms of the effects remain speculative.

      Strengths:<br /> Differentiating between working memory maintenance (ignoring) and updating is a powerful way to get a deeper insight into specific working memory deficits in individuals with obesity. This way of assessing working memory could potentially be applied to various populations at risk for cognitive or working memory deficits.

      By pooling data from three studies, the authors reached a relatively large sample of 320 participants, which enables the assessment of more subtle effects on working memory, including the differentiation between updating and ignoring.

      Working memory gating has long implicated striatal dopamine signaling. This paper shows that specific combinations of risk factors, a high BMI and carrying a risk allele, can contribute to very selective working memory impairments. More insight into how these risk factors interact can ultimately lead to more tailor-made treatments.

      Weaknesses:<br /> The majority of participants seem to fall within the normal BMI range, whereas the interaction between BMI and genetic variations or amino acid ratio particularly surfaces at higher BMI. As genetic variations are usually associated with small effect sizes, the effective sample size, although large for a behavioral analysis only, might have been too small to detect meaningful effects of risk alleles of COMT and C957T.

      The relationships between genetic variations, BMI, and specific disturbances in dopamine signaling are complex, as compensating mechanisms might be at play to mitigate any detrimental effects. The results would therefore benefit from more direct measures or manipulations of dopaminergic processes.

      The introduction could benefit from a more elaborate description of the predicted effects: into which direction (better or worse updating) would the authors predict each effect to go and why? This is clearly explained for COMT, but not for e.g. DARPP-32.

    1. Reviewer #2 (Public Review):

      The biology and dynamics is well-described. The ERISM and WARP methods are state-of-the-art. The most important new information is the highly accurate and detailed maps of displacement. The real achievements are the new locomotory dynamics uncovered with amazing displacement measurements. One key discovery is the broad but shallow anchoring of the posterior body when the anterior body undertakes a "head sweep". Another discovery is the tripod indentation at the tail at the beginning of peristalsis cycles. This paper describes the detailed dynamics of anchoring for the first time. Anchoring behavior now has to be included in the motor sequence for Drosophila larva locomotion in any comprehensive biomechanical or neural model.

    1. Reviewer #2 (Public Review):

      Miller et al. take a variety of measurements and analytical techniques to assess the ecology of various species of the enantiornithine clade Bohaiornithidae. From this they suggest that the ancestral enantiornithine was a generalist and that the descendant clades occupied a breadth of niches similar to that of the radiation of derived birds after the K-Pg extinction.

      Overall, I find the idea that enantiornithines had occupied a similar niche breadth to post-K-Pg derived birds to be a curious, thought-provoking proposal.

      I am satisfied with the edits made by the authors and approve the revised version of the manuscript.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, the authors examine how temporal expression of the lin-4 microRNA is transcriptionally regulated.

      In the revised manuscript, the authors have suitably addressed my original concerns.

      Aims achieved: The aims of the work are now achieved.

      Impact: This study shows that a single transcription factor (MYRF-1) is important for the regulation of multiple microRNAs that are expressed early in development to control developmental timing.

    1. Reviewer #3 (Public Review):

      Summary:<br /> A key element in the ability of trypanosomes to evade the mammalian host's immune system is its high rate of endocytosis. This rapid turnover of its surface enables the trypanosome to 'clean' its surface removing antibodies and other immune effectors that are subsequently degraded. The high rate of endocytosis is likely reflected in the organisation of the endosomal system in these parasites. Here, Link et al., sought to address this question using a range of light and three-dimensional electron microscopy approaches to define the endosomal organisation in this parasite.

      Before this study, the vast majority of our information about the make-up of the trypanosome endosomal system was from thin section electron microscopy and immunofluorescence studies, which did not provide the necessary resolution and 3D information to address this issue. Therefore, it was not known how the different structures observed by EM were related. Link et al., have taken advantage of the advances in technology and used an impressive combination of approaches at the LM and EM level to study the endosomal system in these parasites. This innovative combination has now shown the interconnected-ness of this network and demonstrated that there are no 'classical' compartments within the endosomal system, with instead different regions of the network enriched in different protein markers (Rab5a, Rab7, Rab11). Overall, the authors have achieved their aims, with results supporting their conclusions.

      This is a well written manuscript in which the authors use an impressive range of approaches to address the organisation of the endosomal system. The authors have clearly demonstrated that trypanosomes have a large interconnected endosomal network, without defined compartments and instead shows enrichment for specific Rabs within this network. I appreciate their inclusion of how they used a range of different light microscopy approaches even though for instance the dSTORM approach did not turn out to be as effective as hoped.

      The methodological impact of this work has the potential to be large, as the authors have introduced a range of advanced EM techniques for the study of trypanosomes. Moreover, the study of fundamental biological processes such as endosomal trafficking in divergent eukaryotes is important to define the limits within which this process operates.

    1. Reviewer #2 (Public Review):

      Summary:

      This manuscript addresses what rapid molecular events underly the earliest responses after gravity-sensing via the sedimentation of starch-enriched amyloplasts in columella cells of the plant root cap. The LAZY or NEGATIVE GRAVITROPIC RESPONSE OF ROOTS (NGR) protein family is involved in this process and localizes to both the amyloplast and to the plasma membrane (PM) of columella cells.

      This manuscript complements and extends a very recent study, (Nishimura et al., Science, 2023, August 10, 2023) that reported that the LZY3 and LZY4 proteins translocate from amyloplasts to the PM and that this translocation is likely necessary for the root gravitropic response. Kulich and colleagues describe the role of the LZY2 protein, also called NGR1, during this process, imaging its fast relocation and addressing additional novel points such as molecular mechanisms underlying NGR1 plasma membrane association as well as revealing the requirement of NGR1/LZY2, 3,4 for the polar localization of the AGCVIII D6 protein kinase at the PM of columella cells, in which NGR1/LZY2 acts redundantly with LZY3 and LZY4.

      The authors initially monitored relocalization of functional NGR1-GFP in columella cells of the ngr1 ngr2 ngr3 triple mutant after 180 degree reorientation of the roots. Within 10 -15 min NGR1-GFP signal disappeared from the upper PM after reorientation and reappeared at the lower PM of the reoriented cells in close proximity to the sedimented amyloplasts. Reorientation of NGR1-GFP occurred substantially faster than PIN3-GFP reorientation, at about the same time or slightly later than a rise in a calcium sensor (GCaMP3) just preceding a change in D2-Venus auxin sensor alterations. Reorientation of NGR1-GFP proved to be fast and not dependent on a brefeldin A-sensitive ARF GEF-mediated vesicle trafficking, unlike the trafficking of PIN proteins, like PIN3, or the AGCVIII D6 protein kinase. Strikingly, the PM association of NGR1-GFP was highly sensitive to pharmacological interference with sterol composition or concentration and phosphatidylinositol (4)kinase inhibition as well as dithiothreitol (DTT) treatment interfering with thioester bond formation e.g. during S-acylation. Indeed, combined mutation of a palmitoylation site and polybasic regions of NRG1 abolished its PM but not its amyloplast localization and rendered the protein non-functional during the gravitropic response, suggesting NRG1 PM localization is essential for the gravitropic response. Targeting the protein to the PM via an artificially introduced N-terminal myristoylation and a ROP2-derived polybasic region and geranylgeranylation site partially restored its functionality in the gravitropic response.

      Strengths:

      This timely work should be of broad interest to plant, cell and developmental biologists across the field as gravity sensing and signaling may well be of general interest. The point that NGR1 is rapidly responsive to gravistimulation, polarizes at the PM in the vicinity to amyloplast and that this is required for repolarization of D6 protein kinase, prior to PIN relocation is really compelling. The manuscript is generally well written and accessible to a general readership, except for very minor language errors. The figures are clear and of high quality, the methods are sufficiently explained for reproduction of the experiments.

      Comments on revised submission:

      The authors have addressed my comments to a large part, however, while they write they have updated the statistical analysis as requested, they only did this for the main figures, but NOT for the supplementary images (except for Fig. S2) and their legends. These issues need fixing in order to correctly describe the data and let the reader know, which distributions actually differed. Some specific examples of concerns are:

      In Figs. 3F and D we now know that a one-way ANOVA test was performed and that letters designate the statistically significant difference between distributions with p smaller 0.0001, but we still do not know what "n" in the displayed distributions is e.g. how many PM/cytoplasm ratios were measured i.e. e.g 112? (from 112 cells?). It is said that 8-15 roots were quantified, but the data points in the distributions are not 8-15 .... . They are many more, so, "n" must be the number of cells derived from 8-15 roots but what is "n" in the displayed distributions and is that the same value that was used for the Anova test?

      This must be clarified as it has very well been done for Fig. 2 and Fig. S2B, E in the legends and by inserting a lettering for significance differences in the figures.

      Similar information is still lacking for Fig. S3D, no number "n" of cells from which the PM/cytoplasm ratios are analyzed is given, no lettering for differences, no p -value. This leaves one to guess which distributions differ from each other.

      This also needs to be fixed for Figs. S4 E, F (for G and H one can see the differences where the SDs do not overlap and it is explained what they are derived from).

    1. Reviewer #2 (Public Review):

      The effectors of cellular aging in yeast have not been fully elucidated. To address this, the authors curated gene expression studies to link genes influenced by rapamycin - a well-known mediator of longevity across model systems - to genes known to affect chronological and replicative lifespan (RLS) in yeast. Through their analyses, they find one gene, ybr238c, whose deletion increases both CLS and RLS upon deletion and that is downregulated by rapamycin. The authors follow up their cellular aging studies using CLS as a model throughout their study, demonstrating that deletion of ybr238c increases CLS across multiple yeast strains and through multiple assays. The authors also test the effects of YBR238C overexpression on lifespan and find the opposite effect, with overexpression yeast showing decreased survival relative to wild type cells, consistent with accelerated aging as the authors propose. The authors also note that ybr238c has a paralog, rmd9, whose deletion decreases CLS and seems to be epistatic to ybr238c, as a double ybr238c/rmd9 mutant has decreased CLS relative to a wild-type strain.

      Collectively, the data presented by the authors convincingly demonstrate that ybr238c influences lifespan in a manner that is distinct from (and likely opposite to) rmd9. The authors then link the increased CLS in Δybr238c yeast to HAP4, a transcription factor that promotes mitochondrial biogenesis and oxidative phosphorylation. Through genetic studies, the authors suggest a model in which YBR238C negatively regulates HAP4 activity, and thus loss of HAP4 repression in Δybr238c yeast leads to elevated mitochondrial function. Notably, while the authors use various methods to test mitochondrial function, including the quantification of transcripts associated with oxidative phosphorylation, cellular ATP levels, and mtDNA, none of these fully test mitochondrial function. Thus, while the trends of these proxies are consistent with the model proposed by the authors, including data such as respirometry or assaying the activity of oxidative phosphorylation complexes would have bolstered these conclusions.

      Finally, the authors tie the phenotypes of mitochondrial dysfunction caused by deletion of ybr238c to TORC1 signaling, as the gene is influenced by rapamycin. However, the data assaying mitochondrial function in these experiments, such as profiling the transcriptional changes in oxidative phosphorylation complexes or monitoring cellular ATP levels, do not directly measure mitochondrial function. Furthermore, many of the studies performed by the authors rely on genetic or pharmacological rescue of lifespan to establish the influence of YBR238C on TORC1 signaling and mitochondrial function. While valuable, these assays leave questions as to the molecular mechanisms by which YBR238C functions. As such, this manuscript establishes that ybr238c is rapamycin responsive and influences CLS, but the molecular mechanisms by which it affects mitochondrial activity and TORC1 signaling remain to be elucidated.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Caflisch and coworkers investigate the methyltransferase activity of the complex of methyltransferase-like proteins 3 and 14 (METTL3-14). To obtain an high resolution description of the complete catalytic cycle they have carefully designed a combination of experiments and simulations. Starting from the identification of bisubstrate analogues (BAs) as binder to stabilise a putative transition state of the reaction they have determined multiple crystal structures and validated relevant interactions by mutagenesis and enzymatic assays.

      Using the resolved structure and classical MD simulations they obtained a kinetic picture of the binding and release of the substrates. Of note, they accumulate very good statistics on these processes using 16 simulation replicates over a time scale of 500 ns. To compare the time scale of the release of the products with that of the catalytic step they performed state-of-the-art QM/MM free energy calculations (testing multiple levels of theory) and obtain a free energy barrier that indicates how the release of the product is slower than the catalytic step.

      Strengths:<br /> All the work proceeds through clear hypothesis testing based on a combination of literature and new results. Eventually, this allows them to present in Figure 10 a detailed step-by-step description of the catalytic cycle. The work is very well crafted and executed.

    1. Reviewer #2 (Public Review):

      The authors have studied in detail the embryogenesis of the ametabolan insect Thermobia domestica. They have also measured the levels of the two most important hormones in insect development: juvenile hormone (JH) and ecdysteroids. The work then focuses on JH, whose occurrence concentrates in the final part (between 70 and 100%) of embryo development. Then, the authors used a precocene compound (7-ethoxyprecocene, or 7EP) to destroy the JH producing tissues in the embryo of the firebrat T. domestica, which allowed to unveil that this hormone is critically involved in the last steps of embryogenesis. The 7EP-treated embryos failed to resorb the extraembryonic fluid and did not hatch. More detailed observations showed that processes like the maturational growth of the eye, the lengthening of the foregut and posterior displacement of the midgut, and the detachment of the E2 cuticle, were impaired after the 7EP treatment. Importantly, a treatment with a JH mimic subsequent to the 7EP treatment restored the correct maturation of both the eye and the gut. It is worth noting that the timing of JH mimic application was essential for correcting the defects triggered by the treatment with 7EP.

      This is a relevant result in itself since the role of JH in insect embryogenesis is a controversial topic. It seems to have an important role in hemimetabolan embryogenesis, but not so much in holometabolans. Intriguingly, it appears important for hatching, an observation made in hemimetabolan and in holometabolan embryos. Knowing that this role was already present in ametabolans is relevant from an evolutionary point of view, and knowing exactly why embryos do not hatch in the absence of JH, is relevant from the point of view of developmental biology.

      Then, the authors describe a series of experiments applying the JH mimic in early embryogenesis, before the natural peak of JH occurs, and its effects on embryo development. Observations were made under different doses of JHm, and under different temporal windows of treatment. Higher doses triggered more severe effects, as expected, and different windows of application produced different effects. The most used combination was 1 ng JHm applied 1.5 days AEL, checking the effects 3 days later. Of note, 1.5 days AEL is about 15% embryonic development, whereas the natural peak of JH occurs around 85% embryonic development. In general, the ectopic application of JHm triggered a diversity of effects, generally leading to an arrest of development. Intriguingly, however, a number of embryos treated with 1 ng of JHm at 1.5 days AEL showed a precocious formation of myofibrils in the longitudinal muscles. Also, a number of embryos treated in the same way showed enhanced chitin deposition in the E1 procuticle and showed an advancement of at least a day in the deposition of the E2 cuticle.

      While the experiments and observations are done with great care and are very exhaustive, I am not sure that the results reveal genuine JH functions. The effects triggered by a significant pulse of ectopic JHm when the embryo is 15% of the development will depend on the context: the transcriptome existing at that time, especially the cocktail of transcription factors. This explains why different application times produce different effects. This also explains why the timing of JHm application was essential for correcting the effects of 7EP treatment. In this reasoning, we must consider that the context at 85% development, when the JH peaks in natural conditions and plays its genuine functions, must be very different from the context at 15% development, when the JHm was applied in most of the experiments. In summary, I believe that the observations after the application of JHm reveal effects of the ectopic JHm, but not necessarily functions of the JH. If so, then the subsequent inferences made from the premise that these ectopic treatments with JHm revealed JH functions are uncertain and should be interpreted with caution.

      Those inferences affect not only the "JH and the progressive nature of embryonic molts" section, but also, the "Modifications in JH function during the evolution of hemimetabolous and holometabolous life histories" section, and the entire "Discussion". In addition to inferences built on uncertain functions, the sections mentioned, especially the Discussion, I think suffer from too many poorly justified speculations. I love speculation in science, it is necessary and fruitful. But it must be practiced within limits of reasonableness, especially when expressed in a formal journal.

      Finally, In the section "Modifications in JH function during the evolution of hemimetabolous and holometabolous life", it is not clear the bridge that connects the observations on the embryo of Thermobia and the evolution of modified life cycles, hemimetabolan and holometabolan.

    1. Reviewer #2 (Public Review):

      In "Lipid discovery enabled by sequence statistics and machine learning" Christensen et al. address an important question: how can bacteria modify lipid charges to produce cationic lipids, prone to confer resistance to cationic antibiotics? One of the enzymes involved in this process is MprF, which can, through the transfer of amino acids, in particular, lysine, from charged tRNA modify the charge of anionic membrane phospholipid from negative to positive. Recent works have shown that MprF can also modify another substrate, glycolipid glucosyl-diacylglycerol, which is neutral. These findings immediately raise two questions: what are the determinants in the MrpF sequence controlling the lipid substrates it can modify? Are there other substrates for MrpF, so far unknown?

      Christensen et al. address both of these questions in an elegant way, combining sequence analysis with machine-learning methods and experimental characterisation of the enzymatic products through mass spectrometry. Using restricted Boltzmann machines (RBM), an unsupervised architecture extracting statistical features from the sequence data, they identify putative amino-acid motifs along the MprF sequences possibly related to the substrate identity, select some bacterial species whose wild-type sequence contains those motifs, and validate the biological role of the motifs by identifying the produced lipids. Remarkably, with this approach, the authors find a novel cationic lipid with two glucosyl groups.

      Besides these new results on MrpF and its operation, the present work is appealing, as it shows that the functional characterisation of a very small number of proteins (here, three!) combined with the guided classification of homologous sequence data with appropriate machine-learning methods can lead to the discovery of new functionalities.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This work concerns the evolution of ZDBF2 imprinting in mammalian species via initiation of GPR1 antisense (AS) transcription from a lineage-specific long-terminal repeat (LTR) retrotransposon. It extends previous work describing the mechanism of ZDBF2 imprinting in mice and humans by demonstrating conservation of GPR1-AS transcripts in rabbits and non-human primates. By identifying the origin of GPR1-AS transcription as the LTR MER21C, the authors claim to account for how imprinting evolved in these species but not in those lacking the MER21C insertion. This illustrates the principle of LTR co-option as a means of evolving new gene regulatory mechanisms, specifically to achieve parent-of-origin allele specific expression (i.e., imprinting). Examples of this phenomenon have been described previously, but usually involve initiation of transcription during gametogenesis rather than post-fertilization, as in this work. The findings of this paper are therefore relevant to biologists studying imprinted genes or interested more generally in the evolution of gene regulatory mechanisms.

      Strengths:<br /> (1) The authors convincingly demonstrate the existence of GPR1-AS orthologs in specific mammalian lineages using deeply sequenced, stranded, and paired-end RNA-seq libraries collected from diverse mammalian species.

      Weaknesses:<br /> (1) The authors do not directly demonstrate imprinting of the ZDBF2 locus in rabbits and non-human primates, which would greatly strengthen their model linking ZDBF2 imprinting to transcription from MER21C.

      (2) Experimental evidence linking GPR1-AS transcription to ZDBF2 imprinting in rabbits and non-human primates is currently lacking. Consideration should be given to the challenges associated with studying non-model species and manipulating repeat sequences, which may explain the absence of experimental evidence in this case. Further, this mechanism is established in humans and mice, so the authors' model is arguably sufficiently supported merely by the existence of GPR1-AS orthologs in other mammalian lineages.

    1. Reviewer #2 (Public Review):

      The manuscript by Petitgas et al demonstrates that loss of function for the only enzyme responsible for the purine salvage pathway in fruit-flies reproduces the metabolic and neurologic phenotypes of human patients with Lesch-Nyhan disease (LND). LND is caused by mutations in the enzyme HGPRT, but this enzyme does not exist in fruit-flies, which instead only have Aprt for purine recycling. They demonstrate that mutants lacking the Aprt enzyme accumulate uric acid, which like in humans can be rescued by feeding flies allopurinol, and have decreased longevity, locomotion and sleep impairments and seizures, with striking resemblance to HGPRT loss of function in humans. They demonstrate that both loss of function throughout development or specifically in the adult ubiquitously or in all neurons, or dopaminergic neurons, mushroom body neurons or glia, can reproduce the phenotypes (although knock-down in glia does not affect sleep). They show that the phenotypes can be rescued by over-expressing a wild-type form of the Aprt gene in neurons. They identify a decrease in adenosine levels as the cause underlying these phenotypes, as adenosine is a neurotransmitter functioning via the purinergic adenosine receptor in neurons. In fact, feeding flies throughout development and in the adult with either adenosine or m6A could prevent seizures. They also demonstrate that loss of adenosine caused a secondary up-regulation of ENT nucleoside transporters and of dopamine levels, that could explain the phenotypes of decreased sleep and hyperactivity and night. Finally, they provide the remarkable finding that over-expression of the human mutant HGPRT gene but not its wild-type form in neurons impaired locomotion and induced seizures. This means that the human mutant enzyme does not simply lack enzymatic activity, but it is toxic to neurons in some gain-of-function form. Altogether, these are very important and fundamental findings that convincingly demonstrate the establishment of a Drosophila model for the scientific community to investigate LND, to carry out drug testing screens and find cures.

      The authors have dealt with my concerns satisfactorily and have explained the instances in which resolving experimentally the criticisms raised would require a work effort well beyond the scope of a revision for this manuscript.

    1. Reviewer #2 (Public Review):

      Clark and Nolan's study aims to test whether the stability of grid cell firing fields is associated with better spatial behavior performance on a virtual task. Mice were trained to stop at a rewarded location along a virtual linear track. The rewarded location could be marked by distinct visual stimuli or be unmarked. When the rewarded location was unmarked, the animal had to estimate its distance run from the beginning of the trial to know where to stop. When the mouse reached the end of the virtual track, it was teleported back to the start of the virtual track.

      The authors found that grid cells could fire in at least two modes. In the "task-anchored" mode, grid firing fields had stable positions relative to the virtual track. In the "task-independent" mode, grid fields were decoupled from the virtual cues and appeared to be located as a function of distance run on the track. Importantly, on trials in which the rewarded location was unmarked, the behavioral performance of mice was better when grid cells fired in the "task-anchored" mode. When a unique visual cue marked the reward location, navigation performance was not correlated with the grid cells' firing mode.

      This study is very timely as there is a pressing need to identify/delimit the contribution of grid cells to spatial behaviors. More studies are needed in which grid cell activity is linked to navigational abilities. The link proposed by Clark and Nolan between "task-anchored" coding by grid cells and navigational performance is a significant step toward better understanding how grid cell activity might support behavioral behavior. The results also highlight that some forms of navigation (approaching a location marked by a visual cue) might be less dependent on the anchoring of grid cells.

      It should be noted that the study by Clark and Nolan is correlative. Therefore, the effect of selective manipulations of grid cell activity on the virtual task will be needed to evaluate whether the activity of grid cells is causally linked to the behavioral performance on this task. A previous study by the same research group showed that inactivating the synaptic output of stellate cells of the medial entorhinal cortex affected mice's performance of the same virtual task (Tennant et al., 2018). Although this manipulation likely affects non-grid cells, it is still one of the most selective manipulations of grid cells that are currently available.

      It is interesting to consider how grid cells remain anchored to virtual cues. Recent work shows that grid cell activity spans the surface of a torus (Gardner et al., 2022). A run on the track can be mapped to a trajectory on the torus. Assuming that grid cell activity is updated primarily from self-motion cues on the track and that the grid cell period is unlikely to be an integer of the virtual track length, having stable firing fields on the virtual track likely requires a resetting mechanism taking place on each trial. During this resetting event, the active location on the torus is likely to jump to a new toroidal location, independently of self-motion cues. Future studies in which large numbers of grid cells are recorded could pinpoint at which moment such resetting event occurs on each trial.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Zhang and colleagues use a combination of behavioral, neural, and computational analyses to test an active inference model of exploration in a novel reinforcement learning task.

      Strengths:<br /> The paper addresses an important question (validation of active inference models of exploration). The combination of behavior, neuroimaging, and modeling is potentially powerful for answering this question.

      Weaknesses:<br /> The paper does not discuss relevant work on contextual bandits by Schulz, Collins, and others. It also does not mention the neuroimaging study of Tomov et al. (2020) using a risky/safe bandit task.

      The statistical reporting is inadequate. In most cases, only p-values are reported, not the relevant statistics, degrees of freedom, etc. It was also not clear if any corrections for multiple comparisons were applied. Many of the EEG results are described as "strong" or "robust" with significance levels of p<0.05; I am skeptical in the absence of more details, particularly given the fact that the corresponding plots do not seem particularly strong to me.

      The authors compare their active inference model to a "model-free RL" model. This model is not described anywhere, as far as I can tell. Thus, I have no idea how it was fit, how many parameters it has, etc. The active inference model fitting is also not described anywhere. Moreover, you cannot compare models based on log-likelihood, unless you are talking about held-out data. You need to penalize for model complexity. Finally, even if active inference outperforms a model-free RL model (doubtful given the error bars in Fig. 4c), I don't see how this is strong evidence for active inference per se. I would want to see a much more extensive model comparison, including model-based RL algorithms which are not based on active inference, as well as model recovery analyses confirming that the models can actually be distinguished on the basis of the experimental data.

      Another aspect of the behavioral modeling that's missing is a direct descriptive comparison between model and human behavior, beyond just plotting log-likelihoods (which are a very impoverished measure of what's going on).

      The EEG results are intriguing, but it wasn't clear that these provide strong evidence specifically for the active inference model. No alternative models of the EEG data are evaluated.

      Overall, the central claim in the Discussion ("we demonstrated that the active inference model framework effectively describes real-world decision-making") remains unvalidated in my opinion.

    1. Résumé de la vidéo [00:00:00][^1^][1] - [00:16:42][^2^][2]:

      Cette vidéo est un webinaire présenté par Serge, un représentant syndical du SNAC, qui explique la Dotation Horaire Globale (DHG) dans les établissements scolaires français. Il détaille comment la DHG est calculée, distribuée et utilisée pour organiser les emplois du temps, ainsi que l'importance du Tableau de Répartition des Moyens (TRM) dans la gestion des ressources et la prise de décisions pédagogiques au sein des établissements.

      Points clés: + [00:00:17][^3^][3] Qu'est-ce que la DHG * Définition et rôle + [00:01:03][^4^][4] Calcul de la DHG * Facteurs influençant la DHG + [00:02:04][^5^][5] Temporalité de la DHG * Processus et timing + [00:03:01][^6^][6] Mythes sur la DHG * Clarification des idées reçues + [00:04:01][^7^][7] Importance du TRM * Répartition et impact sur l'établissement + [00:06:07][^8^][8] Processus de décision du TRM * Étapes et implications + [00:08:00][^9^][9] Si le TRM est refusé * Procédures et alternatives + [00:10:36][^10^][10] Responsabilités en cas de refus du TRM * Actions du chef d'établissement + [00:13:01][^11^][11] Conseils pour l'administration * Importance de la participation et de la proposition

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this paper, Zambo and coworkers use a powerful technique, called native holdup, to measure the affinity of the SH3 domain of BIN1 for cellular partners. Using this assay, they combine data using cellular proteins and proline-containing fragments in these proteins to identify 97 distinct direct binding partners of BIN1. They also compare the binding interactome of the BIN1 SH3 domain to the interactome of several other SH3 domains, showing varying levels of promiscuity among SH3 domains. The authors then use pathway analysis of BIN1 binding partners to show that BIN1 may be involved in mitosis. Finally, the authors examine the impact of clinically relevant mutations of the BIN1 SH3 domain on the cellular interactome. The authors were able to compare the interactome of several different SH3 domains and provide novel insight into the cellular function of BIN1. Generally, the data supports the conclusions, although the reliance on one technique and the low number of replicates in each experiment is a weakness of the study.

      Strengths:<br /> The major strength of this paper is the use of holdup and native holdup assays to measure the affinity of SH3 domains to cellular partners. The use of both assays using cell-derived proteins and peptides derived from identified binding partners allows the authors to better identify direct binding partners. This assay has some complexity but does hold the possibility of being used to measure the affinity of the cellular interactome of other proteins and protein domains. Beyond the utility of the technique, this study also provides significant insight into the cellular function of BIN1. The authors have strong evidence that BIN1 might have an undiscovered function in cellular mitosis, which potentially highlights BIN1 as a drug target. Finally, the study provides outstanding data on the cellular binding properties and partners of seven distinct SH3 domains, showing surprising differences in the promiscuity of these proteins.

      Weaknesses:<br /> There are three major weaknesses of the study. First, the authors rely completely on a single technique to measure the affinity of the cellular interactome. The native holdup is a relatively new technique that is powerful yet relatively unproven. However, it appears to have the capacity to measure the relative affinity of proteins. Second, the authors appear to use a relatively small number of replicates for the holdup assays. There is no information in the legends about the number of replicates but the materials and methods suggest the native holdup data is from a single experimental replicate with multiple technical replicates. Finally, the authors' data using cellular proteins and fragments show that the affinity of the whole proteins is 5-20 fold lower than individual proline-containing fragments. The authors state that this difference suggests that there is cooperativity between different proline-rich sites of the binding partners of BIN1, yet BIN1 only has one SH3 domain. It is unclear what the molecular mechanism of the cooperative interaction would be exactly since there would be only one SH3 domain to bind the partner. An alternative interpretation would be that the BIN 1 SH3 domain requires sequences outside of the short proline-rich regions for high-affinity interactions with cellular partners, a hypothesis that is supported by other studies.

    1. Reviewer #2 (Public Review):

      Summary:

      Chew et al describe interaction of the flavivirus protein NS1 with HDL using primarily cryoEM and mass spec. The NS1 was secreted from dengue virus infected Vero cells, and the HDL were derived from the 3% FBS in the culture media. NS1 is a virulence factor/toxin and is a biomarker for dengue infection in patients. The mechanisms of its various activities in the host are incompletely understood. NS1 has been seen in dimer, tetramer and hexamer forms. It is well established to interact with membrane surfaces, presumably through a hydrophobic surface of the dimer form, and the recombinant protein has been shown to bind HDL. In this study, cryoEM and crosslinking-mass spec are used to examine NS1 secreted from virus-infected cells, with the conclusion that the sNS1 is predominantly/exclusively HDL-associated through specific contacts with the ApoA1 protein.

      Strengths: The experimental results are consistent with previously published data.

      Weaknesses:

      CryoEM:<br /> Some of the neg-stain 2D class averages for sNS1 in Fig S1 clearly show 1 or 2 NS1 dimers on the surface of a spherical object, presumably HDL, and indicate the possibility of high-quality cryoEM results. However, the cryoEM results are disappointing. The cryo 2D class averages and refined EM map in Fig S4 are of poor quality, indicating sub-optimal grid preparation or some other sample problem. Some of the FSC curves (2 in Fig S7 and 1 in Fig S6) have extremely peculiar shapes, suggesting something amiss in the map refinement. The sharp drop in the "corrected" FSC curves in Figs S5c and S6c (upper) indicate severe problems. The stated resolutions (3.42 & 3.82 Å) for the sNS1ts-Fab56.2 are wildly incompatible with the images of the refined maps in Figs 3 & S7. At those resolutions, clear secondary structural elements should be visible throughout the map. From the 2D averages and 3D maps shown in the figures, this does not seem to be the case. Local resolution maps should be shown for each structure.

      The samples were clearly challenging for cryoEM, leading to poor quality maps that were difficult to interpret. None of the figures are convincing that NS1, Ab56.2 or Fab56.2 are correctly fit into EM maps. There is no indication of ApoA1 helices. Details of the fit of models to density for key regions of the higher-resolution EM maps should be shown and the models should be deposited in the PDB. An example of modeling difficulty is clear in the sNS1ts dimer with bound Fab56.2 (figs 3c & S7e). For this complex, the orientation of the Fab56.2 relative to the sNS1ts dimer in this submission (Fig 3c) is substantially different than in the bioRxiv preprint (Fig 3c). Regions of empty density in Fig 3c also illustrate the challenge of building a model into this map.

      Mass spec:<br /> Crosslinking-mass spec was used to detect contacts between NS1 and ApoA1, providing strong validation of the sNS1-HDL association. As the crosslinks were detected in a bulk sample, they show that NS1 is near ApoA1 in many/most HDL particles, but they do not indicate a specific protein-protein complex. Thus, the data do not support the model of an NS1-ApoA1 complex in Fig 4d. Further, a specific NS1-ApoA1 interaction should have evidence in the EM maps (helical density for ApoA1), but none is shown or mentioned. If such exists, it could perhaps be visualized after focused refinement of the map for sNS1ts-HDL with Fab56.2 (Fig S7d). The finding that sNS1-ApoA1 crosslinks involved residues on the hydrophobic surface of the NS1 dimer confirms previous data that this NS1 surface engages with membranes and lipids.

      Sample quality:<br /> The paper lacks any validation that the purified sNS1 retains established functions, for example the ability to enhance virus infectivity or to promote endothelial dysfunction. Peculiarities include the gel filtration profiles (Fig 2a), which indicate identical elution volumes (apparent MWs) for sNS1wt-HDL bound to Ab562 (~150 kDa) and to the ~3X smaller Fab56.2 (~50 kDa). There should also be some indication of sNS1wt-HDL pairs crosslinked by the full-length Ab, as can be seen in the raw cryoEM micrograph (Fig S5b).

      Obtaining high quality structures is often more demanding of sample integrity than are activity assays. Given the low quality of the cryoEM maps, it's possible that the acidification step in immunoaffinity purification damaged the HDL complex. No validation of HDL integrity, for example with acid-treated HDL, is reported. Acid treatment is perhaps discounted by a statement (line 464) that another group also used immunoaffinity purification in a recent study (ref 20) reporting sNS1 bound to HDL. However the statement is incorrect; the cited study used affinity purification via a strep-tag on recombinant sNS1.

      Discussion:<br /> The Discussion reflects a view that the NS1 secreted from virus-infected cells is a 1:1 sNS1dimer:HDL complex with the specific NS1-ApoA1 contacts detected by crosslinking mass spec. This is inconsistent with both the neg-stain 2D class average with 2 sNS1 dimers on an HDL (Fig S1c) and with the recent study of Flamand & co-workers showing 1-3 NS1 dimers per HDL (ref 20). It also ignores the propensity of NS1 to associate with membranes and lipids. It is far more likely that NS1 association with HDL is driven by these hydrophobic interactions than by specific protein-protein contacts. A lengthy Discussion section (lines 461-522) includes several chemically dubious or inconsistent statements, all based on the assumption that specific ApoA1 contacts are essential to NS1 association with HDL and that sNS1 oligomers higher than the dimer necessarily involve ApoA1 interaction, conclusions that are not established by the data in this paper.

      Additional comments on the revised manuscript:

      Comments on the structures:

      The authors kindly provided their fitted atomic models for the 2 reported structures. The EM maps are available in the EMDB. Based on these materials, the derived structures are not well supported due to problems with the models, the maps, and the fit of models to maps.

      Quick inspection revealed that the models for both structures are implausible due to a large steric clash of Fab56.2 and the end of the NS1. The Fab and NS1 protein backbones interpenetrate by nearly 20 Å. This substantial overlap exists for all 3 Fab56.2-NS1 interactions in the 2 structures, and is also visible in the perpendicular views of the NS1 dimer with 2 bound Fab56.2 in Fig. 2c. It appears that the Fab56.2 model was jammed into the NS1 model in order to bring all domains inside the density envelope at the threshold chosen to display the map. The poor fit of model to map is also clear in several protruding density regions without any model.

