10,000 Matching Annotations
  1. Oct 2024
    1. Until that year, day, hour, arrive, With head, and heart, and hand I’ll strive, To break the rod, and rend the gyve, The spoiler of his prey deprive- So witness Heaven! And never from my chosen post, Whate’er the peril or the cost, Be driven.

      Douglass returns to his previous practice of rhyming for this entire conclusion, truly giving the audience his thesis in a way that sticks in their minds more than the rest of his speech would.

    1. most importantly for the way it foregrounds what these games make visible: a certain pace of storytelling, driven by navigation through an environment and without the frustrating challenges of other styles of gaming (including their ancestor, the adventure game)

      A lot of people forget that the point of these games are not extreme anything. It is a closed-minded and stubborn issue. People caring about to much about stuff that doesn’t affect them. In the closed-minded aspect, people can not wrap their head around a different stylistic choice. Not everything needs to be black and white, wet and dry. If you do not allow ambiguity, you can cause hateful environments with that separation. The separation can then come on though during difficulty of the game and how people wish to play. But perhaps there are others who don’t enjoy the fast play and wish to play for a calming enjoyment. The hateful community can move in again with diction like, “wuss mode;” This creates a harmful, unhappy and toxic environment. The author should go into the toxicity this environment creates in the gaming community because it would help explain why Gone Home was hated on so much. Also some opposing perspectives created by the author would be nice describing or putting a perspective in of someone who doesn't like the slow pace game.

    1. he first two episodes of WandaVision, which arrive tomorrow on Disney Plus (the remaining seven will follow weekly), riff on the black and white classics The Dick Van Dyke Show and Bewitched with affection and precision. The gags are tame, corny, and adorable. Vision carries Wanda over the threshold, but after accidentally apparating through the front door, he leaves her on the threshold. That silly Vision! Housewife Wanda accidentally breaks a flying dish over her hubby’s head. Handy Wanda can zap it back together! In the episode’s set piece, Wanda and Vision forget Vision’s boss is coming to dinner (I can just picture the description in TV Guide) revealing that they have forgotten much else besides, including how they met, how they got there, and who they are. But these hints about what’s really going on don’t keep the episode from working on sitcom terms. The sequence climaxes with the boss’s wife (That ’70s Show veteran Debra Jo Rupp) opening the galley kitchen shutters to reveal Wanda whizzing dozens of pots, pans, and ingredients through the air. When a flustered Vision distracts her by belting out “Yakety Yak,” I giggled along with the laugh track, a chuckle earned by the pure sitcommery.

      The writer summarizes a few of the scenes from the first two episodes. This supports her claim that this sitcom is an appealing show for those who don't like marvels. I've never been a Marvel fan but I can attest that after reading this I would potentially watch the show.

  2. inst-fs-iad-prod.inscloudgate.net inst-fs-iad-prod.inscloudgate.net
    1. heir chil-dren will have a head start and other children will fall behind through

      In some ways the American dream is a way to cover and ignore the fact that there are such big inequalities between different people and different areas and this idea allows you to ignore those disparities by saying well if you work hard anything is possible.

    2. The paradox stems from the fact that the success of one generation depends at least partly on the success of their parents or guardians. People who succeed get to keep the fruits of their labor and use them as they see fit; if they buy a home in a place where the schools are better, or use their superior resources to make the schools in their neighborhood better, their chil-dren will have a head start and other children will fall behind through no fault of their own. The paradox lies in the fact that schools are supposed to equal-ize opportunities across generations and to create democratic citizens out of each generation, but people naturally wish to give their own children an ad-vantage in attaining wealth or power, and some can do it. When they do, every-one does not start equally, politically or economically. This circle cannot be squared

      This paragraph highlights how parental success affects children's opportunities. School aim to create but those with more resources can give their kids advantages, leading to an uneven playing field. I agree because this reflects systemic inequality factor like income and education reinforce each other over generations. Without policies like school funding reform, the gap will continue to widen, making it harder for future generations to achieve true equality.

    1. The imagination can be a powerful tool for students to develop their critical faculties, but we must also think carefully about what the ultimate aim is of these imaginative exercises.

      I think this is interesting because the deeper I dive into imagination or trying to create the life I want in my head the easier it is to getting there. I wonder how many people in the past studied these techniques and actually used their imagination as a tool... or I guess everyone has becuase it all starts with an idea. Right?

  3. Sep 2024
    1. The throat of the old lady was not merely cut, but the head absolutely severed from the body

      The passage shows the cruelness of an animal and also illustrates the behavior of animals being skilled at imitation. Though it did it unconsciously, it’s also harmful.

    2. After a thorough investigation of every portion of the house, without farther discovery, the party made its way into a small paved yard in the rear of the building, where lay the corpse of the old lady, with her throat so entirely cut that, upon an attempt to raise her, the head fell off.{i} The body, as well as the head, was{j} fearfully mutilated — the former so much so as scarcely to retain any semblance of humanity.

      I wonder how did the murderer cut the Madame L’Espanaye's neck so deeply that her head fell off when people tried to raise her corpse. Also, what knid of weapon did the murderer use? I guess the weapon is probably big or long, but how did the murderer take away and nobody saw it?

    3. We had been talking of horses, if I remember aright, just before leaving the Rue C———. This was the last subject we discussed. As we crossed into this street, a fruiterer, with a large basket upon his head, brushing quickly past us, thrust you upon a pile of paving-stones collected at a spot where the causeway is undergoing repair. You stepped upon one of the loose fragments, slipped, slightly strained your ankle, appeared vexed or sulky, muttered a few words, turned to look{m} at the pile, and then proceeded in silence. I was not particularly attentive to what you did; but observation has become with me, of late, a species of necessity. “You kept your eyes upon the ground — glancing, with a petulant expression, at the holes and ruts in the pavement, (so that I saw you were still thinking of the stones,) until we reached the little alley called Lamartine,(18) which has been paved, by way of [page 536:] experiment, with the overlapping and riveted blocks.(19) Here your countenance brightened up, and, perceiving your lips move, I could not doubt that you murmured{n} the{oo} word ‘stereotomy,’ a term very affectedly applied to this species of pavement.{oo} I knew that you could not {pp}say to yourself ‘stereotomy’ without{pp}, being brought to think of atomies, and thus of the theories of Epicurus;(20) and since{q} when we discussed this subject not very long ago, I mentioned to you how singularly, yet with how little notice, the vague guesses of that noble Greek had met with confirmation in the late nebular cosmogony, I felt that you could not avoid casting your eyes upward{r} to the great nebula{s} in Orion,(21) and I certainly expected that you would do so. You did look up; and I was now{t} assured that I had correctly followed your steps. But in that bitter tirade upon Chantilly, which appeared in yesterday's ‘Musée,’ the satirist, making some disgraceful allusions to the cobbler's change of name upon assuming the buskin, quoted a{u} Latin line{v} about which{w} we have often conversed.

      This part surprised me a lot. I also find it creepy as the first time I read it, for all the narrator’s movement were observed and memorized by Dupin. It feels like the narrator stayed with a monitor. What’s more, Dupin can even follow up the narrator’s mind.

    4. but an unusual quantity of soot being observed in the fire-place, a search was made in the chimney, and (horrible to relate!)(24) the corpse of the daughter, head downward,{h} was dragged therefrom; it having been thus forced up the narrow aperture for a considerable distance.

      I was horrified by this scene, but also curious at the same time. I couldn’t understand how the daughter could be “head downward and was dragged”. Was she trying to hide in the fire-place but fell down? Or was she trying to run but being caught by the animal?

    5. “I will explain,” he said, “and that you may comprehend all clearly, we will first retrace the course of your meditations, from the moment in which I spoke to you until that of the rencontre{j} with the fruiterer in question. The larger links of the chain run thus — Chantilly, Orion, Dr. Nichol,{k} (16) Epicurus, Stereotomy, the street stones, the fruiterer.” There are few persons who have not, at some period of their lives, amused themselves in retracing the steps by which particular conclusions of their own minds have been attained. The occupation is often full of interest; and he who attempts it for the first time is{l} astonished by the apparently illimitable distance and incoherence between the starting-point and the goal.(17) What, then, must have been my amazement when I heard the Frenchman speak what he had just spoken, and when I could not help acknowledging that he had spoken the truth. He continued: “We had been talking of horses, if I remember aright, just before leaving the Rue C———. This was the last subject we discussed. As we crossed into this street, a fruiterer, with a large basket upon his head, brushing quickly past us, thrust you upon a pile of paving-stones collected at a spot where the causeway is undergoing repair. You stepped upon one of the loose fragments, slipped, slightly strained your ankle, appeared vexed or sulky, muttered a few words, turned to look{m} at the pile, and then proceeded in silence. I was not particularly attentive to what you did; but observation has become with me, of late, a species of necessity. “You kept your eyes upon the ground — glancing, with a petulant expression, at the holes and ruts in the pavement, (so that I saw you were still thinking of the stones,) until we reached the little alley called Lamartine,(18) which has been paved, by way of [page 536:] experiment, with the overlapping and riveted blocks.(19) Here your countenance brightened up, and, perceiving your lips move, I could not doubt that you murmured{n} the{oo} word ‘stereotomy,’ a term very affectedly applied to this species of pavement.{oo} I knew that you could not {pp}say to yourself ‘stereotomy’ without{pp}, being brought to think of atomies, and thus of the theories of Epicurus;(20) and since{q} when we discussed this subject not very long ago, I mentioned to you how singularly, yet with how little notice, the vague guesses of that noble Greek had met with confirmation in the late nebular cosmogony, I felt that you could not avoid casting your eyes upward{r} to the great nebula{s} in Orion,(21) and I certainly expected that you would do so. You did look up; and I was now{t} assured that I had correctly followed your steps. But in that bitter tirade upon Chantilly, which appeared in yesterday's ‘Musée,’ the satirist, making some disgraceful allusions to the cobbler's change of name upon assuming the buskin, quoted a{u} Latin line{v} about which{w} we have often conversed. I mean the line {xx}Perdidit antiquum litera prima sonum{xx} I had told you that this was in reference to Orion, formerly written Urion; and, from certain pungencies connected with this explanation, I was aware that you could not have forgotten it.(22) It was clear, therefore, that you would not fail to combine the two ideas of Orion and Chantilly. That you did combine them I saw by the character of the smile which passed over your lips. You thought of the poor cobbler's immolation. So far, you had been stooping in your gait; but now I saw you draw yourself up to your full height. I was then sure that you reflected upon the diminutive figure of Chantilly. At this point I interrupted your meditations to remark [page 537:] that as, in fact, he was a very little fellow — that Chantilly — he would do better at the Théâtre des Variétés.”{y}

      I'm surprised that Poe, as the pioneer of detective literature, can come up with such a deliberate and coherent process of thinking.

    6. “I will explain,” he said, “and that you may comprehend all clearly, we will first retrace the course of your meditations, from the moment in which I spoke to you until that of the rencontre{j} with the fruiterer in question. The larger links of the chain run thus — Chantilly, Orion, Dr. Nichol,{k} (16) Epicurus, Stereotomy, the street stones, the fruiterer.” There are few persons who have not, at some period of their lives, amused themselves in retracing the steps by which particular conclusions of their own minds have been attained. The occupation is often full of interest; and he who attempts it for the first time is{l} astonished by the apparently illimitable distance and incoherence between the starting-point and the goal.(17) What, then, must have been my amazement when I heard the Frenchman speak what he had just spoken, and when I could not help acknowledging that he had spoken the truth. He continued: “We had been talking of horses, if I remember aright, just before leaving the Rue C———. This was the last subject we discussed. As we crossed into this street, a fruiterer, with a large basket upon his head, brushing quickly past us, thrust you upon a pile of paving-stones collected at a spot where the causeway is undergoing repair. You stepped upon one of the loose fragments, slipped, slightly strained your ankle, appeared vexed or sulky, muttered a few words, turned to look{m} at the pile, and then proceeded in silence. I was not particularly attentive to what you did; but observation has become with me, of late, a species of necessity. “You kept your eyes upon the ground — glancing, with a petulant expression, at the holes and ruts in the pavement, (so that I saw you were still thinking of the stones,) until we reached the little alley called Lamartine,(18) which has been paved, by way of [page 536:] experiment, with the overlapping and riveted blocks.(19) Here your countenance brightened up, and, perceiving your lips move, I could not doubt that you murmured{n} the{oo} word ‘stereotomy,’ a term very affectedly applied to this species of pavement.{oo} I knew that you could not {pp}say to yourself ‘stereotomy’ without{pp}, being brought to think of atomies, and thus of the theories of Epicurus;(20) and since{q} when we discussed this subject not very long ago, I mentioned to you how singularly, yet with how little notice, the vague guesses of that noble Greek had met with confirmation in the late nebular cosmogony, I felt that you could not avoid casting your eyes upward{r} to the great nebula{s} in Orion,(21) and I certainly expected that you would do so. You did look up; and I was now{t} assured that I had correctly followed your steps. But in that bitter tirade upon Chantilly, which appeared in yesterday's ‘Musée,’ the satirist, making some disgraceful allusions to the cobbler's change of name upon assuming the buskin, quoted a{u} Latin line{v} about which{w} we have often conversed. I mean the line {xx}Perdidit antiquum litera prima sonum{xx} I had told you that this was in reference to Orion, formerly written Urion; and, from certain pungencies connected with this explanation, I was aware that you could not have forgotten it.(22) It was clear, therefore, that you would not fail to combine the two ideas of Orion and Chantilly. That you did combine them I saw by the character of the smile which passed over your lips. You thought of the poor cobbler's immolation. So far, you had been stooping in your gait; but now I saw you draw yourself up to your full height. I was then sure that you reflected upon the diminutive figure of Chantilly. At this point I interrupted your meditations to remark [page 537:] that as, in fact, he was a very little fellow — that Chantilly — he would do better at the Théâtre des Variétés.”{y}

      I know that the author wants to create an image of Dupin as a detective who is good at reasoning; however, I wondered, how could he link all these details together and never miss one action or facial expression from our narrator? If the author had cut some of the details, would it be more convincing to most people? Since most of us could barely do that, we might not be able to think of it and resonate with it.

    1. Some exocentric compounds don’t have an interpretive head, but still have what we might call a category head, in that the root on the right matches the category of the whole compound. For example, redhead (“person with red hair”) is often listed as an exocentric compound, because it does not describe a type of head. Similarly sabretooth is exocentric because it doesn’t describe a type of tooth. But both of these are noun-noun compounds that are themselves nouns, so their right-hand member is almost a head. A spoilsport (“person who spoils other people’s fun”) is not a type of sport, but it is still a noun.
      1.  How flexible are these category heads in exocentric compounds?
      

      Could we argue that the right-hand component is, in some cases, not only a category head but also holds some metaphorical or implicit interpretive meaning?

    1. Darkness also allows thosesudden and frightening appearances of people, animals, ghosts, apparent ghosts, or monsters

      VERY important element in both stories. In poe's story in word choice makes so easy for you to imagine it in your head as you read. But in TV for the haunting of hill house, the choice of colors and adding in darkness is scenes makes it more eerie and scary

    1. The imagination allows Plato to crystalize his answer to the question of how we ought to live into a vision that we can subject to critical examination. This is the constructive step that we so often fail to take.

      I personally believe that Plato was able to crystalize his answer on how to live subject to a critical examination because he saw himself in the fantastic imagination in The Republic from the 3rd perspective, as a reader. When I was traveling Japan I came across this book which I forgot the name of, however, the book gave me an inspirational insight: to be the person watching your life as a movie in a theater. We often feel sentimental or jealous when we see others living their everyday life from a third perspective. From washing dishes in a dimmed light kitchen to just having a casual family dinner. Seeing yourself and your life as a movie lets you to see yourself objectively. Seeing the movie (your life) objectively allows the audience, who is only yourself, to critically analyze your actions, emotions and thoughts. Another method is to see yourself from an above, just like a drone flying above your head and seeing yourself as one of a player in a game. This may be more effective than imagining seeing your life as a movie in a theater, however, this method's risk becomes uncorrelated to the reward as you get older, because you have more responsibilities in your actions.

    2. The imagination allows Plato to crystalize his answer to the question of how we ought to live into a vision that we can subject to critical examination.

      I personally believe that Plato was able to crystalize his answer on how to live subject to a critical examination because he saw himself in the fantastic imagination in The Republic from the 3rd perspective, as a reader. When I was traveling Japan I came across this book which I forgot the name of, however, the book gave me an inspirational insight: to be the person watching your life as a movie in a theater. We often feel sentimental or jealous when we see others living their everyday life from a third perspective. From washing dishes in a dimmed light kitchen to just having a casual family dinner. Seeing yourself and your life as a movie lets you to see yourself objectively. Seeing the movie (your life) objectively allows the audience, who is only yourself, to critically analyze your actions, emotions and thoughts. Another method is to see yourself from an above, just like a drone flying above your head and seeing yourself as one of a player in a game. This may be more effective than imagining seeing your life as a movie in a theater, however, this method's risk becomes uncorrelated to the reward as you get older, because you have more responsibilities in your actions.

    1. For the voices had spoken commandingly and she knew she could not choose but obey.

      It is amazing that she chose to listen to the commands spoken in her head

    1. He recognized on the sign, however, the ruby face of King George, under which he had smoked so many a peaceful pipe; but even this was singularly changed. The red coat was changed for one of blue and buff, a sword was held in the hand instead of a scepter, the head was decorated with a cocked hat, and underneath was painted in large characters, General Washington.

      Does he really think George Washington is King George?

    2. Their visages, too, were peculiar: one had a large head, broad face, and small, piggish eyes; the face of another seemed to consist entirely of nose

      This feels like a gross way to describe people

    3. If left to himself, he would have whistled life away in perfect contentment; but his wife kept continually dinning in his ear about his idleness, his carelessness, and the ruin he was bringing on his family. Morning, noon, and night, her tongue was incessantly going, and everything he said or did was sure to produce a torrent of household eloquence. Rip had but one way of replying to all lectures of the kind, and that, by frequent use, had grown into a habit. He shrugged his shoulders, shook his head, cast up his eyes, but said nothing. This, however, always provoked a fresh volley from his wife; so that he was fain to draw off his forces, and take to the outside of the house—the only side which, in truth, belongs to a henpecked husband.

      These people shouldn't have married. This feels like "I hate my wife!" humor when I would bet that Rip puts literally no effort into maintaining the household (and sounds like a deadbeat dad). But noooooo, the tone is "she's so awful". I'd be upset too if I were stuck with him.

    4. He grieved to give up his dog and gun; he dreaded to meet his wife; but it would not do to starve among the mountains. He shook his head, shouldered the rusty firelock, and, with a heart full of trouble and anxiety, turned his steps homeward.

      he's cooked

    5. By degrees Rip’s awe and apprehension subsided. He even ventured, when no eye was fixed upon him, to taste the beverage, which he found had much of the flavor of excellent Hollands. He was naturally a thirsty soul, and was soon tempted to repeat the draught. One taste provoked another; and he repeated his visits to the flagon so often that at length his senses were overpowered, his eyes swam in his head, his head gradually declined, and he fell into a deep sleep.

      he kind of found an escape? or a secret oasis?

    1. held accountable for achieving specific results, even if the head of the agency must "deviate from government rules" to achieve those results.

      ???? what does that even mean?

    1. his study contributes to understandings of children’s engagement with DLBs and biliteracy development in Spanish and English, which informs recommendations for dual-language bilingual education programs.

      As the new Department Head of a fairly new Dual Language program in Stratford, CT (this is the seventh year of implementation) versus the 22 years spent in Norwalk where I was part of the program that scaled up to an entire dual language school, my goal is to improve this program and make it a highly effective dual language program based on the criteria from the book, The Guiding Principles of Dual Language Education. Therefore, this article is both relevant and meaningful to me.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Response to Reviewer Comments:


      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      *Glaucoma-associated optineurin mutations increase transmitophagy in vertebrate optic nerve.

      Summary In Jeong et al., the authors perform live imaging of the X. laevis optic nerve to track neuronal mitochondrial movement and expulsion in an intact nervous system. The authors observe similar mitochondrial dynamics in vivo as previously described in other systems. They find that stationary mitochondria are more likely to be associated with OPTN, suggestive of mitochondria undergoing mitophagy. Forced expression of OPTN mutations results in a larger pool of stationary mitochondria that colocalize withLC3B, and OPTN. Finally, the authors argue that extra-axonal mitochondria are observed more frequently in OPTN mutants, suggesting that mutations in OPTN that are associated with disease can lead to an increase in the expulsion of mitochondria through exopher-like structures.

      Major Findings and impact: • The authors establish that mitochondria dynamics can be tracked in the X. laevis optic nerve. • OPTN mutations increase the stationary pool of mitochondria and likely result in increased rates of mitophagy. • Exopher-like structures containing mitochondria and LC3 can be expelled from the optic nerve and increase in the presence of OPTN mutations. These structures were observed in a living system and have interesting implications in the context of disease.

      Concerns: • The authors state in their results that the secreted blebs are exophers. While these initial observations are consistent with exophers, additional data are needed to strengthen this claim. For example: what are the sizes of secreted vesicles? Do all express LC3? How frequently do these occur? From where are they expelling? Alternatively, the discussion of exophers could be moved to the discussion.*

      We agree that calling the axon shedding intermediates “exophers” was an overreach on our part. While we believe that in all probability time will demonstrate this to be the case, reviewers are correct in stating that putting our work in the context of exophers is best left to the discussion. We have removed all mention of exophers from the results and graphical abstract and now use the term only once in the discussion. We do provide detail as to the frequency of the structures, what fraction contain mitochondria, and morphological parameters of the contained mitochondria. And while all of these new data support them being exophers, the point remains that the use of the nomenclature “exopher” in the results section was inappropriate.

      • Quantifications in sparse labeling experiments seem quite surprising and concerns related to these findings should be addressed. As the authors used LC3b expression to represent axonal volume, the authors should demonstrate that this is the case using an axonal fill or membrane marker in both the wt and E50K conditions. This is important as it is unclear whether LC3b expression is consistent between the wild type and the E50K conditions. Lower expression of LC3b in E50K could account for the large changes in axonal width that seem to be observed and could confound the measured amount of expelled mitochondria.*
      • *

      We agree that using EGFP-LC3b as a “cell fill” was problematic in a situation where the interventions likely perturb autophagy/mitophagy and therefore might have also perturbed LC3b. We do provide some axon width and LC3b-EGFP intensity data for a partial dataset that had been imaged side-by-side, showing that expression of LC3b is not different in the two conditions. We also provide independent measures of extra-axonal mitochondria based on a membrane-GFP reporter. While in principle there would be value to repeat the studies of Wt vs. E50K in the context of the membrane-GFP reporter, these experiments would involve new constructs and new breedings, and would likely take months to years to complete.

        • Could large amounts of exogenous mitochondria in explant experiments be from cells that died during the plantation?* The concern that some of the exogenous mitochondria signal might derive from degenerating axons is one that we worry much about, and not only in the transplantation experiments. In our sparse labeling experiments we do occasionally see axons undergoing Wallerian degeneration, but it is rare and does not appear to be more common in the expression of the mutated OPTN, at least not at the stage after transgene expression that the analyses were performed. We do provide new data that expression of E50K OPTN does not compromise vision at the time that experiments were carried out, ruling out that extra-axonal mitochondria are the result of large-scale degeneration. However, from other data we know that axon loss would likely need to be very extensive to manifest itself in functional vision loss in our behavioral assay, so milder axon loss contributing some noise to the measures cannot be excluded. But, the point raised is heard, and now we include a sentence in the discussion acknowledging that some of the signal outside of axons could have been due to degenerating axons, but still contend that our documentation of shedding intermediates support the view that many of the axonal mitochondria outside of axons were shed from otherwise intact axons.

      Suggested experiments/quantifications: • In OPTN/MITO/LC3b trafficking experiments, does flux/number of events change? Representative kymograph in Figure 2D seems to show far more OPTN-positive mitochondria which is opposite of what is shown in Figure 2C.

      Multiple reviewers rightfully point out that we did not carry out the flux experiments which would be necessary to make definitive statements regarding the amount of mitophagy. New experiments show that inhibiting lysosomal activity through chloroquine does increase the amount of astrocytic autophagosomes not yet acidified as expected, and that they contain axonal mitochondria signal, supporting the idea that astrocytes are involved in the degradation of axonal mitochondria. However, they did not show changes in the amount of stopped mitochondria, supporting the view that the co-localization of OPTN and mitochondria in axons is not conventional autophagy. This is a very important point that affects the interpretation of our results, and we thank reviewers for suggesting this experiment.

      • Demonstrate that axonal width measured with LC3B is representative of axonal fill/membrane marker in wt and E50K. Axonal area appears to change, is this accurate? This appears to be the case for both figure 3 and figure 4.* Addressed above.

      • Raw images in addition to the reconstruction would be beneficial.* Now include raw images beside the reconstruction at the first use of reconstructions.

      • Further characterization of exopher-like structures.**

      * Addressed above.

      ***Referees cross-commenting**

      I agree with the concerns of the other reviewers, and perhaps was over-optimistic about a timeline for revision. However, I do think the work is worth the effort, and I hope to see a revised manuscript published somewhere, as these observations are novel

      Reviewer #1 (Significance (Required)):

      This work reports potentially novel biology, and thus will be of interest to the field. The strength of the study is that it is an initial description of this biology, rather than a complete analysis. The work raises many more questions than it answers, and much further work on this topic is required to support these initial findings, but the manuscript will likely be of interest to many. Revisions are required to improve the rigor and clarity of the work, but following these revisions we recommend publication to facilitate follow-up work.*

      Fully agree that our study raises far more questions than it answers. Believe that the revisions made to address reviewer comments go a long way to improve rigor and clarity of the work. We hope that the reviewers agree and deem the changes sufficient.

      *Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: This article studied transmitophagy in xenopus optic nerves in the context of overexpressing glaucoma-associated optineurin mutations. Using a series of labeling, imaging and transplantation techniques, the authors found that overexpressing mutated optineurins stops mitochondria movements and potentially induces transmitophagy, and that astrocytes are responsible for taking up the extra-axonal mitochondria. Below are my comments on this article.

      Major comments: 1. Identifying extra-axonal mitochondria is key to this research. In Figure 3, the authors used EGFP-LC3B as a marker for RGC boundaries. However, it is unconvincing how perfect LC3B is as a cell membrane marker. Particularly in the case of OPTN E50K OE, it seems that the optic nerve is thinner than the WT condition, which makes the quantification of extra-axonal OPTN less convincing. The authors should detect extra-axonal mitochondria with an RGC membrane marker or cytosolic marker. In addition, in Figure 3, the extra-axonal mitochondria seem to localize mostly on the dorsal surface. Why is there such a polarity?*

      As stated above, we acknowledge that the use of LC3b as both an autophagosome marker and a cell fill was somewhat problematic and now provide additional experiments ruling out that the LC3b expression or axon thickness in our sparse axon labeling experiments, or that E50K might affect the thickness of the optic nerve. In addition, we also provide additional new data using a bona fide membrane marker together a transgenic labeling or RGC mitochondria that also shows under the “baseline state” extensive mitochondria signal outside the axons on the surface of the optic nerve (New Fig. 6A and new Suppl Fig. 3D). All the new data are consistent with the previous data and support the view that using LC3b potentially could have been problematic, for the reasons reviewers state, but in practice it was not.

      The reviewer observes that the E50K optic nerve appears thinner--this observation is not a consistent difference in optic nerves across the experimental groups. The images we show are always near the mean values for the quantitative results presented, and we rather not include prettier nerves that are not representative of the whole datasets.

      As for why the extra-axonal mitochondria localize mostly to the dorsal surface, it remains undetermined. There are dorsoventral differences in the optic nerve established during development, as developmental Sonic hedgehog signaling emanating from the midline appears to affect dorsoventral aspects of the optic nerve differentially. Early axon loss in humans and some models of glaucoma do show a dorsal bias, and there may be optic nerve lymphatic structure reported in mice that also may be preferentially dorsal. However, it is not known whether any of these observations are connected, so we did not want to speculate beyond what the data say. We do now explicitly mention the dorsoventral difference in the discussion, and state why we think it may be worth further study.

      • The experiment in Figure 5 is very important as it gives direct evidence of transmitophagy. However, one caveat is that the mitotracker injection is done after the transplantation. If in rare cases the dye is leaky after injection and is taken up by astrocytes directly, then the conclusion that mitochondria from RGCs are phagocytosed by astrocytes will be flawed. The authors should either use a transgene in the donor to label mitochondria or inject mitotracker into the donor before the transplantation and repeat the experiments. In addition, in Figure 5E, what is the large membranous structure inside the highlighted astrocyte? Is it associated with phagocytosis?*

      We fully agree that MitoTracker is an imperfect tool, both for the reason stated here that the dye may get into the astrocytes directly (or may label astrocyte mitochondria after it is released from degrading RGC mitochondria), and, also as stated by reviewer 3, that it requires healthy mitochondria for labeling. For this reason, we have added new datasets that rely on RGC mitochondria labeling not by Mitotracker but through a genetic reporter. As to identity of the conspicuous structure shown inside the astrocytes, it remains an open question, and we are avidly pursuing what astrocytic organelles are involved through additional transgenic reporters and correlated-light-EM studies, but those are complicated experiments that are beyond the scope of the current manuscript.

      • This research is entirely based on overexpression of OPTN. Since overexpressing WT OPTN does seem to affect mito trafficking (Figure S2G, and the description in the manuscript is often inconsistent with this result), it is unclear what the increased stalled mitochondria really mean when overexpressing mutated OPTN. Similarly, the authors examined extra-axonal mitochondria in Figures 3 and 4 all in overexpressing conditions, and made the connection that increased stalled mitochondria lead to transmitophagy. However, this conclusion will be better supported by using mutant animals rather than overexpression. The authors should consider using OPTN mutant xenopus if available or using CRISPR to introduce the specific mutations and repeat mitochondria trafficking and transmitophagy.*

      • *

      We thank this reviewer by pointing out an important detail that we failed to highlight, namely that transgenic overexpression of Wt OPTN (and/or Wt LC3B) does have a small but significant effect on mitochondria trafficking. Interestingly, it is affecting just the speed of retrogradely transported mitochondria, which based on the elegant work of Holzbaur and colleagues, include mitochondria destined for degradation. So, we now acknowledge more explicitly that, since our studies involve expression of OPTN and LC3b transgenes (fluorophore tagged human genes, no less), that some caution should be exercised in not overinterpreting the results. Nonetheless, since we show that expression of Wt OPTN behaves similarly to expression of a mitochondria reporter (Tom20-mCherry) in not affecting either stopped mitochondria or extra-axonal mitochondria, we believe that our results still stand. Nonetheless, we now make mention of the effect Wt OPTN on retrograde mitochondria movement. We have embarked on OPTN loss-of-function studies and have some founder animals carrying CRISPR-generated mutations; however, these experiments will take additional time, and based on the results in mammals may or may not show any measurable effects in our assays, not only because of possible redundancy by the other damaged mitochondria adaptors that we mention in the introduction, but also because the mutations that affect the shedding process (as well as cause glaucoma) are thought to be gain-of-function mutations. However, we decided not to dwell on these complexities in the discussion, as the discussion was previously quite extensive and now is even moreso with the added discussion on how our studies relate to those of exophers.

      • On Page 12, the authors claim that even overexpressing WT OPTN causes extra-axonal mitochondria in the optic nerve. However, there is no control condition without OE to support this conclusion. It is thus unclear to what extent extra-axonal mitochondria occur at baseline and how many extra-axonal mitochondria can be induced by overexpression. The authors should include, in Figure 3 and 4, controls without overexpression.*

      We acknowledge that our language was confusing and somewhat misleading on this point. With the caveat mentioned above that WT OPTN expression does perturb the system somewhat (by increasing the speed of mitochondria retrograde transport, perhaps by increasing the proportion of retrograde moving mitochondria tagged for degradation), we still contend that the state observed after WT OPTN expression is close to the “baseline” state. In support of that, in the new data included in response to the LC3b concern, we observe plentiful shedding events in the absence of any OPTN or LC3b transgenes. Indeed, what may be the most surprising finding of our studies is that in the absence of any significant perturbation of OPTN, there is already a large fraction of axonal mitochondria that are outside of axons and inside of astrocytes, which is consistent with what we previously observed in the optic nerve head of mice; however, the current studies provide much more rigorous quantification of the process and live imaging of intermediates, but also provide for an intervention that increases the process. While there are many more questions to answer, we do believe our studies contribute mechanistic insights.

      • A technical question regarding kymographs: Based on Figure 2C, it looks that OPTN and LC3B labeling are pretty diffuse in axons and this makes sense since they may only be associated with damaged mitos. But this raises a question about how accurate the kymograph assay is. It may significantly underestimate the fraction of OPTN/LC3B that is stationary since they appeared diffusedon the kymograph. This may explain why the percentage of stationary OPTN/LC3B is so small when the authors OE WT OPTN in Figure 2E and 2E', compared to the percentage of moving mitochondria shown in Figure 1E.*

      We fully agree that the kymograph studies likely underestimate the amounts of stationary mitochondria for the reasons stated. However, we interpret the discrepancy between Figure 1E and 2E and 2E’ differently. We believe that the value of stopped mitochondria in the sparse labeling experiments are actually more accurate, as the value of stopped mitochondria in the whole nerve experiments likely include mitochondria stopped within the axons, but also mitochondria recently shed either by those or nearby axons which are perceived to be in axons due to limitations of imaging resolution. In the discussion we now make very explicit that all the measures we provide need should be interpreted as estimates, as every experiment relies on assumptions and is subject to technical limitations.

      Minor: 1. Figure 2E and 2E' do not agree with the text on page 7 and page 8. Not only F178A, but also H486R and D474N have no effect on OPTN trafficking. The authors should make their conclusions more accurate.

      F178 was the only mutation that had no effect on either OPTN or LC3b in either F0 or F1 experiments. However, we agree that our language should have been clearer, and now we have made our description of the results (and conclusions) more accurate.

      • Figure S2E-F: why does OE of mutated OPTN in F1s but not in F0s reduce trafficking speed compared to WT?*

      We do not know the reason for this discrepancy. Though it does not wholly agree with the rest of the story, we felt it important to include all relevant data, not only that which perfectly fit our interpretation. One possible reason may be that the F1 data derives from a single integration event, which is the reason why we trust more the F0 data that derive from multiple integrations, in what are essentially outbred animals, which is the reason we present the F0 data as the primary results where possible.

      * In movie 5, fusion of exopher with other structures is not clear and also the GFP signal does not disappear, which is in contrast to the statement in the text that the GFP signal is quenched in acidified environment. To confirm that LC3B leaves RGC axons in exophers, the authors should consider switching the fluorophores and examine LC3B localization during exopher formation.*

      This too is a valid point, and we have amended our description of these results. While swapping fluorophores between OPTN and LC3b is a highly worthy experiment, for technical reasons it likely would take many months to carry out just because of how involved it is to make the relevant constructs (recombineering details provided in the methods section).

      • In figure 6, to better show exopher formation and the pinching-off step, the authors should consider labeling the membrane and mitochondria instead of using the LC3B and OPTN marker.*

      This arguably was the biggest weakness of our initial submission, and now provide new experiments using a bona fide membrane marker. We have not yet captured a pinching-off event with these better reporters, but that is not surprising given how rare they are, which we now quantify. Indeed, a membrane reporter and a mitochondria transgene in sparsely labeled axons are the ideal tool for figuring out the frequency of these structures and what fraction contain mitochondria, data which we now provide.

      ***Referees cross-commenting**

      Generally agree with the criticisms voiced by the other reviewers; in aggregate the reviews indicate the manuscript needs more than just a quick fix.

      Reviewer #2 (Significance (Required)):

      Previous literature has already described the transmitophagy process in the optic nerve. The significance of this paper lies in the observation that overexpressing glaucoma-associated OPTN mutants can induce increased transmitophagy through astrocytes, which points to a potential role of OPTN in glaucoma. A highlight of this paper is the use of correlated light SBEM to directly show transmitophagy in astrocytes. However, the significance of this paper may be limited for the following reasons: 1. everything is based on overexpression of mutated OPTN, which makes it hard to translate the results to real disease conditions; 2. The consequence of increased transmitophagy on RGC survival or visual functions is unclear.

      *

      While we agree that much of the paper is based on OPTN overexpression, we did have experiments and now provide more that that were not based on OPTN overexpression. Some of these still involve expression of a different transgene (Tom20-mCherry) that might in principle perturb the system, though we show that expression of Tom20-mCherry does not affect mitochondria movement parameters as measured by Mitotracker. As to “the consequence of increased transmitophagy”, we do now provide data showing that there is no vision loss suggestive of axon loss or severe dysfunction at the time that the imaging studies were carried out. Whether longer term expression of these OPTN transgenes lead to axon degeneration and visual dysfunction are studies that are ongoing, but those studies involve extensive characterizations and controls that are beyond what could be included in this study.

      *Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary In this work, Jeong et al describe the effect of Optineurin (OPTN) mutations in the transcellular degradation of retinal ganglion cell (RGC) mitochondria by astrocytes at the Optic Nerve (ON), a process previously described this group and referred as "transmitophagy" (Davis et al 2014). Here, authors use Xenopus laevis animal model to image the optic nerve of animals carrying different OPTN mutations associated to disease or with compromised function and explore its effect in mitochondria dynamics at the RGC axons. They find that OPTN mutants lead to increased stationary mitochondria in the nerve and affect their co-localization with mitophagy-related markers, suggesting alterations in this pathway. Finally, they found that mitochondria co-localizing with OPTN can be found in the periphery of the ON under different conditions and this is particularly increased in glaucoma-associated E50K mutation. This extracellular mitochondria are transferred in vesicles to astrocytes, as they previously described in mice (Davis 2014), where they are presumably degraded. Major comments - OPTN levels at a given time point cannot be used as readout for mitophagy level/flux. Both OPTN and LC3b are degraded upon fusion with acidic compartment (i.e. lysosomes, PMID: 33783320, 33634751) and that is the reason why the field of autophagy /mitophagy blocks lysosomal activity to measure autophagy/mitophagy flux (PMID: 33634751). In this document, authors claim that there is low levels of mitophagy in RGC axons at baseline and increased levels of mitophagy in glaucoma associated perturbations just based on increased presence of OPTN+ mitochondria in this condition. This could be also interpreted as an accumulation of non-degraded defective mitochondria due to a mitophagy block in neurons carrying the glaucoma associated mutation, which is the opposite of what they propose. If authors want to evaluate mitophagy levels in this system, mitophagy/autophagy flux experiments should be performed.*

      In response to reviewers, we do now include “lysosome inhibition” experiment, using chloroquine at doses modestly above those used in aquaculture as an anti-parasitic. After testing various chemical means to inhibit lysosome activity, it was the only one that did not adversely affect the animals. We know the chloroquine intervention works because we see the expected increase in autophagosomes using the standard LC3b-tandem reporter, and in those unacidified astrocytic autophagosomes we do indeed find axonal mitochondria signal. However, since the amount of mitochondria signal there is small relative to the total amount of axonal mitochondria in the astrocytes, we do not feel it would be appropriate to make mechanistic claims, for example claiming this to be related to LC3b associated phagocytosis; much more work would be needed to make that claim. However, we were surprised to find no alteration in either stopped mitochondria in axons or axonal mitochondria material within the astrocytes. There are technical reasons why this result might be difficult to interpret, but now having done it (as we should have before), we are even more careful in describing the process as transcellular degradation rather than transmitophagy. We elaborate further on this point in the next response.

      - I find inappropriate the use of the term "transmitophagy". Although this term transmits very well the message that the authors try to strength, the term "mitophagy" refers to the specific elimination of mitochondria through autophagy (PMID: 21179058). There are many reasons why I think that "transmitophagy" is not adequate to describe this phenomena but I will just refer to these three: First, authors do not provide data showing that this mechanism is specific for mitochondria as they have never checked for the presence of other type of cargo in the vesicles produced by RGCs. If these are related to exophers as they suggest in the document, is very probable that they contain other type of cargo; Second, if the final destiny for those particles is the acidic compartment of astrocytes, this process may have nothing to do with autophagy/mitophagy and just share some molecular mediators with those pathways; Third, they should explore if other canonical mitophagy molecular mediators (i.e. Parkin/Pink) are regulating the production or the mitochondria recruitment to this extracellular particles.

      We too struggle with our own “transmitophagy” term, for the very reasons stated. To address this concern, we now refer to the process as “transcellular degradation of mitochondria”, which is how we described it initially in mice as well. We do present new data that show that while the majority of axonal outpocketings contain mitochondria, not all do. This suggests that the others may contain other cargo, which supports the view that what we are dealing with in axons are indeed exophers. And yet, since what we measure is mitochondria, we think most appropriate to describe the process narrowly and not extrapolate to other types of exophers. We agree that what we originally discovered in mice and now live image and perturb in frog, may not be “autophagy” according to the strict definition of the term, but rather a process that uses some of the same molecular machinery, which given the evolutionary link between autophagy and phagocytosis that should be no surprise. Terminology can be tricky, and we thank the reviewer for calling us out on this point. We now use the term “transmitophagy” only once in the discussion section making the link between our work and the emerging field of exopher biology, and use that occasion to elaborate the point that the more descriptive term “transcellular degradation of mitochondria” is more appropriate in our case.

      *- In several experiments, authors use Mitotracker instead of genetic tools to quantify the amount of mitochondria co-localizing with OPTN (Fig2, Fig3) or being transferred to astrocytes (Fig4). A problem here is that Mitotracker needs the mitochondria to be active at the time of injection in order to label them (PMID: 21807856) and it has a clear effect in mitochondria dynamics in their setting, as pointed by the authors. Since most mitochondria transferred to astrocytes would be presumably damaged and not able to import Mitotracker, I am concern about how this is affecting their quantifications and the conclusions.

      *

      We agree. The use of Mitotracker to label the RGC mitochondria can be problematic for the reasons stated by reviewers 1 and 3. Indeed, our opinion is that many of the studies out there that claim to demonstrate transfer of mitochondria between cells likely are just showing the transfer of the dye rather than the mitochondria. While the previous submission included a number of controls to address this concern, we now provide multiple new experiments that measure the transfer of mitochondria through a transgene rather than Mitotracker. The provided experiments use a new Tom20-mCherry transgene which is highly specific to mitochondria due to the use of an SOD2 UTR. We have similar data using RGC-expressed Mito-mCherry and Mito-EGFP-mCherry (using the commonly used Cox8 mitochondria matrix targeting sequence); we do not include such data because we find the provided data sufficiently compelling, and the story is already sufficiently long and complicated.

      - Some conclusions are based on single images with no quantifications or statistics. This is the case for: 1) Page 6) "Most of the mCherry and Mitotracker objects colocalized with each other both in the merged images (Fig. S1C) and kymographs (Fig. S1D), indicating that the mitochondria-targeted transgene and Mitotracker similarly label the RGC axonal mitochondria".

      That is a fair comment. After reanalyzing the original dataset used, it would be very difficult to quantify that statement, largely because the Tom20-mCherry expression was relatively weak in those particular animals. We are confident that we could generate a new dataset to provide support for this statement, but instead chose to just provide side-by-side movies of mitochondria labeled by Mitotracker or the Tom20-mCherry transgenes, which we believe is far more compelling than any quantification we could provide.

      2) Page 8) "In the nerves labeled by Mitotracker, visual inspection of the raw images (Fig. 2C) and the derived kymographs (Fig. 2D) showed that OPTN and the Mitotracker labeled mitochondria often co-localized, particularly in the stopped populations, and more so in the animals expressing E50K OPTN, further suggesting that at least a fraction of the stopped LC3b, OPTN and mitochondria might represent mitophagy occurring in the axons".

      While we have made a minor change to this sentence, we feel that it is appropriate given that it serves just as a justification to carry out the quantitative studies that follow. We would not have quantified the process had it not been obvious to the eye. However, we do not interpret the results as supporting that mitophagy occurs in axons, for the reasons explained above.

      3) Page 14) "We also observed similar axonal dystrophies and exopher-like structures in E50K OPTN under similar imaging settings, but with 2-min intervals and additional Mitotracker labeling (Mov. 6), demonstrating that these structures not only contain OPTN but also mitochondria or mitochondria remnants". Image in video is not clear and there is not quantification for OPTN or OPTN+ mitochondria.*

      *

      We have removed Mov. 6.

      *Minor comments

      • In Figures showing the reconstruction of OPTN+ mitochondria outside nerve (Fig.3 and Fig.4), those seem to be present only in one lateral of the nerve. Is this process polarized in any way (i.e. faced to astrocytes) or is the result of a technical issue (i.e. difference in laser penetration for blue vs Yellow lasers)? I think it will be important to include this in the discussion.*

      This was also pointed out by reviewer 1, and we agree that it is worth including in the discussion, which we now do. While we do not believe it to be a light penetration issue (based on fluorescence intensities and apparent spatial resolution), we also do not yet have an explanation. Having studied dorsoventral differences in the visual pathway both during my graduate and post-doctoral years, I am very interested in this asymmetry, and we have some theories that might explain it, mentioned above. The asymmetry is obvious and thus we think it would have been inappropriate not to show, but it also be inappropriate to be overly speculative.

      - In Pag.13 authors claim "OPTN and mitochondria leave RGC axons in the form of exophers". After "exophers" were coined by the Driscoll lab in 2017, too few people has adopted this terminology and the molecular machinery involved in this process is still under research. It is clear that the particles described here share some similarities with exophers like size (in the range of microns) and cargo (mitochondria), but you have not demonstrated if they share the same origin or are part of the same phenomena. For that reason, I recommend to be more cautious with this statement and point these limitations in the discussion. Additionally, since Exophers are not a consensus or well defined particles, authors should include an introductory paragraph at the beginning of this section for readers to understand what they are talking about.

      We wholly agree with all points. We now have moved all mention of exophers to just the discussion.

      - Exophers described by Monica Driscoll and Andres Hidalgo laboratories are presented as "garbage bags" that help cells to stay fit through elimination of unwanted material. If the extracellular vesicles presented here are part of the same mechanism and potentially beneficial for the RGCs, why are they increased in OPTN mutants? Is it part of RGCs response to a proteomic stress generated by malfunctioning OPTN? I think that is critical to understand this to figure out the relevance of your findings.

      • *

      Our personal opinion is that the OPTN mutants most likely lead to stress focally in the axons, thus triggering exopher generation. We are carrying additional experiments to determine whether too much exopher generation or their insufficient degradation by astrocytes might be deleterious (by causing inflammation). However, those are big stories that would not stand on their own were we not able to first rigorously demonstrate that certain OPTN mutants increase exopher generation, which I believe our study demonstrates, albeit now without calling them exophers.

      - Related to Fig.5G, authors say "The soma of the astrocytes were located at the optic nerve periphery but had processes that extended deep into the parenchyma". This is very interesting and opens the possibility that many mitochondria are directly transferred to astrocytes through that processes instead of the lateral of the nerve, meaning that your quantifications of "transmitophagy" may be underestimated.

      * *We also agree that this. Our limited optical resolution, and limitations intrinsic to carrying out quantifications with Imaris software, are likely the main reasons for the discrepancy between the whole nerve and sparse-labelled-axon estimates of how much axonal material is outside of axons. Our view is that most of the transcellular degradation occurs within fine astrocyte processes, and that only in the case of failure to degrade material in these fine processes that significant amounts accumulate in the cell body (optic nerve periphery), and that in the cell body additional or different degradative pathways are utilized. Experiments using various transgenes and correlated EM as well as perturbation experiments are ongoing attempting to firmly establish what organelles are used in processes versus soma. However, we believe that such studies are well beyond the scope of this manuscript..

      - Reference to Fig. S2G is missing. Now mentioned twice. Thank you.

      - I cannot find in Fig.5 E-I legends what are the cells/structures labelled in Green and Red. Thank you.

      ***Referees cross-commenting**

      In agreement with my colleagues, I think that a revision is needed to support some important points of the paper. The the work is interesting and I think it deserves a chance for revision. Having that said, I am not familiar with the breeding and experimental times when working with Xenopus but, considering the amount of work requested, it may require more than 3 months to have the work done.

      *

      *Reviewer #3 (Significance (Required)):

      Until not very long ago, it was thought that mitochondria could not cross cell barriers. In recent years however, there has been an explosion in the number of works showing mitochondria transfer between different cell types in vivo. This may happen either as an organelle donation to improve energy production or as a quality control mechanism to get rid of damaged mitochondria, as it is the case in this work. The laboratory of Nicholas Marsh-Armstrong was pioneer in this field with a foundational work in 2014 where they show how RGC-derived mitochondria are captured and eliminated by astrocytes in mice (PMID: 24979790). This work was particularly relevant because it proposed for the first time that mitochondrial degradation can occur in RGC axons far from the cell soma, and surrogated in a different cell type, something that changed completely the view of how quality control is maintained in neurons and other cell types. In the present study, Jeong and collaborators explore how Glaucoma-associated Optineurin mutations affect this process, which is of potential interest for the broad cell biologist community due to its possible implications in other tissues and cell types (OPTN is broadly expressed), but especially for those researchers interested in neurobiology, quality control mechanisms and mitochondria biology. Since some OPTN mutations studied here cause disease, they are also relevant for the clinic. This work provides a thorough characterization of how relevant Optineurin mutations affect mitochondria dynamics in RGCs and their transference to astrocytes, as fairly claimed in the title. However, the mechanism by which they result in pathology is not either explored or carefully discussed, making this a descriptive work with no much conceptual insight. In addition, conclusions are often not unambiguously stated and the results part contains a lot of large sentences and unnecessary technical data that hinders reading and difficult the transmission of the key messages. Even if it stands as a descriptive work, the physiological and clinical relevance of these findings is not clear. There are some claims related with mitophagy activity that may require more sophisticated experiments (mitophagy flux with lysosomal inhibitors). Please see comments above. A critical point to understand the relevance of this work would be to demonstrate if alterations in transmitophagy are either causing or involved in the disease generated by these OPTN mutations in any way, or just a correlative phenomenon. To help authors contextualize my point of view, my field of expertise includes cell biology, imaging, quality control pathways, mitochondria biology and phagocytosis, among others. I am not familiar with Xenopus Laevis genetics or the limitations to work with this animal model.*

      • *

      We appreciate both the complements and the critiques. To a fault, we rather undersell than oversell. We are actively pursuing the possibility that dysregulation of this process is disease causing, and not just for glaucoma. However, those studies will not stand without a strong foundation, which we believe this study provides.

    1. Reviewer #1 (Public review):

      Summary:

      The authors of this valuable study use linearly polarized UV light rotating at different angular velocities to stimulate photoreceptors in bumblebees and study the response of TL3 neurons to polarized light. Previous work has typically used a single constant rotation velocity of the polarized light, while the authors of this study explore a range of constant rotational velocities spanning from 30deg/s to 1920deg/s. The authors also use linearly polarized UV light rotating at continuously varying velocities following the angular velocity of the head of a flying bumblebee. 

      Strengths:

      The authors investigate the neuronal responses of TL3 neurons to a variety of rotational velocities. This approach has the potential to reveal the neuronal response to dynamically changing stimuli experienced by the animal as it moves around its environment.

      The authors make good use of physiology and modeling to validate their hypotheses and findings.  If done right, this line of investigation has the potential to provide a very useful methodology for utilizing more complex stimuli in studies of the visual pathway and central complex than traditionally. 

      Weaknesses: 

      The attempt of the authors to use more naturalistic stimuli than previous studies is very important, but the stimulus they use, i.e. linearly polarized UV light projected on the whole dorsal rim of the animal's eyes, is very different from the circular pattern of UV light polarization coming through the sky. In particular, as a bumblebee turns under the sky, the light projected on each ommatidium of the dorsal rim area will not smoothly change like the rotating linearly polarized light used in the experiments. The authors need to discuss this and other limitations of their study. 

      The authors should also commend the light intensity confound common in polarized light setups as discussed by Reinhard Wolf et al, J. Comp. Physiol. 1980 and in the thesis of Peter Weir, California Institute of Technology, 2013. It is unclear whether the authors performed measurements to quantify the intensity pattern and if they took measures to compensate and make the polarized light intensity uniform. 

      The authors show that the neuronal responses of TL3 neurons depend on the recent history of the polarized light stimulus. They use as evidence, the different neuronal firing rates measured when arriving at the same polarization stimulus by following two different preceding stimulus sequences. It would have been worthwhile to investigate to what extent the difference in neuronal response is due to the history alone and to what extent it is due to spike timing stochasticity inherent in the neurons. According to the raster plots in Figure 2F, there is substantial stochasticity in the timing of the action potential firing events.

      The authors appear to base their delay calculations and analysis on the response of one single neuron (Figures 2 and 3) even though they have recorded the responses of several TL3 neurons. There is no reason for the authors not to use all neuron recordings in their calculations and analysis.

      Another concern is that while the authors make good use of modeling, like any model, the presented models only partially explain the observed phenomena. However, a discussion about the limitations of their model needs to be provided.  Actually, observing the discrepancies between the model's output and the intracellular recordings reveals what the model is missing. That is, careful consideration of the discrepancies would have led the authors to try adding some noise in their model, which would partially resolve the differences observed at the lower rotational speeds (see stars deviating from the fitted line in Figure 2A) and to consider that introducing an asymmetry between the post-stimulus inhibition and excitation time constants could result in a model not deviating as much at the higher rotation velocities during counter-clockwise rotation of the polarized light (see stars deviating from the fitted line in Figure 2A). 

      In the end, the authors use the observation that during saccades, the average activity in their model-with-history increases to claim that when the animal does not turn, it uses less neuronal activity and energy. This is not a convincing line of reasoning. To make a claim about energy efficiency, the authors must instead compare their model with alternatives and show that the neuronal activity of their model during straight flight is indeed lower than those alternative models. Note that such a comparison would be meaningful only if the alternative models compared against capture physiology equally well in all other respects. However, the evident deviations of the presented model from the physiology measurements and the short duration of the test stimulus used would make any such claims difficult to substantiate. 

      Finally, for most experiments, the models are stimulated with a single short yaw sequence lasting a few seconds to measure responses. Given the dependence of the model on history, using such a small sample, we cannot see how generalizable the observations are. The authors need to show that the same effect is produced using multiple different trajectories.

    2. Reviewer #3 (Public review):

      This manuscript reports the temporal history dependence of central complex TL/ring neuron spiking activity to polarized light patterns. Using sharp recording in tethered bumblebees with synthetic and natural visual stimulation, the authors nicely measured activities to rotating polarized UV light, and made the interesting finding that spiking activity depends on not just current stimulus but also recent activity.

      (1) History dependence has been reported before in ring neurons in Drosophila (Sun et al., Nature Neuroscience, 2017; Shiozaki et al., Nature Neuroscience, 2017). While there are differences in the nature of the visual stimulation used, the basic phenomenology of temporal history dependence bears some resemblance. Where are the differences in the physiological properties of ring/TL neurons between different insect species in relevance to history dependence? What are the structural similarities and differences in the circuits that may help to explain history dependence? Just to name a few. To gain further insight into this question, the manuscript may benefit from putting the findings here into context.

      (2) Figure 3b serves as a critical evidence for history-dependence. However, it is unclear from this data if this is history dependence, or other physiological processes such as OFF response to sensory stimulation, or sensory adaptation. One way to test this is to examine whether such an effect can be detected after a delay period. For example, history dependence in fly ring neurons is mediated by delay period activity present for several seconds. This can be easily tested here as well.

      (3) The properties of the history dependence can be better characterized to help understand its nature. What are the statistical characteristics of post-stimulus inhibition to preferred AoP and post-stimulus excitation to anti-preferred AoP? What are the temporal dynamics of such an effect, e.g., how long does it take to return to baseline? Are the differences in these properties recorded across the TL neuron population? Is it possible to categorize these TL neurons based on these properties and morphology? These properties are important to under the physiological basis of such effect. The authors only presented two traces in Figure 3b, beautiful example traces, but without any further population data and statistical analysis.

      (4) A major point of the manuscript is energy efficiency via reduction of firing rate. However, the only evidence comes from simulation, and it seems to be a weak effect of 0.5 APs/s.

      (5) Another major point of the manuscript is "increases sensitivity for course deviations during straight flight". However, this again is supported by simulation only. To validate these claims, empirical support of behavioral experiments is highly desired. Otherwise, it is recommended to minimize emphasizing such behavioral predictions.

      (6) A substantial portion of the text emphasizes the importance of natural stimulation. While natural stimulation is indeed a desirable experimental approach, it is unclear if natural stimulation is exploited to its full in this manuscript. History dependence can be explored with synthetic stimulation.

      (7) A phenomenological model was used to account for the history effect, by assuming a linear integration process and a linear history effect. However, such an assumption is not adequately backed up by rigorous statistical analysis of experiment data or at least proper conceptual discussion.

      (8) Population responses, as in Figure 4, are based on strong assumptions of neuronal properties without clear experimental support, thus seeming to be quite a stretch.

      (9) There are interesting observations in simulation results from Figure 5; it would be nice to experimentally test at least some of these ideas.

      (10) "anticipate future head directions" seems to be quite a stretch to me without mechanistic explanations.

      (11) The visual stimulation design used can be improved and expanded. The synthetic stimulation used in Figure 1c follows a stereotyped order, according to angular velocities. As the focus of the manuscript is to probe the history effect and to test again the findings made with this stimulation, randomized stimulation should ideally be examined.

      (12) State dependence was observed in ring neurons in Drosophila (Sun et al., Nature Neuroscience, 2017) which might be related to ongoing neural activity and history dependence. While I realize that the animal is tethered, I was wondering if there was any signature of neural activity state dependence observed in this study.

    1. The Attention module splits its Query, Key, and Value parameters N-ways and passes each split independently through a separate Head.

      Q,K,V 被复制为N路,每一路都是一个注意力头(Attention Head)的输入,N 个注意力头的输出被合并为最终的 Attention Score。

    1. The change of Philomel, by the barbarous king So rudely forced; yet there the nightingale 100 Filled all the desert with inviolable voice And still she cried, and still the world pursues, 'Jug Jug' to dirty ears.

      Eliot’s reference to Philomena comments on the notion of a voice, in particular, the connection between a voice and humanity. In “The Metamorphises of Ovid”, Philomena, the princess of Athens, is raped by Tereus, king of Thrace. After Philomena seeks revenge by serving Tereus his own son to eat, she is pursed, and is changed into a nightingale as she escapes. Eliot references this change and the rape, calling it “so rudely forced” on line 100. He then continues, referring to the nightingale, who had an involiable voice”. Eliots use of the conjuction “yet” while focusing on the nightingale and her voice suggests a contrast between the rape of Philomena, and her new form as a bird. When regarding the “The Metamorphosis of Ovid”, one comes across the line, “she [Philomena] tries to swear, to call upon the gods as witnesses, that she had been a prey of violence, but after all, she had no voice-- just gestures”. In the original mythology, Philomena is rendered speechless, seeking divine security and affirmation of what had happened to her. Though much more elaborate and descriptive of the intensity of the rape, this line recalls the line “so rudely forced”, and further clarifies Philomena’s perspective and expression. Eliot’s contrast between Philomena’s silenced state as her state as a bird is further sharpened by the “involiable voice” of the nightingale. This description of Philomena’s voice suggests that she is now able to express herself in an invincible manner as a bird. Despite Elliot’s seemingly optimistic understanding of Philomena’s story, I see her transformation as an event of further silencing and death. She has lost her voice, as well as her humanity, as she is now a bird. Adding onto this theme of death through her transformation, Eliot describes how her nightingale’s cries “filled all the desert”. The mention of the desert is interesting, as it possibly refers to the idea of a wasteland, a place for Eliot of conceptual death. This twisted understanding of death and a loss of humanity is also reflected in the story of Sybill, who is left to age into nothing but a voice through divine cruelty. Finally, the idea of the feminine voice after death is also portrayed in “A Martyred Woman” by Charles Baudelaire. As the narrator speaks to a dead corpse, they demand, “Tell me, ghastly head, did he glue on your cold teeth the kisses of the last farewell?”. Again the notion of male violence is brought up, furthered by the mention of “cold teeth” which could imply the male actor kissed the deceased woman after her death, or refer to a silent mouth, as in one that doesn’t move to generate heat. Despite this gruesome description, the narrator still asks the woman to speak, as if her voice still remained with her corpse. These stories describe acts of male violence against women, and subsequent dehumanization and death of those women. Despite the violence and death, the female voice strangely persists. Ultimately, this persistence seems cruel and draws attention from the horrific experiences and silencing of these women.

    2. Flung their smoke into the laquearia,

      This line recalls the language and setting of the room where Dido is infected by Cupid to love Aeneas, which inevitably leads to her demise. A moment marked by Dido losing her autonomy and unwillingly being transformed into a pawn, is described not by the woman herself, but the candles that surround her. As she becomes a passive agent, the inorganic flames become the subject, described with an active tense. Even they have autonomy as to where they fling their smoke, but as Dido “burns” with love sickness, she has no control over where her smoke goes.

      This language depicts Dido as a chess piece in Venus’s cosmic plan, which she describes, “Wherefore I purpose to outwit the queen with guile and encircle her with love’s flame, that so no power may change her, but on my side she may be held fast in strong love for Aeneas” (Aeneid 1). The word “encircle” is indicative of predators circling around their prey before going in for the kill. Similarly, a powerful chess piece is typically killed by being surrounded, meaning no move will result in a safe square. Furthermore, “on my side” almost equates Dido as a tool in a belt, meant to be taken out when the user is ready.

      Like in a game of chess, where the player is like a God, moving pieces around and sacrificing them for the safety of the King, in this same way Venus plays with Dido. This queen, once a pawn in her brother's quest for power, traveled across the ocean, across the chess board, to become a queen in a new land, like a pawn becoming a new queen. Yet in the end, her power, her ability to become a queen and then move anywhere across the board, is reduced once more as an agent for the player to use, protecting the King, Aeneas. When the game finishes, Dido is still the pawn she once came from.

      The women of A Game of Chess are all similar pawns, victims of the use of divine power to serve a more powerful figure's needs. This pattern appears in all of the referenced women: Philomela becomes an object of lust for the King Tereus, and when she breaks from her role in the game, she is turned into a bird, doomed to sing her song of sorrow with a mute voice. The head being chopped off the cadaver woman brings a queen back down to the size of a pawn, and Madame Sosostris uses his “divine” powers to force women into his plan.

      And it is in this repetition that these women lose even more of their individuality; they join a long list of examples, an array of chess boards with the same goal. Unless the game itself is rewritten, their fate remains final.

    3. A crowd flowed over London Bridge, so many,

      Last year, Nate Sidenstein and Naima Johnson both noticed the water motif intrinsic in the verb “flowed”, connecting it to the river Acheron, which Dante and Virgil must cross in order to enter hell. I see, however, one more layer to be peeled back. In The Inferno, like in Greek and Roman mythology, souls must cross the river separating the realm of the living from the realm of the dead via Charon’s ferry. In Ancient tradition, if a soul did not have a coin to afford passage, they became stuck in a liminal space neither dead nor alive. In Dante, these entrapped souls shift to become those who were neither good nor evil, instead more focused with themselves. All this is to track the various interpretations of souls trapped on the banks of a river. Now one must determine what river motif actually represents the border between living and dead: is it the river implied to run beneath the London Bridge? Or is it the river implied by the language of the crowd crossing the bridge? It is important to note that the word “river” is never used by Eliot, making it difficult to discern what he intended the answer to be. If it is the former, the souls cross into the afterlife, the city of London, and head towards Saint Mary Woolnoth, a church on the London side of the bridge. This church could represent salvation, or, in the context of Dante and The Underworld, judgment. It is marked by “a dead sound on the final stroke of nine” (68), which Eliot remarks in his notes as “A phenomenon which I have often noticed.” Does this mean the souls are actually returning to a world of living, their corpses sprouting new life? Is Eliot saying that all living in London are actually dead, including himself? And if so dead because of industrialization or dead because we must all die eventually?

      If it is the latter, the souls become a river and are therefore unable to cross it themselves, trapping them between the world of life and death and, as Nate pointed out, insignificant and not individualized. This flow of people must be a torrent, for Eliot comments, “I had not thought death had undone so many” (63). River force is typically measured in cubic feet per second (cfs), the volume of water that passes through any given point in one second. A cubic foot is approximately one frozen turkey, but a similar value can be attributed to the flow of bodies passing through (adjusting for scale). Essentially, these souls lose meaning in an arbitrary flow of so many others like themselves. This explanation is bolstered when considered in the context of an earlier line, “I was neither living nor dead” (39-40).

      Regardless of which interpretation one takes, the bridge and river dynamic always creates a cross, a visual representation of contradiction. These contradictions culminate in a paradox indicative of the liminal space Dante, and seemingly the Wasteland, inhabit, not just at the river. For Dante is a living man experiencing the world of the dead, the earlier Sybil is a dying woman trapped in the world of the living, and a dead soul buries a corpse which may or may not give life to new plants. Here, the line between life and death blurs further.

    4. Frisch weht der Wind Der Heimat zu Mein Irisch Kind, Wo weilest du?

      This quotation from "Tristan und Isolde", in English translates to, "The wind blows fresh, to the homeland. My Irish child, where are you dwelling?". Elliot's choice to begin on a line about the wind stresses the importance of this element of nature. Alongside the rest of the lines, the wind is associated with feelings of longing and homesickness. The wind is also portrayed as a voyager in this way, something that comes from afar and reminds the narrator of his homeland. <br /> The subsequent mention of hyacinths in Elliot's poem also evokes the role of the wind. Lempriere states, "Hyacinthus, a beautiful youth of Amyclæ, beloved by Apollo. Some legends relate that Zephyrus, enraged by the preference Hyacinth showed for Apollo over himself, blew the discuss... against the head of the youth, and killed him". Thus, in the story of Hyacinth, the wind is something that is violent and jealous, somewhat contradicting with Eliot's previous reference from "Tristan und Isolde". Ultimately, these two references of the wind create an understanding of the natural world as gentle and reminding, but also occasionally harsh and displeased. The ocean, or "das Meer", mentioned on the forty second line of this poem, is also understood in this dichotomous way. Another important interpretation of the wind, especially in regards to land and human nature, is the wind's ability to travel great distances, and its association with love in through references. Like love, the wind is for the most part unconstrained by the laws of man and division of land. I believe the wind can be interpreted as a symbol of hope and the subversion of human restraints in "The Waste Land", as Eliot fears a continuingly privatized and industrialized world.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript addresses an important problem of the uncoupling of oxidative phosphorylation due to hypoxia-ischemia injury of the neonatal brain and provides insight into the neuroprotective mechanisms of hypothermia treatment.

      Strengths:

      The authors used a combination of in vivo imaging of awake P10 mice and experiments on isolated mitochondria to assess various key parameters of the brain metabolism during hypoxia-ischemia with and without hypothermia treatment. This unique approach resulted in a comprehensive data set that provides solid evidence for the derived conclusions.

      Weaknesses:

      (1) The experiments were performed acutely on the same day when the surgery was performed. There is a possibility that the physiology of mice at the time of imaging was still affected by the previously applied anesthesia. This is particularly of concern since the duration of anesthesia was relatively long. Is it possible that the observed relatively low baseline OEF (~20%) and trends of increased OEF and CBF over several hours after the imaging start were partially due to slow recovery from prolonged anesthesia? The potential effects of long exposure to anesthesia before imaging experiments were not discussed.

      (2) The Methods Section does not provide information about drugs administered to reduce the pain. If pain was not managed, mice could be experiencing significant pain during experiments in the awake state after the surgery. Since the imaging sessions were long (my impression based on information from the manuscript is that imaging sessions were ~4 hours long or even longer), the level of pain was also likely to change during the experiments. It was not discussed how significant and potentially evolving pain during imaging sessions could have affected the measurements (e.g., blood flow and CMRO2). If mice received pain management during experiments, then it was not discussed if there are known effects of used drugs on CBF, CMRO2, and lesion size after 24 hr.

      (3) Animals were imaged in the awake state, but they were not previously trained for the imaging procedure with head restraint. Did animals receive any drugs to reduce stress? Our experience with well-trained young-adult as well as old mice is that they can typically endure 2 and sometimes up to 3 hours of head-restrained awake imaging with intermittent breaks for receiving the rewards before showing signs of anxiety. We do not have experience with imaging P10 mice in the awake state. Is it possible that P10 mice were significantly stressed during imaging and that their stress level changed during the imaging session? This concern about the potential effects of stress on the various measured parameters was not discussed.

      (4) The temperature of the skull was measured during the hypothermia experiment by lowering the water temperature in the water bath above the animal's head. Considering high metabolism and blood flow in the cortex, it could be challenging to predict cortical temperature based on the skull temperature, particularly in the deeper part of the cortex.

      (5) The map of estimated CMRO2 (Fig. 4B) looks very heterogeneous across the brain surface. Is it a coincidence that the highest CMRO2 is observed within the central part of the field of view? Is there previous evidence that CMRO2 in these parts of the mouse cortex could vary a few folds over a 1-2 mm distance?

      (6) The justification for using P10 mice in the experiments has not been well presented in the manuscript.

      (7) It was not discussed how the observations made in this manuscript could be affected by the potential discrepancy between the developmental stages of P10 mice and human babies regarding cellular metabolism and neurovascular coupling

    2. Reviewer #2 (Public review):

      Summary:

      In this study, authors have hypothesized that mitochondrial injury in HIE is caused by OXPHOS-uncoupling, which is the cause of secondary energy failure in HI. In addition, therapeutic hypothermia rescues secondary energy failure. The methodologies used are state-of-the art and include PAM technique in live animal , bioenergetic studies in the isolated mitochondria, and others.

      Strengths:

      The study is comprehensive and impressive. The article is well written and statistical analyses are appropriate.

      Weaknesses:

      (1) The manuscript does not discuss the limitation of this animal model study in view of the clinical scenario of neonatal hypoxia-ischemia.

      (2) I see many studies on Pubmed on bioenergetics and HI. Hence, it is unclear what is novel and what is known.

      (3) What are the limitations of ex-vivo mitochondrial studies?

      (4) PAM technique limits the resolution of the image beyond 500-750 micron depth. Assessing basal ganglia may not be possible with this approach.