      The fits of both atomic models to the maps are questionable because<br /> - The maps suffer from severe preferred orientation problems, as seen in the streaky tubes of density. The streaks in both maps do not match the NS1 beta strands of the fitted models.<br /> - The shape of the modeled ApoA1 helical ring surrounding the HDL does not match the shape of the EM density. In some regions, the ApoA1 helices are inside the rather strong density for the spherical HDL, but in other regions the helices are outside the density.<br /> - Both maps have regions of strong density that are adjacent to NS1 but lack any protein model, while other parts of the structure, including the beta-roll domain, lack density.<br /> - The claimed 4.3-Å resolution of the NS1-Fab56.2 complex is wildly overstated. The local resolution of ~2.5 Å for the "best" part of the structure (Supp Fig. 7E) appears to pertain to the beta strands at the center of the NS1 dimer. However, these density streaks do not match the beta strands of the fit model.<br /> - The manuscript lacks statistics on the fit of model to map. A standard cryo-EM "Table 1" should include more than is presented in Supp Table 1. The fitted model for at least the higher resolution structure should be deposited in the PDB.

      Comments on the structure interpretation:

      By now it should be abundantly clear that the oligomer state of NS1 is dynamic and highly sensitive to environmental conditions and to each sample's "history". For the reasons pointed out by reviewer 1, it is not clear that the immunoaffinity purification method captured all forms of sNS1 equally. Thus, the authors insistence that NS1 secreted from virus-infected cells is predominantly bound to HDL particles in a ratio of 1 NS1 dimer per HDL is not well supported. They employ similar arguments to challenge the discovery of sNS1 as a lipoprotein particle (PNAS 2011), contending that the 2011 finding was an artefact of recombinant NS1 production and is irrelevant to sNS1 from a virus infection. The several published structures of NS1 oligomers reveal a large degree of asymmetry in dimer-dimer interaction, consistent with the ability of NS1 to dynamically associate with a variety of hydrophobic entities.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Protein kinases have been very successfully targeted with small molecules for several decades, with many compounds (including clinical drugs) bringing about conformational changes that are also relevant to broader interactions with the cellular signaling networks that they control. The authors set out to develop a targeted biosensor approach to evaluate distinct kinase conformations in cells for multiple kinases in the context of incoming signals, other proteins, and small molecule binding, with a broad goal of using the KinCon assay to confirm (and perhaps predict) how drug binding or signal perception changes conformations and outputs in the presence of cellular complexes. This work will likely impact on the field with cellular reporters of kinase conformations a useful addition to the toolbox.

      Strengths:<br /> The KinCon reporter platform has previously been validated for well-known kinases; in this study, the team evaluates how to employ a full-length kinase (often containing a known pathlogical mutation). The sensitive detection method is based on a Renilla luciferase (RLuc)protein fragment complementation assay, where individual RLuc fragments are present at the N and the C terminus of the kinase. This report, which is both technical and practical in nature, co-expresses the kinase with known interactors (at low levels) in a high throughput format and then performs pharmacological evaluation with known small molecule kinase modulators. This is explained nicely in Figure 1, as are the signaling pathways that are being evaluated. Data demonstrate that V600E BRAF iexposed to vemurafenib is converted to the inactive conformation, as expected. In contrast, the more closed STRAD𝛼 and LKB1 KinCon conformations appear to represent the more active state of the complexed kinase, and a W308C mutation (evaluated alongside others) reverses this effect. The authors then evaluated necroptotic signaling in the context of RIPK1/3 under conditions where RIPK1 and RIPK3 are active, confirming that the reporters highlight the active states of both kinases. Exposure to compounds that are known to engage with the RIPK1 arm of the pathway induce bioluminescence changes consistent with the opening (inactivation) of the kinase. Finally, the authors move to an important drug target for which clinical drugs have arrived relatively recently; the CDK4/6 complexes. These are of additional importance because kinase-independent functions also exist for CDK6, and the effects of drugs in cells usually rely on a downstream marker, rather than demonstration of direct protein complex engagement. The data presented are interpreted as the formation of complexes with the CDK inhibitor p16INK4a; reducing the affinity of the interaction through mutations drives an inactive conformation, whilst the application of CDK4/6 inhibitors does not, implying binding to the active conformation.

      Weaknesses:<br /> (1) The work is very solid, uses examples from the literature, and also extends into new experimental space. An obvious weakness is mentioned by the authors for the CKDK data, in that measurements with Cyclin D (the activating subunit) are not characterised, although Cyclin D might be assumed to be present.

      (2) The work with the trimeric LKB1 complex involves pseudokinase, STRADalpha, whose conformation is also examined as a function of LKB1 status; since STRAD is an activator of LKB1. A future goal should be the evaluation of the complex in the presence of STRAD inhibitory/activating small molecules.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Patsy R. Tomlinson et al; investigated the impact of different p85 alpha variants associated with SHORT syndrome or APDS2 on insulin-mediated signaling in dermal fibroblasts and preadipocytes. They find no evidence of hyperactive PI3K signalling monitored by pAKT in APDS2 patient-derived dermal fibroblast cells. In these cells p110 alpha protein levels were comparable to levels in control cells, however, the p110 delta protein levels were strongly reduced. Remarkably, the truncated APDS2-causal p85 alpha variant was less abundant in these cells than p85 alpha wildtype. Afterwards, they studied the impact of ectopically expressed p85 alpha variants on insulin-mediated PI3K signaling in 3T3-L1 preadipocytes. Interestingly they found that the truncated APDS2-causal p85 alpha variant impaired insulin-induced signaling. Using immunoprecipitation of p110 alpha they did not find truncated APDS2-causal p85 alpha variant in p110 alpha precipitates. Furthermore, by immunoprecipitating IRS1 and IRS2, they observed that the truncated APDS2-causal p85 alpha variant was very abundant in IRS1 and IRS2 precipitates, even in the absence of insulin stimulation. These important findings add in an interesting way possible mechanistic explanation for the growing number of APDS2 patients described with features of SHORT syndrome.

      Strengths:<br /> Based on state-of-the-art functional investigation the authors propose indicating a loss-of-function activity of the APDS2-disease causing p85 alpha variant in preadipocytes providing a possible mechanistic explanation for the growing number of APDS2 patients described with features of SHORT syndrome.

      Weaknesses:<br /> Related to Figure 1: PIK3R1 expression not only by Western blotting but also by quantifying the RNA transcripts, e.g. mutant and wildtype transcripts, was not performed. RNA expression analysis would further strengthen the suggested impaired stabilization/binding.

      Related to Figure 2: As mentioned by the authors in the manuscript the expression of p110 delta but also p110 beta in 3T3-L1 preadipocytes ectopically expressing p85 alpha variants has not been analyzed.

      Furthermore, a direct comparison of the truncated APDS2-causal p85 alpha variant with SHORT syndrome -causal p85 alpha variants in regard to pAKT level, and p85 alpha expression level has not been performed.

      These investigations would further strengthen the data.

      Related to Figure 3:<br /> The E489K and Y657X p85 alpha variants should be also tested in combination with p110 delta in the PI3K activity in vitro assay. This would help to further decipher the overall impact, especially of the E489K variant.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This paper consists of mostly descriptive data, judged from alpha-mannosidase-treated samples, in which they found an increase in core fucose, a product of Fut 8.

      Strengths:<br /> This paper is interesting in the clinical field, but unfortunately the data is mostly descriptive and does not have a significant impact on the scientific community in general.

      Weaknesses:<br /> If core fucose is increased, at least the target glycan molecules of core fucose should be evaluated. They also found an increase in NO, suggesting that inflammatory processes also play an important role in OA in addition to glycan changes.<br /> It has already been reported that core fucose is decreased by administration of alpha-mannosidase inhibitors. Therefore, it is expected that alphaa-mannosidase administration increases core fucose.

    1. Review #2 (Public Review)

      The authors use a dual optical trap instrument combined with 2-color fluorescence imaging to analyze the diffusion of RSC and ISW2 on DNA, both in the presence and absence of nucleosomes, as well as long-range nucleosome sliding by these remodelers. This allowed them to demonstrate that both enzymes can participate in 1D diffusion along DNA for rather long ranges, with ISW2 predominantly tracking the DNA strand, while RSC diffusion involves hopping. In an elegant two-color assay, the authors were able to analyze interactions of diffusing remodeler molecules, both of the same or different types, observing their collisions, co-diffusion and bypassing. The authors demonstrate that nucleosomes act as barriers for remodeler diffusion, either repelling or sequestering them upon collision. In the presence of ATP, they observed surprisingly processive unidirectional nucleosome sliding with a strong bias in the direction opposite to where the remodeler approached the nucleosome from for ISW2. These results have fundamentally important implications for the mechanism of nucleosome positioning at promoters in vivo, will be of great interest for the scientific community, and will undoubtedly spark exciting future research

    1. Reviewer #2 (Public Review):

      Summary:<br /> Lin Y., Tao E., et al. used multiscale MD simulations to show that PI(4,5)P2 binds stably to an inactivated state of Nav channels at a conserved site within the DIV S4-S5 linker, which couples the voltage sensing domain (VSD) to the pore. The authors hypothesized that PI(4,5)P2 prolongs inactivation by binding to the same site where the C-terminal tail is proposed to bind during recovery from inactivation. They convincingly showed that PI(4,5)P2 reduces the mobility of both the DIV S4-S5 linker and the DIII-IV linker, thus slowing the conformational changes required for the channel to recover to the resting state. They also conducted MD simulations to show that phosphoinositides bind to VSD gating charges in the resting state of Nav channels. These interactions may anchor VDS at the resting state and impede its activation. Their results provide a mechanism by which phosphoinositides alter the voltage dependence of activation and the recovery rate from inactivation, an important step for developing novel therapies to treat Nav-related diseases. However, the study is incomplete lacks the expected confirmatory studies which are relevant to such proposals.

      Strengths:<br /> The authors identified a novel binding between phosphoinositides and the VSD of Nav and showed that the strength of this interaction is state-dependent. Based on their work, the affinity of PIPs to the inactivated state is higher than the resting state. This work will help pave the way for designing novel therapeutics that may help relieve pain or treat diseases like arrhythmia, which may result from a leftward shift of the channel's activation.

      Weaknesses:<br /> However, the study lacks the expected confirmatory studies relevant to such proposals. For example, one would expect that the authors would mutate the positive residues that they claim to make interactions with phosphoinositides to show that there are much fewer interactions once they make these mutations. Another point is that the authors found that the main interaction site of PIPs with Nav1.4 is the VSD-DIV and DIII-DIV linker. This interaction is expected to delay fast inactivation if it happens at the resting state. The authors should make a resting state model of the Nav1.4 channel to explain the recent experimental data showing that PIP2 delays the activation of Nav1.4, with almost no effect on the voltage dependence of fast inactivation.

      The reviewers answered most of my concerns about the first version of the manuscript.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This manuscript clearly shows that Trypanosoma PKA is controlled by nucleoside analogues rather than cyclic nucleotides, which are the primary allosteric effectors of human PKA and PKG. The authors demonstrate that the inosine, guanosine, and adenosine nucleosides bind with high affinity and activate PKA in the tropical pathogens T. brucei, T. cruzi and Leishmania. The underlying determinants of nucleoside binding and selectivity are dissected by solving the crystal structure of T. cruzi PKAR(200-503) and T. brucei PKAR(199-499) bound to inosine at 1.4 Å and 2.1 Å resolution and through comparative mutational analyses. Of particular interest is the identification of a minimal subset of 2-3 residues that controls nucleoside vs. cyclic nucleotide specificity.

    1. Reviewer #2 (Public Review):

      Summary:

      Jablonowski and colleagues explored altered pre-mRNA splicing and metabolism in MYC-driven neuroblastoma cell lines. They focused on the role of JMJD6 assessing cellular transformation, for example through interactions with RNA-binding proteins. Moreover, the study examined JMJD6's impact on the splicing of glutaminase (GLS), crucial in neuroblastoma cell metabolism. It also connected JMJD6 to the anti-proliferative effects of indisulam, a compound targeting RBM39 (splicing factor interacting with JMJD6).

      Overall, the findings presented by Jablonowski et al. begin to illuminate a cancer-promoting metabolic, and potentially, a protein synthesis suppression program that may be linked to alternative pre-mRNA splicing through the action of JMJD6 - downstream of MYC. This discovery can provide further evidence for considering JMJD6 as a potential therapeutic target for the treatment of MYC-driven cancers.

      Strengths:

      Alternative Splicing Induced by JMJD6 Knockdown: the study presents evidence for the role of JMJD6 in alternative splicing in neuroblastoma cells. Specifically, the RNA immunoprecipitation experiments demonstrated a significant shift from the GAC to the KGA GLS isoform upon JMJD6 knockdown. Moreover, a significant correlation between JMJD6 levels and GAC/KGA isoform expression was identified in two distinct neuroblastoma cohorts. This suggests a causative link between JMJD6 activity and isoform prevalence.

      Physical Interaction of JMJD6 in Neuroblastoma Cells: The paper provides preliminary insight into the physical interactome of JMJD6 in neuroblastoma cells. This offers a potential mechanistic avenue for the observed effects on metabolism and protein synthesis and could be exploited for a deeper investigation into the exact nature, and implications of neuroblastoma-specific JMJD6 protein-protein interactions.

      Weaknesses:

      There are several areas that would benefit from improvements with regards to the neuroblastoma modelling strategy, lack of in vivo data, and depth of mechanistic investigation. While the need for additional experimental evidence in these areas remains (as highlighted in the initial review), the authors have now acknowledged several relevant limitations and provided a paragraph discussing future experimental work.

    1. Reviewer #2 (Public Review):

      The authors wanted to address the differential processing of GSDME by caspase 3 and 7, finding that while in humans GSDME is only processed by CASP3, Takifugu GSDME, and other mammalian can be processed by CASP3 and 7. This is due to a change in a residue in the human CAPS7 active site that abrogates GSDME cleavage. This phenomenon is present in humans and other primates, but not in other mammals such as cats or rodents. This study sheds light on the evolutionary changes inside CASP7, using sequences from different species. Although the study is somehow interesting and elegantly provides strong evidence of this observation, it lacks the physiological relevance of this finding, i.e. on human side, mouse side, and fish what are the consequences of CASP3/7 vs CASP3 cleavage of GSDME.

      Fish also present a duplication of GSDME gene and Takifugu present GSDMEa and GSDMEb. It is not clear in the whole study if when referring to TrGSDME is the a or b. This should be stated in the text and discussed in the differential function of both GSDME in fish physiology (i.e. PMIDs: 34252476, 32111733 or 36685536).

    1. Reviewer #2 (Public Review):

      Summary:<br /> Proteins that bind to double-stranded RNA regulate various cellular processes, including gene expression and viral recognition. Such proteins often contain multiple double-stranded RNA-binding domains (dsRBDs) that play an important role in target search and recognition. In this work, Chug and colleagues have characterized the backbone dynamics of one of the dsRBDs of a protein called TRBP2, which carries two tandem dsRBDs. Using solution NMR spectroscopy, the authors characterize the backbone motions of dsRBD2 in the absence and presence of dsRNA and compare these with their previously published results on dsRBD1. The authors show that dsRBD2 is comparatively more rigid than dsRBD1 and claim that these differences in backbone motions are important for target recognition.

      Strengths:<br /> The strengths of this study are multiple solution NMR measurements to characterize the backbone motions of dsRBD2. These include 15N-R1, R2, and HetNOE experiments in the absence and presence of RNA and the analysis of these data using an extended-model-free approach; HARD-15N-experiments and their analysis to characterize the kex. The authors also report differences in binding affinities of dsRBD1 and dsRBD2 using ITC and have performed MD simulations to probe the differential flexibility of these two domains.

      Weaknesses:<br /> While it may be true that dsRBD2 is more rigid than dsRBD1, the manuscript lacks conclusive and decisive proof that such changes in backbone dynamics are responsible for target search and recognition and the diffusion of TRBP2 along the RNA molecule. To conclusively prove the central claim of this manuscript, the authors could have considered a larger construct that carries both RBDs. With such a construct, authors can probe the characteristics of these two tandem domains (e.g., semi-independent tumbling) and their interactions with the RNA. Additionally, mutational experiments may be carried out where specific residues are altered to change the conformational dynamics of these two domains. The corresponding changes in interactions with RNA will provide additional evidence for the model presented in Figure 8 of the manuscript. Finally, there are inconsistencies in the reported data between different figures and tables.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This work provides important anatomical features of a new species from the Lower Cambrian, which helps advance our understanding of the evolutionary origins of animal body plans. The authors interpreted that the new species possessed a bilateral body covered with cuticular polygonal reticulation and a ventral mouth. Based on cladistic analyses using maximum likelihood, Bayesian, and parsimony, the new species was placed, along with Saccorhytus, in a sister group ("Saccorhytida") of the Ecdysozoa. The phylogenetic position of Saccorhytida suggests a new scenario of the evolutionary origin of the crown ecdysozoan body plan.

      Strengths:<br /> Although the new species reported in this paper show strange morphologies, the interpretation of anatomical features was based on detailed observations of multiple fossil specimens, thereby convincing at the moment. Morphological data about fossil taxa in the Ediacaran and Early Cambrian are quite important for our understanding of the evolution of body plans (and origins of phyla) in paleontology and evolutionary developmental biology, and this paper represents a valuable contribution to such research fields.

      Weaknesses:<br /> The preservations of the specimens, in particular on the putative ventral side, are not good, and the interpretation of the anatomical features needs to be tested with additional specimens in the future. The monophyly of Cycloneuralia (Nematoida + Scalidophora) was not necessarily well-supported by cladistic analyses, and the evolutionary scenario (Figure 4) also needs to be tested in future works.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors utilized (permeabilized) fibers from muscle samples obtained from brown and black bears, squirrels, and Garden dormice, to provide interesting and valuable data regarding changes in myosin conformational states and energetics during hibernation and different types of activity in summer and winter. Assuming that myosin structure is similar between species then its role as a regulator of metabolism would be similar and not different, yet the data reveal some interesting and perplexing differences between the selected hibernating species.

      Strengths:<br /> The experiments on the permeabilized fibers are complementary, sophisticated, and well-performed, providing new information regarding the characteristics of skeletal muscle fibers between selected hibernating mammalian species under different conditions (summer, interarousal, and winter).

      The studies involve complementary assessments of muscle fiber biochemistry, sarcomeric structure using X-ray diffraction, and proteomic analyses of posttranslational modifications.

      Weaknesses:<br /> It would be helpful to put these findings on permeabilized fibers into context with the other anatomical/metabolic differences between the species to determine the relative contribution of myosin energetics (with these other contributors) to overall metabolism in these different species, including factors such as fat volume/distribution.

    1. Reviewer #2 (Public Review):

      Summary

      In this work, the authors seek to test a version of an old idea, which is that our perception of the world and our understanding of the objects in it are deeply influenced by the nature of our bodies and the kinds of behaviours and actions that those objects afford. The studies presented here muster three kinds of evidence for a discontinuity in the encoding of objects, with a mental "border" between objects roughly of human body scale or smaller, which tend to relate to similar kinds of actions that are yet distinct from the kinds of actions implied by human-or-larger scale objects. This is demonstrated through observers' judgments of the kinds of actions different objects afford; through similar questioning of AI large-language models (LLMs); and through a neuroimaging study examining how brain regions implicated in object understanding make distinctions between kinds of objects at human and larger-than-human scales.

      Strengths 

      The authors address questions of longstanding interest in the cognitive neurosciences -- namely how we encode and interact with the many diverse kinds of objects we see and use in daily life. A key strength of the work lies in the application of multiple approaches. Examining the correlations among kinds of objects, with respect to their suitability for different action kinds, is novel, as are the complementary tests of judgments made by LLMs. The authors include a clever manipulation in which participants are asked to judge action-object pairs, having first adopted the imagined size of either a cat or an elephant, showing that the discontinuity in similarity judgments effectively moved to a new boundary closer to the imagined scale than the veridical human scale. The dynamic nature of the discontinuity hints that action affordances may be computed dynamically, "on the fly", during actual action behaviours with objects in the real world.

      Weaknesses 

      A limitation of the tests of LLMs may be that it is not always known what kinds of training material was used to build these models, leading to a possible "black box" problem. Further, presuming that those models are largely trained on previous human-written material, it may not necessarily be theoretically telling that the "judgments" of these models about action-object pairs shows human-like discontinuities. Indeed, verbal descriptions of actions are very likely to mainly refer to typical human behaviour, and so the finding that these models demonstrate an affordance discontinuity may simply reflect those statistics, rather than providing independent evidence for affordance boundaries.

      The relatively small sample size of the brain imaging experiment, and some design features (such as the task participants performed, and the relatively narrow range of objects tested) provide some limits on the extent to which it can be taken as support for the authors' claims.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This paper reports that mechanical stress from egg accumulation is a biological stimulus that drives the formation of extruded vesicles from the neurons of C. elegans ALMR touch neurons. Using powerful genetic experiments only readily available in the C. elegans system, the authors manipulate oocyte production, fertilization, embryo accumulation, and egg-laying behavior, providing convincing evidence that exopher production is driven by stretch-dependent feedback of fertilized, intact eggs in the adult uterus. Shifting the timing of egg production and egg laying alters the onset of observed exophers. Pharmacological manipulation of egg laying has the predicted effects, with animals retaining fewer eggs having fewer exophers and animals with increased egg accumulation having more. The authors show that egg production and accumulation have dramatic consequences for the viscera, and moving the ALMR process away from eggs prevents the formation of exophers. This effect is not unique to ALMR but is also observed in other touch neurons, with a clear bias toward neurons whose cell bodies are adjacent to the filled uterus. Embryos lacking an intact eggshell with reduced rigidity have impaired exopher production. Acute injection into the uterus to mimic the stretch that accompanies egg production causes a similar induction of exopher release. Together these results are consistent with a model where stretch caused by fertilized embryo accumulation, and not chemical signals from the eggs themselves or egg release, underlies ALMR exopher production seen in adult animals.

      Strengths:<br /> Overall, the experiments are very convincing, using a battery of RNAi and mutant approaches to distinguish direct from indirect effects. Indeed, these experiments provide a model generally for how one would methodically test different models for exopher production. The paper is well-written and easy to understand. I had been skeptical of the origin and purpose of exophers, concerned they were an artefact of imaging conditions, caused by deranged calcium activity under stressful conditions, or as evidence for impaired animal health overall. As this study addresses how and when they form in the animal using otherwise physiologically meaningful manipulations, the stage is now set to address at a cellular level how exophers like these are made and what their functions are.

      Weaknesses:<br /> Not many. The experiments are about as good as could be done. Some of the n's on the more difficult-to-work strains or experiments are comparatively low, but this is not a significant concern because of the number of different, complementary approaches used. The microinjection experiment in Figure 7 is very interesting, there are missing details that would confirm whether this is a sound experiment.

    1. Reviewer #2 (Public Review):

      This study describes a deep mutational scan across CDKN2A using suppression of cell proliferation in pancreatic adenocarcinoma cells as a readout for CDKN2A function. The results are also compared to in silico variant predictors currently utilized by the current diagnostic frameworks to gauge these predictors' performance. The authors also functionally classify CDKN2A somatic mutations in cancers across different tissues.

      This study is a potentially important contribution to the field of cancer variant interpretation for CDKN2A, but is almost impossible to review because of the severe lack of details regarding the methods and incompleteness of the data provided with the paper. We do believe that the cell proliferation suppression assay is robust and works, but when it comes to the screening of the library of CDKN2A variants the lack of primary data and experimental detail prevents assessment of the scientific merit and experimental rigor.

    1. Reviewer #2 (Public Review):

      Clément Mazeaud et al. identified the insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) as a proviral cellular protein that regulates Zika virus RNA replication by modulating the biogenesis of virus-induced replication organelles.

      The absence of IGF2BP2 specifically dampens ZIKV replication without having a major impact on DENV replication. The authors show that ZIKV infection changes IGF2BP2 cellular distribution, which relocates to the perinuclear viral replication compartment. These assays were conducted by infecting cells with an MOI of 10 for 48 hours. Considering the ZIKV life cycle, it is noteworthy that at this time there may be a cytopathic effect. One point of concern arises regarding how the authors can ascertain that the observed change in localization is a consequence of the infection rather than of the cytopathic effect. To address this concern, shorter infection periods (e.g., 24 hours post-infection) or additional controls, such as assessing cellular proteins that do not change their localization or infecting with another flavivirus lacking the IGF2BP2 effect, could be incorporated into their experiments.

      By performing co-immunoprecipitation assays on mock and infected cells that express HA-tagged IGF2BP2, the authors propose that the observed change in IGF2BP2 localization results from its recruitment to the replication compartment by the viral NS5 polymerase and associated with the viral RNA. Given that both IGF2BP2 and NS5 are RNA-binding proteins, it is plausible that their interaction is mediated indirectly through the RNA molecule. Notably, the authors do not address the treatment of lysates with RNAse before the IP assay, leaving open the possibility of this indirect interaction between IGF2BP2 and NS5.

      In in vitro binding assays, the authors demonstrate that the RNA-recognition motifs of the IGF2BP2 protein specifically bind to the 3' nontranslated region (NTR) of the ZIKV genome, excluding binding to the 5' NTR. However, they cannot rule out the possibility of this host protein associating with other regions of the viral genome. Using a reporter ZIKV subgenomic replicon system in IGF2BP2 knock-down cells, they additionally demonstrate that IGF2BP2 enhances viral genome replication. Despite its proviral function, the authors note that the "overexpression of IGF2BP2 had no impact on total vRNA levels." However, the authors do not delve into a discussion of this latter statement.

      In this study, the authors extend their findings by illustrating that ZIKV infection triggers a remodeling of IGF2BP2 ribonucleoprotein complex. They initially evaluate the impact of ZIKV infection on IGF2BP2's interaction with its endogenous mRNA ligands. Their results reveal that viral infection alters the binding of specific mRNA ligands, yet the physiological consequences of this loss of binding in the cell remain unexplored. Additionally, the authors demonstrate that ZIKV infection modifies the IGF2BP2 interactome. Through proteomic assays, they identified 62 altered partners of IGF2BP2 following ZIKV infection, with proteins associated with mRNA splicing and ribosome biogenesis being the most represented. In particular, the authors focused their research on the heightened interaction between IGF2BP2 and Atlastin 2, an ER-shaping protein reported to be involved in flavivirus vesicle packet formation. The validation of this interaction by Western blot assays prompted an analysis of the effect of ZIKV on organelle biogenesis using a newly described replication-independent vesicle packet induction system. Consequently, the authors demonstrate that IGF2BP2 plays a regulatory role in the biogenesis of ZIKV replication organelles.

      Based on these findings and previously published data, the authors propose a model outlining the role of IGF2BP2 in ZIKV infectious cycle, detailing the changes in IGF2BP2 interactions with both cellular and viral proteins and RNAs that occur during viral infection.

      The conclusions drawn in this paper are generally well substantiated by the data. However, it is worth noting that the majority of infections were conducted at a high MOI for 48 hours, spanning more than one infectious cycle. To enhance the robustness of their findings and mitigate potential cell stress, it would be valuable to observe these effects at shorter time intervals, such as 24 hours post-infection.<br /> Furthermore, the assertion regarding the association of IGF2BP2 with NS5 could be strengthened through additional immunoprecipitation (IP) assays. These assays, performed in the presence of RNAse treatment, would help exclude the possibility of an indirect interaction between IGF2BP2 and NS5 (both RNA-binding proteins) through viral RNA, thus providing more confidence in the observed association.

    1. Reviewer #2 (Public Review):

      The manuscript raises interesting observations about the potential evolution of release factors and tRNA to readdress the meaning of stop codons. The manuscript is divided into two parts: The first consists of revealing that the presence of a trp tRNA with an AS of 5bp in Condylostoma magnum is probably linked to contamination in the databases by sequences from bacteria. This is an interesting point which seems to be well supported by the data provided. It highlights the difficulty of identifying active tRNA genes from poorly annotated or incompletely assembled genomes. The second part criticises the fact that a mutation at position S67 of eRF1 is required to allow the UGA codon to be reassigned as a sense codon. As supporting evidence, they provide a phylogenetic study of the eRF1 factor showing that there are numerous ciliates in which this position is mutated, whereas the organism shows no trace of the reassignment of the UGA codon into a sense codon. While this criticism seems valid at first glance, it suffers from the lack of information on the level of translation of UGA codons in the organisms considered. It has been clearly shown that S67G or S67A mutations allow a strong increase in the reading of UGA codons by tRNAs, so this point is not in doubt. However, this has been demonstrated in model organisms, and we now need to determine whether other changes in the translational apparatus could accompany this mutation by modifying its impact on the UGA codon. This is a point partly raised at the end of the manuscript. Indeed, it is quite possible that in these organisms the UGA codon is both used to complete translation and is subject to a high level of readthrough. Actually, in the presence of a mutation at position 67 (or elsewhere), the reading of the UGA can be tolerated under specific stress conditions (nutrient deficiency, oxidative stress, etc.), so the presence of this mutation could allow translational control of the expression of certain genes. On the other hand, it seems obvious to me that there are other ways of reading through a stop codon without mutating eRF1 at position S67. So the absence of a mutation at this position is not really indicative of a level of reading of the UGA codon. Before writing such a strong assertion as that found on page 3, experiments should be carried out. The authors should therefore moderate their assertion.

      To make a definitive conclusion, we would need to be able to measure the level of termination and readthrough in these organisms. So, from my point of view, all the arguments seem rather weak. Moreover, the authors themselves indicate that the conjunction between a Trp tRNA that is efficient at reading the UGA codon and an eRF1 factor that is not efficient at recognising this stop codon could be the key to reassignment.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In the present manuscript, Zhang et al utilize single-nuclei RNA-Seq to investigate the heterogeneity of perirenal adipose tissue. The perirenal depot is interesting because it contains both brown and white adipocytes, a subset of which undergo functional "whitening" during early development. While adipocyte thermogenic transdifferentiation has been previously reported, there remains many unanswered questions regarding this phenomenon and the mechanisms by which it is regulated.

      Strengths:<br /> The combination of UCP1-lineage tracing with the single nuclei analysis allowed the authors to identify four populations of adipocytes with differing thermogenic potential, including an "whitened" adipocyte (mPRAT-ad2) that retains the capacity to rapidly revert to a brown phenotype upon cold exposure. They also identify two populations of white adipocytes that do not undergo browning with acute cold exposure.

      Anatomically distinct adipose depots display interesting functional differences, and this work contributes to our understanding of one of the few brown depots present in humans.

      Weaknesses:<br /> The most interesting aspect of this work is the identification of a highly plastic mature adipocyte population with the capacity to switch between a white and brown phenotype. The authors attempt to identify the transcriptional signature of this ad2 subpopulation, however the limited sequencing depth of single nuclei somewhat lessens the impact of these findings. Furthermore, the lack of any form of mechanistic investigation into the regulation of mPRAT whitening limits the utility of this manuscript. However, the combination of well-executed lineage tracing with comprehensive cross-depot single-nuclei presented in this manuscript could still serve as a useful reference for the field.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors investigated the molecular evolution of members of the gasdermin (GSDM) family. By adding the evolutionary time axis of animals, they created a new molecular phylogenetic tree different from previous ones. The analyzed result verified that non-mammalian GSDMAs and mammalian GSDMAs have diverged into completely different and separate clades. Furthermore, by biochemical analyses, the authors demonstrated non-mammalian GSDMA proteins are cleaved by the host-encoded caspase-1. They also showed mammalian GSDMAs have lost the cleavage site recognized by caspase-1. Instead, the authors proposed that the newly appeared GSDMD is now cleaved by caspase-1.

      Through this study, we have been able to understand the changes in the molecular evolution of GSDMs, and by presenting the cleavage of GSDMAs through biochemical experiments, we have become able to grasp the comprehensive picture of this family molecules. However, there are some parts where explanations are insufficient, so supplementary explanations and experiments seem to be necessary.

      Strengths:

      It has a strong impact in advancing ideas into the study of pyroptotic cell death and even inflammatory responses involving caspase-1.

      Weaknesses:

      Based on the position of mammalian GSDMA shown in the molecular phylogenetic tree (Figure 1), it may be difficult to completely agree with the authors' explanation of the evolution of GSDMA.

      (1) Focusing on mammalian GSDMA, this group and mammalian GSDMD diverged into two clades, and before that, GSDMA/D groups and mammalian GSDMC separated into two, more before that, GSDMB, and further before that, non-mammalian GSDMA, when we checked Figure 1. In the molecular phylogenetic tree, it is impossible that GSDMA appears during evolution again. Mammalian GSDMAs are clearly paralogous molecules to non-mammalian GSDMAs in the figure. If they are bona fide orthologous, the mammalian GSDMA group should show a sub-clade in the non-mammalian GSDMA clade. It is better to describe the plausibility of the divergence in the molecular evolution of mammalian GSDMA in the Discussion section.

      (2) Regarding (1), it is recommended that the authors reconsider the validity of estimates of divergence dates by focusing on mammalian species divergence. Because the validity of this estimation requires recheck of the molecular phylogenetic tree, including alignment.

      (3) If GSDMB and/or GSDMC between non-mammalian GSDMA and mammalian GSDMD as shown in the molecular phylogenetic tree would be cleaved by caspase-1, the story of this study becomes clearer. The authors should try that possibility.

    1. Reviewer #2 (Public Review):

      Summary:

      In this study, Rana and colleagues present interesting findings demonstrating potential beneficial effects of AMPA receptor modulator with ampakines in the context of neurogenic bladder following acute spinal cord injury. Neurogenic bladder dysfunction is characterized by urinary retention and/or incontinence, with limited treatments available. Based on recent observations showing that ampakines improved respiratory function in rats with SCI, the authors explored the use of ampakine CX1739 on bladder and external urethral sphincter (EUS) function and coordination early after mid-thoracic contusion injury. Using continuous flow cystometry and EUS myography the authors showed that ampakine treatment led to decreased peak pressures, threshold pressure, intercontraction interval and voided volume in SCI rats versus vehicle-treated controls. Although CX1739 did not alter EUS EMG burst duration, treatment did lead to EUS EMG bursting at lower bladder pressure compared to baseline. In a subset of rats that did not show regular cystometric voiding, CX1739 treatment diminished non-voiding contractions and improved coordinated EUS EMG bursting. Based on these findings the authors conclude that ampakines may have utility in recovery of bladder function following SCI.

      Strengths and Weaknesses:

      The experimental design is thoughtful and rigorous, providing evaluation of both the bladder and external urethral sphincter function in the absence and presence of ampakine treatment. The data in support of a role for CX1789 treatment in the context of neurogenic bladder are presented clearly, and the conclusions are adequately supported by the findings. The authors have addressed essentially all of the weaknesses related to translational significance, CX1789 half-life, and the use of female animals only in this study.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This manuscript mainly studied the biological effect of tenascin XB (TNXB) on hemophilic arthropathy (HA) progression. Using bioinformatic and histopathological approaches, the authors identified the novel candidate gene TNXB for HA. Next, the authors showed that TNXB knockdown leads to chondrocyte apoptosis, matrix degeneration, and subchondral bone loss in vivo/vitro. Furthermore, AKT agonists promoted extracellular matrix synthesis and prevented apoptosis in TNXB knockdown chondrocytes.

      Strengths:<br /> In general, this study significantly advances our understanding of HA pathogenesis. The authors utilize comprehensive experimental strategies to demonstrate the role of TNXB in cartilage degeneration associated with HA. The results are clearly presented, and the conclusions appear appropriate.

      Weaknesses:<br /> Additional clarification is required regarding the gender of the F8-/- mouse in the study. Is the mouse male or female?

    1. Reviewer #2 (Public Review):

      The following review for a revised manuscript is updated where appropriate and otherwise unchanged for completeness.

      Summary<br /> The paper concerns the phenomenon of continuous flash suppression (CFS), relevant to questions about the extent and nature of subconscious visual processing. Whereas standard CFS studies only measure the breakthrough threshold-the contrast at which an initially suppressed target stimulus with steadily increasing contrast becomes visible-the authors also measure the re-suppression threshold, the contrast at which a visible target with decreasing contrast becomes suppressed. Thus, the authors could calculate suppression depth, the ratio between the breakthrough and re-suppression thresholds. To measure both thresholds, the authors introduce the tracking-CFS method, a continuous-trial design that results in faster, better controlled, and lower-variance threshold estimates compared to the discrete trials standard in the literature. The study finds that suppression depths are similar for different image categories, providing an interesting contrast to previous results that breakthrough thresholds differ for different image categories. The new finding calls for a reassessment of interpretations based solely on the breakthrough threshold that subconscious visual processing is category-specific.

      Strengths<br /> (1) The tCFS method quickly estimates breakthrough and re-suppression thresholds using continuous trials, which also better control for slowly varying factors such as adaptation and attention. Indeed, tCFS produces estimates with lower across-subject variance than the standard discrete-trial method (Fig. 2). The tCFS method is straightforward to adopt in future research on CFS and binocular rivalry.

      (2) The CFS literature has lacked re-suppression threshold measurements. By measuring both breakthrough and re-suppression thresholds, this work calculated suppression depth (i.e., the difference between the two thresholds), which warrants different interpretations from the breakthrough threshold alone.

      (3) The work found that different image categories show similar suppression depths, suggesting some aspects of CFS are not category-specific. This result enriches previous findings that breakthrough thresholds vary with image categories. Re-suppression thresholds vary symmetrically, such that their differences are constant.

      Weakness<br /> The following concern remains from my initial review. Reviewer #3 raised a similar point in the last revision round, and I believe the authors do not fully address either comment. Thus, here I paraphrase my initial concern with reference to the authors' reply and discuss why it needs further elaboration.

      I do not follow the authors' reasoning as to why the suppression depth is a better (or fuller, superior, more informative) indication of subconscious visual processing than the breakthrough threshold alone. To my previous round of comments, the authors replied that 'breakthrough provides only half of the needed information.' I do not understand this. One cannot infer the suppression depth from the breakthrough threshold alone, but *one cannot obtain the breakthrough threshold from the suppression depth alone*, either. The two measures are complementary. (To be sure, given *both* the suppression depth and the re-suppression threshold, one can trivially recover the breakthrough threshold. The discussion concerns the suppression depth *alone* and the breakthrough threshold *alone*.) I am fully open to being convinced that there is a good reason why the suppression depth may be more informative than the breakthrough threshold about a specific topic, e.g., inter-ocular suppression or subconscious visual processing. I only request that the authors make such an argument explicit. Preferably, this argument will precede claims that require it. For example, in the significance statement, the authors write, 'all images show equal suppression when both thresholds are measured. We *thus* find no evidence of differential unconscious processing and *conclude* reliance on breakthrough thresholds is misleading' (emphasis added). Just what supports the 'thus' and the 'conclude'? Similarly, at the end of the introduction, the authors write, '[...] suppression depth was constant for faces, objects, gratings and visual noise. *In other words*, we find no evidence to support differential unconscious processing among these particular, diverse categories of suppressed images' (emphasis added). I believe the statements before and after the period have not been shown to be equivalent. In the abstract, the authors revised, 'variations in bCFS thresholds alone are insufficient for inferring whether the barrier to achieving awareness exerted by interocular suppression is weaker for some categories of visual stimuli compared to others.' While I appreciate the added specificity, this claim still needs more support because the authors have not established that suppression depth is a better index than the breakthrough threshold of 'the barrier to achieving awareness exerted by interocular suppression.'

      The authors' reply included a discussion of neural CRFs, which may explain why the bCFS thresholds differ across image categories. However, CRFs do not explain why the bCFS threshold does not implicate some component of subconscious processing. For example, the bCFS threshold may reflect the aspect of subconscious visual processing that corresponds to V1/V4 neural responses.

    1. Reviewer #2 (Public Review):

      As a report of the first structure of VMAT2, indeed the first structure of any vesicular monoamine transporter, this manuscript represents an important milestone in the field of neurotransmitter transport. VMAT2 belongs to a large family (the major facilitator superfamily, MFS) containing transporters from all living species. There is a wealth of information relating to the way that MFS transporters bind substrates, undergo conformational changes to transport them across the membrane and couple these events to the transmembrane movement of ions. VMAT2 couples the movement of protons out of synaptic vesicles to the vesicular uptake of biogenic amines (serotonin, dopamine and norepinephrine) from the cytoplasm. The new structure presented in this manuscript can be expected to contribute to an understanding of this proton/amine antiport process.

      The structure contains a molecule of the inhibitor TBZ bound in a central cavity, with no access to either luminal or cytoplasmic compartments. The authors carefully analyze which residues interact with bound TBZ and measure TBZ binding to VMAT2 mutated at some of those residues. These measurements allow well-reasoned conclusions about the differences in inhibitor selectivity between VMAT1 and VMAT2 and differences in affinity between TBZ derivatives.

      The structure also reveals polar networks within the protein and hydrophobic residues in positions that may allow them to open and close pathways between the central binding site and the cytoplasm or the vesicle lumen. The authors propose involvement of these networks and hydrophobic residues in coupling of transport to proton translocation and conformational changes. However, these proposals are quite speculative in the absence of supporting structures and experimentation that would test specific mechanistic details.

    1. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Lane and colleagues measured the abundance of SARS-CoV-2 on breath in 60 outpatients after the development of COVID-19 symptoms using a novel breath collection apparatus. They found that, overall, viral abundance remains high for approximately eight days following the development of symptoms, after which viral abundance on breath drops to a low level that may persist for approximately 20 days or more. They did not identify significant differences in viral shedding on breath by vaccination status or viral variant. They also noted substantial variation in the degree and duration of shedding across individuals.

      Strengths:

      The primary strengths of this study are (1) the focus on breath, rather than the more traditional nasal/oropharyngeal swabs, and (2) the fact that the data were collected at multiple time points for each infection. This allows the authors to characterize not only mean viral abundance across individuals but also how that abundance changes over time, allowing for a better understanding of the potential duration of infectiousness of SARS-CoV-2.

      Weaknesses:

      The sample size is moderate (60) and focuses only on outpatients. While these are minor weaknesses (as the authors note, the majority of SARS-CoV-2 transmission likely occurs among those with symptoms below the threshold of hospitalization), it would nevertheless be useful to have a fuller understanding of variation in viral shedding across clinical groups. Furthermore, the study lacks information on viral shedding prior to the development of symptoms, which may be a critical period for transmission. Since the samples were collected at home by study participants using a novel apparatus, it is difficult to assess the degree to which actual variation in viral abundance, user variability, and/or measurement variation is inherent to the apparatus.

    1. French hospital medicine came to be based on three pillars, none entirely new, but which together constituted a new way of looking at disease. The three pillars were physical diagnosis, pathologico-clinical correlation, and the use of large numbers of cases to elucidate diagnostic categories and to evaluate therapy

      3 pillars to french hospital medicine;

      -physical diagnosis -pathologico-clinical correlation -use of large numbers of cases to elucidate diagnostic categories + evaluate therapy

    1. Reviewer #2 (Public Review):

      This study focuses on the association between weight at birth and area, volume and thickness of the cerebral cortex measured at timepoints throughout the lifespan. Overall, the study is well designed, supported by evidence from a large sample drawn from three geographically distinct cohorts with robust analytical and statistical methods.

      The authors test the hypotheses: that higher birth weight is associated with greater cortical area in later life; that associations are robust across samples and age; and that associations are stable across the lifespan. Analyses are performed separately in three cohorts: ABCD, UKBB and LCBC and the pattern of associations compared by means of spatial correlations. They find that BW is positively associated with cortical area (and, as a consequence, cortical volume) across most of the cortex, with effect sizes greatest in frontal and temporal regions. These associations remain largely unchanged when accounting for age, sex, length of gestation and (in one cohort) ethnicity. Variations due to MRI scanner and site are accounted for statistically. Measures are taken to determine within sample replicability through split-half analyses.

      The authors conclude that BW, as a marker of early development, is associated with brain characteristics throughout the lifespan.

    1. Reviewer #2 (Public Review):

      Previous studies have shown that two hair cell transcription factors, Pou4f3 and Gfi1 are both necessary for the survival of cochlear hair cells, and that Gfi1 is regulated by Pou4f3. The authors have previously also shown that mosaic inactivation of the RNA-binding protein RBM24 leads to outer hair cell death.

      In the present study, the authors show that hair cells dies in Pou4f3 and Gfi1 mutant mice. They show that Gfi1 is regulated by Pou4f3. Both these observations have been published before. They then show that RBM24 is absent in Pou4f3 knockouts, but not Gfi1 knockouts. They ectopically activate RMB24 in the hair cells of Poui4f3 knockouts, but this does not rescue the hair cell death. Finally the authors validate three RMB24 enhancers that are active in young hair cells and which have been previously shown to bind Pou4f3.

      The experiments are well-executed and the data are clear. The results support the conclusions of the paper. The authors have revised the paper slightly, mostly to modify the red/green staining in the figures, and to perform additional analyses of the RBM24 and Ikzf2 mutants, now shown in Supplementary Figure 3.

      Much of the work in the paper has been reported before. The result that hair cell transcription factors operate in a network, with some transcription factors activating only a subset of hair cell genes, is an expected result. Since RBM24 is only one of many genes regulated directly by Pou4f3, it is not surprising that it cannot rescue the Pou4f3 knockout hair cell degeneration, and indeed the rationale for attempting such a rescue experiment is not provided by the authors.

      The identification of new hair cell enhancers may be of use to investigators wishing to express genes in hair cells.

      In sum, this work, although carefully performed, does not shed significant new light on our understanding of hair cell development or survival.

    1. Reviewer #2 (Public Review):

      Summary: This study is a superbly written and illustrated documentation of the external sensilla of the Drosophila larva. Serial electron microscopy and digital modeling is used to the fullest to provide a definitive and clear picture of the sensory organs, which is dearly needed in the field.

      Strengths: Serial electron microscopy and digital modeling is used to the fullest to provide a comprehensive, definitive and clear picture of the sensory organs, which is dearly needed in the field.

      Weaknesses: none detected.

    1. Reviewer #2 (Public Review):

      The study presented by Paoli et al. explores temporal aspects of neuronal encoding of odors and their perception, using bees as a general model for insects. The neuronal encoding of the presence of an odor is not a static representation; rather, its neuronal representation is partly encoded by the temporal order in which parallel olfactory pathways participate and are combined. This aspect is not novel, and its relevance in odor encoding and recognition has been discussed for more than the past 20 years.

      The temporal richness of the olfactory code and its significance have traditionally been driven by results obtained based on electrophysiological methods with temporal resolution, allowing the identification and timing of the action potentials in the different populations of neurons whose combination encodes the identity of an odor. On the other hand, optophysiological methods that enable spatial resolution and cell identification in odor coding lack the temporal resolution to appreciate the intricacies of olfactory code dynamics.

      1) In this context, the main merit of Paoli et al.'s work is achieving an optical recording that allows for spatial registration of olfactory codes with greater temporal detail than the classical method and, at the same time, with greater sensitivity to measure inhibitions as part of the olfactory code.

      The work clearly demonstrates how the onset and offset of odor stimulation triggers a dynamic code at the level of the first interneurons of the olfactory system that changes at every moment as a natural consequence of the local inhibitory interactions within the first olfactory neuropil, the antennal lobe. This gives rise to the interesting theory that each combination of activated neurons along this temporal sequence corresponds to the perception of a different odor. The extent to which the corresponding postsynaptic layers integrate this temporal information to drive the perception of an odor, or whether this sequence is, in a sense, a journey through different perceptions, is challenging to address experimentally.

      In their work, the authors propose a computational approach and olfactory learning experiments in bees to address these questions and evaluate whether the sequence of combinations drives a sequence of different perceptions. In my view, it is a highly inspiring piece of work that still leaves several questions unanswered.

      2) In my opinion, the detailed temporal profile of the response of projection neurons and their respective probabilities of occurrence provide valuable information for understanding odor coding at the level of neurons transferring information from the antennal lobes to the mushroom bodies. An analysis of these probabilities in each animal, rather than in the population of animals that were measured, would aid in better comprehending the encoding function of such temporal profiles. Being able to identify the involved glomeruli and understanding the extent to which the sequence of patterns and inhibitions is conserved for each odor across different animals, as it is well known for the initial excitatory burst of activity observed in previous studies without the fine temporal detail, would also be highly significant.

      In my view, the computational approach serves as a useful tool to inspire future experiments; however, it appears somewhat simplistic in tackling the complexity of the subject. One question that I believe the researchers do not address is to what extent the inhibitions recorded in the projection neurons are integrated by the Kenyon cells and are functional for generating odor-specific patterns at that level.

      Lastly, the behavioral result indicating a difference in conditioned response latency after early or delayed learning protocol is interesting. However, it does not align with the expected time for the neuronal representation that was theoretically rewarded in the delayed protocol. This final result does not support the authors' interpretation regarding the existence of a smell and an after-smell as separate percepts that can serve as conditioned stimuli.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Etcheverry et al. present two computational frameworks for exploring the functional capabilities of gene regulatory networks (GRNs). The first is a framework based on intrinsically-motivated exploration, here used to reveal the set of steady states achievable by a given gene regulatory network as a function of initial conditions. The second is a behaviorist framework, here used to assess the robustness of steady states to dynamical perturbations experienced along typical trajectories to those steady states. In Figs. 1-5, the authors convincingly show how these frameworks can explore and quantify the diversity of behaviors that can be displayed by GRNs. In Figs. 6-9, the authors present applications of their framework to the analysis and control of GRNs, but the support presented for their case studies is often incomplete.

      Strengths:<br /> Overall, the paper presents an important development for exploring and understanding GRNs/dynamical systems broadly, with solid evidence supporting the first half of their paper in a narratively clear way.

      The behaviorist point of view for robustness is potentially of interest to a broad community, and to my knowledge introduces novel considerations for defining robustness in the GRN context.

      Some specific weaknesses, mostly concerning incomplete analyses in the second half of the paper:

      (1) The analysis presented in Fig. 6 is exciting but preliminary. Are there other appropriate methods for constructing energy landscapes from dynamical trajectories in gene regulatory networks? How do the results in this particular case study compare to other GRNs studied in the paper?

      Additionally, it is unclear whether the analysis presented in Fig. 6C is appropriate. In particular, if the pseudopotential landscapes are constructed from statistics of visited states along trajectories to the steady state, then the trajectories derived from dynamical perturbations do not only reflect the underlying pseudo-landscape of the GRN. Instead, they also include contributions from the perturbations themselves.

      (2) In Fig. 7, I'm not sure how much is possible to take away from the results as given here, as they depend sensitively on the cohort of 432 (GRN, Z) pairs used. The comparison against random networks is well-motivated. However, as the authors note, comparison between organismal categories is more difficult due to low sample size; for instance, the "plant" and "slime mold" categories each only have 1 associated GRN. Additionally, the "n/a" category is difficult to interpret.

      (3) In Fig. 8, it is unclear whether the behavioral catalog generated is important to the intervention design problem of moving a system from one attractor basin to another. The authors note that evolutionary searches or SGD could also be used to solve the problem. Is the analysis somehow enabled by the behavioral catalog in a way that is complementary to those methods? If not, comparison against those methods (or others e.g. optimal control) would strengthen the paper.

      (4) The analysis presented in Fig. 9 also is preliminary. The authors note that there exist many algorithms for choosing/identifying the parameter values of a dynamical system that give rise to a desired time-series. It would be a stronger result to compare their approach to more sophisticated methods, as opposed to random search and SGD. Other options from the recent literature include Bayesian techniques, sparse nonlinear regression techniques (e.g. SINDy), and evolutionary searches. The authors note that some methods require fine-tuning in order to be successful, but even so, it would be good to know the degree of fine-tuning which is necessary compared to their method.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, Jiang et al., explore the role of neurexins at glycinergic MNTB-LSO synapses. The authors utilize elegant and compelling ex vivo slice electrophysiology to assess how the genetic conditional deletion of Nrxns1-3 impacts inhibitory glycinergic synaptic transmission and found that TKO of neurexins reduced electrically and optically evoked IPSC amplitudes, slowed optically evoked IPSC kinetics and reduced presynaptic release probability. The authors use classic approaches including reduced [Ca2+] in ACSF and EGTA chelation to propose that changes in these evoked properties are likely driven by the loss of calcium channel coupling. Intriguingly, while evoked transmission was impaired, the authors reported that spontaneous IPSC frequency was increased, potentially due to an increased number of synapses in LSO. Overall, this manuscript provides important insight into the role of neurexins at the glycinergic MNTP-LSO synapse and further emphasizes the need for continued study of both the non-redundant and redundant roles of neurexins.

      Strengths:<br /> This well-written manuscript seamlessly incorporates mouse genetics and elegant ex vivo electrophysiology to identify a role for neurexins in glycinergic transmission at MNTB-LSO synapses. Triple KO of all neurexins reduced the amplitude and timing of evoked glycinergic synaptic transmission. Further, spontaneous IPSC frequency was increased. The evoked synaptic phenotype is likely a result of reduced presynaptic calcium coupling while the spontaneous synaptic phenotype is likely due to increased synapse numbers. While neuroligin-4 has been identified at glycinergic synapses, this study, to the best of my knowledge, is the first to study Nrxn function at these synapses.

      Weaknesses:<br /> The data are compelling and report an intriguing functional phenotype. The role of Neurexins redundantly controls calcium channel coupling has been previously reported. Mechanistic insight would significantly strengthen this study.<br /> The claim that triple KO of Nrxns from MNTB increases the number of synapses in LSO is not strongly supported.<br /> Despite the stated caveats of measuring electrically evoked currents and the more robust synaptic phenotypes observed using optically evoked transmission, the authors rely heavily on electrical stimulation for most measurements.<br /> The differential expression of individual neurexins might indicate that specific neurexins may dominantly regulate synaptic transmission, however, this possibility is not discussed in detail.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors introduce a new 192-channel OPM system that can be configured using different helmets to fit individuals from 2 to 34 years old. To demonstrate the veracity of the system, they conduct a sensorimotor task aimed at mapping developmental changes in beta oscillations across this age range. Many past studies have mapped the trajectory of beta (and gamma) oscillations in the sensorimotor cortices, but these studies have focused on older children and adolescents (e.g., 9-15 years old) and used motor tasks. Thus, given the study goals, the choice of a somatosensory task was surprising and not justified. The authors recorded a final sample of 27 children (2-13 years old) and 24 adults (21-34 years) and performed a time-frequency analysis to identify oscillatory activity. This revealed strong beta oscillations (decreases from baseline) following the somatosensory stimulation, which the authors imaged to discern generators in the sensorimotor cortices. They then computed the power difference between 0.3-0.8 period and 1.0-1.5 s post-stimulation period and showed that the beta response became stronger with age (more negative relative to the stimulation period). Using these same time windows, they computed the beta burst probability and showed that this probability increased as a function of age. They also showed that the spectral composition of the bursts varied with age. Finally, they conducted a whole-brain connectivity analysis. The goals of the connectivity analysis were not as clear as prior studies of sensorimotor development have not conducted such analyses and typically such whole-brain connectivity analyses are performed on resting-state data, whereas here the authors performed the analysis on task-based data. In sum, the authors demonstrate that they can image beta oscillations in young children using OPM and discern developmental effects.

      Strengths:<br /> Major strengths of the study include the novel OPM system and the unique participant population going down to 2-year-olds. The analyses are also innovative in many respects.

      Weaknesses:<br /> Several weaknesses currently limit the impact of the study. First, the choice of a somatosensory stimulation task over a motor task was not justified. The authors discuss the developmental motor literature throughout the introduction, but then present data from a somatosensory task, which is confusing. Of note, there is considerable literature on the development of somatosensory responses so the study could be framed with that. Second, the primary somatosensory response actually occurs well before the time window of interest in all of the key analyses. There is an established literature showing mechanical stimulation activates the somatosensory cortex within the first 100 ms following stimulation, with the M50 being the most robust response. The authors focus on a beta decrease (desynchronization) from 0.3-0.8 s which is obviously much later, despite the primary somatosensory response being clear in some of their spectrograms (e.g., Figure 3 in older children and adults). This response appears to exhibit a robust developmental effect in these spectrograms so it is unclear why the authors did not examine it. This raises a second point; to my knowledge, the beta decrease following stimulation has not been widely studied and its function is unknown. The maps in Figure 3 suggest that the response is anterior to the somatosensory cortex and perhaps even anterior to the motor cortex. Since the goal of the study is to demonstrate the developmental trajectory of well-known neural responses using an OPM system, should the authors not focus on the best-understood responses (i.e., the primary somatosensory response that occurs from 0.0-0.3 s)?

      Regarding the developmental effects, the authors appear to compute a modulation index that contrasts the peak beta window (.3 to .8) to a later 1.0-1.5 s window where a rebound is present in older adults. This is problematic for several reasons. First, it prevents the origin of the developmental effect from being discerned, as a difference in the beta decrease following stimulation is confounded with the beta rebound that occurs later. A developmental effect in either of these responses could be driving the effect. From Figure 3, it visually appears that the much later rebound response is driving the developmental effect and not the beta decrease that is the primary focus of the study. Second, these time windows are a concern because a different time window was used to derive the peak voxel used in these analyses. From the methods, it appears the image was derived using the .3-.8 window versus a baseline of 2.5-3.0 s. How do the authors know that the peak would be the same in this other time window (0.3-0.8 vs. 1.0-1.5)? Given the confound mentioned above, I would recommend that the authors contrast each of their windows (0.3-0.8 and 1.0-1.5) with the 2.5-3.0 window to compute independent modulation indices. This would enable them to identify which of the two windows (beta decrease from 0.3-0.8 s or the increase from 1.0-1.5 s) exhibited a developmental effect. Also, for clarity, the authors should write out the equation that they used to compute the modulation index. The direction of the difference (positive vs. negative) is not always clear.

      Another complication of using a somatosensory task is that the literature on bursting is much more limited and it is unclear what the expectations would be. Overall, the burst probability appears to be relatively flat across the trial, except that there is a sharp decrease during the beta decrease (.3-.8 s). This matches the conventional trial-averaging analysis, which is good to see. However, how the bursting observed here relates to the motor literature and the PMBR versus beta ERD is unclear.

      Another weakness is that all participants completed 42 trials, but 19% of the trials were excluded in children and 9% were excluded in adults. The number of trials is proportional to the signal-to-noise ratio. Thus, the developmental differences observed in response amplitude could reflect differences in the number of trials that went into the final analyses.

      Finally, the discussion could be improved to focus on the somatosensory literature and how this contributes to that. Currently, the discussion includes very little from the somatosensory literature.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors address an important outstanding question: what forces are the primary drivers of evolutionary rate covariation? Exploration of this topic is important because it is currently difficult to interpret the functional/mechanistic implications of evolutionary covariation. These analyses also speak to the predictive power (and limits) of evolutionary rate covariation. This study reinforces the existing paradigm that covariation is driven by a varied/mixed set of interaction-types that all fall under the umbrella explanation of 'co-functional interactions'.

      Strengths:<br /> Very smart experimental design that leverages individual protein domains for increased resolution.

      Weaknesses:<br /> Nuanced and sometimes inconclusive results that are difficult to capture in a short title/abstract statement.

      EDIT: The authors have done a satisfactory job of honing their language to get the nuanced ideas across clearly. The added scholarship and theoretical discussion they added strengthen the impact of the manuscript. The revised edition addresses my concerns.

    1. Reviewer #3 (Public Review):

      The study focuses on in vivo and in vitro cellular responses intranasal instillation of glycoforms and mutants of SARS-CoV2 spike trimer or spike bearing VLP in mice. Collectively, the experiments suggest that SARS-CoV2 spike has pro-inflammatory roles through increase M1 macrophage associated cytokines and induction of neutrophil netosis/necrosis, a proinflammatory cell death pathway. These effects seem largely independent of hACE2 interaction and partly depend upon interactions with SIGLECs on macrophages and neutrophils. A strength of the study is that a number sophisticated methods are used, including intravital microscopy in the cramaster and liver as well as acute lung slice models, to look at uptake of the spike proteins and immune cell dynamics. The weakness is that some of the reagents maybe contaminated with uncharacterized glycoforms and some important controls, such as control spike protein and control VLP are unevenly applied or not included. The authors have revised the manuscript through some improvements in the writing, but the survey nature and suggestive level of evidence is still a weakness. The study calls attention to sources of proinflammatory activity in the SARS CoV2 spike that may involve some carbohydrate interactions.

    1. Reviewer #2 (Public Review):

      This manuscript reports the discovery and analysis of a large protein complex that controls mating type and sexual reproduction of the model ciliate Tetrahymena thermophila. In contrast to many organisms that have two mating types or two sexes, Tetrahymena is multi-sexual with 7 distinct mating types. Previous studies identified the mating type locus, which encodes two transmembrane proteins called MTA and MTB that determine the specificity of mating type interactions. In this study, mutants are generated in the MTA and MTB genes and mutant isolates are studied for mating properties. Cells missing either MTA or MTB failed to co-stimulate wild-type cells of different mating types. Moreover, a mixture of mutants lacking MTA or MTB also failed to stimulate. These observations support the conclusion that MTA and MTB may form a complex that directs mating-type identity. To address this, the proteins were epitope-tagged and subjected to IP-MS analysis. This revealed that MTA and MTB are in a physical complex, and also revealed a series of 6 other proteins (MRC1-6) that together with MTA/B form the mating type recognition complex (MTRC). All 8 proteins feature predicted transmembrane domains, three feature GFR domains, and two are predicted to function as calcium transporters. The authors went on to demonstrate that components of the MTRC are localized on the cell surface but not in the cilia. They also presented findings that support the conclusion that the mating type-specific region of the MTA and MTB genes can influence both self- and non-self-recognition in mating.

      Taken together, the findings presented are interesting and extend our understanding of how organisms with more than two mating types/sexes may be specified. The identification of the six-protein MRC complex is quite intriguing. It would seem important that the function of at least one of these subunits be analyzed by gene deletion and phenotyping, similar to the findings presented here for the MTA and MTB mutants. A straightforward prediction might be that a deletion of any subunit of the MRC complex would result in a sterile phenotype. The manuscript was very well written and a pleasure to read.

    1. Langes Interview mit Hans Joachim Schellnhuber im Standard, under anderem zu Kipppunkten und der Möglichkeit, dass wir uns schon auf dem Weg in ein „neues Klimaregime“ befinden. Schellnhuber geht davon aus, dass auch das 2°-Ziel überschritten werden wird. Der „Königsweg“, um der Atmosphäre danach wieder CO<sub>2</sub> zu entziehen, sei der weltweite Ersatz von Zement durch Holz beim Bauen, den er als Direktor des IIASA vor allem erforschen wolle. Die Wahrscheinlichkeit dafür, dass „noch alles gutgehen" werde, sei gering. https://www.derstandard.at/story/3000000204635/klimaforscher-schellnhuber-werden-auch-ueber-das-zwei-grad-ziel-hinausschiessen

    1. RRID:ZFIN_ZDB-ALT-130409-2

      DOI: 10.7554/eLife.42455

      Resource: (ZFIN Cat# ZDB-ALT-130409-2,RRID:ZFIN_ZDB-ALT-130409-2)

      Curator: @scibot

      SciCrunch record: RRID:ZFIN_ZDB-ALT-130409-2


      What is this?

    2. RRID:ZFIN_ZDB-ALT-130624-2

      DOI: 10.7554/eLife.42455

      Resource: (ZFIN Cat# ZDB-ALT-130624-2,RRID:ZFIN_ZDB-ALT-130624-2)

      Curator: @scibot

      SciCrunch record: RRID:ZFIN_ZDB-ALT-130624-2


      What is this?

    3. RRID:ZFIN_ZDB-ALT-110520-2

      DOI: 10.7554/eLife.42455

      Resource: (ZFIN Cat# ZDB-ALT-110520-2,RRID:ZFIN_ZDB-ALT-110520-2)

      Curator: @scibot

      SciCrunch record: RRID:ZFIN_ZDB-ALT-110520-2


      What is this?

    1. Reviewer #2 (Public Review):

      Summary:<br /> This work describes a new pharmacological targeting approach to inhibit selective functions of the ubiquitously expressed chemokine receptor CXCR4, a potential target of immunomodulatory or anti-cancer treatments. Overall, the results build a strong case for the potential of this new compound to target specific functions of CXCR4, particularly linked to tumorigenesis. However, a more thorough evaluation of the function of the compound as well as future studies in mammalian model systems are needed to better assess the promise of the compound.

      Strengths:<br /> The work elegantly utilizes in silico drug modelling to propose new small molecule compounds with specific features. This way, the authors designed compound AGR1.137, which abolishes ligand-induced CXCR4 receptor nanoclustering and the subsequent directed cell migration without affecting ligand binding itself or some other ligand-induced signaling pathways. The authors have used a relatively broad set of experiments to validate and demonstrate the effects of the drug. Importantly, the authors also test AGR1.137 in vivo, using a zebrafish model of tumorigenesis and metastasis. A relatively strong inhibitory effect of the compound is reported.

      Weaknesses:<br /> The data would be significantly strengthened by adding kinetics and titration of concentrations. This is particularly important as it is the first description of these particular compounds and would help to evaluate the potency and possible side effects of the drug.

      The authors carry out single-molecule tracking experiments to analyze nanoclustering of CXCR4 upon ligand binding. This complex data is presented in a sub-optimal manner. Representative images of the data should be included together with more thorough analysis tools like autocorrelation function or mean square displacement to get a more conclusive view of receptor clustering and the effects of the compound.

      In the in vivo tumorigenesis experiments, again more kinetics and different concentrations of the drug would generate more convincing data. Also, the individual data points should be visualized to allow full evaluation of the data, throughout the experiments.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This study aims to demonstrate that E. coli can acquire rapid antibiotic resistance mutations in the absence of a DNA damage response. To investigate this, the authors employed a sophisticated experimental framework based on a modified Adaptive Laboratory Evolution (ALE) workflow. This workflow involves numerous steps culminating in the measurement of antibiotic resistance. The study presents evidence that a recA strain develops ampicillin resistance mutations more quickly than the wild-type, as shown by measuring the Minimum Inhibitory Concentration (MIC) and mutation frequency. Whole-genome sequencing of 15 recA- colonies resistant to ampicillin revealed predominantly inactivation of genes involved in the multi-drug efflux pump system, whereas, in the wild-type, mutations appear to enhance the activity of the chromosomal ampC cryptic promoter. By analyzing mutants involved in the SOS response, including a lexA3 mutant incapable of inducing the SOS response, the authors conclude that the rapid evolution of antibiotic resistance occurs in an SOS-independent manner when recA is absent.

      Furthermore, RNA sequencing (RNA-seq) of the four experimental conditions suggests that genes related to antioxidative responses drive the swift evolution of antibiotic resistance in the recA- strain.

      Weaknesses:<br /> However, a potential limitation of this study is the experimental design used to determine the 'rapid' evolution of antibiotic resistance. It may introduce a significant bottleneck in selecting ampicillin-resistant mutants early on. A recA mutant could be more susceptible to ampicillin than the wild-type, and only resistant mutants might survive after 8 hours, potentially leading to their enrichment in subsequent steps. To address this concern, it would be critical to perform a survival analysis at various time points (0h, 2h, 4h, 6h, and 8h) during ampicillin treatment for both recA and wild-type strains, ensuring there is no difference in viability.

      The observation that promoter mutations are absent in recA strains could be explained by previous research indicating that amplification of the AmpC genes is a mechanism for E. coli resistance to ampicillin, which does not occur in a recA-deficient background (PMID# 19474201).

      The section describing Figure 3 is poorly articulated, and the conclusions drawn are apparent. The inability of a recA strain to induce the SOS response is well-documented (lines 210 and 278). The data suggest that merely blocking SOS induction is insufficient to cause 'rapid' evolution in their experimental conditions. To investigate whether SOS response can be induced independently of lexA cleavage by recA, alternative experiments, such as those using a sulA-GFP fusion, might be more informative.

      In Figure 4E, the lack of increased SulA gene expression in the wild-type strain treated with ampicillin is unexpected, given that SulA is an SOS-regulated gene. The fact that polA (Pol I) is going down should be taken into account in the interpretation of Figures 2D and 2E.

      The connection between compromised DNA repair, the accumulation of Reactive Oxygen Species (ROS) based on RNA-seq data, and accelerated evolution is merely speculative at this point and not experimentally established.

    1. Reviewer #3 (Public Review):

      Bae et al. described the key roles of pericytes in cavernous tissues in diabetic erectile dysfunction using both mouse and human single-cell transcriptomic analysis. Erectile dysfunction (ED) is caused by dysfunction of the cavernous tissue and affects a significant proportion of men aged 40-70. The most common treatment for ED is phosphodiesterase 5 inhibitors; however, these are less effective in patients with diabetic ED. Therefore, there is an unmet need for a better understanding of the cavernous microenvironment, cell-cell communications in patients with diabetic ED, and the development of new therapeutic treatments to improve the quality of life.

      Pericytes are mesenchymal-derived mural cells that directly interact with capillary endothelial cells (ECs). They play a vital role in the pathogenesis of erectile function as their interactions with ECs are essential for penile erection. Loss of pericytes has been associated with diabetic retinopathy, cancer, and Alzheimer's disease and has been investigated in relation to the permeability of cavernous blood vessels and neurovascular regeneration in the authors' previous studies. This manuscript explores the mechanisms underlying the effect of diabetes on pericyte dysfunction in ED. Additionally, the cellular landscape of cavernous tissues and cell type-specific transcriptional changes were carefully examined using both mouse and human single-cell RNA sequencing in diabetic ED. The novelty of this work lies in the identification of a newly identified pericyte (PC)-specific marker, LBH, in mouse and human cavernous tissues, which distinguishes pericytes from smooth muscle cells. LBH not only serves as a cavernous pericyte marker, but its expression level is also reduced in diabetic conditions. The LBH-interacting proteins (Cryab and Vim) were further identified in mouse cavernous pericytes, indicating that these signaling interactions are critical for maintaining normal pericyte function. Overall, this study demonstrates the novel marker of pericytes and highlights the critical role of pericytes in diabetic ED.

      Comments on revised version:

      Bae and colleagues substantially improved the data quality and revised their manuscript "Pericytes contribute to pulmonary vascular remodeling via HIF2a signaling". While these revisions clarify some of the concerns raised, others remain. In my view, the following question must be addressed.

      In my prior question on #3, I completely disagree with the statement that "identified cells with pericyte-like characteristics in the walls of large blood vessels". The staining that authors provided for LBH, was clearly stained for SMCs, not pericytes. Per Fig 2E, the authors are correct that LBH is colocalized with SMA+ cells( SMCs). However, the red signal from LBH clearly stains endothelial cells. In the rest of 2E and 2D, LBH is CD31- and their location suggests LBH stained for SMCs in the Aorta, Kidney vasculature, Dorsal vein, and Dorsal Artery.