      (5) Hypothermia in present study reduces the brain temperature from 37 to 29-32 degree centigrade. In clinical set up, head temp is reduced to 33-34.5 in neonatal hypoxia ischemia. Hence a drop in temperature to 29 degrees is much lower relative to the clinical practice. How the present study with greater drop in head temperature can be interpreted for understanding the pathophysiology of therapeutic hypothermia in neonatal HIE. Moreover, in HIE model using higher temperature of 37 and dropping to 29 seems to be much different than the clinical scenario. Please discuss.

      (6) NMR was assessed ex-vivo. How does it relate to in vivo assessment. Infants admitted in Neonatal intensive Care Unit, frequently get MRI with spectroscopy. How do the MRS findings in human newborns with HIE correlate with the ex-vivo evaluation of metabolites.

    1. Reviewer #1 (Public Review):

      Summary:

      In this paper the authors provide a thorough demonstration of the role that one particular type of voltage-gated potassium channel, Kv1.8, plays in a low voltage activated conductance found in type I vestibular hair cells. Along the way, they find that this same channel protein appears to function in type II vestibular hair cells as well, contributing to other macroscopic conductances. Overall, Kv1.8 may provide especially low input resistance and short time constants to facilitate encoding of more rapid head movements in animals that have necks. Combination with other channel proteins, in different ratios, may contribute to the diversified excitability of vestibular hair cells.

      Strengths:

      The experiments are comprehensive and clearly described, both in text and in the figures. Statistical analyses are provided throughout.

      Weaknesses:

      None.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their constructive reviews.  Taken together, the comments and suggestions from reviewers made it clear that we needed to focus on improving the clarity of the methods and results.  We have revised the manuscript with that in mind.  In particular, we have restructured the results to make the logic of the manuscript clearer and we have added details to the methods section.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      The work of Muller and colleagues concerns the question of where we place our feet when passing uneven terrain, in particular how we trade-off path length against the steepness of each single step. The authors find that paths are chosen that are consistently less steep and deviate from the straight line more than an average random path, suggesting that participants indeed trade-off steepness for path length. They show that this might be related to biomechanical properties, specifically the leg length of the walkers. In addition, they show using a neural network model that participants could choose the footholds based on their sensory (visual) information about depth. 

      Strengths: 

      The work is a natural continuation of some of the researchers' earlier work that related the immediately following steps to gaze [17]. Methodologically, the work is very impressive and presents a further step forward towards understanding real-world locomotion and its interaction with sampling visual information. While some of the results may seem somewhat trivial in hindsight (as always in this kind of study), I still think this is a very important approach to understanding locomotion in the wild better. 

      Weaknesses: 

      The manuscript as it stands has several issues with the reporting of the results and the statistics. In particular, it is hard to assess the inter-individual variability, as some of the data are aggregated across individuals, while in other cases only central tendencies (means or medians) are reported without providing measures of variability; this is critical, in particular as N=9 is a rather small sample size. It would also be helpful to see the actual data for some of the information merely described in the text (e.g., the dependence of \Delta H on path length). When reporting statistical analyses, test statistics and degrees of freedom should be given (or other variants that unambiguously describe the analysis).

      There is only one figure (Figure 6) that shows data pooled over subjects and this is simply to illustrate how the random paths were calculated. The actual paths generated used individual subject data. We don’t draw our conclusions from these histograms – they are instead used to generate bounds for the simulated paths.  We have made clear both in the text and in the figure legends when we have plotted an example subject. Other plots show the individual subject data. We have given the range of subject medians as well as the standard deviation for data illustrated in Figure (random vs chosen), we have also given the details of the statistical test comparing the flatness of the chosen paths versus the randomly generated paths.  We have added two supplemental figures to show individual walker data more directly: (Fig. 14) the per subject histograms of step parameters, (Fig. 18) the individual subject distributions for straight path slopes and tortuosity.

      The CNN analysis chosen to link the step data to visual sampling (gaze and depth features) should be motivated more clearly, and it should describe how training and test sets were generated and separated for this analysis.

      We have motivated the CNN analysis and moved it earlier in the manuscript to help clarify the logic the manuscript. Details of the training and test are now provided, and the data have been replotted. The values are a little different from the original plot after making a correction in the code, but the conclusions drawn from this analysis are unchanged. This analysis simply shows that there is information in the depth images from the subject’s perspective that a network can use to learn likely footholds. This motivates the subsequent analysis of path flatness.

      There are also some parts of figures, where it is unclear what is shown or where units are missing. The details are listed in the private review section, as I believe that all of these issues can be fixed in principle without additional experiments. 

      Several of the Figures have been replotted to fix these issues.

      Reviewer #2 (Public Review): 

      Summary: 

      This manuscript examines how humans walk over uneven terrain using vision to decide where to step. There is a huge lack of evidence about this because the vast majority of locomotion studies have focused on steady, well-controlled conditions, and not on decisions made in the real world. The author team has already made great advances in this topic, but there has been no practical way to map 3D terrain features in naturalistic environments. They have now developed a way to integrate such measurements along with gaze and step tracking, which allows quantitative evaluation of the proposed trade-offs between stepping vertically onto vs. stepping around obstacles, along with how far people look to decide where to step. 

      Strengths: 

      (1) I am impressed by the overarching outlook of the researchers. They seek to understand human decision-making in real-world locomotion tasks, a topic of obvious relevance to the human condition but not often examined in research. The field has been biased toward well-controlled studies, which have scientific advantages but also serious limitations. A well-controlled study may eliminate human decisions and favor steady or periodic motions in laboratory conditions that facilitate reliable and repeatable data collection. The present study discards all of these usually-favorable factors for rather uncontrolled conditions, yet still finds a way to explore real-world behaviors in a quantitative manner. It is an ambitious and forward-thinking approach, used to tackle an ecologically relevant question. 

      (2) There are serious technical challenges to a study of this kind. It is true that there are existing solutions for motion tracking, eye tracking, and most recently, 3D terrain mapping. However most of the solutions do not have turn-key simplicity and require significant technical expertise. To integrate multiple such solutions together is even more challenging. The authors are to be commended on the technical integration here.

      (3) In the absence of prior studies on this issue, it was necessary to invent new analysis methods to go with the new experimental measures. This is non-trivial and places an added burden on the authors to communicate the new methods. It's harder to be at the forefront in the choice of topic, technical experimental techniques, and analysis methods all at once. 

      Weaknesses: 

      (1) I am predisposed to agree with all of the major conclusions, which seem reasonable and likely to be correct. Ignoring that bias, I was confused by much of the analysis. There is an argument that the chosen paths were not random, based on a comparison of probability distributions that I could not understand. There are plots described as "turn probability vs. X" where the axes are unlabeled and the data range above 1. I hope the authors can provide a clearer description to support the findings. This manuscript stands to be cited well as THE evidence for looking ahead to plan steps, but that is only meaningful if others can understand (and ultimately replicate) the evidence. 

      We have rewritten the manuscript with the goal of clarifying the analyses, and we have re-labelled the offending figure.

      (2) I wish a bit more and simpler data could be provided. It is great that step parameter distributions are shown, but I am left wondering how this compares to level walking.  The distributions also seem to use absolute values for slope and direction, for understandable reasons, but that also probably skews the actual distribution. Presumably, there should be (and is) a peak at zero slope and zero direction, but absolute values mean that non-zero steps may appear approximately doubled in frequency, compared to separate positive and negative. I would hope to see actual distributions, which moreover are likely not independent and probably have a covariance structure. The covariance might help with the argument that steps are not random, and might even be an easy way to suggest the trade-off between turning and stepping vertically. This is not to disregard the present use of absolute values but to suggest some basic summary of the data before taking that step. 

      We have replotted the step parameter distributions without absolute values. Unfortunately, the covariation of step parameters (step direction and step slope) is unlikely to help establish this tradeoff.  Note that the primary conclusion of the manuscript is that works make turns to keep step slope low (when possible). Thus, any correlation that might exist between goal direction and step slope would be difficult to interpret without a direct comparison to possible alternative paths (as we have done in this paper). As such we do not draw our conclusions from them.  We use them primarily to generate plausible random paths for comparison with the chosen paths.  We have added two supplementary figures including distributions (Fig 15) and covariation of all the step parameters discussed in the methods (Fig 16).

      (3) Along these same lines, the manuscript could do more to enable others to digest and go further with the approach, and to facilitate interpretability of results. I like the use of a neural network to demonstrate the predictiveness of stepping, but aside from above-chance probability, what else can inform us about what visual data drives that?

      The CNN analysis simply shows that the information is there in the image from the subject’s viewpoint and is used to motivate the subsequent analysis.  As noted above, we have generally tried to improve the clarity of the methods.

      Similarly, the step distributions and height-turn trade-off curves are somewhat opaque and do not make it easy to envision further efforts by others, for example, people who want to model locomotion. For that, clearer (and perhaps) simpler measures would be helpful. 

      We have clarified the description of these plots in the main text and in the methods.  We have also tried to clarify why we made the choices that we did in measuring the height-turn trade-off and why it is necessary in order to make a fair comparison.

      I am absolutely in support of this manuscript and expect it to have a high impact. I do feel that it could benefit from clarification of the analysis and how it supports the conclusions. 

      Reviewer #3 (Public Review): 

      Summary: 

      The systematic way in which path selection is parametrically investigated is the main contribution. 

      Strengths: 

      The authors have developed an impressive workflow to study gait and gaze in natural terrain. 

      Weaknesses: 

      (1) The training and validation data of the CNN are not explained fully making it unclear if the data tells us anything about the visual features used to guide steering. It is not clear how or on what data the network was trained (training vs. validation vs. un-peeked test data), and justification of the choices made. There is no discussion of possible overfitting. The network could be learning just e.g. specific rock arrangements. If the network is overfitting the "features" it uses could be very artefactual, pixel-level patterns and not the kinds of "features" the human reader immediately has in mind. 

      The CNN analysis has now been moved earlier in the manuscript to help clarify its significance and we have expanded the description of the methods. Briefly, it simply indicates that there is information in the depth structure of the terrain that can be learned by a network. This helps justify the subsequent analyses.  Importantly, the network training and testing sets were separated by terrain to ensure that the model was being tested on “unseen” terrain and avoid the model learning specific arrangements.  This is now clarified in the text.

      (2) The use of descriptive terminology should be made systematic. 

      Specifically, the following terms are used without giving a single, clear definition for them: path, step, step location, foot plant, foothold, future foothold, foot location, future foot location, foot position. I think some terms are being used interchangeably. I would really highly recommend a diagrammatic cartoon sketch, showing the definitions of all these terms in a single figure, and then sticking to them in the main text. 

      We have made the language more systematic and clarified the definition of each term (see Methods). Path refers to the sequence of 5 steps. Foothold is where the foot was placed in the environment. A step is the transition from one foothold to the next.

      (3) More coverage of different interpretations / less interpretation in the abstract/introduction would be prudent.  The authors discuss the path selection very much on the basis of energetic costs and gait stability. At least mention should be given to other plausible parameters the participants might be optimizing (or that indeed they may be just satisficing). That is, it is taken as "given" that energetic cost is the major driver of path selection in your task, and that the relevant perception relies on internal models. Neither of these is a priori obvious nor is it as far as I can tell shown by the data (optimizing other variables, satisficing behavior, or online "direct perception" cannot be ruled out). 

      The abstract has been substantially rewritten.  We have adjusted our language in the introduction/discussion to try to address this concern.

      Recommendations for the authors:

      Reviewing Editor comments 

      You will find a full summary of all 3 reviews below. In addition to these reviews, I'd like to highlight a few points from the discussion among reviewers. 

      All reviewers are in agreement that this study has the potential to be a fundamental study with far-reaching empirical and practical implications. The reviewers also appreciate the technical achievements of this study. 

      At the same time, all reviewers are concerned with the overall lack of clarity in how the results are presented. There are a considerable number of figures that need better labeling, text parts that require clearer definitions, and the description of data collection and analysis (esp. with regard to the CNN) requires more care. Please pay close attention to all comments related to this, as this was the main concern that all reviewers shared. 

      At a more specific level, the reviewers discussed the finding around leg length, and admittedly, found it hard to believe, in short: "extraordinary claims need strong evidence". It would be important to strengthen this analysis by considering possible confounds, and by including a discussion of the degree of conviction. 

      We have weakened the discussion of this finding and provided some an additional analyses in a supplemental figure (Figure 17) to help clarify the finding.

      Reviewer #1 (Recommendations For The Authors): 

      First, let me apologize for the long delay with this review. Despite my generally positive evaluation (see public review), I have some concerns about the way the data are presented and questions about methodological details. 

      (1) Representation of results: I find it hard to decipher how much variability arises within an individual and how much across individuals. For example, Figure 7b seems to aggregate across all individuals, while the analysis is (correctly) based on the subject medians.

      Figure 7b That figure was just one subject. This is now clarified.

      It would be good to see the distribution of all individuals (maybe use violin plots for each observer with the true data on one side and the baseline data on the other, or simple histograms for each). To get a feeling for inter-individual and intra-individual variability is crucial, as obviously (see the leg-length analysis) there are larger inter-individual differences and representations like these would be important to appreciate whether there is just a scaling of more or less the same effect or whether there are qualitative differences (especially in the light of N=9 being not a terribly huge sample size). 

      The medians for the individual subjects are now provided with the standard deviations between subjects to indicate the extent of individual differences. Note that the random paths were chosen from the distribution of actual step slopes for that subject as one of the constraints. This makes the random paths statistically similar to the chosen paths with the differences only being generated by the particular visual context. Thus the test for a difference between chosen and random is quite conservative

      Similarly, seeing \DeltaH plotted as a function of steps in the path as a figure rather than just having the verbal description would also help. 

      To simplify the discussion of our methods/results we have removed the analyses that examine mean slope as a function of steps.  Because of the central limit theorem the slopes of the chosen paths remain largely unchanged regardless of the choice path length.  The slopes of the simulated paths are always larger irrespective of the choice of path length.

      (2) Reporting the statistical analyses: This is related to my previous issue: I would appreciate it if the test statistics and degrees-of-freedom of the statistical tests were given along with the p-values, instead of only the p-values. This at some points would also clarify how the statistics were computed exactly (e.g., "All subjects showed comparable difference and the difference in medians evaluated across subjects was highly significant (p<<0.0001).", p.10, is ambiguous to me). 

      Details have been added as requested.

      (3) Why is the lower half ("tortuosity less than the median tortuosity") of paths used as "straight" rather than simply the minimum of all viable paths)?

      The benchmark for a straight path is somewhat arbitrary. Using the lower half rather than the minimum length path is more conservative.

      (4) For the CNN analysis, I failed to understand what was training and what was test set. I understand that the goal is to predict for all pixels whether they are a potential foothold or not, and the AUC is a measure of how well they can be discriminated based on depth information and then this is done for each image and the median over all images taken. But on which data is the CNN trained, and on which is it tested? Is this leave-n-out within the same participant? If so, how do you deal with dependencies between subsequent images? Or is it leave-1-out across participants? If so, this would be more convincing, but again, the same image might appear in training and test. If the authors just want to ask how well depth features can discriminate footholds from non-footholds, I do not see the benefit of a supervised method, which leaves the details of the feature combinations inside a black box. Rather than defining the "negative set" (i.e., the non-foothold pixels) randomly, the simulated paths could also be used, instead. If performance (AUC) gets lower than for random pixels, this would confirm that the choice of parameters to define a "viable path" is well-chosen. 

      This has been clarified as described above.

      Minor issues: 

      (5) A higher tortuosity would also lead a participant to require more steps in total than a lower tortuosity. Could this partly explain the correlation between the leg length and the slope/tortuosity correlation? (Longer legs need fewer steps in total, thus there might be less tradeoff between \Delta H and keeping the path straight (i.e., saving steps)). To assess this, you could give the total number of steps per (straight) distance covered for leg length and compare this to a flat surface.

      The calculations are done on an individual subject basis and the first and last step locations are chosen from the actual foot placements, then the random paths are generated between those endpoints. The consequence of this is that the number of steps is held constant for the analysis.  We have clarified the methods for this analysis to try to make this more clear.

      (6) As far as I understand, steps happen alternatingly with the two feet. That is, even on a flat surface, one would not reach 0 tortuosity. In other words, does the lateral displacement of the feet play a role (in particular, if paths with even and paths with odd number of steps were to be compared), and if so, is it negligible for the leg-length correlation? 

      All the comparisons here are done for 5 step sequences so this potential issue should not affect the slope of the regression lines or the leg length correlation.

      (7) Is there any way to quantify the quality of the depth estimates? Maybe by taking an actual depth image (e.g., by LIDAR or similar) for a small portion of the terrain and comparing the results to the estimate? If this has been done for similar terrain, can a quantification be given? If errors would be similar to human errors, this would also be interesting for the interpretation of the visual sampling data.

      Unfortunately, we do not have the ground truth depth image from LIDAR.  When these data were originally collected, we had not imagined being able to reconstruct the terrain.  However, we agree with the reviewers that this would be a good analysis to do. We plan to collect LIDAR in future experiments. 

      To provide an assessment of quality for these data in the absence of a ground truth depth image, we have performed an evaluation of the reliability of the terrain reconstruction across repeats of the same terrain both between and within participants.  We have expanded the discussion of these reliability analyses in the results section entitled “Evaluating Terrain Reconstruction”, as well as in the corresponding methods section (see Figure 10).

      (8) The figures are sometimes confusing and a bit sloppy. For example, in Figure 7a, the red, cyan, and green paths are not mentioned in the caption, in Figure 8 units on the axes would be helpful, in Figure 9 it should probably be "tortuosity" where it now states "curviness". 

      These details have been fixed.

      (9) I think the statement "The maximum median AUC of 0.79 indicates that the 0.79 is the median proportion of pixels in the circular..." is not an appropriate characterization of the AUC, as the number of correctly classified pixels will not only depend on the ROC (and thus the AUC), but also on the operating point chosen on the ROC (which is not specified by the AUC alone). I would avoid any complications at this point and just characterize the AUC as a measure of discriminability between footholds and non-footholds based on depth features. 

      This has been fixed.

      (10) Ref. [16]is probably the wrong Hart paper (I assume their 2012 Exp. Brain Res. [https://doi.org/10.1007/s00221-012-3254-x] paper is meant at this point) 

      Fixed

      Typos (not checked systematically, just incidental discoveries): 

      (11) "While there substantial overlap" (p.10) 

      (12) "field.." (p.25) 

      (13) "Introduction", "General Discussion" and "Methods" as well as some subheadings are numbered, while the other headings (e.g., Results) are not. 

      Fixed

      Reviewer #2 (Recommendations For The Authors): 

      The major suggestions have been made in the Public Review. The following are either minor comments or go into more detail about the major suggestions. All of these comments are meant to be constructive, not obstructive. 

      Abstract. This is well written, but the main conclusions "Walkers avoid...This trade off is related...5 steps ahead" sound quite qualitative. They could be strengthened by more specificity (NOT p-values), e.g. "positive correlation between the unevenness of the path straight ahead and the probability that people turned off that path." 

      The abstract has been substantially rewritten.

      P. 5 "pinning the head position estimated from the IMU to the Meshroom estimates" sounds like there are two estimates. But it does not sound like both were used. Clarify, e.g. the Meshroom estimate of head position was used in place of IMU? 

      Yes that’s correct.  We have clarified this in the text.

      Figure 5. I was confused by this. First, is a person walking left to right? When the gaze position is shown, where was the eye at the time of that gaze? There are straight lines attached to the blue dots, what do they represent? The caption says gaze is directed further along the path, which made me guess the person is walking right to left, and the line originates at the eye. Except the origins do not lie on or close to the head locations. There's also no scale shown, so maybe I am completely misinterpreting. If the eye locations were connected to gaze locations, it would help to support the finding that people look five steps ahead of where they step. 

      We have updated the figure and clarified the caption to remove these confusions.  There was a mistake in the original figure (where the yellow indicated head locations, we had plotted the center of mass and the choice of projection gave the incorrect impression that the fixations off the path, in blue, were separated from the head).

      The view of the data is now presented so the person is walking left to right and with a projection of the head location (orange), gaze locations (blue or green) and feet (pink).

      Figure 6. As stated in the major comments, the step distributions would be expected to have a covariance structure (in terms of raw data before taking absolute values). It would be helpful to report the covariances (6 numbers). As an example of a simple statistical analysis, a PCA (also based on a data covariance) would show how certain combinations of slope/distance/direction are favored over others. Such information would be a simple way to argue that the data are not completely random, and may even show a height-turn trade-off immediately. (By the way, I am assuming absolute values are used because the slopes and directions are only positive, but it wasn't clear if this was the definition.) A reason why covariances and PCA are helpful is that such data would be helpful to compute a better random walk, generated from dynamics. I believe the argument that steps are not random is not served by showing the different histograms in Figure 7, because I feel the random paths are not fairly produced. A better argument might draw randomly from the same distribution as the data (or drive a dynamical random walk), and compare with actual data. There may be correlations present in the actual data that differ from random. I could be mistaken, because it is difficult or impossible to draw conclusions from distributions of absolute values, or maybe I am only confused. In any case, I suspect other readers will also have difficulty with this section. 

      This has been addressed above in the major comments.

      p. 9, "average step slope" I think I understand the definition, but I suggest a diagram might be helpful to illustrate this.

      There is a diagram of a single step slope in Figure 6 and a diagram of the average step slope for a path segment in Figure 12.

      Incidentally, the "straight path slope" is not clearly defined. I suspect "straight" is the view from above, i.e. ignoring height changes. 

      Clarified

      p. 11 The tortuosity metric could use a clearer definition. Should I interpret "length of the chosen path relative to a straight path" as the numerator and denominator? Here does "length" also refer to the view from above? Why is tortuosity defined differently from step slope? Couldn't there be an analogue to step slope, except summing absolute values of direction changes? Or an analogue to tortuosity, meaning the length as viewed from the side, divided by the length of the straight path? 

      We followed the literature in the definition of tortuosity.  We have clarified the definition of tortuosity in the methods, but yes, you can interpret the length of the chosen path relative to a straight path, as the numerator and denominator, and length refers to 3D length.  We agree that there are many interesting ways to look at the data but for clarity we have limited the discussion to a single definition of tortuosity in this paper.

      Figure 8 could use better labeling. On the left, there is a straight path and a more tortuous path, why not report the metrics for these? On the right, there are nine unlabeled plots. The caption says "turn probability vs. straight path slope" but the vertical axis is clearly not a probability. Perhaps the axis is tortuosity? I presume the horizontal axis is a straight path slope in degrees, but this is not explained. Why are there nine plots, is each one a subject? I would prefer to be informed directly instead of guessing. (As a side note, I like the correlations as a function of leg length, it is interesting, even if slightly unbelievable. I go hiking with people quite a bit shorter and quite a lot taller than me, and anecdotally I don't think they differ so much from each other.) 

      We have fixed Figure 8 which shows the average “mean slope” as a function of tortuosity.  We have added a supplemental figure which shows a scatter plot of the raw data (mean slope vs. tortuosity for each path segment).  

      Note that when walking with friends other factors (e.g. social) will contribute to the cost function. As a very short person my experience is that it is a problem. In any case, the data are the data, whatever the underlying reasons. It does not seem so surprising that people of different heights make different tradeoffs. We know that the preferred gait depends on individual’s passive dynamics as described in the paper, and the terrain will change what is energetically optimal as described in the Darici and Kuo paper.

      Figure 9 presumably shows one data point per subject, but this isn't clear. 

      The correlations are reported per subject, and this has been clarified. 

      p. 13 CNN. I like this analysis, but only sort of. It is convincing that there is SOME sort of systematic decision-making about footholds, better than chance. What it lacks is insight. I wonder what drives peoples' decisions. As an idle suggestion, the AlexNet (arXiv: Krizhevsky et al.; see also A. Karpathy's ConvNETJS demo with CIFAR-10) showed some convolutional kernels to give an idea of what the layers learned. 

      Further exploration of CNN’s would definitely be interesting, but it is outside the scope of the paper. We use it simply to make a modest point, as described above.

      p. 15 What is the definition of stability cost? I understand energy cost, but it is unclear how circuitous paths have a higher stability cost. One possible definition is an energetic cost having to do with going around and turning. But if not an energy cost, what is it? 

      We meant to say that the longer and flatter paths are presumably more stable because of the smaller height changes. You are correct that we can’t say what the stability cost is and we have clarified this in the discussion.

      p. 16 "in other data" is not explained or referenced.

      Deleted 

      p. 10 5 step paths and p. 17 "over the next 5 steps". I feel there is very little information to really support the 5 steps. A p-value only states the significance, not the amount of difference. This could be strengthened by plotting some measures vs. the number of steps ahead. For example, does a CNN looking 1-5 steps ahead predict better than one looking N<5 steps ahead? I am of course inclined to believe the 5 steps, but I do not see/understand strong quantitative evidence here. 

      We have weakened the statements about evidence for planning 5 steps ahead.

      p. 25 CNN. I did not understand the CNN. The list of layers seems incomplete, it only shows four layers. The convolutional-deconvolutional architecture is mentioned as if that is a common term, which I am unfamiliar with but choose to interpret as akin to encoder-decoder. However, the architecture does not seem to have much of a bottleneck (25x25x8 is not greatly smaller than 100x100x4), so what is the driving principle? It's also unclear how the decoder culminates, does it produce some m x m array of probabilities of stepping, where m is some lower dimension than the images? It might be helpful also to illustrate the predictions, for example, show a photo of the terrain view, along with a probability map for that view. I would expect that the reader can immediately say yes, I would likely step THERE but not there. 

      We have clarified the description of the CNN. An illustration is shown in Figure 11.

      Reviewer #3 (Recommendations For The Authors): 

      (This section expands on the points already contained in the Public Review). 

      Major issues 

      (1) The training and validation data of the CNN are not explained fully making it unclear if the data tells us anything about the visual features used to guide steering. A CNN was used on the depth scenes to identify foothold locations in the images. This is the bit of the methods and the results that remains ambiguous, and the authors may need to revisit the methods/results. It is not clear how or on what data the network was trained (training vs. validation vs. un-peeked test data), and justification of the choices made. There is no discussion of possible overfitting. The network could be learning just for example specific rock arrangements in the particular place you experimented. Training the network on data from one location and then making it generalize to another location would of course be ideal. Your network probably cannot do this (as far as I can tell this was not tried), and so the meaning of the CNN results cannot really be interpreted. 

      I really like the idea, of getting actual retinotopic depth field approximations. But then the question would be: what features in this information are relevant and useful for visual guidance (of foot placement)? But this question is not answered by your method. 

      "If a CNN can predict these locations above chance using depth information, this would indicate that depth features can be used to explain some variation in foothold selection." But there is no analysis of what features they are. If the network is overfitting they could be very artefactual, pixel-level patterns and not the kinds of "features" the human reader immediately has in mind. As you say "CNN analysis shows that subject perspective depth features are predictive of foothold locations", well, yes, with 50,000 odd parameters the foothold coordinates can be associated with the 3D pixel maps, but what does this tell us? 

      See previous discussion of these issues.

      It is true that we do not know the precise depth features used. We established that information about height changes was being used, but further work is needed to specify how the visual system does this. This is mentioned in the Discussion.

      You open the introduction with a motivation to understand the visual features guiding path selection, but what features the CNN finds/uses or indeed what features are there is not much discussed. You would need to bolster this, or down-emphasize this aspect in the Introduction if you cannot address it. 

      "These depth image features may or may not overlap with the step slope features shown to be predictive in the previous analysis, although this analysis better approximates how subjects might use such information." I do not think you can say this. It may be better to approximate the kind of (egocentric) environment the subjects have available, but as it is I do not see how you can say anything about how the subject uses it. (The results on the path selection with respect to the terrain features, viewpoint viewpoint-independent allocentric properties of the previous analyses, are enough in themselves!) 

      We have rewritten the section on the CNN to make clearer what it can and cannot do and its role in the manuscript. See previous discussion.

      (2) The use of descriptive terminology should be made systematic. Overall the rest of the methodology is well explained, and the workflow is impressive. However, to interpret the results the introduction and discussion seem to use terminology somewhat inconsistently. You need to dig into the methods to figure out the exact operationalizations, and even then you cannot be quite sure what a particular term refers to. Specifically, you use the following terms without giving a single, clear definition for them (my interpretation in parentheses): 

      foothold (a possible foot plant location where there is an "affordance"? or a foot plant location you actually observe for this individual? or in the sample?) 

      step (foot trajectory between successive step locations) 

      step location (the location where the feet are placed) 

      path (are they lines projected on the ground, or are they sequences of foot plants? The figure suggests lines but you define a path in terms of five steps. 

      foot plant (occurs when the foot comes in contact with step location?) 

      future foothold (?) 

      foot location (?) 

      future foot location (?) 

      foot position (?) 

      I think some terms are being used interchangeably here? I would really highly recommend a diagrammatic cartoon sketch, showing the definitions of all these terms in a single figure, and then sticking to them in the main text. Also, are "gaze location" and "fixation" the same? I.e. is every gaze-ground intersection a "gaze location" (I take it it is not a "fixation", which you define by event identification by speed and acceleration thresholds in the methods)? 

      We have cleaned up the language. A foothold is the location in the terrain representation (mesh) where the foot was placed. A step is the transition from one foothold to the next. A path is the sequences of 5 steps. The lines simply illustrate the path in the Figures. A gaze location is the location in the terrain representation where the walker is holding gaze still (the act of fixating). See Muller et al (2023) for further explanation.

      (3) More coverage of different interpretations / less interpretation in the abstract/introduction would be prudent. You discuss the path selection very much on the basis of energetic costs and gait stability. At least mention should be given to other plausible parameters the participants might be optimizing (or that indeed they may be just satisficing). Temporal cost (more circuitous route takes longer) and uncertainty (the more step locations you sample the more chance that some of them will not be stable) seem equally reasonable, given the task ecology / the type of environment you are considering. I do not know if there is literature on these in the gait-scene, but even if not then saying you are focusing on just one explanation because that's where there is literature to fall back on would be the thing to do. 

      Also in the abstract and introduction you seem to take some of this "for granted". E.g. you end the abstract saying "are planning routes as well as particular footplants. Such planning ahead allows the minimization of energetic costs. Thus locomotor behavior in natural environments is controlled by decision mechanisms that optimize for multiple factors in the context of well-calibrated sensory and motor internal models". This is too speculative to be in the abstract, in my opinion. That is, you take as "given" that energetic cost is the major driver of path selection in your task, and that the relevant perception relies on internal models. Neither of these is a priori obvious nor is it as far as I can tell shown by your data (optimizing other variables, satisficing behavior, or online "direct perception" cannot be ruled out). 

      We have rewritten the abstract and Discussion with these concerns in mind.

      You should probably also reference: 

      Warren, W. H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 683-703. https://doi.org/10.1037/0096-1523.10.5.683 

      Warren WH Jr, Young DS, Lee DN. Visual control of step length during running over irregular terrain. J Exp Psychol Hum Percept Perform. 1986 Aug;12(3):259-66. doi: 10.1037//0096-1523.12.3.259. PMID: 2943854. 

      We have added these references to the introduction.

      Minor point 

      Related to (2) above, the path selection results are sometimes expressed a bit convolutedly, and the gist can get lost in the technical vocabulary. The generation of alternative "paths" and comparison of their slope and tortuousness parameters show that the participants preferred smaller slope/shorter paths. So, as far as I can tell, what this says is that in rugged terrain people like paths that are as "flat" as possible. This is common sense so hardly surprising. Do not be afraid to say so, and to express the result in plain non-technical terms. That an apple falls from a tree is common sense and hardly surprising. Yet quantifying the phenomenon, and carefully assessing the parameters of the path that the apple takes, turned out to be scientifically valuable - even if the observation itself lacked "novelty". 

      Thanks.  We have tried to clarify the methods/results with this in mind.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      [...] Based on these results, the authors support a model whereby kinetic regimes are encoded in the cis-regulatory sequences of a gene instead of imposed by an evolving trans-regulatory environment.

      The question asked in this manuscript is important and the eve locus represents an ideal paradigm to address it in a quantitative manner. Most of the results are correctly interpreted and well-presented. However, the main conclusion pointing towards a potential "unified theory" of burst regulation during Drosophila embryogenesis should be nuanced or cross-validated.

      Our results and those of others suggest that different developmental genes follow unified—yet different—transcriptional control strategies whereby different combinations of bursting parameters are regulated to modulate gene expression: burst frequency and amplitude for eve (Berrocal et al., 2020), and burst frequency and duration for gap genes (Zoller et al., 2018). In light of the aforementioned works, we can only claim that our results suggest a unified strategy for eve, our case of study, as we observe that eve regulatory strategies are robust to disruption of enhancers and binding sites. In the Discussion section of our revised manuscript, we will emphasize that the bursting control strategy we uncovered for eve does not necessarily apply to other genes, and speculate in more detail that genes that employ the same strategy of transcriptional bursting may be grouped in families that share a common molecular mechanism of transcription.

      Manuscript updates:

      We have emphasized in the Discussion section that our claim of unified strategies pertains exclusively to the bursting behavior of the gene even-skipped, and do not necessarily extend to other genes. To clarify this point, we referenced the findings of (Zoller, Little, and Gregor 2018) and (Chen et al. 2023), who observed that the bursting control strategy of Drosophila gap genes relies on the modulation of burst frequency and duration. Additionally, we cited the findings of (Syed, Duan, and Lim 2023), who reported a decrease in bursting amplitude and duration upon disruption of Dorsal binding sites on the snail minimal distal enhancer. Both examples describe bursting control strategies that differ from the modulation of burst frequency and amplitude observed for even-skipped.

      In addition to the lack of novelty (some results concerning the fact that koff does not change along the A/P axis/the idea of a 'unified regime' were already obtained in Berrocal et al 2020),...

      Unfortunately, we believe there is a misunderstanding in terms of what we construe as novelty in our work. In our previous work (Berrocal et al., 2020), we observed that the seven stripes of even-skipped (eve) expression modulate transcriptional bursting through the same strategy—bursting frequency and amplitude are controlled to yield various levels of mRNA synthesis, while burst duration remains constant. We reproduce that result in our paper, and do not claim any novelty. However, what was unclear is whether the observed eve bursting control strategy would only exist in the wild-type stripes, whose expression—we reasoned—is under strong selection due to the dramatic phenotypic consequences of eve transcription, or if eve transcriptional bursting would follow the same strategy under trans-regulatory environments that are not under selection to deliver specific spatiotemporal dynamics of eve expression. Our results—and here lies the novelty of our work—support the second scenario, and point to a model where eve bursting strategies do not result from adaptation of eve activity to specific trans-regulatory environments. Instead, we speculate that a molecular mechanism constrains eve bursting strategy whenever and wherever the gene is active. This is something that we could not have known from our first study in (Berrocal et al., 2020) and constitutes the main novelty of our paper. To put this in other words, the novelty of our work does not rest on the fact that both burst frequency and amplitude are modulated in the endogenous eve pattern, but that this modulation remains quantitatively indistinguishable when we focus on ectopic areas of expression. We will make this point clearer in the Introduction and Discussion section of our revised manuscript.

      Manuscript updates:

      We have clarified this point in both the Introduction and Discussion sections. In the updated Introduction, we state that while our previous work (Berrocal et al. 2020) examined bursting strategies in endogenous expression regions that are, in principle, subject to selection, the present study induced the formation of ectopic expression patterns to probe bursting strategies in regions presumably devoid of evolutionary pressures. In the Discussion section, we highlight that the novelty of our work lies in the insights derived from the comparative analysis between ectopic and endogenous regions of even-skipped expression, an aspect not addressed in our previous work.

      … note i) the limited manipulation of TF environment;...

      We acknowledge that additional genetic manipulations would make it possible to further test the model. However, we hope that the reviewer will agree with us that the manipulations that we did perform are sufficient to provide evidence for common bursting strategies under the diverse trans-regulatory environments present in wild-type and ectopic regions of gene expression. In the Discussion section of our revised manuscript, we will elaborate further on the kind of genetic manipulations (e.g., probing transcriptional strategies that result from swapping promoters in the context of eve-MS2 BAC; or quantifying the impact on eve transcriptional control after performing optogenetic perturbations of transcription factors and/or chromatin remodelers) that could shed further light on the currently undefined molecular mechanism that constrains eve bursting strategies, as a mean to motivate future work.

      Manuscript updates:

      In our Discussion section, we elaborated on proposed manipulations of the transcription factor environment to elucidate the molecular mechanisms behind even-skipped bursting control strategies. We began by listing studies linking transcription factor concentration to bursting control strategies, such as (Hoppe et al. 2020), who observed that the natural BMP (Bone Morphogenetic Protein) gradient shapes bursting frequency of target genes in Drosophila embryos. And (Zhao et al. 2023), who used the LEXY optogenetic system to modulate Knirps nuclear concentration and observed that this repressor acts on eve stripe 4+6 enhancer by gradually decreasing bursting frequency until the locus adopts a reversible quiescent state. Then, we proposed performing systematic LEXY-mediated modulation of critical transcription factors (Bicoid, Hunchback, Giant, Kruppel, Zelda) to understand the extent of their contribution to the unified even-skipped bursting strategies.

      To better frame the hypothesis that the even-skipped promoter defines strategies of bursting control, we added a reference to the work of (Tunnacliffe, Corrigan, and Chubb 2018). This study surveyed 17 actin genes with identical sequences but distinct promoters in the amoeba Dictyostelium discoideum, and found that all genes display different bursting strategies. Their findings, together with the previously cited work by (Pimmett et al. 2021) and (Yokoshi et al. 2022), suggest a critical role of gene promoters in constraining the bursting strategies of eukaryotic genes.

      … ii) the simplicity with which bursting is analyzed (only a two-state model is considered, and not cross-validated with an alternative approach than cpHMM) and…

      Based on our previous work (Lammers et al., 2020), and as described in the SI Section of the current manuscript: Inference of Bursting Parameters, we selected a three-state model (OFF, ON1, ON2) under the following rationale: transcription of even-skipped in pre-gastrulating embryos occurs after DNA replication, and promoters on both sister chromatids remain paired. Most of the time these paired loci cannot be resolved independently using conventional microscopy. As a result, when we image an MS2 spot, we are actually measuring the transcriptional dynamics of two promoters. Thus, each MS2-fluorescent spot may result from none (OFF), one (ON1) or two (ON2) sister promoters being in the active state. Following our previous work, we analyzed our data assuming the three-state model (OFF, ON1, ON2), and then, for ease of presentation, aggregated ON1 and ON2 into an effective single ON state. As for the lack of an alternative model, we chose the simplest model compatible with our data and our current understanding of transcription at the eve locus. With this in mind, we do not rule out the possibility that more complex processes—that are not captured by our model—shape MS2 fluorescence signals. For example, promoters may display more than two states of activity. However, as shown in (Lammers et al., 2020 - SI Section: G. cpHMM inference sensitivities), model selection schemes and cross-validation do not give consistent results on which model is more favorable; and for the time being, there is not a readily available alternative to HMM for inference of promoter states from MS2 signal. For example, orthogonal approaches to quantify transcriptional bursting, such as smFISH, are largely blind to temporal dynamics. As a result, we choose to entertain the simplest two-state model for each sister promoter. We appreciate these observations, as they point out the need of devoting a section in the supplemental material of our revised manuscript to clarify the motivations behind model selection.

      Manuscript updates:

      We have devoted the new Supplemental Material section “Selection of a three-state model of promoter activity and a compound Hidden Markov Model for inference of promoter states from MS2 fluorescent signal” to clarify the rationale behind our selection of a three-state promoter activity model. Since transcription in pre-gastrulating Drosophila embryos occurs after DNA replication, each MS2-active locus contains two unresolvable sister promoters that can either be inactive (OFF), one active (ON1), or both active (ON2).

      Next, we elaborated on the conversion of a three-state model into an effective two-state model for ease of presentation and described how the effective two-state model parameters—kon (burst frequency), koff-1 (burst duration), and r (burst amplitude)—were calculated.

      Additionally, we acknowledged that while the three-state model of promoter activity is the simplest model compatible with our current understanding of transcription in the even-skipped locus, we do not rule out the possibility that even-skipped transcription may be described by more complex models that include multiple states beyond ON and OFF. Finally, we referenced (Lammers et al. 2020) who asserted that while all inferences of promoter states computed from confocal microscopy of MS2/PP7 fluorescence data rely on Hidden Markov models, cross-comparisons between one, two, or multiple-state Hidden Markov models do not yield consistent results regarding which is more accurate. We close the new section by proposing that state-of-the-art microscopy and deconvolution algorithms to improve signal-to-noise-ratio may offer alternatives to the inference of promoter states.

      … iii) the lack of comparisons with published work.

      We thank the reviewer for pointing this out. In the current discussion of our manuscript, we compare our findings to recent articles that have addressed the question of the origin of bursting control strategies in Drosophila embryos (Pimmett et al., 2021; Yokoshi et al., 2022; Zoller et al., 2018). Nevertheless, we acknowledge that we failed to include references that are relevant to our study. Thus, our revised Discussion section must include recent results by (Syed et al., 2023), which showed that the disruption of Dorsal binding sites on the snail minimal distal enhancer results in decreased amplitude and duration of transcription bursts in fruit fly embryos. Additionally, we have to incorporate the study by (Hoppe et al., 2020), which reported that the Drosophila bone morphogenetic protein (BMP) gradient modulates the bursting frequency of BMP target genes. References to thorough studies of bursting control in other organisms, like Dictyostelium discoideum (Tunnacliffe et al., 2018), are due as well.

      Manuscript updates:

      As mentioned in the updates above, our revised manuscript now includes long due references to studies by (Syed, Duan, and Lim 2023), (Hoppe et al. 2020), (Tunnacliffe, Corrigan, and Chubb 2018), and (Chen et al. 2023). All of which are relevant for our current workk.

      Reviewer #2 (Public Review):

      The manuscript by Berrocal et al. asks if shared bursting kinetics, as observed for various developmental genes in animals, hint towards a shared molecular mechanism or result from natural selection favoring such a strategy. Transcription happens in bursts. While transcriptional output can be modulated by altering various properties of bursting, certain strategies are observed more widely. As the authors noted, recent experimental studies have found that even-skipped enhancers control transcriptional output by changing burst frequency and amplitude while burst duration remains largely constant. The authors compared the kinetics of transcriptional bursting between endogenous and ectopic gene expression patterns. It is argued that since enhancers act under different regulatory inputs in ectopically expressed genes, adaptation would lead to diverse bursting strategies as compared to endogenous gene expression patterns. To achieve this goal, the authors generated ectopic even-skipped transcription patterns in fruit fly embryos. The key finding is that bursting strategies are similar in endogenous and ectopic even-skipped expression. According to the authors, the findings favor the presence of a unified molecular mechanism shaping even-skipped bursting strategies. This is an important piece of work. Everything has been carried out in a systematic fashion. However, the key argument of the paper is not entirely convincing.

      We thank the reviewer, as these comments will enable us to improve the Discussion section and overall logic of our revised manuscript. We agree that the evidence provided in this work, while systematic and carefully analyzed, cannot conclusively rule out either of the two proposed models, but just provide evidence supporting the hypothesis for a specific molecular mechanism constraining eve bursting strategies. Our experimental evidence points to valuable insights about the mechanism of eve bursting control. For instance, had we observed quantitative differences in bursting strategies between ectopic and endogenous eve domains, we would have rejected the hypothesis that a common molecular mechanism constrains eve transcriptional bursting to the observed bursting control strategy of frequency and amplitude modulation. Thus, we consider that our proposition of a common molecular mechanism underlying unified eve bursting strategies despite changing trans-regulatory environments is more solid. On the other hand, while our model suggests that this undefined bursting control strategy is not subject to selection acting on specific trans-regulatory environments, it is not trivial to completely discard selection for specific bursting control strategies given our current lack of understanding of the molecular mechanisms that shape the aforesaid strategies. Indeed, we cannot rule out the hypothesis that the observed strategies are most optimal for the expression of eve endogenous stripes according to natural selection, and that these control strategies persist in ectopic regions as an evolutionary neutral “passenger phenotype” that does not impact fitness. We recognize the need to acknowledge this last hypothesis in the updated Introduction and Discussion sections of our manuscript. Further studies will be needed to determine the mechanistic and molecular basis of eve bursting strategies.

      Manuscript updates:

      In this work, we compared strategies of bursting control between endogenous and ectopic regions of even-skipped expression. Different strategies between both regions would suggest that selective pressure maintains defined bursting strategies in endogenous regions. Conversely, similar strategies in both ectopic and endogenous regions would imply that a shared molecular mechanism constrains bursting parameters despite changing trans-regulatory environments.

      In our updated Discussion section, we acknowledge that while our work provides evidence supporting the second hypothesis, we cannot conclusively rule out the possibility that the observed strategies were selected as the most optimal for endogenous even-skipped expression regions and that ectopic regions retain such optimal bursting strategies as an evolutionary neutral “passenger phenotype”.

      Reviewer #3 (Public Review):

      In this manuscript by Berrocal and coworkers, the authors do a deep dive into the transcriptional regulation of the eve gene in both an endogenous and ectopic background. The idea is that by looking at eve expression under non-native conditions, one might infer how enhancers control transcriptional bursting. The main conclusion is that eve enhancers have not evolved to have specific behaviors in the eve stripes, but rather the same rates in the telegraph model are utilized as control rates even under ectopic or 'de novo' conditions. For example, they achieve ectopic expression (outside of the canonical eve stripes) through a BAC construct where the binding sites for the TF Giant are disrupted along with one of the eve enhancers. Perhaps the most general conclusion is that burst duration is largely constant throughout at ~ 1 - 2 min. This conclusion is consistent with work in human cell lines that enhancers mostly control frequency and that burst duration is largely conserved across genes, pointing to an underlying mechanistic basis that has yet to be determined.

      We thank the reviewer for the assessment of our work. Indeed, evidence from different groups (Berrocal et al., 2020; Fukaya et al., 2016; Hoppe et al., 2020; Pimmett et al., 2021; Senecal et al., 2014; Syed et al., 2023; Tunnacliffe et al., 2018; Yokoshi et al., 2022; Zoller et al., 2018) is coming together to uncover commonalities, discrepancies, and rules that constrain transcriptional bursting in Drosophila and other organisms.

      Additional updates to the manuscript

      (1) In our current study, we observed the appearance of a mutant stripe of even-skipped expression beyond the anterior edge of eve stripe 1, which we refer to as eve stripe 0. This stripe appeared in embryos with a disrupted eve stripe 1 enhancer. In a previous study, (Small, Blair, and Levine 1992) reported a “head patch” of even-skipped expression while assaying the regulation of reporter constructs carrying the minimal regulatory element of eve stripe 2 enhancer alone. In our updated manuscript, we state that it is tempting to identify our eve stripe 0 with the previously reported head patch. (Small, Blair, and Levine 1992) speculated that this head patch of even-skipped expression appeared as a result of regulatory sequences present in the P-transposon system they used for genomic insertions. However, P-transposon sequences are not present in our experimental design. Thus, the appearance of eve stripe 0 indicates a repressive role of the eve stripe 1 enhancer at the anterior end of the embryo and may imply that the minimal regulatory element of the eve stripe 2 enhancer, as probed by (Small, Blair, and Levine 1992), can drive the expression of the head patch/eve stripe 0 when the eve stripe 1 enhancer is not present.

      (2)  In our current analysis, we observed that the disruption of Gt-binding sites on the eve stripe 2 enhancer synergizes with the deletion of the eve stripe 1 enhancer, as double mutant embryos display more ectopic expression in their anterior regions than embryos with only disrupted Gt-binding sites. While this may indicate that the repressive activity of eve stripe 1 enhancer synergizes with the repression exerted by Giant, other unidentified transcription factors may be involved in this repressive synergy. In the updated manuscript we clarified that unidentified transcription factors may bind in the vicinity of Gt-binding sites. The hypothesis that Gt-binding sites recognize other transcription factors was proposed by (Small, Blair, and Levine 1992), as they observed that the anterior expansion of eve stripe 2 resulting from Gt-binding site deletions was “somewhat more severe” than expansion observed in embryos carrying null-Giant alleles.

    1. GoogleAI head Jeff Dean acknowledged that the paper “surveyed validconcerns about LLMs,” but claimed it “ignored too much relevantresearch.” When asked for comment by Rolling Stone,

      It doesn't seem like he necessarily cared she was leaving and just wanted her gone, and found any excuse to get her off the Google team. Like Buolamwini, she talked to important people to try to get things changed and bettered and it seemed like there wasn't some interest in anything she had to say.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents valuable findings on the potential of short-movie viewing fMRI protocol to explore the functional and topographical organization of the visual system in awake infants and toddlers. Although the data are compelling given the difficulty of studying this population, the evidence presented is incomplete and would be strengthened by additional analyses to support the authors' claims. This study will be of interest to cognitive neuroscientists and developmental psychologists, especially those interested in using fMRI to investigate brain organisation in pediatric and clinical populations with limited fMRI tolerance.

      We are grateful for the thorough and thoughtful reviews. We have provided point-bypoint responses to the reviewers’ comments, but first, we summarize the major revisions here. We believe these revisions have substantially improved the clarity of the writing and impact of the results.

      Regarding the framing of the paper, we have made the following major changes in response to the reviews:

      (1) We have clarified that our goal in this paper was to show that movie data contains topographic, fine-grained details of the infant visual cortex. In the revision, we now state clearly that our results should not be taken as evidence that movies could replace retinotopy and have reworded parts of the manuscript that could mislead the reader in this regard.

      (2) We have added extensive details to the (admittedly) complex methods to make them more approachable. An example of this change is that we have reorganized the figure explaining the Shared Response Modelling methods to divide the analytic steps more clearly.

      (3) We have clarified the intermediate products contributing to the results by adding 6 supplementary figures that show the gradients for each IC or SRM movie and each infant participant.

      In response to the reviews, we have conducted several major analyses to support our findings further:

      (1) To verify that our analyses can identify fine-grained organization, we have manually traced and labeled adult data, and then performed the same analyses on them. The results from this additional dataset validate that these analyses can recover fine-grained organization of the visual cortex from movie data.

      (2) To further explore how visual maps derived from movies compare to alternative methods, we performed an anatomical alignment control analysis. We show that high-quality maps can be predicted from other participants using anatomical alignment.

      (3) To test the contribution of motion to the homotopy analyses, we regressed out the motion effects in these analyses. We found qualitatively similar results to our main analyses, suggesting motion did not play a substantial role.

      (4) To test the contribution of data quantity to the homotopy analyses, we correlated the amount of movie data collected from each participant with the homotopy results. We did not find a relationship between data quantity and the homotopy results. 

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Ellis et al. investigated the functional and topographical organization of the visual cortex in infants and toddlers, as evidenced by movie-viewing data. They build directly on prior research that revealed topographic maps in infants who completed a retinotopy task, claiming that even a limited amount of rich, naturalistic movie-viewing data is sufficient to reveal this organization, within and across participants. Generating this evidence required methodological innovations to acquire high-quality fMRI data from awake infants (which have been described by this group, and elsewhere) and analytical creativity. The authors provide evidence for structured functional responses in infant visual cortex at multiple levels of analyses; homotopic brain regions (defined based on a retinotopy task) responded more similarly to one another than to other brain regions in visual cortex during movie-viewing; ICA applied to movie-viewing data revealed components that were identifiable as spatial frequency, and to a lesser degree, meridian maps, and shared response modeling analyses suggested that visual cortex responses were similar across infants/toddlers, as well as across infants/toddlers and adults. These results are suggestive of fairly mature functional response profiles in the visual cortex in infants/toddlers and highlight the potential of movie-viewing data for studying finer-grained aspects of functional brain responses, but further evidence is necessary to support their claims and the study motivation needs refining, in light of prior research.

      Strengths:

      - This study links the authors' prior evidence for retinotopic organization of visual cortex in human infants (Ellis et al., 2021) and research by others using movie-viewing fMRI experiments with adults to reveal retinotopic organization (Knapen, 2021).

      - Awake infant fMRI data are rare, time-consuming, and expensive to collect; they are therefore of high value to the community. The raw and preprocessed fMRI and anatomical data analyzed will be made publicly available.

      We are grateful to the reviewer for their clear and thoughtful description of the strengths of the paper, as well as their helpful outlining of areas we could improve.

      Weaknesses:

      - The Methods are at times difficult to understand and in some cases seem inappropriate for the conclusions drawn. For example, I believe that the movie-defined ICA components were validated using independent data from the retinotopy task, but this was a point of confusion among reviewers. 

      We acknowledge the complexity of the methods and wish to clarify them as best as possible for the reviewers and the readers. We have extensively revised the methods and results sections to help avoid potential misunderstandings. For instance, we have revamped the figure and caption describing the SRM pipeline (Figure 5).

      To answer the stated confusion directly, the ICA components were derived from the movie data and validated on the (completely independent) retinotopy data. There were no additional tasks. The following text in the paper explains this point:

      “To assess the selected component maps, we correlated the gradients (described above) of the task-evoked and component maps. This test uses independent data: the components were defined based on movie data and validated against task-evoked retinotopic maps.” Pg. 11

      In either case: more analyses should be done to support the conclusion that the components identified from the movie reproduce retinotopic maps (for example, by comparing the performance of movie-viewing maps to available alternatives (anatomical ROIs, group-defined ROIs). 

      Before addressing this suggestion, we want to restate our conclusions: features of the retinotopic organization of infant visual cortex could be predicted from movie data. We did not conclude that movie data could ‘reproduce’ retinotopic maps in the sense that they would be a replacement. We recognize that this was not clear in our original manuscript and have clarified this point throughout, including in this section of the discussion:

      “To be clear, we are not suggesting that movies work well enough to replace a retinotopy task when accurate maps are needed. For instance, even though ICA found components that were highly correlated with the spatial frequency map, we also selected some components that turned out to have lower correlations. Without knowing the ground truth from a retinotopy task, there would be no way to weed these out. Additionally, anatomical alignment (i.e., averaging the maps from other participants and anatomically aligning them to a held-out participant) resulted in maps that were highly similar to the ground truth. Indeed, we previously23 found that adult-defined visual areas were moderately similar to infants. While functional alignment with adults can outperform anatomical alignment methods in similar analyses27, here we find that functional alignment is inferior to anatomical alignment. Thus, if the goal is to define visual areas in an infant that lacks task-based retinotopy, anatomical alignment of other participants’ retinotopic maps is superior to using movie-based analyses, at least as we tested it.” Pg. 21

      As per the reviewer’s suggestion and alluded to in the paragraph above, we have created anatomically aligned visual maps, providing an analogous test to the betweenparticipant analyses like SRM. We find that these maps are highly similar to the ground truth. We describe this result in a new section of the results:

      “We performed an anatomical alignment analog of the functional alignment (SRM) approach. This analysis serves as a benchmark for predicting visual maps using taskbased data, rather than movie data, from other participants. For each infant participant, we aggregated all other infant or adult participants as a reference. The retinotopic maps from these reference participants were anatomically aligned to the standard surface template, and then averaged. These averages served as predictions of the maps in the test participant, akin to SRM, and were analyzed equivalently (i.e., correlating the gradients in the predicted map with the gradients in the task-based map). These correlations (Table S4) are significantly higher than for functional alignment (using infants to predict spatial frequency, anatomical alignment > functional alignment: ∆Fisher Z M=0.44, CI=[0.32–0.58], p<.001; using infants to predict meridians, anatomical alignment > functional alignment: ∆Fisher Z M=0.61, CI=[0.47–0.74], p<.001; using adults to predict spatial frequency, anatomical alignment > functional alignment: ∆Fisher Z

      M=0.31, CI=[0.21–0.42], p<.001; using adults to predict meridians, anatomical alignment > functional alignment: ∆Fisher Z M=0.49, CI=[0.39–0.60], p<.001). This suggests that even if SRM shows that movies can be used to produce retinotopic maps that are significantly similar to a participant, these maps are not as good as those that can be produced by anatomical alignment of the maps from other participants without any movie data.” Pg. 16–17

      Also, the ROIs used for the homotopy analyses were defined based on the retinotopic task rather than based on movie-viewing data alone - leaving it unclear whether movie-viewing data alone can be used to recover functionally distinct regions within the visual cortex.

      We agree with the reviewer that our approach does not test whether movie-viewing data alone can be used to recover functionally distinct regions. The goal of the homotopy analyses was to identify whether there was functional differentiation of visual areas in the infant brain while they watch movies. This was a novel question that provides positive evidence that these regions are functionally distinct. In subsequent analyses, we show that when these areas are defined anatomically, rather than functionally, they also show differentiated function (e.g., Figure 2). Nonetheless, our intention was not to use the homotopy analyses to define the regions. We have added text to clarify the goal and novelty of this analysis.

      “Although these analyses cannot define visual maps, they test whether visual areas have different functional signatures.” Pg. 6

      Additionally, even if the goal were to define areas based on homotopy, we believe the power of that analysis would be questionable. We would need to use a large amount of the movie data to define the areas, leaving a low-powered dataset to test whether their function is differentiated by these movie-based areas.

      - The authors previously reported on retinotopic organization of the visual cortex in human infants (Ellis et al., 2021) and suggest that the feasibility of using movie-viewing experiments to recover these topographic maps is still in question. They point out that movies may not fully sample the stimulus parameters necessary for revealing topographic maps/areas in the visual cortex, or the time-resolution constraints of fMRI might limit the use of movie stimuli, or the rich, uncontrolled nature of movies might make them inferior to stimuli that are designed for retinotopic mapping, or might lead to variable attention between participants that makes measuring the structure of visual responses across individuals challenging. This motivation doesn't sufficiently highlight the importance or value of testing this question in infants. Further, it's unclear if/how this motivation takes into account prior research using movie-viewing fMRI experiments to reveal retinotopic organization in adults (e.g., Knapen, 2021). Given the evidence for retinotopic organization in infants and evidence for the use of movie-viewing experiments in adults, an alternative framing of the novel contribution of this study is that it tests whether retinotopic organization is measurable using a limited amount of movie-viewing data (i.e., a methodological stress test). The study motivation and discussion could be strengthened by more attention to relevant work with adults and/or more explanation of the importance of testing this question in infants (is the reason to test this question in infants purely methodological - i.e., as a way to negate the need for retinotopic tasks in subsequent research, given the time constraints of scanning human infants?).

      We are grateful to the reviewer for giving us the opportunity to clarify the innovations of this research. We believe that this research contributes to our understanding of how infants process dynamic stimuli, demonstrates the viability and utility of movie experiments in infants, and highlights the potential for new movie-based analyses (e.g., SRM). We have now consolidated these motivations in the introduction to more clearly motivate this work:

      “The primary goal of the current study is to investigate whether movie-watching data recapitulates the organization of visual cortex. Movies drive strong and naturalistic responses in sensory regions while minimizing task demands12, 13, 24 and thus are a proxy for typical experience. In adults, movies and resting-state data have been used to characterize the visual cortex in a data-driven fashion25–27. Movies have been useful in awake infant fMRI for studying event segmentation28, functional alignment29, and brain networks30. However, this past work did not address the granularity and specificity of cortical organization that movies evoke. For example, movies evoke similar activity in infants in anatomically aligned visual areas28, but it remains unclear whether responses to movie content differ between visual areas (e.g., is there more similarity of function within visual areas than between31). Moreover, it is unknown whether structure within visual areas, namely visual maps, contributes substantially to visual evoked activity. Additionally, we wish to test whether methods for functional alignment can be used with infants. Functional alignment finds a mapping between participants using functional activity – rather than anatomy – and in adults can improve signal-to-noise, enhance across participant prediction, and enable unique analyses27, 32–34.” Pg. 3-4

      Furthermore, the introduction culminates in the following statement on what the analyses will tell us about the nature of movie-driven activity in infants:

      “These three analyses assess key indicators of the mature visual system: functional specialization between areas, organization within areas, and consistency between individuals.” Pg. 5

      Furthermore, in the discussion we revisit these motivations and elaborate on them further:

      [Regarding homotopy:] “This suggests that visual areas are functionally differentiated in infancy and that this function is shared across hemispheres31.” Pg. 19

      [Regarding ICA:] “This means that the retinotopic organization of the infant brain accounts for a detectable amount of variance in visual activity, otherwise components resembling these maps would not be discoverable.” Pg. 19–20

      [Regarding SRM:] “This is initial evidence that functional alignment may be useful for enhancing signal quality, like it has in adults27,32,33, or revealing changing function over development45.” Pg. 21

      Additionally, we have expanded our discussion of relevant work that uses similar methods such as the excellent research from Knapen (2021) and others:

      “In adults, movies and resting-state data have been used to characterize the visual cortex in a data-driven fashion25-27.” Pg. 4

      “We next explored whether movies can reveal fine-grained organization within visual areas by using independent components analysis (ICA) to propose visual maps in individual infant brains25,26,35,42,43.” Pg. 9

      Reviewer #2 (Public Review):

      Summary:

      This manuscript shows evidence from a dataset with awake movie-watching in infants, that the infant brain contains areas with distinct functions, consistent with previous studies using resting state and awake task-based infant fMRI. However, substantial new analyses would be required to support the novel claim that movie-watching data in infants can be used to identify retinotopic areas or to capture within-area functional organization.

      Strengths:

      The authors have collected a unique dataset: the same individual infants both watched naturalistic animations and a specific retinotopy task. These data position the authors to test their novel claim, that movie-watching data in infants can be used to identify retinotopic areas.

      Weaknesses:

      To claim that movie-watching data can identify retinotopic regions, the authors should provide evidence for two claims:

      - Retinotopic areas defined based only on movie-watching data, predict retinotopic responses in independent retinotopy-task-driven data.

      - Defining retinotopic areas based on the infant's own movie-watching response is more accurate than alternative approaches that don't require any movie-watching data, like anatomical parcellations or shared response activation from independent groups of participants.

      We thank the reviewer for their comments. Before addressing their suggestions, we wish to clarify that we do not claim that movie data can be used to identify retinotopic areas, but instead that movie data captures components of the within and between visual area organization as defined by retinotopic mapping. We recognize that this was not clear in our original manuscript and have clarified this point throughout, including in this section of the discussion:

      “To be clear, we are not suggesting that movies work well enough to replace a retinotopy task when accurate maps are needed. For instance, even though ICA found components that were highly correlated with the spatial frequency map, we also selected some components that turned out to have lower correlations. Without knowing the ground truth from a retinotopy task, there would be no way to weed these out. Additionally, anatomical alignment (i.e., averaging the maps from other participants and anatomically aligning them to a held-out participant) resulted in maps that were highly similar to the ground truth. Indeed, we previously23 found that adult-defined visual areas were moderately similar to infants. While functional alignment with adults can outperform anatomical alignment methods in similar analyses27, here we find that functional alignment with infants is inferior to anatomical alignment. Thus, if the goal is to define visual areas in an infant that lacks task-based retinotopy, anatomical alignment of other participants’ retinotopic maps is superior to using movie-based analyses, at least as we tested it.” Pg. 21

      In response to the reviewer’s suggestion, we compare the maps identified by SRM to the averaged, anatomically aligned maps from infants. We find that these maps are highly similar to the task-based ground truth and we describe this result in a new section:

      “We performed an anatomical alignment analog of the functional alignment (SRM) approach. This analysis serves as a benchmark for predicting visual maps using taskbased data, rather than movie data, from other participants. For each infant participant, we aggregated all other infant or adult participants as a reference. The retinotopic maps from these reference participants were anatomically aligned to the standard surface template, and then averaged. These averages served as predictions of the maps in the test participant, akin to SRM, and were analyzed equivalently (i.e., correlating the gradients in the predicted map with the gradients in the task-based map). These correlations (Table S4) are significantly higher than for functional alignment (using infants to predict spatial frequency, anatomical alignment < functional alignment: ∆Fisher Z M=0.44, CI=[0.32–0.58], p<.001; using infants to predict meridians, anatomical alignment < functional alignment: ∆Fisher Z M=0.61, CI=[0.47–0.74], p<.001; using adults to predict spatial frequency, anatomical alignment < functional alignment: ∆Fisher Z

      M=0.31, CI=[0.21–0.42], p<.001; using adults to predict meridians, anatomical alignment < functional alignment: ∆Fisher Z M=0.49, CI=[0.39–0.60], p<.001). This suggests that even if SRM shows that movies can be used to produce retinotopic maps that are significantly similar to a participant, these maps are not as good as those that can be produced by anatomical alignment of the maps from other participants without any movie data.” Pg. 16–17

      Note that we do not compare the anatomically aligned maps with the ICA maps statistically. This is because these analyses are not comparable: ICA is run within-participant whereas anatomical alignment is necessarily between-participant — either infant or adults. Nonetheless, an interested reader can refer to the Table where we report the results of anatomical alignment and see that anatomical alignment outperforms ICA in terms of the correlation between the predicted and task-based maps.

      Both of these analyses are possible, using the (valuable!) data that these authors have collected, but these are not the analyses that the authors have done so far. Instead, the authors report the inverse of (1): regions identified by the retinotopy task can be used to predict responses in the movies. The authors report one part of (2), shared responses from other participants can be used to predict individual infants' responses in the movies, but they do not test whether movie data from the same individual infant can be used to make better predictions of the retinotopy task data, than the shared response maps.

      So to be clear, to support the claims of this paper, I recommend that the authors use the retinotopic task responses in each individual infant as the independent "Test" data, and compare the accuracy in predicting those responses, based on:

      -  The same infant's movie-watching data, analysed with MELODIC, when blind experimenters select components for the SF and meridian boundaries with no access to the ground-truth retinotopy data.

      -  Anatomical parcellations in the same infant.

      -  Shared response maps from groups of other infants or adults.

      -  (If possible, ICA of resting state data, in the same infant, or from independent groups of infants).

      Or, possibly, combinations of these techniques.

      If the infant's own movie-watching data leads to improved predictions of the infant's retinotopic task-driven response, relative to these existing alternatives that don't require movie-watching data from the same infant, then the authors' main claim will be supported.

      These are excellent suggestions for additional analyses to test the suitability for moviebased maps to replace task-based maps. We hope it is now clear that it was never our intention to claim that movie-based data could replace task-based methods. We want to emphasize that the discoveries made in this paper — that movies evoke fine-grained organization in infant visual cortex — do not rely on movie-based maps being better than alternative methods for producing maps, such as the newly added anatomical alignment.

      The proposed analysis above solves a critical problem with the analyses presented in the current manuscript: the data used to generate maps is identical to the data used to validate those maps. For the task-evoked maps, the same data are used to draw the lines along gradients and then test for gradient organization. For the component maps, the maps are manually selected to show the clearest gradients among many noisy options, and then the same data are tested for gradient organization. This is a double-dipping error. To fix this problem, the data must be split into independent train and test subsets.

      We appreciate the reviewer’s concern; however, we believe it is a result of a miscommunication in our analytic strategy. We have now provided more details on the analyses to clarify how double-dipping was avoided. 

      To summarize, a retinotopy task produced visual maps that were used to trace both area boundaries and gradients across the areas. These data were then fixed and unchanged, and we make no claims about the nature of these maps in this paper, other than to treat them as the ground truth to be used as a benchmark in our analyses. The movie data, which are collected independently from the same infant in the session, used the boundaries from the retinotopy task (in the case of homotopy) or were compared with the maps from the retinotopy task (in the case of ICA and SRM). In other words, the statement that “the data used to generate maps is identical to the data used to validate those maps” is incorrect because we generated the maps with a retinotopy task and validated the maps with the movie data. This means no double dipping occurred.

      Perhaps a cause of the reviewer’s interpretation is that the gradients used in the analysis are not clearly described. We now provide this additional description:  “Using the same manually traced lines from the retinotopy task, we measured the intensity gradients in each component from the movie-watching data. We can then use the gradients of intensity in the retinotopy task-defined maps as a benchmark for comparison with the ICA-derived maps.” Pg. 10

      Regarding the SRM analyses, we take great pains to avoid the possibility of data contamination. To emphasize how independent the SRM analysis is, the prediction of the retinotopic map from the test participant does not use their retinotopy data at all; in fact, the predicted maps could be made before that participant’s retinotopy data were ever collected. To make this prediction for a test participant, we need to learn the inversion of the SRM, but this only uses the movie data of the test participant. Hence, there is no double-dipping in the SRM analyses. We have elaborated on this point in the revision, and we remade the figure and its caption to clarify this point:

      We also have updated the description of these results to emphasize how double-dipping was avoided:

      “We then mapped the held-out participant's movie data into the learned shared space without changing the shared space (Figure 5c). In other words, the shared response model was learned and frozen before the held-out participant’s data was considered.

      This approach has been used and validated in prior SRM studies45.” Pg. 14

      The reviewer suggests that manually choosing components from ICA is double-dipping. Although the reviewer is correct that the manual selection of components in ICA means that the components chosen ought to be good candidates, we are testing whether those choices were good by evaluating those components against the task-based maps that were not used for the ICA. Our statistical analyses evaluate whether the components chosen were better than the components that would have been chosen by random chance. Critically: all decisions about selecting the components happen before the components are compared to the retinotopic maps. Hence there is no double-dipping in the selection of components, as the choice of candidate ICA maps is not informed by the ground-truth retinotopic maps. We now clarify what the goal of this process is in the results:

      “Success in this process requires that 1) retinotopic organization accounts for sufficient variance in visual activity to be identified by ICA and 2) experimenters can accurately identify these components.” Pg. 10

      The reviewer also alludes to a concern that the researcher selecting the maps was not blind to the ground-truth retinotopic maps from participants and this could have influenced the results. In such a scenario, the researcher could have selected components that have the gradients of activity in the places that the infant has as ground truth. The researcher who made the selection of components (CTE) is one of the researchers who originally traced the areas in the participants approximately a year prior to the identification of ICs. The researcher selecting the components didn’t use the ground-truth retinotopic maps as reference, nor did they pay attention to the participant IDs when sorting the IC components. Indeed, they weren’t trying to find participants-specific maps per se, but rather aimed to find good candidate retinotopic maps in general. In the case of the newly added adult analyses, the ICs were selected before the retinotopic mapping was reviewed or traced; hence, no knowledge about the participant-specific ground truth could have influenced the selection of ICs. Even with this process from adults, we find results of comparable strength as we found in infants, as shown in Figure S3. Nonetheless, there is a possibility that this researcher’s previous experience of tracing the infant maps could have influenced their choice of components at the participant-specific level. If so, it was a small effect since the components the researcher selected were far from the best possible options (i.e., rankings of the selected components averaged in the 64th percentile for spatial frequency maps and the 68th percentile for meridian maps). We believe all reasonable steps were taken to mitigate bias in the selection of ICs.