    1. Reviewer #2 (Public Review):

      Summary: The authors seek to elucidate the early evolution of cnidarians through computer modeling of fluid flow in the oral region of very small, putative medusozoan polyps. They propose that the evolutionary advent of the free-swimming medusoid life stage was preceded by a sessile benthic life stage equipped with circular muscles that originally functioned to facilitate feeding and that later became co-opted for locomotion through jet propulsion.

      Strengths: Assumptions of the modeling exercise laid out clearly; interpretations of the results of the model runs in terms of functional morphology plausible. An intriguing investigation that should stimulate further discussion and research.

      Weaknesses: Speculation on the origin of the medusoid life stage in cnidarians heavily dependent on prior assumptions concerning the soft part anatomy and material properties of the skeleton of the modeled fossil organism that may be open to alternative interpretations. Logically, of course, the hypothesis that cnidarian medusae originated from benthic polyps must be evaluated along with the alternative hypotheses that the medusa came first and that the ancestral cnidarian exhibited both life stages.

    1. Reviewer #2 (Public Review):

      Summary and strengths:

      1) The work provides significant insights because usually non-significant studies can be considered replicated by their null replications as well. The work discuss and provide data demonstrating that when analyzing studies with p > 0.05 for the result to be replicated, equivalence tests and bayes factor approaches are more suitable, since studies can be underpowered even if replications use larger samples than their original studies in general. Non-significant p-values are highly expected even with 80% of power for a true effect.

      2) The evidence used features methods and analyses more rigorous than current state-of-the-art research on replicability.

      Weaknesses:<br /> I am satisfied with the revisions made by the authors in response to my initial suggestions, as well as their subsequent responses to my observations throughout the reviewing process.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this study, the authors present a robust pipeline that integrates high-content phenotypic imaging of a targeted pool of 366 CRISPRi-screened genes with in situ sequencing of single cells, achieving a resolution for 1.3 million cells. The application of this pipeline on the U2OS cell line effectively screens for nuclear and actin morphology changes. One study's strength lies in the utilization of a barcode system, enabling efficient imaging and genotype determination for 85% of cells. The authors employ two distinct approaches to delineate phenotypic changes. In the first approach, cells are characterized by approximately 1,000 morphological features, with dimensionality reduction via PCA using 25 principal components and a novel image sampling method called VIEWED (Visual Interpretation of Embedding by Constrained Walkthrough Sampling). The second approach employs a deep learning technique, specifically the Beta-variational encoder, to identify morphological differences, offering a generative AI approach for visualizing interpreted distinctions learned through the algorithm. While the Beta-variational encoder is deemed simpler to use and interpret, the classical PCA approach demonstrates superiority due to its heightened sensitivity in identifying more genes with phenotypic changes. Both methods, however, successfully identify shared phenotypic gene hits, showing consistent replication across multiple individual guides for each gene hit. Key phenotypic clusters are identified and replicated similarly by both the conventional PCA feature approach and the Beta-variational encoder approach.

      Strengths:<br /> - A novel barcode methodology for efficient genotyping via in situ sequencing, minimizing rounds of imaging and genotyping 85% of cells.<br /> - Use of a beta variational autoencoder, generative AI approach to facilitate detection of morphological change in cells, gene hits, and phenotypic gene clusters.

      Weaknesses:<br /> Although the outcome is reproduced with 3 gRNA/gene, no biological replicate is presented and is as such limiting on convincing on reproducibility of the phenotypic detection approach.

      The presented work is highly compelling as it employs an optical pooled CRISPRi screen, showcasing the capability to conduct pool screening beyond the typical frequency count of guides with the next-generation sequencing approach, effectively establishing a direct link between cell images and guide RNAs in the pool screen approach. This achievement, typically associated with arrayed screens, sets the study apart. Moreover, the study offers captivating images of individual cells that vividly portray convincing phenotypic changes. Additionally, the work effectively highlights the potency of generative AI in interpreting cell phenotypic changes detected by the algorithm. This aspect of the study is particularly relevant in the present time, as it introduces a potentially highly valuable methodology. Overall, the research provides a robust demonstration of innovative techniques and methodologies, contributing significantly to the field.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This interesting study challenges a dogma regarding the link between bacterial metabolism decrease and tolerance to aminoglycosides (AG). The authors demonstrate that mutants well-known for being tolerant to AG, such as those of complexes I and II, are not so due to a decrease in the proton motive force (PMF) and thus antibiotic uptake, as previously reported in the literature.

      Strengths:<br /> This is a complete study. These results are surprising and are based on various read-outs, such as ATP levels, pH measurement, membrane potential, and the uptake of fluorophore-labeled gentamicin. Utilizing a proteomic approach, the authors show instead that in tolerant mutants, there is a decrease in the levels of proteins associated with ribosomes (targets of AG), causing tolerance.

      Weaknesses:<br /> The use of a single high concentration of aminoglycoside: my main comment on this study concerns the use of an AG concentration well above the MIC (50 µg/ml or 25 µg/ml for uptake experiments), which is 10 times higher than previously used concentrations (Kohanski, Taber) in study showing a link with PMF. This significant difference may explain the discrepancies in results. Indeed, a high concentration of AG can mask the effects of a metabolic disruption and lead to less specific uptake. However, this concentration highlights a second molecular level of tolerance. Adding experiments using lower concentrations (we propose 5 µg/ml to compare with the literature) would provide a more comprehensive understanding of AG tolerance mechanisms during a decrease in metabolism.

      Another suggestion would be to test iron limitation (using an iron chelator as DIP), which has been shown to induce AG tolerance. Can the authors demonstrate if this iron limitation leads to a decrease in ribosomal proteins? This experiment would validate their hypothesis in the case of a positive result. Otherwise, it would help distinguish two types of molecular mechanisms for AG tolerance during a metabolic disruption: (i) PMF and uptake at low concentrations, (ii) ribosomal proteins at high concentrations.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors tried to understand the mechanism of how a drug candidate, VLZ, works on a receptor, 5-HTR1A, by activating the SRC/MAPK pathway to promote the formation of platelets.

      Strengths:<br /> The authors used both computational and experimental methods. This definitely saves time and funds to find a useful drug candidate and its therapeutic marker in the subfield of platelets reduction in cancer patients. The authors achieved the aim of explaining the mechanism of VLZ in improving thrombocytopenia by using two cell lines and two animal models.

      Weaknesses:<br /> Only two cell lines, HEL and Meg-01 cells, were evaluated in this study. However, using more cell lines is really depending on the workflow and the grant situations of the current research team.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The paper sets out to understand the mechanisms underlying the colonization and degradation of marine particles using a natural Vibrio isolate as a model. The data are measurements of motility and gene expression using microfluidic devices and RNA sequencing. The results reveal that degradation products of alginate do stimulate motility but not chemotaxis. The evidence for these claims is strong. The story of how particle degradation occurs through colonization and dispersal has modest support in the data. A quantitative description of these dynamics awaits future studies.

      Strengths:<br /> The microfluidic and transcriptional measurements are the central strengths of the paper as they allow the delineation of phenotypes at the cellular and molecular levels in the presence of polymer and byproducts of polymer degradation.

      Weaknesses:<br /> The explanation of the microfluidics measurements is somewhat confusing but I think this could be easily remedied. The quantitative interpretation of the dispersal data could also be improved and I'm not clear if the data support the claim made.

    1. we—are the beginningour work is today:A mugA floor brushBootsA catalogAnd when one person in his laboratory set upA squar

      I see this quote as a direct declaration of war against technology as a whole. Going back to analog roots of brushes, well-worn boots, and a magazine. All things needed in order to set up the grid behind art, a guideline of human creativity.

    2. We say that the world’s magnificence has been enriched by a new beauty:the beauty of speed.

      I feel this rule of the manifesto of futurism still holds up to this day. News, ads, and tabloids come at us faster than ever. There is always something to turn our eyes to and whenever the 15 minutes of fame and attention are up, we move on to the next thing. It is a constant, overstimulating cycle of content.

    3. We, however, are satisfied if in our bookthe lyric and epic evolution of our times is given shape.

      Each era has their own version of what the world should follow and believe. It is an constant evolving movement.

    4. We will glorify war—the world’s only hygiene—militarism, patriotism, thedestructive gesture of freedom-bringers, beautiful ideas worth dying for, andscorn for woman

      Pro-violence, very problematic

    5. previously—Engineers relaxed with artnow—Artists relax with technology1 For a detailed discussion ofRodchenko’s belief in theideal Soviet citizen, see VictorMargolin, The Struggle forUtopia: Rodchenko, Lissitzky,Moholy-Nagy, 1917–1946(Chicago: university of ChicagoPress, 1998).

      progressive way of thinking

    1. Reviewer #2 (Public Review):

      Summary

      The authors proposed a toolset Photo-SynthSeg to the software FreeSurfer which performs 3D reconstruction and high-resolution 3D segmentation on a stack of coronal dissection photographs of brain tissues. To prove the performance of the toolset, three experiments were conducted, including volumetric comparison of brain tissues on AD and HC groups from MADRC, quantitative evaluation of segmentation on UW-ADRC and quantitative evaluation of 3D reconstruction on HCP digitally sliced MRI data.

      Strengths

      To guarantee successful workflow of the toolset, the authors clearly mentioned the prerequisites of dissection photograph acquisition, such as fiducials or rulers in the photos and tissue placement of brain slices with more than one connected component. The quantitative evaluation of segmentation and reconstruction on synthetic and real data demonstrates the accuracy of the methodology. Also, the successful application of this toolset on two brain banks with different slice thicknesses, tissue processing and photograph settings demonstrates its robustness. By working with tools of the SynthSeg pipeline, Photo-SynthSeg could further support volumetric cortex parcellation. The toolset also benefits from its adaptability of different 3D references, such as surface scan, ex vivo MRI and even probabilistic atlas, suiting the needs for different brain banks.

      Weaknesses

      Certain weaknesses are already covered in the manuscript. Cortical tissue segmentation could be further improved. The quantitative evaluation of 3D reconstruction is quite optimistic due to random affine transformations. Manual edits of slice segmentation task are still required and take a couple of minutes per photograph. Finally, the current toolset only accepts coronal brain slices and should adapt to axial or sagittal slices in future work.

    1. Reviewer #2 (Public Review):

      Summary:

      This manuscript by Xu et al., is an interesting study aiming to identify novel features of macaque cortical development. This study serves as a valuable atlas of single cell data during macaque neurogenesis, which extends the developmental stages previously explored. Overall, the authors have achieved their aim of collecting a comprehensive dataset of macaque cortical neurogenesis and have identified a few unknown features of macaque development.

      Strengths:

      The authors have accumulated a robust dataset of developmental time points and have applied a variety of informatic approaches to interrogate this dataset. One interesting finding in this study is the expression of previously unknown receptors on macaque oRG cells. Another novel aspect of this paper is the temporal dissection of neocortical development across species. The identification that the regulome looks quite different, despite similar expression of transcription factors in discrete cell types, is intriguing.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This paper focuses on an interesting question that has puzzled psychologists for decades, that is, why do people demonstrate a mix of uncertainty approach and avoidance behavior, given the fact that reducing uncertainty could always gain information and seems beneficial? This paper designed a novel task to demonstrate behavioral signatures of uncertainty approaching and avoidance during the exploration phase within the same task at both a within-subject and between-subject level. On the algorithmic level, this paper compared four different implementations of uncertainty-guided exploration and found that the model sensitive to relative uncertainty provides the best fit for human behavior compared to its counterparts using expected information gain or past exposure. This paper then links people's uncertainty attitude with accuracy and finds that uncertainty avoidance during exploration does not impair task performance, implying that uncertainty avoidance may be the output of a resource-rational decision-making process. To examine this account, this paper uses reaction time as an independent proxy of costly deliberation and shows that people deliberate shorter when engaging in repetitive choice, which presumably saves cognitive resources. Finally, the paper shows that people's tendency to engage in repetitive choice correlates with their tendency to avoid uncertainty, which supports the argument that avoiding uncertainty could be a strategy developed under the constraint of limited cognitive resources.

      Strengths:<br /> One of the highlights of this paper, as mentioned in the previous paragraph, is that the authors can establish the existence of the uncertainty approach and avoidance behavior within the same task whereas previous work usually focuses on one of them. This dissociation allows the authors to examine what situational factor is related to the emergence of the act of avoiding uncertainty, and extract parameters describing participants' attitude towards uncertainty during baseline as well as during situations where uncertainty avoidance is more common. Besides documenting the existence of uncertainty avoidance behavior, this paper also tried to explain this behavior by proposing under the resource rational framework and has carefully quantified different aspects (e.g., accuracy; choice speed) of participants' behavior as well as examined their relationships. Though more experiments are needed to fully understand human uncertainty avoidance behavior, this paper has provided both empirical and theoretical contributions toward a mechanistic understanding of how people balance approaching and avoiding uncertainty.

      Weaknesses:<br /> I have a couple of concerns related to this paper. First, there seems to exist an anti-correlation between total uncertainty and absolute relative uncertainty (Figure 5 panel C, \delta uncertainty is restricted to a small range when total uncertainty is high). It seems to be a natural product of the exploration process since the high total uncertainty phase is usually the period where the participant knows little about either option, leading to a less distinguishable relative uncertainty. However, it remains unknown whether the documented uncertainty avoidance still applies when extrapolating to larger absolute relative uncertainty. It would be great if the experiment allows for a manipulation of uncertainty in the middle of the experiment (e.g., introducing a new deck/informing that one deck has been updated). Relatedly, the current 'threshold' of uncertainty avoidance behavior, if I understand correctly, is found by empirically fitting participants' data. This brings the question: can we predict when people will demonstrate uncertainty avoidance behavior before collecting any data? Or, is it possible that by measuring some metrics related to cognitive cost sensitivity, we could predict the proportion of choices that participants will show uncertainty-avoidant behavior? Finally, regarding the analysis of different behavior patterns in the game, it seems that the authors try to link repetitive behavior, uncertainty attitude, and accuracy together by testing the correlation between the two of them. I wonder whether other multivariate statistical methods e.g., mediation analysis, will be better suited for this purpose.

    1. Reviewer #2 (Public Review):

      The authors demonstrate convincingly the potential of single mesodermal cells, removed from zebrafish embryos, to show cell-autonomous oscillatory signaling dynamics and differentiation. Their main conclusion is that a cell-autonomous timer operates in these cells and that additional external signals are integrated to tune cellular dynamics. Combined, this is underlying the precision required for proper embryonic segmentation, in vivo. I think this work stands out for its very thorough, quantitative, single-cell real-time imaging approach, both in vitro and also in vivo. A very significant progress and investment in method development, at the level of the imaging setup and also image analysis, was required to achieve this highly demanding task. This work provides new insight into the biology underlying embryo axis segmentation.<br /> The work is very well presented and accessible. I think most of the conclusions are well supported. Here a my comments and suggestions:

      1) The authors state that "We compare their cell-autonomous oscillatory and arrest dynamics to those we observe in the embryo at cellular resolution, finding remarkable agreement."

      I think this statement needs to be better placed in context. In absolute terms, the period of oscillations and the timing of differentiation are actually very different in vitro, compared to in vitro. While oscillations have a period of ~30 minutes in vivo, oscillations take twice as long in vitro. Likewise, while the last oscillation is seen after 143 minutes in vivo, the timing of differentiation is very significantly prolonged, i.e.more than doubled, to 373min in vitro (Supplementary Figure 1-9). I understand what the authors mean with 'remarkable agreement', but this statement is at the risk of being misleading. I think the in vitro to in vivo differences (in absolute time scales) needs to be stated more explicitly. In fact, the drastic change in absolute timescales, while preserving the relative ones,i.e. the number of oscillations a cell is showing before onset of differentiation remains relatively invariant, is a remarkable finding that I think merits more consideration (see below).

      2) One timer vs. many timers<br /> The authors show that the oscillation clock slowing down and the timing of differentiation, i.e. the time it takes to activate the gene mesp, are in principle dissociable processes. In physiological conditions, these are however linked. We are hence dealing with several processes, each controlled in time (and hereby space). Rather than suggesting the presence of 'a timer', I think the presence of multiple timing mechanisms would reflect the phenomenology better. I would hence suggest separating the questions more consistently, for instance into the following three:<br /> a. what underlies the slowing down of oscillations?<br /> b. what controls the timing of onset of differentiation?<br /> c. and finally, how are these processes linked?

      Currently, these are discussed somewhat interchangeably, for instance here: "Other models posit that the slowing of Her oscillations arise due to an increase of time-delays in the negative feedback loop of the core clock circuit (Yabe, Uriu, and Takada 2023; Ay et al. 2014), suggesting that factors influencing the duration of pre-mRNA splicing, translation, or nuclear transport may be relevant. Whatever the identity, our results indicate the timer ought to exert control over differentiation independent of the clock."(page 14). In the first part, the slowing down of oscillations is discussed and then the authors conclude on 'the timer', which however is the one timing differentiation, not the slowing down. I think this could be somewhat misleading.

      3) From this and previous studies, we learn/know that without clock oscillations, the onset of differentiation still occurs. For instance in clock mutant embryos (mouse, zebrafish), mesp onset is still occurring, albeit slightly delayed and not in a periodic but smooth progression. This timing of differentiation can occur without a clock and it is this timer the authors refer to "Whatever the identity, our results indicate the timer ought to exert control over differentiation independent of the clock." (page 14). This 'timer' is related to what has been previously termed 'the wavefront' in the classic Clock and Wavefront model from 1976, i.e. a "timing gradient' and smooth progression of cellular change. The experimental evidence showing it is cell-autonomous by the time it has been laid down,, using single cell measurements, is an important finding, and I would suggest to connect it more clearly to the concept of a wavefront, as per model from 1976.

      4) Regarding question a., clearly, the timer for the slowing down of oscillations is operating in single cells, an important finding of this study. It is remarkable to note in this context that while the overall, absolute timescale of slowing down is entirely changed by going from in vivo to in vitro, the relative slowing down of oscillations, per cycle, is very much comparable, both in vivo and in vivo. To me, while this study does not address the nature of this timer directly, the findings imply that the cell-autonomous timer that controls slowing down is, in fact, linked to the oscillations themselves. We have previously discussed such a timer, i.e. a 'self-referential oscillator' mechanism (in mouse embryos, see Lauschke et al., 2013) and it seems the new exciting findings shown here in zebrafish provide important additional evidence in this direction. I would suggest commenting on this potential conceptual link, especially for those readers interested to see general patterns.

      5) Regarding question c., i.e. how the two timing mechanisms are functionally linked, I think concluding that "Whatever the identity, our results indicate the timer ought to exert control over differentiation independent of the clock." (page 14), might be a bit of an oversimplification. It is correct that the timer of differentiation is operating without a clock, however, physiologically, the link to the clock (and hence the dependence of the timescale of clock slowing down), is also evident. As the author states, without clock input, the precision of when and where differentiation occurs is impacted. I would hence emphasize the need to answer question c., more clearly, not to give the impression that the timing of differentiation does not integrate the clock, which above statement could be interpreted to say.

      6) A very interesting finding presented here is that in some rare examples, the arrest of oscillations and onset of differentiation (i.e. mesp) can become dissociated. Again, this shows we deal here with interacting, but independent modules. Just as a comment, there is an interesting medaka mutant, called doppelkorn (Elmasri et al. 2004), which shows a reminiscent phenotype "the Medaka dpk mutant shows an expansion of the her7 expression domain, with apparently normal mesp expression levels in the anterior PSM.". The authors might want to refer to this potential in vivo analogue to their single cell phenotype.

      7) One strength of the presented in vitro system is that it enables precise control and experimental perturbations. A very informative set of experiments would be to test the dependence of the cell-autonomous timing mechanisms (plural) seen in isolated cells on ongoing signalling cues, for instance via Fgf and Wnt signaling. The inhibition of these pathways with well-characterised inhibitors, in single cells, would provide important additional insight into the nature of the timing mechanisms, their dependence on signaling and potentially even into how these timers are functionally interdependent.

    1. Reviewer #3 (Public Review):

      Summary:

      1. Grandits and colleagues were trying to develop a new tool to accelerate pharmacological studies by using neural networks to emulate the human ventricular cardiomyocyte action potential (AP). The AP is a complex electrical signal that governs the heartbeat, and it is important to accurately model the effects of drugs on the AP to assess their safety and efficacy. Traditional biophysical simulations of the AP are computationally expensive and time-consuming. The authors hypothesized that neural network emulators could be trained to predict the AP with high accuracy and that these emulators could also be used to quickly and accurately predict the effects of drugs on the AP.

      Strengths:

      2. One of the study's major strengths is that the authors use a large and high-quality dataset to train their neural network emulator. The dataset includes a wide range of APs, including normal and abnormal APs exhibiting EADs. This ensures that the emulator is robust and can be used to predict the AP for a variety of different conditions.

      Another major strength of the study is that the authors demonstrate that their neural network emulator can be used to accelerate pharmacological studies. For example, they use the emulator to predict the effects of a set of known arrhythmogenic drugs on the AP. The emulator is able to predict the effects of these drugs, even though it had not been trained on these drugs specifically.

      Weaknesses:

      One weakness of the study is that it is important to validate neural network emulators against experimental data to ensure that they are accurate and reliable. The authors do this to some extent, but further validation would be beneficial. In particular for the inverse problem, where the estimation of pharmacological parameters very challenging and led to particularly large inaccuracies.

      Additional context:

      4. The work by Grandits et al. has the potential to revolutionize the way that pharmacological studies are conducted. Neural network emulation has the promise to reduce the time and cost of drug development and to improve the safety and efficacy of new drugs. The methods and data presented in the paper are useful to the community because they provide a starting point for other researchers to develop and improve neural network emulators for the human ventricular cardiomyocyte AP. The authors have made their code and data publicly available, which will facilitate further research in this area.

      5. It is important to note that neural network emulation is still a relatively new approach, and there are some challenges that need to be addressed before it can be widely adopted in the pharmaceutical industry. For example, neural network emulators need to be trained on large and high-quality datasets. Additionally, it is important to validate neural network emulators against experimental data to ensure that they are accurate and reliable. Despite these challenges, the potential benefits of neural network emulation for pharmacological studies are significant. As neural network emulation technology continues to develop, it is likely to become a valuable tool for drug discovery and development.

    1. Reviewer #2 (Public Review):

      Summary:

      The malaria parasite Plasmodium develops into oocysts and sporozoites inside Anopheles mosquitoes, in a process called sporogony. Sporozoites invade the insect salivary glands in order to be transmitted during a blood meal. An important question regarding malaria transmission is whether all mosquitoes harboring Plasmodium parasites are equally infectious. In this paper, the authors investigated the progression of P. falciparum sporozoite development in Anopheles mosquitoes, using a sensitive qPCR method to quantify sporozoites and an artificial skin system to probe for parasite expelling. They assessed the association between oocyst burden, salivary gland infection intensity, and sporozoites expelled.

      The data show that higher sporozoite loads are associated with earlier colonization of salivary glands and a higher prevalence of sporozoite-positive salivary glands and that higher salivary gland sporozoite burdens are associated with higher numbers of expelled sporozoites. Intriguingly, there is no clear association between salivary gland burdens and the prevalence of expelling, suggesting that most infections reach a sufficient threshold to allow parasite expelling during a mosquito bite. This important observation suggests that low-density gametocyte carriers, although less likely to infect mosquitoes, could nevertheless contribute to malaria transmission.

      Strengths:

      The paper is well written and the work is well conducted. The authors used two experimental models, one using cultured P. falciparum gametocytes and An. stephensi mosquitoes, and the other one using natural gametocyte infections in a field setup with An. coluzzii mosquitoes. Both studies gave similar results, reinforcing the validity of the observations. Parasite quantification relies on a robust and sensitive qPCR method, and parasite expelling was assessed using an innovative experimental setup based on artificial skin.

      Weaknesses:

      There is no clear association between the prevalence of sporozoite expelling and the parasite burden. However, high total sporozoite burdens are associated with earlier and more efficient colonization of the salivary glands, and higher salivary gland burdens are associated with higher numbers of expelled sporozoites. While these observations suggest that highly infected mosquitoes could transmit/expel parasites earlier, this is not directly addressed in the study. In addition, whether all expelled sporozoites are equally infectious is unknown. The central question, i.e. whether all infected mosquitoes are equally infectious, therefore remains open.

    1. Reviewer #2 (Public Review):

      Dipasree Hajra et al demonstrated that Salmonella was able to modulate the expression of Sirtuins (Sirt1 and Sirt3) and regulate the metabolic switch in both host and Salmonella, promoting its pathogenesis. The authors found Salmonella infection induced high levels of Sirt1 and Sirt3 in macrophages, which were skewed toward the M2 phenotype allowing Salmonella to hyper-proliferate. Mechanistically, Sirt1 and Sirt3 regulated the acetylation of HIF-1alpha and PDHA1, therefore mediating Salmonella-induced host metabolic shift in the infected macrophages. Interestingly, Sirt1 and Sirt3-driven host metabolic switch also had an effect on the metabolic profile of Salmonella. Counterintuitively, inhibition of Sirt1/3 led to increased pathogen burdens in an in vivo mouse model. Overall, this is a well-designed study. There are a few comments below that would further strengthen the current study.

      Major comments:<br /> In the in vivo study (lines 436-446) - the authors noticed increased pathogen burden in the EX-527 or the 3TYP-treated mice cohorts but decreased pathogen burden within the F4/80+ macrophage population. What are the other cell types that have increased pathogen burden in splenocytes from EX-527 or the 3TYP treated? Can this be further explored and explained?

      While the authors indicated that IL-6 cytokine storm and elevated ROS production could result in bacterial dissemination in vivo, one could also argue that Sirt1/3 inhibitors might have an impact on gut function and/or gut microbiota (PMID: 22115311). Did Sirt1/3 inhibitors also lead to increased pathogen burdens in the gut? If so, the potential effect of these in vivo treatments on gut microbiota/colonization resistance should be discussed.

      Minor comment:<br /> Sirt1 has been shown to be degraded during Salmonella infection (PMID: 28192515), which is different from the current study. An explanation should be provided for this.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors present a report of a large Pseudomonas aeruginosa hospital outbreak affecting more than 80 patients with first sampling dates in 2011 that stretched over more than 10 years and was only identified through genomic surveillance in 2020. The outbreak strain was assigned to the sequence type 621, an ST that has been associated with carpabapenem resistance across the globe. Ongoing transmission coincided with both increasing resistance without acquisition of carbapenemase genes as well as the convergence of mutations towards a host-adapted lifestyle.

      Strengths:<br /> The convincing genomic analyses indicate spread throughout the hospital since the beginning of the century and provide important benchmark findings for future comparison.

      The sampling was based on all organisms sent to the Multidrug-resistant Organism Repository and Surveillance Network across the U.S. Military Health System.

      Using sequencing data from patient and environmental samples for phylogenetic and transmission analyses as well as determining recurring mutations in outbreak isolates allows for insights into the evolution of potentially harmful pathogens with the ultimate aim of reducing their spread in hospitals.

      Weaknesses:<br /> The epidemiological information was limited and the sampling methodology was inconsistent, thus complicating the inference of exact transmission routes. Epidemiological data relevant to this analysis include information on the reason for sampling, patient admission and discharge data, and underlying frequency of sampling and sampling results in relation to patient turnover.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this work, Hu and colleagues investigate telomerase-independent survival in Saccharomyces cerevisiae strains engineered to have different chromosome numbers. The authors describe the molecular patterns of survival that change with fewer chromosomes and that differ from the well-described canonical Type I and Type II, including chromosome circularization and other atypical outcomes. They then take advantage of the strain with 3 chromosomes to examine the effect of deleting all the subtelomeric elements, called X and Y'. For most of the tested phenotypes, they find no significant effect of the absence of X- and Y'-element, and show that they are not essential for survivor formation. They speculate that X- and Y'-elements are remnants of ancient telomere maintenance mechanisms.

      Strengths:<br /> This work advances our understanding of the telomerase-independent strategies available to the cell by altering the structure of the genome and of the subtelomeres, a feat that was enabled by the set of strains they engineered previously. By using strains with non-standard genome structures, several alternative survival mechanisms are uncovered, revealing the diversity and plasticity of telomere maintenance mechanisms. Overall, the conclusions are well supported by the data, with adequate sample sizes for investigating survivors. The assessment of the genetic requirements for survivors in strains with different chromosome numbers greatly improved the quality of this work. The molecular analyses based on Southern blots are also very well-conducted.

      Weaknesses:<br /> The authors discovered alternative telomerase-independent survival strategies beyond the well-described type I and II (including circularization, type X and atypical, as they called them) at play in the context of reduced number of chromosomes. Their work provides a molecular and a partial genetic characterization of these survival pathways. A more thorough analysis of the frequency of each type of survivors and their genetic requirements would have advanced our understanding or the diversity of survival strategies in the absence of telomerase. However, as noted by the authors, the quantification of the rate of emergence of survivors (and their subtypes) is very difficult to achieve. This comment is therefore not meant as a criticism but rather as a perspective on exciting future research avenues.

    1. Reviewer #3 (Public Review):

      The authors have done a fine job of updating the manuscript and it is substantially improved. In particular, the paragraphs towards the end of the Introduction and Discussion are vastly improved. The last paragraph of the Introduction now clearly explicates the hypotheses (save one minor point of confusion). The limitations section of the Discussion is also very helpful and fair. However, there are still areas where claims need to be tempered.

      Major criticisms<br /> • The results still do not lead to the conclusion that the angular gyrus is causally involved in insight-driven memory configuration. Although the authors do state that other regions such as the hippocampus may have contributed to the pattern of results, there is still no evidence of target engagement or a link between target engagement and the behavioral results. Thus, while the results support that cTBS to the angular gyrus affects insight-driven memory configuration, it is a strong overstep to say that the angular gyrus is causally involved in insight-driven memory reconfiguration. In particular, this applies to both the title and the last line of the Abstract. In relation to this, have the authors conducted any target engagement analyses? It seems like a good starting point would be to identify the censor closest to the stimulation site in each individual, Hjorth transforms the signal of that sensor by subtracting the average of the surrounding sensors to increase signal localization, and then measure the effects of stimulation on theta power. Presumably, we would expect that cTBS would decrease theta power relative to sham stimulation. Although this isn't the only type of analysis that could at least partially confirm target engagement, there needs to be some sort of formal analysis to maintain the claims of the title and last line of the Abstract.<br /> • The authors removed the mentions of "inhibitory stimulation" from the manuscript to their credit, but a rigorous and fair treatment of the effects of cTBS is still lacking, and it is still unclear why cTBS to the angular gyrus would cause an inhibitory effect in the first place. The authors state that

      "Previous evidence has demonstrated the inhibitory effect of cTBS on the targeted brain region under stimulation (Huang et al., 2005; Jannati et al., 2023). Nonetheless, the effects of cTBS appear to vary based on the targeted region, with cTBS to parietal regions demonstrating the capability to enhance hippocampal connectivity (Hermiller et al., 2019, 2020)."

      The inhibitory effects of motor cortex cTBS s on corticospinal excitability in nine subjects from the Huang paper and the Jannati review (not a primary source) do not constitute sufficient evidence to hypothesize an inhibitory effect on insight-driven memory reconfiguration. The second sentence provides much more sufficient evidence that parietal stimulation should have some sort of a facilitatory effect, but this is simply glossed over without an explanation of why cTBS to the parietal cortex should inhibit insight-driven memory reconfiguration. Pilot data showing such inhibitory effects or a body of evidence showing inhibitory effects of angular gyrus stimulation on closely-related areas of cognition would have given reason to believe this. However, without these, an a priori assumption that parietal cTBS would be inhibitory seems highly debatable and paints the results as provisional, rather than confirmatory"

    1. Reviewer #3 (Public Review):

      The findings of Bo Yu and colleagues titled "Identification of fallopian tube microbiota and its association with ovarian cancer: a prospective study of intraoperative swab collections from 187 patients" describes the identification of the fallopian tube microbiome and relationship with ovarian cancer. The studies are highly rigorous obtaining specimens from the fallopian tube, ovarian surfaces, paracolic gutter of patients of known or suspected ovarian cancer or benign tumor patients. The investigators took great care to insure there was no or limited contamination including test the surgical suite air, as the test locations are from low abundance microbiota. The findings provide evidence that the microbiota in the fallopian tube, especially in ovarian cancer has similarities to gut microbial communities. This is a potentially novel observation.

      The studies investigate the microbiome of >1000 swabs from 81 ovarian cancer and 106 non-cancer patients. The sites collected are low biomass microbiota making the study particularly challenging. The studies provide descriptive evidence that the ovarian cancer fallopian tube microbiota contain species that are similar to the gut microbiota. In contrast the fallopian tube microbiota of non-cancer patients that exhibit more similarity to the uterine/cervical microbiota. This may be a relevant observation but is highly descriptive with limited insights on the functional relevance.

      The data indicate the presence of low biomass FT microbiota. The findings support the existence of FT microbiota in ovarian cancer that appears to be related to gut microbial species. While interesting, there is no insights on how and why these microbial species are found in the FT. The studies only identify the species but there is no transcriptomic analysis to provide an indication on whether the bacteria are activating DNA damage pathways. This is an interesting observation that requires more insights to address how these bacteria reach the fallopian tube and a related question is whether these bacteria are found in the peritoneum.

      An additional concern is whether these data can be used to develop biomarkers of disease and early detection of disease.

    1. Reviewer #2 (Public Review):

      Summary:

      The study provides valuable and compelling evidence that while activation of the mTOR cascade confers some similarities in alterations in cell size, mTOR pathway activation, cortical lamination, baseline firing properties, and synaptic activity, there are distinctions that could account for clinical differences in seizure and epilepsy phenotypes in patients harboring these mutations. These findings could have important implications going forward as we design clinical therapeutic strategies to modulate mTOR activity in these individuals to treat seizures.

      This study presents a valuable finding on the role that distinct mTOR pathway genes play in altered cell shape, cortical laminar migration, and cellular excitability in the mouse medial prefrontal cortex (mPFC). The evidence supporting the claims of the authors is solid, although analysis of the role of the mTORC2 pathway and consideration of distinct metabolic states i.e., amino acid levels would have strengthened the study. The work will be of interest to neuroscientists working on human epilepsy. These genes have each been assayed in previous independent studies and thus the direct comparison is what provides the innovation and interest.

      The manuscript by Nguyen and colleagues attempts to define both the common and differential roles of mTOR pathway genes, both by gene knockout (KO) and activation, on cortical neuronal size, cortical lamination, and excitability. They focused on 5 genes that have been linked to human malformations of cortical development (MCD) and epilepsy: RhebY35L, mTORS2215Y, Dedpdc5KO, PtenKO, and Tsc1KO. The RhebY35L, mTORS2215Y are known and pathogenic human gain-of-function variants. Each of these genes is known to modulate the activity of mTORC1 and either KO or activation will lead to abnormal and persistent hyperactivation of mTOR activity. Using in utero electroporation they transfected plasmids containing these gene constructs into fetal mouse brains at E15.5 and then assessed neuronal shape and size, laminar positioning, spontaneous activity, synaptic activity, and expression of a novel voltage-gated potassium channel (HCN4) at varying time postnatally e.g., P7-9 (neonates) and P28-43 (young adults).

      The study clearly achieves its stated aims i.e., that disruption of each of five distinct mTOR pathway genes, Rheb, mTOR, Depdc5, Pten, and Tsc1, individually impacts pyramidal neuron development and electrophysiological function in the mouse mPFC. The data from each of the 5 genes provides strong support to the notion that mTOR pathway gene mutations yield the unifying clinical parcellation of mTORopathies, likely as a consequence of mTOR pathway activation. The data also provide interesting evidence that subtle or even overt differences in clinical phenotypes between RhebY35L, mTORS2215Y, Dedpdc5KO, PtenKO, and Tsc1KO in humans could be due to effects of these genes either on mTOR or on yet to be defined alternative pathways. Assuredly follow-up studies to examine how Rheb, mTOR, Dedpdc5, Pten, and Tsc1 engage with other protein binding partners or other pathways will be warranted in future studies.

      Strengths:

      The investigators demonstrate that gene KO or activation leads to common changes in cell size (enlargement) though with different effects across each gene subtype suggesting distinct genetic effects despite a common effect on mTOR signaling. The major effect was seen in forebrain neurons expressing mTORS2215Y. They also report gene-specific effects of each mTOR pathway gene on cortical lamination. For example, while RhebY35L, mTORS2215Y, Dedpdc5KO, and Tsc1KO significantly disrupted laminar positioning of neurons in layer 2/3, PtenKO had minimal effects on laminar positioning. This finding is intriguing since it means that simply activating mTOR during fetal brain development will not necessarily alter cortical lamination and that an increase in cell size by itself doesn't disrupt laminar fidelity. To verify that the expression of plasmids led to mTORC1 hyperactivation, phosphorylated levels of S6 (i.e., p-S6), a downstream substrate of mTORC1, were assayed by immunohistochemistry in P28-43 mice. Expression of the RhebY35L, mTORS2215Y, Dedpdc5KO, PtenKO, and Tsc1KO plasmids all led to significantly increased p-S6 staining intensity, supporting that the expression of each of these plasmids leads to increased mTORC1 signaling.

      Whole-cell current- and voltage-clamp recordings were performed in P25-P51 mice in acute brain slice preparations. Expression of RhebY35L, mTORS2215Y, Dedpdc5KO, PtenKO, and Tsc1KO led to decreased depolarization-induced excitability, but only RhebY35L, mTORS2215Y, and Tsc1KO expression led to depolarized resting membrane potentials. Interestingly, expression of RhebY35L, mTORS2215Y, Dedpdc5KO, PtenKO, and Tsc1KO led to the abnormal presence of HCN4 channels with variations in functional expression suggesting a common cellular mechanism that could confer excitability. Treatment with rapamycin, an mTOR inhibitor, reversed the expression changes in HCN4. Expression of RhebY35L, mTORS2215Y, Dedpdc5KO, PtenKO, and Tsc1KO led to different impacts on sEPSC properties. Effects of treatment with the selective HCN channel blocker zatebradine on hyperpolarization-induced inward currents in mTORS2215Y neurons confirmed the identity of ΔI as Ih.

      Overall the data presented provides a convincing and compelling direct comparison of the roles that select mTOR pathway genes play on brain development and network excitability. It is critical to directly compare these gene effects in mouse models because although these genes are part of the mTOR pathway and clearly cause augmentation of mTOR activation, there are mechanistic differences in how these gees modify mTOR and how they interact with other proteins and phenotypic differences in humans harboring mutations in these same genes.

    1. Reviewer #2 (Public Review):

      Summary: The authors have previously demonstrated that the E3 ligase PDLIM2 inhibits NF-kB and STAT3 and is epigenetically repressed in human lung cancers (Sun et al. Nat. Comm. 2019 10: 5324); therefore, PDLIM2 is a tumor suppressor in lung cancer. In this manuscript, they follow up on their previous findings and show that expression of PDLIM2 is downregulated in human lung cancers by both genetic deletion and promoter methylation. They further describe a novel approach to restore the expression of PDLIM2 in mouse lung tumors by systemically administering PDLIM2 plasmids encapsulated in nanoparticles (termed "nanoPDLIM2"). The nanoPDLIM2 approach was shown to exhibit efficacy with low toxicity in a urethane-induced mouse lung cancer model. The authors further demonstrated synergy of nanoPDLIM2 with chemotherapy and PD-1 blockade immunotherapy. The combination therapy of nanoPDLIM2, chemotherapy and immunotherapy proved most effective with complete tumor remission in 60% of mice. Mechanistically, nanoPDLIM2 upregulated MHC-I expression, enhanced CD4/CD8 T cell activation and tumor infiltration, and suppressed MDR1 induction and nuclear expression of STAT3, RelA and prosurvival genes in tumors. Overall, this study is important because it reinforces the critical roles of PDLIM2 in suppressing lung cancer, and also identifies a potential approach to restoring PDLIM2 expression in lung tumors. The experiments were well executed; the data are convincing and support the conclusions made by the authors.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Liao and colleagues generated tagged SMAD1 and SMAD5 mouse models and identified genome occupancy of these two factors in the uterus of these mice using the CUT&RUN assay. The authors used integrative bioinformatic approaches to identify putative SMAD1/5 direct downstream target genes and to catalog the SMAD1/5 and PGR genome co-localization pattern. The role of SMAD1/5 on stromal decidualization was assayed in vitro on primary human endometrial stromal cells. The new mouse models offer opportunities to further dissect SMAD1 and SMAD5 functions without the limitation from SMAD antibodies, which is significant. The CUT&RUN data further support the usefulness of these mouse models for this purpose.

      Strengths:<br /> The strength of this study is the novelty of new mouse models and the valuable cistromic data derived from these mice. Overall the present manuscript is an excellent resource paper for the field of reproductive biology.

      Weaknesses:<br /> The weakness of the present version of the manuscript includes the self-limited data analysis approaches such as the proximal promoter based bioinformatic filter and an outdated method on inferring the cell type composition. Evidence was provided for potential associations between SMAD1/5 and other major transcription factors. However, causal effects of SMAD1/5 on the genome occupancy of other major uterine transcription factors were discussed but not experimentally examined in the present manuscript, which is understandable.

      For data in Figure 2B, the current manuscript fails to elaborate the common and distinct features between clusters 1 and 3 as well as the biological significance of having two separate clusters for SMAD1. In addition, Figure S1A shows overlapping genome occupancy between SMAD1 and SMAD5, which is not clearly demonstrated in Figure 2B.

      For data in Figure 5A, the result description does not provide adequate information to guide readers to full understanding of the data. The biological meaning behind the three PR clusters is not stated nor speculated. Moreover, Figure 5A and Figure S1B are inherently connected but fail to be adequately described in the main text.

    1. Reviewer #2 (Public Review):

      This is a genome-wide association study of COVID-19 in individuals of admixed American ancestry (AMR) recruited from Brazil, Colombia, Ecuador, Mexico, Paraguay, and Spain. After quality control and admixture analysis, a total of 3,512 individuals were interrogated for 10,671,028 genetic variants (genotyped + imputed). The genetic association results for these cohorts were meta-analyzed with the results from The Host Genetics Initiative (HGI), involving 3,077 cases and 66,686 controls. The authors found two novel genetic loci associated with COVID-19 at 2q24.2 (rs13003835) and 11q14.1 (rs77599934), and other two independent signals at 3p21.31 (rs35731912) and 6p21.1 (rs2477820) already reported as associated with COVID-19 in previous GWASs. Additional meta-analysis with other HGI studies also suggested risk variants near CREBBP, ZBTB7A, and CASC20 genes.

      Strengths:<br /> These findings rely on state-of-the-art methods in the field of Statistical Genomics and help to address the issue of a low number of GWASs in non-European populations, ultimately contributing to reducing health inequalities across the globe.

      Weaknesses:<br /> There is no replication cohort, as acknowledged by the authors (page 29, line 587), and no experimental validation to assess the biological effect of putative causal variants/genes. Thus, the study provides good evidence of association, rather than causation, between the genetic variants and COVID-19. Lastly, I consider it crucial to report the results for the SCOURGE Latin American GWAS, in addition to its meta-analysis with HGI results, since HGI data has a different phenotype scheme (Hospitalized COVID vs Population) compared to SCOURGE (Hospitalized COVID vs Non-hospitalized COVID).

    1. Reviewer #2 (Public Review):

      DNA gyrase is an essential enzyme in bacteria that regulates DNA topology and has the unique property to introduce negative supercoils into DNA. This enzyme contains 2 subunits GyrA and GyrB, which forms an A2B2 heterotetramer that associates with DNA and hydrolyzes ATP. The molecular structure of the A2B2 assembly is composed of 3 dimeric interfaces, called gates, which allow the cleavage and transport of DNA double stranded molecules through the gates, in order to perform DNA topology simplification.<br /> The article by Germe et al. questions the existence and possible mechanism for subunit exchange in the bacterial DNA gyrase complex.

      The complexes are purified as a dimer of GyrA and a fusion of GyrB and GyrA (GyrBA), encoded by different plasmids, to allow the introduction of targeted mutations on one side only of the complex. The conclusion drawn by the authors is that subunit exchange does happen in vitro, favored by DNA binding and wrapping. They propose that the accumulation of gyrase in higher-order oligomers can favor rapid subunit exchange between two active gyrase complexes brought into proximity. This study is nicely illustrated with diagrams that explain the possible mechanism.

      The authors are also debating the conclusions of a previous article by Gubaev, Weidlich et al 2016 (https://doi.org/10.1093/nar/gkw740). Gubaev et al. originally used this strategy of complex reconstitution to propose a nicking-closing mechanism for the introduction of negative supercoils by DNA gyrase, an alternative mechanism that precludes DNA strand passage, previously established in the field. Germe et al. propose that the detected negative supercoiling activity in this earlier study may be due to the subunit swapping of the recombinant protein with the endogenous enzyme.

      Strengths

      The mix of gyrase subunits is plausible, this mechanism has been suggested by Ideka et al, 2004 and also for the human Top2 isoforms with the formation of Top2a/Top2b hybrids being identified in HeLa cells (doi: 10.1073/pnas.93.16.8288).<br /> Germe et al have used extensive and solid biochemical experiments, together with thorough experimental controls, involving :<br /> - the purification of gyrase subunits including mutants with domain deletion, subunit fusion or point mutations.<br /> - DNA relaxation, cleavage and supercoiling assays<br /> - biophysical characterization in solution (size exclusion chromatography, mass photometry, mass spectrometry)

      Together the combination of experimental approaches provides convincing evidence for subunit swapping in gyrase in vitro, despite the technical limitations of standard biochemistry applied to such a complex macromolecule.

      Weaknesses

      The conclusions of this study could be strengthened by in vivo data to identify subunit swapping in the bacteria. Indeed, if shown in vivo, together with this biochemical evidence, this mechanism could have a substantial impact on our understanding of bacterial physiology and resistance to drugs. These in vivo perspectives are beyond the scope of the present in vitro investigation but are however explained by the authors.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This study examined the possible affect of spike-wave discharges (SWDs) on the response to visual or somatosensory stimulation using fMRI and EEG. This is a significant topic because SWDs often are called seizures and because there is non-responsiveness at this time, it would be logical that responses to sensory stimulation are reduced. On the other hand, in rodents with SWDs, sensory stimulation (a noise, for example) often terminates the SWD/seizure.

      In humans, these periods of SWDs are due to thalamocortical oscillations. A certain percentage of the normal population can have SWDs in response to photic stimulation at specific frequencies. Other individuals develop SWDs without stimulation. They disrupt consciousness. Individuals have an absent look, or "absence", which is called absence epilepsy.

      The authors use a rat model to study the responses to stimulation of the visual or somatosensory systems during and in between SWDs. They report that the response to stimulation is reduced during the SWDs. While some data show this nicely, the authors also report on lines 396-8 "When comparing statistical responses between both states, significant changes (p<0.05, cluster-) were noticed in somatosensory auditory frontal..., with these regions being less activated in interictal state (see also Figure 4). That statement is at odds with their conclusion. I do not see that this issue was addressed.

      They also conclude that stimulation slows the pathways activated by the stimulus. I do not see any data proving this. It would require repeated assessments of the pathways in time. This issue was not addressed.

      The authors also study the hemodynamic response function (HRF) and it is not clear what conclusions can be made from the data. This is still an issue. No conclusions appear to be possible to make.

      Finally, the authors use a model to analyze the data. This model is novel and while that is a strength, its validation is unclear. The authors did not add any validation of their model.

      Strengths:<br /> Use of fMRI and EEG to study SWDs in rats.

      Weaknesses:<br /> Several aspects of the Methods and Results were improved but some are still are unclear.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This study builds upon previous work that demonstrated that brain injury results in leakage of albumin across the blood brain barrier, resulting in activation of TGF-beta in astrocytes. Consequently, this leads to decreased glutamate uptake, reduced buffering of extracellular potassium and hyperexcitability. This study asks whether such a process can play a physiological role in cortical plasticity. They first show that stimulation of a forelimb for 30 minutes in a rat results in leakage of the blood brain barrier and extravasation of albumin on the contralateral but not ipsilateral cortex. The authors propose that the leakage is dependent upon neuronal excitability and is associated with an enhancement of excitatory transmission. Inhibiting the transport of albumin or the activation of TGF-beta prevents the enhancement of excitatory transmission. In addition, gene expression associated with TGF-beta activation, synaptic plasticity and extracellular matrix are enhanced on the "stimulated" hemisphere. That this may translate to humans is demonstrated by a break down in the blood brain barrier following activation of brain areas through a motor task.

      Strengths:<br /> This study is novel and the results are potentially important as they demonstrate an unexpected break down of the blood brain barrier with physiological activity and this may serve a physiological purpose, affecting synaptic plasticity.

      The strengths of the study are:<br /> 1) The use of an in vivo model with multiple methods to investigate the blood brain barrier response to a forelimb stimulation.<br /> 2) The determination of a potential functional role for the observed leakage of the blood brain barrier from both a genetic and electrophysiological view point<br /> 3) The demonstration that inhibiting different points in the putative pathway from activation of the cortex to transport of albumin and activation of the TGF-beta pathway, the effect on synaptic enhancement could be prevented.<br /> 4) Preliminary experiments demonstrating a similar observation of activity dependent break down of the blood brain barrier in humans.

      Weaknesses:<br /> The authors adequately addressed most of my points. A few remain:<br /> 1) Although the reviewers have addressed the possible effects of anaesthesia on neuro-vascular coupling. They have not mentioned or addressed the possible effects of ketamine (an NMDA receptor antagonist) on synaptic plasticity. Indeed, the low percentage of SEP increase following potentiation (10-20%) could perhaps be explained by partial block of NMDA receptors by ketamine.<br /> 2) The experimental paradigms remain unclear to me. Now, it appears that drugs are applied for 50 minutes and that the stimulation occurs during the "washout period". The more conventional approach would be to have the drug application during the stimulation period to determine if the drugs occlude or enhance the effects of stimulation and then washout the drugs. The problem is that drugs variably washout at different rates depending upon their lipid solubility.<br /> 3) It is still not clear to what extent the experimenters and those doing the analysis were blinded to group. If one or both were blind to group, then please put this in the methods.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors are studying the behavioral response to pathogen exposure. They and others have previously describe the role that the G-protein coupled receptors in the nervous system plays in detecting pathogens, and initiating behavioral patterns (e.g. avoidance/learned avoidance) that minimize contact. The authors study this problem in C. elegans, which is amenable to genetic and cellular manipulations and allow the authors to define cellular and signaling mechanisms. This paper extends the original idea to now implicate signaling and transcriptional pathways within a particular neuron (ASJ) and the gut in mediating avoidance behaviour.

      Strengths:<br /> The work is rigorous and elegant and the data are convincing. The authors make superb use of mutant strains in C. elegans, as well tissue specific gene inactivation and expression and genetic methods of cell ablation. to demonstrate how a gene, NPR15 controls behavioral changes in pathogen infection. The results suggest that ASJ neurons and the gut mediate such effects. I expect the paper will constitute an important contribution to our understanding of how the nervous system coordinates immune and behavioral responses to infection.

    1. Reviewer #2 (Public Review):

      This paper describes the results of a set of complementary and convergent experiments aimed at describing roles for the non-selective cation channels NALCN and TRPC6 in mediating subthreshold inward depolarizing currents and action potential generation in VTA DA neurons under normal physiological conditions. In general, the authors have responded satisfactorily to reviewer comments, and the revised manuscript is improved. The manuscript could still benefit from additional revision, including the following:

      1. From the previous review, we mentioned that " 'The HCN' as written in line 69 is a bit misleading, as HCN channels in the heart and brain are different members of a family of channels, although as written in the text, it seems that they are identical." This is still the case (now line 73).

      2. The authors state in line 112 that "most of the experiments were also repeated in female mice" - this is true in the case of most electrophysiological experiments, although not behavioral experiments. Authors should amend the statement in line 112 and clarify in the Discussion section which findings are generalizable between sexes; e.g.:<br /> a. Discussion of HCN contribution to VTA DA activity (beginning line 453) should clarify male mice.<br /> b. Similarly, any discussion of behavioral findings should clarify male mice.

      3. The authors' statement in lines 179-183 ("In contrast, fewer GABAergic neuronal markers (Glutamic acid decarboxylase, GAD1/2 and vesicular GABA transporter, VGAT) co-expressed with the DA neurons, which is consistent with previous studies that VTA DA neurons co-expressing GABAergic neuronal markers mainly project to the lateral habenula") is a little confusing - as stated, it seems that the authors are confirming DA/GABA coexpression in VTA-LHb neurons, which is not the case.

      4. Additional information could be included in the Methods section description of Western Blotting procedures - e.g., what thickness of tissue and what size gauge were used to dissect VTA for these experiments?

    1. Reviewer #2 (Public Review):

      The manuscript investigates the function of basal forebrain cholinergic axons in mouse primary visual cortex (V1) during locomotion using two-photon calcium imaging in head-fixed mice. Cholinergic modulation has previously been proposed to mediate the effects of locomotion on V1 responses. The manuscript concludes that the activity of basal forebrain cholinergic axons in visual cortex provides a signal which is more correlated with binary locomotion state than locomotion velocity of the animal. Cholinergic axons did not seem to respond to grating stimuli or visuomotor prediction error. Optogenetic stimulation of these axons increased the amplitude of responses to visual stimuli and decreased the response latency of layer 5 excitatory neurons, but not layer 2/3 neurons. Moreover, optogenetic or chemogenetic stimulation of cholinergic inputs reduced pairwise correlation of neuronal responses. These results provide insight into the role of cholinergic modulation to visual cortex and demonstrate that it affects different layers of visual cortex in a distinct manner. The experiments are well executed and the data appear to be of high quality. However, further analyses are required to fully support some of the study's conclusions.

      The manuscript concludes that cholinergic axons convey a binary locomotion signal and are not tuned to running speed. Getting head-fixed animals to run at the speeds typical of freely moving animals can require training, which was not undertaken in this study. Consequently, the typically low running velocity of mice is a potential limitation of this study.

      The analyses of the effects of locomotion and stimulation of cholinergic inputs present grand averages of responses across all neurons, and therefore may mask heterogeneity across layer 2/3 and layer 5 neurons.

    1. Reviewer #2 (Public Review):

      The authors phototag DA and GABA neurons in the VTA in mice performing a t-maze task, and report choice-specific responses in the delay period of a memory-guided task, more so that in a variant task w/o a memory component. Overall, I found the results convincing. While showing responses that are choice selective in DA neurons is not entirely novel (e.g. Morris et al NN 2006, Parker et al NN 2016), the fact that this feature is stronger when there is a memory requirement is an interesting and a novel observation.

    1. Reviewer #2 (Public Review):

      In this manuscript, Yao et al. present a series of experiments aiming at generating a cellular atlas of the human hippocampus across aging, and how it may be affected by injury, in particular, stroke. Although the aim of the study is interesting and relevant for a larger audience, due to the ongoing controversy around the existence of adult hippocampal neurogenesis in humans, a number or technical weaknesses result in a poor support for many of the conclusions made from the results of these experiments.<br /> In particular, a recent meta analysis of five previous studies applying similar techniques to human samples has identified different aspects of sample size as main determinants of the statistical power needed to make significant conclusions. Some of this aspects are the number of nuclei sequenced and subject stratification. These two aspects are of concern in Yao's study. First, the number of sequenced nuclei is lower than the calculated numbers of nuclei required for detecting rare cell types. However, Yao et al. report succeeding in detecting rare populations, including several types of neural stem cells in different proliferation states, which have been demonstrated to be extremely scarce by previous studies. It would be very interesting to read how the authors interpret these differences. Secondly, the number of donors included in some of the groups is extremely low (n=1) and the miscellaneous information provided about the donors is practically inexistent. As individual factors such as chronic conditions, medication, lifestyle parameters, etc... are considered determinant for the variability of adult hippocampal neurogenesis levels across individuals, this represents a series limitation of the current study. Overall, several technical weaknesses severely limit the relevance of this study and the ability of the authors to achieve their experimental aims.

      After a first review round, the manuscript is still lacking a clear discussion of its several technical limitations, which will help the audience to grasp the relevance of the findings. In particular, detailed information about individual patients health status and relevant lifestyle parameters that may have affected it is lacking. The authors make the point themselves that the discrepancies among studies might be caused by health state differences across hippocampi, which subsequently lead to different degrees of hippocampal neurogenesis.". So, even in the authors own interpretation this is a serious limitation to the manuscript, that however out of the authors control, impacts on the quality of their findings.

    1. Reviewer #2 (Public Review):

      Summary:

      This study aims to test auditory confounds during transcranial ultrasound stimulation (TUS) protocols that rely on audible frequencies. In several experiments, the authors show that a commonly observed suppression of motor-evoked potentials (MEP) during TUS can be explained by acoustic stimulation. For instance, not only target TUS, but also stimulation of a control site and acoustic stimulation led to suppressed MEP.

      The authors have convincingly addressed all of my comments and provided useful additional details. I believe that this is a strong study that will impact the field. Thanks also for making the sound stimuli open-source.

    1. Reviewer #2 (Public Review):

      The authors describe what they assert to be a very unusual trigeminal nuclear complex in the brainstem of elephants, and based on this, follow with many speculations about how the trigeminal nuclear complex, as identified by them, might be organized in terms of the sensory capacity of the elephant trunk.

      The identification of the trigeminal nuclear complex/inferior olivary nuclear complex in the elephant brainstem is the central pillar of this manuscript from which everything else follows, and if this is incorrect, then the entire manuscript fails, and all the associated speculations become completely unsupported.

      The authors note that what they identify as the trigeminal nuclear complex has been identified as the inferior olivary nuclear complex by other authors, citing Shoshani et al. (2006; 10.1016/j.brainresbull.2006.03.016) and Maseko et al (2013; 10.1159/000352004), but fail to cite either Verhaart and Kramer (1958; PMID 13841799) or Verhaart (1962; 10.1515/9783112519882-001). These four studies are in agreement, but the current study differs.

      Let's assume for the moment that the four previous studies are all incorrect and the current study is correct. This would mean that the entire architecture and organization of the elephant brainstem is significantly rearranged in comparison to ALL other mammals, including humans, previously studied (e.g. Kappers et al. 1965, The Comparative Anatomy of the Nervous System of Vertebrates, Including Man, Volume 1 pp. 668-695) and the closely related manatee (10.1002/ar.20573). This rearrangement necessitates that the trigeminal nuclei would have had to "migrate" and shorten rostrocaudally, specifically and only, from the lateral aspect of the brainstem where these nuclei extend from the pons through to the cervical spinal cord (e.g. the Paxinos and Watson rat brain atlases), the to the spatially restricted ventromedial region of specifically and only the rostral medulla oblongata. According to the current paper, the inferior olivary complex of the elephant is very small and located lateral to their trigeminal nuclear complex, and the region from where the trigeminal nuclei are located by others appears to be just "lateral nuclei" with no suggestion of what might be there instead.

      Such an extraordinary rearrangement of brainstem nuclei would require a major transformation in the manner in which the mutations, patterning, and expression of genes and associated molecules during development occur. Such a major change is likely to lead to lethal phenotypes, making such a transformation extremely unlikely. Variations in mammalian brainstem anatomy are most commonly associated with quantitative changes rather than qualitative changes (10.1016/B978-0-12-804042-3.00045-2).

      The impetus for the identification of the unusual brainstem trigeminal nuclei in the current study rests upon a previous study from the same laboratory (10.1016/j.cub.2021.12.051) that estimated that the number of axons contained in the infraorbital branch of the trigeminal nerve that innervate the sensory surfaces of the trunk is approximately 400 000. Is this number unusual? In a much smaller mammal with a highly specialized trigeminal system, the platypus, the number of axons innervating the sensory surface of the platypus bill skin comes to 1 344 000 (10.1159/000113185). Yet, there is no complex rearrangement of the brainstem trigeminal nuclei in the brain of the developing or adult platypus (Ashwell, 2013, Neurobiology of Monotremes), despite the brainstem trigeminal nuclei being very large in the platypus (10.1159/000067195). Even in other large-brained mammals, such as large whales that do not have a trunk, the number of axons in the trigeminal nerve ranges between 400,000 and 500,000 (10.1007/978-3-319-47829-6_988-1). The lack of comparative support for the argument forwarded in the previous and current study from this laboratory, and that the comparative data indicates that the brainstem nuclei do not change in the manner suggested in the elephant, argues against the identification of the trigeminal nuclei as outlined in the current study. Moreover, the comparative studies undermine the prior claim of the authors, informing the current study, that "the elephant trigeminal ganglion ... point to a high degree of tactile specialization in elephants" (10.1016/j.cub.2021.12.051). While clearly, the elephant has tactile sensitivity in the trunk, it is questionable as to whether what has been observed in elephants is indeed "truly extraordinary".

      But let's look more specifically at the justification outlined in the current study to support their identification of the unusually located trigeminal sensory nuclei of the brainstem.

      (1) Intense cytochrome oxidase reactivity.<br /> (2) Large size of the putative trunk module.<br /> (3) Elongation of the putative trunk module.<br /> (4) The arrangement of these putative modules corresponds to elephant head anatomy.<br /> (5) Myelin stripes within the putative trunk module that apparently match trunk folds.<br /> (6) Location apparently matches other mammals.<br /> (7) Repetitive modular organization apparently similar to other mammals.<br /> (8) The inferior olive described by other authors lacks the lamellated appearance of this structure in other mammals.

      Let's examine these justifications more closely.

      (1) Cytochrome oxidase histochemistry is typically used as an indicative marker of neuronal energy metabolism. The authors indicate, based on the "truly extraordinary" somatosensory capacities of the elephant trunk, that any nuclei processing this tactile information should be highly metabolically active, and thus should react intensely when stained for cytochrome oxidase. We are told in the methods section that the protocols used are described by Purkart et al (2022) and Kaufmann et al (2022). In neither of these cited papers is there any description, nor mention, of the cytochrome oxidase histochemistry methodology, thus we have no idea of how this histochemical staining was done. To obtain the best results for cytochrome oxidase histochemistry, the tissue is either processed very rapidly after buffer perfusion to remove blood or in recently perfusion-fixed tissue (e.g., 10.1016/0165-0270(93)90122-8). Given: (1) the presumably long post-mortem interval between death and fixation - "it often takes days to dissect elephants"; (2) subsequent fixation of the brains in 4% paraformaldehyde for "several weeks"; (3) The intense cytochrome oxidase reactivity in the inferior olivary complex of the laboratory rat (Gonzalez-Lima, 1998, Cytochrome oxidase in neuronal metabolism and Alzheimer's diseases); and (4) The lack of any comparative images from other stained portions of the elephant brainstem; it is difficult to support the justification as forwarded by the authors. The histochemical staining observed is likely background reactivity from the use of diaminobenzidine in the staining protocol. Thus, this first justification is unsupported.

      Justifications (2), (3), and (4) are sequelae from justification (1). In this sense, they do not count as justifications, but rather unsupported extensions.

      (4) and (5) These are interesting justifications, as the paper has clear internal contradictions, and (5) is a sequelae of (4). The reader is led to the concept that the myelin tracts divide the nuclei into sub-modules that match the folding of the skin on the elephant trunk. One would then readily presume that these myelin tracts are in the incoming sensory axons from the trigeminal nerve. However, the authors note that this is not the case: "Our observations on trunk module myelin stripes are at odds with this view of myelin. Specifically, myelin stripes show no tapering (which we would expect if axons divert off into the tissue). More than that, there is no correlation between myelin stripe thickness (which presumably correlates with axon numbers) and trigeminal module neuron numbers. Thus, there are numerous myelinated axons, where we observe few or no trigeminal neurons. These observations are incompatible with the idea that myelin stripes form an axonal 'supply' system or that their prime function is to connect neurons. What do myelin stripe axons do, if they do not connect neurons? We suggest that myelin stripes serve to separate rather than connect neurons." So, we are left with the observation that the myelin stripes do not pass afferent trigeminal sensory information from the "truly extraordinary" trunk skin somatic sensory system, and rather function as units that separate neurons - but to what end? It appears that the myelin stripes are more likely to be efferent axonal bundles leaving the nuclei (to form the olivocerebellar tract). This justification is unsupported.

      (6) The authors indicate that the location of these nuclei matches that of the trigeminal nuclei in other mammals. This is not supported in any way. In ALL other mammals in which the trigeminal nuclei of the brainstem have been reported they are found in the lateral aspect of the brainstem, bordered laterally by the spinal trigeminal tract. This is most readily seen and accessible in the Paxinos and Watson rat brain atlases. The authors indicate that the trigeminal nuclei are medial to the facial nerve nucleus, but in every other species, the trigeminal sensory nuclei are found lateral to the facial nerve nucleus. This is most salient when examining a close relative, the manatee (10.1002/ar.20573), where the location of the inferior olive and the trigeminal nuclei matches that described by Maseko et al (2013) for the African elephant. This justification is not supported.

      (7) The dual to quadruple repetition of rostrocaudal modules within the putative trigeminal nucleus as identified by the authors relies on the fact that in the neurotypical mammal, there are several trigeminal sensory nuclei arranged in a column running from the pons to the cervical spinal cord, these include (nomenclature from Paxinos and Watson in roughly rostral to caudal order) the Pr5VL, Pr5DM, Sp5O, Sp5I, and Sp5C. However, these nuclei are all located far from the midline and lateral to the facial nerve nucleus, unlike what the authors describe in the elephants. These rostrocaudal modules are expanded upon in Figure 2, and it is apparent from what is shown that the authors are attributing other brainstem nuclei to the putative trigeminal nuclei to confirm their conclusion. For example, what they identify as the inferior olive in Figure 2D is likely the lateral reticular nucleus as identified by Maseko et al (2013). This justification is not supported.

      (8) In primates and related species, there is a distinct banded appearance of the inferior olive, but what has been termed the inferior olive in the elephant by other authors does not have this appearance, rather, and specifically, the largest nuclear mass in the region (termed the principal nucleus of the inferior olive by Maseko et al, 2013, but Pr5, the principal trigeminal nucleus in the current paper) overshadows the partial banded appearance of the remaining nuclei in the region (but also drawn by the authors of the current paper). Thus, what is at debate here is whether the principal nucleus of the inferior olive can take on a nuclear shape rather than evince a banded appearance. The authors of this paper use this variance as justification that this cluster of nuclei could not possibly be the inferior olive. Such a "semi-nuclear/banded" arrangement of the inferior olive is seen in, for example, giraffe (10.1016/j.jchemneu.2007.05.003), domestic dog, polar bear, and most specifically the manatee (a close relative of the elephant) (brainmuseum.org; 10.1002/ar.20573). This justification is not supported.

      Thus, all the justifications forwarded by the authors are unsupported. Based on methodological concerns, prior comparative mammalian neuroanatomy, and prior studies in the elephant and closely related species, the authors fail to support their notion that what was previously termed the inferior olive in the elephant is actually the trigeminal sensory nuclei. Given this failure, the justifications provided above that are sequelae also fail. In this sense, the entire manuscript and all the sequelae are not supported.

      What the authors have not done is to trace the pathway of the large trigeminal nerve in the elephant brainstem, as was done by Maseko et al (2013), which clearly shows the internal pathways of this nerve, from the branch that leads to the fifth mesencephalic nucleus adjacent to the periventricular grey matter, through to the spinal trigeminal tract that extends from the pons to the spinal cord in a manner very similar to all other mammals. Nor have they shown how the supposed trigeminal information reaches the putative trigeminal nuclei in the ventromedial rostral medulla oblongata. These are but two examples of many specific lines of evidence that would be required to support their conclusions. Clearly, tract tracing methods, such as cholera toxin tracing of peripheral nerves cannot be done in elephants, thus the neuroanatomy must be done properly and with attention to detail to support the major changes indicated by the authors.

      So what are these "bumps" in the elephant brainstem?

      Four previous authors indicate that these bumps are the inferior olivary nuclear complex. Can this be supported?

      The inferior olivary nuclear complex acts "as a relay station between the spinal cord (n.b. trigeminal input does reach the spinal cord via the spinal trigeminal tract) and the cerebellum, integrating motor and sensory information to provide feedback and training to cerebellar neurons" (https://www.ncbi.nlm.nih.gov/books/NBK542242/). The inferior olivary nuclear complex is located dorsal and medial to the pyramidal tracts (which were not labelled in the current study by the authors but are clearly present in Fig. 1C and 2A) in the ventromedial aspect of the rostral medulla oblongata. This is precisely where previous authors have identified the inferior olivary nuclear complex and what the current authors assign to their putative trigeminal nuclei. The neurons of the inferior olivary nuclei project, via the olivocerebellar tract to the cerebellum to terminate in the climbing fibres of the cerebellar cortex.

      Elephants have the largest (relative and absolute) cerebellum of all mammals (10.1002/ar.22425), this cerebellum contains 257 x109 neurons (10.3389/fnana.2014.00046; three times more than the entire human brain, 10.3389/neuro.09.031.2009). Each of these neurons appears to be more structurally complex than the homologous neurons in other mammals (10.1159/000345565; 10.1007/s00429-010-0288-3). In the African elephant, the neurons of the inferior olivary nuclear complex are described by Maseko et al (2013) as being both calbindin and calretinin immunoreactive. Climbing fibres in the cerebellar cortex of the African elephant are clearly calretinin immunopositive and also are likely to contain calbindin (10.1159/000345565). Given this, would it be surprising that the inferior olivary nuclear complex of the elephant is enlarged enough to create a very distinct bump in exactly the same place where these nuclei are identified in other mammals?

      What about the myelin stripes? These are most likely to be the origin of the olivocerebellar tract and probably only have a coincidental relationship with the trunk. Thus, given what we know, the inferior olivary nuclear complex as described in other studies, and the putative trigeminal nuclear complex as described in the current study, is the elephant inferior olivary nuclear complex. It is not what the authors believe it to be, and they do not provide any evidence that discounts the previous studies. The authors are quite simply put, wrong. All the speculations that flow from this major neuroanatomical error are therefore science fiction rather than useful additions to the scientific literature.

      What do the authors actually have?<br /> The authors have interesting data, based on their Golgi staining and analysis, of the inferior olivary nuclear complex in the elephant.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors used a short hairpin RNA technique strategy to elucidate the functional activity of neurons in the retrotrapezoid nucleus (RTN), a critical brainstem region for central chemoreception. Dysfunction in this area is associated with the neuropathology of congenital central hypoventilation syndrome (CCHS). The subsequent examination of these rats aimed to shed light on the intricate aspects of RTN and its implications for central chemoreception and disorders like CCHS in adults. They found that using the short hairpin RNA (shRNA) targeting Phox2b mRNA, a reduction of Phox2b expression was observed in Nmb neurons. In addition, Phox2b knockdown did not affect breathing in room air or under hypoxia, but the hypercapnia ventilatory response was significantly impaired. They concluded that Phox2b in the adult brain has an important role in CO2 chemoreception. They thought that their findings provided new evidence for mechanisms related to CCHS neuropathology. The conclusions of this paper are well supported by data, but careful discussion seems to be required for comparison with the results of various previous studies performed by different genetic strategies for the RTN neurons.