      Reviewer #3 (Public Review):

      The manuscript reports data collected in awake toddlers recording BOLD while watching videos. The authors analyse the BOLD time series using two different statistical approaches, both very complex but do not require any a priori determination of the movie features or contents to be associated with regressors. The two main messages are that 1) toddlers have occipital visual areas very similar to adults, given that an SRM model derived from adult BOLD is consistent with the infant brains as well; 2) the retinotopic organization and the spatial frequency selectivity of the occipital maps derived by applying correlation analysis are consistent with the maps obtained by standard and conventional mapping.

      Clearly, the data are important, and the author has achieved important and original results. However, the manuscript is totally unclear and very difficult to follow; the figures are not informative; the reader needs to trust the authors because no data to verify the output of the statistical analysis are presented (localization maps with proper statistics) nor so any validation of the statistical analysis provided. Indeed what I think that manuscript means, or better what I understood, may be very far from what the authors want to present, given how obscure the methods and the result presentation are.

      In the present form, this reviewer considers that the manuscript needs to be totally rewritten, the results presented each technique with appropriate validation or comparison that the reader can evaluate.

      We are grateful to the reviewer for the chance to improve the paper. We have broken their review into three parts: clarification of the methods, validation of the analyses, and enhancing the visualization.

      Clarification of the methods

      We acknowledge that the methods we employed are complex and uncommon in many fields of neuroimaging. That said, numerous papers have conducted these analyses on adults (Beckman et al., 2005; Butt et al., 2015; Guntupalli et al., 2016; Haak & Beckman, 2018; Knapen, 2021; Lu et al., 2017) and non-human primates (Arcaro & Livingstone, 2017; Moeller et al., 2009). We have redoubled our efforts in the revision to make the methods as clear as possible, expanding on the original text and providing intuitions where possible. These changes have been added throughout and are too vast in number to repeat here, especially without context, but we hope that readers will have an easier time following the analyses now. 

      Additionally, we updated Figures 3 and 5 in which the main ICA and SRM analyses are described. For instance, in Figure 3’s caption we now add details about how the gradient analyses were performed on the components: 

      “We used the same lines that were manually traced on the task-evoked map to assess the change in the component’s response. We found a monotonic trend within area from medial to lateral, just like we see in the ground truth.” Pg. 11

      Regarding Figure 5, we reconsidered the best way to explain the SRM analyses and decided it would be helpful to partition the diagram into steps, reflecting the analytic process. These updates have been added to Figure 5, and the caption has been updated accordingly.

      We hope that these changes have improved the clarity of the methods. For readers interested in learning more, we encourage them to either read the methods-focused papers that debut the analyses (e.g., Chen et al., 2015), read the papers applying the methods (e.g., Guntupalli et al., 2016), or read the annotated code we publicly release which implements these pipelines and can be used to replicate the findings.

      Validation of the analyses

      One of the requests the reviewer makes is to validate our analyses. Our initial approach was to lean on papers that have used these methods in adults or primates (e.g., Arcaro,

      & Livingstone, 2017; Beckman et al., 2005; Butt et al., 2015; Guntupalli et al., 2016; Haak & Beckman, 2018; Knapen, 2021; Moeller et al., 2009) where the underlying organization and neurophysiology is established. However, we have made changes to these methods that differ from their original usage (e.g., we used SRM rather than hyperalignment, we use meridian mapping rather than traveling wave retinotopy, we use movie-watching data rather than rest). Hence, the specifics of our design and pipeline warrant validation. 

      To add further validation, we have rerun the main analyses on an adult sample. We collected 8 adult participants who completed the same retinotopy task and a large subset of the movies that infants saw. These participants were run under maximally similar conditions to infants (i.e., scanned using the same parameters and without the top of the head-coil) and were preprocessed using the same pipeline. Given that the relationship between adult visual maps and movie-driven (or resting-state) analyses has been shown in many studies (Beckman et al., 2005; Butt et al., 2015; Guntupalli et al., 2016; Haak & Beckman, 2018; Knapen, 2021; Lu et al., 2017), these adult data serve as a validation of our analysis pipeline. These adult participants were included in the original manuscript; however, they were previously only used to support the SRM analyses (i.e., can adults be used to predict infant visual maps). The adult results are described before any results with infants, as a way to engender confidence. Moreover, we have provided new supplementary figures of the adult results that we hope will be integrated with the article when viewing it online, such that it will be easy to compare infant and adult results, as per the reviewer’s request. 

      As per the figures and captions below, the analyses were all successful with the adult participants: 1) Homotopic correlations are higher than correlations between comparable areas in other streams or areas that are more distant within stream. 2) A multidimensional scaling depiction of the data shows that areas in the dorsal and ventral stream are dissimilar. 3) Using independent components analysis on the movie data, we identified components that are highly correlated with the retinotopy task-based spatial frequency and meridian maps. 4) Using shared response modeling on the movie data, we predicted maps that are highly correlated with the retinotopy task-based spatial frequency and meridian maps.

      These supplementary analyses are underpowered for between-group comparisons, so we do not statistically compare the results between infants and adults. Nonetheless, the pattern of adult results is comparable overall to the infant results. 

      We believe these adult results provide a useful validation that the infant analyses we performed can recover fine-grained organization.

      The reviewer raises an additional concern about the lack of visualization of the results. We recognize that the plots of the summary statistics do not provide information about the intermediate analyses. Indeed, we think the summary statistics can understate the degree of similarity between the components or predicted visual maps and the ground truth. Hence, we have added 6 new supplementary figures showing the intensity gradients for the following analyses: 1. spatial frequency prediction using ICA, 2. meridian prediction using ICA, 3. spatial frequency prediction using infant SRM, 4.

      meridian prediction using infant SRM, 5. spatial frequency prediction using adult SRM, and 6. meridian prediction using adult SRM.

      We hope that these visualizations are helpful. It is possible that the reviewer wishes us to also visually present the raw maps from the ICA and SRM, akin to what we show in Figure 3A and 3B. We believe this is out of scope of this paper: of the 1140 components that were identified by ICA, we selected 36 for spatial frequency and 17 for meridian maps. We also created 20 predicted maps for spatial frequency and 20 predicted meridian maps using SRM. This would result in the depiction of 93 subfigures, requiring at least 15 new full-page supplementary figures to display with adequate resolution. Instead, we encourage the reader to access this content themselves: we have made the code to recreate the analyses publicly available, as well as both the raw and preprocessed data for these analyses, including the data for each of these selected maps.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) As mentioned in the public review, the authors should consider incorporating relevant adult fMRI research into the Introduction and explain the importance of testing this question in infants.

      Our public response describes the several citations to relevant adult research we have added, and have provided further motivation for the project.

      (2) The authors should conduct additional analyses to support their conclusion that movie data alone can generate accurate retinotopic maps (i.e., by comparing this approach to other available alternatives).

      We have clarified in our public response that we did not wish to conclude that movie data alone can generate accurate retinotopic maps, and have made substantial edits to the text to emphasize this. Thus, because this claim is already not supported by our analyses, we do not think it is necessary to test it further.

      (3) The authors should re-do the homotopy analyses using movie-defined ROIs (i.e., by splitting the movie-viewing data into independent folds for functional ROI definition and analyses).

      As stated above, defining ROIs based on the movie content is not the intended goal of this project. Even if that were the general goal, we do not believe that it would be appropriate to run this specific analysis with the data we collected. Firstly, halving the data for ROI definition (e.g., using half the movie data to identify and trace areas, and then use those areas in the homotopy analysis to run on the other half of data) would qualitatively change the power of the analyses described here. Secondly, we would be unable to define areas beyond hV4/V3AB with confidence, since our retinotopic mapping only affords specification of early visual cortex. Thus we could not conduct the MDS analyses shown in Figure 2.

      (4) If the authors agree that a primary contribution of this study and paper is to showcase what is possible to do with a limited amount of movie-viewing data, then they should make it clearer, sooner, how much usable movie data they have from infants. They could also consider conducting additional analyses to determine the minimum amount of fMRI data necessary to reveal the same detailed characteristics of functional responses in the visual cortex.

      We agree it would be good to highlight the amount of movie data used. When the infant data is first introduced in the results section, we now state the durations:

      “All available movies from each session were included (Table S2), with an average duration of 540.7s (range: 186--1116s).” Pg. 5

      Additionally, we have added a homotopy analysis that describes the contribution of data quantity to the results observed. We compare the amount of data collected with the magnitude of same vs. different stream effect (Figure 1B) and within stream distance effect (Figure 1C). We find no effect of movie duration in the sample we tested, as reported below:

      “We found no evidence that the variability in movie duration per participant correlated with this difference [of same stream vs. different stream] (r=0.08, p=.700).” Pg. 6-7

      “There was no correlation between movie duration and the effect (Same > Adjacent: r=-

      0.01, p=.965, Adjacent > Distal: r=-0.09, p=.740).” Pg. 7

      (5) If any of the methodological approaches are novel, the authors should make this clear. In particular, has the approach of visually inspecting and categorizing components generated from ICA and movie data been done before, in adults/other contexts?

      The methods we employed are similar to others, as described in the public review.

      However, changes were necessary to apply them to infant samples. For instance, Guntupalli et al. (2016) used hyperalignment to predict the visual maps of adult participants, whereas we use SRM. SRM and hyperalignment have the same goal — find a maximally aligned representation between participants based on brain function — but their implementation is different. The application of functional alignment to infants is novel, as is their use in movie data that is relatively short by comparison to standard adult data. Indeed, this is the most thorough demonstration that SRM — or any functional alignment procedure — can be usefully applied to infant data, awake or sleeping. We have clarified this point in the discussion.

      “This is initial evidence that functional alignment may be useful for enhancing signal quality, like it has in adults27,32,33, or revealing changing function over development45, which may prove especially useful for infant fMRI52.” Pg. 21

      (6) The authors found that meridian maps were less identifiable from ICA and movie data and suggest that this may be because these maps are more susceptible to noise or gaze variability. If this is the case, you might predict that these maps are more identifiable in adult data. The authors could consider running additional analyses with their adult participants to better understand this result.

      As described in the manuscript, we hypothesize that meridian maps are more difficult to identify than spatial frequency maps because meridian maps are a less smooth, more fine-grained map than spatial frequency. Indeed, it has previously been reported (Moeller et al., 2009) that similar procedures can result in meridian maps that are constituted by multiple independent components (e.g., a component sensitive to horizontal orientations, and a separate component sensitive to vertical components). Nonetheless, we have now conducted the ICA procedure on adult participants and again find it is easier to identify spatial frequency components compared to meridian maps, as reported in the public review.

      Minor corrections:

      (1) Typo: Figure 3 title: "Example retintopic task vs. ICA-based spatial frequency maps.".

      Fixed

      (2) Given the age range of the participants, consider using "infants and toddlers"? (Not to diminish the results at all; on the contrary, I think it is perhaps even more impressive to obtain awake fMRI data from ~1-2-year-olds). Example: Figure 3 legend: "A) Spatial frequency map of a 17.1-monthold infant.".

      We agree with the reviewer that there is disagreement about the age range at which a child starts being considered a toddler. We have changed the terms in places where we refer to a toddler in particular (e.g., the figure caption the reviewer highlights) and added the phrase “infants and toddlers” in places where appropriate. Nonetheless, we have kept “infants” in some places, particularly those where we are comparing the sample to adults. Adding “and toddlers” could imply three samples being compared which would confuse the reader.

      (3) Figure 6 legend: The following text should be omitted as there is no bar plot in this figure: "The bar plot is the average across participants. The error bar is the standard error across participants.".

      Fixed

      (4) Table S1 legend: Missing first single quote: Runs'.

      Fixed

      Reviewer #2 (Recommendations For The Authors):

      I request that this paper cite more of the existing literature on the fMRI of human infants and toddlers using task-driven and resting-state data. For example, early studies by (first authors) Biagi, Dehaene-Lambertz, Cusack, and Fransson, and more recent studies by Chen, Cabral, Truzzi, Deen, and Kosakowski.

      We have added several new citations of recent task-based and resting state studies to the second sentence of the main text:

      “Despite the recent growth in infant fMRI1-6, one of the most important obstacles facing this research is that infants are unable to maintain focus for long periods of time and struggle to complete traditional cognitive tasks7.”

      Reviewer #3 (Recommendations For The Authors):

      In the following, I report some of my main perplexities, but many more may arise when the material is presented more clearly.

      The age of the children varies from 5 months to about 2 years. While the developmental literature suggests that between 1 and 2 years children have a visual system nearly adult-like, below that age some areas may be very immature. I would split the sample and perhaps attempt to validate the adult SRM model with the youngest children (and those can be called infants).

      We recognize the substantial age variability in our sample, which is why we report participant-specific data in our figures. While splitting up the data into age bins might reveal age effects, we do not think we can perform adequately powered null hypothesis testing of the age trend. In order to investigate the contribution of age, larger samples will be needed. That said, we can see from the data that we have reported that any effect of age is likely small. To elaborate: Figures 4 and 6 report the participant-specific data points and order the participants by age. There are no clear linear trends in these plots, thus there are no strong age effects.

      More broadly, we do not think there is a principled way to divide the participants by age. The reviewer suggests that the visual system is immature before the first year of life and mature afterward; however, such claims are the exact motivation for the type of work we are doing here, and the verdict is still out. Indeed, the conclusion of our earlier work reporting retinotopy in infants (Ellis et al., 2021) suggests that the organization of the early visual cortex in infants as young as 5 months — the youngest infant in our sample — is surprisingly adult-like.

      The title cannot refer to infants given the age span.

      There is disagreement in the field about the age at which it is appropriate to refer to children as infants. In this paper, and in our prior work, we followed the practice of the most attended infant cognition conference and society, the International Congress of Infant Studies (ICIS), which considers infants as those aged between 0-3 years old, for the purposes of their conference. Indeed, we have never received this concern across dozens of prior reviews for previous papers covering a similar age range. That said, we understand the spirit of the reviewer’s comment and now refer to the sample as “infants and toddlers” and to older individuals in our sample as “toddlers” wherever it is appropriate (the younger individuals would fairly be considered “infants” under any definition).

      Figure 1 is clear and an interesting approach. Please also show the average correlation maps on the cortical surface.

      While we would like to create a figure as requested, we are unsure how to depict an area-by-area correlation map on the cortical surface. One option would be to generate a seed-based map in which we take an area and depict the correlation of that seed (e.g., vV1) with all other voxels. This approach would result in 8 maps for just the task-defined areas, and 17 maps for anatomically-defined areas. Hence, we believe this is out of scope of this paper, but an interested reader could easily generate these maps from the data we have released.

      Figure 2 results are not easily interpretable. Ventral and dorsal V1-V3 areas represent upper or lower VF respectively. Higher dorsal and ventral areas represent both upper and lower VF, so we should predict an equal distance between the two streams. Again, how can we verify that it is not a result of some artifacts?

      In adults, visual areas differ in their functional response properties along multiple dimensions, including spatial coding. The dorsal/ventral stream hypothesis is derived from the idea that areas in each stream support different functions, independent of spatial coding. The MDS analysis did not attempt to isolate the specific contribution of spatial representations of each area but instead tested the similarity of function that is evoked in naturalistic viewing. Other covariance-based analyses specifically isolate the contribution of spatial representations (Haak et al., 2013); however, they use a much more constrained analysis than what was implemented here. The fact that we find broad differentiation of dorsal and ventral visual areas in infants is consistent with adults (Haak & Beckman, 2018) and neonate non-human primates (Arcaro & Livingstone, 2017). 

      Nonetheless, we recognize that we did not mention the differences in visual field properties across areas and what that means. If visual field properties alone drove the functional response then we would expect to see a clustering of areas based on the visual field they represent (e.g., hV4 and V3AB should have similar representations). Since we did not see that, and instead saw organization by visual stream, the result is interesting and thus warrants reporting. We now mention this difference in visual fields in the manuscript to highlight the surprising nature of the result.

      “This separation between streams is striking when considering that it happens despite differences in visual field representations across areas: while dorsal V1 and ventral V1 represent the lower and upper visual field, respectively, V3A/B and hV4 both have full visual field maps. These visual field representations can be detected in adults41; however, they are often not the primary driver of function39. We see that in infants too: hV4 and V3A/B represent the same visual space yet have distinct functional profiles.” Pg. 8

      The reviewer raises a concern that the MDS result may be spurious and caused by noise. Below, we present three reasons why we believe these results are not accounted for by artifacts but instead reflect real functional differentiation in the visual cortex. 

      (1) Figure 2 is a visualization of the similarity matrix presented in Figure S1. In Figure S1, we report the significance testing we performed to confirm that the patterns differentiating dorsal and ventral streams — as well as adjacent areas from distal areas — are statistically reliable across participants. If an artifact accounted for the result then it would have to be a kind of systematic noise that is consistent across participants.

      (2) One of the main sources of noise (both systematic and non-systematic) with infant fMRI is motion. Homotopy is a within-participant analysis that could be biased by motion. To assess whether motion accounts for the results, we took a conservative approach of regressing out the framewise motion (i.e., how much movement there is between fMRI volumes) from the comparisons of the functional activity in regions. Although the correlations numerically decreased with this procedure, they were qualitatively similar to the analysis that does not regress out motion:

      “Additionally, if we control for motion in the correlation between areas --- in case motion transients drive consistent activity across areas --- then the effects described here are negligibly different (Figure S5).” Pg. 7

      (3) We recognize that despite these analyses, it would be helpful to see what this pattern looks like in adults where we know more about the visual field properties and the function of dorsal and ventral streams. This has been done previously (e.g., Haak & Beckman, 2018), but we have now run those analyses on adults in our sample, as described in the public review. As with infants, there are reliable differences in the homotopy between streams (Figure S1). The MDS results show that the adult data was more complex than the infant data, since it was best described by 3 dimensions rather than 2. Nonetheless, there is a rotation of the MDS such that the structure of the ventral and dorsal streams is also dissociable. 

      Figure 3 also raises several alternative interpretations. The spatial frequency component in B has strong activity ONLY at the extreme border of the VF and this is probably the origin of the strong correlation. I understand that it is only one subject, but this brings the need to show all subjects and to report the correlation. Also, it is important to show the putative average ICA for retinotopy and spatial frequencies across subjects and for adults. All methods should be validated on adults where we have clear data for retinotopy and spatial frequency.

      The reviewer notes that the component in Figure 3 shows strong negative response in the periphery. It is often the case, as reported elsewhere (Moeller et al., 2009), that ICA extracts portions of visual maps. To make a full visual map would require combining components into a composite (e.g., a component that has a high response in the periphery and another component that has a high response in the fovea). If we were to claim that this component, or others like it, could replace the need for retinotopic mapping, then we would want to produce these composite maps; however, our conclusion in this project is that the topographic information of retinotopic maps manifest in individual components of ICA. For this purpose, the analysis we perform adequately assesses this topography.

      Regarding the request to show the results for all subjects, we address this in the public response and repeat it here briefly: we have added 6 new figures to show results akin to Figure 3C and D. It is impractical to show the equivalent of Figure 3A and B for all participants, yet we do release the data necessary to see to visualize these maps easily.

      Finally, the reviewer suggests that we validate the analyses on adult participants. As shown in Figure S3 and reported in the public response, we now run these analyses on adult participants and observe qualitatively similar results to infants.

      How much was the variation in the presumed spatial frequency map? Is it consistent with the acuity range? 5-month-old infants should have an acuity of around 10c/deg, depending on the mean luminance of the scene.

      The reviewer highlights an important weakness of conducting ICA: we cannot put units on the degree of variation we see in components. We now highlight this weakness in the discussion:

      “Another limitation is that ICA does not provide a scale to the variation: although we find a correlation between gradients of spatial frequency in the ground truth and the selected component, we cannot use the component alone to infer the spatial frequency selectivity of any part of cortex. In other words, we cannot infer units of spatial frequency sensitivity from the components alone.” Pg. 20

      Figure 5 pipeline is totally obscure. I presumed that I understood, but as it is it is useless. All methods should be clearly described, and the intermediate results should be illustrated in figures and appropriately discussed. Using such blind analyses in infants in principle may not be appropriate and this needs to be verified. Overall all these techniques rely on correlation activities that are all biased by head movement, eye movement, and probably the dummy sucking. All those movements need to be estimated and correlated with the variability of the results. It is a strong assumption that the techniques should work in infants, given the presence of movements.

      We recognize that the SRM methods are complex. Given this feedback, we remade Figure 5 with explicit steps for the process and updated the caption (as reported in the public review).

      Regarding the validation of these methods, we have added SRM analyses from adults and find comparable results. This means that using these methods on adults with comparable amounts of data as what we collected from infants can predict maps that are highly similar to the real maps. Even so, it is not a given that these methods are valid in infants. We present two considerations in this regard. 

      First, as part of the SRM analyses reported in the manuscript, we show that control analyses are significantly worse than the real analyses (indicated by the lines on Figure 6). To clarify the control analysis: we break the mapping (i.e., flip the order of the data so that it is backwards) between the test participant and the training participants used to create the SRM. The fact that this control analysis is significantly worse indicates that SRM is learning meaningful representations that matter for retinotopy. 

      Second, we believe that this paper is a validation of SRM for infants. Infant fMRI is a nascent field and SRM has the potential to increase the signal quality in this population. We hope that readers will see these analyses as a proof of concept that SRM can be used in their work with infants. We have stated this contribution in the paper now.

      “Additionally, we wish to test whether methods for functional alignment can be used with infants. Functional alignment finds a mapping between participants using functional activity -- rather than anatomy -- and in adults can improve signal-to-noise, enhance across participant prediction, and enable unique analyses27,32-34.” Pg. 4

      “This is initial evidence that functional alignment may be useful for enhancing signal quality, like it has in adults27,32,33, or revealing changing function over development45.” Pg. 21

      Regarding the reviewer’s concern that motion may bias the results, we wish to emphasize the nature of the analyses being conducted here: we are using data from a group of participants to predict the neural responses in a held-out participant. For motion to explain consistency between participants, the motion would need to be timelocked across participants. Even if motion was time-locked during movie watching, motion will impair the formation of an adequate model that can contain retinotopic information. Thus, motion should only hurt the ability for a shared response to be found that can be used for predicting retinotopic maps. Hence, the results we observed are despite motion and other sources of noise.

      What is M??? is it simply the mean value??? If not, how it is estimated?

      M is an abbreviation for mean. We have now expanded the abbreviation the first time we use it.

      Figure 6 should be integrated with map activity where the individual area correlation should be illustrated. Probably fitting SMR adult works well for early cortical areas, but not for more ventral and associative, and the correlation should be evaluated for the different masks.

      With the addition of plots showing the gradients for each participant and each movie (Figures S10–S13) we hope we have addressed this concern. We additionally want to clarify that the regions we tested in the analysis in Figure 6 are only the early visual areas V1, V2, V3, V3A/B, and hV4. The adult validation analyses show that SRM works well for predicting the visual maps in these areas. Nonetheless, it is an interesting question for future research with more extensive retinotopic mapping in infants to see if SRM can predict maps beyond extrastriate cortex.

      Occipital masks have never been described or shown.

      The occipital mask is from the MNI probabilistic structural atlas (Mazziotta et al., 2001), as reported in the original version and is shared with the public data release. We have added the additional detail that the probabilistic atlas is thresholded at 0% in order to be liberally inclusive. 

      “We used the occipital mask from the MNI structural atlas63 in standard space -- defined liberally to include any voxel with an above zero probability of being labelled as the occipital lobe -- and used the inverted transform to put it into native functional space.” Pg. 27–28

      Methods lack the main explanation of the procedures and software description.

      We hope that the additions we have made to address this reviewer’s concerns have provided better explanations for our procedures. Additionally, as part of the data and code release, we thoroughly explain all of the software needed to recreate the results we have observed here.

  4. pressbooks.library.torontomu.ca pressbooks.library.torontomu.ca
    1. What I hate is the thought of being under a man’s thumb,” I had told Doctor Nolan. “A man doesn’t have a worry in the world, while I’ve got a baby hanging over my head like a big stick, to keep me in line.”

      What a tragedy did Ted had done to her😮‍💨😥

    2. All the heat and fear had purged itself. I felt surprisingly at peace. The bell jar hung, suspended, a few feet above my head. I was open to the circulating air. “It was like I told you it would be,

      The electric shock therapy had wiped off Esther's mania

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript by Hosack and Arce-McShane examines the directional tuning of neurons in macaque primary motor (MIo) and somatosensory (SIo) cortex. The neural basis of tongue control is far less studied than, for example, forelimb movements, partly because the tongue's kinematics and kinetics are difficult to measure. A major technical advantage of this study is using biplanar video-radiography, processed with modern motion tracking analysis software, to track the movement of the tongue inside the oral cavity. Compared to prior work, the behaviors are more naturalistic behaviors (feeding and licking water from one of three spouts), although the animals were still head-fixed.

      The study's main findings are that:

      • A majority of neurons in MIo and a (somewhat smaller) percentage of SIo modulated their firing rates during tongue movements, with different modulations depending on the direction of movement (i.e., exhibited directional tuning). Examining the statistics of tuning across neurons, there was anisotropy (e.g., more neurons preferring anterior movement) and a lateral bias in which tongue direction neurons preferred that was consistent with the innervation patterns of tongue control muscles (although with some inconsistency between monkeys).

      • Consistent with this encoding, tongue position could be decoded with moderate accuracy even from small ensembles of ~28 neurons.

      • There were differences observed in the proportion and extent of directional tuning between the feeding and licking behaviors, with stronger tuning overall during licking. This potentially suggests behavioral context-dependent encoding.

      • The authors then went one step further and used a bilateral nerve block to the sensory inputs (trigeminal nerve) from the tongue. This impaired the precision of tongue movements and resulted in an apparent reduction and change in neural tuning in Mio and SIo.

      Strengths:

      The data are difficult to obtain and appear to have been rigorously measured, and provide a valuable contribution to this under-explored subfield of sensorimotor neuroscience. The analyses adopt well-established methods, especially from the arm motor control literature, and represent a natural starting point for characterizing tongue 3D direction tuning.

      Weaknesses:

      There are alternative explanations for some of the interpretations, but those interpretations are described in a way that clearly distinguishes results from interpretations, and readers can make their own assessments. Some of these limitations are described in more detail below.

      One weakness of the current study is that there is substantial variability in results between monkeys, and that only one session of data per monkey/condition is analyzed (8 sessions total). This raises the concern that the results could be idiosyncratic. The Methods mention that other datasets were collected, but not analyzed because the imaging pre-processing is very labor-intensive. While I recognize that time is precious, I do think in this case the manuscript would be substantially strengthened by showing that the results are similar on other sessions.

      This study focuses on describing directional tuning using the preferred direction (PD) / cosine tuning model popularized by Georgopoulous and colleagues for understanding neural control of arm reaching in the 1980s. This is a reasonable starting point and a decent first-order description of neural tuning. However, the arm motor control field has moved far past that viewpoint, and in some ways, an over-fixation on static representational encoding models and PDs held that field back for many years. The manuscript benefits from drawing the readers' attention (perhaps in their Discussion) that PDs are a very simple starting point for characterizing how cortical activity relates to kinematics, but that there is likely much richer population-level dynamical structure and that a more mechanistic, control-focused analytical framework may be fruitful. A good review of this evolution in the arm field can be found in Vyas S, Golub MD, Sussillo D, Shenoy K. 2020. Computation Through Neural Population Dynamics. Annual Review of Neuroscience. 43(1):249-75

      Can the authors explain (or at least speculate) why there was such a large difference in behavioral effect due to nerve block between the two monkeys (Figure 7)?

      Do the analyses showing a decrease in tuning after nerve block take into account the changes (and sometimes reduction in variability) of the kinematics between these conditions? In other words, if you subsampled trials to have similar distributions of kinematics between Control and Block conditions, does the effect hold true? The extreme scenario to illustrate my concern is that if Block conditions resulted in all identical movements (which of course they don't), the tuning analysis would find no tuned neurons. The lack of change in decoding accuracy is another yellow flag that there may be a methodological explanation for the decreased tuning result.

      The manuscript states that "Our results suggest that the somatosensory cortex may be less involved than the motor areas during feeding, possibly because it is a more ingrained and stereotyped behavior as opposed to tongue protrusion or drinking tasks". Could an alternative explanation be more statistical/technical in nature: that during feeding, there will be more variability in exactly what somatosensation afferent signals are being received from trial to trial (because slight differences in kinematics can have large differences in exactly where the tongue is and the where/when/how of what parts of it are touching other parts of the oral cavity)? This variability could "smear out" the apparent tuning using these types of trial-averaged analyses. Given how important proprioception and somatosensation are for not biting the tongue or choking, the speculation that somatosensory cortical activity is suppressed during feedback is very counter-intuitive to this reviewer.

    1. is is a reconstruction. All of it is a reconstruction. It's a reconstructionnow, in my head, as I lie flat on my single bed rehearsing what I should orshouldn't have said, what I should or shouldn't have done, how I should haveplayed it. If I ever get out of here

      Post-modernism, shows that everything has been passed through her head and her perspective and that none of this is anything but a story. It is no truth, only a story, that she is constantly reflecting upon and rebuilding, just as the voice memos have been rearranged to make the most sense, to create meaning.

    1. If snow be white, why then her breasts are dun; If hairs be wires, black wires grow on her head.

      Odd metaphors being used here to comment on his lover's physical shortcomings. I find the language of "If __ be __" strange in this context

    1. “With our silence, in fact, we doctors were accomplices in the systematic extermination of a people”, (...)Bernard Kouchner wrote, then head of a small group of disappointed doctors who broke away from the ICRC and in1971 founded Médecins Sans Frontières (ibid., 109-10).

      Contributing to the formation of DWB as a response.

    Annotators

    1. A woman drew her long black hair out tight And fiddled whisper music on those strings And bats with baby faces in the violet light Whistled, and beat their wings And crawled head downward down a blackened wall And upside down in air were towers Tolling reminiscent bells, that kept the hours And voices singing out of empty cisterns and exhausted wells.

      Countless funerals. The purpose of describing the women is to set the scene of a funeral and how she would prepare for it. You can hear this stanza. From the strings to the bells and voices. You hear the suffering and the lamentations of those that have lost people they love.

    2. Who is the third who walks always beside you?Who is the third who walks always beside you? In his endnotes, Eliot pointed to Ernest Shackleton’s account of one of his Antarctic expeditions, in which the explorers maintained the delusion that there was an extra member present. It also clearly conjures up a biblical story from Luke 24 of travelers on the road to Emmaus, in which two disciples encounter a third presence on their journey, who is revealed to be a post-resurrection Jesus. When I count, there are only you and I together But when I look ahead up the white road There is always another one walking beside you Gliding wrapt in a brown mantle, hooded I do not know whether a man or a woman —But who is that on the other side of you?

      When I pictured this in my head I imagined someone on their way to meet death or their creator but they don't even know it yet. They still believe they are alive but when they look at the "white road," which could be a symbolism for the pathway to heaven, they see someone they know but they don't seem as familiar anymore as they are in a different place.

    1. Problem-solving: There are other kinds of meta-learning, separate from either planning or receiving knowledge. If you’re faced with a problem you’ve never solved before, and you don’t know where to look up an answer (or don’t want to), then you can try to simulate the probem in your head, and mentally consider potential solutions. If you arrive at an idea you like, this is it’s own kind of learning.

      So like shape rotating?

      I wonder what problem being Scitzo solves, or if it is a specific type of problem solving taken too far by the brain?

    2. Longer-term memories don’t seem to have a pre-determined time limit, but they do tend to fade over time. This pattern is consistent with knowledge baked into LLMs, and so can match the way an action model would effectively remember things — without a time limit, but with the ability to fade over time, especially if not referenced for a long time.

      A mind has to judge what is worth keeping in memory

      I remember that Adam Savage Quote, I got all the lyrics of every ___ type of sone stuck in my head competing with useful spy knowledge or something

    1. uju, our black mutt, was watching me. I stabbed one of the hot dogs with a fork and bent over and offered it to him.

      I can envision this in my head. A dog under a table waiting for food and a little girl giving it to the dog.

    2. The nurses remained behind, hovering over me. I could tell I was causing a big fuss, and I stayed quiet. One of them squeezed my hand and told me I was going to be okay.

      When I read this line I got an image in my head. I can see that the nurse was really trying to help her and be there for her. I also see that the nurse was like a mother figure or just a great figure. That's what I got from digging deeper and deeper.

    1. I told them, they had as good knock me in head as starve me to death.

      I feel like this shows that Rowlandson did acclimate to captivity after a while.

    2. Then I went home to my mistress’s wigwam; and they told me I disgraced my master with begging, and if I did so any more, they would knock me in the head.

      She is being greedy and searching for more than she was given (+ more than what she stole from that poor child); ungrateful. I think she also forgets that she is a representation of her master, she can't just do whatever she wants.

    3. I told them, they had as good knock me in head as starve me to death.

      Ironic how she feels that way. They've held her captive for (at least) over a month now; if they were actually trying to starve her to death by now, she would be dead.

    1. These skaters, often clad in a uniform of baggy pants and crop tops, head to the market to go thrifting each week. They’re armed with fashion knowledge only the young, fun and determined can possess and seek out the best streetwear they can find

      It's very interesting how so much is shared although we live completely different lives in different counties, even though the idea of skaters wearing "baggy pants and crop tops" is so familiar.

    2. From their trips to the market to regular skate meet-ups at the dilapidated National Stadium or Tarkwa Bay beach, they have traced their own map of the city.

      This is funny because as a kid i felt i had a whole map of where i lived in my head but in reality there was so many places i never knew about and had never been so i can relate to these kids having traced their own city map.

    3. These skaters, often clad in a uniform of baggy pants and crop tops, head to the market to go thrifting each week.

      This stand out to me or more gave me a vision on maybe how the early 2000s were just because this is what i think they we're doing back in the early 2000s.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The study made fundamental findings in investigations of the dynamic functional states during sleep. Twenty-one HMM states were revealed from the fMRI data, surpassing the number of EEG-defined sleep stages, which can define sub-states of N2 and REM. Importantly, these findings were reproducible over two nights, shedding new light on the dynamics of brain function during sleep.

      Strengths:

      The study provides the most compelling evidence on the sub-states of both REM and N2 sleep. Moreover, they showed these findings on dynamics states and their transitions were reproducible over two nights of sleep. These novel findings offered unique information in the field of sleep neuroimaging.

      Weaknesses:

      The only weakness of this study has been acknowledged by the authors: limited sample size.

      We thank the reviewer for the overall enthusiasm for this study.

      Reviewer #1 (Recommendations For The Authors):

      (1) Were there differences in the extent of head motion during sleep among sleep stages? How was the potential motion parameter differences handled during the statistical analyses?

      If there were large head motions that continued for a long time (e.g., longer than 1 minute), how did the authors deal with that scanning session? For an extremely long scanning session (3 hours), how was motion correction conducted? It would be great if the authors could provide more details.

      We found that N3 sleep stage had lowest head motion, followed by REM, N2, N1, and lastly Wake. In other words, participants have lower head motion during sleep than during Wakefulness. We added this information to the Supplemental Results, copied below.

      We performed standardized motion correction during preprocessing using AFNI regardless of the duration of the scans. We did not include motion parameters in the HMM model. Time frames with Excessive head motion (any of 6 head motion parameters exceeding 0.3 mm or degree) was censored. Previous analysis of the same data indicated that motion during extended sleep scans is comparable to the motion observed in shorter resting-state scans (Moehlman et al., 2019).

      In Supplemental Results, “Motion parameters with sleep stages.

      Averaged motion across six motion parameters decreased from wake to light sleep to deep sleep at night 2. For example, mean (standard deviation) motion for each sleep stage is as follows, N1: 0.043 (0.37); N2: 0.039 (0.033); N3: 0.035 (0.031); REM: 0.035 (0.032); Wake: 0.057 (0.052).

      Similarly, the percentage of timepoints retained after censoring decreased from wake to light sleep to deep sleep at night 2. N1: 91%; N2: 93%; N3: 96%; REM: 89%; Wake 90%.”

      In the method section, “Previous analysis of the same data indicated that motion during extended sleep scans is comparable to the motion observed in shorter resting-state scans (Moehlman et al., 2019). We also found that motion is lower during deep sleep compared to wake, see Supplemental Results.”

      (2) It is possible that the data input for the HMM analyses might vary among participants and between the two nights, how did the authors deal with this issue during statistical analyses?

      This is a great question. We standardized BOLD timecourses for each participant and each night to avoid differences among participants and between two nights. We revised the description in the method section to make this point clear.

      In the method section, “To prepare the data for analysis, we first standardized the participant-specific sets of 300 ROI timecourses (scaled to a mean of 0, and a standard deviation of 1), which were then concatenated across all participants. This standardization was performed separately for each night. ”

      (3) Figures 2 and 4, the top part seems to be missing, e.g., "Night 2" in Figure 2, and "N2-related" in Figure 4.

      Thank you for pointing out these errors. We fixed them.

      (4) Figure 3 seems to be more stretched vertically than horizontally.

      We revised the figure to ensure it appears balanced on both sides.

      Reviewer #2 (Public Review):

      Summary:

      Yang and colleagues used a Hidden Markov Model (HMM) on whole-night fMRI to isolate sleep and wake brain states in a data-driven fashion. They identify more brain states (21) than the five sleep/wake stages described in conventional PSG-based sleep staging, show that the identified brain states are stable across nights, and characterize the brain states in terms of which networks they primarily engage.

      Strengths:

      This work's primary strengths are its dataset of two nights of whole-night concurrent EEG-fMRI (including REM sleep), and its sound methodology.

      Weaknesses:

      The study's weaknesses are its small sample size and the limited attempts at relating the identified fMRI brain states back to EEG.

      We thank the reviewer for the positive feedback and helpful suggestions for this study.

      General appraisal:

      The paper's conclusions are generally well-supported, but some additional analyses and discussions could improve the work.

      The authors' main focus lies in identifying fMRI-based brain states, and they succeed at demonstrating both the presence and robustness of these states in terms of cross-night stability. Additional characterization of brain states in terms of which networks these brain states primarily engage adds additional insights.

      A somewhat missed opportunity is the absence of more analyses relating the HMM states back to EEG. It would be very helpful to the sleep field to see how EEG spectra of, say, different N2-related HMM states compare. Similarly, it is presently unclear whether anything noticeable happens within the EEG time course at the moment of an HMM class switch (particularly when the PSG stage remains stable). While the authors did look at slow wave density and various physiological signals in different HMM states, a characterization of the EEG itself in terms of spectral features is missing. Such analyses might have shown that fMRI-based brain states map onto familiar EEG substates, or reveal novel EEG changes that have so far gone unnoticed.

      We thank the reviewer for this great suggestion. We performed EEG spectral analysis on each HMM state. Results were added to Suppementary Results and Supplementary Figure 10 and 11 (Copied below). Specifically, we confirmed that N3-related states had highest Delta power and that the Deep-N2 module showed different spectral profiles compared to Light-N2 module.

      In Supplemental Results: “We conducted spectral analysis for each TR and calculated the average power spectrum for each common EEG brainwave—Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-13 Hz), Beta (13-30 Hz), and Gamma (30-100 Hz)—across the 21 HMM states. See Supplementary Figure 10 and 11 for night 2 and night 1 data, respectively. As expected, we found that N3-related states 8 and 10 had highest Delta power in both nights. In addition, the Deep-N2 module had higher power in Theta and Alpha bands compared to the Light-N2 module.”

      It is unclear how the presently identified HMM brain states relate to the previously identified NREM and wake states by Stevner et al. (2019), who used a roughly similar approach. This is important, as similar brain states across studies would suggest reproducibility, whereas large discrepancies could indicate a large dependence on particular methods and/or the sample (also see later point regarding generalizability).

      This is a great question. There are some similarities and differences between the current study and Stevner et al. (2019). We discussed this in the Supplementary Discussion. Copied below.

      In the Supplementary Discussion: “Both studies demonstrated that HMM states can be effectively divided into meaningful modules solely based on transition probabilities. Furthermore, both studies indicated that pre-sleep wakefulness differs from post-sleep wakefulness.

      However, despite the similar approaches used, key differences in data acquisition and analysis make it challenging to directly compare HMM states between these two studies. Firstly, Stevner et al. (2019) collected only 1-hour-long sleep data from 18 participants, whereas our current study includes 8-hour-long sleep data from 12 participants for two consecutive nights. As discussed in the main text, full sleep cycling cannot be obtained from 1-hour long sleep due to the lack of REM stage and incomplete sleep cycles. Secondly, in Stevner et al. (2019) (Figure 4e), the four wake-NREM stages had roughly the same duration. In contrast, in our current study (Night 2, Figure 2A), the N2 stage comprises 43% of total sleep, which aligns with the natural N2 composition of nocturnal sleep stages. This discrepancy might explain the different number of N2-related states found in the two studies, with 3 out of 19 in Stevner et al. (2019) versus 13 out of 21 in our current study.”

      More justice could be done to previous EEG-based efforts moving beyond conventional AASM-defined sleep/wake states. Various EEG studies performed data-driven clustering of brain states, typically indicating more than 5 traditional brain states (e.g., Koch et al. 2014, Christensen et al. 2019, Decat. et al 2022). Beyond that, countless subdivisions of classical sleep stages have been proposed (e.g., phasic/tonic REM, N2 with/without spindles, N3 with global/local slow waves, cyclic alternating patterns, and many more). While these aren't incorporated into standard sleep stage classification, the current manuscript could be misinterpreted to suggest that improved/data-driven classifications cannot be achieved from EEG, which is incorrect.

      We agree with the reviewer that previous EEG-based efforts should be mentioned. We now added this in the manuscript. Copied below.

      In the Discussion section, “Third, we chose to not include EEG features in our data-driven model. However, the current method is not limited to fMRI data and can be applied to EEG data. Given that previous data-driven studies based on EEG data have suggested that there might be more than five traditional sleep stages (Christensen et al., 2019; Decat et al., 2022; Koch et al., 2014), as well as subdivisions within these traditional sleep stages (Brandenberger et al., 2005; Decat et al., 2022; Simor et al., 2020), future studies may apply data-driven models on both fMRI and EEG data. ”

      More discussion of the limitations of the current sample and generalizability would be helpful. A sample of N=12 is no doubt impressive for two nights of concurrent whole-night EEG-fMRI. Still, any data-driven approach can only capture the brain states that are present in the sample, and 12 individuals are unlikely to express all brain states present in the population of young healthy individuals. Add to that all the potentially different or altered brain states that come with healthy ageing, other demographic variables, and numerous clinical disorders. How do the authors expect their results to change with larger samples and/or varying these factors? Perhaps most importantly, I think it's important to mention that the particular number of identified brain states (here 21, and e.g. 19 in Stevner) is not set in stone and will likely vary as a function of many sample- and methods-related factors.

      We thank the reviewer for the great suggestions. We now included these points when discussing limitations in the Discussion section. We think that a HMM model with larger sample size might produce more fine-grained results, but this remains to be investigated when a more extensive dataset becomes available.

      In the Discussion section, “Secondly, while our study involved a relatively small number of participants (12), it included a large amount of fMRI data (~16 hours scan) per participant. Although the HMM trained on data from 12 participants was robust, the generalizability of the current results to different populations—such as healthy aging individuals and clinical populations—needs to be demonstrated in future studies, particularly with larger sample sizes and more diverse populations.”

      “Fourth, while we selected 21 HMM brain sleep states based on model evaluation parameters in the current study, the exact number of sleep states is not fixed and likely depends on various sample- and methods-related factors, such as sample size and model setups.”

    1. In Montreal, it was felt the punishment was unjust and too severe. It was another example for the Francophones of the province of the power that Anglophones held. CKAC, a French radio station, had listeners call in with their opinions. Roughly 97 per cent said that while punishment was justified, the suspension of the playoffs was too severe.Minutes after the judgement was announced, the head office of the NHL received hundreds of phone calls from enraged fans. Many of the fans made death threats against Campbell. One person said to Campbell’s secretary quote:

      Retrieved from :https://hyp.is/go?url=https%3A%2F%2Fcanadaehx.com%2F2022%2F04%2F23%2Fthe-richard-riot%2F&group=world

    2. On March 13, 1955, in a game in Boston, Richard got into a fight with Hal Laycoe after he was high-sticked in the head. Richard needed five stitches to close the cut on his forehead. When the whistle was blown to end the play, Richard skated up to Laycoe and hit him in the face with his stick. A linesman attempted to restrain Richard who repeatedly tried to attack Laycoe. Richard eventually broke the stick over the body of Laycoe. Linesman Cliff Thompson attempted to contain Richard and Richard punched him twice in the face, knocking him out. Richard was given a match penalty and an automatic $100 fine.In the dressing room after the game, Boston police attempted to arrest Richard but were blocked from getting into the dressing room by Canadiens players. Eventually, the Bruins convinced the officers to let the Canadiens leave on condition that the NHL would take care of the issue.

      Retrieved from :https://hyp.is/go?url=https%3A%2F%2Fcanadaehx.com%2F2022%2F04%2F23%2Fthe-richard-riot%2F&group=world

    1. Reviewer #1 (Public Review):

      Summary:

      The authors aimed to develop and validate an automated, deep learning-based system for scoring the Rey-Osterrieth Complex Figure Test (ROCF), a widely used tool in neuropsychology for assessing memory deficits. Their goal was to overcome the limitations of manual scoring, such as subjectivity and time consumption, by creating a model that provides automatic, accurate, objective, and efficient assessments of memory deterioration in individuals with various neurological and psychiatric conditions.

      Strengths:

      Comprehensive Data Collection: The authors collected over 20,000 hand-drawn ROCF images from a wide demographic and geographic range, ensuring a robust and diverse dataset. This extensive data collection is critical for training a generalizable and effective deep learning model.

      Advanced Deep Learning Approach: Utilizing a multi-head convolutional neural network to automate ROCF scoring represents a sophisticated application of current AI technologies. This approach allows for detailed analysis of individual figure elements, potentially increasing the accuracy and reliability of assessments.

      Validation and Performance Assessment: The model's performance was rigorously evaluated against crowdsourced human intelligence and professional clinician scores, demonstrating its ability to outperform both groups. The inclusion of an independent prospective validation study further strengthens the credibility of the results.

      Robustness Analysis Efficacy: The model underwent a thorough robustness analysis, testing its adaptability to variations in rotation, perspective, brightness, and contrast. Such meticulous examination ensures the model's consistent performance across different clinical imaging scenarios, significantly bolstering its utility for real-world applications.

      Appraisal and discussion:

      By leveraging a comprehensive dataset and employing advanced deep learning techniques, they demonstrated the model's ability to outperform both crowdsourced raters and professional clinicians in scoring the ROCF. This achievement represents a significant step forward in automating neuropsychological assessments, potentially revolutionizing how memory deficits are evaluated in clinical settings. Furthermore, the application of deep learning to clinical neuropsychology opens avenues for future research, including the potential automation of other neuropsychological tests and the integration of AI tools into clinical practice. The success of this project may encourage further exploration into how AI can be leveraged to improve diagnostic accuracy and efficiency in healthcare.

      However, the critique regarding the lack of detailed analysis across different patient demographics, the inadequacy of network explainability, and concerns about the selection of median crowdsourced scores as ground truth raises questions about the completeness of their objectives. These aspects suggest that while the aims were achieved to a considerable extent, there are areas of improvement that could make the results more robust and the conclusions stronger.

      Comments on revised version:

      I appreciate the opportunity to review this revised submission. Having considered the other reviews, I believe this study presents an important advance in using AI methods for clinical applications, which is both innovative and has implications beyond a single subfield.

      The authors have developed a system using fundamental AI that appears sufficient for clinical use in scoring the Rey-Osterrieth Complex Figure (ROCF) test. In human neuropsychology, tests that generate scores like this are a key part of assessing patients. The evidence supporting the validity of the AI scoring system is compelling. This represents a valuable step towards evaluating more complex neurobehavioral functions.

      However, one area where the study could be strengthened is in the explainability of the AI methods used. To ensure the scores are fully transparent and consistent for clinical use, it will be important for future work to test the robustness of the approach, potentially by comparing multiple methods. Examining other latent variables that can explain patients' cognitive functioning would also be informative.

      In summary, I believe this study provides an important proof-of-concept with compelling evidence, while also highlighting key areas for further development as this technology moves towards real-world clinical applications.

    2. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Comment #1: Insufficient Network Analysis for Explainability: The paper does not sufficiently delve into network analysis to determine whether the model's predictions are based on accurately identifying and matching the 18 items of the ROCF or if they rely on global, item-irrelevant features. This gap in analysis limits our understanding of the model's decision-making process and its clinical relevance.

      Response #1: Thank you for your comment. We acknowledge the importance of understanding the decision-making process of AI models is crucial for their acceptance and utility in clinical settings. However, we believe that our current approach, which focuses on providing individual scores for each of the 18 items of the Rey-Osterrieth Complex Figure (ROCF), inherently offers a higher level of explainability and practical utility for clinicians than a network analysis could. Our multi-head convolutional neural network is designed with a dedicated output head for each of the 18 items in the ROCF, and thus provides separate scores for each of the 18 items in the ROCF. This architecture helps that the model focuses on individual elements rather than relying on global, item-irrelevant features.

      This item-specific approach directly aligns with the traditional clinical assessment method, thereby making the results more interpretable and actionable for clinicians. The individual scores for each item provide detailed insights into a patient's performance. Clinicians can use these scores to identify specific areas of strength and weakness in a patient's visuospatial memory and drawing abilities.

      Furthermore, we evaluated the model's performance on each of the 18 items separately, providing detailed metrics that show consistent accuracy across all items. This item-level performance analysis offers clear evidence that the model is not relying on irrelevant global features but is indeed making decisions based on the specific characteristics of each item. We believe that our approach provides a level of explainability that is directly useful and relevant to clinical practitioners.

      Comment #2: Generative Model Consideration: The critique suggests exploring generative models to model the joint distribution of images and scores, which could offer deeper insights into the relationship between scores and specific visual-spatial disabilities. The absence of this consideration in the study is seen as a missed opportunity to enhance the model's explainability and clinical utility.

      Response #2: Thank you for your thoughtful comment and the suggestion to explore generative models. We appreciate the potential benefits that generative models to model the joint distribution of images and scores. However, we chose not to pursue this approach in our study for several reasons: First, our primary goal was to develop a model that provides accurate and interpretable scores for each of the 18 individual items in the ROCF figure. Second, generative models, while powerful, would add a layer of complexity that might diminish the clarity and immediate clinical applicability of our results. Generative models, (particularly deep learning-based) can be challenging to interpret in terms of how they make decisions or why they produce specific outputs. This lack can be a concern in critical applications involving neurological and psychiatric disorders. Clinicians require tools that provide clear insights without the need for additional layers of analysis. Our current model provides detailed, item-specific scores that clinicians can directly use to assess visuospatial memory and drawing abilities. Initially, we explored using generative models (i.e. GANs) for data augmentation to address the scarcity of low-score images compared to high-score images. Moreover, for the low-score images, the same score can be achieved by numerous combinations of figure elements. However, due to our extensive available dataset, we did not observe any substantial performance improvements in our model. Nevertheless, future studies could explore generative models, such as Variational Autoencoders (VAEs) or Bayesian Networks, and test them on the data from the current prospective study to compare their performance with our results.

      In the revised manuscript, we have included additional sentences discussing the potential use of generative models and their implications for future research.

      “The data augmentation did not include generative models. Initially, we explored using generative models, specifically GANs, for data augmentation to address the scarcity of low-score images compared to high-score images. However, due to the extensive available dataset, we did not observe any substantial performance improvements in our model. Nevertheless, Future studies could explore generative models, such as Variational Autoencoders (VAEs) or Bayesian Networks, which can then be tested on the data from the current prospective study and compared with our results.”

      Comment #3: Lack of Detailed Model Performance Analysis Across Subject Conditions: The study does not provide a detailed analysis of the model's performance across different ages, health conditions, etc. This omission raises questions about the model's applicability to diverse patient populations and whether separate models are needed for different subject types.

      Response #3: Thank you for your this important comment. Although the initial version of our manuscript already provided detailed “item-specific” and “across total scores” performance metrics, we recognize the importance of including detailed analyses across different patient demographics to enhance the robustness and applicability of our findings. In response to your comment, we have conducted additional analyses that provide a comprehensive evaluation of model performance across various patient demographics, such as age groups, gender, and different neurological and psychiatric conditions. This additional analysis demonstrates the generalizability and reliability of our model across diverse populations. We have included these analyses in the revised manuscript.

      “In addition, we have conducted a comprehensive model performance analysis to evaluate our model's performance across different ROCF conditions (copy and recall), demographics (age, gender), and clinical statuses (healthy individuals and patients) (Figure 4A). These results have been confirmed in the prospective validation study (Supplementary Figure S6). Furthermore, we included an additional analysis focusing on specific diagnoses to assess the model's performance in diverse patient populations (Figure 4B). Our findings demonstrate that the model maintains high accuracy and generalizes well across various demographics and clinical conditions.”

      Comment #4: Data Augmentation: While the data augmentation procedure is noted as clever, it does not fully encompass all affine transformations, potentially limiting the model's robustness.

      Response #4: We appreciate your feedback on our data augmentation strategy. We acknowledge that while our current approach significantly improves robustness against certain semantic transformations, it may not fully cover all possible affine transformations.

      Here, we provide further clarification and justification for our chosen methods and their impact on the model's performance: In our study, we implemented a data augmentation pipeline to enhance the robustness of our model against common and realisitc geometric and semantic-preserving transformations. This pipeline included rotations, perspective changes, and Gaussian blur, which we found to be particularly effective in improving the model's resilience to variations in input data. These transformations are particularly relevant for the present application since users in real-life are likely to take pictures of drawings that might be slightly rotated or with a slightly tilted perspective. With these intuitions in mind, we randomly transformed drawings during training. Each transformation was a combination of Gaussian blur, a random perspective change, and a rotation with angles chosen randomly between -10° and 10°. These transformations are representative of realistic scenarios where images might be slightly tilted or photographed from different angles. We intentionally did not explicitly address all affine transformations, such as shearing or more complex geometric transformations because these transformations could alter the score of individual items of the ROCF and would be disruptive to the model.

      As noted in our manuscript and demonstrated in supplementary Figure S1, the data augmentation pipeline significantly improved the model's robustness against rotations and changes in perspective. Importantly, our tablet-based scoring application can further ensure that the photos taken do not exhibit excessive semantic transformations. By leveraging the gyroscope built into the tablet, the application can help users align the images properly, minimizing issues such as excessive rotation or skew. This built-in functionality helps maintain the quality and consistency of the images, reducing the likelihood of significant semantic transformations that could affect model performance.

      Comment #5: Additionally, the rationale for using median crowdsourced scores as ground truth, despite evidence of potential bias compared to clinician scores, is not adequately justified.

      Response #5: Thank you for this valuable comment. Clarifying the rationale behind using the median score of crowdsourcing as the ground truth is indeed important. To reach high accuracy in predicting individual sample scores of the ROCFs, it is imperative that the scores of the training set are based on a systematic scheme with as little human bias as possible influencing the score. However, our analysis (see results section) and previous work (Canham et al., 2000) suggested that the scoring conducted by clinicians may not be consistent, because the clinicians may be unwittingly influenced by the interaction with the patient/participant or by the clinicians factor (e.g. motivation and fatigue). For this reason and the incomplete availability of clinician scores for all figures (i.e. for 19% of the 20’225 figures), we did not use the clinicians scores as ground truth scores. Instead, we have trained a large pool (5000 workers) of human internet workers (crowdsourcing) to score ROCFs drawings guided by our self-developed interactive web application. Each element of the figure was scored by several human workers (13 workers on average per figure). We have obtained the ground truth for each drawing by computing the median for each item in the figure, and then summed up the medians to get the total score for the drawing in question. To further ensure high-quality data annotation, we identified and excluded crowdsourcing participants that have a high level of disagreement (>20% disagreement) with this rating from trained clinicians, who carefully scored manually a subset of the data in the same interactive web application.

      We chose the median score for several reasons: (1) the median score is less influenced by outliers compared to the mean. Given the variability of scoring between different clinicians and human workers (see human MSE and clinician MSE), using the median ensures that the ground truth is not skewed by extreme values, leading to more stable and reliable scores. (2) Crowdsource data do not always follow a normal distribution. In cases where the distribution is skewed or not symmetric, the median can be a more representative measure of the center. (3) The original scoring system involves ordinal scales (0,0.5,1,2). For ordinal scales, the median is often more appropriate than the mean. Finally, by aggregating multiple scores from a large pool of crowdsourced raters, the median provides a consensus that reflects the most common assessment. This approach mitigates the variability introduced by individual rater biases and ensures a more consistent ground truth. In clinical settings, the consensus of multiple expert opinions often serves as the benchmark for assessments. The use of median scores mirrors this practice, providing a ground truth that is representative of collective human judgment.

      Canham, R. O., S. L. Smith, and A. M. Tyrrell. 2000. “Automated Scoring of a Neuropsychological Test:

      The Rey Osterrieth Complex Figure.” Proceedings of the 26th Euromicro Conference. EUROMICRO 2000. Informatics: Inventing the Future. https://doi.org/10.1109/eurmic.2000.874519.

      Reviewer #2:

      Comment #1: There is no detail on how the final scoring app can be accessed and whether it is medical device-regulated.

      Response #1: We appreciate the opportunity to provide more information about the current status and plans for our scoring application. At this stage, the final scoring app is not publicly accessible as it is currently undergoing rigorous beta testing with a select group of clinicians in real-world settings. The feedback from these clinicians is instrumental in refining the app’s features, interface, and overall functionality to improve its usability and user experience. This ensures that the app meets the high standards required for clinical tools. Following the successful completion of the beta testing phase, we aim to seek FDA approval for the scoring app. Achieving this regulatory milestone will guarantee that the app meets the stringent requirements for medical devices, providing an additional layer of confidence in its safety and efficacy for clinical use. Once FDA approval is obtained, we plan to make the app publicly accessible to clinicians and healthcare institutions worldwide. Detailed instructions on how to access and use the app will be provided at that time on our website (https://www.psychology.uzh.ch/en/areas/nec/plafor/research/rfp.html).

      Comment #2: No discussion on the difference in sample sizes between the pre-registration of the prospective study and the results (e.g., aimed for 500 neurological patients but reported data from 288). Demographics for the assessment of the representation of healthy and non-healthy participants were not present.

      Response #2: Thank you for your comment. We believe there might have been a misunderstanding regarding our preregistration details. In the preregistration, we planned to prospectively acquire ROCF drawings from 1000 healthy subjects. Each subject should have drawn two ROCF drawings (copy and memory condition). Consequently, 2000 samples should have been collected. In addition, in our pre-registration plan, we aimed to collect 500 drawings from patients (i.e. 250 patients), not 500 patients as the reviewer suggested (https://osf.io/82796). Thus in total, the goal was to obtain 2500 ROCF figures. The final prospective data set, which contained 2498 ROCF images from 961 healthy adults and 288 patients very closely matches the sample size, we aimed for in the the pre-registration. We do not see a necessity to discuss this negligible discrepancy in the main manuscript. The prospective data set remains substantial and sufficient to test our model on the independent prospective data set. Importantly, we want to highlight that the test set in the retrospective data set (4045 figures) was also never seen by the model. Both the retrospective and prospective data sets demonstrate substantial global diversity as the data has been collected in 90 different countries. Please note, that Supplementary Figures S2 & S3 provide detailed demographics of the participants in the prospectively collected data, present their performance in the copy and (immediate) recall condition across the lifespan, and the worldwide distribution of the origin of the data.

      Comment #3: Supplementary Figure S1 & S4 is poor quality, please increase resolution.

      Response #3: We apologize for the poor quality of Supplementary Figures S1 and S4 in the initial submission. In the revised version of our submission, we have increased the resolution of both Supplementary Figure S1 and Supplementary Figure S4 to ensure that all details are clearly visible and the figures are of high quality.

      Comment #4: Regarding medical device regulation; if the app is to be used in clinical practice (as it generates a score and classification of performance), I believe such regulation is necessary - but there are ways around it. This should be detailed.

      Response #4: We agree that regulation is essential for any application intended for use in clinical practice, particularly one that generates scores and classifications of performance. As discussed in response #1, the final scoring application is currently undergoing intensive beta testing in real-world settings with a limited group of clinicians and is therefore not publicly accessible at this time. We are fully committed to obtaining the necessary regulatory approvals before the app is made publicly accessible for clinical use. Once the beta testing phase is complete and the app has been refined based on clinician feedback, we will prepare and submit a comprehensive regulatory dossier. This submission will include all necessary data on the app's development, testing, validation, and clinical utility. We are adhering to relevant regulatory standards and guidelines, such as ISO 13485 for medical devices and the FDA's guidance on software as a medical device (SaMD).

      Comment #7: Need to clarify that work was already done and pre-printed in 2022 for the main part of this study, and that this paper contributes to an additional prospective study.

      Response #7: We would like to clarify that the pre-print the reviewer is referring to is indeed the current paper submitted to ELife. The submitted paper includes both the work that was pre-printed in 2022 and the additional prospective study, as you correctly identified.

      Reviewer #3:

      Comment #1: The considerable effort and cost to make the model only for an existing neuropsychological test.

      Response #1: We acknowledge that significant effort and resources were dedicated to developing our model for the Rey-Osterrieth Complex Figure (ROCF) test. Below, we provide a detailed rationale for this investment and the broader implications of our work. The ROCF test is one of the most widely used neuropsychological assessments worldwide, providing critical insights into visuospatial memory and executive function. While the initial effort and cost are substantial, the long-term benefits of an automated, reliable, objective, fast and widely applicable neuropsychological assessment tool justify the investment. The scoring application will significantly reduce the time for scoring the test and thus provide more efficient use of clinical resources, and the potential for broader applications makes this a worthwhile endeavor. The methods and infrastructure developed for this model can be adapted and scaled to other neuropsychological tests and assessments (e.g. Taylor Figure).

      Comment #2: I was truly impressed by the authors' establishment of a system that organizes the methods and fields of diverse specialties in such a remarkable way. I know the primary purpose of ROCFT. However, beyond the score, neuropsychologically, these are observed by specialists while ROCFT and that is attractive of the test: the turn of each stroke (e.g., from right to left, from the main structure to the margin or small structure), the process to total completeness as a figure, e.g., confidential speed and concentration, the boldness of strokes, unnatural fragmentation of strokes, the not deviated place in a paper, turning of the figure itself (before the scanning level), the total size, the level compared with the age, education, and experiences of the patient. Those are reflected by the disease, visuospatial intelligence, executive function, and ability to concentrate. Scores are crucial, but by observing the drawing process, we can obtain diverse facts or parts of symptoms that imply the complications of human behavior.

      Response #2: Thank you for your insightful comments and observations regarding our system for organizing diverse specialties within the ROCFT methodology. We agree that beyond the numerical scores, the detailed observation of the drawing process provides invaluable neuropsychological insights. How strokes are executed, from their direction and placement to the overall completion process, offers a nuanced understanding of factors like spatial orientation, concentration, and executive function. In fact, we are working on a ROCF pen tracking application, which enables the patient to draw the ROCF with a digital pen on a tablet. The tablet can 1) assess the sequence order of drawing the items and the number of strokes, 2) record the exact coordinate of each drawn pixel at each time point of the assessment, 3) measure the duration for each pen stroke as well as total drawing time, and 4) assess the pen stroke pressure. Through this, we aim to extract additional information on processing speed, concentration, and other cognitive domains. However, this development is outside the scope of the current manuscript.

    1. Each attention layer has several “attention heads,” which means that this information-swapping process happens several times (in parallel) at each layer. Each attention head focuses on a different task:

      By them saying that attention layers have different "attention heads" makes it so different words can match up but still also have many different terms used within the paragraph.

    1. sometimes one Indian would come and tell me one hour that “your master will knock your child in the head,” and then a second, and then a third, “your master will quickly knock your child in the head.”

      Wow...

    2. “your master will knock your child in the head,”

      Are they trying to remind her she isn't safe? Was there any interactions prior to this statement that could have led them there? Why threaten her?

    3. sometimes one Indian would come and tell me one hour that “your master will knock your child in the head,” and then a second, and then a third, “your master will quickly knock your child in the head.”

      I feel like its an empty threat, as they were being kind earlier.

    4. sometimes one Indian would come and tell me one hour that “your master will knock your child in the head,” and then a second, and then a third, “your master will quickly knock your child in the head.”

      What do they mean with "your master will knock your child in the head"?

    1. I went to one wigwam, and they told me they had no room. Then I went to another, and they said the same; at last an old Indian bade me to come to him, and his squaw gave me some ground nuts; she gave me also something to lay under my head, and a good fire we had; and through the good providence of God

      Her belief of the Natives brutal nature is wrong and is proven wrong in this instance. She also once again takes the good nature of the Natives as an act of God.

    2. squaw gave me some ground nuts; she gave me also something to lay under my head, and a good fire we had;

      That is nice of them to offer and almost take care of her. I wonder what the other Native Americans in the tribe thought of her.

    3. I told them the skin was off my back, but I had no other comforting answer from them than this: that it would be no matter if my head were off too.

      Her pov is making them seem bipolar

    4. at last an old Indian bade me to come to him, and his squaw gave me some ground nuts; she gave me also something to lay under my head, and a good fire we had; and through the good providence of God, I had a comfortable lodging that night.

      Again she is treated kindly and even given food when we have learned how hard it is for all of them to find food, and yet she still isn't understanding or seeing them as people.

    5. I told them the skin was off my back, but I had no other comforting answer from them than this: that it would be no matter if my head were off too.

      who did she say this to a why? her initial capturers or the new people who just showed her kindness?

    6. at last an old Indian bade me to come to him, and his squaw gave me some ground nuts; she gave me also something to lay under my head, and a good fire we had; and through the good providence of God, I had a comfortable lodging that night. In the morning, another Indian bade me come at night, and he would give me six ground nuts, which I did.

      interesting how the Indians of (I assume) different tribes treat her differently

    7. than this: that it would be no matter if my head were off too.

      she seems to be very vocal about her discomfort, which probably irritated the natives. She is almost teasing them in a way.

    1. The gags are tame, corny, and adorable. Vision carries Wanda over the threshold, but after accidentally apparating through the front door, he leaves her on the threshold. That silly Vision! Housewife Wanda accidentally breaks a flying dish over her hubby’s head. Handy Wanda can zap it back together!

      This sentence shows that WandaVision features funny and light-hearted moments similar to classic sitcoms.

    1. Example of Trending Twitter Hashtag #CatSquare (Tufts Univer-sity, 2017).G.E. Smith et al.

      I think this image is one of the most important sections for understanding the topic that is being discussed. It may not seem like it but I think it's important because it is able to create a visualization of the title and what the article is discussing. In the image we see that there is a cat, surrounded in a blue tape square box on top of a tapestry with an illusion like pattern. This visualization helps us understand the rest of the text because it created that image in our head. Now when I read the rest of the text, I have an idea of what the researchers are trying to study.

    1. Welcome back, this is part two of this lesson.

      We're going to continue immediately from the end of part one, so let's get started.

      Now we talked about the source and destination IP address of these packets, so now let's focus on IP addressing itself.

      IP addressing is what identifies a device which uses layer 3 IP networking.

      Now I'll talk more about how IP addressing is decided upon and assigned in another video, for now I want you to fully understand the structure of an IP address.

      In this video I'll be focusing on IP version 4, because I have a separate video which will cover IP version 6 in depth.

      This is an IP address, 133.33.3.7.

      From a pure network connectivity point of view, if you have a valid IP version 4 address, you can send packets to 133.33.3.7 and they will at least start on the journey of getting to this destination.

      Now there might be blocks in the way, so firewalls or other security restrictions, all the IP could be offline, but packets will move from you over the internet on their way to this IP address.

      Now this format is known as dotted decimal notation.

      It's four decimal numbers from 0 to 255 separated by dots.

      So 133.33.3.7.

      Now all IP addresses are actually formed of two different parts.

      There's the network part which states which IP network this IP address belongs to, and then the host part which represents hosts on that network.

      So in this example the network is 133.33, and then the hosts on that network can use the remaining part of the IP.

      In this case 3.7 is one device on that network, a laptop.

      A really important part of understanding how your data gets from your location to a remote network is the given two IP addresses.

      How do you tell if they're on the same IP network or different IP networks?

      If the network part of the IP address matches between two different IP addresses, then they're on the same IP network.

      If not, they're on different IP networks.

      So you need to be able to calculate where you've an IP address, which part of that address is the network, and which part is the host.

      And by the end of this lesson you will know how to do that.

      Now IP addresses are not actually dotted decimal.

      That's how they're represented for humans.

      They're actually binary numbers.

      Each decimal part of the IP address is an 8-bit binary number.

      There are four of these per IP version 4 address, and this means that an entire IP address is 32 bits in size.

      So four sets of 8 bits, and each of these 8 bits is known as an octet.

      You might hear somebody refer to say the first and second octet of an IP address, and this is always read left to right.

      The first octet in this example is 1, 3, 3, or in binary 1, 0, 0, 0, 1, 0, 1.

      And the second octet is 33, which in binary is 0, 0, 1, 0, 0, 0, 0, 1.

      Now this binary conversion, this is not something which I'm going to cover in this lesson, but I will make sure there's a link attached to the lesson which shows you how to do it.

      It's just decimal to binary maths, and once you know how it's done, it's really easy to do, even in your head.

      Now I'm going to talk about how you can determine which IPs are on the same network next, but I wanted to introduce the format of IP addresses first.

      In this example, this IP address has what's known as a /16 prefix.

      This means that the first 16 bits represent the network, and the rest are for hosts.

      Now I don't really talk about how this works in detail coming up next.

      Because the first 16 bits are network, it means that the second IP address is 1, 3, 3, .33, .33, .37, because the network part of that matches is 1, 3, 3, .33, and it's on the same IP network.

      I'm going to detail coming up next how this calculation is done.

      For now, I want you to be comfortable knowing that if the network component of two IP addresses match, then devices are local.

      If they don't match, then devices are remote.