      Strengths:<br /> The most exciting aspect of this work is the modelling of the Phox2b knockdown in one element of the central neuronal circuit mediating respiratory reflexes, that is in the RTN. To date, mutations in the PHOX2B gene are commonly associated with most patients diagnosed with CCHS, a disease characterized by hypoventilation and absence of chemoreflexes, in the neonatal period, which in severe cases can lead to respiratory arrest during sleep. In the present study, the authors demonstrated that the role of Phox2b extends beyond the developmental period, and its reduction in CCHS may contribute to the respiratory impairment observed in this disorder.

      Weaknesses:<br /> Whereas the most exciting part of this work is the knockdown of the Phox2b in the RTN in adult rodents, the weakness of this study is the lack of a clear physiological, developmental, and anatomical distinction between this approach and similar studies already reported elsewhere (Ruffault et al., 2015, DOI: 10.7554/eLife.07051; Ramanantsoa et al., 2011, DOI: 10.1523/JNEUROSCI.1721-11.2011; Huang et al., 2017, DOI: 10.1016/j.neuron.2012.06.027; Hernandez-Miranda et al., 2018, DOI: 10.1073/pnas.1813520115; Ferreira et al., 2022 DOI: 10.7554/eLife.73130; Takakura et al., 2008 DOI: 10.1113/jphysiol.2008.153163; Basting et al., 2015 DOI: 10.1523/JNEUROSCI.2923-14.2015; Marina et al., 2010 DOI: 10.1523/JNEUROSCI.3141-10.2010). In addition, several conclusions presented in this work are not directly supported by the provided data.

    1. Reviewer #2 (Public Review):

      Summary: The study by Cullen et al presents intriguing data regarding the contribution of mTOR complex 1 (mTORC1) versus mTORC2 or both in Pten-null induced macrocephaly and epileptiform activity. The role of mTORC2 in mTORopathies, and in particular Pten loss-off-function (LOF)-induced pathology and seizures, is understudied and controversial. In addition, recent data provided evidence against the role of mTORC1 in PtenLOF-induced seizures. To address these controversies and the contribution off these mTOR complexes in PtenLOF-induced pathology and seizures, the authors injected a AAV9-Cre into the cortex of conditional single, double and triple transgenic mice at postnatal day 0 to remove Pten, Pten+Raptor or Rictor, and Pten+raptor+rictor. Raptor and Rictor are essentially binding partners of mTORC1 and mTORC2, respectively. One major finding is that despite preventing the mild macrocephaly and increased cell size, Raptor knockout (KO, decrease mTORC1 activity) did not prevent the occurrence of seizures and the rate of SWD event, and aggravated seizure duration. Similarly, Rictor KO (decreased mTORC2 activity) partially prevented the mild macrocephaly and increased cell size but did not prevent the occurrence of seizures and did not affect seizure duration. However, Rictor KO reduced the rate of SWD events. Finally, the pathology and seizure/SWD activity were fully prevented in the double KO. These data suggest the contribution of both increased mTORC1 and mTORC2 in the pathology and epileptic activity of Pten LOF mice, emphasizing the importance of blocking both complexes for seizure treatment. Whether these data apply to other mTORopathies due to Tsc1, Tsc2, mTOR, AKT or other gene variants remain to be examined.

      Strengths: The strengths are as follow: 1) they address an important and controversial question that has clinical application, 2) the study uses a reliable and relatively easy method to KO specific genes in cortical neurons, based on AAV9 injections in pups. 2) they perform careful video-EEG analyses correlated with some aspects of cellular pathology.

      Weaknesses: the study has nevertheless a few weaknesses: 1) the conclusions are perhaps a bit overstated. The data do not show that increased mTORC1 or mTORC2 are sufficient to cause epilepsy. But the data clearly show that both increased mTORC1 and mTORC2 activity contribute to the pathology and seizure activity and as such are necessary for seizures to occur. 2) the data related to the EEG would benefit from having more mice. Adding more mice would have help determine whether there is a decrease in seizure activity with the Rictor or Raptor KO. 3) it would have been interesting to examine the impact of mTORC2 and mTORC1 overexpression related to point #1 above.

      The authors properly addressed my comments. Number 3 above was only a suggestion that could be a follow-up in another study.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The idea that various clinical conditions may be associated, at least partially, with a disrupted corollary discharge mechanism has been present for a long time.

      In this paper, the authors draw a link between sensory overload, a characteristic of autism spectrum disorder, and a disturbance in the corollary discharge mechanism. The authors substantiate their hypothesis with strong evidence from both the motor and perceptual domains. As a result, they broaden the clinical relevance of the corollary discharge mechanism to encompass autism spectrum disorder.

      The authors write:<br /> "Imagine a scenario in which you're watching a video of a fast-moving car on a bumpy road. As the car hits a pothole, your eyes naturally make quick, involuntary saccades to keep the car in your visual field. Without a functional efference copy system, your brain would have difficulty accurately determining the current position of your eye in space, which in turn affects its ability to anticipate where the car should appear after each eye movement."

      I appreciate the use of examples to clarify the concept of efference copy. However, I believe this example is more related to a gain-field mechanism, informing the system about the position of the eye with respect to the head, rather than an example of efference copy per se.

      Without an efference copy mechanism, the brain would have trouble accurately determining where the eyes will be in space after an eye movement, and it will have trouble predicting the sensory consequences of the eye movement. However it can be argued that the gain-field mechanism would be sufficient to inform the brain about the current position of the eyes with respect to the head.

      The authors write:<br /> "In the double-step paradigm, two consecutive saccades are made to briefly displayed targets 21, 22. The first saccade occurs without visual references, relying on internal updating to determine the eye's position."

      Maybe I have missed something, but in the double-step paradigm the first saccade can occur without the help of visual references if no visual feedback is present, that is, when saccades are performed in total darkness. Was this the case for this experiment? I could not find details about room conditions in the methods. Please provide further details.

      In case saccades were not performed in total darkness, then the first saccade can be based on the remembered location of the first target presented, which can be derived from the retinotopic trace of the first stimuli, as well as the contribution from the surroundings, that is: the remembered relative location of the first target with respect to the screen border along the horizontal meridian (i.e. allocentric cues).

      A similar logic could be applied to the second saccade. If the second saccade were based only on the retinotopic trace, without updating, then it would go up and 45 deg to the right, based on the example shown in Figure 1. With appropriate updating, the second saccade would go straight up. However, if saccades were not performed in total darkness, then the location of the second target could also be derived from its relationship with the surroundings (for example, the remembered distance from screen borders, i.e. allocentric cues).

      If saccades were not performed in total darkness, the results shown in Figures 2 and 3 could then be related to i) differences in motor updating between AQ score groups; ii) differences in the use of allocentric cues between AQ score groups; iii) a combination of i) and ii). I believe this is a point worth mentioning in the discussion."

      The authors write:<br /> "According to theories of saccadic suppression, an efference copy is necessary to predict the occurrence of a saccade."

      I would also refer to alternative accounts, where saccadic suppression appears to arise as early as the retina, due to the interaction between the visual shift introduced by the eye movement, and the retinal signal associated with the probe used to measure saccadic suppression. This could potentially account for the scaling of saccadic suppression magnitude with saccade amplitude.

      Idrees, S., Baumann, M.P., Franke, F., Münch, T.A. and Hafed, Z.M., 2020. Perceptual saccadic suppression starts in the retina. Nature communications, 11(1), p.1977.

    1. Reviewer #2 (Public Review):

      The authors repeated a previous behavioural study on the effects of overnight fasting on avoidance and extinction learning in healthy female participants in the 3T MRI scanner. Previous behavioural findings were replicated only in part. Fasting related changes of fMRI signals were less than expected.

      This paper is not without interest. Anxiety disorders are very frequent, and there is still a need to better understand ways to improve extinction and reduced avoidance. The authors follow up on previous observations of their group using overnight fasting. The findings, however, were largely negative, and it is difficult to tell how robust the observed positive findings are. The paradigm did not work as well as expected in the MR scanner.

      Introduction/main hypothesis: The reviewer does not understand why a smaller reward prediction error should result in faster extinction learning? The opposite should be the case. Plus, how much of a reward prediction error is expected in the CS- condition in extinction training? Here the US omission is expected. The reviewer may miss a key concept of the study.

      Results: A major part of the behavioural data of a previous pure behavioural study was not reproduced (avoidance learning), plus many of the MRI findings did not show a difference between the fasting and re-feed groups. Given the large amount of comparisons it makes one wonder how robust the presented findings are. The advances to the field are therefore limited.

    1. Reviewer #2 (Public Review):

      This short manuscript by Zhu et al. describes an investigation into the role of gamma protocadherins in synaptic connectivity in the mouse cerebral cortex. First, the authors conduct a single-cell RNA-seq survey of postnatal day 11 mouse cortical neurons, using an adapted 10X Genomics method to capture the 5' sequences that are necessary to identify individual gamma protocadherin isoforms (all 22 transcripts share the same three 3' "constant" exons, so standard 3'-biased methods can't distinguish them). This method adaptation is an advance for examining individual clustered protocadherin transcripts, and it is helpful to publish the method in this manuscript. The results largely confirm what was known from other approaches, which is that a few of the 19 A and B subtype gamma protocadherins are expressed in an apparently stochastic and combinatorial fashion in each cortical neuron, while the 3 C subtype genes are expressed by most neurons. Second, using elegant paired electrophysiological recordings, the authors show that in gamma protocadherin knockout cortical slices, the likelihood of two neurons on layers 2/3 being synaptically connected is increased. That suggests that gamma protocadherins generally inhibit synaptic connectivity in the cortex; again, this has been reported previously using morphological assays, but it is helpful to see it confirmed here with physiology. Finally, the authors use an impressive sequential in utero electroporation method to provide evidence that the degree of isoform matching between two neurons negatively regulates their reciprocal synaptic connectivity. These are difficult experiments to do, and while some caveats remain (e.g., lack of demonstration of protein levels in electroporated neurons, lack of resolution of the differences between the present results and those of other papers, a focus on C4 rather than C3 or C5 when considering the highly expressed C-type isoforms), the main result is consistent. Strengths of this manuscript include the impressive methodology and improved demonstration of the previously-reported finding that gamma protocadherins work via homophilic matching to put a brake on synapse formation in the cortex. Because of the unique organization and expression pattern of the gamma protocadherins, it is not likely that these results will be broadly applicable to the general understanding of the role of cell adhesion molecules in synapse development. However, the methodology, which is now better described, should be applicable more broadly and the improved demonstration of the role of gamma protocadherin's negative role in cortical synaptogenesis is helpful in confirming earlier studies. There are several differences between the results here and those of other papers on the cortex, as well as those examining other neuronal populations such as spinal cord. The present findings do not resolve them, but adopting genetic approaches rather than overexpression in the future should help.

    1. Reviewer #2 (Public Review):

      Summary:

      We often have prior expectations about how the sensory world will change, but it remains an open question as to how these expectations are integrated into perceptual decisions. In particular, scientists have debated whether prior knowledge principally changes the decisions we make about the perceptual world, or directly alters our perceptual encoding of incoming sensory evidence.

      The authors aimed to shed light on this conundrum by using a novel psychophysical task while measuring EEG signals that have previously been linked to either the sensory encoding or response selection phase of perceptual choice. The results convincingly demonstrate that both features of perceptual decision making are modulated by prior expectations - but that these biases in neural process emerge over different time courses (i.e., decisional signals are shaped early in learning, but biases in sensory processing are slower to emerge).

      Another interesting observation unearthed in the study - though not strictly linked to this perceptual/decisional puzzle - is that neural signatures of focused attention are exaggerated on trials where participants are given neutral (i.e. uninformative) cues. This is consistent with the idea that observers are more attentive to incoming sensory evidence when they cannot rely on their expectations.

      In general, I think the study makes a strong contribution to the literature, and does an excellent job of separating 'perceiving' from 'responding'. More perhaps could have been done though to separate 'perceiving' and 'responding' from 'deciding' (see below).

      Strengths:

      The work is executed expertly and focuses cleverly on two features of the EEG signals that can be closely connected to specific loci of the perceptual decision making process - the SSVEP which connects closely to sensory (visual) encoding, and Mu-Beta lateralisation which connects closely to movement preparation. This is a very appropriate design choice given the authors' research question.

      Another advantage of the design is the use of an unusually long training regime (i.e., for humans) - which makes it possible to probe the emergence of different expectation biases in the brain over different timecourses, and in a way that may be more comparable to work with nonhuman animals (who are routinely trained for much longer than humans).

      Weaknesses:

      In my view, the principal shortcoming of this study is that the experimental task confounds expectations about stimulus identity with expectations about to-be-performed responses. That is, cues in the task don't just tell participants what they will (probably) see, but what they (probably) should do.

      In many respects, this feature of the paradigm might seem inevitable, as if specific stimuli are not connected to specific responses, it is not possible to observe motor preparation of this kind (e.g., de Lange, Rahnev, Donner & Lau, 2013 - JoN).

      However, the theoretical models that the authors focus on (e.g., drift diffusion models) are models of decision (i.e., commitment to a proposition about the world) as much as they are models of choice (i.e., commitment to action). Expectation researchers interested in these models are often interested in asking whether predictions influence perceptual processing, perceptual decision and/or response selection stages (e.g., Feuerriegel, Blom & Hoogendorn, 2021 - Cortex), and other researchers have shown that parameters like drift bias and start point bias can be shifted in paradigms where observers cannot possibly prepare a response (e.g., Thomas, Yon, de Lange & Press, 2020 - Psych Sci).

      The present paradigm used by Walsh et al makes it possible to disentangle sensory processing from later decisional processes, but it blurs together the processes of deciding about the stimulus and choosing/initiating the response. This ultimately limits the insights we can draw from this study - as it remains unclear whether rapid changes in motor preparation we see reflect rapid acquisition of new decision criterion or simple cue-action learning. I think this would be important for comprehensively testing the models the authors target - and a good avenue for future work.

      In revising the manuscript after an initial round of revisions, the authors have done a good job of acknowledging these complexities - and I don't think that any of these outstanding scientific puzzles detract from the value of the paper as a whole.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This study examined the longitudinal brain-behaviour link between attentional neural filtering and listening behaviour among a sample of aging individuals. The results based on the latent change score modeling showed that neither attentional neural filtering at T1 nor its T1-T2 change predicted individual two-year listening performance change. The findings suggest that neural filtering and listening behaviour may follow independent developmental trajectories. This study focuses on an interesting topic and has the potential to contribute a better understanding of the neurobiological mechanisms of successful communication across the lifespan.

      Strengths:<br /> Although research suggests that speech comprehension is neurally supported by an attention-guided filter mechanism, the evidence on their causal association is limited. This study addresses this gap by testing longitudinal stability of neural filtering as a neural mechanism upholding listening performance, potentially shedding lights on translational efforts aiming at the preservation of speech comprehension abilities among aging individuals.

      The latent change score modeling approach is appropriately used as a tool to examine key developmental questions and distinguish the complex processes underlying lifespan development in brain and behaviour with longitudinal data.

      Weaknesses:<br /> Although the paper does have strengths in principle, the weaknesses of the paper are that the findings are merely based on a single listening task. Since both neural and behavioral indicators are derived from the same task, the results may be applicable only to this specific task, and it is difficult to extrapolate them to cognitive and listening abilities measured by the other tasks. Therefore, more listening tasks are required to comprehensively measure speech comprehension and neural markers.

      The age span of the sample is relatively large. Although no longitudinal change from T1 to T2 was found at the group-level, from the cross-sectional and longitudinal change results (see Figure 3), individuals of different age groups showed different development pattern. Particularly, individuals over the age of 70 show a clear downward trend in both neural filtering index and accuracy. Therefore, different results may be found based on different age groups, especially older groups. However, due to sample limitations, this study was unable to examine whether age has a moderating effect on this brain-behaviour link.

      In the Dichotic listening task, valid and invalid cues were manipulated. According to the task description, the former could invoke selective attention, whereas the latter could invoke divided attention. It is possible that under the two conditions, the neural filtering index may reflect different underlying cognitive processes, and thus may differ in its predictive effect on behavioral performance. The author could perform a more in-depth data analysis on indicators under different conditions.

    1. Reviewer #2 (Public Review):

      Summary: This paper aims to achieve a better understanding of how the antigenic or genetic compositions of the dominant influenza A viruses in circulation at a given time are related to key features of seasonal influenza epidemics in the US. To this end, the authors analyse an extensive dataset with a range of statistical, data science and machine learning methods. They find that the key drivers of influenza A epidemiological dynamics are interference between influenza A subtypes and genetic divergence, relative to the previous one or two seasons, in a broader range of antigenically related sites than previously thought.

      Strengths: A thorough investigation of a large and complex dataset.

      Weaknesses: The dataset covers a 21 year period which is substantial by epidemiological standards, but quite small from a statistical or machine learning perspective. In particular, it was not possible to follow the usual process and test predictive performance of the random forest model with an independent dataset.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, the authors introduced ADSE, a SELEX-based protocol to explore the mechanism of emergency of species. They used DNA hybridization (to the bait pool, "resources") as the driving force for selection and quantitatively investigated the factors that may contribute to the survival during generation evolve (progress of SELEX cycle), revealing that besides individual-resource binding, the inter- and intra-individual interactions were also important features along with mutualism and parasitism.

      Strengths:<br /> The design of using pure biochemical affinity assay to study eco-evolution is interesting, providing an important viewpoint to partly explain the molecular mechanism of evolution.

    1. Reviewer #3 (Public Review):

      The main findings of this study are as follows: (1) The authors defined "metabolism-type" and "kinase-type" in unclassified sporadic PCC patients through the single-cell transcriptomics-based differentially expressed genes and functional enrichment analyses. (2) They identified the limitation of Pheochromocytoma of the Adrenal gland Scaled Score (PASS) system and suggested the combination of molecular diagnostic methods like scRNA-seq with pathological tools like PASS in aiding the clinical evaluation of PCCs. (3) Analysis of the PCC microenvironment revealed a lack of immune cell infiltration in both metabolism-type and kinase-type PCCs, while only the kinase-type PCC patient exhibited the low expression of HLA-Ⅰ that potentially regulated by RET, providing clues for the combined therapy with kinase inhibitors and immunotherapy in kinase-type PCC patients.

      The main strength of this manuscript is that it involves scRNA-seq analysis of an extremely rare tumor type-PCCs, which presents a single-cell transcriptomics-based molecular classification and microenvironment characterization of PCCs and further provides clues for potential therapeutic strategies to treat PCCs. The authors also validated the scRNA-seq analysis results (such as the expression levels of marker genes and the distribution of immune cells in the PCC microenvironment) with immunocytochemistry and multispectral immunofluorescent staining. In summary, the findings in this manuscript are quite interesting and significant, which will potentially be valuable for the molecular classification of PCCs.

    1. Reviewer #2 (Public Review):

      The manuscript of "IQCH regulates spermatogenesis by interacting with CaM to promote RNA-binding proteins' expression" from Ruan et al. identified a homozygous variant affect the splicing of IQCH in two infertile men from a Chinese family. The authors also generated a Iqch knockout mouse model to confirm the abnormal sperm phenotypes associated with IQCH deficiency. Further molecular biological assays supported the important role and mechanism of IQCH in spermatogenesis. This manuscript is informative for the clinical and basic research of male infertility.

    1. Reviewer #2 (Public Review):

      The authors provide a compelling data to demonstrate that the Notch-related transcription factor RBP-J can influence the number of circulating and recruited monocytes. The authors first delete the Rbpj gene in the myeloid lineage (Lyz2) and show that, as a proportion, only Ly6Clo monocytes are increased in the blood. The authors then attempted to identify why these cells were increased in proportion but ruled out proliferation or reduced apoptosis. Next, they investigated the gene signature of Rbpj null monocytes using RNA-sequencing and identified elevated Ccr2 as a defining feature. Crossing the Rbpj null mice to Ccr2 null mice showed reduced numbers of Ly6Clo monocytes compared with Rbpj null alone. Finally, the authors identify that an increased burden of blood Ly6Clo monocytes is correlated with increased lung recruitment and expansion of lung interstitial macrophages.

      The main conclusion of the authors, that there is a 'cell intrinsic requirement of RBP-J for controlling blood Ly6CloCCR2hi monocytes' is strongly supported by the data. However, other claims and aspects of the study require clarification and further analysis of the data generated.

      Strengths<br /> The paper is well written and structured logically. The major strength of this study is the multiple technically challenging methods used to reinforce the main finding (e.g. parabiosis, adoptive transfer). The finding reinforces the fact that we still know little about how immune cell subsets are maintained in situ, and this study opens the way for novel future work. Importantly, the authors have generated an RNA-sequencing dataset that will prove invaluable for identifying the mechanism - they have promised public access to this data via GEO - it is expected this will be made accessible upon publication.

      Weaknesses - The main weakness of the study, is that although the main result is solidly supported, as written it is mostly descriptive in nature. For instance, there is no given mechanism by which RBP-J increases Ly6Clo monocytes. The authors conclude this is dependent on CCR2, however CCR2 deletion has a global effect on monocyte numbers and importantly in this study, it does not remove the Ly6Clo bias of cell proportions, if anything it seems to enhance the difference between the ly6C low and high populations in Rbpj null mice (figure 5C). This oversight in data interpretation likely occurred because: i) this experiment is missing a potentially important control (Lyz2cre/cre Ccr2RFP/RFP or RBP-J variations), and ii) lack of statistical comparisons between Ly6Clow and high subsets (e.g. two-way ANOVA design). In general, there seemed to be a focus on the Ly6C low cells, where the mechanism may be more identifiable in their precursors - likely the Ly6C high monocytes. Furthermore, the lack of this mechanism and data comparison may also be important, because it is possible that RBP-J signalling merely maintains the expression of Ly6C, rather than controls non-classical monocyte differentiation. In this case the comparison made for the sequencing data would be between Ly6C low non classical monocytes and 'artificially' Ly6C low classical monocytes. The basis of a population based on one marker is currently a widespread flaw in the field.

      Other specific weaknesses were identified (note these are in addition to the more important comments above):<br /> 1) The confirmation of knockout in supplemental figure 1A shows only a two third knockdown when this should be almost totally gone. The authors have confirmed this is perhaps poor primer design and cite a study which shows almost complete reduction in protein levels (though this could be made more clear).<br /> 2) Many figures (e.g. 1A) only show proportional data (%) when the addition of cell numbers would also be informative - for example, what if Ly6Chigh cells were decreasing, thus artificially increasing the proportion of Ly6Clo cells? Looking at figure 7B - where cell numbers are shown, it is clear that cell proportion differences often do not match number data - here RBP-J knockout also increases Ly6C high cells in number (but not %).<br /> 3) It was noted previously that many figures only have an n of 1 or 2 (e.g. 2B, 2C), the authors clarified that some of these displayed one dot to represent an experiment of multiple n.<br /> 4) There is incomplete analysis (e.g. Network analysis, comparison to subset-restricted gene expression) and interpretation of RNA-sequencing results (figure 4), additionally the difference between the genotypes in both monocyte subsets would provide a more complete picture and potentially reveal mechanisms<br /> 6) The experiments in figure 5 are missing a control (Lyz2cre/cre Ccr2RFP/RFP or the Rbpj+/+ versions) and may have been misinterpreted. For example if the control (RBP-J WT, CCR2 KO) was used then it would almost certainly show falling Ly6C low numbers compared to RBP-J WT CCR2 WT, but RBP-J KO CCR2 KO would still have more Ly6c low monocytes than RBP-J WT, CCR2 KO - meaning that the RBP-J function is independent of CCR2. I.e. Ly6c low numbers are mostly dependent on CCR2 but this is irrespective of RBP-J. Explained in another way, the normal ratio of Ly6C high to low is around 1.5 Ly6Chigh cells for every one Ly6Clow cell, this is flipped in the RBP-J knockout to 1 high to 1.25 low (the main finding of the paper), but when CCR2 is removed it actually becomes 1 high to 5 low (actual numbers 0.2% vs around 1%) - in which case all CCR2 removal is doing is lowering the number of monocytes and RBP-J's mechanism is independent of CCR2.<br /> 7) Figure 6 was difficult to interpret because of the lack of shown gating strategy. The authors state they copied the strategy from Schyns et al. however in order to review this correctly the authors should show a supplemental figure of their own gating.<br /> 8) Figure 7 has the same problem as figure 5, but this time has the correct control. CCR2 ablation has a global suppression of monocyte numbers however the increased ly6c low monocyte ratio is most likely still present in the DKO mice - the lower numbers reduce the clarity of the data. Additionally in Lung IM macrophages depletion of CCR2 in the DKO only had a partial effect in some cell types - so CCR2 is playing a role, but it is not fully dependent. A good comparison would be if they blocked PU.1 expression - the effect of RBP-J would also be muted but it doesn't mean anything in terms of mechanism. Statements about the origin of the cells may need to be removed due to lack of compelling evidence.<br /> 9) Even after being notified and acknowledging the study, the authors still have not referred to or cited a similar 2020 study in their manuscript. This study also investigated myeloid deletion of Rbpj (Zhang et al. 2020 - https://doi.org/10.1096/fj.201903086RR). Zhang et al identified that Ly6Clo alveolar macrophages were decreased in this model - it is intriguing to synthesise these two studies and hypothesise that the ly6c low monocytes steal the lung niche, but this was not discussed. The authors also indicated they looked at AM but saw no difference - perhaps they should look specifically at Ly6Clow AMs in their data to compare with this study?

    1. Reviewer #2 (Public Review):

      The study employs quantitative metabolomic and lipidomic analyses to scrutinize tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples from renal cell carcinoma (RCC) patients. The authors delve into the intricate world of renal cell carcinoma and its tumor microenvironment, shedding light on the factors that shape nutrient availability in both cancerous and adjacent normal tissues. The authors prove that non-cancer-driven tissue factors play a dominant role in shaping nutrient availability in RCC. This finding opens up new avenues for research, suggesting that the tumor microenvironment is profoundly influenced by factors beyond the presence of cancer cells. This study not only contributes valuable insights into RCC metabolism but also prompts a reevaluation of the factors governing nutrient availability in tumor microenvironments more broadly. Overall, it represents a significant step forward in our understanding of the intricate interplay between cancer and its surrounding milieu.

      The study is overall well-constructed, including appropriate analysis. Likewise, the manuscript is written clearly and supported by high-quality figures. Since the authors exclusively employed samples from RCC patients and did not include kidney interstitial fluid and plasma samples from healthy individuals, we cannot accurately assess the true significance and applicability of the results until the role of cancer cells in reshaping KIF is understood. In essence, some metabolite levels in the tumor interstitial fluid did not show an increase or decrease compared to the adjacent normal kidney interstitial fluid. However, the levels of these metabolites in both TIF and KIF might be higher or lower than those in kidney interstitial fluid from healthy individuals, and the roles of these metabolites should not be overlooked. Similar concerns extend to plasma levels, emphasizing the importance of metabolites that synchronously change in RCC TIF, KIF, and plasma-whether elevated or reduced.

    1. Reviewer #2 (Public Review):

      In this manuscript, the authors uncover a variety of macromolecular Drosha complexes in NSCs and propose that they might exert specific functions in adult neurogenesis. This is an interesting and important area of research, the proteomics data are very useful, and the manuscript is well written and easy to understand. Overall, this manuscript has many strengths. The authors identify 165 proteins, several of them enriched in NSCs, and potentially specific for miRNA dependent or independent Drosha macromolecular complexes. Moreover, the authors convincingly show that Safb1 binds and post-transcriptionally destabilizes NFIB transcript in complex with Drosha, in vitro. With that said, most of the functional evidence are based on Safb1 overexpression in vitro, and in some cases with immortalized cell lines. This is a major limitation of the study. Further experiments should be done to convincingly demonstrate that Safb1 regulates cell fate determination in adult neural stem cells by enhancing Drosha cleavage of NFIB mRNA.

    1. Reviewer #2 (Public Review):

      The authors introduce MetaPathPredict, a method that infers the presence of functional units of gene sets, such as a set of genes coding enzymes for a common metabolic pathway, from a pool of genes or genetic sequences. MetaPathPredict employs a stacked ensemble of neural networks, each trained for a specific pathway, to consider mutual information between pathways.

      In predicting the presence of metabolic pathways in incomplete genomes, MetaPathPredict outperforms alternative naive classifiers and single neural network methods. These results demonstrate the effectiveness of a stacked ensemble of neural networks in exploiting mutual information between metabolic pathways.

    1. Reviewer #3 (Public Review):

      Studying the late development of neural circuits in relation to developmental changes in behaviour is clearly of great interest, particularly during the period of adolescence when a number of developmental abnormalities can be revealed. This is however not an easy task, since there are many concurrent changes that occur simultaneously during this developmental making it difficult to establish causality rather than correlation.

      The study focuses on behavioural and circuit changes that occur between juvenile and adulthood focusing in the prefrontal cortex and on its descending projections to the brainstem raphe nuclei. Because the pathway from the frontal cortex to serotonin raphe neurons has been involved in behavioural and stress control, exerting a top-down control on impulsive behavior, there is a good justification to focus on the development of this pathway during a period that is thought to correspond to adolescence.

      The authors identified a behavioral change in foraging strategy, which they term persistence. They find that adults tend to be more persistent than juveniles in an exploration for reward. To analyse the maturation of the prefrontal to raphe circuit they use a genetic approach (the Rbp4 promoter which drives expression in layer 5 cortical neurons) recording the synaptic drive elicited by stimulation of the axons arriving into the raphe area. They find that this maturation starts very late in the late adolescent period. They then study the effects of ablation of the layer 5 Rbp4 neurons in adults and find that adult animals have a behavior that is more similar to that of the juveniles. They then conclude that cortical prefrontal projections to the raphe are involved in the control of this behavior.

      The study is interesting in showing this new behavioural test quantifying developmental changes in exploratory behavior and indicating that some pathways derived mainly from the frontal cortex continue to mature late. However, there are a number of issues regarding the specificity of the genetic approach used. This makes it difficult to be convinced that the behaviour is related to changes in the cortico-raphe circuit.

    1. Reviewer #2 (Public Review):

      Using a single-cell omics approach combined with spatial proteomics and genetic fate mapping, Kayvanjoo et al found that fetal liver (FL) macrophages cluster into distinct yolk sac-derived subpopulations and that some of the HSCs in FL preferentially associate with one of the identified macrophage subpopulations. FLs lacking macrophages show a delay in erythropoiesis. The authors also try to identify a role of macrophages for HSCs function in FL, and claim that macrophages affect myeloid differentiation of HSCs. Experimental support for the function of macrophages on HSCs remains weak. Taken together, their data provide a precise map of FL macrophage subpopulations, which is novel and will serve the field well.

    1. Reviewer #2 (Public Review):

      This manuscript reports the results of an ancillary study of a prospective trial assessing the effects of androgen deprivation therapy (ADT) with Dagarelix (a GnRH antagonist) on body composition in patients with prostate cancer. An interesting relationship between FSH levels, that were suppressed by Dagarelix treatment, and body composition parameters (particularly fat body mass) was described after 12 months of therapy. Therefore, the authors conclude that FSH could be a promising marker to monitor the risk of sarcopenic obesity and cardiovascular complications in prostate cancer patients undergoing ADT. As acknowledged by the Authors the main limitation of the study is the limited sample of patients. However, since testosterone levels were not assessed it is not possible to firmly establish whether the changes in fat mass observed with treatment are directly or indirectly associated with a reduction in FSH (and therefore in the latter case mediated by testosterone). Moreover, it is not clear whether the effect of the change in FSH levels during the study and the body composition parameters achieved at 12 months was evaluated (instead of assessing the relationship between FSH changes and changes in body composition parameters). Finally, tests on bone muscle mass and strength were not performed, so the hypothesis that variation of FSH levels in prostate cancer patients in ADT may affect sarcopenia remains speculative.

    1. Reviewer #2 (Public Review):

      The Authors demonstrate compelling genetic evidence that the region that harbors rs6740960 plays a role in both normal craniofacial development risk for craniofacial disease. They show strong evidence that the conserved element harboring this variant is tested for LacZ reporter activity in the developing mouse that is has activity in relevant tissues. They perform several assays to demonstrate a physical link between this enhancer region to a specific target gene, PKDCC, in both cranial neural crest cells and differentiated chondrocytes. Removal of a single copy of the enhancer has little effect on PKDCC expression in CNCCs but strong impacts in chondryocytes. H1 derived cells that are heterozygous at the variant above show strong bias in H3K27ac signals in chondrocytes. The researchers then go on to recharacterize a PKDCC knockout mouse to show that it has craniofacial defects. They use modern micro-CT and analysis techniques to demonstrate subtle changes in jaw and skull structure in PKDCC heterozygous mice and confirm many of the phenotypes that were described by Kinoshita et al 2009. Overall these results point to dosage of PKDCC in craniofacial development with changes in skull shape and susceptibility to orofacial clefting. However the epigenomic differences presented in Figure 2B that serve as the foundation for the rest of the work do not agree with previously published work by this group (Prescot et al 2015). The researchers claim "enrichment of the coactivator p300 and of the active chromatin mark H3K27ac at this region is higher in the chimpanzee CNCCs as compared to human, suggesting that this non-coding element may have higher regulatory activity in the chimp. However this region was not identified in the top 1000 biased enhancer regions provided in the supplement of the Prescott et al 2015 paper. The authors do not indicate any statistical significance and largely rely on signal tracks that have not been corrected for input controls to make this conclusion. The in vivo assay for enhancer activity while excellent at demonstrating where an enhancer can be active is not well suited to quantitative comparisons. Furthermore the researchers claim that the mouse orthologous sequence is not active in the assay despite strong H3K27ac and other enhancer related signals in developing mouse craniofacial tissues as available from the Mouse Encode Project. This calls into questions whether this assay is informative at all if the native sequence which shows functionally conserved activity is not active in the mouse embryo. Lastly the authors only consider this region as a potential enhancer and not any other type of regulatory sequence. GENCODE gene annotations demonstrate a potential lncRNA (LINC02898 /ENST00000378711.2) that is directly adjacent to the region marked by this variant. This could be a promoter for an RNA that regulates PKDCC in cis. Inspection of gene expression data from a recent preprint Yankee et al 2022 as well as Prescot et al data available from the recount3 database indeed indicate RNA signal from both CNCCs and primary human tissue consistent with this annotation. The Mundlos lab has demonstrated similar regulatory mechanisms through lncRNA Maenli at the En1 locus that result in limb abnormalities.

    1. Reviewer #2 (Public Review):

      This study follows up on previous work from this group, and others, relating paternal diet to changes in sperm epigenetics, and offspring phenotypes. The authors focus on paternal diet (high-fat diet versus a control chow), sperm chromatin, and molecular changes in the placenta associated with offspring development.

      The text is well written and the figures are generally well presented and clear. The sperm epigenetic analyses and analysis of the placenta epigenetics and gene expression are generally well performed. The study provides new insight into how paternally mediated intergenerational epigenetic inheritance could involve placenta-embryo signaling.

      A major weakness is that the high-fat diet used was from a different manufacturer than the control (lower fat) diet. Therefore, it is difficult to judge whether the effects are due to a change in fat levels, or the many other molecules that are likely to differ in chow between different manufacturers. Other weaknesses include lack of methodological detail in parts, low n values for some experiments, and the need for more mechanistic data.

      Whilst the authors may have achieved their aims, more data is needed to inform a potential mechanism.

      This study adds to our understanding of how changes in paternal diet may alter sperm epigenetics and offspring development. The novelty is in the link to gene expression in the placenta associated with offspring development in utero.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Verma et al. provide a short technical report showing that endogenously tagged dynein and dynactin molecules localize to growing microtubule plus-ends and also move processively along microtubules in cells. The data are convincing, and the imaging and movies very nicely demonstrate their claims. I don't have any large technical concerns about the work. It is perhaps not surprising that dynein-dynactin complexes behave this way in cells due to other reports on the topic, but the current data are among some of the nicest direct demonstrations of this phenomenon. It may be somewhat controversial since a separate group has reported that dynein does not move processively in mammalian cells (https://www.biorxiv.org/content/10.1101/2021.04.05.438428v3). Because of this, it might be nice for the authors to comment on this discrepancy in the field, although the aforementioned work is still in pre-print form.

      Strengths:<br /> Using state-of-the-art methods to endogenously tag dynein/dynactin subunits and performing live-cell imaging is convincing and useful for the field.

      Weaknesses:<br /> The claims are perhaps not surprising or novel given the extensive data already published in the field. However, there aren't many similar studies using endogenously tagged subunits to date.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Eaton and colleagues use targeted protein degradation coupled with nascent transcription mapping to highlight a role for the integrator component INST11 in terminating antisense transcription. They find that upon inhibition of CDK9, INST11 can terminate both antisense and sense transcription - leading to a model whereby INST11 can terminate antisense transcription and the activity of CDK9 protects sense transcription from INST11-mediated termination. They further develop a new method called sPOINT which selectively amplifies nascent 5' capped RNAs and find that transcription initiation is more efficient in the sense direction than in the antisense direction. This is an excellent paper that uses elegant experimental design and innovative technologies to uncover a novel regulatory step in the control of transcriptional directionality.

      Strengths:<br /> One of the major strengths of this work is that the authors endogenously tag two of their proteins of interest - RBBP6 and INST11. This tag allows them to rapidly degrade these proteins - increasing the likelihood that any effects they see are primary effects of protein depletion rather than secondary effects. Another strength of this work is that the authors immunoprecipitate RNAPII and sequence extracted full-length RNA (POINT-seq) allowing them to map nascent transcription. A technical advance from this work is the development of sPOINT which allows the selective amplification of 5' capped RNAs < 150 nucleotides, allowing the direction of transcription initiation to be resolved.

      Weaknesses:<br /> While the authors provide strong evidence that INST11 and CDK9 play important roles in determining promoter directionality, their data suggests that when INST11 is degraded and CDK9 is inhibited there remains a bias in favour of sense transcription (Figures 4B and C). This suggests that there are other unknown factors that promote sense transcription over antisense transcription and future work could look to identify these.

    1. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Benner et al. interrogate the transcriptional regulator OVO to identify its targets in the Drosophila germline. The authors perform ChIP-seq in the adult ovary and identify established as well as novel OVO binding motifs in potential transcriptional targets of OVO. Through additional bioinformatic analysis of existing ATAC-seq, CAGE-seq, and histone methylation data, the authors confirm previous reports that OVO is enriched at transcription start sites and suggest that OVO does not act as part of the core RNA polymerase complex. Benner et al. then perform bulk RNA-seq in OVO mutant and "wildtype" (GAL4 mediated expression of OVO under the control of the ovo promoter in OVO mutants) ovaries to identify genes that are differentially expressed in the presence of OVO. This analysis supports previous reports that OVO likely acts at transcription start sites as a transcriptional activator. While the authors propose that OVO activates the expression of genes that are important for egg integrity, maturation, and for embryonic development (nanos, gcl, pgc, bicoid), this hypothesis is based on correlation and is not supported by in vivo analysis of the respective OVO binding sites in some of the key genes. A temporal resolution for OVO's role during germline development and egg chamber maturation in the ovary is also missing. Together, this manuscript contains relevant ChIP-seq and RNA-seq datasets of OVO targets in the Drosophila ovary alongside thorough bioinformatic analysis but lacks important in vivo experimental evidence that would validate the high-quality datasets.

      Strengths:

      The manuscript contains relevant ChIP-seq and RNA-seq datasets of OVO targets in the Drosophila ovary alongside thorough bioinformatic analysis

      Weaknesses:

      1. The authors propose that OVO acts as a positive regulator of essential germline genes, such as those necessary for egg integrity/maturation and embryonic/germline development. Much of this hypothesis is based on GO term analysis (and supported by the authors' ChIP-seq data). However accurate interpretation of GO term enrichment is highly dependent on using the correct background gene set. What control gene set did the authors use to perform GO term analysis (the information was not in the materials and methods)? If a background gene set was not previously specified, it is essential to perform the analysis with the appropriate background gene set. For this analysis, the total set of genes that were identified in the authors' RNA-seq of OVO-positive ovaries would be an ideal control gene set for which to perform GO term analysis. Alternatively, the total set of genes identified in previous scRNA-seq analysis of ovaries (see Rust et al., 2020, Slaidina et al., 2021 among others) would also be an appropriate control gene set for which to perform GO term analysis. If indeed GO term analysis of the genes bound by OVO compared to all genes expressed in the ovary still produces an enrichment of genes essential for embryonic development and egg integrity, then this hypothesis can be considered.

      2. The authors provide important bioinformatic analysis of new and existing datasets that suggest OVO binds to specific motifs in the promoter regions of certain germline genes. While the bioinformatic analysis of these data is thorough and appropriate, the authors do not perform any in vivo validation of these datasets to support their hypotheses. The authors should choose a few important potential OVO targets based on their analysis, such as gcl, nanos, or bicoid (as these genes have well-studied phenotypes in embryogenesis), and perform functional analysis of the OVO binding site in their promoter regions. This may include creating CRISPR lines that do not contain the OVO binding site in the target gene promoter, or reporter lines with and without the OVO binding site, to test if OVO binding is essential for the transcription/function of the candidate genes.

      3. The authors perform de novo motif analysis to identify novel OVO binding motifs in their ChIP-seq dataset. Motif analysis can be significantly strengthened by comparing DNA sequences within peaks, to sequences that are just outside of peak regions, thereby generating motifs that are specific to peak regions compared to other regions of the promoter/genome. For example, taking the 200 nt sequence on either side of an OVO peak could be used as a negative control sequence set. What control sequence set did the authors use as for their de novo motif analysis? More detail on this is necessary in the materials and methods section. Re-analysis with an appropriate negative control sequence set is suggested if not previously performed.

      4. The authors mention that OVO binding (based on their ChIP-seq data) is highly associated with increased gene expression (lines 433-434). How many of the 3,094 peaks (conservative OVO binding sites), and what percentage of those peaks, are associated with a significant increase in gene expression from the RNA-seq data? How many are associated with a decrease in gene expression? This information should be added to the results section.

      5. The authors mention that a change in endogenous OVO expression cannot be determined from the RNA-seq data due to the expression of the OVO-B cDNA rescue construct. Can the authors see a change in endogenous OVO expression based on the presence/absence of OVO introns in their RNA-seq dataset? While intronic sequences are relatively rare in RNA-seq, even a 0.1% capture rate of intronic sequence is likely to be enough to determine the change in endogenous OVO expression in the rescue construct compared to the OVO null.

      6. The authors conclude with a model of how OVO may participate in the activation of transcription in embryonic pole cells. However, the authors did not carry out any experiments with pole cells that would support/test such a model. It may be more useful to end with a model that describes OVO's role in oogenesis, which is the experimental focus of themanuscript.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors of this manuscript are interested in discovering and functionally characterizing genes that might cause obesity. To find such genes, they conducted a forward genetic screen in mice, selecting strains which displayed increased body weight and adiposity. They found a strain, with germ-line deficiency in the gene Spag7, which displayed significantly increased body weight, fat mass, and adipose depot sizes manifesting after the onset of adulthood (20 weeks). The mice also display decreased organ sizes, leading to decreased lean body mass. The increased adiposity was traced to decreased energy expenditure at both room temperature and thermoneutrality, correlating with decreased locomotor activity and muscle atrophy. Major metabolic abnormalities such as impaired glucose tolerance and insulin sensitivity also accompanied the phenotype. Unexpectedly, when the authors generated an inducible, whole body knockout mouse using a globally expressed Cre-ERT2 along with a globally floxed Spag7, and induced Spag7 knockout before the onset of obesity, none of the phenotypes seen in the original strain were recapitulated. The authors trace this discrepancy to the major effect of Spag7 being on placental development.

      Strengths:

      Strengths of the manuscript are its inherently unbiased approach, using a forward genetic screen to discover previously unknown genes linked to obesity phenotypes. Another strong aspect of the work was the generation of an independent, complementary, strain consisting of an inducible knockout model, in which the deficiency of the gene could be assessed in a more granular form. This approach enabled the discovery of Spag7 as a gene involved in the establishment of the mature placenta, which determines the metabolic fate of the offspring. Additional strengths include the extensive array of physiological parameters measured, which provided a deep understanding of the whole-body metabolic phenotype and pinpointed its likely origin to muscle energetic dysfunction.

      Weaknesses:

      Weaknesses that can be raised are the lack of molecular mechanistic understanding of the numerous phenotypic observations. For example, the specific role of Spag7 to promote placental development remains unclear. Also, the reason why placental developmental abnormalities lead to muscle dysfunction, and whether indeed the entire metabolic phenotype of the offspring can be attributed solely to decreased muscle energetics is not fully explored.

      Overall, the authors achieved a remarkable success in identifying genes associated with development of obesity and metabolic disease, discovering the role of Spag7 in placental development, and highlighting the fundamental role of in-utero development in setting future metabolic state of the offspring.

      Comments on revised version:

      I have no further comments on my assessment of this interesting paper.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this work, the authors sought to 1) establish a method for measuring muscle fiber subcellular structure (myofibrils) using common, non-specialized laboratory techniques and equipment, and 2) use this method to provide evidence on whether loading-induced muscle fiber growth was the result of myofibril growth (of existing myofibrils) or myofbrillogenesis (creation of new myofibrils) in mice and humans. The latter is a fundamental question in the muscle field. The authors succeeded in their aims and provided useful methods for the muscle field and detailed insight into muscle fiber hypertrophy; specifically, that loading-induced muscle fiber hypertrophy may be driven mostly by myofibrillogenesis.

      Strengths:<br /> 1) The usage of murine and human samples to provide evidence on myofibril hypertrophy vs myofibrillogenesis.<br /> 2) A nice historical perspective on myofibrillogenesis in skeletal muscle.<br /> 3) The description of a useful and tractable IHC imaging method for the muscle biology field supported by extensive validation against electron microscopy.<br /> 4) Fundamental information on how myofiber hypertrophy ensues.

      Weaknesses:

      - The usage of young growing mice (8-10 weeks) versus adult mice (>4 months) in the murine mechanical overload experiments, as well as no consideration for biological sex. The former point is partly curtailed by the adult human data that is provided (male only). Still, the usage of adult mice would be preferable for these experiments given that maturational growth may somehow affect the outcomes. For the latter point, it is not clear whether male or female mice were used.

    1. Reviewer #2 (Public Review):

      Making state-of-the-art (super-resolution) microscopy widely available has been the subject of many publications in recent years as correctly referenced in the manuscript. By advocating the ideas of open-microscopy and trying to replace expensive, scientific-grade components such as lasers, cameras, objectives, and stages with cost-effective alternatives, interested researchers nowadays have a number of different frameworks to choose from. In the iteration of the theme presented here, the authors used the existing modular UC2 framework, which consists of 3D printable building blocks, and combined a cheapish laser, detector and x,y,(z) stage with expensive filters/dichroics and an expensive high-end objective (>15k Euros).

      The choice of using the UC2 framework has the advantage, that the individual building blocks can be 3D printed, although it should be mentioned that the authors used injection-moulded blocks that will have a limited availability if not offered commercially by a third party. The strength of the manuscript is the tight integration of the hardware and the software (namely the implementations of imSwitch as a GUI to control data acquisition, OS SMLM algorithms for fast sub-pixel localisation and access to Napari).

      The presented experimental data is convincing, demonstrating (1) extended live cell imaging both using bright-field and fluorescence in the incubator, (2) single-particle tracking of quantum dots, and (3) and STORM measurements in cells stained against tubulin.

      For the revised (current) version of the manuscript, the authors further polished the manuscript and, more importantly, added plenty of information on the GitHub page that should make it significantly easier for interested researchers to replicate the instrument.

      Overall, this is compelling work that is helping to make super-resolved microscopy more accessible.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The article by Shuai et al. describes a comprehensive collection of over 800 split-GAL4 and split-LexA drivers, covering approximately 300 cell types in Drosophila, aimed at advancing the understanding of associative learning. The mushroom body (MB) in the insect brain is central to associative learning, with Kenyon cells (KCs) as primary intrinsic neurons and dopaminergic neurons (DANs) and MB output neurons (MBONs) forming compartmental zones for memory storage and behavior modulation. This study focuses on characterizing sensory input as well as direct upstream connections to the MB both anatomically and, to some extent, behaviorally. Genetic access to specific, sparsely expressed cell types is crucial for investigating the impact of single cells on computational and functional aspects within the circuitry. As such, this new and extensive collection significantly extends the range of targeted cell types related to the MB and will be an outstanding resource to elucidate MB-related processes in the future.

      Strengths:<br /> The work by Shuai et al. provides novel and essential resources to study MB-related processes and beyond. The resulting tools are publicly available and, together with the linked information, will be foundational for many future studies. The importance and impact of this tool development approach, along with previous ones, for the field cannot be overstated. One of many interesting aspects arises from the anatomical analysis of cell types that are less stereotypical across flies. These discoveries might open new avenues for future investigations into how such asymmetry and individuality arise from development and other factors, and how it impacts the computations performed by the circuitry that contains these elements.

      Weaknesses:<br /> Providing such an array of tools leaves little to complain about. However, despite the comprehensive genetic access to diverse sensory pathways and MB-connected cell types, the manuscript could be improved by discussing its limitations. For example, the projection neurons from the visual system seem to be underrepresented in the tools produced (or almost absent). A discussion of these omissions could help prevent misunderstandings. Additionally, more details on the screening process, particularly the selection of candidate split halves and stable split-GAL4 lines, would provide valuable insights into the methodology and the collection's completeness.

    1. Reviewer #2 (Public Review):

      Summary:

      The study investigates whether speech and music processing involve specific or shared brain networks. Using intracranial EEG recordings from 18 epilepsy patients, it examines neural responses to speech and music. The authors found that most neural activity is shared between speech and music processing, without specific regional brain selectivity. Furthermore, domain-selective responses to speech or music are limited to frequency-specific coherent oscillations. The findings challenge the notion of anatomically distinct regions for different cognitive functions in the auditory process.

      Strengths:

      1. This study uses a relatively large corpus of intracranial EEG data, which provides high spatiotemporal resolution neural recordings, allowing for more precise and dynamic analysis of brain responses. The use of continuous speech and music enhances ecological validity compared to artificial or segmented stimuli.

      2. This study uses multiple frequency bands in addition to just high-frequency activity (HFA), which has been the focus of many existing studies in the literature. This allows for a more comprehensive analysis of neural processing across the entire spectrum. The heterogeneity across different frequency bands also indicates that different frequency components of the neural activity may reflect different underlying neural computations.

      3. This study also adds empirical evidence towards distributed representation versus domain-specificity. It challenges the traditional view of highly specialized, anatomically distinct regions for different cognitive functions. Instead, the study suggests a more integrated and overlapping neural network for processing complex stimuli like speech and music.

      Weaknesses:

      While this study is overall convincing, there are still some weaknesses in the methods and analyses that limit the implication of the work.

      The study's main approach, focusing primarily on the grand comparison of response amplitudes between speech and music, may overlook intricate details in neural coding. Speech and music are not entirely orthogonal with each other at different levels of analysis: at the high-level abstraction, these are two different categories of cognitive processes; at the low-level acoustics, they overlap a lot; at intermediate levels, they may also share similar features. The selected musical stimuli, incorporating both vocals and multiple instrumental sounds, raise questions about the specificity of neural activation. For instance, it's unclear if the vocal elements in music and speech engage identical neural circuits. Additionally, the study doesn't adequately address whether purely melodic elements in music correlate with intonations in speech at a neural level. A more granular analysis, dissecting stimuli into distinct features like pitch, phonetics, timbre, and linguistic elements, could unveil more nuanced shared, and unique neural processes between speech and music. Prior research indicates potential overlap in neural coding for certain intermediate features in speech and music (Sankaran et al. 2023), suggesting that a simple averaged response comparison might not fully capture the complexity of neural encoding. Further delineation of phonetic, melodic, linguistic, and other coding, along with an analysis of how different informational aspects (phonetic, linguistic, melodic, etc) are represented in shared neural activities, could enhance our understanding of these processes and strengthen the study's conclusions.

      The paper's emphasis on shared and overlapping neural activity, as observed through sEEG electrodes, provides valuable insights. It is probably true that domain-specificity for speech and music does not exist at such a macro scale. However, it's important to consider that each electrode records from a large neuronal population, encompassing thousands of neurons. This broad recording scope might mask more granular, non-overlapping feature representations at the single neuron level. Thus, while the study suggests shared neural underpinnings for speech and music perception at a macroscopic level, it cannot definitively rule out the possibility of distinct, non-overlapping neural representations at the microscale of local neuronal circuits for features that are distinctly associated with speech and music. This distinction is crucial for fully understanding the neural mechanisms underlying speech and music perception that merit future endeavors with more advanced large-scale neuronal recordings.

      While classifying electrodes into 3 categories provides valuable insights, it may not fully capture the complexity of the neural response distribution to speech and music. A more nuanced and continuous approach could reveal subtler gradations in neural response, rather than imposing categorical boundaries. This could be done by computing continuous metrics, like unique variances explained by each category, or ratio-based statistics, etc. Incorporating such a continuum could enhance our understanding of the neural representation of speech and music, providing a more detailed and comprehensive picture of cortical processing.

    1. Reviewer #2 (Public Review):

      In this paper, Phan et al. investigate the properties of human HP1 paralogs, their interactions and abilities to undergo liquid-liquid phase separation. For this, they use a coarse-grained computational approach (validated with additional all-atom simulations) which allows to explore complex mixtures. Matching (wet-lab) experimental results, HP1 beta (HP1b) exhibits different properties from HP1 alpha and gamma (HP1a,g), in that it does not phase separate. Using domain switch experiments, the authors determine that the more negatively charged hinge in HP1b, compared to HP1a and HP1g, is mainly responsible for this effect. Exploring heterotypic complexes, mixtures between HP1 subtypes and DNA, the authors further show that HP1a can serve as a scaffold for HP1b to enter into condensed phases and that DNA can further stabilize phase separated compartments. Most interestingly, they show that a multicomponent mixture containing DNA, and HP1a and HP1b generates spatial separation between the HP1 paralogs: due to increased negative charge of DNA within the condensates, HP1b is pushed out and accumulates at the phase boundary. This represents an example how complex assemblies could form in the cell.

      Overall, this is purely computational work, which however builds on extensive experimental results (including from the authors). The methods showcase how coarse-grained models can be employed to generate and test hypotheses how proteins can condense. Applied to HP1 proteins, the results from this tour-de-force study are consistent and convincing, within the experimental constraints. Moreover, the authors generate further models to test experimentally, in particular in light of multicomponent mixtures. Finally, the authors clearly discuss the computational methods, assumptions and limits of the methodology, which makes this a strong contribution to our understanding of biophysical basis of condensate formation in gene regulation.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors were trying to identify and characterize the intrinsic factors that control the process of cell aging of bone marrow mesenchymal stromal cells (BMSCs), which is believed to be related to osteoporosis.

      Strengths:<br /> The method is reasonable. The concept and methods used in this work can be easily extended to other systems and cells to study their aging process. It is also interesting to further examine if PCBP2 functions as an intrinsic aging factor in these other cell types.

      The results are solid, supporting the claims and conclusions. The authors successfully identified and characterized PCBP2 as one of the intrinsic aging factors for BMSC cells.

      Weaknesses:<br /> It is unclear if PCBP2 can also function as an intrinsic factor for BMSC cells in female individuals. More work may be needed to further dissect the mechanism of how PCBP2 impacts FGF2 expression. Could PCBP2 impact the FGF2 expression independent of ROS?

      Additional context that would help readers interpret or understand the significance of the work:<br /> In the current work, the authors studied the aging process of BMSC cells, which are related to osteoporosis. Aging processes also impact many other cell types and their function, such as in muscle, skin, and the brain.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The story of the co-evolution of TTX-bearing newts and their independently evolved TTX-resistant garter snake predators is a classic in evolutionary ecology/physiology. Over the years specific amino acid substitutions in the muscle-expressing (and other) sodium channels have been identified and the behavioral assays of snake crawling performance have indicated that the attainment of TTX-resistance comes at a cost in mobility. One previous study also examined how the amino acid mutations affected the biophysics of Nav channel properties. The present paper starts with this foundation and builds by adding in details and making causal connections across multiple snake populations with different degrees of resistance. The addition of muscle physiology bridges the gap between organismal performance and sodium channel biophysics. Moving in the other direction, examining molecular models of Nav channel structure and energetics allows a deep understanding of how amino acid substitutions affect channel properties. In the end, a clear picture is painted from molecular to organismal levels in two different parallel evolutions of TTX resistance.

      Strengths:<br /> This study is a tour de force. It is clearly written, and nicely illustrated, and the methods and procedures are meticulously documented.

      Weaknesses:<br /> One caveat is that the Nav channels used to test mutations in expression systems are rat channels engineered with TTX-resisting substitutions observed in snake populations. The ideal experiment would have been to use the snake channels. While the rat channels appear to be a good substitute for the snake channels and the authors have taken pains to show that the important amino acids are conserved between garter snakes and rats, the authors might explain why they did not use snake channels.

      The noise analysis seems like a reasonable way to get at the question of single-channel conductance. But why did the authors not just measure single channel conductance in patches as opposed to this much more complex and roundabout method? It is recommended that the authors discuss how noise analysis deals with the problem of having the number of open channels changing rapidly during activation and fast inactivation. Is this a potential problem for deriving the total number of channels?

    1. Reviewer #2 (Public Review):

      Summary:<br /> In short, this paper uses a previously published method, ReplicaDock, to improve predictions from AlphaFold-multimer. The method generated about 25% more acceptable predictions than AFm, but more important is improving an Antibody-antigen set, where more than 50% of the models become improved.

      When looking at the results in more detail, it is clear that for the models where the AFm models are good, the improvement is modest (or not at all). See, for instance, the blue dots in Figure 6. However, in the cases where AFm fails, the improvement is substantial (red dots in Figure 6), but no models reach a very high accuracy (Fnat ~0.5 compared to 0.8 for the good AFm models). So the paper could be summarized by claiming, "We apply ReplicaDock when AFm fails", instead of trying to sell the paper as an utterly novel pipeline. I must also say that I am surprised by the excellent performance of ReplicaDock - it seems to be a significant step ahead of other (not AlphaFold) docking methods, and from reading the original paper, that was unclear. Having a better benchmark of it alone (without AFm) would be very interesting.

      These results also highlight several questions I try to describe in the weakness section below. In short, they boil down to the fact that the authors must show how good/bad ReplicaDock is at all targets (not only the ones where AFm fails. In addition, I have several more technical comments.

      Strengths:<br /> Impressive increase in performance on AB-AG set (although a small set and no proteins).

      Weaknesses:<br /> The presentation is a bit hard to follow. The authors mix several measures (Fnat, iRMS, RMSDbound, etc). In addition, it is not always clear what is shown. For instance, in Figure 1, is the RMSD calculated for a single chain or the entire protein? I would suggest that the author replace all these measures with two: TM-score when evaluating the quality of a single chain and DockQ when evaluating the results for docking. This would provide a clearer picture of the performance. This applies to most figures and tables. For instance, Figure 9 could be shown as a distribution of DockQ scores.

      The improvements on the models where AFm is good are minimal (if at all), and it is unclear how global docking would perform on these targets, nor exactly why the plDDT<0.85 cutoff was chosen. To better understand the performance of ReplicaDock, the authors should therefore (i) run global and local docking on all targets and report the results, (ii) report the results if AlphaFold (not multimer) models of the chains were used as input to ReplicaDock (I would assume it is similar). These models can be downloaded from AlphaFoldDB.

      Further, it would be interesting to see if ReplicaDock could be combined with AFsample (or any other model to generate structural diversity) to improve performance further.

      The estimates of computing costs for the AFsample are incorrect (check what is presented in their paper). What are the computational costs for RepliaDock global docking?

      It is unclear strictly what sequences were used as input to the modelling. The authors should use full-length UniProt sequences if they were not done.

      The antibody-antigen dataset is small. It could easily be expanded to thousands of proteins. It would be interesting to know the performance of ReplicaDock on a more extensive set of Antibodies and nanobodies.

      Using pLDDT on the interface region to identify good/bas models is likely suboptimal. It was acceptable (as a part of the score) for AlphaFold-2.0 (monomer), but AFm behaves differently. Here, AFm provides a direct score to evaluate the quality of the interaction (ipTM or Ranking Confidence). The authors should use these to separate good/bad models (for global/local docking), or at least show that these scores are less good than the one they used.

    1. Reviewer #2 (Public Review):

      This work probes the control of the hox operon in the cyanobacterium Synechocystis, where this operon directs the synthesis of a bidirectional hydrogenase that functions to produce hydrogen. In assessing the control of the hox system, the authors focused on the relative contributions of cyAbrB2, alongside SigE (and to a lesser extent, SigA and cyAbrB1) under both aerobic and microoxic conditions. In mapping the binding sites of these different proteins, they discovered that cyAbrB2 bound many sites throughout the chromosome repressed many of its target genes, and preferentially bound regions that were (relatively) rich in AT-residues. These characteristics led the authors to consider that cyAbrB2 may function as a nucleoid-associated protein (NAP) in Synechocystis, given its functional similarities with other NAPs like H-NS. They assessed the local chromosome conformation in both wild-type and cyabrB2 mutant strains at multiple sites within a 40 kb window on either side of the hox locus, using a region within the hox operon as bait. They concluded that cyAbrB2 functions as a nucleoid-associated protein that influences the activity of SigE through its modulation of chromosome architecture.

      The authors approached their experiments carefully, and the data were generally very clearly presented and described.

      Based on the data presented, the authors make a strong case for cyAbrB2 as a nucleoid-associated protein, given the multiple ways in which it seems to function similarly to the well-studied Escherichia coli H-NS protein. It would be helpful to provide some additional commentary within the discussion around the similarities and differences of cyAbrB2 to other nucleoid-associated proteins, and possible mechanisms of cyAbrB2 control (post-translational modification; protein-protein interactions; etc.). The manuscript would also be strengthened with the inclusion of biochemical experiments probing the binding of cyAbrB2, particularly focussing on its oligomerization and DNA polymerization/bridging potential.

      Previous work had revealed a role for SigE in the control of hox cluster expression, which nicely justified its inclusion (and focus) in this study. However, the results of the SigA studies here suggested that SigA both strongly associated with the hox promoter, and its binding sites were shared more frequently than SigE with cyAbrB2. The focus on cyAbrB2 is also well-justified, given previous reports of its control of hox expression; however, it shares binding sites with an essential homologue cyAbrB1. Interestingly, while the B1 protein appears to bind similar sites, instead of repressing hox expression, it is known as an activator of this operon. It seems important to consider how cyAbrB1 activity might influence the results described here.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors have previously engineered an antibody fusion protein targeting ZNRF3/RNF43 ubiquitin ligases, which enhances Wnt signaling specifically in hepatocytes. This is achieved using RSPO2RA (ZNRF3/RNF43 ligand with F105R/F109A mutations which abolish its binding to LGRs) and ASGR1 (hepatocyte-specific cell surface molecule). In the current study, they have identified two new ASGR1 and ASGR1/2 antibodies (8M24 and 8G8), which also enhance Wnt signaling when fused to RSPO2RA antibody. These also lead to the degradation of ASGR1, demonstrating that protein degradation and signaling enhancement can be dually targeted with a single molecule.

      Strengths:<br /> The authors show crystal structures for binding of these antibodies to ASGR1/2, and hypothesize about why specificity is mediated through specific residues. They do not test these hypotheses.

      The authors demonstrate a sub-picomolar affinity of these antibodies for ASGR1/2, which should be powerful clinically.

      The authors demonstrate in hepatocyte cell lines that these function as mimetics, and that they do not function in HEK cells, which do not express ASGR1. They do not perform an exhaustive screen of all non-hepatocyte cells, nor do they test these molecules in vivo.

      Surprisingly, these molecules also induced loss of ASGR1, which the authors hypothesize is due to ubiquitination and degradation, initiated by the E3 ligases recruited to ASGR1. They demonstrate that inhibition of either the proteasome or lysosome abrogates this effect and that it is dependent on E1 ubiquitin ligases. They do not demonstrate direct ubiquitination of ASGR1 by ZNRF3/RNF43.

      Weaknesses:<br /> As co-listed with strengths above, the analysis is not always exhaustive but shows good preliminary findings for the field.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this work, Lao et al. develop an open-source software (OpenNucleome) for GPU-accelerated molecular dynamics simulation of the human nucleus accounting for chromatin, nucleoli, nuclear speckles, etc. Using this, the authors investigate the steady-state organization and dynamics of many of the nuclear components.

      Strengths:<br /> This is a comprehensive open-source tool to study several aspects of the nucleus, including chromatin organization, interactions with lamins and organization, and interactions with nuclear speckles and nucleoli. The model is built carefully, accounting for several important factors and optimizing the parameters iteratively to achieve experimentally known results. The authors have simulated the entire genome at 100kb resolution (which is a very good resolution to simulate and study the entire diploid genome) and predict several static quantities such as the radius of gyration and radial positions of all chromosomes, and time-dependent quantities like the mean-square displacement of important genomic regions.

      Weaknesses:<br /> One weakness of the model is that it has several parameters. Some of them are constrained by the experiments. However, the role of every parameter is not clear in the manuscript.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Pulfer A. et al. developed a deep learning-based apoptosis detection system named ADeS, which outperforms the currently available computational tools for in vitro automatic detection. Furthermore, ADeS can automatically identify apoptotic cells in vivo in intravital microscopy time-lapses, preventing manual labeling with potential biases. The authors trained and successfully evaluated ADeS in packed epithelial monolayers and T cells distributed in 3D collagen hydrogels. Moreover, in vivo, training and evaluation were performed on polymorphonucleated leukocytes in lymph nodes and spleen.

      Strengths:<br /> Pulfer A. et colleagues convincingly presented their results, thoroughly evaluated ADeS for potential toxicity assay, and compared its performance with available state-of-the-art tools.

      Weaknesses:<br /> The use of ADeS is still restricted to samples where cells are fluorescently labeled either in the cytoplasm or in the nucleus, which limits its use for in vitro toxicity assays that are performed on primary cells or organoids (e.g., iPSCs-derived systems) that are normally harder to transfect.

      In conclusion, ADeS will be a useful tool to improve output quality and accelerate the evaluation of assays in several research areas with basic and applied aims.

    1. Reviewer #2 (Public Review):

      Summary<br /> This paper has three parts. The first part applied a coarse-grained model with proteome partition to calculate cell growth under respiration and fermentation modes. The second part considered single-cell variability and performed population average to acquire an ensemble metabolic profile for acetate fermentation. The third part used model and simulation to compare experimental data in literature and obtained substantial consistency.

      Strengths and major contributions<br /> (i) The coarse-grained model considered specific metabolite groups and their inter-relations and acquired an analytical solution for this scenario. The "resolution" of this model is in between the Flux Balanced Analysis/whole-cell simulation and proteome partition analysis.

      (ii) The author considered single-cell level metabolic heterogeneity and calculated the ensemble average with explicit calculation. The results are consistent with known fermentation and growth phenomena qualitatively and can be quantitatively compared to experimental results.

      Weaknesses<br /> (i) If I am reading this paper correctly, the author's model predicts binary (or "digital") outcomes of single-cell metabolism, that is, after growth rate optimization, each cell will adopt either "respiration mode" or "fermentation mode" (as illustrated in Figure Appendix - Figure 1 C, D). Due to variability enzyme activity k_i^{cat} and critical growth rate λ_C, each cell under the same nutrient condition could have either respiration or fermentation, but the choice is binary.

      The binary choice at the single-cell level is inconsistent with our current understanding of metabolism. If a cell only uses fermentation mode (as shown in Appendix - Figure 1C), it could generate enough energy but not be able to have enough metabolic fluxes to feed into the TCA cycle. That is, under pure fermentation mode, the cell cannot expand the pool of TCA cycle metabolites and hence cannot grow.

      This caveat also appears in the model in Appendix (S25) that assumes J_E = r_E*J_{BM} where r_E is a constant. From my understanding, r_E can be different between respiration and fermentation modes (at least for real cells) and hence it is inappropriate to conclude that cells using fermentation, which generates enough energy, can also generate a balanced biomass.

      (ii) The minor weakness of this model is that it assumes a priori that each cell chooses its metabolic strategy based on energy efficiency. This is an interesting assumption but there is no known biochemical pathway that directly executes this mechanism. In evolution, growth rate is more frequently considered for metabolic optimization. In Flux Balanced Analysis, one could have multiple objective functions including biomass synthesis, energy generation, entropy production, etc. Therefore, the author would need to justify this assumption and propose a reasonable biochemical mechanism for cells to sense and regulate their energy efficiency.

      My feeling is that the mathematical structure of this model could be correct, but the single-cell interpretation for the ensemble averaging has issues. Each cell could potentially adopt partial respiration and partial fermentation at the same time and have temporal variability in its metabolic mode as well. With the modification of the optimization scheme, the author could have a revised model that avoids the caveat mentioned above.

      Discussion and impact for the field<br /> Proteome partition models and Flux Balanced Analysis are both commonly used mathematical models that emphasize different parts of cellular physiology. This paper has ingredients for both, and I expect after revision it will bridge our understanding of the whole cell.

    1. Reviewer #2 (Public Review):

      In the current study, Latchoumane and collaborators focus on the Cav3.1 calcium channels in the mediodorsal thalamic nucleus as critical players in the regulation of brain-states and ethanol resistance in mice. By combining behavioural, electrophysiological, and genetic techniques, they report three main findings. First, KO Cav3.1 mice exhibit resistance to ethanol-induced sedation and sustained tonic firing in thalamocortical units. Second, knocked-down Cav3.1 mice reproduce the same behaviour when the mediodorsal, but not the ventrobasal, thalamic nucleus is targeted. Third, either optogenetic or electric stimulation of the mediodorsal thalamus reduces ethanol-induced sedation in control animals.

      Overall, the study is well designed and performed, correctly controlled for confounds, and properly analysed. Nonetheless, it is important to address some aspects of the report. The results support the conclusions of the study. These results are likely to be relevant in the field of systems neuroscience, as they increase the molecular evidence showing how the thalamus regulates brain states.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Animals exhibit different speeds of locomotion. In vertebrates, this is thought to be implemented by different groups of spinal interneurons and motor neurons. A fundamental assumption in the field has been that neural mechanisms that generate and sustain the rhythm at different locomotor speeds are the same. In this study, the authors challenge this view. Using rigorous in vivo electrophysiology during fictive locomotion combined with genetics, the authors provide a detailed analysis of cellular and synaptic properties of different subtypes of spinal V2a neurons that play a crucial role in rhythm generation. Importantly, they are able to show that speed-related subsets of V2a neurons have distinct cellular and synaptic properties and may utilize different mechanisms to implement different locomotor speeds.