      That matters when we start covering IP routing.

      Now IP addresses are networks.

      These are either statically assigned by humans, and this is known as a static IP, or they're assigned automatically by machines.

      So service on your network running DHCP service software.

      Now DHCP stands for Dynamic Host Configuration Protocol, and this is something I'll be covering in detail in a separate video.

      On a network, IP addresses need to be unique, or bad things happen.

      Globally, in most cases, IP addresses need to be unique, or also bad things happen.

      So keep that in mind.

      Generally, when you're dealing with IP addresses, you want them to be unique, especially on your local network.

      Now let's talk about subnet masks, because these are what helps us determine if IP addresses are local to each other or remote.

      Subnet masks are a critical part of IP networking.

      They're configured on layer 3 interfaces, along with IP addresses.

      What's also configured on most network interfaces is a default gateway.

      This is an IP address on a local network, which packets are forwarded to, generally, if the intended destination is not a local IP address.

      Subnet masks are what allow an IP device to know if an IP address which it's communicating with is on the same network or not, and that influences if the device attempts to communicate directly on the local network, or if it needs to use the default gateway.

      On your home network, for example, your internet router is likely set as your default gateway, so when you browse to Netflix.com or interact with AWS because the IP addresses that you're talking to are not local, then packets from your machine are passed to your router, which is the default gateway.

      So let's say that we have an IP address, 133.33.3.7.

      Now this alone is just a single address.

      We don't know which part of it is the network and which part of it is the host component.

      I just finished talking about how IP addresses can match binary numbers.

      This IP address in binary is 1-0-0-0-1-0-1, so that's the first octet, and then 0-0-1-0-0-1, that's the second octet, and then 0-0-0-0-0-0-1-1, that's the third octet, and then finally 0-0-0-0-0-1-1-1, and that's the fourth octet, and that represents 133.33.3.7.

      So as a reminder, if we're dealing manually with subnet masks, and remember this is something that's generally performed in software by your networking stack, the first thing we need to do is convert the dotted decimal notation into a binary number.

      Now along with this IP address, we would generally also configure either statically or using DHCP, a subnet mask.

      In this example, the subnet mask that we have is 255.255.0.0 or /16, and these mean the same thing, and I'll show you why over the next few minutes.

      A subnet mask represents which part of the IP is for the network.

      It helps you, or more often a machine, know which part of an IP address is which.

      To use a subnet mask, you first have to convert it into binary, so 255.255.0.0 is this in binary.

      We convert it just like an IP address.

      So the first octet is all 1s, the second octet is all 1s, the third and fourth octet are all 0s.

      The /16, which is known as the prefix, this is just shorthand.

      It's the number of 1s in the subnet mask starting from the left.

      So /16 simply means 16 1s, which is the same as 255.255.0.0 when you convert that into binary.

      Now when you have the subnet mask in binary, anything with a 1 represents the network, anything with a 0 represents the host component.

      So if you overlay a subnet mask and an IP address, both of them in binary, it becomes really easy to tell which part is which.

      Something else which is really cool is that for a given network, you can calculate the start and end IP addresses of that network.

      Take for example, the IP address that's on screen now, so 133.33.3.7.

      Well we've converted that into binary and we've also converted the subnet mask of 255.255.0.0 also into binary.

      So that's in blue, right below the binary IP address.

      To calculate the start of the network, we begin with the network part of the IP address and then for the host part, we have all 0s.

      So let's look at what we've done.

      The subnet mask, where there are 1s, this is the network part.

      So we take the original IP address and where the subnet mask has 1s, that's the network part, so 133.33.

      Then for the part which is hosts, which is where the subnet mask shows 0s, then we have all 0s.

      This means that the network starting point is 133.33.0.0.

      Now to find the end, we take the network component of the IP address again, so where the subnet mask is all 1s, that's what we start with.

      And to work out the end of the network, we take the host component, so where the subnet mask is 0s, and we have all 1s in the IP address.

      So the ending part of this network is 133.33.255.255.

      So the starting address of a network is the network component of the IP address, identified with the subnet mask, and then all 0s for the host part of the IP address, and the ending address of the network is the network part of the IP address to start with, and then for the host component, we have all 1s.

      So this is how subnet masks work.

      They're used to identify which part of an IP address is the network part and which is the host part.

      As long as the network part for two different IP addresses is the same, then we know that both of those IP addresses are on the same IP network, and this is essential so that the machine can identify when it can send data directly on the same local network, or when IP routing needs to be used to transfer packets across different intermediate networks.

      So it's how your local device, your local laptop, knows to send packets to your internet router for Netflix or AWS, rather than trying to look for both of those systems locally on your local area network.

      And that's how a router makes that decision too, when it's looking where to forward packets to.

      So using subnet masks and IP addresses, it's how a lot of the intelligence of layer 3 is used.

      Now next, I want to spend some time looking at route tables and routes.

      Let's step through an example of data moving from you to AWS, and I want to keep focus for now on how a router makes a decision where to send data.

      Packets that you create for AWS will move from your house into your internet provider across the internet, potentially even between countries, and then finally arrive at AWS.

      Let's step through a simple example.

      So we start with our house on the left.

      Next, we have our internet provider known as an ISP or Internet Service Provider, and let's call this Meow ISP, and then we have three destination networks.

      We have AWS, our ISP's upstream provider, and then Netflix.

      Now we want to communicate with AWS, and so we create a packet on our local device, which has our IP address 1.3.3.7 as the source IP address, and it has a destination IP address of 52.217.13.37.

      Now you're going to have an internet router within your home, and this is where your device will send all of its data through.

      That router has what's known as a default route, which means all IP traffic is sent to it on its way to Meow ISP.

      Now I'll explain what a default route is in a second.

      For now, just assume that all data that you generate within your local network by default is sent through to your internet service provider.

      So now the packet that you've generated is inside your internet service provider on a router, and this router has multiple network interface cards connecting to all of those remote networks.

      Now let's assume in those remote networks is another router, and each of these routers uses the dot 1 IP address in each of those networks.

      So how does the ISP router inside Meow ISP know where to forward your data to?

      Well, it uses routes and route tables.

      Every router will have at least one route table.

      It could have more, which are attached to individual network interfaces, but for now let's keep things simple and assume that the router within our ISP has a single route table, and it will look something like this.

      A route table is a collection of routes.

      Each row in this table is an example route.

      It will have a destination field, and it will have a next hop or a target field.

      What happens is that every packet which arrives at this router, the router will check the packet's destination.

      What IP address is this packet destined for?

      And in this example, it's 52.217.13.37.

      Now at this point, the router will look for any routes in the route table which match the destination IP address of this packet.

      If multiple routes match, then it will prefer ones which are more specific.

      The two routes in yellows at the top and the bottom, these are examples of fairly specific routes.

      The one in blue in the middle is the inverse, this is not a specific route.

      The larger the prefix, so the higher the number after the slash, the more specific the route.

      So a slash 32 is the most specific, and a slash 0 is the least specific.

      A slash 32 actually represents one single IP address, and a slash 0, well this represents all IP addresses.

      A slash 24 means that the first 24 bits are for the network, and the last 8 bits are for the host.

      So this matches a network of 256 IP addresses.

      So for this packet that we have with the destination of 52.217.13.37, we've got two routes which match.

      The top route, which is 52.217.13.0/24, that network contains the IP address which our packet is destined for.

      So this matches.

      But also the middle route, 0.0.0/0, this matches, because this matches all IP addresses.

      The middle route is known as a default route.

      I mentioned before the packets from our home network on the left arrive at our ISP because there's a default route.

      Well this 0.0.0/0 is an example of a default route.

      This will match if nothing else does.

      Because we have two more specific routes in this route table, so the top and bottom, if either of those match, they will be selected rather than the default route in the middle.

      In this case the bottom route doesn't match our particular packet, only the top one matches.

      And so the top route will be selected because it's more specific than the default route.

      Now for the route that's selected, so the top route, it has a next hop or target field.

      This is the IP address which the packet is going to be forwarded to, to get one step closer through to its destination.

      Or in this case to arrive at the actual destination.

      And so the packet is forwarded through to this address.

      Routing as a process is where packets are forwarded or routed hop by hop across the internet from source to destination.

      Route tables are the thing which enables this.

      Route tables can be statically populated, or there are protocols such as BGP or the border gateway protocol, which allow routers to communicate with each other to exchange which networks they know about.

      And this is how the core of the internet functions.

      One important thing that you need to understand though, is that when our ISP router is forwarding the packet through to the AWS router, it's forwarding it at layer 2.

      It wraps the packet in a frame.

      The packet doesn't change.

      The frame though, it has the AWS routers MAC address as its destination.

      That's how the packet gets to the AWS router.

      But how do we determine the MAC address of the AWS router in this example?

      For that we use something called the address resolution protocol, and that's what I'm going to be covering next.

      This is the end of part 2 of this lesson.

      It's a pretty complex lesson, and so I wanted to give you the opportunity to take a small break, maybe stretch your legs, or make another coffee.

      Part 3 will continue immediately from this point, so go ahead, complete this video, and when you're ready, I look forward to you joining me in part 3.

    1. The moment he turned into Cordelia Street he felt the waters close above his head. After each of these orgies of living, he experienced all the physical depression which follows a debauch;

      This truly gives and insight to Paul's character. Everyone sees him as the kid that is always smiling and is just a bit off. However in reality, whenever he get's to home he feels the depression weigh on him.

    1. Orpheus and Eurydice’s tragedy then becomes, in the hands of Mitchell, an argument for collective bargaining. That might sound like far too literal a reading, but how else are we to interpret the show’s edit to the Greek myth that their deal with Hades also frees the workers of his factory? That Hades’s diabolical idea is to keep them apart, to compromise the solidarity they have built rising up, by sowing doubt in Orpheus’s head as he walks alone?

      Love is political because collective political action requires solidarity. A movement can only succeed with love and care for others. Orpheus doesn't succeed not because he's weak, but because Hades destroys this solidarity.

    1. Reviewer #3 (Public review):

      Summary:

      Redman and colleagues analyze grid cell data obtained from public databases. They show that there is significant variability in spacing and orientation within a module. They show that the difference in spacing and orientation for a pair of cells is larger than the one obtained for two independent maps of the same cell. They speculate that this variability could be useful to disambiguate the rat position if only information from a single module is used by a decoder.

      Strengths:

      The strengths of this work lie in its conciseness, clarity, and the potential significance of its findings for the grid cell community, which has largely overlooked this issue for the past two decades. Their hypothesis is well stated and the analyses are solid.

      Weaknesses:

      On the side of weaknesses, we identified two aspects of concern. First, alternative explanations for the main result exist that should be explored and ruled out. Second, the authors' speculation about the benefits of variability in angle and spacing for spatial coding is not particularly convincing, although this issue does not diminish the importance or impact of the results.

      Major comments:

      (1) One possible explanation of the dispersion in lambda (not in theta) could be variability in the typical width of the field. For a fixed spacing, wider fields might push the six fields around the center of the autocorrelogram toward the outside, depending on the details of how exactly the position of these fields is calculated. We recommend authors show that lambda does not correlate with field width, or at least that the variability explained by field width is smaller than the overall lambda variability.

      (2) An alternative explanation could be related to what happens at the borders. The authors tackle this issue in Figure S2 but introduce a different way of measuring lambda based on three fields, which in our view is not optimal. We recommend showing that the dispersions in lambda and theta remain invariant as one removes the border-most part of the maps but estimating lambda through the autocorrelogram of the remaining part of the map. Of course, there is a limit to how much can be removed before measures of lambda and theta become very noisy.

      (3) A third possibility is slightly more tricky. Some works (for example Kropff et al, 2015) have shown that fields anticipate the rat position, so every time the rat traverses them they appear slightly displaced opposite to the direction of movement. The amount of displacement depends on the velocity. Maps that we construct out of a whole session should be deformed in a perfectly symmetric way if rats traverse fields in all directions and speeds. However, if the cell is conjunctive, we would expect a deformation mainly along the cell's preferred head direction. Since conjunctive cells have all possible preferred directions, and many grid cells are not conjunctive at all, this phenomenon could create variability in theta and lambda that is not a legitimate one but rather associated with the way we pool data to construct maps. To rule away this possibility, we recommend the authors study the variability in theta and lambda of conjunctive vs non-conjunctive grid cells. If the authors suspect that this phenomenon could explain part of their results, they should also take into account the findings of Gerlei and colleagues (2020) from the Nolan lab, that add complexity to this issue.

      (4) The results in Figure 6 are correct, but we are not convinced by the argument. The fact that grid cells fire in the same way in different parts of the environment and in different environments is what gives them their appeal as a platform for path integration since displacement can be calculated independently of the location of the animal. Losing this universal platform is, in our view, too much of a price to pay when the only gain is the possibility of decoding position from a single module (or non-adjacent modules) which, as the authors discuss, is probably never the case. Besides, similar disambiguation of positions within the environment would come for free by adding to the decoding algorithm spatial cells (non-hexagonal but spatially stable), which are ubiquitous across the entorhinal cortex. Thus, it seems to us that - at least along this line of argumentation - with variability the network is losing a lot but not gaining much.

      (5) In Figure 4 one axis has markedly lower variability. Is this always the same axis? Can the authors comment more on this finding?

      (6) The paper would gain in depth if maps coming out of different computational models could be analyzed in the same way.

      (7) Similarly, it would be very interesting to expand the study with some other data to understand if between-cell delta_theta and delta_lambda are invariant across environments. In a related matter, is there a correlation between delta_theta (delta_lambda) for the first vs for the second half of the session? We expect there should be a significant correlation, it would be nice to show it.

    2. Author response:

      We thank the reviewers for their time and thoughtful comments. We are encouraged that all reviewers found our work novel and clear. We will submit a full revision to address all the points the reviewers made. Below, we briefly highlight a few clarifications and planned analyses to address major concerns; all other concerns raised by the reviewers will also be addressed in the revision.

      Reviewers #1 and #3 asked whether the variability in grid properties emerged with experience/time in the environment. We agree that this is an interesting question, and we will re-analyze the data to explore whether between-cell variability increases with time within a session. However, we note that since the rats were already familiarized to the environment for 10-20 sessions prior to the recordings, there may be limited additional changes in between-cell variability between recording sessions. In one case, two sessions from the same rat were recorded on consecutive days (R11/R12 and R21/R22) - these sessions did not show any difference in variability. 

      Reviewer #2 noted that the variability in grid properties is known to experimentalists. We will tone down our discussion on the current assumptions in the field to accurately reflect this awareness in the community. However, we would like to emphasize that the lack of work carefully examining the robustness of this variability has prevented a firm understanding of whether this is an inherent property of grid cells or due to noise. The impact of this can be seen in theoretical neuroscience work where a considerable number of articles (including recent publications) start with the assumption that all grid cells within a module have identical properties, with the exception of phase shift and noise. In addition, since grid cells are assumed to be identical in the computational neuroscience community, there has been little work on quantifying how much variability a given model produces. This makes it challenging to understand how consistent different models are with our observations. We believe that making these limitations of previous work clear is important to properly conveying our work’s contribution. 

      Reviewer #3 asked whether the variability in grid properties could be driven by cells that were conjunctively tuned with head direction. We agree that this is an interesting hypothesis and will explore this by performing new analysis. We note that, as reported by Gardner et al. (2022), only 19 of the 168 cells in recording session R12 are conjunctive. Even if these cells are included in the same proportion as pure grid cells by our inclusion criteria (which appears unlikely, given that conjunctive cells may be less reliable across splits of the data), then approximately 9 out of the 82 cells we analyzed would be conjunctive. Therefore, we expect it to be unlikely that they are the main source of the variability we find. However, we will test this in our revised manuscript.

      Reviewer #3 asked whether the “price” paid in having grid property variability was too high for the modest gain in ability to encode local space. We agree that losing the continuous attractor network (CAN) structure, and the ability to path integrate, would be a very large loss. However, we do not believe that the variability we observe necessarily destroys either CAN or path integration. We argue this for two reasons. First, the data we analyzed [from Gardner et al. (2022)] is exactly the data set that was found to have toroidal topology and therefore viewed to be in line with a major prediction of CANs. Thus, the amount of variability in grid properties does not rule out the underlying presence of a continuous attractor. Second, path integration may still be possible with grid cells that have variable properties. To illustrate this, and to address another comment from Reviewer #3, we have begun to analyze the distribution of grid properties in a recurrent neural network (RNN) model trained to perform path integration (Sorscher et al., 2019). This RNN model, in addition to others (Banino et al., 2018; Cueva and Wei, 2018), has been found to develop grid cells and there is evidence that it develops CANs as the underlying circuit mechanism (Sorscher et al., 2023). We find that the grid cells that emerge from this model exhibit variability in their grid spacings and orientations. This illustrates that path integration (the very task the RNN was trained to perform) is possible using grid cells with variable properties.

    1. We understand that it is and has been traditional that the man is the head of the house. He is the leader of the house/nation because his knowledge of the world is broader, his awareness is greater, his understanding is fuller and his application of this information is wiser… After all, it is only reasonable that the man be the head of the house because he is able to defend and protect the development of his home… Women cannot do the same things as men—they are made by nature to function differently. Equality of men and women is something that cannot happen even in the abstract world. Men are not equal to other men, i.e. ability, experience or even understanding. The value of men and women can be seen as in the value of gold and silver—they are not equal but both have great value. We must realize that men and women are a complement to each other because there is no house/family without a man and his wife. Both are essential to the development of any life. [3]

      This paragraph as a whole summarizes a common misconception or idea on feminism, believing that all men are bad or that woman should be the only ones in rule, when feminism is about equality, not out balancing the system. this is also another reason why so many people are afraid to speak up and be apart of the movement as its seen as a negative "drive" in most cases.

    1. I think that the stretch and recomposition of kin are allowed by the fact that allearthlings are kin in the deepest sense, and it is past time to practice better care of kinds-as-assemblages (not species one at a time). Kin is an assembling sort of word.

      Kin, is used here to mean relation but as she stated previously not in a familial or genealogical sense. She wants to create a new frame, a new narrative, an ontology of not being but being as kin. To be kin is to be modular to the environment. When she says assemblages she wants us to get out of thinking of ourselves as just individualized subjects, only able to think in one head, ,but that actively we are connected to the world.

    1. “I was so angry at the misdiagnoses for so many years,” she says, “being told that it was anxiety, in my head, female stuff. So I tried to spin that anger into something positive. I got my graduate degree. I published an article in a nursing journal.”

      It is great to incorporate quotes from different people in the essay as it enhances credibility and delivers emotion to the reader.

    1. “O Machine! O Machine!” and raised the volume to her lips. Thrice she kissed it, thrice inclined her head, thrice she felt the delirium of acquiescence

    1. and there being no furniture upon the horse’s back, as we were going down a steep hill we both fell over the horse’s head, at which they, like inhumane creatures, laughed, and rejoiced to see it

      even more dehumanizing language towards natives, racist and just generally makes you wonder how much of this is affected by her own personal views (a lot)

    2. One of the Indians carried my poor wounded babe upon a horse; it went moaning all along, “I shall die, I shall die.” I went on foot after it, with sorrow that cannot be expressed. At length I took it off the horse, and carried it in my arms till my strength failed, and I fell down with it. Then they set me upon a horse with my wounded child in my lap, and there being no furniture upon the horse’s back, as we were going down a steep hill we both fell over the horse’s head, at which they, like inhumane creatures, laughed, and rejoiced to see it,

      Her beliefs are definitely playing a role in her writing. I am still confused about the wounded babe.

    3. Then they set me upon a horse with my wounded child in my lap, and there being no furniture upon the horse’s back, as we were going down a steep hill we both fell over the horse’s head, at which they, like inhumane creatures, laughed,

      I can't tell what makes me more sad: the fact that a child is even there, or the fact that the "inhumane creatures" aren't even processing how must distress they're subjecting this woman to

    1. Helen Keller

      I really liked learning about Helen Keller's involvement in politics and hope to talk more about disability through history and the development of the ADA. Growing up with epilepsy I liked reading books about Helen Keller but they never discussed her involvement in politics (likely to remain neutral and get a variety of readers) but I think it's important to acknowledge that disabled people are often at the head of movements for change.

    1. The image of time, which the clock wascreating, did not arise in his mind. All he could see was thegeometric depiction represented by the face and hands of the clock

      Chekhov, when looking at dead neighbor's head, does not see death of neighbor, but sees life for self.

    Annotators

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Thank you very much for your editorial handling of our manuscript entitled 'A conserved fungal Knr4/Smi1 protein is vital for maintaining cell wall integrity and host plant pathogenesis'. We have taken on board the reviewers' comments and thank them for their diligence and time in improving our manuscript.

      Please find our responses to each of the comments below.

      Reviewer(s)' comments

      Reviewer #1


      Major comments:


      __1.1. As a more critical comment, I find the presentation of the figures somewhat confusing, especially with the mixing of main figures, supplements to the main figures, and actual supplemental data. On top of that, the figures are not called up in the right order (e.g. Figure 4 follows 2D, while 3 comes after 4; Figure 6 comes before 5...), and some are never called up (I think) (e.g. Figure 1B, Figure 2B). __


      __Response: __The figure order has been revised according to the reviewer's suggestion, while still following eLife's formatting guidelines for naming supplementals. Thank you.

      1.2. I agree that there should be more CWI-related genes in the wheat module linked to the FgKnr4 fungal module, or, vice-versa, CW-manipulating genes in the fungal module. It would at least be good if the authors could comment further on if they find such genes, and if not, how this fits their model.


      Response: Thank you for your insightful suggestion regarding the inclusion of more CWI-related genes in the wheat module linked to the FgKnr4 fungal module F16, or vice versa. We did observe a co-regulated response between the wheat module W05 which is correlated to the FgKnr4 module F16. Namely, we observed an enrichment of oxidative stress genes including respiratory burst oxidases and two catalases (lines 304 - 313) in the correlated wheat module (W05). Early expression of these oxidative stress inducing genes likely induces the CWI pathway in the fungus, which is regulated by FgKnr4. Knr4 functions as both a regulatory protein in the CWI pathway and as a scaffolding protein across multiple pathways in S. cerevisiae (Martin-Yken et al., 2016, https://onlinelibrary.wiley.com/doi/10.1111/cmi.12618 ). Scaffolding protein-encoding genes are typically expressed earlier than the genes they regulate to enable pre-assembly with their interacting partners, ensuring that signaling pathways are ready to activate when needed. In this context, the CWI integrity MAPKs Bck1 and Mkk1 are part of module F05, which includes two chitin synthases and a glucan synthase. This module is highly expressed during the late symptomless phase. The MAPK Mgv1, found in module F13, is expressed consistently throughout the infection process, which aligns with the expectation that MAPKs are mainly post-transcriptionally regulated. Thank you for bringing our attention to this, this is now included in the discussion (lines 427 - 443) along with eigengene expression plots of all modules added to the supplementary (Figure 3 - figure supplement 1).

      To explore potential shared functions of FgKnr4 with other genes in its module, we re-analyzed the high module membership genes within module F16, which includes FgKnr4, using Knetminer (Hassani-Pak et al., 2021; https://onlinelibrary.wiley.com/doi/10.1111/pbi.13583 ). This analysis revealed that 8 out of 15 of these genes are associated with cell division and ATP binding. Four of the candidate genes are also part of a predicted protein-protein interaction subnetwork of genes within module F16, which relate to cell cycle and ATP binding. In S. cerevisiae, the absence of Knr4 results in cell division dysfunction (Martin-Yken et al., 2016, https://onlinelibrary.wiley.com/doi/10.1111/cmi.12618 ). Accordingly, we tested sensitivity of ΔFgknr4 to microtubule inhibitor benomyl (a compound commonly used to identify mutants with cell division defects; Hoyt et al., 1991 https://www.cell.com/cell/pdf/0092-8674(81)90014-3.pdf). We found that the ΔFgknr4 mutant was more susceptible to benomyl, both when grown on solid agar and in liquid culture. This data has now been added Figure 7, and referred to in lines 338-348.

      __Specific issues: __


      1.3. In the case of figure 5, I generally find it hard to follow. In the text (line 262/263), the authors state that 5C shows "eye-shaped lesions" caused by ΔFgknr4 and ΔFgtri5, but I can't see neither (5C appears to be a ΔFgknr4 complementation experiment). The figure legend also states nothing in this regard.

      __Response: __Thank you for your suggestion. We have amended the manuscript to include an additional panel that shows the dissected spikelet without its outer glumes, making the eye shaped diseased regions more visible in Figure 5.

      __1.4. Figure 5D supposedly shows 'visibly reduced fungal burden' in ΔFgknr4-infected plants, but I can't really see the fungal burden in this picture, but the infected section looks a lot thinner and more damaged than the control stem, so in a way more diseased. __


      Response: __Thank you for your insight. We have revised our conclusions based on this image to state that while ΔFgknr4 can colonise host tissue, it does so less effectively compared to the wild-type strain as we are unable to quantitatively evaluate fungal burden using image-colour thresholding due to the overlapping colours of the fungal cells and wheat tissues. Decreased host colonisation is evidenced by (i) reduced fungal hyphae proliferation, particularly in the thicker adaxial cell layer, (ii) collapsed air spaces in wheat cells, and (iii) increased polymer deposition at the wheat cell walls, indicating an enhanced defence response. __Figure 5 has been amended to include these observations in the corresponding figure legend and the resin images now include insets with detailed annotation.

      __1.5. The authors then go on to state (lines 272-273) that they analyzed the amounts of DON mycotoxin in infected tissues, but don't seem to show any data for this experiment. __

      Response: __We have amended this to now include the data in __Figure 5 - figure supplement 2B, thank you.

      Reviewer #2


      __Major issues: __


      2.1 If Knf4 is involved in the CWI pathway, what other genes involved in the CWI pathway are in this fungal module? one of the reasons for developing modules or sub-networks is to assign common function and identify new genes contributing to the function. since FgKnr4 is noted to play a role in the CWI pathways, then genes in that module should have similar functions. If WGCN does not do that, what is the purpose of this exercise?


      Response: __Thank you for raising this point regarding the role of FgKnr4 in the CWI pathway and the expectations for genes of shared function within the FgKnr4 module F16. We did observe that the module containing FgKnr4 (F16) was also correlated to a wheat module (W05) which was significantly enriched for oxidative stress genes. This pathogen-host correlated pattern led us to study module F16, which otherwise lacks significant gene ontology term enrichment, unique gene set enrichments, and contains few characterised genes. This is now highlighted in __lines 233-246. This underscores the strength of the WGCNA. By using high-resolution RNA-seq data to map modules to specific infection stages, we identified an important gene that would have otherwise been overlooked. This approach contrasts with other network analyses that often rely on the guilt-by-association principle to identify novel virulence-related genes within modules containing known virulence factors, potentially overlooking significant pathways outside the scope of prior studies. Therefore, our analysis has already benefited from several advantages of WGCNA, including the identification of key genes with high module membership that may be critical for biological processes, as well as generating a high-resolution, stage-specific co-expression map of the F. graminearum infection process in wheat. This point is now emphasised in lines 233-252. As discussed in response to reviewer 1, Knr4 functions as both a regulatory protein in the CWI pathway and as a scaffolding protein across multiple pathways in S. cerevisiae (Martin-Yken et al., 2016, https://onlinelibrary.wiley.com/doi/10.1111/cmi.12618 ) which would explain its clustering separate from the CWI pathway genes. The high module membership genes within module F16 containing FgKnr4 were re-analysed using Knetminer (Hassani-Pak et al., 2021; https://onlinelibrary.wiley.com/doi/10.1111/pbi.13583 ), which found that 8/15 of these genes were related to cell division and ATP binding. Four of the candidate genes are also part of a predicted protein-protein interaction subnetwork of genes within module F16, which relate to cell cycle and ATP binding. In S. cerevisiae, the absence Knr4 leads to dysfunction in cell division. Accordingly, we tested sensitivity of ΔFgknr4 to the microtubule inhibitor benomyl (a compound commonly used to identify mutants with cell division defects; Hoyt et al., 1991 https://www.cell.com/cell/pdf/0092-8674(81)90014-3.pdf). We found that the ΔFgknr4 mutant was more susceptible to benomyl, both when grown on solid agar and in liquid culture. This data has now been added as Figure 7 and referred to in lines 338-348.


      2.2. Due to development defects in the Fgknr1 mutant, I would not equate to as virulence factor or an effector gene.


      __Response: __We are in complete agreement with the reviewer and are not suggesting that FgKnr4 is an effector or virulence factor, we have been careful with our wording to indicate that FgKnr4 is simply necessary for full virulence and its disruption results in reduced virulence and have outlined how we believe FgKnr4 participates in a fungal signaling pathway required for infection of wheat.


      2.3. What new information is provided with WGCN modules compared with other GCN network in Fusarium (examples of GCN in Fusarium is below) ____https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069591/ https://doi.org/10.1186/s12864-020-6596-y____ DOI: 10.1371/journal.pone.0013021. The GCN networks from Fusarium have already identified modules necessary/involved in pathogenesis.

      Response: __The 2016 New Phytologist gene regulatory network (GRN) by Guo et al. is large and comprehensive. However, only three of the eleven datasets are in planta, with just one dataset focusing on F. graminearum infection on wheat spikes. The other two in planta datasets involve barley infection and Fusarium crown rot. By combining numerous in planta and in vitro datasets, the previous GRNs lack the fine resolution needed to identify genetic relationships under specific conditions, such as the various stages of symptomatic and symptomless F. graminearum infection of mature flowering wheat plants. This limitation is highlighted in the 2016 paper itself. This network is expanded in the Guo et al., 2020 BMC genomics paper where it includes one additional in planta and nine in vitro datasets. However, the in planta dataset involves juvenile wheat coleoptile infection, which serves as an artificial model for wheat infection but is not on mature flowering wheat plants reminiscent of Fusarium Head Blight of cereals in the field. This model differs significantly in the mode of action of F. graminearum, notably DON mycotoxin is not essential for virulence in this context (Armer et al. 2024, https://pubmed.ncbi.nlm.nih.gov/38877764/ ). The Guo et al., 2020 paper still faces the same issues in terms of resolution and the inability to draw conclusions specific to the different stages of F. graminearum infection. Additionally, these GRNs use Affymetrix data, which miss over 400 genes (~ 3 % of the genome) from newer gene models. In contrast, our study addresses these limitations by analysing a meticulously sampled, stage- and tissue-specific in planta RNA-seq dataset using the latest reference annotation. Our approach provides higher resolution and insights into host transcriptomic responses during the infection process. The importance of our study in the context of these GRNs is now addressed in the introduction (__lines 85-92).


      2.4. Ideally, the WGCN should have been used identify plant targets of Fusarium pathogenicity genes. This would have provided credibility and usefulness of the WGCN. Many bioinformatic tools are available to identify virulence factors and the utility of WGCN in this regard is not viable. However, if the authors had overlapped the known virulence factors in a fungal module to a particular wheat module, the impact of the WGCN would be great. The module W12 has genes from numerous traits represented and WGCN could have been used to show novel links between Fg and wheat. For example, does tri5 mutant affect genes in other traits?

      __Response: __Thank you for your suggestions. In this study we have shown the association between the main fungal virulence factor of F. graminearum, DON mycotoxin, with wheat detoxification responses. Through this we have identified a set of tri5 responsive genes and validated this correlation in two genes belonging to the phenylalanine pathway and one transmembrane detoxification gene. Although we could validate more genes in this tri5 responsive wheat module, our paper aimed to investigate previously unstudied aspects of the F. graminearum infection process and how the fungus responded to changing conditions within the host environment. We accomplished this by characterising a gene within a fungal module that had limited annotation enrichment and few characterised genes. Tri5 on the other hand is the most extensively studied gene in F. graminearum and while the network we generated may offer new insights into tri5 responsive genes, this is beyond the scope of our current study. In addition to the tri5 co-regulated response, we have also demonstrated the coordinated response between the fungal module F16, which contains FgKnr4 that is necessary for tolerance to oxidative stress, and the wheat module W05, which is enriched for oxidative stress genes.


      While our co-expression network approach can be used to explore and validate other early downstream signaling and defense components in wheat cells, several challenges must be considered: (a) the poor quality of wheat gene calls, (b) genetic redundancy due to both homoeologous genes and large gene families, and (c) the presence of DON, which can inhibit translation and prevent many transcriptional changes from being realised within the host responses. Additionally, most plant host receptors are not transcriptionally upregulated in response to pathogen infection (most R gene studies for the NBS-LRR and exLRR-kinase classes), making their discovery through a transcriptomics approach unlikely. These points will be included in our discussion (lines 408-413), thank you.

      Specific issues

      • *

      2.5. Since tri5 mutant was used a proof of concept to link wheat/Fg modules, it would have been useful to show that TRI14, which is not involved DON biosynthesis, but involved in virulence ( https://doi.org/10.3390/applmicrobiol4020058____) impact the wheat module genes.


      Response: __Our goal was to show that wheat genes respond to the whole TRI cluster, not just individual TRI genes. Therefore, the tri5 mutant serves as a solid proof-of-concept, because TRI5 is essential for DON biosynthesis, the primary function of the TRI gene cluster, thereby representing the function of the cluster as a whole. This is now clarified in __lines 217-219. Additionally, the uncertainties surrounding other TRI mutants would complicate the question we were addressing-namely, whether a wheat module enriched in detoxification genes is responding to DON mycotoxin, as implied by shared co-expression patterns with the TRI cluster. For instance, the referenced TRI14 paper indicates that DON is produced in the same amount in vitro in a single media. Although the difference is not significant, the average DON produced is lower for the two Δtri14 transformants tested. Therefore, we cannot definitively rule out that TRI14 is involved in DON biosynthesis and extrapolate this to DON production in planta. Despite this, the suggestion is interesting, and would make a nice experiment but we believe it does not contribute to the overall aim of this study.

      2.6. Moreover, prior RNAseq studies with tri5 mutant strain on wheat would have revealed the expression of PAL and other phenylpropanoid pathway genes?

      __Response: __We agree that this would be an interesting comparison to make but unfortunately no dataset comparing in planta expression of the tri5 mutant within wheat spikes exists.

      2.7. Table S1 lists 15 candidate genes of the F16 module; however, supplementary File 1 indicates 74 genes in the same module. The basis of exclusion should be explained. The author has indicated genes with high MM was used as representative of the module. The 59 remaining genes of this module did not meet this criteria? Give examples.


      Response: __The 15 genes with the highest module membership were selected as initial candidates for further shortlisting from the 74 genes within module F16. In WGCNA, genes with high module membership (MM) (i.e. intramodular connectivity) are predicted to be central to the biological functions of the module (Langfelder and Horvath, 2008; https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-559 ) and continues to be a metric to identify biologically significant genes within WGCN analyses (https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-024-05366-0 Tominello-Ramirez et al., 2024; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151341/ ;Zheng et al., 2022; https://www.nature.com/articles/s41598-020-80945-3 Panahi and Hejazi et al 2021). Following methods by Mateus et al. (2019) (https://academic.oup.com/ismej/article/13/5/1226/7475138 ) key genes were defined as those exhibiting elevated MM within the module, which were also strongly correlated (R > |0.70|) with modules of the partner organism (wheat). We have clarified this point in the manuscript. Thank you for the suggestion. (__Lines 253-263).

      2.____8. A list from every module that pass this criteria will be useful resource for functional characterization studies.


      __Response: __A supplementary spreadsheet has been generated which includes full lists of the top 15 genes with the highest module membership within the five fungal modules correlated to wheat modules and a summary of shared attributes among them. Thank you for this suggestion.

      2.9. Figure 3 indicates TRI genes in the module F12; your PHI base in Supp File S2 lists only TRI14. Why other TRI genes such as TRI5 not present in this File?


      Response: For clarity, the TRI genes in module F12 are TRI3, TRI4, TRI11, TRI12, and TRI14 which was stated in Table 1. TRI5 clusters with its neighboring regulatory gene TRI6 in module F11, which exhibits a similar but reduced expression pattern compared to module F12. To improve clarity on this the TRI genes in module F12 are also listed in-text in line 168 and added to Figure 4. The enrichment and correlated relationship of W12 to a cluster's expression still imply a correlated response of the wheat gene to the TRI cluster's biosynthetic product (DON), which is absent in the Δtri5 mutant.

      TRI14 and TRI12 are listed in PHI-base. TRI12 was mistakenly excluded due to an unmapped Uniprot ID, which were added separately in the spreadsheet. We will recheck all unmapped ID lists to ensure all PHI-base entries are included in the final output. Thank you for pointing out this error.


      2.10. What is purpose of listing the same gene multiple times? Example, osp24 (a single gene in Fg) is listed 13 times in F01 module.


      __Response: __This is a consequence of each entry having a separate PHI ID, which represents different interactions including inoculations on different cultivar. Cultivar and various experimental details were omitted from the spreadsheet to reduce information density, however the multiple PHI base ID's will be kept separate to make the data more user friendly when working with the PHI-base database. An explanation for this is now provided in the file's explanatory worksheet, thank you.

      Reviewer #3:


      3.1. Why only use of high confidence transcripts maize to map the reads and not the full genome like Fusarium graminearum? I have never analyzed plant transcriptome.


      __Response: __ In the wheat genome, only high-confidence gene calls are used by the global community (Choulet et al., 2023; https://link.springer.com/chapter/10.1007/978-3-031-38294-9_4 ) until a suitable and stable wheat pan-genome becomes available.

      3.2. The regular output of DESeq are TPMs, how did the authors obtain the FPKM used in the analysis?


      Response: FPKM was calculated using the GenomicFeatures package and included on GitHub to enhance accessibility for other users. However, the input for WGCNA and this study as a whole was normalised counts rather than FPKM. The FPKM analysis was done to improve interoperability of the data for future users and made available on Github. To complement this, the information regarding FPKM calculation is now included in the methods section of the revised manuscript (line 491).

      3.3. Do the authors have a Southern blot to prove the location of the insertion and number of insertions in Zymoseptoria tritici mutant and complemented strains?


      __Response: __No, but the phenotype is attributed to the presence or absence of ZtKnr4, as the mutant was successfully complemented in multiple phenotypic aspects. This satisfies Koch's postulates which is the gold standard for reverse genetics experimentation (Falkow 1988; https://www.jstor.org/stable/4454582 ).

      __3.4. Boxplots and bar graphs should have the same format. In Figures 5 B and F and supplementary figure 6.3 the authors showed the distribution of samples but it is lacking in figure 3 B and all bar graphs. __


      __Response: __Graphs have been modified to display the distribution of all samples, thank you.

      3.5. Line 247 FGRAMPH1_0T23707 should be FGRAMPH1_01T23707


      __Response: __Thank you this has now been amended.

    1. Reviewer #2 (Public Review):

      Summary:

      Ning and colleagues present studies supporting a role for breast carcinoma amplified sequence 2 (Bcas2) in positively regulating primitive wave hematopoiesis through amplification of beta-catenin-dependent (canonical) Wnt signaling. The authors present compelling evidence that zebrafish bcas2 is expressed at the right time and place to be involved in primitive hematopoiesis, that there are primitive hematopoietic defects in hetero- and homozygous mutant and knockdown embryos, that Bcas2 mechanistically positively regulates canonical Wnt signaling, and that Bcas2 is required for nuclear retention of B-cat through physical interaction involving armadillo repeats 9-12 of B-cat and the coiled-coil domains of Bcas2. Overall, the data and writing are clean, clear, and compelling. This study is a first-rate analysis of a strong phenotype with highly supportive mechanistic data. The findings shed light on the controversial question of whether, when, and how canonical Wnt signaling may be involved in hematopoietic development. We detail some minor concerns and questions below, which if answered, we believe would strengthen the overall story and resolve some puzzling features of the phenotype. Notwithstanding these minor concerns, we believe this is an exceptionally well-executed and interesting manuscript.

      Strengths:

      (1) The study features clear and compelling phenotypes and results.

      (2) The manuscript narrative exposition and writing are clear and compelling.

      (3) The authors have attended to important technical nuances sometimes overlooked, for example, focusing on different pools of cytosolic or nuclear b-catenin.

      (4) The study sheds light on a controversial subject: regulation of hematopoietic development by canonical Wnt signaling and presents clear evidence of a role.

      (5) The authors present evidence of phylogenetic conservation of the pathway.

      Weaknesses:

      (1) The authors present compelling data that Bcas2 regulates nuclear retention of B-cat through physical association involving binding between the Bcas2 CC domains and B-cat arm repeats 9-12. Transcriptional activation of Wnt target genes by B-cat requires physical association between B-cat and Tcf/Lef family DNA binding factors involving key interactions in Arm repeats 2-9 (Graham et al., Cell 2000). Mutually exclusive binding by B-cat regulatory factors, such as ICAT that prevent Tcf-binding is a documented mechanism (e.g. Graham et al., Mol Cell 2002). It would appear - based on the arm repeat usage by Bcas2 (repeats 9-12)-that Bcas2 and Tcf binding might not be mutually exclusive, which would support their model that Bcas2 physical association with B-cat to retain it in the nucleus would be compatible with co-activation of genes by allowing association with Tcf. It might be nice to attempt a three-way co-IP of these factors showing that B-cat can still bind Tcf in the presence of Bcas2, or at least speculate on the plausibility of the three-way interaction.

      (2) A major way that canonical Wnt signaling regulates hematopoietic development is through regulation of the LPM hematopoietic competence territories by activating expression of cdx1a, cdx4, and their downstream targets hoxb5a and hoxa9a (Davidson et al., Nature 2003; Davidson et al., Dev Biol 2006; Pilon et al., Dev Biol 2006; Wang et al., PNAS 2008). Could the authors assess (in situ) the expression of cdx1a, cdx4, hoxb5a, and hoxa9a in the bcas2 mutants?

      (3) The authors show compellingly that even heterozygous loss of bcas2 has strong Wnt-inhibitory effects. If Bcas2 is required for canonical Wnt signaling and bcas2 is expressed ubiquitously from the 1-cell stage through at least the beginning of gastrulation, why do bcas2 KO embryos not have morphological axis specification defects consistent with loss of early Wnt signaling, like loss of head (early), or brain anteriorization (later)? Could the authors provide some comments on this puzzle? Or if they do see any canonical Wnt signaling patterning defects in het- or homozygous embryos, could they describe and/or present them?

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Du et al. report 16 new well-preserved specimens of atiopodan arthropods from the Chengjiang biota, which demonstrate both dosal and vental anatomies of a pothential new taxon of atiopodans that are closely related to trolobites. Authors assigned their specimens to Acanthomeridion serratum, and proposed A. anacanthus as a junior subjective synonym of Acanthomeridion serratum. Critially, the presence of ventral plates (interpreted as cephalic liberigenae), together with phylogenic results, lead authors to conclude that the cephalic sutures originated multiple times within the Artiopoda.

      Strengths:

      New specimens are highly qualified and informative. The morphology of dorsal exoskeleton, except for the supposed free cheek, were well illustrated and described in detail, which provide a wealth of information for taxonmic and phylogenic analyses.

      Weaknesses:

      The weaknesses of this work is obvious in a number of aspects. Technically, ventral morphlogy is less well revealed and is poorly illustrated. Additional diagrams are necessary to show the trunk appendages and suture lines. Taxonomically, I am not convinced by authors' placement. The specimens are markedly different from either Acanthomeridion serratum Hou et al. 1989 or A. anacanthus Hou et al. 2017. The ontogenetic description is extremely weak and the morpholical continuity is not established. Geometric and morphomitric analyses might be helpful to resolve the taxonomic and ontogenic uncertainties. I am confused by author's description of free cheek (libragena) and ventral plate. Are they the same object? How do they connect with other parts of cephalic shield, e.g. hypostome and fixgena. Critically, homology of cephalic slits (eye slits, eye notch, doral suture, facial suture) not extensivlely discussed either morphologically or functionally. Finally, authors claimed that phylogenic results support two separate origins rather than a deep origin. However, the results in Figure 4 can be explain a deep homology of cephalic suture in molecular level and multiple co-options within the Atiopoda.

      Comments on the revised version:

      I have seen the extensive revision of the manuscript. The main point "Multiple origins of dorsal ecdysial sutures in atiopoans" is now partially supported by results presented by the authors. I am still unsatisfied with descriptions and interpretations of critical features newly revealed by authors. The following points might be useful for the author to make further revisions.

      (1) The antennae were well illustrated in a couple of specimens, while it was described in a short sentence.

      Some more details of the changing article shape and overall length of antennae has been added to the description.

      (2) There are also imprecise descriptions of features.

      Measurements, dimensions and multiple figures are provided for many features in the text and the supplement includes more figures. In total, 11 figures are provided with details (photographs or measurements) of the material.

      (3) Ontogeny of the cephalon was not described.

      A sentence has been added to the description to note the changing width:length of the cephalon during ontogeny, with a reference to Figure 6.

      (3) The critical head element is the so called "ventral plate". How this element connects with the cephalic shield is not adequately revealed. The authors claimed that the suture is along the cephalic margin. However, the lateral margin of cephalon is not rounded but exhibit two notches (e.g. Fig 3C) . This gives an indication that the supposed ventral plates have a dorsal extension to fit the notches. Alternatively, the "ventral plate" can be interpreted as a small free cheek with a large ventral extension, providing evidence for librigenal hypothesis.

      As noted in the diagnosis for the genus, these notches are interpreted to accommodate the eye stalks. The homology of the ventral plates is discussed at length in the manuscript, and is the focus of the three sets of phylogenetic analyses performed.

      Reviewer #3 (Public Review):

      Summary:

      Well-illustrated new material is documented for Acanthomeridion, a formerly incompletely known Cambrian arthropod. The formerly known facial sutures are proposed be associated with ventral plates that the authors homologise with the free cheeks of trilobites (although also testing alternative homologies). An update of a published phylogenetic dataset permits reconsideration of whether dorsal ecdysial sutures have a single or multiple origins in trilobites and their relatives.

      Strengths:

      Documentation of an ontogenetic series makes a sound case that the proposed diagnostic characters of a second species of Acanthomeridion are variation within a single species. New microtomographic data shed light on appendage morphology that was not formerly known. The new data on ventral plates and their association with the ecdysial sutures are valuable in underpinning homologies with trilobites.

      I think the revision does a satisfactory job of reconciling the data and analyses with the conclusions drawn from them. Referee 1's valid concerns about whether a synonymy of Acanthomeridion anacanthus is justified have been addressed by the addition of a length/width scatterplot in Figure 6. Referee 2's doubts about homology between the librigenae of trilobites and ventral plates of Acanthomeridion have been taken on board by re-running the phylogenetic analyses with a coding for possible homology between the ventral plates and the doublure of olenelloid trilobites. The authors sensibly added more trilobite terminals to the matrix (including Olenellus) and did analyses with and without constraints for olenelloids being a grade at the base of Trilobita. My concerns about counting how many times dorsal sutures evolved on a consensus tree have been addressed (the authors now play it safe and say "multiple" rather than attempting to count them on a bushy topology). The treespace visualisation (Figure 9) is a really good addition to the revised paper.

      Weaknesses:

      The question of how many times dorsal ecdysial sutures evolved in Artiopoda was addressed by Hou et al (2017), who first documented the facial sutures of Acanthomeridion and optimised them onto a phylogeny to infer multiple origins, as well as in a paper led by the lead author in Cladistics in 2019. Du et al. (2019) presented a phylogeny based on an earlier version of the current dataset wherein they discussed how many times sutures evolved or were lost based on their presence in Zhiwenia/Protosutura, Acanthomeridion and Trilobita. The answer here is slightly different (because some topologies unite Acanthomeridion and trilobites). This paper is not a game-changer because these questions have been asked several times over the past seven years, but there are solid, worthy advances made here.

      I'd like to see some of the most significant figures from the Supplementary Information included in the main paper so they will be maximally accessed. The "stick-like" exopods are not best illustrated in the main paper; their best imagery is in Figure S1. Why not move that figure (or at least its non-redundant panels) as well as the reconstruction (Figure S7) to the main paper? The latter summarises the authors' interpretation that a large axe-shaped hypostome appears to be contiguous with ventral plates.

      We have moved these figures from the supplementary information to the main text, and renumbered figures accordingly. Fig S1 has now been split – panels a and b are in the main text (new Fig. 4), with the remainder staying as Fig S1. Fig S7 is now Fig. 8 in the main text.

      The specimens depict evidence for three pairs of post-antennal cephalic appendages but it's a bit hard to picture how they functioned if there's no room between the hypostome and ventral plates. Also, a comment is required on the reconstruction involving all cephalic appendages originating against/under the hypostome rather the first pair being paroral near the posterior end of the hypostome and the rest being post-hypostomal as in trilobites.

      A short comment has been added to the caption.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I have seen the extensive revision of the manuscript. The main point "Multiple origins of dorsal ecdysial sutures in atiopoans" is now partially supported by results presented by the authors. I am still unsatisfied with descriptions and interpretations of critical features newly revealed by authors. The following points might be useful for the author to make further revisions.

      (1) The antennae were well illustrated in a couple of specimens, while it was described in a short sentence.

      (2) There are also imprecise descriptions of features (see my annotations in submitted ms).

      (3) Ontogeny of the cephalon was not described.

      (3) The critical head element is the so called "vental plate". How this element connects with the cephalic shield is not adequately revealed. The authors claimed that the suture is along the cephalic margin. However, the lateral margin of cephalon is not rounded but exhibit two notches (e.g. Fig 3C) . This gives a indication that the supposed ventral plates have a dorsal extension to fit the notches. Alternatively, the "ventral plate" can be interpreted as a small free cheek with a large ventral extension, providing evidence for librigenal hypothesis.

      Reviewer #3 (Recommendations For The Authors):

      The references swap back and forth between journal titles being abbreviated or written out in full. Please standardise this to journal format rather than alternating between two different styles.

      Line 145: Perez-Peris et al. (2021) should be cited as the source for the Anacheirurus appendages.

      Added, thank you.

      Line 310: The El Albani et al (2024) paper on ellipsocephaloid appendages should be noted in connection with an A+4 (rather than A+3) head in trilobites.

      Added.

      Minor or trivial corrections:

      Line 51: move the three citations to follow "arthropods" rather than following "artiopodans", as none of these papers are specifically about Artiopoda.

      Changed thank you

      Caption to Figure 1 and line 100: Acanthomeridion appears in Figure 1 and in the text with no context. Please weave it into the text appropriately.

      Line 136: The data were...

      Corrected

      Line 164: upper case for Morphobank.

      Corrected

      Line 183: spelling of "Village" (not "Vallige").

      Corrected

      Line 197: I suggest using "articles" rather than "podomeres" for the antenna (as you did in line 232).

      Changed thank you

      Line 269: "gnathobasal spine (rather than "spin").

      Changed thank you

      Line 272: "Exopods" is used here but elsewhere "exopodites" is used.

      Exopodites is now used throughout

      Line 359: "can been seen" is awkward and, as evolutionary patterns are inferred rather than "seen", could be reworded as "... loss of the eye slit has been inferred...".

      Reworded as suggested

      Line 422 and 423: As two referees asked in the first round of review, delete "iconic" and "symbolic".

      Deleted as suggested

      Line 467: "librigena-like".

      Corrected

    1. Author response:

      The following is the authors’ response to the original reviews.

      We would like to thank the reviewers and editor for their helpful comments and suggestions. In response, we have revised the manuscript in two main ways:

      (1) To address the comments about rearranging figures and tables, we added a new Figure 3 that summarizes neurotransmitter assignments across all neuron classes. Our rationale for this change is detailed below.

      (2) To address the comment on clarifying neurotransmitter synthesis versus uptake, we analyzed two additional reporter alleles that tag the monoamine uptake transporters for 5-HT and potentially tyramine. These results are now presented in a new Figure 8 and corresponding sections in the manuscript. Related tables have been updated to include this expression data. Two more authors have been added due to their contributions to these experiments.

      For more detailed changes, please see our responses to the specific reviewer's comments as well as the revised manuscript.

      Public Reviews:

      Reviewer #1 (Public Review): 

      Wang and colleagues conducted a study to determine the neurotransmitter identity of all neurons in C. elegans hermaphrodites and males. They used CRISPR technology to introduce fluorescent gene expression reporters into the genomic loci of NT pathway genes. This approach is expected to better reflect in vivo gene expression compared to other methods like promoter- or fosmid-based transgenes, or available scRNA datasets. The study presents several noteworthy findings, including sexual dimorphisms, patterns of NT co-transmission, neuronal classes that likely use NTs without direct synthesis, and potential identification of unconventional NTs (e.g. betaine releasing neurons). The data is well-described and critically discussed, including a comparison with alternative methods. Although many of the observations and proposals have been previously discussed by the Hobert lab, the current study is particularly valuable due to its comprehensiveness. This NT atlas is the most complete and comprehensive of any nervous system that I am aware of, making it an extremely useful tool for the community. 

      Reviewer #2 (Public Review):

      Summary: 

      Together with the known anatomical connectivity of C. elegans, a neurotransmitter atlas paves the way toward a functional connectivity map. This study refines the expression patterns of key genes for neurotransmission by analyzing the expression patterns from CRISPR-knocked-in GFP reporter strains using the color-coded Neuropal strain to identify neurons. Along with data from previous scRNA sequencing and other reporter strains, examining these expression patterns enhances our understanding of neurotransmitter identity for each neuron in hermaphrodites and the male nervous system. Beyond the known neurotransmitters (GABA, Acetylcholine, Glutamate, dopamine, serotonin, tyramine, octopamine), the atlas also identifies neurons likely using betaine and suggests sets of neurons employing new unknown monoaminergic transmission, or using exclusively peptidergic transmission. 

      Strengths: 

      The use of CRISPR reporter alleles and of the Neuropal strain to assign neurotransmitter usage to each neuron is much more rigorous than previous analysis and reveals intriguing differences between scRNA seq, fosmid reporter, and CRISPR knock-in approaches. Among other mechanisms, these differences between approaches could be attributed to 3'UTR regulatory mechanisms for scRNA vs. knockin or titration of rate-limited negative regulatory mechanisms for fosmid vs. knockin. It would be interesting to discuss this and highlight the occurrences of these potential phenomena for future studies.  

      We recognize that readers of this study may be interested in understanding the differences between the three approaches. Therefore, in the Introduction, we addressed the potential risk of overexpression artifacts associated with multicopy transgenes, such as fosmid-based reporters, which can affect rate-limiting negative regulatory mechanisms. Additionally, in the Discussion, we included a section titled 'Comparing approaches and caveats of expression pattern analysis' to further explore these comparative methods and their associated nuances.

      Weaknesses: 

      For GABAergic transmission, one shortcoming arises from the lack of improved expression pattern by a knockin reporter strain for the GABA recapture symporter snf-11. In its absence, it is difficult to make a final conclusion on GABA recapture vs GABA clearance for all neurons expressing the vesicular GABA transporter neurons (unc-47+) but not expressing the GAD/UNC-25 gene e.g. SIA or R2A neurons. At minima, a comparison of the scRNA seq predictions versus the snf-11 fosmid reporter strain expression pattern would help to better judge the proposed role of each neuron in GABA clearance or recycling. 

      The snf-11 fosmid-based reporter data shows very good overlap with scRNA seq predictions (now included in Supp. Table S1). 

      But there are two much stronger reasons why we did not seek to further the analysis of expression of the snf-11 GABA uptaker:

      (1) Due to available anti-GABA staining data, we do know which neurons have the potential to take up GABA (via SNF-11).

      (2) Focusing on SNF-11 function rather than expression, we can ask which neurons lose anti-GABA staining in snf-11 mutants.

      Both of these types of analyses have been done in an earlier study from our lab (Gendrel et al., 2016, PMID 27740909), which, among other things, investigated GABA uptake mechanisms via SNF-11. Apart from analyzing the expression of a fosmid-based snf-11 reporter, we immunostained worms for GABA in both snf-11 mutant and wild type backgrounds (results summarized in Tables 1 and 2 of Gendrel et al.). Of the neurons that typically stain for GABA (Table 1, Gendrel et al.), two neuron classes (ALA and AVF) lost the staining in snf-11 mutants, suggesting that these neurons likely uptake GABA via SNF-11. Importantly, one of the neurons the reviewer mentioned, R2A, stains for GABA in both wild type and snf-11 mutants, indicating that it likely does not uptake GABA via SNF-11. The other neuron mentioned, SIA, does not stain for GABA in wild type (Table 2, Gendrel et al.), hence not a GABA uptake neuron. In cases like SIA and other neurons, where a neuron does not express unc-25 but does express unc-47 reporters (either fosmid or CRISPR reporter alleles), we speculate that UNC-47 transport another neurotransmitter.

      Considering the complexities of different tagging approaches, like T2A-GFP and SL2-GFP cassettes, in capturing post-translational and 3'UTR regulation is important. The current formulation is simplistic. e.g. after SL2 trans-splicing the GFP RNA lacks the 5' regulatory elements, T2A-GFP self-cleavage has its own issues, and the his-44-GFP reporter protein does certainly have a different post-translational life than vesicular transporters or cytoplasmic enzymes. 

      Yes, agreed, these points are mentioned in the Introduction and discussed in "Comparing approaches and caveats of expression pattern analysis" in the Discussion.

      Do all splicing variants of neurotransmitter-related genes translate into functional proteins? The possibility that some neurons express a non-functional splice variant, leading to his-74-GFP reporter expression without functional neurotransmitter-related protein production is not addressed. 

      We thank the reviewer for bringing up this really interesting point, which we had not considered. First and foremost, with the exception of unc-25 (discussed in the next point), for all other genes that produce multiple splice forms, we made sure to append our tag (at 5’ or 3’ end) such that the expression of all splice forms is captured. The reviewer raises the interesting point that in an alternative splicing scenario, some of the cells that express the primary transcript may “switch” to an inactive form. While we cannot exclude this possibility, we have confirmed by sequence analysis in WormBase that in five of the six cases where there is alternative splicing, the alternatively spliced exon lies outside the conserved, functionally relevant (enzymatic or structural) domain. In one case, unc-25, a shorter isoform is produced that does cut into the functionally relevant domain; however, since all unc-25 reporter allele expression cells are also staining positive for GABA, this may not be an issue. 

      Also, one tagged splice variant of unc-25 is expected to fail to produce a GFP reporter, can this cause trouble? 

      Yes, there is indeed a third splice variant of unc-25 with an alternative C-terminus. To address potential expression of this isoform, we CRISPR-engineered another reporter, unc-25(ot1536[unc-25b.1::t2a::gfp::h2b]), in which the inserted t2a::gfp::h2b sequences are fused to the C-terminus of the alternative splice form, but we did not observe any expression of this reporter. Now included in the manuscript.

      Reviewer #3 (Public Review): 

      Summary: 

      In this paper, Wang et al. provide the most comprehensive description and comparison of the expression of the different genes required to synthesize, transport, and recycle the most common neurotransmitters (Glutamate, Acetylcholine, GABA, Serotonin, Dopamine, Octopamine, and Tyramine) used by hermaphrodite and male C. elegans. This paper will be a seminal reference in the field. Building and contrasting observations from previous studies using fosmid, multicopy reporters, and single-cell sequencing, they now describe CRISPR/Cas-9-engineered reporter strains that, in combination with the multicolor pan-neuronal labeling of all C. elegans neurons (NeuroPAL), allows rigorous elucidation of neurotransmitter expression patterns. These novel reporters also illuminate previously unappreciated aspects of neurotransmitter biology in C. elegans, including sexual dimorphism of expression patterns, cotransmission, and the elucidation of cell-specific pathways that might represent new forms of neurotransmission. 

      Strengths: 

      The authors set out to establish neurotransmitter identities in C. elegans males and hermaphrodites via varying techniques, including integration of previous studies, examination of expression patterns, and generation of endogenous CRISPR-labeled alleles. Their study is comprehensive, detailed, and rigorous, and achieves the aims. It is an excellent reference for the field, particularly those interested in biosynthetic pathways of neurotransmission and their distribution in vivo, in neuronal and non-neuronal cells. 

      Weaknesses: 

      No weaknesses were noted. The authors do a great job linking their characterizations with other studies and techniques, giving credence to their findings. As the authors note, there are sexually dimorphic differences across animals and varying expression patterns of enzymes. While it is unlikely there will be huge differences in the reported patterns across individual animals, it is possible that these expression patterns could vary developmentally, or based on physiological or environmental conditions. It is unclear from the study how many animals were imaged for each condition, and if the authors noted changes across individuals during development (could be further acknowledged in the discussion?)  

      We have updated the Methods section to specify the number of animals used for imaging. We agree with the reviewer that documenting the developmental dynamics of neurotransmitter expression would be interesting. However, except for one gene (tph-1, Fig. S2), we did not analyze the expression during different developmental stages for most genes in this study. Following the reviewer's suggestion, we have included this as a potential future direction in "Conclusions" at the end of the revised manuscript.

      Recommendations for the authors:

      After the consultation session, a common suggestion from the reviewers is to bring the tables more upfront, perhaps even in the form of legible main Figures and in alphabetical order of neurons; since we believe that the study will be in the long-term often used for these data; while the Figures with fluorescent expression patterns could be moved to the supplemental information. 

      We appreciate the reviewers' and editor's acknowledgment of the tables' possibly frequent usage by the field. We have considered carefully how to order the data presentation. We prefer to keep most of the fluorescent figures in the main text because they convey important subtleties that we want the reader to be aware of.

      To address the suggestions to bring key data more upfront, we have added an entirely new figure (Figure 3) before the ensuing data figures that summarized expression patterns of the fluorescent reporters. This new figure (A) summarizes the neurotransmitter use for all neuron classes and (B) illustrates this information within worm schematics, showing the position of neurons in the whole worm. This figure serves as a good overview of neurotransmitter assignments but also specifically refers to the more extensive data and supplementary tables with detailed notes. We believe this solution effectively balances the need for comprehensive information and ease of reference.

      Reviewer #1 (Recommendations for The Authors):

      Suggestions: 

      (1) The study contains up to 10 Figures with gene expression patterns; however, I believe the community will use this paper mostly in the future for its summarizing tables. I wonder if it would be more useful to edit the tables and move them to the main figures while most fluorescent reporter images could be moved to the supplementary part. 

      Yes, as mentioned above, we made new summary table & schematic upfront. We do prefer to keep primary data in main figure body. Please see above (Public Review & Response).

      (2) In the section titled 'Neurotransmitter Synthesis versus Uptake', the author's wording could be more careful. The data rather suggests functions for individual neuronal classes, such as clearance neurons or signaling neurons. However, these functions remain hypotheses until further detailed studies are conducted to test them. 

      These are fair points. We have made several improvements: 

      (1) In the referenced section, we added a sentence at the end of the paragraph on betaine to suggest the importance of future functional studies.

      (2) We analyzed reporter allele expression for two additional genes: the known uptake transporter for 5-HT (mod-5, reporter allele vlc47) and the predicted uptake transporter for tyramine (oct-1, reporter allele syb8870). The results from these experiments are presented in the new Figure 8 and discussed in Results and Discussion correspondingly. We also collaborated with Curtis Loer, who conducted anti-5-HT staining in wild type and mod-5 mutant animals (results shown in Figure 12). These experiments have enhanced our understanding of 5-HT uptake mechanisms and potential tyramine uptake mechanisms.

      (3) At the end of the Conclusions, we emphasized the need for future detailed studies to test the functions of neurotransmitter synthesis and uptake.

      (3) Page 21; add to the discussion: neurons could use mainly electrical synapses for communication. Especially for RMG neurons, this might be the case (in addition to neuropeptide communication). 

      “Main usage” is a difficult term to use. If there were neurons that are clearly devoid of any form of synaptic vesicle (small or DCV; note that RMG has plenty of DCVs), but show robust and reproducible electrical synapses, we would agree that such neurons could primarily be a “coupling” neuron. But this call is very hard to make for any C. elegans neuron (RMG included) and hence we prefer to not add further to an already quite long Discussion section.

      (4) Page 23: I believe that multi-copy promoter-based transgenes (despite array suppression mechanisms) could be potentially more sensitive than single-copy insertion of fluorescent reporters. In our lab, we observed this a couple of times. This could be discussed. 

      We discuss this in "Comparing approaches and caveats of expression pattern analysis" in the Discussion.

      We have also added a third possibility (i.e. technical issues related to neuron-ID) in the revised manuscript.   

      Reviewer #2 (Recommendations For The Authors): 

      Comment during consultation session: As for my feedback on the lack of an SNF-11 reporter strain, exercising more caution in their conclusions would suffice for me. Other comments are simple edits/discussion.  

      Please see above.  

      Several neurotransmitter symporters exist in the C. elegans genome, does any express specifically in the "orphan" UNC-47+ neurons? 

      Yes, good point, we considered this possibility, but of the >10 SLC6-family of neurotransmitter reporters, only the classic, de-orphanized ones that we discuss here in the paper show robust scRNA signals (as discussed in the paper) and none of those give clues about the orphan unc-47(+) neurons.

      Based on UNC-47+ expression the article suggests a "Novel inhibitory neurotransmitter". Why would any new neurotransmitter using UNC-47 be necessarily inhibitory? The presence of one potential glycine-gated anion channel and one GPCR in C. elegans genome sounds poor evidence to suggest a sign of glycine or b-alanine transmission. 

      Yes, agreed, it does not need to be inhibitory. Fixed in Results and Discussion. 

      To help readers the expression of the knocked in GFP in neurons should not be reported as binary in table S1 which leads to a feeling of strong discrepancy between scRNA seq and CRISPR GFP, which is not the case.  

      There might be some misunderstanding regarding the coloring in this table. To clarify, the green-filled Excel cells denote the expression of reporters utilized in prior studies, rather than the CRISPR reporter alleles. Expression of the CRISPR alleles is instead indicated on the left side of the neuron names, marked as "CRISPR+" in green font. For signifying absence of expression, we used "no CRISPR" in red font in the first submission. We have now changed it into "CRISPR-" for greater clarity.

      The variable expression of reporter GFP between individuals for the same neuron is intriguing. It is unclear if this is observed only for dim neurons or can be more of an ON/OFF expression. 

      Variability only occurs for dim expression. We have now clarified this point in Discussion, "Comparing approaches and caveats of expression pattern analysis".

      The multiple occurrences of co-transmission, especially in male neurons, are interesting. It will be interesting in the future to establish whether the neurotransmitters are synaptically segregated or coreleased. As the section on sexual dimorphism of neurotransmitter usage does not discuss novel information coming from this study, it is not very necessary. 

      Agreed. We added this perspective to the Discussion, "Co-transmission of multiple neurotransmitters".  

      In the abstract, dopamine is missing in the main known transmitter.  

      Fixed. Thanks for spotting this.

      Reviewer #3 (Recommendations For The Authors): 

      Great article. Minor suggestions to strengthen presentation: 

      Figure 1B is hard to interpret. There could be more intuitive ways of representing the data and the methodologies that support a given expression pattern. Neurons should also be reordered by alphabetical order rather than expression levels to facilitate finding them.  

      We considered alternative ways of presenting this data, but, regrettably, did not come up with a better approach. To clarify, the primary focus of Fig. 1B is to compare expression of previously reported reporters and scRNA data, which was quite literally the initial impetus for our analysis, i.e. we noted strong scRNA signals that had not previously been supported by transgenic reporter data. For a comprehensive version of the table that includes more details on the expression of CRISPR reporter alleles, please refer to Table S1, which we referenced in the figure legend.   

      GFP-only channel images in Figures 3, 4, 5, and 9 sometimes show dim signals that the authors are highlighting as new findings. We recommend using the inverted grayscale version of that channel since the contrast of dim signals is more noticeable to the human eye rather than when the image is colorized. 

      Good point, we implemented these suggestions in the figures the reviewer mentioned, now re-numbered Figures 4, 5, 6, and 12. For Figure 6 (tph-1, bas-1, and cat-1 expression in hermaphrodites), we used a new cat-1 head image to reflect the newly identified ASI and AVL expression that wasn’t readily visible in the original projection used in the earlier version of this manuscript. We also added grayscale images in Figure 13 to reflect dim tbh-1 expression in IL2 neurons more clearly.

      A plan to integrate this new information into WormAtlas. The C. elegans community is characterized by the open sharing of information on platforms that are user-friendly and accessible. Ideally, the new information would not just 'erase' what was observed before but will describe the new observations and will let the community reach their own conclusions since there is no perfect method and even these CRISPR/Cas9 reporter strains are only proxy for gene expression that subject to post-transcriptional regulation since they depend on T2A and SL2 sequences. 

      We completely agree with the reviewer’s suggestion. We will coordinate with WormAtlas on integrating this new information. 

      In the case of neurons that were removed from using a specific neurotransmitter, like PVQ. What do the authors conclude overall, if it does not use glutamate, are there any new hypotheses to what it could be using?

      Since all neurons express multiple neuropeptides, we hypothesize neurons such as PVQ may be primarily peptidergic. This is included in Discussion, "Neurons devoid of canonical neurotransmitter pathway genes may define neuropeptide-only neurons".  

      In Table S5, the I4 neuron is listed as a variable for eat-4 expression but in Table S1 it says that there was no CRISPR expression detected. Which one is correct? 

      Thanks for spotting this. Table S5 is correct, we saw very dim and variable expression of the eat-4 reporter allele in I4. Table S1 is fixed now.

      Additional discussion points that might be important for the community: 

      CRIPSR strains used here should be deposited in the CGC. 

      Yes, all strains generated in this study have already been deposited to CGC. 

      It would be great to have an additional discussion point on how the neural clusters in CenGEN were defined based on the fosmid reporter expression, so in a way using the defining factor as one that was already defined by it might make results confusing. 

      Neural cluster definition in CeNGEN did not rely on isolated data points but on the combination of many expression reagents, each with its own shortcomings, but in combination providing reliable identification. Since one feedback we have gotten from many readers of our manuscript is that it is already very long as is, we prefer not to dilute the discussion further.

      It would be important to discuss the rate of neurotransmitter genes that have variable expression patterns. Are any of those genes used in NeuroPAL to define specific neuronal classes? This is important to describe as NeuroPAL labeling is being used to define neuronal identity. 

      All the reporters used in NeuroPAL are promoter-based, very robust and do not include the full loci of genes, so they are not directly comparable with the CRISPR reporter alleles in this study. However, we recognize that some expression pattern variability could be confusing. We have discussed this more in the section "Comparing approaches and caveats of expression pattern analysis" in the Discussion.