      Strengths:<br /> The authors fully utilize the zebrafish model system and solid electrophysiological analyses to study the active and passive properties of speed-related V2a subsets. Identification of the V2a subtype is based directly on their recruitment at different locomotor speeds and not on indirect markers like soma size, D-V position etc. Throughout the article, the authors have cleverly used standard electrophysiological tests and analysis to tease out different neuronal properties and link it to natural activity. For example, in Figures 2 and 4, the authors make comparisons of V2a spiking with current steps and during fictive swims showing spike rates measured with current steps are physiologically relevant and observed during natural recruitment. The experiments done are rigorous and well-controlled.

      Weaknesses:<br /> The authors claim that a primary result of their study is that reciprocal inhibition is important for rhythmogenesis at fast speeds while recurrent inhibition is key at slow speeds. This is shown in Figure 6, however, the authors do not show any statistical tests for this claim. The authors also do not show any conclusive evidence that reciprocal inhibition is required for rhythmogenesis at fast speeds and vice versa for slow speeds. Additional experiments or modeling studies that conclusively show the necessity of these different inhibitory sources to the generation of different rhythms would be needed to strengthen this claim.

      The authors do a great job of teasing out cellular and synaptic properties in the different V2a subsets, however, it is not clear if or how these match the final output. For example, V2aD neurons are tonic or bursting for fast and slow speeds respectively but it is not intuitive how these cellular properties would influence phasic excitation and inhibition these neurons receive.

      It is not clear from the discussion why having different mechanisms of rhythm generation at different speeds could be an important circuit design. The authors use anguilliform and carangiform modes of swimming to denote fast and slow speeds but there are differences in these movements other than speed, like rostrocaudal coordination. The frequency and pattern of these movements are linked and warrant more discussion.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this work, Kashefi et al. investigate the planning of sequential reaching movements and how the additional information about future reaches affects planning and execution. This study, carried out with human subjects, extends a body of research in sequential movements to ask important questions: How many future reaches can you plan in advance? And how do those future plans interact with each other?

      The authors designed several experiments to address these questions, finding that information about future targets makes reaches more efficient in both timing and path curvature. Further, with some clever target jump manipulations, the authors show that plans for a distant future reach can influence plans for a near future reach, suggesting that the planning for multiple future reaches is not independent. Lastly, the authors show that information about future targets is acquired parafoveally--that is, subjects tend to fixate mainly on the target they are about to reach to, acquiring future target information by paying attention to targets outside the fixation point.

      The study opens up exciting questions about how this kind of multi-target planning is implemented in the brain. As the authors note in the manuscript, previous work in monkeys showed that preparatory neural activity for a future reaching movement can occur simultaneously with a current reaching movement, but that study was limited to the monkey only knowing about two future targets. It would be quite interesting to see how neural activity partitions preparatory activity for a third future target, given that this study shows that the third target's planning may interact with the second target's planning.

      Strengths:<br /> A major strength of this study is that the experiments and analyses are designed to answer complementary questions, which together form a relatively complete picture of how subjects act on future target information. This complete description of a complex behavior will be a boon to future work in understanding the neural control of sequential, compound movements.

      Weaknesses:<br /> I found no real glaring weaknesses with the paper, though I do wish that there had been some more discussion of what happens to planning with longer dwell times in target. In the later parts of the manuscript, the authors mention that the co-articulation result (where reaches are curved to make future target acquisition more efficient) was less evident for longer dwell times, likely because for longer dwell times, the subject needs to fully stop in target before moving to the next one. This result made me wonder if the future plan interaction effect (tested with the target jumps) would have been affected by dwell time. As far as I can tell, the target jump portion only dealt with the shorter dwell times, but if the authors had longer dwell time data for these experiments, I would appreciate seeing the results and interpretations.

      Beyond this, the authors also mentioned in the results and discussion the idea of "neural resources" being assigned to replan movements, but it's not clear to me what this might actually mean concretely. I wonder if the authors have a toy model in mind for what this kind of resource reassignment could mean. I realize it would likely be quite speculative, but I would greatly appreciate a description or some sort of intuition if possible.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Here Jeong et al., use a combination of theoretical and experimental approaches to define molecular contexts that support specific chromatin conformations. They seek to define features that are associated with TADs that are retained after cohesin depletion (the authors refer to these TADs as P-TADs). They were motivated by differences between single cell data, which suggest that some TADs can be maintained in the absence of cohesin, whereas ensemble HiC data suggest complete loss of TADs. By reananalyzing a number of HiC datasets from different cell types, the authors observe that in ensemble methods, a significant subset of TADs are retained. They observe that P-TADs are associated with mismatches in epigenetic state across TAD boundaries. They further observe that "physical boundaries" are associated with P-TAD maintenance. Their structure/simulation based approach appears to be a powerful means to generate 3D structures from ensemble HiC data, and provide chromosome conformations that mimic the data from single-cell based experiments. Their results also challenge current dogma in the field about epigenetic state being more related to compartment formation rather than TAD boundaries. Their analysis is particularly important because limited amounts of imaging data are presently available for defining chromosome structure at the single-molecule level, however, vast amounts of HiC and ChIP-seq data are available. By using HiC data to generate high quality simulated structural data, they overcome this limitation. Overall, this manuscript is important for understanding chromosome organization, particularly for contacts that do not require cohesin for their maintenance, and for understanding how different levels of chromosome organization may be interconnected. I cannot comment on the validity of the provided simulation methods and hope that another reviewer is qualified to do this.

      Specific comments<br /> -It is unclear what defines a physical barrier. From reading the text and the methods, it is not entirely clear to me how the authors have designated sites of physical barriers. It may help to define this on pg 7, second to last paragraph, when the authors first describe instances of P-TAD maintenance in the absence of epigenetic mismatch.

      -Figure 7 adds an interesting take to their approach. Here the authors use microC data to analyze promoter-enhancer/promoter-promoter contacts. These data are included as part of the discussion. I think this data could be incorporated into the main text, particularly because it provides a biological context where P-TADs would have a rather critical role.

      -Figure 3a- the numbers here do not match the text (page 6, second to last paragraph). The numbers have been flipped for either chromosome 10 or chromosome 13 in the text or the figures.

      In the revision, the authors have sufficiently addressed my specific concerns from above.

    1. Reviewer #2 (Public Review):

      The responses to the comments and changes in the manuscript are convincing, especially the secretion patterns of high and low secreting cells are interesting and reassuring. The only criticism I still have is that most observations are already published in the previous paper by the same authors.

      Summary:<br /> In their manuscript titled "Stimulation-induced cytokine polyfunctionality as a dynamic concept," the authors investigate the dynamic nature of polyfunctional cytokine responses to established stimulants. The authors use their previously published single-cell encapsulation droplet-microfluidic platform to analyse the response of peripheral blood mononuclear cells (PBMCs) to different stimulants and measure the secretion dynamics of individual cytokines. This assay shows that polyfunctionality in cytokine responses is a complex but short-lived phenomenon that decreases with prolonged stimulation times. The study finds that polyfunctional cells predominantly display elevated cytokine concentrations with similar secretion patterns but higher secretion levels compared to their monocytokine-secreting counterparts. The method is promising to analyse the correlation between the secretion dynamics of different cytokines in primary samples and heterogeneous cell populations.

      Strengths:<br /> This method provides single-cell-resolved and dynamic cytokine concentration information, which might be used to identify "fingerprints" of secretion patterns for selected cytokines. When extending the available data to more than one donor, this might be the basis for a diagnostic tool. The combination of established droplet microfluidics with an epi-fluorescence microscope-based readout makes it convincing that the method is transferable to other labs. Specifically, the dynamic analysis of cytokine concentrations is interesting, and the differences or similarities in secretion timepoints might be missed with end-point methods. The authors convincingly show that they detect up to three different cytokines in single cells.

      Weaknesses:<br /> The conclusions of the study are based on samples from a single donor, which makes the conclusions on secretion patterns difficult to interpret. The choice of cytokines is explained, but the justification of the groupings of the antibodies into the two panels is missing. It would further be helpful to discuss how the single cell incubation might affect the secretion dynamics vs. the influence of co-culture of all cell types during the 24 h activation. The authors compare average secretion rates and levels. However, the right panel in Fig. 6 looks like there might be two different populations of mono- or polyfuntional cells that have two secretion rates. As the authors have single-cell data, I would find the separation into these populations more meaningful than comparing the mean values. In line with this comment, comparing the mean values for these cytokines instead of the mean of the populations with distinct secretion properties might actually show stronger differences than the authors report here.Is the plateau of the cytokine concentration caused by the fluorescence signal saturating the camera, saturation of the magnetic beads, exhaustion of the fluorescent antibodies, or constant cytokine concentrations? The high number of non-CSCs and the limited number of droplets decrease the statistical power of the method. The authors discuss their choice to use PBMCs and not solely T cells, but this aspect is missing in the discussion.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Let-7 family miRNAs are largely redundant in function, and originate from multiple genomic loci ("clusters"). Erice et al demonstrate that two individual clusters (let7afd and let7bc2) in mice regulate the generation of IL-17 producing CD8 T cells in vitro and in vivo in a model of emphysema. These cells also express higher levels of the IL-17-inducing transcription factor RORgt, encoded by Rorc, which the authors demonstrate to be a direct target of let-7. Since multiple let-7 family miRNAs are downregulated in T cells and lung tissue in emphysema, these data support a model in which reduced let-7 allows increased IL-17 production by T cells, contributing to disease pathogenesis.

      Strengths:<br /> The inclusion of miRNA and pri-miRNA expression data from sorted human lung T cells as well as mouse T cells from an emphysema model is a strength.

      The study includes complementary loss of function and gain of function experimental systems to test the effect of altered let-7 function, though it should be noted that these involved different let-7 family members and did not yield simple, complementary results for all experimental outcomes.

      The most important finding is that deletion of just one let-7 cluster ("Let7bc2") is sufficient to exacerbate emphysema in the nCB and CS models.

      Weaknesses:<br /> The functional analyses are unusually focused on IL-17 producing CD8 T cells, but it is not made clear whether these cells are an important player in emphysema pathogenesis in the nCB and CS models. The data shown reveal that they are far less numerous than IL-17-producing CD4 T cells. It is also notable that the Figure 1 expression data from human subjects used sorted CD4+ T cells. And as the author mentioned, prior work on let-7 showed that it regulated Th17 (CD4) responses.

      Compared with Let7bc2 deletion, Let7afd deletion had a much larger effect on IL17 production by CD8 T cells in vitro, and it also had a larger effect on RORgt expression in untreated mice in vivo, especially in the lung. It would be valuable to more thoroughly characterize the let7afd mice. RORgt expression should be shown in the in vitro assays. In the results, the authors state that let7afdLOF mice "did not exhibit lung histopathology nor inflammatory changes" up to 6 months of age. Similarly, it is stated in the conclusion that "the let-7afdLOF mice ... did not exhibit changes in Tc17/Th17 subpopulations" in vivo. All these data should be shown, and if no baseline changes are apparent, then I also recommend challenging these mice with nCB and/or cigarette smoke.

      This brings up the larger issue of redundancy among the let-7 family members and genomic clusters. This should be discussed, including some explanation of the relative expression of each mature family member in T cells, and how that maps to the clusters studied here (and those that were not investigated). It would also be helpful to explain the relationship between mouse Let7bc2 and human Let7a3b, since Let7bc2 is the primary focus of emphysema experiments in this manuscript.

      This is especially important because the study of individual let-7 clusters is the core novelty of this body of work, as described in the first paragraph of the discussion. The regulation of let-7 expression has been reported before and its functional role has been investigated with a variety of tools.

      Let7g overexpression caused a marked reduction in Rorgt expression in T cells at baseline and in the setting of nCB challenge, and it reduced the frequency of IL17+ producing CD8 T cells in the lung to baseline levels. Yet there was no change in the MLI measurement of histopathology. Is this a robust result? The responses in the experiment shown in Fig. 6C-D are quite muted compared to those shown in Figure 2. The latter also shows a larger number of replicates, and it is unclear whether the data in 6D include measurement from all of the mice tested (e.g. pooled from 2 small experiments) or only mice from one experiment.

      Although RORgt is a great candidate to have direct effects on IL-17 expression, the mechanistic understanding of let-7 action on T cell differentiation and cytokine production is limited to this single target. As noted in the discussion, others have identified cytokine receptor targets that may play a role, but it is also likely others among the many targets of let-7 also contribute.

    1. Reviewer #2 (Public Review):

      This is a potentially interesting study addressing a possible scale-invariant log-normal characteristic of droplet size distribution in the phase separation behavior of biomolecular condensates. Some of the data presented are valuable and intriguing. However, as it stands, the validity and utility of this study are uncertain because there are serious deficiencies in the execution and presentation of the authors' results. Many of these shortcomings are fundamental, including a lack of clarity in the basic conceptual framework of the study, insufficient justification of the experimental setup, less-than-conclusive experimental evidence, and inadequate discussion of implications of the authors' findings to future experimental and theoretical studies of biomolecular condensates. Accordingly, this reviewer considers that the manuscript should undergo a major revision to address the following. In particular, the discussion should be significantly expanded by including references mentioned below as well as other references pertinent to the issues raised.

      1. The theoretical analysis in this study is based on experimental data on condensed droplet size distributions for FUS and α-synuclein. The size data for FUS droplet is indirect as it relies on the assumption that FUS droplet diameter is proportional to fluorescence intensity of labeled FUS (page 10 of manuscript), with fluorescence data adopted from a previously published work by another group (Kar et al. & Pappu, ref.27). Because fluorescence of a droplet is expected to be dependent upon the condensed-phase concentration of FUS, this proportional relationship, even if it holds, must also be modulated by FUS concentration in the droplet. Moreover, why should fluorescence be proportional to diameter but not the cross-sectional area or volume of the FUS droplet, which would be more intuitive? These issues should be clarified. A new measure by microscopy is used to determine the size distribution of condensed α-synuclein; but no microscopy image is shown. It is of critical importance that such raw data (for example microscopy images) be presented for the completeness and reproducibility of the experiment because the entire study relies on the soundness of these experimental measurements.

      2. Despite the authors' claim of a universal scaling relationship, the log-log scatter plots in Figure 1 (page 15 of the manuscript) exhibit significant deviations from linearity at low protein concentrations (ρ→0). Given this fact, is universal scaling really valid? Discussion of this behavior is conspicuously absent (except the statement that these data points are excluded in the fit). In any case, the possible origins of these deviations should be thoroughly discussed so that the regime of universal scaling can be properly delineated.

      3. Droplet size distribution most likely depends on the time duration after the preparation of the sample. For α-synuclein, "liquid droplet size characterisation images were captured 10 minutes post-liquid droplet formation" (page 9 of the manuscript). Why 10 minutes? Have the authors tried imaging at different time points and, if so, do the distributions at different time points remain essentially the same? If they are different, what is the criterion for focusing only on a particular time point? Information related to these questions should be provided.

      4. At least two well-known mechanisms can lead to the time-dependent distribution of liquid droplet sizes: (i) coalescence of droplets in spatial proximity to form a larger droplet, and (ii) Ostwald ripening, i.e., formation of larger droplets concomitant with the dissolution of smaller droplets without fusion of droplets. The implications of these mechanisms on the authors' droplet size distributions should be addressed. Indeed, maintaining a size distribution against these mechanisms in vivo often requires active suppression [Bressloff, Phys Rev E 101, 042804 (2020)] with possible involvement of chemical reactions [Kirschbaum & Zwicker, J R Soc Interface 18, 20210255 (2021)]. These considerations are central to the basic rationale of this study and therefore should be carefully tackled.

      5. If coalescence and/or Ostwald ripening do occur, given sufficient time after sample preparation, the condensed phase may become a single large "droplet" or a single liquid layer. Does this occur in the authors' experiments?

      6. It is unclear whether the authors aim to address the kinetic phenomenon of liquid droplet formation and evolution or equilibrium properties. The two types of phenomena appear to be conflated in the authors' narrative. Clarification is needed. If this work aims to address time-independent (or infinite-time) equilibrium properties, how are they expected to be related to droplet size distribution, which most likely is time-dependent?

      7. The relationship between the potentially time-dependent droplet size distribution and equilibrium properties of ρt and ρc (transition and critical concentrations, respectively) should be better spelled out. An added illustrative figure will be helpful.

      8. The authors comment that their findings appear to be inconsistent with Flory-Huggins theory because Flory-Huggins "characterizes droplet formation as a consequence of nucleation ..." (page 8 of the manuscript). Here, three issues need detailed clarification: (i) In what way does Flory-Huggins mandate nucleation? (ii) Why are the findings of apparent scale invariance inconsistent with nucleation? (iii) If liquid droplet formations do not arise from nucleation, what physical mechanism(s) is (are) envisioned by the authors to be underpinning the formation of condensed liquid droplets in protein phase separation?

      9. Are any of the authors' findings related to finite-system effects of phase separation [see, e.g., Nilsson & Irbäck, Phys Rev E 101, 022413 (2020)]?

      10. Since the authors are using their observation of an apparent scale-invariant droplet size distribution to evaluate phase separation theory, it is important to clarify whether their findings provide any constraint on the shape of coexistence curves (phase diagrams).

      11. More specifically, do the authors' findings suggest that the phase diagrams predicted by Flory-Huggins are invalid? Or, are they suggesting that even if the phase diagrams predicted by Flory-Huggins are empirically correct (if verified by experimental testing), they are underpinned by a free energy function different from that of Flory-Huggins? It is important to answer this question to clarify the implications of the authors' findings on equilibrium phase behaviors and the falsifiability of the implications.

      12. How about the implications of the authors' findings on other theories of protein phase separation that are based on interactions that are different from the short spatial range interactions treated by Flory-Huggins? For instance, it has been observed that whereas the Flory-Huggins-predicted phase diagrams always convex upward, phase diagrams for charged intrinsically disordered proteins with long spatial range Coulomb interactions exhibit a region that concave upward [Das et al., Phys Chem Chem Phys 20, 28558-28574 (2018)]. Can information be provided by the authors' findings regarding apparent scale-invariant droplet size distribution on the underlying interaction driving the protein molecules toward phase separation?

      13. Table S1 (page 4) and Table S2 (page 7) are mentioned in the text but these tables are not in the submitted files.

      14. The two systems studied (FUS and α-synuclein) have a single intrinsically disordered protein (IDP) component. It is not clear if the authors expect their claimed scaling relation to be applicable to systems with multiple IDP components and if so, why.

    1. Reviewer #2 (Public Review):

      Summary: In the mauscript entitled "The Intricate Relationship of G-Quadruplexes and Pathogenicity Islands: A Window into Bacterial Pathogenicity" Bo Lyu explored the interactions between guanine-quadruplex (G4) structures and pathogenicity islands (PAIs) in 89 bacterial genomes through rigorous computational approach. This paper handles an intriguing and complex topic in the field pathogenomics, it has the potential to contribute significantly to the understanding of G4-PAI interactions and bacterial pathogenicity.

      Strengths: Chosen research area and summarizing the results through neat illustrations

      Weaknesses: I did not find any significant ones.

    1. Reviewer #3 (Public Review):

      Smirnova et al. present a cryo-EM structure of human SIRT6 bound to a nucleosome as well as the results from molecular dynamics simulations. The results show that the combined conformational flexibilities of SIRT6 and the N-terminal tail of histone H3 limit the residues with access to the active site, partially explaining the substrate specificity of this sirtuin-class histone deacetylase. Two other groups have recently published cryo-EM structures of SIRT6:nucleosome complexes; this manuscript confirms and complements these previous findings, with the addition of some novel insights into the role of structural flexibility in substrate selection.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors have conducted an exceptionally informative series of studies investigating the neural basis of interoception in transdiagnostic psychiatric symptoms. By comparing differential and overlapping neural activation during 'top-down' and 'bottom-up' interoceptive tasks, they reveal convergent activation largely localised to the ventral dysgranular subregion ('mid-insula'), which differs in extent between patients and controls, replicating and extending previous suggestions of this region as a central locus of disruption in psychiatric disorders. Their work also reveals different extents of divergent activation in the anterior insula during anticipation of interoceptive disruption. This substantially advances our previous knowledge of the anatomy of interoception and confirms theoretical predictions of the roles of different cytoarchitectural subregions of the insula in interoceptive dysfunction in mental health conditions.

      Strengths:<br /> The work is exceptional in terms of breadth and depth, making use of multiple imaging and analysis techniques which are non-standard and go well beyond what is known today. The study is statistically well-powered and the tasks are well-validated in the literature. To my knowledge, these functions of the insula in interoception and mental health have never been compared directly before, so the results are novel and informative for both basic science and psychiatry. The work is strongly theory-driven, building on and directly testing results from influential theories and previous studies. It is likely that the results will strengthen our theoretical models of interoception and advance psychiatric studies of the insula.

      Weaknesses:<br /> The study has three current limitations. (1) The interpretation of the resting-state data is not quite as clear-cut as the task-based data - as presented currently, changes could potentially represent fluctuations over time rather than following interoception specifically. In contrast, much stronger conclusions can be drawn from the authors' task-based data. (2) The transdiagnostic sample could be better characterised in terms of diagnostic information, and was almost entirely female; it is also unclear what the effect of psychotropic medications may have been on the results given the effects of (e.g.) serotonergic medication on the BOLD signal. (3) As the authors point out, there may have been task-specific preprocessing/analysis differences that influenced results, for example, due to physiological correction in one but not both tasks.

    1. Reviewer #2 (Public Review):

      Sasaki et al. investigated methods to entrain vasomotion in awake wild-type mice across multiple regions of the brain using a horizontally oscillating visual pattern which induces an optokinetic response (HOKR) eye movement. They found that spontaneous vasomotion could be detected in individual vessels of their wild-type mice through either a thinned cranial window or intact skull preparation using a widefield macro-zoom microscope. They showed that low-resolution autofluorescence signals coming from the brain parenchyma could be used to capture vasomotion activity using a macro-zoom microscope or optical fibre, as this signal correlates well with the intensity profile of fluorescently-labelled single vessels. They show that vasomotion can also be entrained across the cortical surface using an oscillating visual stimulus with a range of parameters (with varying temporal frequencies, amplitudes, or spatial cycles), and that the amplitude spectrum of the detected vasomotion frequency increases with repeated training sessions. The authors include some control experiments to rule out fluorescence fluctuations being due to artifacts of eye movement or screen luminance and attempt to demonstrate some functional benefit of vasomotion entraining as HOKR performance improves after repeat training. These data add in an interesting way to the current knowledge base on vasomotion, as the authors demonstrate the ability to entrain vasomotion across multiple brain areas and show some functional significance to vasomotion with regards to information processing as HOKR task performance correlates well with vascular oscillation amplitudes.

      The aims of the paper are mostly well supported by the data, but some streamlining of the data presentation would improve overall clarity. The third aim to establish the functional significance of vasomotion in relation to plasticity in information processing could be better supported by the inclusion of some additional control experiments. Specifically:

      1) The clarity and comprehensibility of the paper could be significantly enhanced by incorporating additional details in both the introduction and discussion sections. In the introduction, a succinct definition of the frequency range of vasomotion should be provided, as well as a better description of the horizontal optokinetic response (i.e. as they have in the results section in the first paragraph below the 'Entrainment of vasomotion with visual stimuli presentation' sub-heading). The discussion would benefit from the inclusion of a clear summary of the results presented at the start, and the inclusion of stronger justification (i.e. more citations) with regards to the speculation about vasomotion and neuronal plasticity (e.g. paragraph 5 includes no citations).

      2) The novel methods for detecting vasomotion using low-resolution imaging techniques are discussed across the first four figures, but this gets a little bit confusing to follow as the authors jump back and forth between the different imaging and analysis techniques they have employed to capture vasomotion. The data presentation could be better streamlined - for instance by presenting only the methods most relevant for the functional dataset (in Figures 5-7), with the additional information regarding the various controls to establish the use of autofluorescence intensity imaging as a valid method for capturing vasomotion reduced to fewer figure panels, or moved to supplementary figures so as to not detract from the main novel findings contributed in this study.

      3) The authors heavily rely on representative traces from individual vessels to illustrate their findings, particularly evident in Figures 1-4. While these traces offer a valuable visualization, augmenting their approach by presenting individual data points across the entire dataset, encompassing all animals and vessels, would significantly enhance the robustness of their claims. For instance, in Figures 1 and 2, where average basal and dilated traces are depicted for a representative vessel, supplementing these with graphs showcasing peak values across all measured vessels would enable the authors to convey a more holistic representation of their data. Or in Figure 3, where the amplitude spectrum is presented for individual Texas red fluorescence intensity changes in V1 across novice, trained, and expert mice, incorporating a summary graph featuring the amplitude spectrum value at 0.25Hz for each individual trace (across animals/imaging sessions), followed by statistical analysis, would fortify the strength of their assertions. Moreover, providing explicit details on sample sizes for each individual figure panel (where not a representative trace), including the number of animals or vessels/imaging sessions, would contribute to transparency and aid readers in assessing the generalisability of the findings.

      4) In the experiments where mice are classed as "novice", "trained" or "expert", the inclusion of the specific range of the number of training sessions for each category would improve replicability.

      5) The authors don't state whether mice were habituated to the imaging set-up prior to the first data collection, as head-fixation and restraint can be stress-inducing for animals, especially upon first exposure, which could impact their neurovascular coupling responses differentially in "novice" versus "trained" imaging sessions (e.g. see Han et al., 2020, DOI: https://doi.org/10.1523/JNEUROSCI.1553-20.2020). The stress associated with a tail vein injection prior to imaging could also partially explain why mice didn't learn very well if Texas Red was injected before the training session. If no habituation was conducted in these experiments, the study would benefit from the inclusion of some control experiments where "novice" responses were compared between habituated and non-habituated animals.

      6) The experiments regarding the brain-wide vasomotion entrainment across the cortical surface would benefit from some additional information about how brain regions were identified (e.g. particularly how V1 and V2 were distinguished given how close together they are).

      7) Whilst the authors show that HOKR task performance and vasomotion amplitude are increased with repeated training to provide some support to their aim of investigating the functional significance of vasomotion with regards to information processing plasticity, the inclusion of some additional control experiments would provide stronger evidence to address this aim. For instance, if vasomotion signalling is blocked or reduced (e.g. using optogenetics or in an AD mouse model where arteriole amyloid load restricts vasomotion capacity), does flocculus-dependent task performance (e.g. HOKR eye movements) still improve with repeated exposure to the external stimulus.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, the authors attempted to study mechanisms of transcription inhibition in cells treated with IR. They observed that, unlike histone chaperone HIRA-dependent transcription inhibition during UV-induced damage, IR-induced transcription inhibition does not depend on HIRA. Through the CRISPR/Cas9 screen, they identified protein neddylation is important for transcription inhibition. By sequencing nascent RNA, they observed that down-regulated transcripts upon IR treatment are largely highly transcribed genes including histone genes and rDNA.

      Strengths:<br /> The authors utilized comprehensive approaches to fill in the knowledge gap of IR-induced transcription inhibition.

      Weaknesses:<br /> it is not clear that inhibition of histone genes by IR is due to a reduction of S phase progression.

    1. Reviewer #2 (Public Review):

      Summary:

      There are two potential contributions made by this study, both of which are not fully supported by the data presented. First, that Twist-positive hepatocytes in the midlobular zone are derived from Twist2-expressing cells in embryonic livers via intermediate EpCAM-expressing cells. Second, that there is a population of hepatocytes with mesenchymal features that drive regeneration after various injuries. The concept that mid-lobular hepatocytes are more regenerative in adult injury settings has already been established and this paper further supports that body of knowledge.

      Strengths:

      There are copious scRNA-seq data that are supportive of the claims, but these analyses were not definitive.

      Weaknesses:

      1. There is not sufficient evidence to support the following assertion: "markers identified a mesenchymal-hepatocyte hybrid population (13.7% of total hepatocytes) that express signature genes of both lineages." Twist-Cre reporter mice mark hepatocytes and mesenchymal populations, but it is not clear whether or not this means that the hepatocyte population labeled by Twist is mesenchymal. It is very possible for hepatocytes to express mesenchymal genes without being a true hybrid population. There is not much evidence that zone 2 cells are a mix of hepatocyte and mesenchymal. The idea of a hybrid population needs to be defined. The definition probably needs to involve the concept that hybrid cells must have morphologic or functional features of mesenchymal cells, rather than just expressing some genes from each cell type.

      Related to this, the authors claim that co-expression of Twist and EpCAM in E10.5 liver cells might support the existence of a hepatomesenchymal cell type. This is possible, but one should note that adult hepatocytes can express EpCAM, especially during ductular reactions, so it is not necessarily a mesenchymal marker per se.

      2. The authors assert several times that Twist-Cre mice appear to have no effect on overall liver regeneration phenotypes. They use this to suggest a lack of an effect for heterozygous deletion of Twist by the Cre allele. It is still possible for these mice to have altered lineage tracing results. It is very difficult to rule this out. For example, Axin2-CreER mice did not have any overt liver function or regeneration phenotypes, but the lineage tracing results from these mice differed from other CreER mice.

      3. The central problem with this study is that the authors use a Cre strain and not a CreER strain. With a Cre strain, there could be new labeling of Twist-positive cells at multiple later time points. Thus, it is very difficult to assert that the Tomato-positive population at later time points are really descendants of the originally labeled population. It is very difficult to interpret the results of Cre-based lineage tracing experiments.

      With this technical limitation in mind, I do not think that there is enough evidence to support the assertion made on page 6: "These findings suggest that EpCAMlow progenitor cells give rise to hepatocytes and MCs." The authors use scRNA-seq trajectory analysis to come to the conclusion that mesenchymal cells give rise to hepatocytes between p1 and p14. Much more evidence is needed before the authors can arrive at this conclusion. It is much more likely that midlobular hepatocytes arise from other hepatocytes. To support their arguments, the authors would have to use a CreER line that exclusively labels mesenchymal cells in the liver, then lineage traces them until p14 to determine if they become hepatocytes. Without such an experiment, I do not think the current experiments are interpretable.

      4. The injury experiments are again limited in their interpretability because they do not use CreER. It is very possible that Twist is turned on after CCl4 or surgical injury, and thus new hepatocytes might activate Tomato. It is unclear if previously Tomato-positive midzone hepatocytes were proliferating to increase the Tomato positive population. The authors use expression-based studies to argue against ectopic activation of Twist, but it is very difficult to exclude Cre activation using these types of studies.

    1. Reviewer #2 (Public Review):

      Summary:

      Here, the authors show that neutral lipids play a role in spermatogenesis. Neutral lipids are components of lipid droplets, which are known to maintain lipid homeostasis, and to be involved in non-gonadal differentiation, survival, and energy. Lipid droplets are present in the testis in mice and Drosophila, but not much is known about the role of lipid droplets during spermatogenesis. The authors show that lipid droplets are present in early differentiating germ cells, and absent in spermatocytes. They further show a cell autonomous role for the lipase brummer in regulating lipid droplets and, in turn, spermatogenesis in the Drosophila testis. The data presented show that a relationship between lipid metabolism and spermatogenesis is congruous in mammals and flies, supporting Drosophila spermatogenesis as an effective model to uncover the role lipid droplets play in the testis.

      Strengths and weaknesses:

      The authors do a commendably thorough characterization of where lipid droplets are detected in normal testes: located in young somatic cells, and early differentiating germ cells. They use multiple control backgrounds in their analysis, including w[1118], Canton S, and Oregon R, which adds rigor to their interpretations. The authors employ markers that identify which lipid droplets are in somatic cells, and which are in germ cells. The authors use these markers to present measured distances of somatic and germ cell-derived lipid droplets from the hub. Because they can also measure the distance of somatic and germ cells with age-specific markers from the hub, these results allow the authors to correlate position of lipid droplets with the age of cells in which they are present. This analysis is clearly shown and well quantified.

      The quantification of lipid droplet distance from the hub is applied well in comparing brummer mutant testes to wild type controls. The authors measure the number of lipid droplets of specific diameters, and the spatial distribution of lipid droplets as a function of distance from the hub. These measurements quantitatively support their findings that lipid droplets are present in an expanded population of cells further from the hub in brummer mutants. The authors further quantify lipid droplets in germline clones of specified ages; the quantitative analysis here is displayed clearly and supports a cell autonomous role for brummer in regulating lipid droplets in spermatocytes.

      Data examining testis size and number of spermatids in brummer mutants clearly indicates the importance of regulating lipid droplets to spermatogenesis. The authors show beautiful images supported by rigorous quantification supporting their findings that brummer mutants have both smaller testes with fewer spermatids at both 29 and 25C. There is also significant data supporting defects in testis size, but not spermatid number, in 14-day-old brummer mutant animals compared to controls. Their analysis clearly shows an expanded region beyond the testis apex that includes younger germ cells, supporting a role for lipid droplets influencing germ cell differentiation during spermatogenesis.

      The authors present a series of data exploring a cell autonomous role for brummer in the germline, including clonal analysis and tissue specific manipulations. The clonal data indicating increased lipid droplets in spermatocyte clones, and a higher proportion of brummer mutant GSCs at the hub are convincing and supported by quantitation. The authors also show a tissue specific rescue of the brummer testis size phenotype by knocking down mdy specifically in germ cells, which is also supported by statistically significant quantitation. The authors present data examining the number of spermatocyte and post-meiotic clones 14 days after clonal induction. Their finding is significant with a p-value of 0.0496, which they acknowledge is less robust than their other data reported in this study, and could be a result of a low sample size. They indicate that future studies might validate these results with additional samples.

      The authors do a beautiful job of validating where they detect brummer-GFP by presenting their own pseudotime analysis of publicly available single cell RNA sequencing data. Their data is presented very clearly, and supports expression of brummer in older somatic and germline cells of the age when lipid droplets are normally not detected. The authors also present a thorough lipidomic analysis of animals lacking brummer to identify triglycerides as an important lipid droplet component regulating spermatogenesis.

      Impact:

      The authors present data supporting the broad significance of their findings across phyla. This data represents a key strength of this manuscript. The authors show that loss of a conserved triglyceride lipase impacts testis development and spermatogenesis, and that these impacts can be rescued by supplementing diet with medium-chain triglycerides. The authors point out that these findings represent a biological similarity between Drosophila and mice, supporting the relevance of the Drosophila testis as a model for understanding the role of lipid droplets in spermatogenesis. The connection buttresses the relevance of these findings and this model to a broad scientific community.

    1. Reviewer #2 (Public Review):

      This work investigates the mechanisms, patterns, and geographical distribution of pfhrp2 and pfhrp3 deletions in Plasmodium falciparum. Rapid diagnostic tests (RDTs) detect P. falciparum histidine-rich protein 2 (PfHRP2) and its paralog PfHRP3 located in subtelomeric regions. However, laboratory and field isolates with deletions of pfhrp2 and pfhrp3 that can escape diagnosis by RDTs are spreading in some regions of Africa. They find that pfhrp2 deletions are less common and likely occur through chromosomal breakage with subsequent telomeric healing. Pfhrp3 deletions are more common and show three distinct patterns: loss of chromosome 13 from pfhrp3 to the telomere with evidence of telomere healing at breakpoint (Asia; Pattern 13-); duplication of a chromosome 5 segment containing pfhrp1 on chromosome 13 through non-allelic homologous recombination (NAHR) (Asia; Pattern 13-5++); and the most common pattern, duplication of a chromosome 11 segment on chromosome 13 through NAHR (Americas/Africa; Pattern 13-11++). The loss of these genes impacts the sensitivity of RDTs, and knowing these patterns and geographic distribution makes it possible to make better decisions for malaria control.