    1. how his Korean mother kept his family loved and afloat with food. He details the salted stew meats, the scallion-and-hot-pepper pancakes; the radish kimchi which would take over a room with its odor.

      I personally think when writers are able to paint a picture in the readers head instead of giving a vague description, it makes it easier for the reader to understand what the writer is talking about. Giving the reader chances to make personal connections .

    1. Reviewer #1 (Public review):

      Summary:

      The present study addresses whether physiological signals influence aperiodic brain activity with a focus on age-related changes. The authors report age effects on aperiodic cardiac activity derived from ECG in low and high-frequency ranges in roughly 2300 participants from four different sites. Slopes of the ECGs were associated with common heart variability measures, which, according to the authors, shows that ECG, even at higher frequencies, conveys meaningful information. Using temporal response functions on concurrent ECG and M/EEG time series, the authors demonstrate that cardiac activity is instantaneously reflected in neural recordings, even after applying ICA analysis to remove cardiac activity. This was more strongly the case for EEG than MEG data. Finally, spectral parameterization was done in large-scale resting-state MEG and ECG data in individuals between 18 and 88 years, and age effects were tested. A steepening of spectral slopes with age was observed particularly for ECG and, to a lesser extent, in cleaned MEG data in most frequency ranges and sensors investigated. The authors conclude that commonly observed age effects on neural aperiodic activity can mainly be explained by cardiac activity.

      Strengths:

      Compared to previous investigations, the authors demonstrate the effects of aging on the spectral slope in the currently largest MEG dataset with equal age distribution available. Their efforts of replicating observed effects in another large MEG dataset and considering potential confounding by ocular activity, head movements, or preprocessing methods are commendable and valuable to the community. This study also employs a wide range of fitting ranges and two commonly used algorithms for spectral parameterization of neural and cardiac activity, hence providing a comprehensive overview of the impact of methodological choices. Based on their findings, the authors give recommendations for the separation of physiological and neural sources of aperiodic activity.

      Weaknesses:

      While the aim of the study is well-motivated and analyses rigorously conducted, the overall structure of the manuscript, as it stands now, is partially misleading. Some of the described results are not well-embedded and lack discussion.

    2. Reviewer #3 (Public review):

      Summary:

      Schmidt et al., aimed to provide an extremely comprehensive demonstration of the influence cardiac electromagnetic fields have on the relationship between age and the aperiodic slope measured from electroencephalographic (EEG) and magnetoencephalographic (MEG) data.

      Strengths:

      Schmidt et al., used a multiverse approach to show that the cardiac influence on this relationship is considerable, by testing a wide range of different analysis parameters (including extensive testing of different frequency ranges assessed to determine the aperiodic fit), algorithms (including different artifact reduction approaches and different aperiodic fitting algorithms), and multiple large datasets to provide conclusions that are robust to the vast majority of potential experimental variations.

      The study showed that across these different analytical variations, the cardiac contribution to aperiodic activity measured using EEG and MEG is considerable, and likely influences the relationship between aperiodic activity and age to a greater extent than the influence of neural activity.

      Their findings have significant implications for all future research that aims to assess aperiodic neural activity, suggesting control for the influence of cardiac fields is essential.

      Weaknesses:

      Figure 4I: The regressions explained here seem to contain a very large number of potential predictors. Based on the way it is currently written, I'm assuming it includes all sensors for both the ECG component and ECG rejected conditions?

      I'm not sure about the logic of taking a complete signal, decomposing it with ICA to separate out the ECG and non-ECG signals, then including these latent contributions to the full signal back into the same regression model. It seems that there could be some circularity or redundancy in doing so. Can the authors provide a justification for why this is a valid approach?

      I'm not sure whether there is good evidence or rationale to support the statement in the discussion that the presence of the ECG signal in reference electrodes makes it more difficult to isolate independent ECG components. The ICA algorithm will still function to detect common voltage shifts from the ECG as statistically independent from other voltage shifts, even if they're spread across all electrodes due to the referencing montage. I would suggest there are other reasons why the ICA might lead to imperfect separation of the ECG component (assumption of the same number of source components as sensors, non-Gaussian assumption, assumption of independence of source activities).

      The inclusion of only 32 channels in the EEG data might also have reduced the performance of ICA, increasing the chances of imperfect component separation and the mixing of cardiac artifacts into the neural components, whereas the higher number of sensors in the MEG data would enable better component separation. This could explain the difference between EEG and MEG in the ability to clean the ECG artifact (and perhaps higher-density EEG recordings would not show the same issue).

      In addition to the inability to effectively clean the ECG artifact from EEG data, ICA and other component subtraction methods have also all been shown to distort neural activity in periods that aren't affected by the artifact due to the ubiquitous issue of imperfect component separation (https://doi.org/10.1101/2024.06.06.597688). As such, component subtraction-based (as well as regression-based) removal of the cardiac artifact might also distort the neural contributions to the aperiodic signal, so even methods to adequately address the cardiac artifact might not solve the problem explained in the study. This poses an additional potential confound to the "M/EEG without ECG" conditions.

      Literature Analysis, Page 23: was there a method applied to address studies that report reducing artifacts in general, but are not specific to a single type of artifact? For example, there are automated methods for cleaning EEG data that use ICLabel (a machine learning algorithm) to delete "artifact" components. Within these studies, the cardiac artifact will not be mentioned specifically, but is included under "artifacts".

      Statistical inferences, page 23: as far as I can tell, no methods to control for multiple comparisons were implemented. Many of the statistical comparisons were not independent (or even overlapped with similar analyses in the full analysis space to a large extent), so I wouldn't expect strong multiple comparison controls. But addressing this point to some extent would be useful (or clarifying how it has already been addressed if I've missed something).

      Methods:

      Applying ICA components from 1Hz high pass filtered data back to the 0.1Hz filtered data leads to worse artifact cleaning performance, as the contribution of the artifact in the 0.1Hz to 1Hz frequency band is not addressed (see Bailey, N. W., Hill, A. T., Biabani, M., Murphy, O. W., Rogasch, N. C., McQueen, B., ... & Fitzgerald, P. B. (2023). RELAX part 2: A fully automated EEG data cleaning algorithm that is applicable to Event-Related-Potentials. Clinical Neurophysiology, result reported in the supplementary materials). This might explain some of the lower frequency slope results (which include a lower frequency limit <1Hz) in the EEG data - the EEG cleaning method is just not addressing the cardiac artifact in that frequency range (although it certainly wouldn't explain all of the results).

      It looks like no methods were implemented to address muscle artifacts. These can affect the slope of EEG activity at higher frequencies. Perhaps the Riemannian Potato addressed these artifacts, but I suspect it wouldn't eliminate all muscle activity. As such, I would be concerned that remaining muscle artifacts affected some of the results, particularly those that included high frequency ranges in the aperiodic estimate. Perhaps if muscle activity were left in the EEG data, it could have disrupted the ability to detect a relationship between age and 1/f slope in a way that didn't disrupt the same relationship in the cardiac data (although I suspect it wouldn't reverse the overall conclusions given the number of converging results including in lower frequency bands). Is there a quick validity analysis the authors can implement to confirm muscle artifacts haven't negatively affected their results? I note that an analysis of head movement in the MEG is provided on page 32, but it would be more robust to show that removing ICA components reflecting muscle doesn't change the results. The results/conclusions of the following study might be useful for objectively detecting probable muscle artifact components: Fitzgibbon, S. P., DeLosAngeles, D., Lewis, T. W., Powers, D. M. W., Grummett, T. S., Whitham, E. M., ... & Pope, K. J. (2016). Automatic determination of EMG-contaminated components and validation of independent component analysis using EEG during pharmacologic paralysis. Clinical neurophysiology, 127(3), 1781-1793.

    1. helping and encouraging them as you are doing on these grounds, and to education of head, hand, and heart, you will find that they will buy your surplus land, make blossom the waste places in your fields, and run your factories.

      make a commitment in helping educate black people to make the world a better place

    1. Parametrize the sorted list by a lower bound on the values it contains. For a cons cell the head should be smaller than the lower bound, and the tail should be larger than the head. This requires the type to have a smallest element, but you can adjoin -∞ with a new datatype.

      this is the way it's done in "How to keep your neighbors in order"

    1. To get the attention of policy makers, social entrepreneurs have to learn how to compete head to head with well-financed lobbyists and any number of special interest groups.

      hah!

    2. at the end of the eighteenth century, well over three-quarters of all people were living in slavery or serfdom. Of those not enslaved, the majority were forced to submit to the rule of kings or dictators, locked into immutable traditions that did not permit dissent, or consigned to short lives characterized by crushing poverty, disease, and violence.

      I was reminded of this recently while on a tour of historic Fort George. Life in the military at the end of the 18th century sounded horrible with its ever-abundant risk of disease, death, or dismemberment. But if you weren't a member of the monied elite, it was a guaranteed meal and roof over one's head (in exchange for one's fealty).

    1. This trend has borne out historically: before the deep learning era, the amount of compute used by AI models doubled in about 21.3 months; since deep learning as a paradigm took hold around 2010, the amount of compute used by models started doubling in only 5.7 months12. Since 2015 however, trends in compute growth have split into two: the amount of compute used in large-scale models has been doubling in roughly 9.9 months, while the amount of compute used in regular-scale models has been doubling in only about 5.7 months

      If something is doubling faster in small models, how long before they Ive take the larger models? I can’t do the maths in my head

    1. so that with them a herile government is one composed of a very few, a domestic of more, a civil and a regal of still more, as if there was no difference between a large family and a small city, or that a regal government and a political one are the same, only that in the one a single person is continually at the head of public affairs;

      different bodies/structures of government differentiate themselves by the group of people/amt of people who reside at the top

    2. that each member of the state has in his turn a share in the government, and is at one time a magistrate, at another a private person, according to the rules of political science

      a city is different from a family. cities have an everchanging center of control wherein a family has a permanent head of the household constituted by humans natural instincts.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review):

      Summary:

      The question of whether eyespots mimic eyes has certainly been around for a very long time and led to a good deal of debate and contention. This isn't purely an issue of how eyespots work either, but more widely an example of the potential pitfalls of adopting 'just-so-stories' in biology before conducting the appropriate experiments. Recent years have seen a range of studies testing eye mimicry, often purporting to find evidence for or against it, and not always entirely objectively. Thus, the current study is very welcome, rigorously analysing the findings across a suite of papers based on evidence/effect sizes in a meta-analysis.

      Strengths:

      The work is very well conducted, robust, objective, and makes a range of valuable contributions and conclusions, with an extensive use of literature for the research. I have no issues with the analysis undertaken, just some minor comments on the manuscript. The results and conclusions are compelling. It's probably fair to say that the topic needs more experiments to really reach firm conclusions but the authors do a good job of acknowledging this and highlighting where that future work would be best placed.

      Weaknesses:

      There are few weaknesses in this work, just some minor amendments to the text for clarity and information.

      We greatly appreciate Reviewer 1’s positive comments on our manuscript. We also revised our manuscript text and a figure in accordance with Reviewer 1’s recommendations.

      Reviewer #2 (Public Review):

      Many prey animals have eyespot-like markings (called eyespots) which have been shown in experiments to hinder predation. However, why eyespots are effective against predation has been debated. The authors attempt to use a meta-analytical approach to address the issue of whether eye-mimicry or conspicuousness makes eyespots effective against predation. They state that their results support the importance of conspicuousness. However, I am not convinced by this.

      There have been many experimental studies that have weighed in on the debate. Experiments have included manipulating target eyespot properties to make them more or less conspicuous, or to make them more or less similar to eyes. Each study has used its own set of protocols. Experiments have been done indoors with a single predator species, and outdoors where, presumably, a large number of predator species predated upon targets. The targets (i.e, prey with eyespot-like markings) have varied from simple triangular paper pieces with circles printed on them to real lepidopteran wings. Some studies have suggested that conspicuousness is important and eye-mimicry is ineffective, while other studies have suggested that more eye-like targets are better protected. Therefore, there is no consensus across experiments on the eye-mimicry versus conspicuousness debate.

      The authors enter the picture with their meta-analysis. The manuscript is well-written and easy to follow. The meta-analysis appears well-carried out, statistically. Their results suggest that conspicuousness is effective, while eye-mimicry is not. I am not convinced that their meta-analysis provides strong enough evidence for this conclusion. The studies that are part of the meta-analysis are varied in terms of protocols, and no single protocol is necessarily better than another. Support for conspicuousness has come primarily from one research group (as acknowledged by the authors), based on a particular set of protocols.

      Furthermore, although conspicuousness is amenable to being quantified, for e.g., using contrast or size of stimuli, assessment of 'similarity to eyes' is inherently subjective. Therefore, manipulation of 'similarity to eyes' in some studies may have been subtle enough that there was no effect.

      There are a few experiments that have indeed supported eye-mimicry. The results from experiments so far suggest that both eye-mimicry and conspicuousness are effective, possibly depending on the predator(s). Importantly, conspicuousness can benefit from eye-mimicry, while eye-mimicry can benefit from conspicuousness.

      Therefore, I argue that generalizing based on a meta-analysis of a small number of studies that conspicuousness is more important than eye-mimicry is not justified. To summarize, I am not convinced that the current study rules out the importance of eye-mimicry in the evolution of eyespots, although I agree with the authors that conspicuousness is important.

      We understand Reviewer 2’s concerns and have addressed them by adding some sentences in the discussion part (L506- 508, L538-L540). In addition, our findings, which were guided by current knowledge, support the conspicuousness hypothesis, but we acknowledge the two hypotheses are not mutually exclusive (L110-112). We also do not reject the eye mimicry hypothesis. As we have demonstrated, there are still several gaps in the current literature and our understanding (L501-553). Our aim is for this research to stimulate further studies on this intriguing topic and to foster more fruitful discussions.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Minor comments

      Lines 59/60: "it is possible that eyespots do not involve mimicry of eyes..."

      The sentence was revised (L59). To enhance readability, we have integrated Reviewer 1's suggestions by simplifying the relevant section instead of using the suggested sentence.

      Line 61: not necessarily aposematism. They might work simply through neophobia, unfamiliarity, etc even without unprofitability

      We changed the text in line with the comment from Reviewer 1 (L61-63).

      Lines 62/63 - this is a little hard to follow because I think you really mean both studies of real lepidopterans as well as artificial targets. Need to explain a bit more clearly.

      We provided an additional explanation of our included primary study type (L64-65).

      Lines 93/94 - not quite that they have nothing to do with predator avoidance, but more that any subjective resemblance to eyes is coincidental, or simply as a result of those marking properties being more effective through conspicuousness in their own right.

      Line 94 - similarly, not just aposematism. You explain the possible reasons above on l92 as also being neophobia, etc.

      We agreed with Reviewer 1’s comments and added more explanations about the conspicuousness hypothesis (L96-97). We have also rewritten the sentences that could be misleading to readers (L428).

      Line 96 - this is perhaps a bit misleading as it seems to conflate mechanism and function. The eye mimicry vs conspicuousness debate is largely about how the so-called 'intimidation' function of eyespots works. That is, how eyespots prevent predators from attacking. The deflection hypothesis is a second function of eyespots, which might also work via consciousness or eye mimicry (e.g. if predators try to peck at 'eyes') but has been less central to the mimicry debate.

      The explanations and suggestions from Reviewer 1 are very helpful. We revised this part of our manuscript (L103-108) and Figure 1 and its legend to make it clearer that the eyespot hypothesis and the conspicuousness hypothesis explain anti-predator functions from a different perspective than the deflection hypothesis.

      There is a third function of eyespots too, that being as mate selection traits. Note that Figure 1 should also be altered to reflect these points.

      We wanted to focus on explaining why eyespot patterns can contribute to prey survival. Therefore, we did not state that eyespot patterns function as mate selection traits in this paragraph. Alternatively, we have already mentioned this in the Discussion part (L455-L465) and rewrote it more clearly (L456).

      Were there enough studies on non-avian predators to analyse in any way? 

      We found a few studies on non-avian predators (e.g. fish, invertebrates, or reptiles), but not enough to conduct a meta-analysis.

      Line 171/72 - why? Can you explain, please.

      The reason we excluded studies that used bright or contrasting patterns as control stimuli in our meta-analysis is to ensure comparability across primary studies. We added an explanation in the text (L180-181).

      Line 177 - can you clarify this?

      Without control stimuli, it is challenging to accurately assess the effect of eyespots or other conspicuous patterns on predation avoidance. Control stimuli allow for a comparison of the effect of eyespots or patterns. We added a more detailed explanation to clarify here (L186-188).

      Line 309 - presumably you mean 33 papers, each of which may have multiple experiments? I might have missed it, but how many individual experiments in total? 

      There were 164 individual experiments. We have now added that information in the manuscript (L320).

      Line 320 - paper shaped in a triangle mostly?

      We cannot say that most artificial prey were triangular. After excluding the caterpillar type, 57.4% were triangular, while the remaining 43.6% were rectangular (Figure 2b).

      Line 406: Stevens.

      We fixed this name, thank you (L417).

      Discussion - nice, balanced and thorough. Much of the work done has been in Northern Europe where eyespot species are less common. Perhaps things may differ in areas where eyespots are more prevalent.

      We appreciate Reviewer 1’s kind words and comments. We agree with your comments and reflected them in our manuscript (L542-545).

      Line 477 - True, and predators often have forward-facing eyes making it likely both would often be seen, but a pair of eyes may not be absolutely crucial to avoidance since sometimes a prey animal may only see one eye of a predator (e.g. if the other is occluded, or only one side of the head is visible).

      We were grateful for Reviewer 1's comment. We added a sentence noting that the eyespots do not necessarily have to be in pairs to resemble eyes (L490-L492).

    1. Heard melodies are sweet, but those unheard     Are sweeter; therefore, ye soft pipes, play on;

      This piece gives an ironic statement through this phrase that states while melodies that are heard are sweet, but unheard melodies are sweeter, suggesting that there are things that are better to be unheard thus maker them more sweeter, such as the troubles one goes through so it is better left unheard.

      It is also a paradox in how it works as well as we find sweetness in what we hear in music, giving us joy, but this states not knowing what it sounds like provides a grander sense of sweetness. But, is that truly the case? How can we know that such a thing is sweeter if we cannot hear what it is? This results in creating a tension to the structure that is built upon, ironically creating something sweet to the reader's ear by using stressed syllables to play on as the phrase would say. This resulting combination gives a pleasant mix or irony and paradox that had a rhythm that the reader bobs their head along as they enjoyed the moments of tension with the stressed syllables and the moments of peace with the unstressed syllables , making it like music that you can enjoy while you start to see similar problems in language when you compare the two.

    1. You died because I overslept.

      I found this sentence so daunting but truthful. If you did not know the backstory of this apology you would have multiple questions and scenarios running through your head. But what i love is once you know what this apology is about, that sentence becomes so minuscule to our feelings (unless you love spiders) and less harmful to our feelings or reaction.

    2. I didn't see you until after I felt your hand on my arm, pulling me out of the phalanx of marchers armed with placards and chanting our way down Pennsylvania Avenue.

      This sentence painted a picture in my head right when I read it. It was descriptive enough that it told the story but also that It had such a worry rushed tone speaking through these words.

    1. Sometime now past in the Autumnal Tide, When Phoebus wanted but one hour to bed, The trees all richly clad, yet void of pride, Were gilded o’re by his rich golden head. Their leaves and fruits seem’d painted but was true Of green, of red, of yellow, mixed hew, Rapt were my senses at this delectable view.

      This passage is a reflection of autumn. we also see that this passage has metaphysical literary works for example she talks about the leaves, fruit, and trees

    1. of both race and gender that remained in place—particularly among its women employees known as computers..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11211Darden’s arrival at Langley coincided with the early days of digital computing. Although Langley could claim one of the most advanced computing systems of the time—an IBM 704, the first computer to support floating-point math—its resources were still limited. For most data analysis tasks, Langley’s Advanced Computing Division relied upon human computers like Darden herself. These computers were all women, trained in math or a related field, and tasked with performing the calculations that determined everything from the best wing shape for an airplane, to the best flight path to the moon. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Aneta SwianiewiczBut despite the crucial roles they played in advancing this and other NASA research, they were treated like unskilled temporary workers.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11. They were brought into research groups on a project-by-project basis, often without even being told anything about the source of the data they were asked to analyze..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Lena Zlock Most of the engineers, who were predominantly men, never even bothered to learn the computers’ names.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1111.These women computers have only recently.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Michela Banks begun to receive credit for their crucial work, thanks to scholars of the history of computing.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Roujia Wang—and to journalists like Margot Lee Shetterly, whose book, Hidden Figures: The American Dream and the Untold Story of the Black Women Who Helped Win the Space Race,.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi along with its film adaptation.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Fagana Stone, is responsible for bringing Christine Darden’s story into the public eye.2 Her story, like those of her colleagues, is one of hard work under discriminatory conditions. Each of these women computers was required to advocate for herself—and some, like Darden, chose also to advocate for others. It is because of both her contributions to data science and her advocacy for women that we have chosen to begin our book, Data Feminism, with Darden’s story. For feminism begins with a belief in the “political, social, and economic equality of the sexes,”.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Michela Banks as the Merriam-Webster Dictionary defines the term—as does, for the record, Beyoncé.3 And any definition of feminism also necessarily includes the activist work that is required to turn that belief into reality.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Yolanda Yang. In Data Feminism, we bring these two aspects of feminism together, demonstrating a way of thinking about data, their analysis, and their display, that is informed by this tradition of feminist activism as well as the legacy of feminist critical thought..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1nyah beanAs for Darden, she did not only apply her skills of data analysis to spaceflight trajectories; she also applied them to her own career path..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Yasin Chowdhury After working at Langley for a number of years, she began to notice two distinct patterns in her workplace: men with math credentials were placed in engineering positions, where they could be promoted through the ranks of the civil service, while women with the same degrees were sent to the computing pools, where they languished until they retired or quit.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }211..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Joe Masnyy She did not want to become one of those women, nor did she want others to experience the same fate. So she gathered up her courage and decided to approach the chief of her division to ask him why..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Yasin Chowdhury As Darden, now seventy-five, told Shetterly in an interview for Hidden Figures, his response was sobering: “Well, nobody’s ever complained,” he told Darden. “The women seem to be happy doing that, so that’s just what they do.”.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }21111In today’s world, Darden might have gotten her boss fired—or at least served with an Equal Employment Opportunity Commission complaint. But at the time that Darden posed her question, stereotypical remarks about “what women do” were par for the course..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Roujia Wang In fact, challenging assumptions about what women could or couldn’t do—especially in the workplace—was the central subject of Betty Friedan’s best-selling book, The Feminine Mystique. Published in 1963, The Feminine Mystique.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCarten is often credited with starting feminism’s so-called second wave.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Yolanda Yang.4 Fed up with the enforced return to domesticity following the end of World War II, and inspired by the national conversation about equality of opportunity prompted by the civil rights movement, women across the United States began to organize around a wide range of issues, including reproductive rights.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }21 and domestic violence, as well as the workplace inequality and restrictive gender roles that Darden faced at Langley.That said, Darden’s specific experience as a Black woman with a full-time job was quite different than that of a white suburban housewife—the central focus of The Feminine Mystique. And when critics rightly called out Friedan for failing to acknowledge the range of experiences of women in the United States (and abroad), it was women like Darden, among many others, whom they had in mind. In Feminist Theory: From Margin to Center, another landmark feminist book published in 1984, bell hooks puts it plainly: “[Friedan] did not discuss who would be called in to take care of the children and maintain the home if more women like herself were freed from their house labor and given equal access with white men to the professions. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11She did not speak of the needs of women without men, without children, without homes. She ignored the existence of all non-white women and poor white women..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi She did not tell readers whether it was more fulfilling to be a maid, a babysitter, a factory worker, a clerk, or a prostitute than to be a leisure-class housewife.”.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCarten5In other words, Friedan had failed to consider how those additional dimensions of individual and group identity—like race and class, not to mention sexuality, ability, age, religion, and geography, among many others—intersect with each other to determine one’s experience in the world.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jayri Ramirez. Although this concept—intersectionality.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11—did not have a name when hooks described it, the idea that these dimensions cannot be examined in isolation from each other has a much longer intellectual history..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }116 Then, as now, key scholars and activists were deeply attuned to how the racism embedded in US culture.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Fagana Stone, Amanda Christopher, coupled with many other forms of oppression, made it impossible to claim a common experience.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi—or a common movement—for all women everywhere. Instead, what was needed was “the development of integrated analysis and practice based upon the fact that the major systems of oppression are interlocking.”7 These words are from the Combahee River Collective Statement, written in 1978 by the famed Black feminist activist group out of Boston. In this book, we draw heavily from intersectionality and other concepts developed through the work of Black feminist scholars and activists because they offer some of the best ways for negotiating this multidimensional terrain.Indeed, feminism must be intersectional if it seeks to address the challenges of the present moment..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Angela Li, Cynthia Lisee We write as two straight, white women based in the United States, with four advanced degrees and five kids between us. We identify as middle-class and cisgender—meaning that our gender identity matches the sex that we were assigned at birth. We have experienced.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCarten sexism in various ways at different points of our lives—being women in tech and academia, birthing and breastfeeding babies, and trying to advocate for ourselves and our bodies in a male-dominated health care system. But we haven’t experienced sexism in ways that other women certainly have or that nonbinary people have, for there are many dimensions of our shared identity, as the authors of this book, that align with dominant group positions. This fact makes it impossible for us to speak from experience about some oppressive forces—racism, for example. But it doesn’t make it impossible for us to educate ourselves.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi and then speak about racism and the role that white people play in upholding it..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Peem Lerdp Or to challenge ableism and the role that abled people play in upholding it. Or to speak about class and wealth inequalities and the role that well-educated, well-off people play in maintaining those..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Fagana Stone Or to believe in the logic of co-liberation. Or to advocate for justice through equity. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1nyah beanIndeed, a central aim of this book is to describe a form of intersectional feminism that takes the inequities of the present moment as its starting point and begins its own work by asking: How can we use data to remake the world?8This is a complex and weighty task, and it will necessarily remain unfinished. But its size and scope need not stop us—or you, the readers of this book—from taking additional steps toward justice. Consider Christine Darden, who, after speaking up to her division chief, heard nothing from him but radio silence. But then, two weeks later, she was indeed promoted.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Amanda Christopher and transferred to a group focused on sonic boom research. In her new position, Darden was able to begin directing her own research projects and collaborate with colleagues of all genders as a peer. Her self-advocacy serves as a model: a sustained attention to how systems of oppression intersect with each other, informed by the knowledge that comes from direct experience. It offers a guide for challenging power and working toward justice.What Is Data Feminism?Christine Darden would go on to conduct groundbreaking research on sonic boom minimization techniques, author more than sixty scientific papers in the field of computational fluid dynamics, and earn her PhD in mechanical engineering—all while “juggling the duties of Girl Scout mom, Sunday school teacher, trips to music lessons, and homemaker,” Shetterly reports. But even as she ascended the professional ranks, she could tell that her scientific accomplishments were still not being recognized as readily as those of her male counterparts; the men, it seemed, received promotions far more quickly.Darden consulted with Langley’s Equal Opportunity Office, where a white woman by the name of Gloria Champine had been compiling a set of statistics about gender and rank. The data confirmed Darden’s direct experience: that women and men.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCarten—even those with identical academic credentials, publication records, and performance reviews—were promoted at vastly different rates. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Aneta SwianiewiczChampine recognized that her data could support Darden in her pursuit of a promotion and, furthermore, that these data could help communicate the systemic nature of the problem at hand. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Yuanxi LiChampine visualized the data in the form of a bar chart, and presented the chart to the director of Darden’s division.9 He was “shocked at the disparity,” Shetterly reports, and Darden received the promotion she had long deserved.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Angela Li, Fagana Stone.10 Darden would advance to the top rank in the federal civil service, the first Black woman at Langley to do so. By the time that she retired from NASA, in 2007, Darden was a director herself..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Joe Masnyy11Although Darden’s rise into the leadership ranks at NASA was largely the result of her own knowledge, experience, and grit, her story is one that we can only tell as a result of the past several decades of feminist activism and critical thought. It was a national feminist movement that brought women’s issues to the forefront of US cultural politics, and the changes brought about by that movement were vast. They included both the shifting gender roles that pointed Darden in the direction of employment at NASA and the creation of reporting mechanisms.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; } like the one that enabled her to continue her professional rise..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Roujia Wang, Seyoon Ahn But Darden’s success in the workplace was also, presumably, the result of many unnamed colleagues and friends who may or may not have considered themselves feminists. These were the people who provided her with community and support.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi—and likely a not insignificant number of casserole dinners—as she ascended the government ranks. These types of collective efforts have been made increasingly legible, in turn, because of the feminist scholars and activists whose decades of work have enabled us to recognize that labor—emotional as much as physical—as such today.As should already be apparent, feminism has been defined and used in many ways. Here and throughout the book, we employ the term feminism as a shorthand for the diverse and wide-ranging projects that name and challenge sexism and other forces of oppression, as well as those which seek to create more just, equitable, and livable futures. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }312Because of this broadness, some scholars prefer to use the term feminisms, which clearly signals the range of—and, at times, the incompatibilities among—these various strains of feminist activism and political thought. For reasons of readability, we choose to use the term feminism here, but our feminism is intended to be just as expansive. It includes the work of regular folks like Darden and Champine, public intellectuals like Betty Friedan and bell hooks, and organizing groups like the Combahee River Collective, which have taken direct action to achieve the equality of the sexes. It also includes the work of scholars and other cultural critics—like Kimberlé Crenshaw and Margot Lee Shetterly, among many more—who have used writing to explore the social, political, historical, and conceptual reasons behind the inequality of the sexes that we face today.In the process, these writers and activists have given voice to the many ways in which today’s status quo is unjust.12 These injustices are often the result of historical and contemporary differentials of power, including those among men, women, and nonbinary people, as well as those among white women and Black women, academic researchers and Indigenous communities, and people in the Global North and the Global South..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; } Feminists analyze these power differentials so that they can change them..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1athmar al-ghanim Such a broad focus—one that incorporates race, class, ability, and more—would have sounded strange to Friedan or to the white women largely credited for leading the fight for women’s suffrage in the nineteenth century.13 But the reality is that women of color have long insisted that any movement for gender equality must also consider the ways in which privilege and oppression are intersectional..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1nyah beanBecause the concept of intersectionality is essential for this whole book, let’s get a bit more specific. The term was coined by legal theorist Kimberlé Crenshaw in the late 1980s..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1nyah bean14 In law school, Crenshaw had come across the antidiscrimination case of DeGraffenreid v. General Motors. Emma DeGraffenreid was a Black working mother who had sought a job at a General Motors factory in her town. She was not hired and sued GM for discrimination. The factory did have a history of hiring Black people: many Black men worked in industrial and maintenance jobs there. They also had a history of hiring women: many white women worked there as secretaries. These two pieces of evidence provided the rationale for the judge to throw out the case. Because the company did hire Black people and did hire women, it could not be discriminating based on race or gender. But, Crenshaw wanted to know, what about discrimination on the basis of race and gender together? This was something different, it was real, and it needed to be named. Crenshaw not only named the concept, but would go on to explain and elaborate the idea of intersectionality in award-winning books, papers, and talks.15Key to the idea of intersectionality is that it does not only describe the intersecting aspects of any particular person’s identity (or positionalities, as they are sometimes termed).16 It also describes the intersecting forces of privilege and oppression at work in a given society. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }111Oppression involves the systematic mistreatment of certain groups of people by other groups. It happens when power is not distributed equally—when one group controls the institutions of law, education, and culture, and uses its power to systematically exclude other groups while giving its own group unfair advantages (or simply maintaining the status quo).17 In the case of gender oppression, we can point to the sexism, cissexism.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Amanda Christopher, and patriarchy that is evident in everything from political representation to the wage gap to who speaks more often (or more loudly.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCarten) in a meeting..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Tegan Lewis18 In the case of racial oppression, this takes the form of racism and white supremacy. Other forms of oppression include ableism, colonialism, and classism. Each has its particular history and manifests differently in different cultures and contexts, but all involve a dominant group that accrues power and privilege at the expense of others. Moreover, these forces of power and privilege on the one hand and oppression on the other mesh together in ways that multiply their effects.The effects of privilege and oppression are not distributed evenly across all individuals and groups, however. For some, they become an obvious and unavoidable part of daily life, particularly for women and people of color and queer people and immigrants: the list goes on. If you are a member of any or all of these (or other) minoritized groups, you experience their effects everywhere, shaping the choices you make (or don’t get to make) each day. These systems of power are as real as rain..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Eva Maria Chavez But forces of oppression can be difficult to detect when you benefit from them (we call this a privilege hazard later in the book).d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Yolanda Yang, Jillian McCarten. And this is where data come in: it was a set of intersecting systems of power and privilege that Darden was intent on exposing when she posed her initial question to her division chief. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1g mAnd it was that same set of intersecting systems of power and privilege that Darden sought to challenge when she approached Champine. Darden herself didn’t need any more evidence of the problem she faced; she was already living it every day.19 But when her experience was recorded as data and aggregated with others’ experiences, it could be used to challenge institutional systems of power and have far broader impact than on her career trajectory alone..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1111In this way, Darden models what we call data feminism: a way of thinking about data, both their uses and their limits, that is informed by direct experience, by a commitment to action, and by intersectional feminist thought..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Tegan Lewis T.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11he starting point for data feminism is something that goes mostly unacknowledged in data science: power is not distributed equally in the world. Those who wield power are disproportionately elite, straight, white, able-bodied, cisgender men from the Global North.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Seng Aung Sein Myint.20 The work of data feminism is first to tune into how standard practices in data science serve to reinforce these existing inequalities and second to use data science to challenge and change the distribution of power..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Megan Foesch21 Underlying data feminism is a belief in and commitment to co-liberation: the idea that oppressive systems of power harm all of us, that they undermine the quality and validity of our work, and that they hinder us from creating true and lasting social impact with data science..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1nyah beanWe wrote this book because we are data scientists and data feminists. Although we speak as a “we” in this book, and share certain identities, experiences, and skills, we have distinct life trajectories and motivations for our work on this project. If we were sitting with you right now, we would each introduce ourselves by answering the question: What brings you here today? Placing ourselves in that scenario, here is what we would have to say.Catherine: I am a hacker mama. I spent fifteen years as a freelance software developer and experimental artist, now professor, working on projects ranging from serendipitous news-recommendation systems to countercartography to civic data literacy to making breast pumps not suck. I’m here writing this book because, for one, the hype around big data and AI is deafeningly male and white and technoheroic .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCartenand the time is now to reframe that world with a feminist lens. The second reason I’m here is that my recent experience running a large, equity-focused hackathon taught me just how much people like me—basically, well-meaning liberal white people—are part of the problem in struggling for social justice. This book is one attempt to expose such workings of power, which are inside us as much as outside in the world.22Lauren: I often describe myself as a professional nerd. I worked in software development before going to grad school to study English, with a particular focus on early American literature and culture. (Early means very early—like, the eighteenth century.) As a professor at an engineering school, I now work on research projects that translate this history into contemporary contexts. For instance, I’m writing a book about the history of data visualization, employing machine-learning techniques to analyze abolitionist newspapers, and designing a haptic recreation of a hundred-year-old visualization scheme that looks like a quilt. Through projects like these, I show how the rise of the concept of “data” (which, as it turns out, really took off in the eighteenth century.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCarten) is closely connected to the rise of our current concepts of gender and race. So one of my reasons for writing this book is to show how the issues of racism and sexism that we see in data science today are by no means new. The other reason is to help translate humanistic thinking into practice and, in so doing, create more opportunities for humanities scholars to engage with activists, organizers, and communities.23We both strongly believe that data can do good in the world. But for it to do so, we must explicitly acknowledge that a key way that power and privilege operate in the world today has to do with the word data itself..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Seng Aung Sein Myint The word dates to the mid-seventeenth century, when it was introduced to supplement existing terms such as evidence and fact..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Tegan Lewis Identifying information as data, rather than as either of those other two terms, served a rhetorical purpose.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCarten.24 It converted otherwise debatable information into the solid basis for subsequent claims. But what information needs to become data before it can be trusted? Or, more precisely, whose information needs to become data before it can be considered as fact and acted upon?.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Peem Lerdp, Fagana Stone25 Data feminism must answer these questions, too..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }211The story that begins with Christine Darden entering the gates of Langley, passes through her sustained efforts to confront the structural oppression she encountered there, and concludes with her impressive array of life achievements, is a story about the power of data. Throughout her career, in ways large and small, Darden used data to make arguments and transform lives. But that’s not all. Darden’s feel-good biography is just as much a story about the larger systems of power that required data—rather than the belief in her lived experience.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Cynthia Lisee—to perform that transformative work. An institutional mistrust of Darden’s experiential knowledge was almost certainly a factor in Champine’s decision to create her bar chart. Champine likely recognized, as did Darden herself, that she would need the bar chart to be believed..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11In this way, the alliance between Darden and Champine, and their work together, underscores the flaws and compromises that are inherent in any data-driven project. The process of converting life experience into data always necessarily entails a reduction of that experience.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Tegan Lewis—along with the historical and conceptual burdens of the term. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11That Darden and Champine were able to view their work as a success despite these inherent constraints underscores even more the importance of listening to and learning from people whose lives and voices are behind the numbers. No dataset or analysis or visualization or model or algorithm is the result of one person working alone. Data feminism can help to remind us that before there are data, there are people—people who offer up their experience to be counted and analyzed, people who perform that counting and analysis, people who visualize the data and promote the findings of any particular project, and people who use the product in the end..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1nyah bean There are also, always, people who go uncounted—for better or for worse.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11. And there are problems that cannot be represented—or addressed—by data alone. And so data feminism, like justice, must remain both a goal and a process, one that guides our thoughts and our actions as we move forward toward our goal of remaking the world..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }111Data and Power.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Kaiyun ZhengIt took five state-of-the-art IBM System/360 Model 75 machines to guide the Apollo 11 astronauts to the moon. Each was the size of a car and cost $3.5 million dollars. Fast forward to the present. We now have computers in the form of phones that fit in our pockets and—in the case of the 2019 Apple iPhone XR—can perform more than 140 million more instructions per second than a standard IBM System/360..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Kotaro Garvin26 That rate of change is astounding; it represents an exponential growth in computing capacity (figure 0.2a). We’ve witnessed an equally exponential growth in our ability to collect and record information in digital form—and in the ability to have information collected about us (figure 0.2b).Figure 0.2: (a) The time-series chart included in the original paper on Moore’s law, published in 1965, which posited that the number of transistors that could fit on an integrated circuit (and therefore contribute to computing capacity) would double every year. Courtesy of Gordon Moore. (b) Several years ago, researchers concluded that transistors were approaching their smallest size and that Moore’s law would not hold. Nevertheless, today’s computing power is what enabled Dr. Katie Bouman, a postdoctoral fellow at MIT, to contribute to a project that involved processing and compositing approximately five petabytes of data captured by the Event Horizon Telescope to create the first ever image of a black hole. After the publication of this photo in April 2019 showing her excitement—as one of the scientists on the large team that worked for years to capture the image—Bouman was subsequently trolled and harassed online. Courtesy of Tamy Emma Pepin/Twitter.But the act of collecting and recording data about people is not new at all. From the registers of the dead that were published by church officials in the early modern era to the counts of Indigenous populations that appeared in colonial accounts of the Americas, data collection has long been employed as a technique of consolidating knowledge about the people whose data are collected, and therefore consolidating power over their lives..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Sara Blumenstein27 The close relationship between data and power is perhaps most clearly visible in the historical arc that begins with the logs of people captured and placed aboard slave ships, reducing richly lived lives to numbers and names..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11 It passes through the eugenics movement, in the late nineteenth and early twentieth centuries, which sought to employ data to quantify the superiority of white people over all others. It continues today in the proliferation of biometrics technologies that, as sociologist Simone Browne has shown, are disproportionately deployed to surveil Black bodies..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }28When Edward Snowden, the former US National Security Agency contractor, leaked his cache of classified documents to the press in 2013, he revealed the degree to which the federal government routinely collects data on its citizens—often with minimal regard to legality or ethics..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Natalie Pei Xu29 At the municipal level, too, governments are starting to collect data on everything from traffic movement to facial expressions in the interests of making cities “smarter.”30 This often translates to reinscribing traditional urban patterns of power such as segregation, the overpolicing of communities of color, and the rationing of ever-scarcer city services..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi31But the government is not alone in these data-collection efforts; corporations do it too—with profit as their guide. The words and phrases we search for on Google, the times of day we are most active on Facebook, and the number of items we add to our Amazon carts are all tracked and stored as data—data that are then converted into corporate financial gain.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }12. The most trivial of everyday actions—searching for a way around traffic, liking a friend’s cat video, or even stepping out of our front doors in the morning—are now hot commodities. This is not because any of these actions are exceptionally interesting (although we do make an exception for Catherine’s cats) but because these tiny actions can be combined with other tiny actions to generate targeted advertisements and personalized recommendations—in other words, to give us more things to click on, like, or buy.32.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Esmeralda OrrinThis is the data economy, and corporations, often aided by academic researchers, are currently scrambling to see what behaviors—both online and off—remain to be turned into data and then monetized. Nothing is outside of datafication.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi, as this process is sometimes termed—not your search history, or Catherine’s cats, or the butt that Lauren is currently using to sit in her seat. To wit: Shigeomi Koshimizu, a Tokyo-based professor of engineering, has been designing matrices of sensors that collect data at 360 different positions around a rear end while it is comfortably ensconced in a chair.33 He proposes that people have unique butt signatures, as unique as their fingerprints. In the future, he suggests, our cars could be outfitted with butt-scanners instead of keys or car alarms to identify the driver..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Kotaro GarvinAlthough datafication may occasionally verge into the realm of the absurd, it remains a very serious issue. Decisions of civic, economic, and individual importance are already and increasingly being made by automated systems sifting through large amounts of data. For example, PredPol, a so-called predictive policing company founded in 2012 by an anthropology professor at the University of California, Los Angeles, has been employed by the City of Los Angeles for nearly a decade to determine which neighborhoods to patrol more heavily, and which neighborhoods to (mostly) ignore. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Jillian McCartenBut because PredPol is based on historical crime data and US policing practices have always disproportionately surveilled and patrolled neighborhoods of color, the predictions of where crime will happen in the future look a lot like the racist practices of the past..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }3Fagana Stone, Melinda Rossi, Amanda Christopher34 These systems create what mathematician and writer Cathy O’Neil, in Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy, calls a “pernicious feedback loop,” amplifying the effects of racial bias and of the criminalization of poverty that are already endemic to the United States..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Kaiyun ZhengO’Neil’s solution is to open up the computational systems that produce these racist results. Only by knowing what goes in, she argues, can we understand what comes out. This is a key step in the project of mitigating the effects of biased data. Data feminism additionally requires that we trace those biased data back to their source. PredPol and the “three most objective data points” that it employs certainly amplify existing biases, but they are not the root cause.35 The cause, rather, is the long history of the criminalization of Blackness in the United States, which produces biased policing practices, which produce biased historical data, which are then used to develop risk models for the future..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }36 Tracing these links to historical and ongoing forces of oppression can help us answer the ethical question, Should this system exist?37 In the case of PredPol, the answer is a resounding no.Understanding this long and complicated chain reaction is what has motivated Yeshimabeit Milner, along with Boston-based activists, organizers, and mathematicians, to found Data for Black Lives, an organization dedicated to “using data science to create concrete and measurable change in the lives of Black communities.”38 Groups like the Stop LAPD Spying coalition are using explicitly feminist and antiracist methods to quantify and challenge invasive data collection by law enforcement.39 Data journalists are reverse-engineering algorithms and collecting qualitative data at scale about maternal harm.40 Artists are inviting participants to perform ecological maps and using AI for making intergenerational family memoirs.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi (figure 0.3a).41All these projects are data science. Many people think of data as numbers alone, but data can also consist of words or stories, colors or sounds, or any type of information that is systematically collected, organized, and analyzed .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }12(figures 0.3b, 0.3c).42 The science in data science simply implies a commitment to systematic methods of observation and experiment. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Peem LerdpThroughout this book, we deliberately place diverse data science examples alongside each other. They come from individuals and small groups, and from across academic, artistic, nonprofit, journalistic, community-based, and for-profit organizations. This is due to our belief in a capacious definition of data science, one that seeks to include rather than exclude and does not erect barriers based on formal credentials, professional affiliation, size of data, complexity of technical methods, or other external markers of expertise..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Cynthia Lisee Such markers, after all, have long been used to prevent women from fully engaging in any number of professional fields, even as those fields—which include data science and computer science, among many others—were largely built on the knowledge that women were required to teach themselves.43 An attempt to push back against this gendered history is foundational to data feminism, too.Throughout its own history, feminism has consistently had to work to convince the world that it is relevant to people of all genders.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Fagana Stone, Amanda Christopher. We make the same argument: that data feminism is for everybody. (And here we borrow a line from bell hooks.).d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }2Peem Lerdp, Vibha Sathish Kumar44 You will notice that the examples we use are not only about women, nor are they created only by women. That’s because data feminism isn’t only about women. It takes more than one gender to have gender inequality and more than one gender to work toward justice. Likewise, data feminism isn’t only for women. Men, nonbinary, and genderqueer people are proud to call themselves feminists and use feminist thought in their work. Moreover, data feminism isn’t only about gender. Intersectional feminists have keyed us into how race, class, sexuality, ability, age, religion, geography, and more are factors that together influence each person’s experience and opportunities in the world. Finally, data feminism is about power.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Peem Lerdp—about who has it and who doesn’t. Intersectional feminism examines unequal power.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Megan Foesch. And in our contemporary world, data is power too. Because the power of data is wielded unjustly, it must be challenged and changed..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1nyah beanData Feminism in ActionData is a double-edged sword. In a very real sense, data have been used as a weapon by those in power to consolidate their control—over places and things, as well as people. Indeed, a central goal of this book is to show how governments and corporations have long employed data and statistics as management techniques to preserve an unequal status quo. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }3Tegan Lewis, Melinda Rossi, Jillian McCartenWorking with data from a feminist perspective requires knowing and acknowledging this history. To frame the trouble with data in another way: it’s not a coincidence that the institution that employed Christine Darden and enabled her professional rise is the same that wielded the results of her data analysis to assert the technological superiority of the United States over its communist adversaries and to plant an American flag on the moon. But this flawed history does not mean ceding control of the future to the powers of the past. Data are part of the problem, to be sure. But they are also part of the solution. Another central goal of this book is to show how the power of data can be wielded back.Figure 0.3: We define data science expansively in this book—here are three examples. (a) Not the Only One by Stephanie Dinkins (2017), is a sculpture that features a Black family through the use of artificial intelligence. The AI is trained and taught by the underrepresented voices of Black and brown individuals in the tech sector. (b) Researcher Margaret Mitchell and colleagues, in “Seeing through the Human Reporting Bias” (2016), have worked on systems to infer what is not said in human speech for the purposes of image classification. For example, people say “green bananas” but not “yellow bananas” because yellow is implied as the default color of the banana. Similarly, people say “woman doctor” but do not say “man doctor,” so it is the words that are not spoken that encode the bias. (c) A gender analysis of Hollywood film dialogue, “Film Dialogue from 2,000 Screenplays Broken Down by Gender and Age,” by Hanah Anderson and Matt Daniels, created for The Pudding, a data journalism start-up (2017).To guide us in this work, we have developed seven core principles. Individually and together, these principles emerge from the foundation of intersectional feminist thought. Each of the following chapters is structured around a single principle. The seven principles of data feminism are as follows:.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Monserrat PadillaExamine power. Data feminism begins by analyzing how power operates in the world.Challenge power. Data feminism commits to challenging unequal power structures and working toward justice.Elevate emotion and embodiment. Data feminism teaches us to value multiple forms of knowledge, including the knowledge that comes from.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11 people as living, feeling bodies in the world.Rethink binaries and hierarchies. Data feminism requires us to challenge the gender binary, along with other systems of counting and classification that perpetuate oppression..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Eva Maria ChavezEmbrace pluralism. Data feminism insists that the most complete knowledge comes from synthesizing multiple perspectives, with priority .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }3Eva Maria Chavez, Fagana Stone, Tegan Lewisgiven to local, Indigenous, and experiential ways of knowing.Consider context. Data feminism asserts that data are not neutral or objective. They are the products of unequal social relations, and this context is essential for conducting accurate, ethical analysis..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Natalie Pei XuMake labor visible. The work of data science, like all work in the world, is the work of many hands. .d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda RossiData feminism makes this labor visible so that it can be recognized and valued.Each of the following chapters takes up one of these principles, drawing upon examples from the field of data science, expansively defined, to show how that principle can be put into action. Along the way, we introduce key feminist concepts like the matrix of domination (Patricia Hill Collins; see chapter 1), situated knowledge (Donna Haraway; see chapter 3), and emotional labor (Arlie Hochschild; see chapter 8), as well as some of our own ideas about what data feminism looks like in theory and practice. To this end, we introduce you to people at the cutting edge of data and justice. These include engineers and software developers, activists and community organizers, data journalists, artists, and scholars. This range of people, and the range of projects they have helped to create, is our way of answering the question: What makes a project feminist? As will become clear, a project may be feminist in content, in that it challenges power by choice of subject matter; in form, in that it challenges power by shifting the aesthetic and/or sensory registers of data communication; and/or in process, in that it challenges power by building participatory, inclusive processes of knowledge production.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }11. What unites this broad scope of data-based work is a commitment to action and a desire to remake the world..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Sara BlumensteinOur overarching goal is to take a stand against the status quo—against a world that benefits us, two white college professors, at the expense of others..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Justine Smith To work toward this goal, we have chosen to feature the voices of those who speak from the margins, whether because of their gender, sexuality, race, ability, class, geographic location, or any combination of those (and other) subject positions. We have done so, moreover, because of our belief that those with direct experience of inequality know better than we do about what actions to take next. For this reason, we have attempted to prioritize the work of people in closer proximity to issues of inequality over those who study inequality from a distance..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Natalie Pei Xu In this book, we pay particular attention to inequalities at the intersection of gender and race. This reflects our location in the United States, where the most entrenched issues of inequality have racism at their source. Our values statement, included as an appendix to this book, discusses the rationale for these authorial choices in more detail.Any book involves making choices about whose voices and whose work to include and whose voices and work to omit. We ask that those who find their perspectives insufficiently addressed or their work insufficiently acknowledged view these gaps as additional openings for conversation. Our sincere hope is to contribute in a small way to a much larger conversation, one that began long before we embarked upon this writing process and that will continue long after these pages are through.This book is intended to provide concrete steps to action for data scientists seeking to learn how feminism can help them work toward justice, and for feminists seeking to learn how their own work can carry over to the growing field of data science. It is also addressed to professionals in all fields in which data-driven decisions are being made.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Melinda Rossi, as well as to communities that want to resist or mobilize the data that surrounds them. It is written for everyone who seeks to better understand the charts and statistics that they encounter in their day-to-day lives, and for everyone who seeks to communicate the significance of such charts and statistics to others..d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Peem LerdpOur claim, once again, is that data feminism is for everyone. It’s for people of all genders. It’s by people of all genders. And most importantly: it’s about much more than gender. Data feminism is about power, about who has it and who doesn’t, and about how those differentials of power can be challenged and changed using data.d-undefined, .lh-undefined { background-color: rgba(0, 0, 0, 0.2) !important; }1Yolanda Yang. We invite you, the readers of this book, to join us on this journey toward justice and toward remaking our data-driven world.Connections1 of 2children and siblingsfilterA Translation of this Pubمقدمه: چرا علم داده به فمینیسم احتیاج داردby Catherine D'Ignazio and Lauren KleinShow DescriptionPublished on Mar 07, 2024data-feminism.mitpress.mit.eduDescriptionترجمه توسط امیرحسین پی‌براهA Translation of this PubIntroducción: por qué la ciencia de datos necesita feminismoby Catherine D'Ignazio and Lauren KleinShow DescriptionPublished on Apr 23, 2023data-feminism.mitpress.mit.eduDescriptionDataGénero (Coordinación: Mailén García. Traductoras: Ivana Feldfeber,Sofía García, Gina Ballaben, Giselle Arena y Mariángela Petrizzo. Revisión: Helena Suárez Val.Con la ayuda de Diana Duarte Salinas, Ana Amelia Letelier, y Patricia Maria Garcia Iruegas)Footnotes44LicenseCreative Commons Attribution 4.0 International License (CC-BY 4.0)Comments168 .discussion-list .discussion-thread-component.preview:hover, .discussion-list .discussion-thread-component.expanded-preview { border-left: 3px solid #2D2E2F; padding-left: calc(1em - 2px); } ?Login to discussHappy Polarbear: This passage describing the attitude of most male engineers towards their work is both painfully accurate and poignant, portraying them not as respected individuals deserving recognition for their achievements, but merely as inanimate objects, tools for calculation.?Cynthia Lisee: Such a fertile approach”?Cynthia Lisee: There is somethig immeasurable in lived experience, somethind stat would never reach. data not subject to an ethic of human relations based on "welcoming the Other" are mere abstractions and sources of violence Jamia Williams: Thank you! Reframing is essential when many of these events were deemed “riots” when it was Black folks rising up against various systems.Jamia Williams: Still happening today!?Jillian McCarten: The context in which numbers are collected?Jillian McCarten: The idea that some areas, and therefore some people don’t need to be monitored feels immoral. ?Jillian McCarten: I’ve been thinking about how it’s not what you’re doing but what your goal is, and corporations using our data to make more money off us definitely does not feel the same as collecting data on gender discrimination to stop the practice. ?Jillian McCarten: curious what examples it’s better?Jillian McCarten: It’s interesting what we need evidence to believe, and what we willingly believe without evidence ?Jillian McCarten: the word data origionaly meant to communicate that the fact is confirmed to be true- to shut down disputes ?Jillian McCarten: I love linguistic history, I’d like to learn more about this?Jillian McCarten: Yes, I’m afraid how how biases are baked into AI, and then reinforced ?Jillian McCarten: This reminds me of how priviledge is a lot less visible to those who hold it. ?Jillian McCarten: I wonder if she also had access to data on promotions across race. There’s all kinds of discrimination, and the kinds of data seen as worth collecting also reveal bias. I wonder if the white woman who collected the data focused on gender and missed other identities experiencing discrimination. ?Jillian McCarten: I appreciate how the authors directly state their most salient identities; this should be the norm. Oftentimes when I read a book like this I have to research the authors to learn their identities. Identities always influence the way we think and see the world. ?Jillian McCarten: Compelling quote about power?Jillian McCarten: It’s interesting to me that Darden’s story and the book are the two examples given so far. When I took Into to Women’s Studies in undergrad, this book was heavily criticized for mostly speaking on white feminist issues. I appreciate the author giving a more nuanced intersectional framing in the next paragraph. Jamia Williams: Love to know this! Jamia Williams: And it still far from being accomplished?Jillian McCarten: I’m curious which numbers would help communicate that, and how research can help illustrate the prevelence of this type of sexism. ?Jillian McCarten: This is a compelling example of how in our systems of power some people are seen as more valuable than others, and that likely connects to what data sources are seen as valuable.Jamia Williams: “Hidden figure” Jamia Williams: Thank you! Reframing is essential when many of these events were deemed “riots” when it was Black folks rising up against various systems.Jamia Williams: Still happening today!?Jillian McCarten: I think data is especially important in communicating how segregation persists, and how unofficial segregation is often harder to confront. ?Jillian McCarten: I think it’s important to confront the differences between the image of the US presented and the realities that people live in. I resonate with this statement- growing up I was told over and over how the US is the best place to live, and in the past few years I’ve been learning more about the historical and current harms perpetuated by our government?Jillian McCarten: So many decisions and judgement-calls that go into telling historical events, especially a quick summary like this. I’m glad that this author presents the police this way; I think a lot of authors I’ve read will ignore this reality. ?Amanda Christopher: This is a new term for me! ?Amanda Christopher: This makes me wonder how many women before her advocated for themselves, or if she was the first women at NASA to do so as her supervisor claimed. If she was not, why was her case different? What about the culture of the time at NASA allowed for her to be promoted? If she was the first, what would have happened if other women before her had the courage like Christine to speak up.?Melinda Rossi: Perfect for educators!?Melinda Rossi: I like that the authors are working to offer this knowledge to all.?Melinda Rossi: I like this. Giving credit where credit is due…what a concept!?Melinda Rossi: Ok, here’s the good-for-humanity stuff!?Melinda Rossi: The sad part is that it’s mostly used for financial gains, and not for the good of society/humanity. ?Melinda Rossi: This is sad and terrifying…and yet also seems about right. ?Melinda Rossi: I like this. Data can never capture all and that’s important to remember when we are looking at data and generalizing as if all are spoken for.?Tegan Lewis: This sums up our education system-using data and test scores to maintain the inequity in our school system.?Melinda Rossi: Yes! THIS! + 1 more...?Tegan Lewis: Data is more than numbers. What other data could be gathered in a school system??Tegan Lewis: Does it have to??Tegan Lewis: Would this be considered a misuse of data? Or more of the root of bias??Tegan Lewis: data feminism-can be used to expose inequity and challenge systems of power.Esmeralda Orrin: .Ah, capitalism,’?Tegan Lewis: gender oppression-was evident in the case of Darden?Tegan Lewis: Identity?Tegan Lewis: Would this apply to all forms of sexism, regardless of gender??Amanda Christopher: I would say absolutely, yes. I think one large misconception about feminism is that it only focuses on women, not all genders and sexes.Esmeralda Orrin: somehow I’m not surprised that men know what women are happy doing?Melinda Rossi: Finding a supportive community is key! ?Melinda Rossi: I think this part is so important. Being willing to educate themselves on issues that they might unconsciously contribute to is critical.?Melinda Rossi: We are not a monolith!?Melinda Rossi: bell hooks coming in hot with the truth.?Melinda Rossi: Hidden Figures was (sadly) the first time I had ever heard of Black women at NASA.Fagana Stone: The article could have had more power had the authors also included a note about countless studies that show invaluable contribution of diverse backgrounds and perspectives to innovation and progress. Fagana Stone: Not applicable to all cultures, as there are cultures ruled by matriarchs.?Amanda Christopher: Yes and in those cultures feminism may look differently as feminism is focused on equal rights for all genders. Many of the matriarchical cultures have more than two genders. And just about all societies have some form of gender inequalities.Fagana Stone: Wouldn’t the algorithm update itself as more surveillance data is available rather than fixate on old historical data??Melinda Rossi: That’s a good point. You would think it would be able to update with technology advancing as much as it has. + 1 more...Fagana Stone: In a capitalist country, it should be expected to have wealth inequalities… Not everyone can be wealthy nor can everyone struggle financially. Yes, there are systemic injustices, but it takes all parties involved to improve access to and understand importance of education. Dominated by two political parties running on opposing views, I can’t help but feel very pessimistic about significant progress on these issues in the near future (while the country is enacting backward looking policies and laws). Fagana Stone: “Racism” is a learned concept. Born and raised in Azerbaijan, we did not have a concept of racism, to which I was exposed to after having moved to the states. ?Amanda Christopher: Great point to add to the authors’; that it is “impossible to claim a common experience… for all women, everywhere.”Fagana Stone: It is important to note that men too struggle with sufficient paternity leave. It is critical to shift the thought from women being the only ones fit for childcare role to include men as well.Fagana Stone: Women in some states still fight for their reproductive rights!?Melinda Rossi: Fagana, that’s exactly what I was thinking. Some things change, and some things stay the same. Fagana Stone: Critical lesson in articulating the needs with the hope to identify and operationalize solutions.Fagana Stone: Excellent film! I highly recommend it.Fagana Stone: “The Soviet Union was responsible for launching the first human to space, carrying out the first spacewalk, sending the first woman to space, assembling the first modular space station in orbit around Earth (Mir) — and most of these achievements were accomplished using the same space capsule used in the 1960s.”Fagana Stone: Being from one of the former Soviet Union countries, it is also important to note that the Soviet Union had a more considerable tolerance for risk, hence the advancements mentioned in the field of astronautics. ?Rayon Ston: qKaiyun Zheng: I’ve listened to a podcast before, which is called What happens when an algorithm gets it wrong, In Machines We Trust, MIT Technology Review. It mainly talks about the technology of the use of facial recognition in public and where it can go wrong.The podcast begins with a story about a man who is accused of stealing because a computer matches his photo with a picture of the thief caught on a public camera. But in fact, it was a computer error. The computer can't tell whether the thief is a man or a black man, and the police blindly trust the computer's judgment, and moreover, he says that historically black people steal a lot. And based on the conversation in the podcast, the facial recognition technology isn't perfect, it makes mistakes and matches the wrong people. Such problems are not rare, and involve both privacy violations and potential discrimination.It made me realize that we have a lot more to do in data science.Kaiyun Zheng: We’ve learned about the differences between information and data in the very beginning lessons, and this makes me think about why we emphasize “data” instead of “info” here before the term "feminism".Kaiyun Zheng: The mention of the uneven distribution of power in this book piques my curiosity about how the topic will be addressed. I have previously read a book called "Foundation of Information," which discusses the relationship between power and information. The book suggests that when power is concentrated, the information gathered can sometimes deviate from the truth. As a result, I am curious about how data feminism ensures the authenticity and effectiveness of information collection.Additionally, the information of researching history is also mentioned in the later interview, which makes me curious about how the information of the past can be useful in the present so that it can be used as part of data feminism.Kaiyun Zheng: Intersectionality as a new term which appears after feminism is really interesting. I like how it is introduced here which talks about the example of a black woman since I thought it is the manifestation of a much broader phenomenon in the society. From Google, it is defined as "the interconnected nature of social categorizations such as race, class, and gender, regarded as creating overlapping and interdependent systems of discrimination or disadvantage" which strongly linked to the topic "feminism" (actually closer to equal rights).Each person has multiple identities. For example, I am a university student, an employee at a company, and a kid at home. These are just a few of the many labels that can be applied to an individual, including larger categories such as race, gender, and education. In an information-oriented society, labels can often obscure our understanding of the true nature of things and the individuality of a person can be overlooked. Intersectionality, while still categorizing individuals, does so in a more nuanced manner by connecting multiple labels to form a more specific and accurate representation. This can help individuals overcome challenges and reduce the oppression of vulnerable groups by dominant societal forces.Although from my personal point of view, classifying people is not a very good behavior after all, its emergence also reflects the response to various situations, so as to reduce the oppression of the dominant group of society on the vulnerable group.?Yuanxi Li: It's heartening that the value women create in terms of data has ultimately been validated by data itself, and this result has been achieved through mutual assistance among women.?Yuanxi Li: Intersectionality is an important term that shows how race, class, gender, and other individual characteristics affect with each other?Joe Masnyy: This story has shown the possibilities of this sort of advocation, though as stated early this is clearly not the norm. I appreciate the value of anecdotes such as these, although this text would benefit from hard data to show the scope and magnitude of the issue. Hopefully this is something that is explored further on in the text.?Joe Masnyy: This reality was, in the grand scheme of things, not very long ago. You could argue this still persists even today, with many STEM fields still being largely male in demographics. Even still, women tend to make less than men on average in the exact same fields.?Kotaro Garvin: We have so much more capability then before, but why does it seem like we are not making the same kind of progress? Is it not happening? or is it just unrecognized? ?Kotaro Garvin: I think this is one of the greatest ideas I have ever read, but it also shows why data is so important, everybody is unique but we can still be categorized using data. ?Justine Smith: taking a stand against system that is benefit you?Seng Aung Sein Myint: The decision making process is alway opaque. Hope there is some kind of US federal law which push the school to be a little bit transparent than before. ?Seng Aung Sein Myint: This kind of statistic of average, also make something very simple. No, I am not arguing about this data. ?Seng Aung Sein Myint: Hmm. It is strange to read now. ?Finch Brown: This is such a great line! No wonder someone has already commented on it. I have been thinking a lot recently about how subjective human experiences align and diverge, and how insufficient language and data are in describing experiences. A cool article I just read that reminds me of this is from the New Yorker: How We Should Think About Different Styles of Thinking. One main draw for me in data science is tackling the challenge of most accurately representing data and the stories it tells, given its inescapable constraints.?Yasin Chowdhury: Skill is important everywhere but in a different ways. so its good to have skills. ?Yasin Chowdhury: Without this line the entire story would not exist. But still now a days we do not see that courage specially in black women whoa really talented but chose towards non stem fields because of the difference in ratio. ?Jayri Ramirez: I believe that it is important to understand that it is more than ones gender that can affect the experiences of women. I think this statement is a good description of how there are many dimensions which affect racism and other forms of oppression. ?Roujia Wang: This shows that feminism can meet two kinds of human needs, the first is the detailed technical needs of NASA space agency, and the other is to meet the need of women also need equal status and need the same rights as men to achieve their dreams. In this process, feminism and data science are inextricably linked to each other's achievements.?Seyoon Ahn: As it was discussed in comment above, this part demonstrates the needs of feminism in data science and how not just the individuals but the society as a whole can benefit from data science with an approach of feminism. ?Roujia Wang: In that world, the stereotype of women was that women were not allowed to work in the sciences and that women were more at home with young children and taking care of the family than working outside the home. But such stereotypes prevented many talented women from having a chance to make a career out of it.?Roujia Wang: When people are misogynistic, female scientists contribute to data science research, because women can make up for the shortcomings of men in many ways. Women also use their abilities to change the perception of women in the world?Monserrat Padilla: I am really eager to learn and practice more methodically these principles. The key value in being able to analyze data holistically and seeing the subject matter as a whole at the intersections. Putting these principles into practice will allow for a more complete truth to be available while producing data and/or reading data.?Caroline Hayes: I think it is really moving that they decided to use someone as powerful as Darden’s story to start this textbook. As such a strong, smart women she was able to work in an intellectual field and challenge norms like she did in this instance. In a way she is breaking from the data so commonly released on women in and out of the work field. Instead of becoming one of the computers like 100% of the women before her, she became a part of the 1% who changed it for everyone.?Vibha Sathish Kumar: I agree, this part also resounded with me as well. It also makes you wonder about those other women who were stuck in the same situation for years. Many of those women likely didn’t have access to data or have the means to stand up for themselves in the environment set-up for them. I wonder if this issue is also relevant today, where some women do not have the opportunity to share their experience or have it accounted as data. It takes time to have others recognize their privilege and use it to bring others up - maybe data feminism could be a way to do that. ?Natalie Pei Xu: That is sad to notice that there are still many woman is being ignored and stay silence from some reasons. ?Natalie Pei Xu: First hand resource will be more helpful.?Natalie Pei Xu: This conscious awareness of “product of unequal social relation” is important while collecting, analyzing and concluding, since there is already been a lens filtered the primary source. ?Natalie Pei Xu: Besides using data as a powerful tool to pursuit justice, personal privacy is also a critical concern. ?Natalie Pei Xu: This is very inclusive and thoughtful description about feminism which makes it open up to various people among physical and mental features that aiming at the same thing: justice.Eva Maria Chavez: .Eva Maria Chavez: ecFagana Stone: If we were to focus on collecting unbiased data, then why would the authors even mention “priority” in qualifying it? + 1 more...Eva Maria Chavez: ECEva Maria Chavez: emEva Maria Chavez: collective powerEva Maria Chavez: EMCEva Maria Chavez: ?Kim Martin: test?nyah bean: -?nyah bean: -Fagana Stone: Qualitative data can be so powerful!?nyah bean: -?nyah bean: -?nyah bean: -?nyah bean: -?nyah bean: -?nyah bean: -?nyah bean: yes?nyah bean: -?nyah bean: -?nyah bean: -?nyah bean: -?nyah bean: -?nyah bean: -?nyah bean: -?Yolanda Yang: We should know that “We are under this situation.“?Yolanda Yang: Very personally, I am always shocked by how precise the content they suggest “what I may also interested.“ Also reminds me of Health on the phone, that it reminds us of our next coming period time, and usually also precise.?Melinda Rossi: Yes!?Yolanda Yang: People with privilege cannot recognize, even if they do, they are less likely to make any change, as this would decrease their benefit?Jillian McCarten: One quote that I think of often is “when one has held a position of privilege for so long, equality feels like oppression.” ?Yolanda Yang: “Speak“ and MeToo. Makes it visible.?Yolanda Yang: Looking for equality = we need make efforts ahead to it. Need to uncover it. ?Yolanda Yang: Reminds me of china girl or china head, that used at the beginning of analog films, those are females without names that contribute to film industry, but they were not even supposed to be presented to the audiences.?Yolanda Yang: Even though this has been desegregated for years, it still exists among people’s unconsciousness. ?Jeraldynne Gomez: systematically desgined so that women were stagnant in their positions. The disparity of power and the assertion of such system is correlated as it benefits the men who are implementing it ?Michela Banks: Important Annabel DeLair-Dobrovolny: Converting people into data as a means to assert power and dehumanize the “other”.?Michela Banks: definition ?Michela Banks: At least 50 years later. Why at this time??Michela Banks: power distance between men and women ?Michela Banks: were not recognized for intelligence ?Michela Banks: indicates perception of women in workplace?Michela Banks: note segregation during time of education?Michela Banks: describes environment?ethan chang: Shows how much has changed since then… even though can still be seen to this day.Annabel DeLair-Dobrovolny: Power imbalances contributing to the dehumanization of women in the workplace.?athmar al-ghanim: exactly!!! some individuals have such a negative connotation toward “feminism”. but here, it proves that feminism is just a group of like-minded individuals peacefully going after what they want. all feminists want is change, because for so long, there has been none. and it is about time we stopped neglecting the minority and start appreciating and uplifting them.?athmar al-ghanim: its quite sad to see how barely anything has changed in regard to men having the upper hand in workforces, especially those in STEM related fields. ?athmar al-ghanim: this passage resonates with me as it is a big fear of mine, a woman, going into STEM, that I will constantly have to fight twice as hard as a man, just to show that I am worthy of a position that I am qualified for.?Angela Li: I question how long this took and whether there was an internal fight for Darden to receive her long deserved promotion. The reason being is that I find it hard to believe that the men in power are so readily to accept change in which they lose power or control that benefits them. Earlier in this text, when Darden was working as a calculator with no respect or recognition, her supervisor said that the reason women and men lead such different career paths despite having the same credentials was because no one had ever complained. Through these quotes It sounds like the narrative being pushed is that main reason women are oppressed is because men are unaware of the the disparate treatment and effects of their actions which seems too excusable to not be questioned.Fagana Stone: I read this as the systemic discrimination against women was so normalized that it was essentially on everyone’s blindspot. Having such data showed a trend, a factual analysis that no one could ignore. Also, it takes a lot of courage to challenge the status quo, and these ladies found the way to communicate it to their superiors - through numbers!?Angela Li: I’d like to expand and connect on this idea to reaffirm the highlighted statement. I’m connecting it to to the text “Feminism is for Everybody” by Bell Hooks. In early stages of feminism there were a select few types of feminism that were identified. Of these types there were reformist and visionary feminism. reformist feminism focused mainly on equality with men in the workforce which overshadowed the original radical foundations of contemporary feminism which called for reform and restructuring of society to form a fundamentally anti-sexist nation. while white supremacist capitalist patriarchy suppressed visionary feminism, reformist feminists were also eager to silence them because they could maximize their freedom within the existing system and exploit the lower class of subordinated women.?Cynthia Lisee: Thank you for this important insight?Kat Rohrmeier: The definition of dehumanizing.?Melinda Rossi: Right? Gross.?Aneta Swianiewicz: ?Aneta Swianiewicz: ?Aneta Swianiewicz: ?Aneta Swianiewicz: data to expose inequality?Aneta Swianiewicz: ?g m: “institutional mistrust”?g m: Not only looking @ data, but the how. How was it collected? How has it been processed, and by who??Melinda Rossi: ^^^ Yes! Great point!?g m: Why data is important: challenges privileged hazard by making invisible systems visible.?Lena Zlock: Power dynamics and access to knowledge // needs an equitable foundation, clear statement of relations?Lena Zlock: DH as a countercultural phenomenon?Peem Lerdp: Target goals and audiecnes.?Peem Lerdp: Theme 2?Peem Lerdp: Theme 1?Vibha Sathish Kumar: I find it interesting that the authors mention this explicitly to the readers. A clear stated point that everyone is involved with change. ?Peem Lerdp: Insight on “science” in the phrase data science.?Peem Lerdp: Problems with distinction between what is data and what is information involve deciding who holds the power to make those distinction.Fagana Stone: It is important to add that how we interpret data matters as well.?Peem Lerdp: Def’n?Peem Lerdp: Using data to corroborate lived exp.?Peem Lerdp: Dissociating the identity of the author with the ideas discussed by the author.?Peem Lerdp: Intersectionality and its historic roots.?Peem Lerdp: History of gender inequality in workplace.?Megan Foesch: I think this is such an important lens to have when analyzing the world and what is important. Often times, we get caught up in trivial things that are not important in the bigger picture. We must remind ourselves that issues like justice, race, feminism, equality, and power are all crucial everyday issues that we must solve in order to live as a flourishing community. In order to have justice, each individual must be heard and seen which is currently not happening and needs to. ?Megan Foesch: Throughout this whole article I think that this sentence is one of the most important. The authors reflect on how data feminism is truly about power and how the lack of power between genders signifies that there is an inequality. It is important for us to acknowledge and address this inequality so women can feel as empowered, strong, and safe, as men feel. I think it is also important to point out that data feminism isn’t only for women but “men, nonbinary, and genderqueer people”. In order for a change to be made everyone must accept and acknowledge the imbalance of power that occurs in society. ?Megan Foesch: Before taking this class, I had very rarely heard the term Data Feminism, therefore this idea was somewhat new to me. I am familiar with the ideas of feminism however thinking about feminism from a scientific standpoint is one that can help reinforce popular opinions about lack of equality among genders. It is very difficult to argue something when it is science especially when focusing on systems of power and who holds that power as it is backed by scientific data and evidence.?Nick Klagge: It appears that a word or phrase is missing from the end of this sentence. Perhaps “lived experience” or something like that??Sara Blumenstein: What makes a project feminist??Sara Blumenstein: Data as “consolidating power over lives”?Sara Blumenstein: “Data feminism” as goal and process?Sara Blumenstein: Data vs. fact?Sara Blumenstein: Aggregating data to challenge institutional systems of power?will richardson: This is a very deep statement about feminism. It is also very relevent to the readings.?Sara Blumenstein: Defining “feminism” + 1 more...Data FeminismMIT PressRSSLegalPublished withCommunityData FeminismCollectionDData FeminismPubIntroduction: Why Data Science Needs FeminismcollectionData FeminismCite as D’Ignazio, C., & Klein, L. (2020). Introduction: Why Data Science Needs Feminism. In Data Feminism. Retrieved from https://data-feminism.mitpress.mit.edu/pub/frfa9szdduplicateCopymoreMore Cite OptionsTwitterRedditFacebookLinkedInEmailAuto Generated DownloadPDFWordMarkdownEPUBHTMLOpenDocumentPlain TextJATS XMLLaTeXWhat Is Data Feminism?Data and PowerData Feminism in ActiontickRelease #6Aug 25, 2021 3:54 PMdocument-shareRelease #5Aug 25, 2021 3:22 PMdocument-shareRelease #4Feb 11, 2021 10:25 AMdocument-shareRelease #3Jul 27, 2020 9:43 AMdocument-shareRelease #2Jul 27, 2020 9:42 AMdocument-shareRelease #1Mar 16, 2020 9:12 AMWhat Is Data Feminism?Data and PowerData Feminism in Action(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'8be8b165eed78191',t:'MTcyNTU2NTI0Ni4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();error

      This is another example of how we need more women in STEM. There are so many officially desegregated organizations. But segragation is embedded in behavior and that is what needs coaching.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-02378

      Corresponding author(s): Angelika Böttger

      [Please use this template only if the submitted manuscript should be considered by the affiliate journal as a full revision in response to the points raised by the reviewers.

      • *

      If you wish to submit a preliminary revision with a revision plan, please use our "Revision Plan" template. It is important to use the appropriate template to clearly inform the editors of your intentions.]

      1. General Statements [optional]

      After we have carefully studied the four reviews we have received, we made some major revisions to the manuscript. These included the following main points:

      • Concerns regarding clarity of the manuscript: we have substantially edited the abstract, introduction and discussion part of the manuscript and added many more references to previous work by other authors, especially Cazet 2021, Tursch 2022 and Gahan 2017. We focused our introduction and discussion on organizer function and on the Gierer-Meinhardt-Model for pattern formation. We think that the conclusions are of great general interest because they suggest a function of the Hydra head organizer according to the original definition by Hans Spemann, that is “harmonious interlocking of separate processes which makes up development”. Notch signaling, in our interpretation, is an instrument for this function of the organizer. Comparison with Craspedacusta compellingly illustrates this idea.
      • Concerns regarding Craspedacusta experiments: we have isolated four Craspedacusta transcripts (CsSp5, CsWnt3, CsAlx and CsNOWA) and analyzed their response to DAPT during head regeneration in Craspedacusta. This revealed that DAPT did not inhibit CsWnt3 expression, in accordance with it not having an effect on head regeneration in Craspedacusta However, DAPT inhibited expression of the other potential CsNotch target genes, confirming that DAPT generally works in Craspedacusta polyps as Notch-inhibitor.
      • Concerns regarding HyKayak function: we have conducted a rescue experiment to show the function of Hykayak as a target for Notch-regulated repressor genes and a local inhibitor of Wnt-3 expression, which revealed that the expected up-regulation of HyWnt3 in DAPT-treated animals was very weak and did not rescue the DAPT-regeneration phenotype-this was discussed, but data were not included.

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *


      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Major: • The introduction is lacking a full description of what is known about transcriptional changes during Hydra regeneration and in particular the role of Wnt signalling in this process. Of note the authors do not cite several important studies from recent years including (but not limited to):

      *https://doi.org/10.1073/pnas.2204122119 *

      *https://doi.org/10.1186/s13072-020-00364-6 *

      *https://doi.org/10.1101/587147 *

      *https://doi.org/10.7554/eLife.60562 This problem is further compounded later when the authors do not cite/discuss work which has performed the same or similar analyses to their own. The authors should endeavor to give a more comprehensive background knowledge. *

      Answer:

      Our work focuses on the role of Notch-signalling during Hydra head regeneration, specifically when the head is removed at an apical position. We therefore now have included additional information about transcriptional changes during this process in the introduction. In addition, we have included the suggested citations in the introduction to give a more general background knowledge.

      e.g. .Following decapitation, the expression of Hyβ-catenin and HyTcf was upregulated earliest, followed by local activation of Wnt genes. Among these, HyWnt3 and HyWnt11 appeared within 1.5 h of head removal, followed by HyWnt1, HyWnt9/10c, HyWnt16, and HyWnt7, indicating their role in the formation of the Hydra head organizer (Hobmayer et al., 2001; Lengfeld et al., 2009; Philipp et al., 2009; Tursch et al., 2022).

      • The authors do not cite or reference at all the study by Cazet et al. which used iCRT14 along with RNAseq and ATACseq to probe the role of Wnt signaling during early regeneration. This is a major issue. Although I appreciate that the authors have done much longer time courses and that their data therefore add something to our understanding it will still be important to discuss here. For example, the authors show that Wnt3 is activated normally in iCRT14 animals. Is this also seen in the RNAseq from Cazet et al.*
      • *

      Answer:

      iCRT14 was used in Hydra regeneration experiments by Gufler et al (which we did cite) and Cazet et al, but the specific aspects of hypostome and tentacle regeneration were not addressed. Cazet et al. have analyzed HyWnt3expression after iCRT treatment during the first 12 hrs of regeneration. Our data show, in addition that HyWnt3 is not controlled by TCF-dependent transcription during Hydra head regeneration after apical cuts throughout the whole regeneration process including the morphogenesis state. Nevertheless, the other Wnt-genes, which are indicated in canonical Wnt-signalling are affected by iCRT14 also in our study.

      We have now included comparison of Cazet- and our data, we wrote:

      HyWnt3 and Wnt9/10c expression are swiftly induced by injuries. When HyWnt3 and HyWnt9/10 activities are sustained, organizers can be formed, which induce ectopic heads when the original organizer tissue (the head) is removed (Cazet et al., 2021; Tursch et al., 2022).”

      The effect of iCRT14 had been analyzed in previous studies (Cazet et al., 2021; Gufler et al., 2018; Tursch et al., 2022). All showed b-catenin-dependency for down-regulation of head specific genes in foot regenerates at time points up to 12 hrs after head removal, including HyWnt3. They also stated a failure of head regeneration in the presence of iCRT14 but, in accordance with our study, did not reveal that HyWnt3 expression at future heads depended on b-catenin. None of these studies analyzed the regeneration of tentacles and hypostomes separately and they did not report whether* the regeneration of hypostomes 48 hrs after head removal occurred normally upon iCRT14 treatment. *

      • The visualizations used in Figure 3 are quite difficult to interpret and do to in all cases match descriptions in the text. The way the same type data is displayed in figure 5 so much nicer. It is also better to treat the same types of data in the same manner consistently throughout the paper. For Hes, for example, the authors state that there is a reduction although the data shows that this is very small and taking into account the 95% confidence interval does not seem to be significant. If this is the case then the positive control is not working in this experiment. This would be much clear if individual time points were compared like in figure 5 and statistical tests shown. The authors then state that Alx is not affected but there is actually a larger effect than what they deemed significant for Hes (the axes are notably different between these two and I think a more consistent axis would make the genes more comparable). Similarly, Gsc is described as being not affected at 8 hours but it appears again to change more that the positive control Hes. Given this I would call into question the validity of this dataset and/or the interpretation by the authors. A more thorough analysis including taking better into account statistical significance would go a long way to increasing confidence in this data. • The same issues in interpretation described for Figure 3 also apply to figure 4. The authors state that Wnt7 is affected less than Wnt1 and 3 but this is not evident in the figure and no comparative analysis is performed to confirm this. The same for Wnt 11 and 9/10c where what the authors description is very difficult to see in the figure. Sp5 is apparently upregulated, but this is not discussed. Again the axes are notably different making it even more difficult to compare between samples. __Answer*____:__

      We have now presented the data by simple scatter blots with significance information for every data point. This allows comparison between samples as requested by the reviewer. The GAMs were moved to the supplement. We believe that some readers may appreciate GAM-representation of the data because of the accessibility of the confidence interval over time.

      Concerning DAPT:

      “We now performed RT-qPCR analysis to compare gene expression dynamics of these genes during head regeneration 0, 8, 24, 36 and 48 hrs after head removal. Animals were either treated with 30 µM DAPT in 1% DMSO, or 1% DMSO as control for the respective time frames. Timepoint 0 was measured immediately after head removal. The results of these analyses revealed that HyHes expression was clearly inhibited by DAPT during the first 36 hrs after head removal (Fig. 3B), confirming previously published data which had indicated HyHes as a direct target for NICD (Münder et al., 2010). HyAlx expression levels were slightly up-regulated after 24 hrs, but later partially inhibited by DAPT (Fig. 3C). CnGsc expression under DAPT treatment initially (8hrs) was comparable to control levels, but then it was strongly inhibited (Fig. 3D). This goes along with the observed absence of organizer activity in regenerating Hydra tips (Münder et al., 2013). Interestingly, a similar result was seen for HySp5 expression, which was also normal at 8 hrs but was then inhibited by DAPT at later time points (Fig. 3E). HyKayak, while expression is normal after 8 hrs, was strongly overexpressed between 24 and 36 hrs of regeneration in DAPT-treated polyps in comparison to control regenerates (Fig. 3F).

      Concerning iCRT14

      Next, following the same procedure as described for DAPT, we compared the gene expression dynamics of iCRT14-treated regenerates with control regenerates. We found that the expression of HyWnt3 was not inhibited by iCRT14. In fact, it even appeared slightly up-regulated at the 8 hrs time point (Fig. 4A). Normal HyWnt3-expression at the end of the regeneration period was confirmed by in-situ hybridization for HyWnt3 as shown in Fig. 1D, indicating that HyWnt3 expression patterns and expression levels in ecto- and endodermal cells of the hypostome were faithfully regenerated (Fig. 4A). In contrast, HyAlx expression was completely abolished by iCRT14 (Fig. 4B), consistent with the observation that iCRT14-treated head regenerates did not regenerate any tentacles (Fig. 1A). HySp5 expression was not significantly affected by iCRT14 treatment at any time point (Fig. 4C).

      Furthermore, we found that CnGsc levels in iCRT14 remained similar to control regenerates up to 24 hrs, but were attenuated at later time points (Fig. 4D), very similar to the expression dynamics of the Notch-target gene HyHes (Fig. 4E). The expression of HyKayak was decreased at 8 hrs after head removal in the presence of iCRT14, but then increased above control levels after 48 hrs (Fig. 4F). There were no significant changes in the expression dynamics of HyBMP2/4 and HyBMP5/8b between iCRT14-treated regenerates and controls (Fig. 4G, H).”

      The precise number of biological replicates can be seen in the individual diagrams, they included for most genes three biological replicates, with always three technical replicates for each data point. Biological replicates were obtained over several years by different researchers. For some genes, we obtained very consistent data with high confidence in every experiment (e.g. HyWnt3, HyBMP4). We illustrate this in table 1, where three arrows indicate all such cases. With some genes we observed greater variation, which we interpret as no effect or a minor effect in table 1. Some of these variations may be explained by our observation of wave-like patterns in the expression dynamics. Therefore, we have included the following statement:

      “In addition, the gene expression dynamics for many of the analyzed genes appears in wave-like patterns in some experiments (see Figs S3 and S4). As we have only four time points measured, we cannot draw strong conclusions from these observations, except that some of the deviations in our data points (e.g. 48 hrs HyHes)”

      • In their description of figure 4 the authors completely omit to discuss the Cazet et al dataset which has the exact same early timepoints for iCRT14 treatment. This must be discussed and compared and any difference noted. * Answer:

      We included the iCRT14 results from Cazet et al., in our revised manuscript (see above).

      • End of page 11: The authors propose a model thereby the role of Notch in Wnt3 expression may be due to the presence of a repressor. However, I don't see any putative evidence at that stage. The authors also do not cite relevant work from both Cazet et al. and Tursch et al which show that Wnt3 is likely upregulated by bZIP TFs. In both these cases the authors show evidence of bZIP TF binding sites in the Wnt3 promoter along with other analyses. This is very relevantto the model presented by the authors here and must be discussed and compared. - * In particular the authors put forward HyKayak as an inhibitor of Wnt3 and this should be discussed along with the previous work.

      Answer:

      Tursch et al. 2022 did not claim that HyWnt3 is upregulated by bZiP TFs. They showed that HyWnt3 was strongly upregulated in a position-independent manner upon inhibition of the p38 or JNK (c-Jun N-terminal kinase) pathways (i.e., stress-induced MAPK pathways). This would rather support our hypothesis that HyKayak (AP-1 protein) might be a repressor of Wnt3-expression.

      Cazet et al have indicated that injury-responsive bZIP TFs are the most plausible regulators of canonical Wnt-signalling components during the early generic wound response. They identified CRE-elements, which can be bound by bZIP TFs, in the putative regulatory sequences of HyWnt3. However, they focused on the early stage of regeneration (0-12hpa), and showed that bZIP TFs, including jun, fos and creb are transiently upregulated at 3hpa and hypothesise that they could induce the upregulation of HyWnt3 at this stage as an injury response. We have to point out that the Hydra fos-homolog Hykayak, which our work is concerned with, is not identical with the fos-gene described in Cazet’s paper. In addition, the Hykayak gene was downregulated by Notch signalling during the morphogenesis state of regeneration (24-36 hrs), which is not the same stage investigated by Cazet et al. To avoid confusion, we have now included the Cazet-fos-sequence in our sequence comparison in Fig. S1 (fos_Cazet_HYDVU). Moreover, we have included more information about fos_Cazet in the context of a comparison with HyKayak.

      • *

      Different bZiP transcriptional factors (TFs) may have different effects on the expression of Wnt genes, and these effects are context-dependent. In previous research, Cazet et al. identified another Hydra fos gene (referred to as fos_cazet) and bZiP TF binding sites in the putative regulatory sequences of HyWnt3 and HyWnt9/10c. They showed that bZiP TF-genes, including Jun and fos, were transiently upregulated 3 hrs after amputation, therefore they hypothesized that bZiP TFs could induce TCF-independent upregulation of HyWnt3 during the early generic wound response (Cazet et al., 2021). However, in our study HyKayak expression continuously increased throughout the entire head regeneration process (Fig. 3E and 4E) including the morphogenesis stages (24-48 hrs post-amputation). Another study reported that inhibition of the JNK pathway (which disrupts formation of the AP-1 complex) resulted in upregulation of HyWnt3 expression in both, head and foot regenerates (Tursch et al., 2022). This result might support our hypothesis, but it only included the first 6 hours after amputation, similar to Cazet’s research. Therefore, it appears that HyKayak and fos_Cazet may have opposing roles in the regulation of Wnt-gene expression and are possibly activated by different signaling pathways depending on the stages of regeneration.

      • On page 12 the authors conclude based on gene expression in inhibitor treatment that there is a “change in complex composition of the two transcription factors.” This is something which would require biochemical evidence and I therefore suggest they remove this entirely. * Answer:

      we have removed this sentence

      • The authors use experiments in Craspedacusta to test their hypothesis of the role of Wnt and Notch signaling in Hydra. There is, in my opinion, an incorrect logic here. Regardless of the outcome, the roles of Wnt and Notch could conceivably be different in the two species and therefore testing hypothesis from one is not possible in the other. The authors should reframe their discussion of this to be more of a comparative framework. Moreover, the results do not necessarily indicate what the authors say. In Hydra Notch signaling is required to form the hypostome/mouth and this is not the case in Craspedacusta while Wnt signaling is required. The authors do not cite an important study from another Hydrozoan Hydractinia (Gahan at al.,2017). In that study the authors show that DAPT inhibits tentacles during regeneration but that the hypostome (or at least the arrangement of neurons and cnidocytes around the mouth) forms normally. This would indicate that in Hydractinia the process of head formation is different to in Hydra and would be congruent with what is shown here in Craspedacusta. This should be more thoroughly discussed, and all relevant literature cited.* Answer:

      We have concentrated our Craspedacusta work on Notch-signalling now. We only show that DAPT does not inhibit the regeneration of Craspedacusta heads. We have included new data showing that nevertheless it has an effect on the expression of hypothetical Notch target genes, but not on CsWnt3 (new Fig. 7). We have re-written our discussion accordingly and included the Hydractinia-work about Notch (Gahan2017). Although the Hydractinia paper lacks gene expression studies making it difficult to directly compare with the Hydra data, it supports our claim that Notch is required for regeneration of polyps with head and tentacles. We indeed do not know anything about Wnt-signalling in Craspedacusta. Our new results show that it is probably expressed in the head, because we observe very low levels of expression in the polyps after head removal, which increases considerably during regeneration of the head. This was included in the results:

      Results:

      “Finally, we investigated the expression of the Craspedacusta Wnt3-gene and its response to DAPT treatment during head regeneration. We observed low expression level of CsWnt3 after head removal (t=0), which dramatically increased as the head regenerated, suggesting that Wnt3 is expressed in the head of Craspedacusta polyps as it is in the head of other cnidarians including Hydra, Hydractinia and Nematostella (Hobmayer et al., 2000; Kusserow et al., 2005; Plickert et al., 2006). In accordance with having no effect on head regeneration, DAPT also did not inhibit CsWnt3 expression during this process in Craspedacusta. This is opposite to the situation in Hydra. If CsWnt3 would be involved in the Craspedacusta head regeneration, this could explain the failure of DAPT to interfere with this process”.

      Discussion part

      “Head regeneration also occurs in the colonial sea water hydrozoan Hydractinia. Colonies consist of stolons covering the substrate and connecting polyps, including feeding polyps, which have hypostomes and tentacles, and are capable of head regeneration, similar to Hydra polyps. Wnt3 is expressed at the tip of the head and by RNAi mediated knockdown it was shown that this gene is required for head regeneration (Duffy et al., 2010). In the presence of DAPT, Gahan et al observed that proper heads did not regenerate, similar to Hydra. However, they observed regeneration of the nerve ring around the hypostome indicating the possibility that hypostomes had been regenerated. Unfortunately, this study did not include gene expression data and therefore it is not clear whether Wnt3 expression was affected or not (Gahan et al., 2017).

      …..

      An interesting question was whether regeneration of cnidarian body parts, which are only composed of one module, also requires Notch-signalling. This is certainly true for the Hydra foot, which regenerates fine in the presence of DAPT (Käsbauer et al. 2007). Moreover, we tested head regeneration in Craspedacusta polyps, which do not have tentacles, and show that DAPT does not have an effect on this regeneration process. This corroborates our idea that Notch is required for regeneration in cnidarians, when this process involves two pattern forming processes to produce two independent structures, which are controlled by different signalling modules. This would be the case for the Hydra and for the Hydractinia heads, but not for Craspedacusta. ”

      Moreover, we indicate at the end of our discussion that further studies about head regeneration in Craspedacusta and the genes involved would be desirable. We believe this would be beyond the scope of the current paper and we are working on a new Craspedacusta study.

      “Future studies on expression patterns of the genes that control formation of the Hydra head, including Sp5 and Alx in Craspedacusta could provide insights into the evolution of cnidarian body patterns. Sp5 and Alx appear to be conserved targets of Notch-signalling in the two cnidarians we have investigated. Wnt-3, while being inhibited by Notch-inhibition in Hydra head regenerates, is not a general target of Notch signalling. It was not affected by DAPT in our comparative transcriptome analysis (Moneer et al. 2021b) on uncut Hydra polyps, and it was also not affected by DAPT in regenerating heads of Craspedacusta.”

      • From reading the manuscript I do not fully understand the model the authors put forward. It is unclear what "coordinating two independent pattern forming systems" really means. It might be beneficial to make a schematic illustration of the model and how it goes wrong in both sets of inhibitor treatments. * Answer:

      We have edited the manuscript considerably and explained what we mean with the two pattern forming systems. It starts with the abstract:

      Hydra head regeneration consists of two parts, hypostome/organizer and tentacle development.”

      Thus, in accordance with regeneration of two head structures we find two signaling and gene expression modules with HyWnt3 and HyBMP4 part of a hypostome/organizer module, and BMP5/8, HyAlx and b-catenin part of a tentacle module. We conclude that Notch functions as an inhibitor of tentacle production in order to allow regeneration of hypostome/head organizer.

      “Polyps of Craspedacusta do not have tentacles and thus, after head removal only regenerate a hypostome with a crescent of nematocytes around the mouth opening. This corroborates the idea that Notch-signaling mediates between two pattern forming processes during Hydra head regeneration”

      We have included the description of the organizer concept in the introduction, because we consider this relevant for our model:

      “The “organizer effect” entails a “harmonious interlocking of separate processes which makes up development”, or a side-by-side development of structures independently of each other (Spemann, 1935). In addition to inducing the formation of such structures, the organizer must ensure their patterning (Anderson and Stern, 2016). With reference to Hydra’s hydranth formation after head removal or transplantation, this involves the side-by side induction of hypostome tissue and tentacle tissue. Moreover, it includes the establishment of a regularly organized ring of tentacles with the hypostome doming up in the middle. The function of the Hydra“center of organization” would then be to pattern hypostome and tentacles and to allow for their harmonious re-formation after head removal”.

      In the discussion we integrate the organizer concept with the Gierer-Meinhardt reaction-diffusion models which still explain many aspects of Hydra development.

      Is Notch part of the organizer? The organizer is defined as a piece of tissue with inductive and structuring capacity. Notch is expressed in all cells of Hydra polyps (Prexl et al., 2011) and overexpression of NICD does not induce second axes all over the Hydra body column (Pan et al., 2024), as seen with overexpression of stabilized b-catenin (Gee et al., 2010). Moreover, Notch functions differently during regeneration after apical and basal cuts. Phenotypically during head regeneration in DAPT, we clearly recognize a missing inhibition of tentacle tissue after apical cuts and missing inhibition of head induction after basal cuts (Pan et al., 2024). We would thus rather suggest that the organizer activity of Hydra tissue utilizes Notch-signaling as a mediator of inhibition. As our study of transgenic NICD overexpressing and knockdown polyps had suggested, the localization of Notch signaling cells depends on relative concentrations of Notch- and Notch-ligand proteins, which are established by gradients of signaling molecules that define the Hydra body axis (Pan et al., 2024; Sprinzak et al., 2010) . This is in very good agreement with a ”reaction-diffusion-model” provided by Alfred Gierer and Hans Meinhardt (Gierer and Meinhardt, 1972; Meinhardt and Gierer, 1974) suggesting a gradient of positional values across the Hydra body column. This gradient may determine the activities of two activation/inhibition systems, one for tentacles and one for the head. When the polyps regenerate new heads, Notch could provide inhibition for either system, depending on the position of the cut.

      We provide a new Fig. 8., which clearly illustrates the effects of DAPT and iCRT14 on hypostome and tentacle regeneration.

      Minor: • The abstract could be rewritten to have more of an introduction to the problem rather than jumping directly into results. It would also be beneficial if the abstract followed the logic of the paper.

      Answer: We agree and have re-written the abstract.

      • In Figure 3 and 4 it is not clear why they are divided into A and B. It appears that the categorization of genes into different groups lacks a clear rationale. This seems totally unnecessary. In addition, the order in which the genes are described in the text does not match what is seen in the figure making it confusing to follow. • In Figure 5 the authors use two different types of charts and I would stick with one. B is much better as it shows the individual data points as well as other information. I would use this throughout including in Figure 3 and 4. *

      __Answer: __

      We changed Fig. 3, 4 and 5 according to these comments and now present the data in one format over all three figures, in scatterplots (more detailed answer above).

      We are now describing the results in the order of the figures, with A and B omitted.

      Figure S3 is missing a description of panel C.

      In figure S3 it is not clear why the inhibitor was removed and not kept on throughout the experiment. Please discuss. __Answer: __

      Fig. S3 was removed.

      Figure S4 has no A or B in the figure, only in the legend. __Answer: __

      We have included A and B…

      *Reviewer #1 (Significance (Required)):

      Although some of the authors data appear to be novel I find the study makes only minor progress on the questions. In particular the authors do not properly cite the relevant literature and to put their manuscript into the correct context. The new model proposed by the authors is based entirely on qPCR data which is not thoroughly analyzed and are not strong enough in the absence of information about the spatial expression the genes they discuss. The proposal of HyKayak as a negative regulator of Wnt3 is interesting but the authors do not provide any solid direct evidence for this (ChIP, EMSA etc) and it is somewhat in disagreement with other models of bZIP function in the literature (which again are not discussed).*

      The manuscript is of limited general interest. It has a number of interesting observations which would be of interest to the Hydra community and the broader cnidarian community. The study lacks contextualization within a broader framework, whether it be in the context of regeneration or Wnt/Notch signaling. This limitation may narrow the overall interest in it.

      Answer:

      Our previous analysis of the effect of Notch on head regeneration in Hydra (Münder 2013) had suggested the inhibition model, which is part of Fig. 8. We show now that during head regeneration in Hydra formation of two structures is guided by different signaling/transcription modules, one using Wnt3 and BMP4, but not b-catenin; and one using BMP5/8 and b-catenin. We suggest that Notch functions as an inhibitor “of use” to the organizer when the “two-part” head structure is regenerated.

      We agree that our original manuscript was not well enough written to clearly put it into developmental context. We now focus the discussion of our work sharply on the organizer problem and think that the conclusions are of great general interest. In a simple view they suggest that the function of the Hydra head organizer is to allow harmonious development of head and tentacles, which we consider separate, and on a molecular basis independently regulated parts of the Hydra head. Notch signaling, in our interpretation, is an instrument of the organizer. Our comparison with Craspedacusta illustrates this idea. Craspedacusta only regenerates one head structure, which is possible in the absence of this instrument (also see reviewers 3 and 4).

      Concerning HyKayak, there is no disagreement with other authors as we analyze a fos-gene different from the one discussed by Cazet et al (see above). We have conducted a rescue experiments as suggested by reviewer 3 with the Kayak-inhibitor and with HyKayak shRNAi knockdown, however, rescue of the phenotype was not achieved although HyWnt3 was upregulated after DAPT treatment in the knockdown group. We attribute this to the very strong effect of DAPT. We have adjusted our hypothesis and only suggest that HyKayak could be a target for the Notch-induced repressor genes (e.g.HyHes). We mentioned this failed rescue in the manuscript (answer for see reviewer 3). Further experiments, e.g Chip/EMSA constitute a new project on the basis of these ideas and should be reserved for further studies of the Kayak-function in Hydra.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      *The study investigates the role of Notch and beta-catenin signaling in coordinating head regeneration in Hydra. It combines gene expression dynamics, inhibitor treatments, and comparisons with Craspedacusta polyps to propose a lateral inhibition model for Notch function during Hydra head regeneration, mediating between two pattern-forming systems.

      Three main concerns arise from this work:*

      • Lack of spatial expression data: The study proposes a model based on pattern-forming systems but falls short of providing direct spatial expression data for the genes under consideration in both control and treated scenarios. This gap weakens the empirical support for the proposed model. __Answer:*__

      The expression patterns for most of the presented genes including HyAlx and HyWnt3 in the presence and absence of DAPT have been published before (Münder 2013). Expression patterns for all other genes during regeneration (except Hykayak) are already known from literature. For Hykayak we have included expression data from Siebert et al (single cell transcriptome analysis) in the supplementary material. For iCRT14 treatment, we carried out a FISH-experiment and showed that HyWnt3 is expressed in the normal pattern at the hypostome. For further genes after DAPT and iCRT-treatment in situ hybridisation data are indeed lacking (e.g. BMP5/8). However, we have analyzed some very strongly downregulated regulated genes (e.g. HyAlx completely downregulated by iCRT14, all HyWnts and BMP2-4completely downregulated by DAPT) and for those in situ hybridisation could (1) be difficult due to low expression in treated samples and (2) may not be informative.

      • Clarity and relevance of Craspedacusta comparisons: The section discussing the regeneration in Craspedacusta polyps appears somewhat disjointed from the main narrative, with its contribution to the overarching story of Hydra regeneration remaining unclear. *

      Answer:

      We had not intended to explain gene expression during Craspedacusta head regeneration but wanted to prove our hypothesis that Notch is needed to allow side-by-side development of two newly arising structures, which use different signalling modules during head regeneration. That Notch is __not __needed for the regeneration of Craspedacusta, a polyp without tentacles, appears to strengthen our main hypothesis. In order to connect this point more clearly to the narrative we have included new data. We show that CsWnt3 expression lowers after head removal and rises when the head regenerates, indicating CsWnt3-expression in the head of Craspedacusta polyps. Moreover, we show now that Notch in Craspedacusta may have similar target genes as in Hydra (e.g. Sp5 and Alx), might also affect nematocyte differentiation as in Hydra, but does not inhibit Wnt3 expression. We also acknowledge that a precise understanding of the molecular pathways for head regeneration in Craspedacusta requires further work and have removed the results of iCRT14 treatment because of our lack of knowledge about the role of b-catenin in Craspedacusta patterning. Citations from our changed text are found in the answer to reviewer 1.

      • Accessibility of the text: The study's presentation, including its title, abstract, and main text, presents challenges in terms of clarity and accessibility, making it difficult for readers to follow and understand the research's scope, methodologies, and conclusions.*

      • *

      Answer:

      We agree and have completely re-written the abstract, and large parts of the introduction and discussion (also see above answer for reviewer 1).

      Reviewer #2 (Significance (Required)):

      In conclusion, while the study aims to advance our understanding of the complex signaling pathways governing Hydra head regeneration, it necessitates significant revisions. Enhancing the empirical evidence through detailed spatial patterning data, clarifying the comparative analysis with Craspedacusta polyps, and __refining the narrative __to improve accessibility are critical steps needed to solidify the study's contributions to the field.

      Answer:

      By including Kayak-expression data from Siebert et al and indicating the places of major expression of all analysed genes schematically in the Figs describing the qPCR data we revised our manuscript. We have added new data about Craspedacusta and believe that our re-written manuscript refines the narrative by focusing on the organizer (see answer to reviewer 1).



      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Major comments:

      - In the abstract, the authors assert that their findings "indicate competing pathways for hypostome and regeneration." However, the nature of this competition and its resolution is not adequately elucidated within the manuscript. The term "competition" lacks context and clarity, leaving the reader without a clear understanding of what pathways are competing, for what, and how this competition is resolved during regeneration. Furthermore, this concept is not further explored or referenced throughout the remainder of the manuscript, leaving it somewhat disconnected from the main body of the research. It is recommended that the authors either revise the statement in the abstract to provide more clarity on the competing pathways and their implications for regeneration, or alternatively, if the authors believe there is sufficient evidence to support the claim of competing pathways, they should expand upon this point within the main body of the manuscript. Additional argumentation and evidence would be necessary to substantiate such a claim and provide a deeper understanding of the mechanisms underlying regeneration in Hydra.

      Answer:

      We agree and have removed any reference to “competing” pathways from the abstract and the main text.

      - The abstract makes a significant assertion regarding the mechanism by which Notch signaling impacts the expression of HyWnt3, suggesting that it operates by inhibiting HyKayak-mediated repression of HyWnt3 rather than directly activating transcription at the HyWnt3 promoter. This claim is central to the goals outlined in the study, which aim to elucidate the functioning of Notch signaling in HyWnt3 expression. To bolster this assertion, it would be prudent for the authors to conduct experiments demonstrating the mediating role of Kayak. Specifically, demonstrating that downregulation of Kayak through RNAi can rescue the DAPT-mediated downregulation of Wnt3 would provide strong support for the authors' claim. Additionally, while not strictly necessary, it would be beneficial to investigate whether chemical inhibition of Wnt can rescue the phenotype resulting from Kayak RNAi. Conducting and analyzing such experiments within a 2-3-month revision period should be feasible given that the authors already possess all necessary materials and have developed the required methods. These additional experiments would not only strengthen the evidence supporting the authors' claim but also provide further insights into the regulatory mechanisms at play in Notch signaling and HyWnt3 expression.

      • *

      Answer:

      We have conducted the suggested rescue experiments with the kayak-inhibitor, however, rescue was not achieved. We also tried rescue experiments by combining DAPT treatment and Kayak shRNA knockdown. HyWnt3 was slightly upregulated after DAPT treatment in the Kayak knockdown group but the phenotype could not be rescued. We are therefore now only state that HyKayak could be a target for the Notch-induced repressor genes (e.g.HyHes). We mentioned the failed rescue experiments in the manuscript:

      Results:

      *The up-regulation of HyKayak by DAPT suggests that HyKayak may serve as a potential target gene for Notch-regulated repressors including HyHes and CnGsc, potentially acting as a repressor of HyWnt3 gene transcription. *

      Discussion:

      We therefore suggest that the Hydra Fos-homolog HyKayak inhibits HyWnt3 expression and can be a target for a Notch-induced transcriptional repressor (like HyHes) in the regenerating Hydra head. Nevertheless, we were not able to rescue the DAPT-phenotype by inhibiting HyKayak, neither by using the inhibitor nor by shRNA-treatment, probably due to the strength of the DAPT effect. Therefore, we cannot exclude that Notch activates HyWnt3 directly, or that it represses unidentified Wnt-inhibitors through HyHes or CnGsc.

      - The usage of the term "lateral inhibition" in the title and abstract of the manuscript carries specific implications, as it is commonly associated with distinct mechanisms in the context of Notch signaling and reaction-diffusion systems. Notably, in the Notch signaling context, lateral inhibition typically refers to the amplification of small differences between neighboring cells through direct interactions, facilitated by the limitations of Notch signaling to immediate neighbors. Conversely, in reaction-diffusion systems, such as the Gierer-Meinhardt model, lateral inhibition describes long-range inhibition associated with pattern formation.

      Given this discrepancy, it is crucial for the authors to clarify their interpretation of "lateral inhibition" to avoid ambiguity and ensure accurate understanding. If they are referring to Notch-specific lateral inhibition, they should provide evidence of adjacent localization of Notch and Delta cells to support their argument. Alternatively, if they are invoking the concept of long-range inhibition described by the Gierer-Meinhardt model, they must explain how a membrane-tethered ligand like Notch can exert effects beyond one cell diameter from the signaling center.

      * Regardless of the interpretation chosen by the authors, addressing this clarification will have significant implications for the subsequent treatment of their arguments. Depending on their chosen interpretation, experimental demonstrations may be necessary to substantiate their claims, which could be laborious and time-consuming. However, such demonstrations are essential for establishing the validity of the term "lateral inhibition" as used in the title and abstract of the manuscript.*

      Answer:

      We agree with the reviewer concerning the term “lateral inhibition” and have now removed it. Instead, we have emphasized that our data clearly show during apical regeneration a Notch-mediated inhibition of tentacle tissue formation. We also discuss data from our most recent publication (Pan 2024) showing that this is the opposite at basal cuts, where the loss of Notch function leads to the regeneration of two heads. We then discuss this in the context of the Gierer-Meinhardt Model and in the context of the organizer (also see above in answer to reviewer 1):

      It is true that it is difficult to reconcile the long-range signaling processes, on which the Gierer-Meinhardt model is based with the cell-cell interactions mediated by Notch-signaling. We have now published a mathematical model to explain our understanding of this for the role of Notch during budding and in steady state animals (Pan2024), which is based on work by Sprinzak et al 2010. For head regeneration, we do not have such a model yet. Here we are looking at expression patterns changing over time. Therefore, we assume waves of gene expression, relying on the autoinhibitory function of the HyHes-repressor. This is included in the discussion:

      In addition, the gene expression dynamics for many of the analyzed genes appears in wave-like patterns in some experiments (see Figs S3 and S4). As we have only four time points measured, we cannot draw strong conclusions from these observations, except that some of the deviations in our data points (e.g. 48 hrs HyHes) might be caused by oscillations. Nevertheless, we propose that the dynamic development of gene expression patterns over the time course of regeneration hint at a wave like expression of Notch-target genes (e.g. HyAlx, (Münder et al., 2013; Smith et al., 2000)). Hes-genes have been implicated in mediating waves of gene expression, e.g. during segmentation and as part of the circadian clock (Kageyama et al., 2007). This property is due to the capability of Hes-proteins to inhibit their own promoter. Future models for head regeneration in Hydra should consider the function of Notch to inhibit either module of the regeneration process and the potential for the Notch/Hes system to cause waves of gene expression. Such waves intuitively seem necessary to change the gene expression patterns underlying morphogenesis during the time course of head regeneration.

      - The utilization of Craspedacusta as a comparative model in the argumentation of the manuscript appears somewhat unclear. The authors posit that Notch is essential for organizer emergence in Hydra, while Wnt is not necessary, as indicated by the observed effects of iCRT14 beta-catenin/TCF inhibition. However, in Craspedacusta, which lacks tentacles but possesses an organizer, one might anticipate a conserved requirement for organizer formation but not tentacle development. Therefore, it would be reasonable to expect that Craspedacusta would still form an organizer under iCRT14 treatment but would not depend on Notch signaling, as the necessity to separate tentacle formation from organizer formation is absent. The authors' observation that Craspedacusta fails to form an organizer under iCRT14 treatment partially aligns with these expectations. However, the complexity of the results suggests a need for a deeper understanding of the involvement of different pathways in Craspedacusta. Before applying inhibitors, it would be crucial to elucidate the spatiotemporal differences in the expression of relevant Wnt and Notch pathway components between Hydra and Craspedacusta. This knowledge would provide valuable insights into the specific roles of these pathways in organizer formation and tentacle development in both species, helping to clarify the observed differences in response to iCRT14 treatment. Additionally, considering the possibility of differential sensitivity to iCRT14 (see comment below) between Hydra and Craspedacusta would be essential for accurately interpreting the results and drawing meaningful conclusions regarding the involvement of Notch and Wnt signaling pathways in these processes.

      Answer:

      We have clarified in our re-written manuscript that the organizer functions in Hydra heads and head regeneration to harmonize the development of two independent structures (see answer for reviewer 1) and that Notch-signalling is an instrument to achieve this. Craspedacusta polyps do not have tentacles, thus we do not see two independent structures. Correspondingly, we see that they do not need Notch-signaling. We do not know whether they have organizer tissue, because they are too small to perform transplantation experiments. Similarly, in situ hybridisation experiments to look for CsWnt expression are hard to envisage. What we have now done during the revision of this paper are RT-qPCR experiments to follow the expression of CsWnt3 after head removal until a new head is formed. This indicated the localization of CsWnt3 expression in the head (citations in response to reviewer 1).

      We agree that the role of Wnt/b-catenin for Craspedacusta cannot be sufficiently described with our iCRT14 experiment and therefore removed it. To strengthen the DAPT data, we also examined Craspedacusta homologs of the Hydra Notch-target genes that we had previously identified (Moneer2021). We found that expression of CsSp5 and CsAlx were inhibited by DAPT. This was also true for the nematocyte gene NOWA (see new Fig. 7). In Hydra, DAPT blocks one important differentiation step of nematocytes and therefore the expression of all genes expressed in differentiating capsule precursors, including NOWA is inhibited, while the number of mature capsules does not change. To see the same DAPT effect on NOWA-expression in Craspedacusta reassured us that DAPT had entered the animals and might also have a similar effect on nematocytes as in Hydra.

      Minor comments - The concentration-dependent effects of iCRT14 on beta-catenin signaling, as demonstrated by Gufler et al. 2018, suggest that the efficacy of inhibition may vary depending on the concentration used. Specifically, Gufler et al. found that a concentration of 10µM was sufficient for efficient inhibition of beta-catenin signaling. However, in the current study, the authors utilized a concentration of 5µM of iCRT14. Given the central role of the observed effects, particularly the persistence of Wnt3 expression, in the argumentation of the manuscript, it is plausible that these effects could be attributed to partial inhibition resulting from the lower concentration of iCRT14 used in the study. To address this potential limitation, the authors could consider conducting a quick examination of the effects of 10µM iCRT14 or utilizing other inhibitors of beta-catenin/TCF interaction, such as iCRT3. By comparing the effects of different concentrations or alternative inhibitors, the authors could ascertain whether the observed effects are indeed attributable to partial inhibition from 5µM iCRT14, or if they persist despite higher concentrations or alternative inhibitors. This additional experimentation would provide valuable insights into the specificity and efficacy of the inhibition and strengthen the validity of the conclusions drawn regarding the role of beta-catenin signaling in the observed phenomena.

      Answer:

      The iCRT14 concentration was adjusted to 5 µM because the initial 10µM proved to be too toxic. 5µM also produced the same phenotypes and results as seen before. Cazet et al. also used 5 µM iCRT14 in their study.

      - The use of Generalized Additive Models (GAMs) in Figures 3 and 4 to present the time series qPCR results may introduce some challenges in interpretation due to the potential for distortion of values at specific time points based on neighboring ones. Given the relatively low time resolution of the data, this approach could lead to a distorted depiction of the temporal dynamics. For instance, in Figure 3B, where Wnt3 peaks at 10 hours, the absence of measurements between 8 and 24 hours introduces uncertainty regarding the accuracy and reliability of this peak at 10 hours.

      * To address these concerns and enhance clarity, it may be advisable for the authors to consider presenting the data using simple boxplots instead of GAMs. Boxplots provide a more straightforward visualization of the distribution of data at each time point, allowing for a clearer interpretation of trends and fluctuations over time. This approach would mitigate the potential for distortion introduced by GAMs and provide a more accurate representation of the temporal dynamics observed in the qPCR results*

      • *

      Answer:

      We agree and have changed the data representation to simple scatterplots (see answers for reviewer 1).

      - The comparison of the effects of iCRT14 versus DAPT treatments would benefit from having consistent gene expression data across both treatments. However, in Figure 4A, there are fewer genes tested compared to Figure 3A, with Hes and Kayak omitted. While the authors interpretation suggests that these genes may not change after iCRT14 treatment due to their upstream position in the signaling pathways, it is essential to empirically demonstrate this relationship, as it is central to the conclusions drawn. To address this gap in the analysis, it would be valuable for the authors to provide a time series of differential expression for Hes and Kayak following iCRT14 treatment.

      Answer:

      We have provided a time series for expression of HyHes and HyKayak in responses to iCRT14 treatment during regeneration (see Fig.4).

      “We found that the expression the Notch-target gene HyHes remained similar to control regenerates up to 24 hrs, but then was attenuated (Fig. 4A), possibly due to failure of tentacle boundary formation, the tissue where HyHes is strongly expressed…The expression of HyKayak was decreased at 8 hrs after head removal in the presence of iCRT14, came back to normal up to 36 hrs and was suddenly increased after 48 hrs (Fig. 4E), correlating with inhibition of the HyHes repressor. There were no significant changes in the expression dynamics of HyBMP2/4 and HyBMP5/8b between iCRT14-treated regenerates and controls (Fig. 4F, G).”

      - The analysis of the impact of chemical inhibition of Notch and Wnt signaling in Figure 7 schematic highlights changes in spatial expression patterns of the target genes. However, the interpretation of their impact primarily relies on qPCR data. As evident from Figure 7, when Notch is inhibited, it is anticipated that Kayak expression will shift from the area of the tentacles to the tip. This spatial shift in expression patterns is a critical aspect of the authors' arguments, especially considering the centrality of Kayak in their findings. Notably, similar spatial expression patterns have been demonstrated for Alx using FISH in Pan et al., available on BioRxiv. Given the importance of Kayak in the presented arguments, it is advisable to also investigate its spatial expression patterns using techniques such as FISH.

      • *

      Answer:

      We have, instead of FISH-experiments, included expression data for HyKayak from Siebert et al 2019 (single cell transcriptome data) in Fig. S1D, which show its expression in head- and battery cells (tentacle cells). This is similar to HyAlx. Therefore, Kayak-FISH would be expected to reveal expression of the gene at the tip of the regenerate the whole time, similar to HyAlx, because tentacle gene inhibition or patterning does not occur (see Münder 2013). Due to the failure of our rescue experiment to demonstrate the function of kayak we have omitted kayak from Fig. 8 and only mention in the discussion that it could be a target for Notch activated transcriptional repressors, like HyHes or CnGsc.

      Reviewer #3 (Significance (Required)):

      *The paper introduces novelties to the field of regeneration and developmental biology by leveraging Craspedacusta polyp as a novel model system for investigating the evolutionary and developmental dynamics of tentacles. In doing so, it sheds new light on the intricate mechanisms underlying tentacle formation and patterning. Furthermore, the study implicates Kayak in the regulation of Wnt3, adding a fresh perspective to our understanding of the molecular pathways governing Hydra regeneration. Notably, the results of the research challenge the prevailing notion of autoregulation of Wnt3, which has long been considered fundamental to organizer formation in Hydra. While these findings offer intriguing insights, further investigation will be crucial to conclusively ascertain the validity of this assertion. *

      • *

      Despite the clarity of the data presented, the interpretation and integration of these findings in the manuscript are lacking. The narrative at times feels disjointed, with different storylines loosely connected. While the findings are intriguing and merit publication, a substantial revision of the manuscript is necessary to provide a more coherent and illuminating interpretation of the results. *The implications of this research extend beyond the specific confines of Craspedacusta polyp and Hydra biology. It holds significant relevance for both the Hydra biology community and the broader field of Notch signaling research. *

      By highlighting the pivotal role of Notch signaling in regeneration and patterning within Hydra, the study enriches our comprehension of this model organism and its evolutionary adaptations. Moreover, it provides a valuable lens through which the evolution of Notch signalling cascades can be examined. This interdisciplinary approach underscores the interconnectedness of diverse biological systems and underscores the importance of exploring novel model organisms to unravel the complexities of evolution and development.

      • *

      Answer:

      We have edited the manuscript considerably and re-written the introduction and the discussion parts. We are focusing on integrating this work with the organizer concept in developmental biology, and on the Gierer-Meinhardt-model, and point out that Notch-signaling is required for the development of two head structures by inhibiting the development of either one during head regeneration, which is necessary to enable the development of the other one. Which one is inhibited depends on the positional value of the tissue where the cut occurs. Craspedacusta polyps do only have one structure. We suggest that this is why head regeneration does not require Notch-signalling in Craspedacusta. In contrast, as we have included in our discussion now, Hydractinia polyps, again with head/mouth and tentacles, require Notch-signaling for head regeneration (according to Gahan 2019), see also answers for reviewers 1 and 2.



      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      Major comments:

      The conclusions from the experiments are drawn accurately, not overstating the results. The main conclusion, that in Hydra Notch pathway mediates between two patterning modules, hypostome and tentacle forming modules, is supported by in situ hybridization and qPCR analyses of hypostome and tentacle specific genes.

      OPTIONAL. Authors hypothesize, that Notch maintains expression of Wnt3 vie its targets, transcriptional repressors Goosecoid or Hes, which halt the expression of Wnt3 repressor HyKayak. Epistatic relationships between Notch, Goosecoid or Hes and HyKayak could be tested, first, by combining pharmacological inhibition of Notch by DAPT with shRNA-mediated knockdown and second, in double knockdowns generated by electroporating shRNAs for two genes simultaneously. If the proposed in the pathway relationships are correct the repressive effect of DAPT treatment on an organizer regeneration should be rescued in HyKayak shRNA-mediated knockdown. Regeneration of an organizer also should occur in Notch/HyKayak and Goosecoid (Hes)/HyKayak shRNA-mediated double knockdowns. Electroporation of shRNAs for multiple genes is an effective and quick way to generate double and triple knockdowns. The proposed experiments will much strengthen the conclusions drawn from this study. Given that the authors have successfully used shRNA-mediated technique to generate HyKayak knockdown animals, they should be able to complete the proposed experiments within in a couple of months. Answer:

      We very much like the suggested strategy to probe the regeneration pathways by shRNA-mediated knockdown experiments- this will be a basis for future investigations.

      We conducted the suggested rescue experiment by combining the DAPT treatment and Kayak shRNA knockdown. HyWnt3 was slightly upregulation after DAPT treatment in the Kayak knockdown group. However, this upregulation did not rescue the organizer’s regeneration. We think that the effect of DAPT is too strong. We have included this in the discussion of our results (see answer for reviewer 2).

      • The data are presented in a logical and clear manner. The paper is easy to read, and the conclusions are explicit for each experimental section. The methodology is described in detail and should be easy to reproduce.*

      • All experiments are done with multiple biological and technical replicates. However, the description of statistical analysis used in each case is missing, p values and error bars are missing in Fig. 2B and Fig. S4. Author should add this information in the main text or in the figure legends.*

      Answer:

      The statistical information was now added in the methods section.

      Minor comments:

      • Fig. 1E. It would be more convincing to present tentacle and hypostome regeneration data separately, comparing hypostome regeneration in treated animals with DMSO control, and in a separate analysis comparing tentacle regeneration with control. Provide the description of statistical method, p values and error bars. If authors prefer to stick to the current way of presenting they should also provide description of statistical analysis used and statistical data.*
      • *

      Answer:

      We changed the representation in Fig. 1E. We now use scatter plots in the main text with p-values added, and explained the statistics of the GAM representation in the supplementary material.

      • Results, section 4 Kayak. Authors use T5424 inhibitor to block the potential interactions between HyKayak with HyJun. The resulted increase in Wnt3 expression measured by qPCR clearly supports the idea of HyKayak being a repressor of Wnt3. However, authors are going further and present the phenotype of T5424 treatment, shortening of the tentacles. Many factors can influence the length of the tentacles. For example, shortening of tentacles is a strong indication of poisoning or animal being in general unwell. At a concentration double of the one used in the experiment T5424 causes a disintegration of the animals (Fig. 3S). It would be more convincing if the authors could provide an in situ hybridization image showing an expansion of Wnt3 expression domain down the hypostome. This is the result one would expect from the inhibition of HyKayak which, according to the proposed mechanism, restricts Wnt3 spatial expression to the most apical portion of the regenerating tip. Alternatively, authors could try to see if T5424 rescues the inhibition of an organizer formation resulted by DAPT treatment. The latter experiment might be difficult to perform due to a possible toxic effect of multidrug treatment. I suggest that authors either include the proposed experiments or leave the results of the Fig S3 out.*

      Answer:

      According to this suggestion we have removed the phenotypes of polyps after treatment with T5424.

      • Results, section 3.2, paragraph 4. 'This also applies for the suggested Hydra organizer gene CnGsc, and BMP2/4 (Broun, Sokol et al. 1999). Please, insert the citation for BMP2/4.*

      • *

      Answer:

      We inserted the citation for BMP2-4 (Watanabe 2014).


      Reviewer #4 (Significance (Required)):

      *Significance:

      The current study is a continuation of the author's previous work where they have characterized Notch pathway in Hydra and showed its role in the regeneration of an organizer and patterning of Hydra head. Here, they present the study of Notch pathway in the context of b-catenin pathway, a pathway that has been shown to be essential for the axis induction and patterning in Hydra. The authors challenge this dogma and show, that during head regeneration b-catenin transcriptional activity is not required either to maintain the expression of wnt3 nor to acquire an inductive activity of the regenerating organizer. Second, they show, that transcriptional fos-related factor Kayak is negatively regulated by Notch-signaling and, in turn, represses transcription of Wnt3. Based on those findings authors propose a function of the Notch pathway in Hydra head regeneration, particularly in spatial separation of the hypostome/organizer module from the tentacle module. The role of Notch pathway in lateral inhibition is well documented in bilaterians. However, in Cnidaria, a sister group to Bilateria, the function of Notch was so far restricted to neurogenesis. This study is very important for our understanding of the evolution of morphogenesis as it shows the ancient role that the Notch pathway is playing in axial patterning, possibly, through lateral inhibition.

      This study can be of a great interest to both researchers specializing in cnidarian development and to a broader audience interested in the evolution of morphogenesis.*

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #4

      Evidence, reproducibility and clarity

      This is a very nice study exploring the function of Notch pathway in Hydra, a member of early Metazoa Cnidaria. The main conclusions of the study are:

      1. -catenin pathway is required not for regeneration of Hydra hypostome/ the organizer, as previously thought, but rather for regeneration of tentacles and correct patterning of Hydra head.
      2. During head regeneration Notch pathway, possibly, through lateral inhibition, blocks tentacle fate at the most apical region of the regenerating tip, allowing a hypostome/an organizer to develop. This might occur via the targets of Notch pathway, transcriptional repressors Goosecoid and Hes.
      3. During head regeneration Notch pathway is required to maintain the expression of Hydra organizer gene Wnt3 as well as other canonical wnt genes. This occurs, possibly, through repression of HyKayak, Hydra homologue of a transcriptional fos-related factor Kayak, that, in turn, represses Wnt3.

      Major comments:

      1. The conclusions from the experiments are drawn accurately, not overstating the results. The main conclusion, that in Hydra Notch pathway mediates between two patterning modules, hypostome and tentacle forming modules, is supported by in situ hybridization and qPCR analyses of hypostome and tentacle specific genes.
      2. OPTIONAL. Authors hypothesize, that Notch maintains expression of Wnt3 vie its targets, transcriptional repressors Goosecoid or Hes, which halt the expression of Wnt3 repressor HyKayak. Epistatic relationships between Notch, Goosecoid or Hes and HyKayak could be tested, first, by combining pharmacological inhibition of Notch by DAPT with shRNA-mediated knockdown and, second, in double knockdowns generated by electroporating shRNAs for two genes simultaneously. If the proposed in the pathway relationships are correct the repressive effect of DAPT treatment on an organizer regeneration should be rescued in HyKayak shRNA-mediated knockdown. Regeneration of an organizer also should occur in Notch/HyKayak and Goosecoid(Hes)/HyKayak shRNA-mediated double knockdowns. Electroporation of shRNAs for multiple genes is an effective and quick way to generate double and triple knockdowns. The proposed experiments will much strengthen the conclusions drawn from this study. Given that the authors have successfully used shRNA-mediated technique to generate HyKayak knockdown animals, they should be able to complete the proposed experiments within in a couple of months.
      3. The data are presented in a logical and clear manner. The paper is easy to read, and the conclusions are explicit for each experimental section. The methodology is described in detail and should be easy to reproduce.
      4. All experiments are done with multiple biological and technical replicates. However, the description of statistical analysis used in each case is missing, p values and error bars are missing in Fig. 2B and Fig. S4. Author should add this information in the main text or in the figure legends.

      Minor comments:

      1. Fig. 1E. It would be more convincing to present tentacle and hypostome regeneration data separately, comparing hypostome regeneration in treated animals with DMSO control, and in a separate analysis comparing tentacle regeneration with control. Provide the description of statistical method, p values and error bars. If authors prefer to stick to the current way of presenting they should also provide description of statistical analysis used and statistical data.
      2. Results, section 4 Kayak. Authors use T5424 inhibitor to block the potential interactions between HyKayak with HyJun. The resulted increase in Wnt3 expression measured by qPCR clearly supports the idea of HyKayak being a repressor of Wnt3. However, authors are going further and present the phenotype of T5424 treatment, shortening of the tentacles. Many factors can influence the length of the tentacles. For example, shortening of tentacles is a strong indication of poisoning or animal being in general unwell. At a concentration double of the one used in the experiment T5424 causes a disintegration of the animals (Fig. 3S). It would be more convincing if the authors could provide an in situ hybridization image showing an expansion of Wnt3 expression domain down the hypostome. This is the result one would expect from the inhibition of HyKayak which, according to the proposed mechanism, restricts Wnt3 spatial expression to the most apical portion of the regenerating tip. Alternatively, authors could try to see if T5424 rescues the inhibition of an organizer formation resulted by DAPT treatment. The latter experiment might be difficult to perform due to a possible toxic effect of multidrug treatment. I suggest that authors either include the proposed experiments or leave the results of the Fig S3 out.
      3. Results, section 3.2, paragraph 4. 'This also applies for the suggested Hydra organizer gene CnGsc, and BMP2/4 (Broun, Sokol et al. 1999). Please, insert the citation for BMP2/4.

      Significance

      The current study is a continuation of the author's previous work where they have characterized Notch pathway in Hydra and showed its role in the regeneration of an organizer and patterning of Hydra head. Here, they present the study of Notch pathway in the context of -catenin pathway, a pathway that has been shown to be essential for the axis induction and patterning in Hydra. The authors challenge this dogma and show, that during head regeneration -catenin transcriptional activity is not required either to maintain the expression of wnt3 nor to acquire an inductive activity of the regenerating organizer. Second, they show, that transcriptional fos-related factor Kayak is negatively regulated by Notch signaling and, in turn, represses transcription of Wnt3. Based on those findings authors propose a function of the Notch pathway in Hydra head regeneration, particularly in spatial separation of the hypostome/organizer module from the tentacle module. The role of Notch pathway in lateral inhibition is well documented in bilaterians. However, in Cnidaria, a sister group to Bilateria, the function of Notch was so far restricted to neurogenesis. This study is very important for our understanding of the evolution of morphogenesis as it shows the ancient role that the Notch pathway is playing in axial patterning, possibly, through lateral inhibition.

      This study can be of a great interest to both researchers specializing in cnidarian development and to a broader audience interested in the evolution of morphogenesis.

      The reviewer's field of expertise includes cnidarian development, axial patterning and morphogenesis in Hydra, biochemical pathways in Hydra axial patterning, Hippo pathway regulation and tissue patterning in multiple organisms

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      The study investigates the role of Notch and beta-catenin signaling in coordinating head regeneration in Hydra. It combines gene expression dynamics, inhibitor treatments, and comparisons with Craspedacusta polyps to propose a lateral inhibition model for Notch function during Hydra head regeneration, mediating between two pattern-forming systems.

      Three main concerns arise from this work:

      1. Lack of spatial expression data: The study proposes a model based on pattern-forming systems but falls short of providing direct spatial expression data for the genes under consideration in both control and treated scenarios. This gap weakens the empirical support for the proposed model.
      2. Clarity and relevance of Craspedacusta comparisons: The section discussing the regeneration in Craspedacusta polyps appears somewhat disjointed from the main narrative, with its contribution to the overarching story of Hydra regeneration remaining unclear.
      3. Accessibility of the text: The study's presentation, including its title, abstract, and main text, presents challenges in terms of clarity and accessibility, making it difficult for readers to follow and understand the research's scope, methodologies, and conclusions.

      Significance

      In conclusion, while the study aims to advance our understanding of the complex signaling pathways governing Hydra head regeneration, it necessitates significant revisions. Enhancing the empirical evidence through detailed spatial patterning data, clarifying the comparative analysis with Craspedacusta polyps, and refining the narrative to improve accessibility are critical steps needed to solidify the study's contributions to the field.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Steichele et al tackle a long standing question about the precise role of Notch signalling during Hydra head regeneration. They compare the inhibition of Wnt signalling and Notch signalling by pharmacological inhibition. The authors show that inhibition of Wnt signalling blocks tentacle formation but not formation of the hypostome, wnt3 expression or organizer activity. The authors further attempt to understand this in a comparative sense using Craspedacusta. In addition, the authors propose HyKayak as a potential repressor of Wnt3 expression downstream of Notch signalling. there are howerver a number of major and minor problems with the study which must be addressed before it is suitable for publication as outlined below:

      Major:

      • The introduction is lacking a full description of what is known about transcriptional changes during Hydra regeneration and in particular the role of Wnt signalling in this process. Of note the authors do not cite several important studies from recent years including (but not limited to):

      https://doi.org/10.1073/pnas.2204122119

      https://doi.org/10.1186/s13072-020-00364-6

      https://doi.org/10.1101/587147

      https://doi.org/10.7554/eLife.60562

      This problem is further compounded later when the authors do not cite/discuss work which has performed the same or similar analyses to their own. The authors should endeavor to give a more comprehensive background knowledge. - The authors do not cite or reference at all the study by Cazet et al. which used iCRT14 along with RNAseq and ATACseq to probe the role of Wnt signaling during early regeneration. This is a major issue. Although I appreciate that the authors have done much longer time courses and that their data therefore add something to our understanding it will still be important to discuss here. For example, the authors show that Wnt3 is activated normally in iCRT14 animals. Is this also seen in the RNAseq from Cazet et al., - The visualizations used in Figure 3 are quite difficult to interpret and do to in all cases match descriptions in the text. The way the same type data is displayed in figure 5 si much nices.It is also better to treat the same types of data in the same manner consistently throught the paper. For Hes, for example, the authors state that there is a reduction although the data shows that this is very small and taking into account the 95% confidence interval does not seem to be significant. If this is the case then the positive control is not working in this experiment. This would be much clear if individual time points were compared like in figure 5 and statistical tests shown. The authors then state that Alx is not affected but there is actually a larger effect than what they deemed significant for Hes ( the axes are notably different between these two and I think a more consistent axis would make the genes more comparable). Similarly, Gsc is described as being not affected at 8 hours but it appears again to change more that the positive control Hes. Given this I would call into question the validity of this dataset and/or the interpretation by the authors. A more thorough analysis including taking better into account statistical significance would go along way to increasing confidence in this data. - The same issues in interpretation described for Figure 3 also apply to figure 4. The authors state that Wnt7 is affected less than Wnt1 and 3 but this is not evident in the figure and no comparative analysis is performed to confirm this. The same for Wnt 11 and 9/10c where what the authors description is very difficult to see in the figure. Spt5 is apparently upregulated, but this is not discussed. Again the axes are ntably different making it even more difficult to compare between samples. - In their description of figure 4 the authors completely omit to discuss the Cazet et al dataset which has the exact same early timepoints for iCRT14 treatment. This must be discussed and compared and any difference noted. - End of page 11: The authors propose a model thereby the role of Notch in Wnt3 expression may be due to the presence of a repressor. However, I don't see any putative evidence at that stage. The authors also do not cite relevant work from both Cazet et al. and Tursch et al which show that Wnt3 is likely upregulated by bZIP TFs. In both these cases the authors show evidence of bZIP TF binding sites in the Wnt3 promoter along with other analyses. This is very relevant to the model presented by the authors here and must be discussed and compared. In particular the authors put forward HyKayak as an inhibitor of Wnt3 and this should be discussed along with the previous work. - On page 12 the authors conclude based on gene expression in inhibitor treatment that there is a change in complex composition of the two transcription factors. This is something which would require biochemical evidence and I therefore suggest they remove this entirely. - The authors use experiments in Craspedacusta to test their hypothesis of the role of Wnt and Notch signaling in Hydra. There is, in my opinion, an incorrect logic here. Regardless of the outcome, the roles of Wnt and Notch could conceivably be different in the two species and therefore testing hypothesis from one is not possible in the other. The authors should reframe their discussion of this to be more of a comparative framework. Moreover, the results do not necessarily indicate what the authors say. In Hydra Notch signaling is required to form the hypostome/mouth and this is not the case in Craspedacusta while Wnt signaling is required. The authors do not cite an important study from another Hydrozoan Hydractinia (Gahan at al.,2017). In that study the authors show that DAPT inhibits tentacles during regeneration but that the hypostome (or at least the arrangement of neurons and cnidocytes around the mouth) forms normally. This would indicate that in Hydractinia the process of head formation is different to in Hydra and would be congruent with what is shown here in Craspedacusta. This should be more thoroughly discussed, and all relevant literature cited. - From reading the manuscript I do not fully understand the model the authors put forward. It is unclear what "coordinating two independent pattern forming systems" really means. It might be beneficial to make a schematic illustration of the model and how it goes wrong in both sets of inhibitor treatments.

      Minor:

      • The abstract could be rewritten to have more of an introduction to the problem rather than jumping directly into results. It would also be beneficial if the abstract followed the logic of the paper.
      • In Figure 3 and 4 it is not clear why they are divided into A and B. It appears that the categorization of genes into different groups lacks a clear rationale .This seems totally unnecessary. In addition, the order in which the genes are described in the text does not match what is seen in the figure making it confusing to follow.
      • In Figure 5 the authors use two different types of charts and I would stick with one. B is much better as it shows the individual data points as well as other information. I would use this throughout including in Figure 3 and 4.
      • Figure S3 is missing a description of panel C.
      • In figure S3 it is not clear why the inhibitor was removed and not kept on throughout the experiment. Please discuss.
      • Figure S4 has no A or B in the figure, only in the legend.

      Significance

      Although some of the authors data appear to be novel I find the study makes only minor progress on the questions. In particular the authors do not properly cite the relevant literature and to put their manuscript into the correct context. The new model proposed by the authors is based entirely on qPCR data which is not thoroughly analyzed and are not strong enough in the absence of information about the spatial expression the genes they discuss. The proposal of HyKayak as a negative regulator of Wnt3 is interesting but the authors do not provide any solid direct evidence for this (ChIP, EMSA etc) and it is somewhat in disagreement with other models of bZIP function in the literature (which again are not discussed).

      The manuscript is of limited general interest. It has a number of interesting observations which would be of interest to the Hydra community and the broader cnidarian community. The study lacks contextualization within a broader framework, whether it be in the context of regeneration or Wnt/Notch signaling. This limitation may narrow the overall interest in it.

    1. Maybe it was my obsession with Stephen King, whose books I kept turning over in my head throughout the dark depression.

      How does reading inspire writing, and why did King speak to Diaz so powerfully?

    1. (but it very much resembles a pillory

      a wooden framework with holes for the head and hands, in which an offender was imprisoned and exposed to public abuse

    1. Deep Lake knew well about the Great Head. It was an enormous head without any body. It had large eyes that rolled about fearfully, and long, coarse hair like that of the grizzly bear, and it streamed over the huge cleft rock that was his home. Seen or unseen, if it caught sight of any living thing it would shriek in a shrill voice, "I see thee, I see thee; thou shalt die!"

      The details in this are very well written and I like that because it's helping me picture the characters.

    1. hat passed over,     this can too.

      Chnage will happen, sorrow, greif, and dispair will all change into happiness no mater what situation you are in. This is the message the author is trying to convey when he repeates "That passed over this can too". That no matter what situation you are in change will find a way to prevail, wether it be from bad to worse, worse to happiness, or happiness to worse. You can't stop it so why not except the change and face it head on knowing brighter days are coming.

    1. Reviewer #1 (Public Review):

      Summary:

      In this series of studies, Locantore et al. investigated the role of SST-expressing neurons in the entopeduncular nucleus (EPNSst+) in probabilistic switching tasks, a paradigm that requires continued learning to guide future actions. In prior work, this group had demonstrated EPNSst+ neurons co-release both glutamate and GABA and project to the lateral habenula (LHb), and LHb activity is also necessary for outcome evaluation necessary for performance in probabilistic decision-making tasks. Previous slice physiology works have shown that the balance of glutamate/GABA co-release is plastic, altering the net effect of EPN on downstream brain areas and neural circuit function. The authors used a combination of in vivo calcium monitoring with fiber photometry and computational modeling to demonstrate that EPNSst+ neural activity represents movement, choice direction, and reward outcomes in their behavioral task. However, viral-genetic manipulations to synaptically silence these neurons or selectively eliminate glutamate release had no effect on behavioral performance in well-trained animals. The authors conclude that despite their representation of task variables, EPN Sst+ neuron synaptic output is dispensable for task performance.

      Strengths and Weaknesses:

      Overall, the manuscript is exceptionally scholarly, with a clear articulation of the scientific question and a discussion of the findings and their limitations. The analyses and interpretations are careful and rigorous. This review appreciates the thorough explanation of the behavioral modeling and GLM for deconvolving the photometry signal around behavioral events, and the transparency and thoroughness of the analyses in the supplemental figures. This extra care has the result of increasing the accessibility for non-experts, and bolsters confidence in the results. To bolster a reader's understanding of results, we suggest it would be interesting to see the same mouse represented across panels (i.e. Figures 1 F-J, Supplementary Figures 1 F, K, etc i.e via the inclusion of faint hash lines connecting individual data points across variables. Additionally, Figure 3E demonstrates that eliminating the 'reward' and 'choice and reward' terms from the GLM significantly worsens model performance; to demonstrate the magnitude of this effect, it would be interesting to include a reconstruction of the photometry signal after holding out of both or one of these terms, alongside the 'original' and 'reconstructed' photometry traces in panel D. This would help give context for how the model performance degrades by exclusion of those key terms. Finally, the authors claimed calcium activity increased following ipsilateral movements. However, Figure 3C clearly shows that both SXcontra and SXipsi increase beta coefficients. Instead, the choice direction may be represented in these neurons, given that beta coefficients increase following CXipsi and before SEipsi, presumably when animals make executive decisions. Could the authors clarify their interpretation on this point? Also, it is not clear if there is a photometry response related to motor parameters (i.e. head direction or locomotion, licking), which could change the interpretation of the reward outcome if it is related to a motor response; could the authors show photometry signal from representative 'high licking' or 'low licking' reward trials, or from spontaneous periods of high vs. low locomotor speeds (if the sessions are recorded) to otherwise clarify this point?

      There are a few limitations with the design and timing of the synaptic manipulations that would improve the manuscript if discussed or clarified. The authors take care to validate the intersectional genetic strategies: Tetanus Toxin virus (which eliminates synaptic vesicle fusion) or CRISPR editing of Slc17a6, which prevents glutamate loading into synaptic vesicles. The magnitude of effect in the slice physiology results is striking. However, this relies on the co-infection of a second AAV to express channelrhodopsin for the purposes of validation, and it is surely the case that there will not be 100% overlap between the proportion of cells infected. Alternative means of glutamate packaging (other VGluT isoforms, other transporters, etc) could also compensate for the partial absence of VGluT2, which should be discussed. The authors do not perform a complimentary experiment to delete GABA release (i.e. via VGAT editing), which is understandable, given the absence of an effect with the pan-synaptic manipulation. A more significant concern is the timing of these manipulations as the authors acknowledge. The manipulations are all done in well-trained animals, who continue to perform during the length of viral expression. Moreover, after carefully showing that mice use different strategies on the 70/30 version vs the 90/10 version of the task, only performance on the 90/10 version is assessed after the manipulation. Together, the observation that EPNsst activity does not alter performance on a well-learned, 90/10 switching task decreases the impact of the findings, as this population may play a larger role during task acquisition or under more dynamic task conditions. Additional experiments could be done to strengthen the current evidence, although the limitation is transparently discussed by the authors.

      Finally, intersectional strategies target LHb-projecting neurons, although in the original characterization, it is not entirely clear that the LHb is the only projection target of EPNsst neurons. A projection map would help clarify this point.

      Overall, the authors used a pertinent experimental paradigm and common cell-specific approaches to address a major gap in the field, which is the functional role of glutamate/GABA co-release from the major basal ganglia output nucleus in action selection and evaluation. The study is carefully conducted, their analyses are thorough, and the data are often convincing and thought-provoking. However, the limitations of their synaptic manipulations with respect to the behavioral assays reduce generalizability and to some extent the impact of their findings.

    2. Reviewer #2 (Public Review):

      Summary:

      This paper aimed to determine the role EP sst+ neurons play in a probabilistic switching task.

      Strengths:

      The in vivo recording of the EP sst+ neuron activity in the task is one of the strongest parts of this paper. Previous work had recorded from the EP-LHb population in rodents and primates in head-fixed configurations, the recordings of this population in a freely moving context is a valuable addition to these studies and has highlighted more clearly that these neurons respond both at the time of choice and outcome.

      The use of a refined intersectional technique to record specifically the EP sst+ neurons is also an important strength of the paper. This is because previous work has shown that there are two genetically different types of glutamatergic EP neurons that project to the LHb. Previous work had not distinguished between these types in their recordings so the current results showing that the bidirectional value signaling is present in the EP sst+ population is valuable.

      Weaknesses:

      (1) One of the main weaknesses of the paper is to do with how the effect of the EP sst+ neurons on the behavior was assessed.

      (a) All the manipulations (blocking synaptic release and blocking glutamatergic transmission) are chronic and more importantly the mice are given weeks of training after the manipulation before the behavioral effect is assessed. This means that as the authors point out in their discussion the mice will have time to adjust to the behavioral manipulation and compensate for the manipulations. The results do show that mice can adapt to these chronic manipulations and that the EP sst+ are not required to perform the task. What is unclear is whether the mice have compensated for the loss of EP sst+ neurons and whether they play a role in the task under normal conditions. Acute manipulations or chronic manipulations without additional training would be needed to assess this.

      (b) Another weakness is that the effect of the manipulations was assessed in the 90/10 contingency version of the task. Under these contingencies, mice integrate past outcomes over fewer trials to determine their choice and animals act closer to a simple win-stay-lose switch strategy. Due to this, it is unclear if the EP sst+ neurons would play a role in the task when they must integrate over a larger number of conditions in the less deterministic 70/30 version of the task.

      The authors show an intriguing result that the EP sst+ neurons are excited when mice make an ipsilateral movement in the task either toward or away from the center port. This is referred to as a choice response, but it could be a movement response or related to the predicted value of a specific action. Recordings while mice perform movement outside the task or well-controlled value manipulations within the session would be needed to really refine what these responses are related to.

      (2) The authors conclude that they do not see any evidence for bidirectional prediction errors. It is not possible to conclude this. First, they see a large response in the EP sst+ neurons to the omission of an expected reward. This is what would be expected of a negative reward prediction error. There are much more specific well-controlled tests for this that are commonplace in head-fixed and freely moving paradigms that could be tested to probe this. The authors do look at the effect of previous trials on the response and do not see strong consistent results, but this is not a strong formal test of what would be expected of a prediction error, either a positive or negative. The other way they assess this is by looking at the size of the responses in different recording sessions with different reward contingencies. They claim that the size of the reward expectation and prediction error should scale with the different reward probabilities. If all the reward probabilities were present in the same session this should be true as lots of others have shown for RPE. Because however this data was taken from different sessions it is not expected that the responses should scale, this is because reward prediction errors have been shown to adaptively scale to cover the range of values on offer (Tobler et al., Science 2005). A better test of positive prediction error would be to give a larger-than-expected reward on a subset of trials. Either way, there is already evidence that responses reflect a negative prediction error in their data and more specific tests would be needed to formally rule in or out prediction error coding especially as previous recordings have shown it is present in previous primate and rodent recordings.

      (3) There are a lot of variables in the GLM that occur extremely close in time such as the entry and exit of a port. If two variables occur closely in time and are always correlated it will be difficult if not impossible for a regression model to assign weights accurately to each event. This is not a large issue, but it is misleading to have regression kernels for port entry and exits unless the authors can show these are separable due to behavioral jitter or a lack of correlation under specific conditions, which does not seem to be the case.

    1. Predetermining a student’s placement or services:

      Funny thing about this one, my first year as a teacher and going through the trainings for the job, our department head made sure everyone on the team understood what this was and how to avoid it. For me, I just thought, "oh makes sense, don't know why this is a question" and now I think back and think, "wow, was this an issue before?" I didn't really think about how common this was.

    1. pit deep enough so that when he stood in it his head was on a level with the water.

      It sounds like he is digging his own grave. I was honestly kind of worried he was going to get buried alive or drown.

    1. When his enemy was almost at the goal, the boy, who was only a few feet behind, threw the enchanted vine over the giant’s head, which caused him to fall back helpless.

      Sooo...he cheated.

  5. inst-fs-iad-prod.inscloudgate.net inst-fs-iad-prod.inscloudgate.net
    1. bent her head down as if to see Gregor bet-ter, yet on the contrary kept backing senselessly away;

      I wonder what does the mother truly think of Gregor's transformation.

    1. The last two acts take place ten years later. Due to the desire of Helena to have the Robots more like human beings, Dr. Gall, the head of the physiological and experimental departments, has secretly changed the formula, and while he has partially humanized only a few hundreds, there are enough to make ringleaders, and a world revolt of robots is under way. This[4] revolution is easily accomplished, as robots have long since been used when needed as soldiers and the robots far outnumber human beings.

      This is really similar to Planet of the Apes and is a common theme in sci-fi of humans creating something smarter and more effective than them in pursue of capitalism or science.

    1. Reviewer #1 (Public Review):

      Summary:

      In this paper the authors provide a thorough demonstration of the role that one particular type of voltage-gated potassium channel, Kv1.8, plays in a low voltage activated conductance found in type I vestibular hair cells. Along the way, they find that this same channel protein appears to function in type II vestibular hair cells as well, contributing to other macroscopic conductances. Overall, Kv1.8 may provide especially low input resistance and short time constants to facilitate encoding of more rapid head movements in animals that have necks. Combination with other channel proteins, in different ratios, may contribute to the diversified excitability of vestibular hair cells.

      Strengths:

      The experiments are comprehensive and clearly described, both in text and in the figures. Statistical analyses are provided throughout.

      Weaknesses:

      None.

    1. The genetic material is enclosed in an icosahedral protein capsid head, a tail (spiral contractile sheath surrounding a core pipe and a baseplate with tail fibers) and surface receptor proteins responsible to recognize specific surface molecules on the host bacterium

      Designed to be able to infect and destroy bacteria effectively

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Weakness 1. Enhancing Reproducibility and Robustness: To enhance the reproducibility and robustness of the findings, it would be valuable for the authors to provide specific numbers of animals used in each experiment. Explicitly stating the penetrance of the rod-like neurocranial shape in dact1/2-/- animals would provide a clearer understanding of the consistency of this phenotype. 

      In Fig. 3 and Fig. 4 animal numbers were added to the figure and figure legend (line 1111). In Fig. 5 animal numbers were added to the figure. We now state that dact1/2-/- animals exhibit the rod-like neurocranial shape that is completely penetrant (Line 260). 

      Weakness 2. Strengthening Single-Cell Data Interpretation: To further validate the single-cell data and strengthen the interpretation of the gene expression patterns, I recommend the following: 

      -Provide a more thorough explanation of the rationale for comparing dact1/2 double mutants with gpc4 mutants.

      -Employ genotyping techniques after embryo collection to ensure the accuracy of animal selection based on phenotype and address the potential for contamination of wild-type "delayed" animals.

      -Supplement the single-cell data with secondary validation using RNA in situ or immunohistochemistry techniques. 

      An explanation of our rationale was added to the results section (Lines 391403) and a summary schematic was added to Figure 6 (panel A).

      Genotyping of the embryos was not possible but quality control analysis by considering the top 2000 most variable genes across the dataset showed good clustering by genotype, indicating the reproducibility of individuals in each group (See Supplemental Fig. 4).

      The gene expression profiles obtained in our single-cell data analysis for gpc4, dact1, and dact2 correlate closely with our in situ hybridization analyses. Further, our data is consistent with published zebrafish single-cell data. We validated our finding of increased capn8 expression in dact1/2 mutants by in situ hybridization. Therefore we are confident in the robustness of our single-cell data.  

      Weakness 3. Directly Investigating Non-Cell-Autonomous Effects: To directly assess the proposed non-cell-autonomous role of dact1/2, I suggest conducting transplantation experiments to examine the ability of ectodermal/neural crest cells from dact1/2 double mutants to form wild-type-like neurocranium.  

      The reviewer’s suggestion is an excellent experiment and something to consider for future work. Cell transplant experiments between animals of specific genotypes are challenging and require large numbers. It is not possible to determine the genotype of the donor and recipient embryos at the early timepoint of 1,000 cell stage where the transplants would have to be done in the zebrafish. So that each transplant will have to be carried out blind to genotype from a dact1+/-; dact2+/- or dact1-/-; dact2+/- intercross and then both animals have to be genotyped at a subsequent time point, and the phenotype of the transplant recipient be analyzed. While possible, this is a monumental undertaking and beyond the scope of the current study.

      Weakness 4. Further Elucidating Calpain 8's Role: To strengthen the evidence supporting the critical role of Calpain 8, I recommend conducting overexpression experiments using a sensitized background to enhance the statistical significance of the findings. 

      We thank the reviewer for their suggestion and have now performed capn8 overexpression experiments in embryos generated from dact1/2 double heterozygous breeding. We found a statistically significant effect of capn8 overexpression in the dact1+/-,dact2+/- fish (Lines 462-464 and Fig. 8C,D). 

      Minor Comments:  

      Comment: Creating the manuscript without numbered pages, lines, or figures makes orientation and referencing harder.  

      Revised

      Comment: Authors are inconsistent in the use of font and adverbs, which requires extra effort from the reader. ("wntIIf2 vs wnt11f2 vs wnt11f2l"; "dact1/2-/- vs dact1/dact2 -/-"; "whole-mount vs wholemount vs whole mount").  

      Revised throughout.

      Comment: Multiple sentences in the "Results" belong to the "Materials and Methods" or the "Discussion" section. 

      We have worked to ensure that sentences are within the appropriate sections of the manuscript.

      Comment: Abstract:

      "wnt11f2l" should be "wnt11f2"  

      Revised (Line 24).

      Comment: Main text:

      Page 5 - citation Waxman, Hocking et al. 2004 is used 3x without interruption any other citation. 

      Revised (Line 112).

      Page 9 - "dsh" mutant is mentioned once in the whole manuscript - is this a mistake?

      Revised, Rewritten (Line 196).

      Page 10 - Fig 2B does not show ISH.

      Revised (Line 229).

      Page 11 - "kyn" mutant is mentioned here for the first time but defined on page 15.

      Revised (Line 245). Now first described on page 4.

      Page 14 - "cranial CNN" should be CNCC.

      Revised. (Line 334)

      Page 16 - dact1/dact2/gpc4: Fig. 5C is used but it should be Fig 5E.

      Revised. (Line 381)

      Page 18 - dact1/2-/- or dact1-/-, dact2-/-. 

      Revised. (Line 428)

      Comment: Methods:

      Page 24 - ZIRC () "dot" is missing. ChopChop ")" is missing. "located near the 5' end of the gene" - In the Supplementary Figure 1 looks like in the middle of the gene.

      Revised. (Lines 600, 609, 611, respectively).

      Page 25 - WISH -not used in the main text.

      Revised. (Line 346).

      Page 26 - 4% (v/v) formaldehyde; at 4C - 4{degree sign}C; 50% (v/v) ethanol; 3% (w/v) methylcellulose.

      Revised. (Lines 659, 660, 662).

      Page 27 - 0.1% (w/v) BSA. 

      Revised. (Line 668).

      Comment: Discussion:

      The overall discussion requires more references and additional hypotheses. On page 20, when mentioning 'as single mutants develop normally,' does this refer to the entire animals or solely the craniofacial domain? Are these mutants viable? If they are, it's crucial to discuss this phenomenon in relation to prior morpholino studies and genetic compensation.

      Observing how the authors interpret previously documented changes in nodal and shh signaling would be beneficial. While Smad1 is discussed, what about other downstream genes? Is shh signaling altered in the dact1/2 double mutants? 

      We have revised the Discussion to include more references (Lines 473, 476, 483, 488, 491, 499, 501, 502, 510, 515, 529, 557, 558) and additional hypotheses (Lines 503-505, 511-519, 522-525). We have added more specific information regarding the single mutants (Lines 270-275, 480-493, Fig. S3). We have added discussion of other downstream genes, including smad1 (Lines 561-572) and shh (Lines 572-580).

      Comment: Figures:

      Appreciating differences between specimens when eyes were or were not removed is quite hard.

      Yes this was an unfortunate oversight, however, the key phenotype is the EP shown in the dissections.

      Fig 1. - wntIIf2 vs wnt11f2? C - Thisse 2001 - correct is Thisse et al. 2001.

      Revised typo in Fig 1. (And Line 1083).

      Fig 1E: These plots are hard to understand without previous and detailed knowledge. Authors should include at least some demarcations for the cephalic mesoderm, neural ectoderm, mesenchyme, and muscle. Missing color code.

      We have moved this data to supplementary figure S1 and have added labels of the relevant cell types and have added the color code.

      Comment:- Fig 2 - In the legend for C - "wildtype and dact2-/- mutant" and "dact1/2 mutant"; in the picture is dact1-/-, dact2-/-.

      Revised (Line 1105).

      Fig 2 - B - it is a mistake in 6th condition dact1: 2x +/+, heterozygote (+/-) is missing.

      Revised Figure 2B.

      Fig 4. - Typo in the legend: dact1/"t"2-/- .

      Revised. (Line 1127).

      Fig 8C - In my view, when the condition gfp mRNA says "0/197, " none of the animals show this phenotype. I assume the authors wanted to say that all the animals show this phenotype; therefore, "197/197" should be used.

      We have removed this data from the figure as there were concerns by the reviewers regarding reproducibility. 

      Fig S1 - Missing legend for the 28 + 250, 380 + 387 peaks? RT-qPCR - is not mentioned in the Materials and Methods. In D - ratio of 25% (legend), but 35% (graph).

      Revised.(Line 1203, Line 625, Line 1213, respectively).

      Fig S2 - The word "identified" - 2x in one sentence. 

      Revised. (Line 1230).

      Reviewer #2 (Public Review):

      Weakness(1) While the qualitative data show altered morphologies in each mutant, quantifications of these phenotypes are lacking in several instances, making it difficult to gauge reproducibility and penetrance, as well as to assess the novel ANC forms described in certain mutants.  

      In Fig. 3 and Fig. 4 animal numbers were added to the figure legend. In Fig. 5 animal numbers were added to the figure to demonstrate reproducibility. We now state that dact1/2-/- animals exhibit the rod-like neurocranial shape that is completely penetrant (Line 260). As the altered morphologies that we report are qualitatively significant from wildtype we did not find it necessary to make quantitative measurements. For experiments in which it was necessary to in-cross triple heterozygotes (Fig 3, Fig. 5), we dissected and visually analyzed the ANC of at least 3 compound mutant individuals. At least one individual was dissected for the previously published or described genotypes/phenotypes (i.e. wt, wntllf2-/-, dact1/2-/-, gpc4-/-, wls/-). We realize quantitative measurements may identify subtle differences between genotypes. However, the sheer number of embryos needed to generate these relatively rare combinatorial genotypes and the amount of genotyping required prevented quantitative analyses. 

      Weakness 2) Germline mutations limit the authors' ability to study a gene's spatiotemporal functional requirement. They therefore cannot concretely attribute nor separate early-stage phenotypes (during gastrulation) to/from late-stage phenotypes (ANC morphological changes). 

      We agree that we cannot concretely attribute nor separate early and latestage phenotypes. Conditional mutants to provide temporal or cell-specific analysis are beyond the scope of this work. Here we speculate based on evidence obtained by comparing and contrasting embryos with grossly similar early phenotypes and divergent late-stage phenotypes. We believe our findings contribute to the existing body of literature on zebrafish mutants with both early convergent extension defects and craniofacial abnormalities.   

      Weakness (3) Given that dact1/2 can regulate both canonical and non-canonical wnt signaling, this study did not specifically test which of these pathways is altered in the dact1/2 mutants, and it is currently unclear whether disrupted canonical wnt signaling contributes to the craniofacial phenotypes, even though these phenotypes are typical non-canonical wnt phenotypes. 

      Previous literature has attributed canonical wnt, non-canonical wnt, and nonwnt functions to dact, and each of these likely contributes to the dact mutant phenotype (Lines 87-89). We performed cursory analyses of tcf/lef:gfp expression in the dact mutants and did not find evidence to support further analysis of canonical wnt signaling in these fish. Single-cell RNAseq did not identify differential expression of any canonical or non-canonical wnt genes in the dact1/2 mutants.

      Further research is needed to parse out the intracellular roles of dact1 and dact2 in response to wnt and tgf-beta signaling. Here we find that dact may also have a role in calcium signaling, and further experiments are needed to elaborate this role.      

      Weakness (4) The use of single-cell RNA sequencing unveiled genes and processes that are uniquely altered in the dact1/2 mutants, but not in the gpc4 mutants during gastrulation. However, how these changes lead to the manifested ANC phenotype later during craniofacial development remains unclear. The authors showed that calpain 8 is significantly upregulated in the mutant, but the fact that only 1 out of 142 calpainoverexpressing animals phenocopied dact1/2 mutants indicates the complexity of the system. 

      To further test whether capn8 overexpression may contribute to the ANC phenotype we performed overexpression experiments in the resultant embryos of dact1/dact2 double het incross. We found the addition of capn8 caused a small but statistically significant occurrence of the mutant phenotype in dact1/2 double heterozygotes (Fig.8D). We agree with the reviewer that our results indicate a complex system of dysregulation that leads to the mutant phenotype. We hypothesize that a combination of gene dysregulation may be required to recapitulate the mutant ANC phenotype. Further, as capn8 activity is regulated by calcium levels, overexpression of the mRNA alone likely has a small effect on the manifestation of the phenotype. 

      Weakness (5) Craniofacial phenotypes observed in this study are attributed to convergent extension defects but convergent extension cell movement itself was not directly examined, leaving open if changes in other cellular processes, such as cell differentiation, proliferation, or oriented division, could cause distinct phenotypes between different mutants. 

      Although convergent extension cell movements were not directly examined, our phenotypic analyses of the dact1/2 mutant are consistent with previous literature where axis extension anomalies were attributed to defects in convergent extension (Waxman 2004, Xing 2018, Topczewski 2001). We do not attribute the axis defect to differentiation differences as in situ analyses of established cell type markers show the existence of these cells, only displaced relative to wildtype (Figure 1). We agree that we cannot rule out a role for differences in apoptosis or proliferation however, we did not detect transcriptional differences in dact1/2 mutants that would indicate this in the single-cell RNAseq dataset. Defects in directed division are possible, but alone would not explain that dact1/2 mutant phenotype, particularly the widened dorsal axis (Figure 1).

      Major comments:  

      Comment (1) The author examined and showed convergent extension phenotype (CE) during body axis elongation in dact1/dact2-/- homozygous mutants. Given that dact2-/- single mutants also displayed shortened axis, the authors should either explain why they didn't analyze CE in dact2-/- (perhaps because that has been looked at in previously published dact2 morphants?) or additionally show whether CE phenotypes are present in dact1 and dact2 single mutants.  

      The authors should quantify the CE phenotype in both dact2-/- single mutants and dact1/dact2-/- double mutants, and examine whether the CE phenotypes are exacerbated in the double mutants, which may lend support to the authors' idea that dact1 can contribute to CE. The authors stated in the discussion that they "posit that dact1 expression in the mesoderm is required for dorsal CE during gastrulation through its role in noncanonical Wnt/PCP signaling". However, no evidence was presented in the paper to show that dact1 influences CE during body axis elongation.  

      Because any axis shortening in shortening in dact2-/- single mutants was overcome during the course of development and at 5 dpf there was no noticeable phenotype, we did not analyze the single mutants further.  

      We have added data to demonstrate the resulting phenotype of each combinatorial genotype to provide a more clear and detailed description of the single and compound mutants (Fig. S3). 

      Our hypothesis that dact1 may contribute to convergent extension is based on its apparent ability to compensate (either directly or indirectly) for dact2 loss in the dact2-/- single mutant. 

      Comment (2) Except in Fig. 2, I could not find n numbers given in other experiments. It is therefore unclear if these mutant phenotypes were fully or partially penetrant. In general, there is also a lack of quantifications to help support the qualitative results. For example, in Fig. 4, n numbers should be given and cell movements and/or contributions to the ANC should be quantified to statistically demonstrate that the second stream of CNCC failed to contribute to the ANC.  

      Similarly, while the fan-shaped and the rod-shaped ANCs are very distinct, the various rod-shaped ANCs need to be quantified (e.g. morphometry or measurements of morphological features) in order for the authors to claim that these are "novel ANC forms", such as in the dact1/2-/-, gpc4/dact1/2-/-, and wls/dact1/2-/- mutants (Fig. 5).  

      We have added n numbers for each experiment and stated that the rod-like phenotype of the dact1/2-/- mutant was fully penetrant. 

      Regarding CNCC experiments, we repeated the analysis on 3 individual controls and mutants and did not find evidence that CNCC migration was directly affected in the dact1/2 mutant. Rather, differences in ANC development are likely secondary to defects in floor plate and eye field morphometry. Therefore we did not do any further analyses of the CNCCs.

      Regarding figure 5, we have added n numbers. We dissected and analyzed a minimum of three triple mutants (dact1/2-/-,gpc4-/- and dact1/2-/-,wls-/-) and numerous dact1/s double mutants and found that the triple mutant ANC phenotype was consistent and recognizably different enough from the dact1/2-/-, or gpc4 or wls single mutant that morphometry measurements were not needed. Further, the triple mutant phenotype (narrow and shortened) appears to be a simple combination of dact1/2 (narrow) and gpc4/wls (shortened) phenotypes. As we did not find evidence of genetic epistasis, we did not analyze the novel ANC forms further.

      Comment (3): The authors have attributed the ANC phenotypes in dact1/2-/- to CE defects and altered noncanonical wnt signaling. However, no evidence was presented to support either. The authors can perhaps utilize diI labelling, photoconversionmediated lineage tracing, or live imaging to study cell movement in the ANC and compare that with the cell movement change in the gpc4-/- , and gpc4/dact1/2-/- mutants in order to first establish that dact1/2 affect CE and then examine how dact1/2 mutations can modulate the CE phenotypes in gpc4-/- mutants.  

      Concurrently, given that dact1 and dact2 can affect (perhaps differentially) both canonical and non-canonical wnt signaling, the authors are encouraged to also test whether canonical wnt signaling is affected in the ANC or surrounding tissues, or at minimum, discuss the potential role/contribution of canonical wnt signaling in this context.  

      Given the substantial body of research on the role of noncanonical wnt signaling and planar cell polarity pathway on convergent extension during axis formation (reviewed by Yang and Mlodzik 2015, Roszko et al., 2009) and the resulting phenotypes of various zebrafish mutants (i.e. Xing 2018, Topczewski 2001), including previous research on dact1 and 2 morphants (Waxman 2004), we did not find it necessary to analyze CE cell movements directly.  

      Our finding that CNCC migration was not defective in the dact1/2 mutants and the knowledge that various zebrafish mutants with anterior patterning defects (slb, smo, cyc) have a similar craniofacial abnormality led us to conclude that the rod-like ANC in the dact1/2 mutant was secondary to an early patterning defect (abnormal eye field morphology). Therefore, testing dact1/2 and convergent extension or wnt signaling in the ANC itself was not an aim of this paper.  

      Comment (4) The authors also have not ruled out other possibilities that could cause the dact1/2-/- ANC phenotype. For example, increased cell death or reduced proliferation in the ANC may result in the phenotype, and changes in cell fate specification or differentiation in the second CNCC stream may also result in their inability to contribute to the ANC. 

      We agree that we cannot rule out whether cell death or proliferation is different in the dact1/2 mutant ANC. However, because we do not find the second CNCC stream within the ANC, this is the most likely explanation for the abnormal ANC shape. Because the first stream of CNCC are able to populate the ANC and differentiate normally, it is most likely that the inability of the second stream to populate the ANC is due to steric hindrance imposed by the abnormal cranial/eye field morphology. These hypotheses would need to be tested, ideally with an inducible dact1/2 mutant, however, this is beyond the scope of this paper.     

      Comment (5) The last paragraph of the section "Genetic interaction of dact1/2 with Wnt regulators..." misuses terms and conflates phenotypes observed. For instance, the authors wrote "dact2 haploinsuffciency in the context of dact1-/-; gpc4-/- double mutant produced ANC in the opposite phenotypic spectrum of ANC morphology, appearing similar to the gpc4-/- mutant phenotype". However, if heterozygous dact2 is not modulating phenotypes in this genetic background, its function is not "haploinsuffcient". The authors then said, "These results show that dact1 and dact2 do not have redundant function during craniofacial morphogenesis, and that dact2 function is more indispensable than dact1". However this statement should be confined to the context of modulating gpc4 phenotypes, which is not clearly stated. 

      Revised (Lines 380, 382).   

      Comment (6) For the scRNA-seq analysis, the authors should show the population distribution in the UMAP for the 3 genotypes, even if there are no obvious changes. The authors are encouraged, although not required, to perform pseudotime or RNA velocity analysis to determine if differentiation trajectories are changed in the NC populations, in light of what they found in Fig. 4. The authors can also check the expression of reporter genes downstream of certain pathways, e.g. axin2 in canonical wnt signaling, to query if these signaling activities are changed (also related to point #3 above). 

      We have added population distribution data for the 3 genotypes to Supplemental Figure 4. Although RNA velocity analysis would be an interesting additional analysis, we would hypothesize that the NC population is not driving the differences in phenotype. Rather these are likely changes in the anterior neural plate and mesoderm. 

      Comment (7) While the phenotypic difference between gpc4-/- and dact1/2-/- are in the ANC at a later stage, ssRNA-seq was performed using younger embryos. The authors should better explain the rationale and discuss how transcriptomic differences in these younger embryos can explain later phenotypes. Importantly, dact1, dact2, and capn8 expression were not shown in and around the ANC during its development and this information is crucial for interpreting some of the results shown in this paper. For example, if dact1 and dact2 are expressed during ANC development, they may have specific functions during that stage. Alternatively, if dact1 and dact2 are not expressed when the second stream CNCCs are found to be outside the ANC, then the ANC phenotype may be due to dact1/2's functions at an earlier time point. The author's statement in the discussion that "embryonic fields determined during gastrulation effect the CNCC ability to contribute to the craniofacial skeleton" is currently speculative. 

      We have reworded our rationale and hypothesis to increase clarity (Lines 391-405). We believe that the ANC phenotype of the dact1/2 mutants is secondary to defective CE and anterior axis lengthening, as has been reported for the slb mutant (Heisenberg 1997, 2000). We utilized the gpc4 mutant as a foil to the dact1/2 mutant, as the gpc4 mutant has defective CE and axis extension without the same craniofacial phenotype.

      We have added dact1 and dact2 WISH of 24 and 48 hpf (Fig1. D,E) to show expression during ANC development. 

      Comment (8) The functional testing of capn8 did not yield a result that would suggest a strong effect, as only 1 in 142 animals phenocopied dact1/2. Therefore, while the result is interesting, the authors should tone down its importance. Alternatively, the authors can try knocking down capn8 in the dact1/2 mutants to test how that affects the CE phenotype during axis elongation, as well as ANC morphogenesis. 

      As overexpression of capn8 in wildtype animals did not result in a significant phenotype, we tested capn8 overexpression in compound dact1/2 mutants as these have a sensitized background. We found a small but statistically significant effect of exogenous capn8 in dact1+/-,dact2+/- animals. While the effect is not what one would expect comparing to Mendelian genetic ratios, the rod-like ANC phenotype is an extreme craniofacial dysmorphology not observed in wildtype or mRNA injected embryos hence significant. The experiment is limited by the available technology of over-expressing mRNA broadly without temporal or cell specificity control. It is possible that if capn8 over-expression was restricted to specific cells (floor plate, notochord or mesoderm) and at the optimal time period during gastrulation/segmentation that the aberrant ANC phenotype would be more robust. We agree with the reviewer that although the finding of a new role for capn8 during development is interesting, its importance in the context of dact should be toned down and we have altered the manuscript accordingly (Lines 455-467).  

      Comment (9) A difference between the two images in Fig. 8B is hard to distinguish.

      Consider showing flat-mount images. 

      We have added flat-mount images to Fig. 8B

      Minor comments:

      Comment (1) wnt11f2 is spelled incorrectly in a couple of places, e.g. "wnt11f2l" in the abstract and "wntllf2" in the discussion. 

      Revised throughout.

      Comment (2) For Fig. 1D, the white dact1 and yellow dact2 are hard to distinguish in the merged image. Consider changing one of their colors to a different one and only merge dact1 and dact2 without irf6 to better show their complementarity.  

      We agree with the reviewer that the expression patterns of dact1 and dact2 are difficult to distinguish in the merged image. We have added outlines of the cartilage elements to the images to facilitate comparisons of dact1 and dact2 expression (Fig 1F). 

      Comment (3) For Fig. 1E, please label the clusters mentioned in the text so readers can better compare expressions in these cell populations.  

      We have moved this data to supplementary figure S1 and have added labels.

      Comment (4) The citing and labelling of certain figures can be more specific. For example, Fig. S1A, B, and Fig. S1C should be used instead of just Fig. S1 (under the section titled dact1 and dact2 contribute to axis extension...". Similarly, Fig. 4 can be better labeled with alphabets and cited at the relevant places in the text.  

      We have modified the labeling of the figures according to the reviewer’s suggestion (Fig S2 (previously S1), Fig4) and have added reference to these labels in the text (Lines 202, 204, 212, 328, 334, 336). 

      Comment (5) For Fig. 2B, the (+/+,-/-) on x-axis should be (+/-,-/-).  

      Revised in Figure 2B.

      Comment (6) Several figures are incorrectly cited. Fig. 2C is not cited, and the "Fig. 2C" and "Fig. 2D" cited in the text should be "Fig. 2D" and "Fig. 2E" respectively. Similarly, Fig. 5C and D are not cited in the text and the cited Fig. 5C should be 5E. The VC images in Fig. 5 are not talked about in the text. Finally, Fig. 7C was also not mentioned in the text.  

      We have corrected the labeling and have added descriptions of each panel in the Results (Fig.2 Line 231, 237, 242, Fig 5 Line 373, 381, Fig 7 line 431). 

      Comment (7) In the main text, it is indicated that zebrafish at 3ss were used for ssRNAseq, but in the figure legend, it says 4ss. 

      Revised (Line 682)

      Comment (8) No error bars in Fig. S1B and the difference between the black and grey shades in Fig. S1D is not explained.  

      Error bars are not included in the graphs of qPCR results (now Fig S2C) as these are results of a pool of 8 embryos performed one time. We have added a legend to explain the gray vs. black bars (now Fig S2E). 

      Reviewer #3 (Public Review):  

      Weaknesses: The hypotheses are very poorly defined and misinterpret key previous findings surrounding the roles of wnt11 and gpc4, which results in a very confusing manuscript. Many of the results are not novel and focus on secondary defects. The most novel result of overexpressing calpain8 in dact1/2 mutants is preliminary and not convincing.  

      We apologize for not presenting the question more clearly. The Introduction was revised with particular attention to distinguish this work using genetic germline mutants from prior morpholino studies. Please refer to pages 4-5, lines 106-121.

      Weakness 1) One major problem throughout the paper is that the authors misrepresent the fact that wnt11f2 and gpc4 act in different cell populations at different times. Gastrulation defects in these mutants are not similar: wnt11 is required for anterior mesoderm CE during gastrulation but not during subsequent craniofacial development while gpc4 is required for posterior mesoderm CE and later craniofacial cartilage morphogenesis (LeClair et al., 2009). Overall, the non-overlapping functions of wnt11 and gpc4, both temporally and spatially, suggest that they are not part of the same pathway.  

      We have reworded the text to add clarity. While the loss of wnt11 versus the loss of gpc4 may affect different cell populations, the overall effect is a shortened body axis. We stressed that it is this similar impaired axis elongation phenotype but discrepant ANC morphology phenotypes in the opposite ends of the ANC morphologic spectrum that is very interesting and leads us to investigate dact1/2 in the genetic contexts of wnt11f2 and gpc4.  Pls refer to page 4, lines 73-84. Further, the reviewer’s comment that wnt11 and gpc4 are spatially and temporally distinct is untested. We think the reviewer’s claim of gpc4 acting in the posterior mesoderm refers to its requirement in the tailbud (Marlow 2004). However this does not exclude gpc4 from acting elsewhere as well. Further experiments would be necessary. Both wnt11f2 and gpc4 regulate non-canonical wnt signaling and are coexpressed during some points of gastrulation and CF development (Gupta et al., 2013; Sisson 2015). This data supports the possibility of overlapping roles. 

      Weakness 2) There are also serious problems surrounding attempts to relate single-cell data with the other data in the manuscript and many claims that lack validation. For example, in Fig 1 it is entirely unclear how the Daniocell scRNA-seq data have been used to compare dact1/2 with wnt11f2 or gpc4. With no labeling in panel 1E of this figure these comparisons are impossible to follow. Similarly, the comparisons between dact1/2 and gpc4 in scRNA-seq data in Fig. 6 as well as the choices of DEGs in dact1/2 or gpc4 mutants in Fig. 7 seem arbitrary and do not make a convincing case for any specific developmental hypothesis. Are dact1 and gpc4 or dact2 and wnt11 coexpressed in individual cells? Eyeballing similarity is not acceptable.  

      We have moved the previously published Daniocell data to Figure S1 and have added labeling. These data are meant to complement and support the WISH results and demonstrate the utility of using available public Daniocell data. Please recommend how we can do this better or recommend how we can remediate this work with specific comment. 

      Regarding our own scRNA-seq data, we have added rationale (line 391-403) and details of the results to increase clarity (Lines 419-436). We have added a panel to Figure 6 (panel A) to help illustrate or rationale for comparing dact1/2 to gpc4 mutants to wt. The DEGs displayed in Fig.7A are the top 50 most differentially expressed genes between dact1/2 mutants and WT (Figure 7 legend, line 422-424).   

      We have looked at our scRNA-seq gene expression results for our clusters of interest (lateral plate mesoderm, paraxial mesoderm, and ectoderm). We find dact1, dact2, and gpc4 co-expression within these clusters. Knowing whether these genes are coexpressed within the same individual cell would require going back and analyzing the raw expression data. We do not find this to be necessary to support our conclusions. The expression pattern of wnt11f2 is irrelevant here.   

      Weakness 3) Many of the results in the paper are not novel and either confirm previous findings, particularly Waxman et al (2004), or even contradict them without good evidence. The authors should make sure that dact2 loss-of-function is not compensated for by an increase in dact1 transcription or vice versa. Testing genetic interactions, including investigating the expression of wnt11f2 in dact1/2 mutants, dact1/2 expression in wnt11f2 mutants, or the ability of dact1/2 to rescue wnt11f2 loss of function would give this work a more novel, mechanistic angle.

      We clarified here that the prior work carried out by Waxman using morppholinos, while acceptable at the time in 2004, does not meet the rigor of developmental studies today which is to generate germline mutants. The reviewer’s acceptance of the prior work at face value fails to take the limitation of prior work into account. Further, the prior paper from Waxman et al did not analyze craniofacial morphology other than eyeballing the shape of the head and eyes. Please compare the Waxman paper and this work figure for figure and the additional detail of this study should be clear. Again, this is by no means any criticism of prior work as the prior study suffered from the technological limitations of 2004, just as this study also is the best we can do using the tools we have today. Any discrepancies in results are likely due to differences in morpholino versus genetic disruption and most reviewers would favor the phenotype analysis from the germline genetic context. We have addressed these concerns as objectively as we can in the text (Lines 482-493). The fact that dact1/2 double mutants display a craniofacial phenotype while the single mutants do not, suggests compensation (Lines 503-505), but not necessarily at the mRNA expression level (Fig. S2C). 

      This paper tests genetic interaction through phenotyping the wntll/dact1/dact2 mutant.

      Our results support the previous literature that dact1/2 act downstream of wnt11 signaling. There is no evidence of cross-regulation of gene expression. We do not expect that changes in wnt11 or dact would result in expression changes in the others.

      RNA-seq of the dact1/2 mutants did not show changes in wnt11 gene expression. Unless dact1 and/or dact2 mRNA are under expressed in the wnt11 mutant, we would not expect a rescue experiment to be informative. And as wnt11 is not a focus of this paper, we have not performed the experiment.  

      Weakness 4) The identification of calpain 8 overexpression in Dact1/2 mutants is interesting, but getting 1/142 phenotypes from mRNA injections does not meet reproducibility standards.

      As the occurrence of the mutant phenotype in wildtype animals with exogenous capn8 expression was below what would meet reproducibility standards, we performed an additional experiment where capn8 was overexpressed in embryos resulting from dact1/dact2 double heterozygotes incross (Fig. 8). We reasoned that an effect of capn8 overexpression may be more robust on a sensitized background. We found a statistically significant effect of capn8 in dact1/2 double heterozygotes, though the occurrence was still relatively rare (6/80). These data suggest dysregulation of capn8 contributes to the mutant ANC phenotype, though there are likely other factors involved. 

      Comment: The manuscript title is not representative of the findings of this study.  

      We revised the title to strictly describe that we generated and carried out genetic analysis in loss of function compound mutants (Genetic requirement) and that we found capn8 was important which modified this requirement.

      Introduction: p.4:

      Comment: Anterior neurocranium (ANC) - it has to be stated that this refers to the combined ethmoid plate and trabecular cartilages. 

      Thank you, we agree that the ANC and ethmoid plate terminology has been confusing in the literature and we should endeavor to more clearly describe that the phenotypes in question are all in the ethmoid plate and the trabeculae are not affected. ANC has been replaced with ethmoid plate (EP) throughout the manuscript and figures. We also describe that all the observed phenotypes affect the ethmoid plate and not the trabeculae, (pages 13, Lines 265-267).

      Comment: Transverse dimension is incorrect terminology - replace with medio-lateral.

      Revised (Lines 69, 74).

      Comment: Improper way of explaining the relationship between mutant and gene..."Another mutant knypek, later identified as gpc4..." a better  way to explain this would be that the knypek mutation was found to be a non-sense mutation in the gpc4 gene.  

      Revised (Line 71)

      Comment: "...the gpc4 mutant formed an ANC that is wider in the transverse dimension than the wildtype, in the opposite end of the ANC phenotypic spectrum compared to wnt11f2...These observations beg the question how defects in early patterning and convergent extension of the embryo may be associated with later craniofacial morphogenesis."

      This statement is broadly representative of the general failure to distinguish primary from secondary defects in this manuscript. Focusing on secondary defects may be useful to understand the etiology of a human disease, but it is misleading to focus on secondary defects when studying gene function. The rod-like ethmoid of slb mutant results from a CE defect of anterior mesoderm during gastrulation(Heisenberg et al. 1997, 2000), while the wide ethmoid plate of kny mutants results from CE defects of cartilage precursors (Rochard et al., 2016). Based on this evidence, wnt11f2 and gpc4 act in different cell populations at different times.  

      It is true that the slb mutant craniofacial phenotype has been stated as secondary to the CE defect during gastrulation and the kny phenotype as primary to chondrocyte CE defects in the ethmoid, however the direct experimental evidence to conclude only primary or only secondary effects does not yet exist. There is no experiment to our knowledge where wnt11f2 was found to not affect ethmoid chondrocytes directly. Likewise, there is no experiment having demonstrated that dysregulated CE in gpc4 mutants does not contribute to a secondary abnormality in the ethmoid. 

      Here, we are analyzing the CE and craniofacial phenotypes of the dact1/2 mutants without any assumptions about primary or secondary effects and without drawing any conclusions about wnt11f2 or gpc4 cellular mechanisms.     

      Comment: "The observation that wnt11f2 and gpc4 mutants share similar gastrulation and axis extension phenotypes but contrasting ANC morphologies supports a hypothesis that convergent extension mechanisms regulated by these Wnt pathway genes are specific to the temporal and spatial context during embryogenesis."

      This sentence is quite vague and potentially misleading. The gastrulation defects of these 2 mutants are not similar - wnt11 is required for anterior mesoderm CE during gastrulation and has not been shown to be active during subsequent craniofacial development while gpc4 is required for posterior mesoderm CE and craniofacial cartilage morphogenesis (LeClair et al., 2009). Here again, the non-spatially overlapping functions of wnt11 and gpc4 suggest that are not part of the same pathway.  

      Though the cells displaying defective CE in wnt11f2 and gpc4 mutants are different, the effects on the body axis are similar. The dact1/2 showed a similar axis extension defect (grossly) to these mutants. Our aim with the scRNA-seq experiment was to determine which cells and gene programs are disrupted in dact1/2 mutants. We found that some cell types and programs were disrupted similarly in dact1/2 mutants and gpc4 mutants, while other cells and programs were specific to dact1/2 versus gpc4 mutants. We can speculate that these that were specific to dact1/2 versus gpc4 may be attributed to CE in the anterior mesoderm, as is the case for wnt11. 

      p.5

      Comment: "We examined the connection between convergent extension governing gastrulation, body axis segmentation, and craniofacial morphogenesis." A statement focused on the mechanistic findings of this paper would be welcome here, instead of a claim for a "connection" that is vague and hard to find in the manuscript.  

      We have rewritten this statement (Line 125).

      p.7 Results:

      Comment: It is unclear why Farrel et al., 2018 and Lange et al., 2023 are appropriate references for WISH. Please justify or edit.  

      This was a mistake and has been edited (Page 9).

      Comment: " Further, dact gene expression was distinct from wnt11f2." This statement is inaccurate in light of the data shown in Fig1A and the following statements - please edit to reflect the partially overlapping expression patterns.  

      We have edited to clarify (Lines 142-143).

      p.8

      Comment: "...we examined dact1 and 2 expression in the developing orofacial tissues. We found that at 72hpf..." - expression at 72hpf is not relevant to craniofacial morphogenesis, which takes place between 48h-60hpf (Kimmel et al., 1998; Rochard et al., 2016; Le Pabic et al., 2014).  

      We have included images and discussion of dact1 and dact2 expression at earlier time points that are important to craniofacial development (Lines 160-171)(Fig 1D,E). 

      Comment: "This is in line with our prior finding of decreased dact2 expression in irf6 null embryos". - This statement is too vague. How are th.e two observations "in line".  

      We have removed this statement from the manuscript.

      Comment: Incomplete sentence (no verb) - "The differences in expression pattern between dact1 and dact2...".  

      Revised (Line 172).

      Comment: "During embryogenesis..." - Please label the named structures in Fig.1E.

      Please be more precise with the described expression time. Also, it would be useful to integrate the scRNAseq data with the WISH data to create an overall picture instead of treating each dataset separately.  

      We have moved the previously published Daniocell data to supplementary figure S1 and have labeled the key cell types. 

      p.9

      Comment: "The specificity of the gene disruption was demonstrated by phenotypic rescue with the injection of dact1 or dact2 mRNA (Fig. S1)." - please describe what is considered a phenotypic rescue.

      -The body axis reduction of dact mutants needs to be documented in a figure. Head pictures are not sufficient. Is the head alone affected, or both the head and trunk/tail? Fig.2E suggests that both head and trunk/tail are affected - please include a live embryos picture at a later stage.  

      We have added a description of how phenotypic rescue was determined (Line 208). We have added a figure with representative images of the whole body of dact1/2 mutants. Measurements of body length found a shortening in dact1/2 double mutants versus wildtype, however differences were not found to be significantly different by ANOVA (Fig. 3C, Fig. S3, Line 270-275).

      p. 11

      Comment: "These dact1-/-;dact2-/- CE phenotypes were similar to findings in other Wnt mutants, such as slb and kny (Heisenberg, Tada et al., 2000; Topczewski, Sepich et al., 2001)." The similarity between slb and kny phenotypes should be mentioned with caution as CE defects affect different regions in these 2 mutants. It is misleading to combine them into one phenotype category as wnt11 and gpc4 are most likely not acting in the same pathway based on these spatially distinct phenotypes.  

      Here we are referring to the grossly similar axis extension defects in slb and kny mutants. We refer to these mutants to illustrate that dact1 and or 2 deficiency could affect axis extension through diverse mechanisms. We have added text for clarity (Lines 249-252).  

      Comment: "No craniofacial phenotype was observed in dact1 or dact2 single mutants. However, in-crossing to generate [...] compound homozygotes resulted in dramatic craniofacial deformity."

      This result is intriguing in light of (1) the similar craniofacial phenotype previously reported by Waxman et al (2004) using morpholino- based knock-down of dact2, and the phenomenon of genetic compensation demonstrated by Jakutis and Stainier 2001 (https://doi.org/10.1146/annurev-genet-071719-020342). The authors should make sure that dact2 loss-of-function is not compensated for by an increase in dact1 transcription, as such compensation could lead to inaccurate conclusions if ignored.  

      We agree with the reviewer that genetic compensation of dact2 by dact1 likely explains the different result found in the dact2 morphant versus CRISPR mutant. We found increased dact1 mRNA expression in the dact2-/- mutant (Fig S2X) however a more thorough examination is required to draw a conclusion. Interestingly, we found that in wildtype embryos dact1 and dact2 expression patterns are distinct though with some overlap. It would be informative to investigate whether the dact1 expression pattern changes in dact2-/- mutants to account for dact2 loss.   

      Comment: "Lineage tracing of NCC movements in dact1/2 mutants reveals ANC composition" - the title is misleading - ANC composition was previously investigated by lineage tracing (Eberhardt et al., 2006; Wada et al., 2005).  

      This has been reworded (Line 292)

      p.13

      Comment: There is no frontonasal prominence in zebrafish.  

      This is true, texts have been changed to frontal prominence.  (Lines 293,

      299, 320)

      Comment: The rationale for investigating NC migration in mutants where there is a gastrula-stage failure of head mesoderm convergent extension is unclear. The whole head is deformed even before neural crest cells migrate as the eye field does not get split in two (Heisenberg et al., 1997; 2000), suggesting that the rod-like ethmoid plate is a secondary defect of this gastrula-stage defect. In addition, neural crest migration and cartilage morphogenesis are different processes, with clear temporal and spatial distinctions.  

      We carried out the lineage tracing experiment to determine which NC streams contributed to the aberrantly shaped EP, whether the anteromost NC stream frontal prominence, the second NC stream of maxillary prominence, or both.  We found that the anteromost NCC did contribute to the rod-like EP, which is different from when hedgehod signaling is disrupted,  So while it is possible that the gastrula-effect head mesoderm CE caused a secondary effect on NC migration, how the anterior NC stream and second NC stream are affected differently between dact1/2 and shh pathway is interesting.  We added discussion of this observation to the manuscript (page 23, Lines 514-520). 

      p. 14-16

      Comment: Based on the heavy suspicion that the rod-like ethmoid plate of the dact1/2 mutant results from a gastrulation defect, not a primary defect in later craniofacial morphogenesis, the prospect of crossing dact1/2 mutants with other wnt-pathway mutants for which craniofacial defects result from craniofacial morphogenetic defects is at the very least unlikely to generate any useful mechanistic information, and at most very likely to generate lots of confusion. Both predictions seem to take form here.  

      However, the ethmoid plate phenotype observed in the gpc4-/-; dact1+/-; dact2-/- mutants (Fig. 5E) does suggest that gpc4 may interact with dact1/2 during gastrulation, but that is the case only if dact1+/-; dact2-/- mutants do not have an ethmoid cartilage defect, which I could not find in the manuscript. Please clarify.  

      The perspective that the rod-like EP of the dact1/2 is due to gastrulation defect is being examined here. Why would other mutants such as wnt11f2 and gpc4 that have gastrulation CE defects have very different EP morphology, whether primary or secondary NCC effect?  Further dact1 and dact2 were reported as modifiers of Wnt signaling, so it is logical to genetically test the relationship between dact1, dact2, wnt11f2, gpc4 and wls. The experiment had to be done to investigate how these genetic combinations impact EP morphology. This study found that combined loss of dact1, dact2 and wls or gpc4 yielded new EP morphology different than those previously observed in either dact1/2, wls, gpc4, or any other mutant is important, suggesting that there are distinct roles for each of these genes contributing to facial morphology, that is not explained by CE defect alone.   

      Comment: I encourage the authors to explore ways to test whether the rod-like ethmoid of dact1/2 mutants is more than a secondary effect of the CE failure of the head mesoderm during gastrulation. Without this evidence, the phenotypes of dact1/2 -gpc4 or - wls are not going to convince us that these factors actually interact.  

      Actually, we find our results to support the hypothesis that the ethmoid of the dact1/2 mutants is a secondary effect of defective gastrulation and anterior extension of the body axis. However, our findings suggest (by contrasting to another mutant with impaired CE during gastrulation) that this CE defect alone cannot explain the dysmorphic ethmoid plate. Our single-cell RNA seq results and the discovery of dysregulated capn8 expression and proteolytic processes presents new wnt-regulated mechanisms for axis extension.    

      p. 20 Discussion

      Comment: "Here we show that dact1 and dact2 are required for axis extension during gastrulation and show a new example of CE defects during gastrulation associated with craniofacial defects."

      Waxman et al. (2004) previously showed that dact2 is involved in CE during gastrulation.

      Heisenberg et al. (1997, 2000), previously showed with the slb mutant how a CE defect during gastrulation causes a craniofacial defect.  

      The Waxman paper using morpholino to disrupt dact2 is produced limited analysis of CE and no analysis of craniofacial morphogenesis. We generated genetic mutants here to validate the earlier morpholino results and to analyze the craniofacial phenotype in detail. We have removed the word “new” to make the statement more clear (Line 475).

      Comment: "Our data supports the hypothesis that CE gastrulation defects are not causal to the craniofacial defect of medially displaced eyes and midfacial hypoplasia and that an additional morphological process is disrupted."

      It is unclear to me how the authors reached this conclusion. I find the view that medially displaced eyes and midfacial hypoplasia are secondary to the CE gastrulation defects unchallenged by the data presented. 

      This statement was removed and the discussion was reworded.

      Comment: The discussion should include a detailed comparison of this study's findings with those of zebrafish morpholino studies.  

      We have added more discussion to compare ours to the previous morpholino findings (Lines 476-484).

      Comment: The discussion should try to reconcile the different expression patterns of dact1 and dact2, and the functional redundancy suggested by the absence of phenotype of single mutants. Genetic compensation should be considered (and perhaps tested).  

      The different expression patterns of dact1 and dact2 along with our finding that dact1 and dact2 genetic deficiency differently affect the gpc4 mutant phenotype suggest that dact1 and dact2 are not functionally redundant during normal development. This is in line with the previously published data showing different phenotypes of dact1 or dact2 knockdown. However, our results that genetic ablation of both dact1 and dact2 are required for a mutant phenotype suggests that these genes can compensate upon loss of the other. This would suggest then that the expression pattern of dact1 would be changed in the dact2 mutant and visa versa. We find that this line of investigation would be interesting in future studies. We have addressed this in the Discussion (Lines 485498).

      Comment: "Based on the data...Conversely, we propose...ascribed to wnt11f2 "

      Functional data always prevail overexpression data for inferring functional requirements.  

      This is true.

      p.21

      Comment: "Our results underscore the crucial roles of dact1 and dact2 in embryonic development, specifically in the connection between CE during gastrulation and ultimate craniofacial development."

      How is this novel in light of previous studies, especially by Waxman et al. (2004) and Heisenberg et al. (1997, 2000). In this study, the authors fail to present compelling evidence that craniofacial defects are not secondary to the early gastrulation defects resulting from dact1/2 mutations.  p. 22

      We have not claimed that the craniofacial defects are not secondary to the gastrulation defects. In fact, we state that there is a “connection”. Further, we do not claim that this is the first or only such finding. We believe our findings have validated the previous dact morpholino experiments and have contributed to the body of literature concerning wnt signaling during embryogenesis. 

      Comment: The section on Smad1 discusses a result not reported in the results section. Any data discussed in the discussion section needs to be reported first in the results section.  

      We have added a comment on the differential expression of smad1 to the results section (Lines 446-448).

    1. And favors no fewer they furnished him soothly, Excellent folk-gems, than others had given him Who when first he was born outward did send him He leaves Daneland on the breast Lone on the main, the merest of infants: of a bark. And a gold-fashioned standard they stretched under heaven 50 High o’er his head, let the holm-currents bear him, Seaward consigned him: sad was their spirit, Their mood very mournful.

      The items that they furnished his boat with will represent their love and respect for him, as he returns to the sea from where he initially came from.

  6. inst-fs-pdx-prod.inscloudgate.net inst-fs-pdx-prod.inscloudgate.net
    1. use. The field of instructional design began during World War IIwhen educators and psychologists were called upon to develop military training to assist in the war effort. Thiscombination of educators and psychologists helped to create the beginnings of instructional design by craftingobjectives that focused on human behavior and learning, as well as effective testing methods to determine whatpeople were most appropriate for specific jobs. After World War II, the psychologists and educators involved in thisinitiative continued to research these practices concentrating on analysis, design and evaluation of instruction. B.F.Skinner then contributed to this movement by developing programmed instruction to solve educational problems(Reiser, 2001)

      I found this very interesting! First, creating objectives is crucial because they provide a clear direction and focus to the desired outcome. In my head, I was thinking instructional design was a new topic since online learning has been on the rise. It is insightful that there are so many different avenues to instructional design. It seems as if ID can go further than just a school setting.

  7. Aug 2024
    1. "Cultural factors that emphasize how “Hispanic” or “Latin” culture molded the Spanish Empire can’t explain the differences within Latin America—for example, why Argentina and Chile are more prosperous than Peru and Bolivia. Other types of cultural arguments—for instance, those that stress contemporary indigenous culture—fare equally badly. Argentina and Chile have few indigenous people compared with Peru and Bolivia. Though this is true, indigenous culture as an explanation does not work, either. Colombia, Ecuador, and Peru have similar income levels, but Colombia has very few indigenous people today, while Ecuador and Peru have many. Finally, cultural attitudes, which are in general slow to change, are unlikely to account by themselves for the growth miracles in East Asia and China.."

      This quote made me rethink the role of culture in economic growth and development. I had always believed that cultural factors drove economic success, as they had a huge impact on the way people in a country behaved. However, here the author argues that culture alone cannot account for differences between nations. It talks about how China has very rapidly grown, and it's unlikely for culture to change in this short amount of time. This has shifted my understanding of disparities in the world. I think I had an oversimplification in my head, that cultures were keeping certain countries from growing. While this still may be true I know its not the whole issue now.

      Link to related Article: To understand the relationship between culture and economic development, I read this articles from the World Economic Forum: What role does culture play in development It highlights that while culture does have a role in outcomes, it is not the sole determinant. It points our that cultural traits are often shaped by economic incentives and political stability, suggesting the real issue might be rooted to governance, which aligns with this text as well.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This article, titled "A multi-gene predictive model for the radiation sensitivity of nasopharyngeal carcinoma based on machine learning," utilizes machine learning methods and transcriptomic data from nasopharyngeal carcinoma (NPC) patients to construct a biomarker called NPC-RSS that can predict the radiosensitivity of NPC patients. The authors further explore the biological mechanisms underlying the relationship between NPC-RSS and radiotherapy response in NPC patients. The main objective of this study is to guide the selection of radiotherapy strategies for NPC patients, thereby improving their clinical outcomes and prognosis.

      Strengths:<br /> (1) The combination of multiple machine learning algorithms and cross-validation was used to select the best predictive model for radiotherapy sensitivity from 71 differentially expressed genes, enhancing the robustness and reliability of the predictions.<br /> (2) Functional enrichment analysis revealed close associations between NPC-RSS key genes and immune characteristics, expression of radiotherapy sensitivity-related genes, and signaling pathways related to disease progression, providing a biological basis for NPC-RSS in predicting radiotherapy sensitivity.<br /> (3) Grouping NPC samples according to NPC-RSS showed that the radiotherapy-sensitive group exhibited a more enriched and activated state of immune infiltration compared to the radioresistant group. In single-cell samples, NPC-RSS was higher in the radiotherapy-sensitive group, with immune cells playing a dominant role. These results clarify the mechanism of NPC-RSS in predicting radiotherapy sensitivity from an immunological perspective.<br /> (4) The study used public datasets and in-house cohort data for validation, confirming the good predictive performance of NPC-RSS and increasing the credibility of the results.

      Limitation:<br /> (1) The study focuses on a specific type of nasopharyngeal carcinoma (NPC) and may not be generalizable to other subtypes or related head and neck cancers. The applicability of NPC-RSS to a broader range of patients and tumor types remains to be determined.<br /> (2) The study does not account for potential differences in radiotherapy protocols, doses, and techniques between the training and validation cohorts, which could influence the performance of the predictive model. Standardization of treatment parameters would be important for future validation studies.<br /> (3) The binary classification of patients into radiotherapy-sensitive and resistant groups may oversimplify the complex spectrum of treatment responses. A more granular stratification system that captures intermediate responses could provide more nuanced predictions and better guide personalized treatment decisions.<br /> (4) The study does not address the potential impact of other relevant factors, such as tumor stage, histological subtype, and concurrent chemotherapy, on the predictive performance of NPC-RSS. Incorporating these clinical variables into the model could enhance its accuracy and clinical utility.

    1. Reviewer #3 (Public Review):

      Summary:

      Cheng, Liu, Dong, et al. demonstrate that anterior endoderm cells can arise from prechordal plate progenitors, which is suggested by pseudo time reanalysis of published scRNAseq data, pseudo time analysis of new scRNAseq data generated from Nodal-stimulated explants, live imaging from sox17:DsRed and Gsc:eGFP transgenics, fluorescent in situ hybridization, and a Cre/Lox system. Early fate mapping studies already suggested that progenitors at the dorsal margin give rise to both of these cell types (Warga) and live imaging from the Heisenberg lab (Sako 2016, Barone 2017) also pretty convincingly showed this. However, the data presented for this point are very nice, and the additional experiments in this manuscript, however, further cement this result. Though better demonstrated by previous work (Alexander 1999, Gritsman 1999, Gritsman 2000, Sako 2016, Rogers 2017, others), the manuscript suggests that high Nodal signaling is required for both cell types, and shows preliminary data that suggests that FGF signaling may also be important in their segregation. The manuscript also presents new single-cell RNAseq data from Nodal-stimulated explants with increased (lft1 KO) or decreased (ndr1 KD) Nodal signaling and multi-omic ATAC+scRNAseq data from wild-type 6 hpf embryos but draws relatively few conclusions from these data. Lastly, the manuscript presents data that SWI/SNF remodelers and Ripply1 may be involved in the anterior endoderm - prechordal plate decision, but these data are less convincing. The SWI/SNF remodeler experiments are unconvincing because the demonstration that these factors are differentially expressed or active between the two cell types is weak. The Ripply1 gain-of-function experiments are unconvincing because they are based on incredibly high overexpression of ripply1 (500 pg or 1000 pg) that generates a phenotype that is not in line with previously demonstrated overexpression studies (with phenotypes from 10-20x lower expression). Similarly, the cut-and-tag data seems low quality and like it doesn't support direct binding of ripply1 to these loci.

      In the end, this study provides new details that are likely important in the cell fate decision between the prechordal plate and anterior endoderm; however, it is unclear how Nodal signaling, FGF signaling, and elements of the gene regulatory network (including Gsc, possibly ripply1, and other factors) interact to make the decision. I suggest that this manuscript is of most interest to Nodal signaling or zebrafish germ layer patterning afficionados. While it provides new datasets and observations, it does not weave these into a convincing story to provide a major advance in our understanding of the specification of these cell types.

      Major issues:

      (1) UMAPs: There are several instances in the manuscript where UMAPs are used incorrectly as support for statements about how transcriptionally similar two populations are. UMAP is a stochastic, non-linear projection for visualization - distances in UMAP cannot be used to determine how transcriptionally similar or dissimilar two groups are. In order to make conclusions about how transcriptionally similar two populations are requires performing calculations either in the gene expression space, or in a linear dimensional reduction space (e.g. PCA, keeping in mind that this will only consider the subset of genes used as input into the PCA). Please correct or remove these instances, which include (but are not limited to):<br /> p.4 107-110<br /> p.4 112<br /> p.8 207-208<br /> p.10 273-275

      (2) Nodal and lefty manipulations: The section "Nodal-Lefty regulatory loop is needed for PP and anterior Endo fate specification" and Figure 3 do not draw any significant conclusions. This section presents a LIANA analysis to determine the signals that might be important between prechordal plate and endoderm, but despite the fact that it suggests that BMP, Nodal, FGF, and Wnt signaling might be important, the manuscript just concludes that Nodal signaling is important. Perhaps this is because the conclusion that Nodal signaling is required for the specification of these cell types has been demonstrated in zebrafish in several other studies with more convincing experiments (Alexander 1999, Gritsman 1999, Gritsman 2000, Rogers 2017, Sako 2016). While FGF has recently been demonstrated to be a key player in the stochastic decision to adopt endodermal fate in lateral endoderm (Economou 2022), the idea that FGF signaling may be a key player in the differentiation of these two cell types has strangely been relegated to the discussion and supplement. Lastly, the manuscript does not make clear the advantage of performing experiments to explore the PP-Endo decision in Nodal-stimulated explants compared to data from intact embryos. What would be learned from this and not from an embryo? Since Nodal signaling stimulates the expression of Wnts and FGFs, these data do not test Nodal signaling independent of the other pathways. It is unclear why this artificial system that has some disadvantages is used since the manuscript does not make clear any advantages that it might have had.

      (3) ripply1 mRNA injection phenotype inconsistent with previous literature: The phenotype presented in this manuscript from overexpressing ripply1 mRNA (Fig S11) is inconsistent with previous observations. This study shows a much more dramatic phenotype, suggesting that the overexpression may be to a non-physiological level that makes it difficult to interpret the gain-of-function experiments. For instance, Kawamura et al 2005 perform this experiment but do not trigger loss of head and eye structures or loss of tail structures. Similarly, Kawamura et al 2008 repeat the experiment, triggering a mildly more dramatic shortening of the tail and complete removal of the notochord, but again no disturbance of head structures as displayed here. These previous studies injected 25 - 100 pg of ripply1 mRNA with dramatic phenotypes, whereas this study uses 500 - 1000 pg. The phenotype is so much more dramatic than previously presented that it suggests that the level of ripply1 overexpression is sufficiently high that it may no longer be regulating only its endogenous targets, making the results drawn from ripply1 overexpression difficult to trust.

      (4) Ripply1 binding to sox17 and sox32 regulatory regions not convincing: The Cut and Tag data presented in Fig 6J-K does not seem to be high quality and does not seem to provide strong support that Ripply 1 binds to the regulatory regions of these genes. The signal-to-noise ratio is very poor, and the 'binding' near sox17 that is identified seems to be even coverage over a 14 kb region, which is not consistent with site-specific recruitment of this factor, and the 'peaks' highlighted with yellow boxes do not appear to be peaks at all. To me, it seems this probably represents either: (1) overtagmentation of these samples or (2) an overexpression artifact from injection of too high concentration of ripply1-HA mRNA. In general, Cut and Tag is only recommended for histone modifications, and Cut and Run would be recommended for transcriptional regulators like these (see Epicypher's literature). Given this and the previous point about Ripply1 overexpression, I am not convinced that Ripply1 regulates endodermal genes. The existing data could be made somewhat more convincing by showing the tracks for other genes as positive and negative controls, given that Ripply1 has known muscle targets (how does its binding look at those targets in comparison) and there should be a number of Nodal target genes that Ripply1 does not bind to that could be used as negative controls. Overall this experiment doesn't seem to be of high enough quality to drive the conclusion that Ripply1 directly binds near sox17 and sox32 and from the data presented in the manuscript looks as if it failed technically.

      (5) "Cooperatively Gsc and ripply1 regulate": I suggest avoiding the term "cooperative," when describing the relationship between Ripply1 and Gsc regulation of PP and anterior endoderm - it evokes the concept of cooperative gene regulation, which implies that these factors interact with each biochemically in order to bind to the DNA. This is not supported by the data in this manuscript, and is especially confusing since Ripply1 is thought to require cooperative binding with a T-box family transcription factor to direct its binding to the DNA.

      (6) SWI/SNF: The differential expression of srcap doesn't seem very remarkable. The dot plots in the supplement S7H don't help - they seem to show no expression at all in the endoderm, which is clearly a distortion of the data, since from the violin plots it's obviously expressed and the dot-size scale only ranges from ~30-38%. Please add to the figure information about fold-change and p-value for the differential expression. Publicly available scRNAseq databases show scrap is expressed throughout the entire early embryo, suggesting that it would be surprising for it to have differential activity in these two cell types and thereby contribute to their separate specification during development. It seems equally possible that this just mildly influences the level of Nodal or FGF signaling, which would create this effect.

      The multiome data seems like a valuable data set for researchers interested in this stage of zebrafish development. However, the presentation of the data doesn't make many conclusions, aside from identifying an element adjacent to ripply1 whose chromatin is open in prechordal plate cells and not endodermal cells and showing that there are a number of loci with differential accessibility between these cell types. That seems fairly expected since both cell types have several differentially expressed transcriptional regulators (for instance, ripply1 has previously been demonstrated in multiple studies to be specific to the prechordal plate during blastula stages). The manuscript implies that SWI/SNF remodeling by Srcap is responsible for the chromatin accessibility differences between these cell types, but that has not actually been tested. It seems more likely that the differences in chromatin accessibility observed are a result of transcription factors binding downstream of Nodal signaling.

      Minor issues:

      Figure 2 E-F: It's not clear which cells from E are quantitated in F. For instance, the dorsal forerunner cells are likely to behave very differently from other endodermal progenitors in this assay. It would be helpful to indicate which cells are analyzed in Fig F with an outline or other indicator of some kind. Or - if both DFCs and endodermal cells are included in F, to perhaps use different colors for their points to help indicate if their fluorescence changes differently.

      Fig 3 J: Should the reference be Dubrulle et al 2015, rather than Julien et al?

      References:<br /> Alexander, J. & Stainier, D. Y. A molecular pathway leading to endoderm formation in zebrafish. Current biology : CB 9, 1147-1157 (1999).<br /> Barone, V. et al. An Effective Feedback Loop between Cell-Cell Contact Duration and Morphogen Signaling Determines Cell Fate. Dev. Cell 43, 198-211.e12 (2017).<br /> Economou, A. D., Guglielmi, L., East, P. & Hill, C. S. Nodal signaling establishes a competency window for stochastic cell fate switching. Dev. Cell 57, 2604-2622.e5 (2022).<br /> Gritsman, K. et al. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97, 121-132 (1999).<br /> Gritsman, K., Talbot, W. S. & Schier, A. F. Nodal signaling patterns the organizer. Development (Cambridge, England) 127, 921-932 (2000).<br /> Kawamura, A. et al. Groucho-associated transcriptional repressor ripply1 is required for proper transition from the presomitic mesoderm to somites. Developmental cell 9, 735-744 (2005).<br /> Kawamura, A., Koshida, S. & Takada, S. Activator-to-repressor conversion of T-box transcription factors by the Ripply family of Groucho/TLE-associated mediators. Molecular and cellular biology 28, 3236-3244 (2008).<br /> Sako, K. et al. Optogenetic Control of Nodal Signaling Reveals a Temporal Pattern of Nodal Signaling Regulating Cell Fate Specification during Gastrulation. Cell Rep. 16, 866-877 (2016).<br /> Rogers, K. W. et al. Nodal patterning without Lefty inhibitory feedback is functional but fragile. eLife 6, e28785 (2017).<br /> Warga, R. M. & Nüsslein-Volhard, C. Origin and development of the zebrafish endoderm. Development 126, 827-838 (1999).

    Tags

    Annotators

    1. Seeing the canyon underapproved circumstances is seeing the symbolic complex head on.The thing is no longer the thing as it confronted the Spaniard; it israther that which has already been formulated-by picture postcard, geography book, tourist folders, and the words Grand Canyon

      When someone goes on a tour of the Grand Canyon, what they are lead to mentally engage in is not the actual site, but what idea they and everyone else on the tour has about the site. They see not the actual site, but the assumptions and propaganda that they have collected in their own head.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Reviews):

      Summary: 

      The authors use a combination of biochemistry and cryo-EM studies to explore a complex between the cap-binding complex and an RNA binding protein, ALYREF, that coordinates mRNA processing and export.

      Strengths: 

      The biochemistry and structural biology are supported by mutagenesis which tests the model in vitro. The structure provides new insight into how key events in RNA processing and export are likely to be coordinated.

      Weaknesses: 

      The authors provide biochemical studies to confirm the interactions that they identify; however, they do not perform any studies to test these models in cells or explore the consequences of mRNA export from the nucleus. In fact, several of the amino acids that they identified in ALYREF that are critical for the interaction, as determined by their own biochemical studies, are conserved in budding yeast Yra1 (residues E124/E128 are E/Q in budding yeast and residues Y135/V138/P139 are F/S/P), where the impact on poly(A) RNA export from the nucleus could be readily evaluated. The authors could at least mention this point as part of the implications and the need for future studies. No one seems to have yet targeted any of these conserved residues, so this would be a logical extension of the current work.

      We thank the reviewer for the feedback on our work. ALYREF coordinates pre-mRNA processing and export through interactions with a plethora of mRNA biogenesis factors including the DDX39B subunit of the TREX complex, CBC, EJC, and 3’ processing factors. ALYREF mediates the recruitment of the TREX complex on nascent transcripts which depends on its interactions with both CBC and EJC. Our work and studies by others indicate that ALYREF uses overlapping interfaces including both the N-terminal WxHD motif and the RRM domain to bind CBC and EJC. Thus, ALYREF mutants deficient in CBC interaction will also disrupt the ALYREF-EJC interaction and are not ideal for functional studies. In addition, the CBC plays important roles in multiple steps of mRNA metabolism through interactions with a plethora of factors, which often interact competitively with CBC. Identification of separation-of-function mutations on CBC or ALYREF that specifically disrupt their interaction but not other cellular complexes containing CBC or ALYREF would be an important future area to test the model in cells. 

      We appreciate the reviewer’s insightful comments regarding yeast Yra1. Thus far, the physical and functional connection between Yra1 and CBC in yeast has not been demonstrated. There are major differences between yeast Yra1 and human ALYREF. Given the lack of an EJC in S. cerevisiae, it is unclear whether Yra1 acts in a similar manner as human ALYREF. In addition, Yra1 does not contain a WxHD motif in its N-terminal unstructured region, which is involved in CBC and EJC interactions in ALYREF. Characterization of the Yra1-CBC interaction will be an interesting future direction. We now include a discussion about yeast Yra1 in the newly added “Conclusion and perspectives” section. 

      Specific suggestions:

      The authors could put their work in context by speculating how some of the amino acids that they identify as being critical for the interactions they identify could contribute to cancer. For example, they mention mutations of interacting residues in NCBP2 are associated with human cancers, pointing out that NCBP2 R105C amino acid substitution has been reported in colorectal cancer and the NCBP2 I110M mutation has been found in head and neck cancer. Do the authors speculate that these changes would decrease the interaction between NCBP2 and ALYREF and, if so, how would this contribute to cancer? They also mention that a K330N mutation in NCBP1 in human uterine corpus endometrial carcinoma, where Y135 on the α2 helix of mALYREF2 makes a hydrogen bond with K330 of NCBP1. How do they speculate loss of this interaction would contribute to cancer?

      In the revised manuscript, we include a discussion about these CBC mutants found in human cancers in the “Conclusion and perspectives” section. We think some of these CBC mutants, such as NCBP-1 K330N, could reduce interaction with ALYREF. Compromised CBC-ALYREF interaction will affect the recruitment of the TREX complex on nascent transcripts and cause dysregulation of mRNA export. In addition, that could also change the partition of CBC and ALYREF in different cellular complexes and cause perturbation of various steps in mRNA biogenesis that are regulated by CBC and ALYREF. Thus far, it is unclear whether and how loss of the CBC-ALYREF interaction directly contributes to cancer. Our work and that of others provide molecular insights to test in future studies. 

      Reviewer #2 (Public Reviews):

      Summary: 

      In this manuscript, Bradley and his colleagues represented the cryo-EM structure of the nuclear cap-binding complex (CBC) in complex with an mRNA export factor, ALYREF, providing a structural basis for understanding CBC regulating gene expression.

      Strengths: 

      The authors successfully modeled the N-terminal region and the RRM domain of ALYREF (residues 1-183) within the CBC-ALYREF structure, which revealed that both the NCBP1 and NCBP2 subunits of the CBC interact with the RBM domain of ALYREF. Further mutagenesis and pull-down studies provided additional evidence to the observed CBC-ALYREF interface. Additionally, the authors engaged in a comprehensive discussion regarding other cellular complexes containing CBC and/or ALYREF components. They proposed potential models that elucidated coordinated events during mRNA maturation. This study provided good evidence to show how CBC effectively recruits mRNA export factor machinery, enhancing our understanding of CBC regulating gene expression during mRNA transcription, splicing, and export. 

      Weaknesses: 

      No in vivo or in vitro functional data to validate and support the structural observations and the proposed models in this study. Cryo-EM data processing and structural representation need to be strengthened. 

      We appreciate the reviewer’s comments and suggestions. The fact that ALYREF uses highly overlapped binding interfaces for CBC and EJC interactions prevents us from a clear functional dissection of the ALYREF-CBC interaction using in vitro assays or in cells at the current stage. Please also see our response to Reviewer 1. 

      In this revised manuscript, we have reprocessed the cryo-EM data using a different strategy which yields significantly improved maps. We have made improvements to the presentation of the structural work based on the reviewer’s specific comments. 

      Reviewer #3 (Public Reviews):

      Summary: 

      The authors carried out structural and biochemical studies to investigate the multiple functions of CBC and ALYREF in RNA metabolism.

      Strengths: 

      For the structural study part, the authors successfully revealed how NCBP1 and NCBP2 subunits interact with mALYREF (residues 1-155). Their binding interface was then confirmed by biochemical assays (mutagenesis and pull-down assays) presented in this study. 

      Weaknesses: 

      The authors did not provide functional data to support their proposed models. The authors should include more details regarding the workflow of their cryo-EM data processing in the figure. 

      We thank the reviewer for the comments. We completely agree that testing the proposed models in cells would be ideal. However, as we also respond to the other reviewers, functional studies are premature at the current stage because both ALYREF and CBC are components of many cellular complexes that regulate mRNA metabolism. Separation-of-function mutations on CBC or ALYREF first need to be identified in future studies for further investigation. Please also see our response to Reviewer 1. 

      As suggested by the reviewer, we have included more details of the cryo-EM workflow in this revised manuscript. We have also included various validation measures including 3DFSC analyses, map vs model FSC curves, and representative density maps at various protein-protein binding interfaces. 

      Recommendations for the Authors:

      Reviewer #1 (Recommendations for the Authors):

      Major points:

      The authors should take advantage of Figure 1, which shows the domain structures of NCBP1, NCBP2, and ALYREF to indicate for the reader specifically which protein domains are included in the biochemical and structural analyses. In the current version of the manuscript, there is plenty of space to indicate below each domain structure precisely what regions are included.

      In this revised manuscript, we have revised Figure 1A to indicate the protein constructs used in this work. 

      Although it is fine to combine the Results and Discussion, the authors should really offer a concluding paragraph to highlight the novel results from this study and put the results in context.

      We thank the reviewer for the recommendation. We now include a “Conclusion and perspectives” section in this revised manuscript.  

      Minor comments:

      Page 5, last sentence (and others) starts a sentence with the word "Since" when likely "As" which does not imply a time element to the phrase, is the correct word.

      "Since the ALYREF/mALYREF2 interaction with the CBC is conserved and mALYREF2 exhibits better solubility, we focused on mALYREF2 in the cryo-EM investigations."

      Would be more correct as: "As the ALYREF/mALYREF2 interaction with the CBC is conserved and mALYREF2 exhibits better solubility, we focused on mALYREF2 in the cryo-EM investigations."

      We thank the reviewer for the comments. We have made the corrections. 

      The word 'data' is plural so the sentence at the bottom of p.9 that includes the phrase "...in vivo data shows.." should read "..in vivo data show.." 

      Corrected in the revised manuscript.

      Reviewer #2 (Recommendations for the Authors):

      Major points:

      (1) The authors claimed the improved solubility of mouse ALYREF2 (mALYREF2, residues 1-155) compared to the previously employed ALYREF construct. However, human ALYREF has already been purified successfully for pull down assay, indicating soluble human ALYREF obtained, why not use human ALYREF directly? Please clarify. 

      Pull-down studies were performed with GST-tagged ALYREF. For cryo-EM studies, untagged ALYREF is preferred to avoid potential issues that may arise from the expression tag. However, untagged ALYREF is less soluble than GST-tagged ALYREF and is not amenable for structural studies. We have revised the text to clarify this point. 

      (2) The authors confirmed CBC-ALYREF interfaces through mutagenesis and pull-down assays in vitro. However, it would be more informative and interesting to include functional assays in vitro or/and in vivo with mutagenesis. 

      We completely concur with the reviewer that testing the proposed models in vitro and in vivo would be important. However, as we pointed out in our response to public reviews, the highly overlapped binding interfaces on ALYREF for CBC and EJC interactions pose a great challenge for functional studies. Furthermore, both ALYREF and CBC are multifunctional factors and interact with a number of partners. Ideally, separation-of-function mutants that specifically disrupt the CBC-ALYREF interaction but not others need to be identified in future studies in order to perform functional studies. 

      (3) About cryo-EM data processing and structural representation:

      (1) In the description of the cryo-EM data processing, the authors claimed they did heterogeneous refinement, homogenous refinement, and then local refinement. This reviewer is puzzled by this process because the normal procedure should be non-uniform refinement following homogenous refinement. If the authors did not perform non-uniform refinement, they should do it because it would significantly improve the quality and resolution of cryo-EM maps. In addition, the right local refinement should include mask files and only show the density/map of the local region. 

      We thank the reviewer for the suggestions. In response to the reviewer’s comment on the preferred orientation issue (point 5 below), we reprocessed the cryo-EM data and obtained significantly improved cryo-EM maps. In this revised manuscript, the CBC-mALYREF map was refined using homogeneous refinement; the CBC map was refined using homogenous refinement followed by non-uniform refinement. Refinement masks are included in Figure 2-figure supplement1. 

      (2) Further local refinements with signal subtraction should be performed to improve the density and resolution of mALYREF2. 

      We tested local refinement with or without signal subtraction using masks covering mALYREF2 and various regions of CBC. Unfortunately, this approach did not improve the density of mALYREF2. We suspect that the small size of mALYREF2 (77 residues for the RRM domain) and the intrinsic flexibility of CBC are the limiting factors in these attempts. 

      (3) Figures with cryoEM map showing the side chains of the residues on the CBC-mALYREF2 interface should be included to strengthen the claims. Authors could add the map to Figure 3b/c or present it as a supplementary figure.

      We include new supplementary figures (Figure 3-figure supplement 1) to show the electron densities corresponding to the views in Figure 3B and 3C. Residues labeled in Figure 3B and 3C are shown in sticks in these supplementary figures.

      (4) For cryo-EM date processing, the authors have omitted lots of important details. Could the authors elaborate on the data processing with more details in the corresponding Figure and Methods Sections? Only one abi-initial model from the picked good particles was displayed in the figure. Are there any other different conformations of 3D classes for the dataset? In addition, too few classes have been considered in 3D classification, more classes may give a class with better density and resolution.

      We thank the reviewer for the comments. We have reprocessed the cryo-EM data. A major change is to use Topaz for particle picking. We now include more details for data processing in Figure 2-figure supplement 1 and the method section. The cryo-EM sample is relatively uniform. Ab-initio reconstruction and heterogenous refinement yielded only one good class and the other classes are “junk” classes (omitted in the workflow figure). No major conformational changes were observed throughout the multiple rounds of heterogenous refinement for both CBC and CBCmALYREF2. In this revised manuscript, we have been able to obtain significantly improved maps through the new data processing strategy employing Topaz as illustrated in Figure 2-figure supplement 1 to 5.

      (5) Angular distribution plots should be included to show if there is a preferred orientation issue. Based on the presented maps in validation reports, there may exist a preferred orientation issue for the reported two cryo-EM maps. Detailed 3D-Histogram and directional FSC plots for all the cryo-EM maps using 3DFSC web server should be presented to show the overall qualities (https://www.nature.com/articles/nmeth.4347 and https://3dfsc.salk.edu/).

      We thank the reviewer for the recommendations. In response to the reviewer’s comment on the preferred orientation issue, we reprocessed the cryo-EM data. Topaz was used for particle picking instead of template picking. 3DFSC analyses indicate that the new CBC-mALREF2 map has a sphericity of 0.946, which is a significant improvement from the previous map which has a sphericity of 0.815. Consistently, the maps presented in this revised manuscript show significantly improved densities. We now include angular distribution and 3DFSC analyses of the EM maps (Figure 2-figure supplement 2 and 4). 

      (6) Figures of model-to-map FSCs need to be present to demonstrate the quality of the models and the corresponding ones (model resolution when FSC=0.5) should also be included in Table 1. The accuracy of the model is important for structural explanations and description.

      The model-to-map FSCs are now included in Figure 2-figure supplement 3A and 5A. The model resolutions of CBC-mALYREF2 and CBC are estimated to be 3.5 Å and 3.6 Å at an FSC of 0.5. These numbers are now included in Table 1. 

      (7) In addition, figures of local density maps with different regions of the models, showing side chains, are necessary and important to justify the claimed resolutions. 

      We now include density maps overlayed with residue side chains at various regions. For the CBCmALYREF2 map, density maps are shown at the mALYREF2-NCBP1 interfaces (Figure 3-figure supplement 1A and 1B), mALYREF2-NCBP2 interface (Figure 3-figure supplement 1C), NCBP1NCPB2 interface (Figure 2-figure supplement 5B), and the region near m7G (Figure 2-figure supplement 5C). For the CBC map, density maps are shown at the NCBP1-NCPB2 interface (Figure 2-figure supplement 3B) and the region near m7G (Figure 2-figure supplement 3C). 

      Minor points:

      (1) A figure superimposing the models from the CBC-mALYREF2 amp and mALYREF2 alone map is necessary to present that there are no other CBC binding-induced conformational changes in CBC except the claimed by the authors. In addition, a figure showing the density of m7GpppG should be included as well.  

      Overlay of CBC and CBC-mALYREF2 models is now presented in Figure 2-figure supplement 3D. Comparing CBC and CBC-mALYREF2, NCBP1 and NCBP2 have a RMSD of 0.32 Å and 0.30 Å, respectively. The density maps near the M7G cap analog are shown in Figure 2-figure supplement 3C for CBC and Figure 2-figure supplement 5C for CBC-mALYREF2. 

      (2) Authors obtained the two maps from one dataset, so "we first determined" and "we next determined" (page 6) should be replaced with something like "One class of 3D cryo-EM map revealed' and "Another class of 3D cryo-EM map defined". 

      We have revised the text as suggested by the reviewer.  

      (3) In 'Abstract', 'a mRNA export factor' should be 'an mRNA export factor'. 

      Corrected in the revised manuscript.

      (4) In 'Abstract', the final sentence 'Comparison of CBC- ALYREF to other CBC and ALYREF containing cellular complexes provides insights into the coordinated events during mRNA transcription, splicing, and export' doesn't read smoothly, I would suggest revising it to 'Comparing CBC-ALYREF with other cellular complexes containing CBC and/or ALYREF components provides insight into the coordinated events during mRNA transcription, splicing, and export.' 

      We thank the reviewer for the recommendation and have revised accordingly. 

      (5) In paragraph 'CBC-ALYREF and viral hijacking of host mRNA export pathway', line 6, the sentences preceding and following the term 'However' indicate a progressive or parallel relationship, rather than a transitional one. To enhance the coherence, I would suggest replacing 'However' with 'Furthermore' or 'In addition'. 

      Corrected in the revised manuscript.

      (6) In both Figure 5 and Figure 6, the depicted models are proposed and constructed exclusively through the comparison of the CBC-partial ALYREF with other cellular complexes containing components of CBC and/or ALYREF, which need to be confirmed by more studies. To prevent potential confusion and misunderstandings, it is recommended to replace the term 'model' with 'proposed model'. 

      Corrected in the revised manuscript.

      Reviewer #3 (Recommendations for the Authors):

      Major points:

      (1) In the Results and Discussion section, the authors mentioned "Recombinant human ALYREF protein was shown to interact with the CBC in RNase-treated nuclear extracts." However, they used mouse ALYREF for cryo-EM investigations. Can the authors include an explanation for this choice during the revision?  

      In our work, we used a mixture of glutamic acid and arginine to increase the solubility of GSTALYREF. For cryo-EM studies, we use untagged ALYREF to avoid potential issues that may arise from the expression tag. However, untagged ALYREF is less soluble than GST-tagged ALYREF and is not suitable for structural studies in standard buffers. We have made further clarification on this point in this revised manuscript. 

      (2) In the paragraph on "CBC-ALYREF interfaces", the authors stated "For example, E97 forms salt bridges with K330 and K381 of NCBP1. Y135 on the α2 helix of mALYREF2 makes a hydrogen bond with K330 of NCBP1. The importance of this interface between ALYREF and NCBP1 is highlighted by a K330N mutation found in human uterine corpus endometrial carcinoma." I fail to see a strong connection between their structural observations and previous findings regarding the role of a K330N mutation found in human uterine corpus endometrial carcinoma. The authors should add more words to thread these two parts.  

      In response to the reviewer’s comment, we now move the discussion of these CBC mutants to the newly added “Conclusion and perspectives” section. 

      (3) The authors should include side chains of the residues in their figure of Local resolution estimation and FSC curves, especially when they are presenting the binding interface between two components. 

      We have now included density maps that are overlayed with structural models showing side chains of critical residues. These maps include the NCBP1-mALYREF2 interfaces (Figure 3-figure supplement 1A and 1B), NCBP2-mALYREF2 interface (Figure 3-figure supplement 1C), NCBP1NCBP2 interface (Figure 2-figure supplement 3B and 5B), and the m7G cap region (Figure 2figure supplement 3C and 5C). 

      Minor points: 

      (1) Some grammatical mistakes need to be corrected. For example, it is "an mRNA" instead of "a mRNA".  

      Corrected in the revised manuscript.

      (2) The authors can provide more information for the audience to know better about ALYREF when it first appears in the 5th line in the Abstract section. For example, "It promotes mRNA export through direct interaction with ALYREF, a key mRNA export factor, ...". 

      We have revised the sentence based on the reviewer’s comment.

    1. Cohen’s fatal injury happened the same day a 16-year-old football player from Alabama was fatally injured during his school’s season opener. Caden Tellier, the quarterback for John T. Morgan Academy in Selma, suffered a brain injury Friday night, Alabama Independent School Association Executive Director Michael McLendon told CNN in a statement. His death was announced Saturday. John T. Morgan Academy football player, Caden Tellier posing for a picture. Morgan Academy Related article Alabama teen dies after head injury during high school football game Caden’s family decided to donate the teen’s organs, his mother wrote on Facebook. “Caden is still fighting hard in his earthly body as he prepares for this final act of generosity to bring new life to others,” Arsella Slagel Tellier posted Tuesday. “We continue to pray for those whose lives will be forever changed by his gifts.”

      Hi @CNN - this is so inappropriate. Thanks.

    1. Do evaluators understand the questions in the same way? Are different evaluators of the same paper answering the “same questions” in their head? What about evaluators of different papers in different fields?

      Should we reference 'construal validity' here?

    1. g sweetly over his grave. The subsequent transference of his bones to Dium is evidently a local legend.26 His head was thrown upon the Hebrus, down which it rolled to the sea, and was borne across to Lesbos, where the grave in which it was interred was shown at Antissa. His lyre was also said to have been carried to Lesbos; and both traditions are simply poetical expressions of the historical fact that Lesbos was the first great seat of the music of the lyre: indeed Antissa itself was the birth-place of Terpander, the earliest historical musician.27 The astronomers taught that the lyre of Orpheu

      Which when rolled to the sea this was sense of traditional and a poetic expressions on how they feel and the music of sense.

    1. So for your arrogance and your ruthlessness I have lost the earth and the flowers of the earth, and the live souls above the earth, and you who passed across the light and reached ruthless; you who have your own light, who are to yourself a presence, who need no presence;

      Eurydice sounds upset and almost angry because she has lost the last chance of life due to him turning his head back.

    2. all the flowers that cut through the earth, all, all the flowers are lost; everything is lost, everything is crossed with black, black upon black and worse than black, this colourless light.

      This creates a very dark and sad image inside of my head.

    1. i try to validate the effort i make by paying attention to a specific group of people people more or less like me that do not allow themselves to open up to the introspective path unless and until they have some kind of conceptual model that validates that that introspective path if if the head doesn't allow the heart to have the experience by direct acquaintance then in those people the heart doesn't get there the brain is the bouncer of the heart

      for - recognizing true nature - validation of conceptual approach - brain is the bouncer for the heart - Bernardo Kastrup

    1. Reviewer #2 (Public Review):

      This manuscript by Amen, Yoo and Fabra-Garcia et al describes a human monoclonal antibody B1E11K, targeting EENV repeats which are present in parasite antigens such as Pfs230, RESAs and Pf11.1. The authors isolated B1E11K using an initial target agnostic approach for antibodies that would bind gamete/gametocyte lysate which they made 14 mAbs. Following a suite of highly appropriate characterization methods from Western blotting of recombinant proteins to native parasite material, use of knockout lines to validate specificity, ITC, peptide mapping, SEC-MALS, negative stain EM and crystallography, the authors have built a compelling case that B1E11K does indeed bind EENV repeats. In addition, using X-ray crystallography they show that two B1E11K Fabs bind to a 16 aa RESA repeat in a head-to-head conformation using homotypic interactions and provide a separate example from CSP, of affinity-matured homotypic interactions.

      The authors have addressed most of our previous comments in their revised manuscript.

      One of the main conclusions in the paper is the binding of B1E11K to RESAs which are blood stage antigens that are exported to the infected parasite surface. In the future, it would be interesting to understand if B1E11K mAb binds to the red cell surface of infected blood stage parasites to understand its cellular localization in those stages.

      Materials and Methods:<br /> PBMC sampling: While the authors have provided clarification that they obtained informed consent from the PBMC donor, they have not added the ethics approval codes in this section.

    2. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review):

      Summary: 

      In this paper, the authors used target agnostic MBC sorting and activation methods to identify B cells and antibodies against sexual stages of Plasmodium falciparum. While they isolated some Mabs against PFs48/45 and PFs230, two well-known candidates for "transmission blocking" vaccines, these antibodies' efficacies, as measured by TRA, did not perform as well as other known antibodies. They also isolated one cross-reactive mAb to proteins containing glutamic acid-rich repetitive elements, that express at different stages of the parasite life cycle. They then determined the structure of the Fab with the highest protein binder they could determine through protein microarray, RESA, and observed homotypic interactions. 

      Strengths: 

      -  Target agnostic B cell isolation (although not a novel methodology). 

      -  New cross-reactive antibody with some "efficacy" (TRA) and mechanism (homotypic interactions) as demonstrated by structural data and other biophysical data. 

      Weaknesses: 

      The paper lacks clarity at times and could benefit from more transparency (showing all the data) and explanations. 

      We have added the oocyst count data from the SMFA experiments as Supplementary Table 2, and ELISA binding curves underlying Figure 4B as Supplementary Figure 5.

      In particular: 

      - define SIFA 

      - define TRAbs 

      We have carefully gone through the manuscript and have introduced abbreviations at first use, removed unnecessary abbreviations and removed unnecessary jargon to increase readability.

      - it is not possible to read the Figure 6B and C panels. 

      We regret that the labels in Supplementary Figures 6 and 7 were of poor quality and have now included higher resolution images to solve this issue.

      Reviewer #2 (Public Review): 

      This manuscript by Amen, Yoo, Fabra-Garcia et al describes a human monoclonal antibody B1E11K, targeting EENV repeats which are present in parasite antigens such as Pfs230, RESAs, and 11.1. The authors isolated B1E11K using an initial target agnostic approach for antibodies that would bind gamete/gametocyte lysate which they made 14 mAbs. Following a suite of highly appropriate characterization methods from Western blotting of recombinant proteins to native parasite material, use of knockout lines to validate specificity, ITC, peptide mapping, SEC-MALS, negative stain EM, and crystallography, the authors have built a compelling case that B1E11K does indeed bind EENV repeats. In addition, using X-ray crystallography they show that two B1E11K Fabs bind to a 16 aa RESA repeat in a head-to-head conformation using homotypic interactions and provide a separate example from CSP, of affinity-matured homotypic interactions. 

      There are some minor comments and considerations identified by this reviewer, These include that one of the main conclusions in the paper is the binding of B1E11K to RESAs which are blood stage antigens that are exported to the infected parasite surface. It would have been interesting if immunofluorescence assays with B1E11K mAb were performed with blood-stage parasites to understand its cellular localization in those stages. 

      In the current manuscript, we provide multiple lines of evidence that B1E11K binds (with high affinity) to repeats that are present in RESAs, i.e. through micro-array studies, in vitro binding experiments such as Western blot, ELISA and BLI, and through X-ray crystallography studies on B1E11k – repeat peptide complexes. Taken together, we think we provide compelling evidence that B1E11k binds to repeats present in RESA proteins. We do agree that studies on the function of this mAb against other stages of the parasite could be of interest, but as our manuscript focuses on the sexual stage of the parasite, we feel that this is beyond scope of the current work. However, this line of inquiry will be strongly considered in follow up studies.   

      Reviewer #3 (Public Review): 

      The manuscript from Amen et al reports the isolation and characterization of human antibodies that recognize proteins expressed at different sexual stages of Plasmodium falciparum. The isolation approach was antigen agnostic and based on the sorting, activation, and screening of memory B cells from a donor whose serum displays high transmission-reducing activity. From this effort, 14 antibodies were produced and further characterized. The antibodies displayed a range of transmission-reducing activities and recognized different Pf sexual stage proteins. However, none of these antibodies had substantially lower TRA than previously described antibodies. 

      The authors then performed further characterization of antibody B1E11K, which was unique in that it recognized multiple proteins expressed during sexual and asexual stages. Using protein microarrays, B1E11K was shown to recognize glutamate-rich repeats, following an EE-XX-EE pattern. An impressive set of biophysical experiments was performed to extensively characterize the interactions of B1E11K with various repeat motifs and lengths. Ultimately, the authors succeeded in determining a 2.6 A resolution crystal structure of B1E11K bound to a 16AA repeat-containing peptide. Excitingly, the structure revealed that two Fabs bound simultaneously to the peptide and made homotypic antibody-antibody contacts. This had only previously been observed with antibodies directed against CSP repeats. 

      Overall I found the manuscript to be very well written, although there are some sections that are heavy on field-specific jargon and abbreviations that make reading unnecessarily difficult. For instance, 'SIFA' is never defined. 

      We have carefully gone through the manuscript and have introduced abbreviations at first use, removed unnecessary abbreviations and removed unnecessary jargon to increase readability.

      Strengths of the manuscript include the target-agnostic screening approach and the thorough characterization of antibodies. The demonstration that B1E11K is cross-reactive to multiple proteins containing glutamate-rich repeats, and that the antibody recognizes the repeats via homotypic interactions, similar to what has been observed for CSP repeat-directed antibodies, should be of interest to many in the field. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Figure 1 - why only gametes ELISA and Spz or others?  

      The volumes of the single B cell supernatants were too small to screen against multiple antigens/parasite stages. As we aimed to isolate antibodies against the sexual stages of the parasite, our assay focused on this stage and supernatants were not tested against other stages. Furthermore, we screened for reactivity against gametes as TRA mAbs likely target gametes rather than other forms of sexual stage parasites.

      Figure 2 A 

      (a) Wild type (WT) and Pfs48/45 knock-out (KO) gametes.

      (b) I am a bit confused about what GMT is vs Pfs48/45 

      We have changed the column titles in Figure 2A to “wild-type gametes” and “Pfs48/45 knockout gametes” to improve clarity.  

      (c) Binding is high % why is it red? 

      We chose to present the results in a heatmap format with a graded color scale, from strong binders in red to weak binders in green. It has now been clarified in the legend of the figure. 

      Please state acronyms clearly 

      TRA - transmission reducing activity 

      SMFA - standard membrane feeding assay 

      We have added the full terms to clarify the acronyms.

      1123- VRC01 (not O1)

      We have corrected this.

      Figure 2 C bottom panels, clarify which ones are TRAbs (Assuming the Mabs with over 80% TRA at 500 ug/ml) (right gel) and the ones that are not (left gel)? 

      In the Western blot in Figure 2c, we have marked the antibodies with >80% TRA with an asterisk.

      Furthermore, we have replaced ‘TRAbs’ by ‘mAbs with >80% TRA at 500 µg/mL’ in the figure legend.

      ITC show the same affinity of the Fab to the 2 peptides but not the ELISA, not the BLI/SPR would be more appropriate. Any potential explanation?  

      The way binding affinity is determined across various techniques can result in slight differences in determined values. For instance, ELISAs utilize long incubation times with extensive washing steps and involve a spectroscopic signal, isothermal titration calorimetry (ITC) uses calorimetric signal at different concentration equilibriums to extract a KD, and BLI determines kinetic parameters for KD determination. Discrepancies in binding affinities between orthologous techniques have indeed been observed previously in the context of peptide-antibody binding (e.g. PMID: 34788599).

      Despite this, regardless of technique, the relative relationships in all three sets of data is the same - higher binding affinity is observed to the longer P2 peptide. This is the main takeaway of the section. As the reviewer suggests, BLI is likely the most appropriate readout here and is the only value explicitly mentioned in the main text. We primarily use ITC to support our proposed binding stoichiometry which is important to substantiate the SEC-MALS and nsEM data in Figure 4H-I. We added the following sentences to help reinforce these points: “The determined binding affinity from our ITC experiments (Table 1) differed from our BLI experiments (Fig. 4D and 4E), which can occur when measuring antibody-peptide interactions. Regardless, our data across techniques all trend toward the same finding in which a stronger binding affinity is observed toward the longer RESA P2 (16AA) peptide.”

      Figure 5C - would be helpful to have the peptide sequence above referring to what is E1, E2 etc... 

      We added two panels (Figure 5C-D) showcasing the binding interface that shows the peptide numbering in the context of the overall complex. We hope that this will help better orient the reader. 

      Figure S4 - maybe highlight in different colors the EENVV, EEIEE, Etc, etc 

      Repeats found in the sequence of the various proteins in Figure S4 have now been highlighted with different colors.

      Line 163 - why 14 mabs if 11 wells? Isn't it 1 B cell per well? The authors should explain right away that some wells have more than 1 B cell and some have 1 HC, 1LC, and 1 KC. 

      We agree that this was somewhat confusing and have modified the text which now reads: “We obtained and cloned heavy and light chain sequences for 11 out of 84 wells. For three wells we obtained a kappa light chain sequence and for five wells a lambda light chain sequence. For three wells we obtained both a lambda and kappa light chain sequence suggesting that either both chains were present in a single B cell or that two B cells were present in the well. For all 14 wells we retrieved a single heavy chain sequence. Following amplification and cloning, 14 mAbs, from 11 wells, were expressed as full human IgG1s (Table S1) (Dataset S1).”

      Line 166-167 - were they multiple HC (different ones) as well when Lambda and kappa were present?

      This is not clear at first. 

      We clarified this point in the text, see also comment above.

      Line 177 - expressed Pfs48/45 and Pfs230, is it lacking both or just Pfs48/45 (as stated on line 172)? 

      Pfs48/45 binds to the gamete surface via a GPI anchor, while Pfs230 is retained to the surface through binding to Pfs48/45. Hence, the Pfs48/45 knockout parasite will therefore also lack surfacebound Pfs230. We have added a sentence to the Results clarifying this: “The mAbs were also tested for binding to Pfs48/45 knock-out female gametes, which lack surface-bound Pfs48/45 and Pfs230”.

      Show the ELISA data used to calculate EC50 in Figure 3. 

      ELISA binding curves are now shown as Figure S5.

      Line 313-315 - what if you reverse, capture the Fab (peptide too small even if biotinylated?) 

      As anticipated by the Reviewer, immobilizing the Fab and dipping into peptide did not yield appreciable signal for kinetic analysis and thus the experiment from this setup is not reported. 

      Line 341 - add crystal structure 

      This has now been added.

      There is a bit too much speculation in the discussion. For e.g. "The B1C5L and B1C5K mAbs were shown to recognize Domain 2 of Pfs48/45 and exhibited moderate potency, as previously described for Abs with such specificity (27). These 2 mAbs were isolated from the same well and shared the same heavy chain; their three similar characteristics thus suggest that their binding is primarily mediated by the heavy chain". Actual data will reinforce this statement. 

      As B1C5L and B1C5K recognized domain 2 of Pfs48/45 with similar affinity, this strongly suggests that binding is mediated though the heavy chain. Structural analysis could confirm this statement, but this is out of the scope of this study.  

      Reviewer #2 (Recommendations For The Authors): 

      Figure 1: This figure provides a description of the workflow. To make it more relevant for the paper, the authors could add relevant numbers as the workflow proceeds. 

      (a) For example, how many memory B cells were sorted, how many supernatants were positive, and then how many mAbs were produced? These numbers can be attached to the relevant images in the workflow. 

      We modified the figure to include the numbers. 

      (b) For the "Supernatant screening via gamete extract ELISA", please change to "Supernatant screening via gamete/gametocyte extract ELISA". 

      We modified the statement as suggested. 

      Line 155: The manuscript states that 84 wells reacted with gamete/gametocyte lysate. The following sentence states that "Out of the 21 supernatants that were positive...". Can the authors provide the summary of data for all 84 wells or why focus on only 21 supernatants? 

      We screened all supernatants against gamete lysate, and only a subset against gametocyte lysate. In total, we found 84 positive supernatants that were reactive to at least one of the two lysates. 21 of those 84 positive were screened against both lysates. We have modified the text to clarify the numbers:

      “After activation, single cell culture supernatants potentially containing secreted IgGs were screened in a high-throughput 384-well ELISA for their reactivity against a crude Pf gamete lysate (Fig. S1B). A subset of supernatants was also screened against gametocyte lysate (S1C). In total, supernatants from 84 wells reacted with gamete and/or gametocyte lysate proteins, representing 5.6% of the total memory B cells. Of the 21 supernatants that were screened against both gamete and gametocyte lysates, six recognized both, while nine appeared to recognize exclusively gamete proteins, and six exclusively gametocyte proteins.”

      Please note that all 84 positive wells were taken forward for B cell sequencing and cloning. 

      Line 171: SIFA is introduced for the first time and should be completely spelled out.

      We have corrected this. 

      Figure 2: 

      (a) In Figure 2A, can you change the column title from "% pos KO GMT" to "% pos Pfs48/45 KO GMT"?

      We have changed the column titles.  

      (b) In Figure 2B, the SMFA results have been converted to %TRA. Can the authors please provide the raw data for the oocyst counts and number of mosquitoes infected in Supplementary Materials? 

      We have added oocyst count data in Table S2, to which we refer in the figure legend. 

      (c) For Figure 2F, the authors do have other domains to Pfs230 as described in Inklaar et al, NPJ Vaccines 2023. An ELISA/Western to the other domains could identify the binding site for B2C10L, though we appreciate this is not the central result of this manuscript. 

      We thank the reviewer for this suggestion. We are indeed planning to identify the target domain of B2C10L using the previously described fragments, but agree with the reviewer that this not the focus of the current manuscript and decided to therefore not include it in the current report.

      Line 116: The word sporozoites appears in subscript and should be corrected to be normal text. 

      We have corrected this.

      Line 216: Typo "B1E11K" 

      We have corrected this.

      Materials and Methods: 

      (a) PBMC sampling: Please add the ethics approval codes in this section. 

      Donor A visited the hospital with a clinical malaria infection and provided informed consent for collection of PBMCs. We have modified the method section to clarify this. 

      “Donor A had lived in Central Africa for approximately 30 years and reported multiple malaria infections during that period. At the time of sampling PBMCs, Donor A had recently returned to the Netherlands and visited the hospital with a clinical malaria infection. After providing informed consent, PBMCs were collected, but gametocyte prevalence and density were not recorded.”

      (b) Gamete/Gametocyte extract ELISA: Can the authors please provide the concentration of antibodies used for the positive and negative controls (TB31F, 2544, and 399) 

      We have added the concentrations for these mAbs in the methods section.

      Recombinant Pfs48/45 and Pfs230 ELISA: Please state the concentration or molarity used for the coating of recombinant Pfs48/45 and Pfs230CMB. 

      We have added the concentrations, i.e. 0.5 µg/mL, to the methods section.

      Western Blotting: The protocol states that DTT was added to gametocyte extracts (Line 594), but Western Blots in Figures 2 and 3 were performed in non-reducing conditions. Please confirm whether DTT was added or not. 

      Thank you for noting this. We did not use DTT for the western blots and have removed this line from the methods section.

      Reviewer #3 (Recommendations For The Authors): 

      Below are a few minor comments to help improve the manuscript. 

      (1) In Figure 4E, are the BLI data fit to a 1:1 binding model? The fits seem a bit off, and from ITC and X-ray studies it is known that 2 Fabs bind 1 peptide. The second Fab should presumably have higher affinity than the first Fab since the second Fab will make interactions with both the peptide and the first Fab. It may be better to fit the BLI data to a 2:1 binding model. 

      The 2:1 (heterogeneous ligand) model assumes that there are two different independent binding sites. However, the second binding event described is dependent on the first binding event and thus this model also does not accurately reflect the system. Given that there is not an ideal model to fit, we instead are careful about the language used in the main text to describe these results. Additionally, we also include a sentence to the results section to ensure that the proper findings/interpretations are highlighted: “…our data all trend toward the same finding in which a stronger binding affinity is observed toward the longer RESA P2 (16AA) peptide.”

      (2) The sidechain interactions shown in Figures 5C and D could probably be improved. The individual residues are just 'floating' in space, causing them to lack context and orientation. 

      We added two panels (Fig. 5C-D) showcasing the binding interface that shows the peptide numbering in the context of the overall complex. We hope that this will help orient the reader.  

      (3) The percentage of Ramachandran outliers should be listed in Table 2. Presumably, the value is 0.2%, but this is omitted in the current table. 

      Table 2 has been modified to include the requested information explicitly.

    1. Robot does damage to himself because it doesn’t hurt him. He puts his hand into the machine— (Describes with gesture) —breaks his finger— (Describes with gesture) —smashes his head. It’s all the same to him. We must provide them with pain.

      Because robots lack the ability to feel pain they are more likely to harm themselves without realizing the consequences. And to prevent this they should be programmed to experience feelings such as pain to avoid self-destructive behavior.

    2. That’s good. (Kisses her hand. She lowers her head.) Oh, I beg your pardon! (Rises) But a working machine must not play the piano, must not feel happy, must not do a whole lot of other things.

      This a great example of the restrictions and the guidelines coders/programmers put on their works. I wonder if people allow or figure a way to code ai to feel emotions would they eventually go berserk on there own.

    1. eLife assessment

      This study uses a deep neural network approach to challenge the role of spatially selective neurons like place, head or border cells for position decoding. The findings are important as they suggest that such functional cell types may emerge naturally from object recognition in complex visual environments, but are neither necessary, nor particularly critical for position decoding. However, direct evidence supporting this conclusion remains incomplete.

    2. Author response:

      We thank the reviewers for their engagement and constructive comments. This provisional response aims to clarify key misconceptions, address major criticisms, and outline our revision plans.

      A primary concern of the reviewers appears to be our model's limitations in addressing a broad range of empirical findings. This, however, misinterprets our core contribution. Our work centers on a cautionary tale that before advocating for newly discovered cell types and their purported special roles in spatial cognition—an approach prevalent in the field—such claims must be tested against alternative (null) hypotheses that may contradict intuitive expectations. We present such an alternative hypothesis regarding spatial cells and their assumed privileged roles. We show that key findings in the field - spatial “cell types”,  arise in a set of null models without spatial grounding (including untrained variants) despite the models not being a model for spatial processing, and we also found that they had no privileged role for representing spatial information.

      Our proposal is not a new model attempting to explain the brain, and therefore we do not aim to capture every empirical finding. Indeed, we would not expect an object recognition model (and its untrained variant) with no explicit spatial grounding to account for all phenomena in spatial cognition. This underscores our key point: if there exists a basic, spatially agnostic model that can explain certain degrees of empirical findings using criteria from the literature (i.e. place, head-direction and border cells), what implications does this have for the more complex theories and models proposed as underlying mechanisms of special cell types?

      Regarding concerns about the limited scope and generalizability of our setting, we will clarify that we considered multiple DNN architectures, both trained and untrained, on multiple decoding tasks (position, head direction, and nearest-wall distance). We plan to extend our experiments further as detailed in the revision plan below.

      Further, there was a methodological concern about using a linear decoder on a fixed DNN for spatial decoding tasks being a form of "hacking". However, linear readout is standard practice in neuroscience to characterize information available in a neural population. Moreover, our tests on untrained networks also showed spatial decoding capabilities, suggesting it's not solely due to the linear readout.

      For our full revision plan:

      (1) We will revise the manuscript to better reflect these above points, clarifying our paper's stance and improving the writing to reduce misconceptions.

      (2) We will address individual public reviews in more detail.

      (3) We intend to address key reviewer recommendations, focusing on better situating our work within the broader context of the existing literature whilst emphasizing the null hypothesis perspective.

      (4) In general, we will consider additional aspects of the literature and conduct new experiments to strengthen the relevance of our work to existing work. We highlight a number of potential experiments which we believe can address reviewer concerns:

      a. Blurring the visual inputs to DNNs to match rodent perception.

      b. Vary environmental settings to verify whether our findings are more

      generalizable (which we predict to be the case).

      c. Vary the environment to assess remapping effects, which will strengthen the

      connection of our work to the literature.

    3. Reviewer #1 (Public Review):

      Summary:<br /> This study investigated spatial representations in deep feedforward neural network models (DDNs) that were often used in visual tasks. The authors create a three-dimensional virtual environment, and let a simulated agent randomly forage in a smaller two-dimensional square area. The agent "sees" images of the room within its field of view from different locations and heading directions. These images were processed by DDNs. Analyzing model neurons in DDNs, they found response properties similar to those of place cells, border cells and head direction cells in various layers of deep nets. A linear readout of network activity can recover key spatial variables. In addition, after removing neurons with strong place/border/head direction selectivity, one can still decode these spatial variables from the remaining neurons in the DNNs. Based on these results, the authors argue that that the notion of functional cell types in spatial cognition is misleading.

      Strengths:<br /> This paper contains interesting and original ideas, and I enjoy reading it. Most previous studies (e.g., Banino, Nature, 2018; Cueva & Wei, ICLR, 2018; Whittington et al, Cell, 2020) using deep network models to investigate spatial cognition mainly relied on velocity/head rotation inputs, rather than vision (but see Franzius, Sprekeler, Wiskott, PLoS Computational Biology, 2007). Here, the authors find that, under certain settings, visual inputs alone may contain enough information about the agent's location, head direction and distance to the boundary, and such information can be extracted by DNNs. If confirmed, this is potentially an interesting and important observation.

      Weaknesses:<br /> While the findings reported here are interesting, it is unclear whether they are the consequence of the specific model setting, and how well they would generalize. Furthermore, I feel the results are over-interpreted. There are major gaps between the results actually shown and the claim about the "superfluousness of cell types in spatial cognition". Evidence directly supporting the overall conclusion seems to be weak at the moment.

      Major concerns:

      (1) The authors reported that, in their model setting, most neurons throughout the different layers of CNNs show strong spatial selectivity. This is interesting and perhaps also surprising. It would be useful to test/assess this prediction directly based on existing experimental results. It is possible that the particular 2-d virtual environment used is special. The results will be strengthened if similar results hold for other testing environments.

      In particular, examining the pictures shown in Fig. 1A, it seems that local walls of the 'box' contain strong oriented features that are distinct across different views. Perhaps the response of oriented visual filters can leverage these features to uniquely determine the spatial variable. This is concerning because this is a very specific setting that is unlikely to generalize.

      (2) Previous experimental results suggest that various function cell types discovered in rodent navigation circuits persist in dark environments. If we take the modeling framework presented in this paper literally, the prediction would be that place cells/head direction cells should go away in darkness. This implies that key aspects of functional cell types in the spatial cognition are missing in the current modeling framework. This limitation needs to be addressed or explicitly discussed.

      (3) Place cells/border cell/ head direction cells are mostly studied in the rodent's brain. For rodents, it is not clear whether standard DNNs would be good models of their visual systems. It is likely that rodent visual system would not be as powerful in processing visual inputs as the DNNs used in this study.

      (4) The overall claim that those functional cell types defined in spatial cognition are superfluousness seems to be too strong based on the results reported here. The paper only studied a particular class of models, and arguably, the properties of these models have a major gap to those of real brains. Even though, in the DNN models simulated in this particular virtual environment, (i) most model neurons have strong spatial selectivity; (ii) removing model neurons with the strongest spatial selectivity still retain substantial spatial information, why this is relevant to the brain? The neural circuits may operate in a very different regime. Perhaps a more reasonable interpretation of the results would be: these results raise the possibility that those strongly selective neurons observed in the brain may not be essential for encoding certain features, as something like this is observed in certain models. It is difficult to draw definitive conclusions about the brain based on the results reported.

    4. Reviewer #2 (Public Review):

      Summary:<br /> The authors aim at challenging the relevance of cell populations with characteristic selectivity for specific aspects of navigation (e.g. place cells, head direction and border cells) in the processing of spatial information. Their claim is that such cells naturally emerge in any system dealing with the estimation of position in an environment, without the need for a special involvement of these cells in the computations. In particular the work shows how when provided with spatial error signals, networks designed for invariant object recognition spontaneously organize the activity in their hidden layers into a mixture of spatially selective cells, some of them passing classification criteria for place, head direction or border cells. Crucially, these cells are not necessary for position decoding, nor are they the most informative when it comes to the performance of the network in reconstructing spatial position from visual scenes. These results lead the authors to claim that focusing on the classification of specific cell types is hindering rather than helping advancement in the understanding of spatial cognition. In fact they claim that the attention should rather be pointed at understanding highly-dimensional population coding, regardless of its direct interpretability or its appeal to human observers.

      Strengths:<br /> Methodologically the paper is consistent and convincingly support the author claims regarding the role of cell types in coding for spatial aspects of cognition. It is also interesting how the authors leverage on established machine learning systems to provide a sort of counter-argument to the use of such techniques to establish a parallel between artificial and biological neural representations. In the recent past similar applications of artificial neural networks to spatial navigation have been directed at proving the importance of specific neural substrates (take for example Banino et al. 2018 for grid cells), while in this case the same procedure is used to unveil them as epiphenomena, so general and unspecific to be of very limited use in understanding the actual functioning of the neural system. I am quite confident that this stance regarding the role of place cells and co. could gather large sympathy and support in the greater part of the neuroscience community, or at least among the majority of theoretical neuroscientists with some interest in the hippocampus and higher cognition.

      Weaknesses:<br /> My criticism of the paper can be articulated in three main points:<br /> - What about grid cells? Grid cells are notably not showing up in the analyses of the paper. But they surely can be considered as the 'mother' of all tailored spatial cells of the hippocampal formation. Are they falling outside the author's assessment of the importance of this kind of cells? Some discussion of the place grid cells occupy in the vision of the authors would greatly help.<br /> - The network used in the paper is still guided by a spatial error signal, and the network is trained to minimize spatial decoding error. In a sense, although object classfication networks are not designed for spatial navigation, one could say that the authors are in some way hacking this architecture and turning it into a spatial navigation one through learning. I wonder if their case could be strengthened by devising a version of their experiment based on some form of self-supervised or unsupervised learning.<br /> - The last point is more about my perception of the community studying hippocampal functions, rather than being directed at the merits of the paper itself. My question is whether the paper is fighting an already won battle. That is whether the focus on the minute classification of response profiles of cells in the hippocampus is in fact already considered an 'old' approach, very useful for some initial qualitative assessments but of limited power when asked to provide deeper insight into the functioning of hippocampal computations (or computations of any other brain circuit).

    5. Reviewer #3 (Public Review):

      Summary:<br /> In this paper, the authors demonstrate the inevitably of the emergence of some degree of spatial information in sufficiently complex systems, even those that are only trained on object recognition (i.e. not "spatial" systems). As such, they present an important null hypothesis that should be taken into consideration for experimental design and data analysis of spatial tuning and its relevance for behavior.

      Strengths:<br /> The paper's strengths include the use of a large multi-layer network trained in a detailed visual environment. This illustrates an important message for the field: that spatial tuning can be a result of sensory processing. While this is a historically recognized and often-studied fact in experimental neuroscience, it is made more concrete with the use of a complex sensory network. Indeed, the manuscript is a cautionary tale for experimentalists and computational researchers alike against blindly applying and interpreting metrics without adequate controls.

      Weaknesses:<br /> However, the work has a number of significant weaknesses. Most notably: the degree and quality of spatial tuning is not analyzed to the standards of evidence historically used in studies of spatial tuning in the brain, and the authors do not critically engage with past work that studies the sensory influences of these cells; there are significant issues in the authors' interpretation of their results and its impact on neuroscientific research; the ability to linearly decode position from a large number of units is not a strong test of spatial information, nor is it a measure of spatial cognition; and the authors make strong but unjustified claims as to the implications of their results in opposition to, as opposed to contributing to, work being done in the field.

      The first weakness is that the degree and quality of spatial tuning that emerges in the network is not analyzed to the standards of evidence that have been used in studies of spatial tuning in the brain. Specifically, the authors identify place cells, head direction cells, and border cells in their network and their conjunctive combinations. However, these forms of tuning are the most easily confounded by visual responses, and it's unclear if their results will extend to forms of spatial tuning that are not. Further, in each case, previous experimental work to further elucidate the influence of sensory information on these cells has not been acknowledged or engaged with.

      For example, consider the head direction cells in Figure 3C. In addition to increased activity in some directions, these cells also have a high degree of spatial nonuniformity, suggesting they are responding to specific visual features of the environment. In contrast, the majority of HD cells in the brain are only very weakly spatially selective, if at all, once an animal's spatial occupancy is accounted for (Taube et al 1990, JNeurosci). While the preferred orientation of these cells are anchored to prominent visual cues, when they rotate with changing visual cues the entire head direction system rotates together (cells' relative orientation relationships are maintained, including those that encode directions facing AWAY from the moved cue), and thus these responses cannot be simply independent sensory-tuned cells responding to the sensory change) (Taube et al 1990 JNeurosci, Zugaro et al 2003 JNeurosci, Ajbi et al 2023).

      As another example, the joint selectivity of detected border cells with head direction in Figure 3D suggests that they are "view of a wall from a specific angle" cells. In contrast, experimental work on border cells in the brain has demonstrated that these are robust to changes in the sensory input from the wall (e.g. van Wijngaarden et al 2020), or that many of them are not directionally selective (Solstad et al 2008).

      The most convincing evidence of "spurious" spatial tuning would be the emergence of HD-independent place cells in the network, however, these cells are a small minority (in contrast to hippocampal data, Thompson and Best 1984 JNeurosci, Rich et al 2014 Science), the examples provided in Figure 3 are significantly more weakly tuned than those observed in the brain, and the metrics used by the authors to quantify place cell tuning are not clearly defined in the methods, but do not seem to be as stringent as those commonly used in real data. (e.g. spatial information, Skaggs et al 1992 NeurIPS).

      Indeed, the vast majority of tuned cells in the network are conjunctively selective for HD (Figure 3A). While this conjunctive tuning has been reported, many units in the hippocampus/entorhinal system are *not* strongly hd selective (Muller et al 1994 JNeurosci, Sangoli et al 2006 Science, Carpenter et al 2023 bioRxiv). Further, many studies have been done to test and understand the nature of sensory influence (e.g. Acharya et al 2016 Cell), and they tend to have a complex relationship with a variety of sensory cues, which cannot readily be explained by straightforward sensory processing (rev: Poucet et al 2000 Rev Neurosci, Plitt and Giocomo 2021 Nat Neuro). E.g. while some place cells are sometimes reported to be directionally selective, this directional selectivity is dependent on behavioral context (Markus et al 1995, JNeurosci), and emerges over time with familiarity to the environment (Navratiloua et al 2012 Front. Neural Circuits). Thus, the question is not whether spatially tuned cells are influenced by sensory information, but whether feed-forward sensory processing alone is sufficient to account for their observed turning properties and responses to sensory manipulations.

      These issues indicate a more significant underlying issue of scientific methodology relating to the interpretation of their result and its impact on neuroscientific research. Specifically, in order to make strong claims about experimental data, it is not enough to show that a control (i.e. a null hypothesis) exists, one needs to demonstrate that experimental observations are quantitatively no better than that control.

      Where the authors state that "In summary, complex networks that are not spatial systems, coupled with environmental input, appear sufficient to decode spatial information." what they have really shown is that it is possible to decode *some degree* of spatial information. This is a null hypothesis (that observations of spatial tuning do not reflect a "spatial system"), and the comparison must be made to experimental data to test if the so-called "spatial" networks in the brain have more cells with more reliable spatial info than a complex-visual control.

      Further, the authors state that "Consistent with our view, we found no clear relationship between cell type distribution and spatial information in each layer. This raises the possibility that "spatial cells" do not play a pivotal role in spatial tasks as is broadly assumed." Indeed, this would raise such a possibility, if 1) the observations of their network were indeed quantitatively similar to the brain, and 2) the presence of these cells in the brain were the only evidence for their role in spatial tasks. However, 1) the authors have not shown this result in neural data, they've only noticed it in a network and mentioned the POSSIBILITY of a similar thing in the brain, and 2) the "assumption" of the role of spatially tuned cells in spatial tasks is not just from the observation of a few spatially tuned cells. But from many other experiments including causal manipulations (e.g. Robinson et al 2020 Cell, DeLauilleon et al 2015 Nat Neuro), which the authors conveniently ignore. Thus, I do not find their argument, as strongly stated as it is, to be well-supported.

      An additional weakness is that linear decoding of position is not a strong test, nor is it a measure of spatial cognition. The ability to decode position from a large number of weakly tuned cells is not surprising. However, based on this ability to decode, the authors claim that "'spatial' cells do not play a privileged role in spatial cognition". To justify this claim, the authors would need to use the network to perform e.g. spatial navigation tasks, then investigate the network's ability to perform these tasks when tuned cells were lesioned.

      Finally, I find a major weakness of the paper to be the framing of the results in opposition to, as opposed to contributing to, the study of spatially tuned cells. For example, the authors state that "If a perception system devoid of a spatial component demonstrates classically spatially-tuned unit representations, such as place, head-direction, and border cells, can "spatial cells" truly be regarded as 'spatial'?" Setting aside the issue of whether the perception system in question does indeed demonstrate spatially-tuned unit representations comparable to those in the brain, I ask "Why not?" This seems to be a semantic game of reading more into a name then is necessarily there. The names (place cells, grid cells, border cells, etc) describe an observation (that cells are observed to fire in certain areas of an animal's environment). They need not be a mechanistic claim (that space "causes" these cells to fire) or even, necessarily, a normative one (these cells are "for" spatial computation). This is evidenced by the fact that even within e.g. the place cell community, there is debate about these cells' mechanisms and function (eg memory, navigation, etc), or if they can even be said to serve only a single function. However, they are still referred to as place cells, not as a statement of their function but as a history-dependent label that refers to their observed correlates with experimental variables. Thus, the observation that spatially tuned cells are "inevitable derivatives of any complex system" is itself an interesting finding which *contributes to*, rather than contradicts, the study of these cells. It seems that the authors have a specific definition in mind when they say that a cell is "truly" "spatial" or that a biological or artificial neural network is a "spatial system", but this definition is not stated, and it is not clear that the terminology used in the field presupposes their definition.

      In sum, the authors have demonstrated the existence of a control/null hypothesis for observations of spatially-tuned cells. However, 1) It is not enough to show that a control (null hypothesis) exists, one needs to test if experimental observations are no better than control, in order to make strong claims about experimental data, 2) the authors do not acknowledge the work that has been done in many cases specifically to control for this null hypothesis in experimental work or to test the sensory influences on these cells, and 3) the authors do not rigorously test the degree or source of spatial tuning of their units.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This interesting study explores the mechanism behind an increased susceptibility of daf-18/PTEN mutant nematodes to paralyzing drugs that exacerbate cholinergic transmission. The authors use state-of-theart genetics and neurogenetics coupled with locomotor behavior monitoring and neuroanatomical observations using gene expression reporters to show that the susceptibility occurs due to low levels of DAF-18/PTEN in developing inhibitory GABAergic neurons early during larval development (specifically, during the larval L1 stage). DAF-18/PTEN is convincingly shown to act cell-autonomously in these cells upstream of the PI3K-PDK-1-AKT-DAF-16/FOXO pathway, consistent with its well-known role as an antagonist of this conserved signaling pathway. The authors exclude a role for the TOR pathway in this process and present evidence implicating selectivity towards developing GABAergic neurons. Finally, the authors show that a diet supplemented with a ketogenic body, β-hydroxybutyrate, which also counteracts the PI3K-PDK-1-AKT pathway, promoting DAF-16/FOXO activity, partially rescues the proper development (morphology and function) of GABAergic neurons in daf-18/PTEN mutants, but only if the diet is provided early during larval development. This strongly suggests that the critical function of DAF18/PTEN in developing inhibitory GABAergic neurons is to prevent excessive PI3K-PDK-1-AKT activity during this critical and particularly sensitive period of their development in juvenile L1 stage worms. Whether or not the sensitivity of GABAergic neurons to DAF-18/PTEN function is a defining and widespread characteristic of this class of neurons in C. elegans and other animals, or rather a particularity of the unique early-stage GABAergic neurons investigated remains to be determined.

      Strengths:

      The study reports interesting and important findings, advancing the knowledge of how daf-18/PTEN and the PI3K-PDK-1-AKT pathway can influence neurodevelopment, and providing a valuable paradigm to study the selectivity of gene activities towards certain neurons. It also defines a solid paradigm to study the potential of dietary interventions (such as ketogenic diets) or other drug treatments to counteract (prevent or revert?) neurodevelopment defects and stimulate DAF-16/FOXO activity.

      Weaknesses:

      (1) Insufficiently detailed methods and some inconsistencies between Figure 4 and the text undermine the full understanding of the work and its implications.

      The incomplete methods presented, the imprecise display of Figure 4, and the inconsistency between this figure and the text, make it presently unclear what are the precise timings of observations and treatments around the L1 stage. What exactly do E-L1 and L1-L2 mean in the figure? The timing information is critical for the understanding of the implications of the findings because important changes take place with the whole inhibitory GABAergic neuronal system during the L1 stage into the L2 stage. The precise timing of the events such as neuronal births and remodelling events are welldescribed (e.g., Figure 2 in Hallam and Jin, Nature 1998; Fig 7 in Mulcahy et al., Curr Biol, 2022). Likewise, for proper interpretation of the implication of the findings, it is important to describe the nature of the defects observed in L1 larvae reported in Figure 1E - at present, a representative figure is shown of a branched commissure. What other types of defects, if any, are observed in early L1 larvae? The nature of the defects will be informative. Are they similar or not to the defects observed in older larvae?

      We thank the reviewer for highlighting these areas for improvement. We have updated and clarified the timing of observation in the text, figures, and methodology section accordingly.

      All experiments were conducted using age-synchronized animals. Gravid worms were placed on NGM plates and removed after two hours. The assays were then carried out on animals that hatched from the eggs laid during this specific timeframe.

      Regarding the detailed timings outlined in the original Figure 4 (now Figure 5 in the revised version), we provided the following information in the revised version: For experiments involving continuous exposure to βHB throughout development, the gravid worms were placed on NGM plates containing the ketone body and removed after two hours. Therefore, this exposure covered the ex-utero embryonic development period up to the L4-Young adult stage when the experiments were conducted.

      In experiments involving exposure at different developmental stages as those depicted in Figure 4 of the original version, (now Figure 5, revised version), animals were transferred between plates with and without βHB as required. We exposed daf-18/PTEN mutant animals to βHB-supplemented diets for 18-hour periods at different developmental stages (Figure 5A, revised version). The earliest exposure occurred during the 18 hours following egg laying, covering ex-utero embryonic development and the first 8-9 hours of the L1 stage. The second exposure period encompassed the latter part of the L1 stage, the entire L2 stage, and most of the L3 stage. The third exposure spanned the latter part of the L3 stage (~1-2 hours), the entire L4 stage, and the first 6-7 hours of the adult stage.

      All this information has been conveniently included in Figure 5, text (Page13, lines 259-276), and in methodology (Page 4, Lines 85-90, Revised Methods and Supplementary information) of the revised manuscript.

      In response to the reviewer's suggestion, we have also included photos of daf-18 worms at the L1 stage (30 min/1h post-hatching). Defects are already present at this early stage, such as handedness and abnormal branching commissures, which are also observed in adult worm neurons (see Supplementary Figure 4, revised version). 

      These defects manifest in DD neurons shortly after larval birth. The prevalence of animals with errors is higher in L4 worms (when both VDs and DDs are formed) compared to early L1s (Figures 3 C-E and Supplementary Figure 4, revised version). This suggests that defects in VD neurons also occur in daf-18 mutants. Indeed, when we analyzed the neuronal morphology of several wild-type and daf-18 mutant animals, we found defects in the commissures corresponding to both DD and VD neurons (Supplementary Figure 3, revised version). 

      These data are now included in the revised version (Results (Page 10, lines 177-196), Discussion (Pages 14-16), Main Figure 3, and Supplementary Figures 3, 4 and 7 revised version)

      (2) The claim of proof of concept for a reversal of neurodevelopment defects is not fully substantiated by data.

      The authors state that the work "constitutes a proof of concept of the ability to revert a neurodevelopmental defect with a dietary intervention" (Abstract, Line 56), however, the authors do not present sufficient evidence to distinguish between a "reversal" or prevention of the neurodevelopment defect by the dietary intervention. This clarification is critical for therapeutic purposes and claims of proof-of-concept. From the best of my understanding, reversal formally means the defect was present at the time of therapy, which is then reverted to a "normal" state with the therapy. On the other hand, prevention would imply an intervention that does not allow the defect to develop to begin with, i.e., the altered or defective state never arises. In the context of this study, the authors do not convincingly show reversal. This would require showing "embryonic" GABAergic neuron defects or showing convincing data in newly hatched L1 (0-1h), which is unclear if they do so or not, as I have failed to find this information in the manuscript. Again, the method description needs to be improved and the implications can be very different if the data presented in Figure 2D-E regard newly born L1 animals (0-1h) or L1 animals at say 5-7h after hatching. This is critical because the development of the embryonically-born GABAergic DD neurons, for instance, is not finalized embryonically. Their neurites still undergo outgrowth (albeit limited) upon L1 birth (see DataS2 in Mulcahy et al., Curr Biol 2022), hence they are susceptible to both committing developmental errors and to responding to nutritional interventions to prevent them. In contrast to embryonic GABAergic neurons, embryonic cholinergic neurons (DA/DB) do not undergo neurite outgrowth post-embryonically (Mulcahy et al., Curr Biol 2022), a fact which could provide some mechanistic insight considering the data presented. However, neurites from other post-embryonically-born neurons also undergo outgrowth postembryonically, but mostly during the second half of the L1 stage following their birth up to mid-L2, with significant growth occurring during the L1-L2 transition. These are the cholinergic (VA/VB and AS neurons) and GABAergic (VD) neurons. The fact that AS neurons undergo a similar amount of outgrowth as VD neurons is informative if VD neurons are or are not susceptible to daf-18/PTEN activity. Independently, DD neurons are still quite unique on other aspects (see below), which could also bring insight into their selective response.

      Finally, even adjusting the claim to "constitutes a proof-of-concept of the ability of preventing a neurodevelpmental defect with a dietary intervention" would not be completely precise, because it is unclear how much this work "constitutes a proof of concept". This is because, unless I misunderstood something, dietary interventions are already applied to prevent neurodevelopment defects, such as when folic acid supplementation is recommended to pregnant women to prevent neural tube defects in newborns.

      Thank you very much for pointing out this issue and highlighting the need to further investigate the ameliorative capacity of βHB on GABAergic defects in daf-18 mutants. In the revised version, we have included experiments to address this point.

      Our microscopy analyses strongly indicate that the development of DD neurons is affected, with errors observed as early as one-hour post-hatching (Main Figure 3, and Supplementary Figures  4 and 7, revised version). Additionally, based on the position of the commissures in L4s, our results strongly suggest that VD neurons are also affected (Supplementary Figure 3, revised version). Both, the frequency of animals with errors and the number of errors per animal are higher in L4s compared to L1 larvae (Main Figures 3,  and Supplementary Figure 4 and 7, revised version). It is very likely that the errors in VD neurons, which are born in the late L1 stage, are responsible for the higher frequency of defects observed in L4 animals. 

      As the reviewer noted, GABAergic DD neurons, which are born embryonically, do not complete their development during the embryonic stages. Some defects in DD neurons may arise during the postembryonic period. Following the reviewer's suggestion, we analyzed L1 larvae at different times before the appearance of VDs (1 hour post-hatching and 6 hours post-hatching). We did not observe an increase in error prevalence, suggesting that DD defects in daf-18 mutants are mostly embryonic (Supplementary Fig 4B, Revised Version). 

      Our findings suggest that βHB's enhancement is not due to preventive effects in DDs, as defects persist in newly hatched larvae regardless of βHB presence (Supplementary Figure 7, revised version), and postembryonic DD growth does not introduce new errors (Supplementary Figure 4, revised version). This lack of preventive effect could be due to βHB's limited penetration into the embryonic environment. Unlike early L1s, significant improvement occurs in L4s upon βHB early exposure (Supplementary Figure 7, revised version). This could be explained by a reversing effect on malformed DD neurons and/or a protective influence on VD neuron development. While we cannot rule out the first option, even if all errors in DDs in L1 were repaired (which is very unlikely), it wouldn't explain the level of improvement in L4 (Supplementary Figure 7, revised version). Therefore, we speculate that VDs may be targeted by βHB. The notion that exposure to βHB during early L1 can ameliorate defects in neurons primarily emerging in late L1s (VDs) is intriguing. We may hypothesize that residual βHB or a metabolite from prior exposure could forestall these defects in VD neurons. Notably, βHB has demonstrated a capacity for long-lasting effects through epigenetic modifications (Reviewed in He et al, 2023, https://doi.org/10.1016%2Fj.heliyon.2023.e21098). More work is needed to elucidate the underlying fundamental mechanisms regarding the ameliorating effects of βHB supplementation. We have now discussed these possibilities under discussion (Page 17, lines 369-383, revised version).

      We agree with the reviewer that the term "reversal" is not accurate, and we have avoided using this terminology throughout the text. Furthermore, in the title, we have decided to change the word "rescue" to "ameliorate," as our experiments support the latter term but not the former. Additionally, the reviewer is correct that folic acid administration to pregnant women is already a metabolic intervention to prevent neural tube defects. In light of this, we have avoided claiming this as proof of concept in the revised manuscript 

      (3) The data presented do not warrant the dismissal of DD remodeling as a contributing factor to the daf-18/PTEN defects.

      Inhibitory GABAergic DD neurons are quite unique cells. They are well-known for their very particular property of remodeling their synaptic polarity (DD neurons switch the nature of their pre- and postsynaptic targets without changing their wiring). This process is called DD remodeling. It starts in the second half of the L1 stage and finishes during the L2 stage. Unfortunately, the fact that the authors find a specific defect in early GABAergic neurons (which are very likely these unique DD neurons) is not explored in sufficient detail and depth. The facts that these neurons are not fully developed at L1, that they still undergo limited neurite growth, and that they are poised for striking synaptic plasticity in a few hours set them apart from the other explored neurons, such as early cholinergic neurons, which show a more stable dynamics and connectivity at L1 (see Mulcahy et al., Curr Biol 2022).

      The authors use their observation that daf-18/PTEN mutants present morphological defects in GABAergic neurons prior to DD remodeling to dismiss the possibility that the DAF-18/PTEN-dependent effects are "not a consequence of deficient rearrangement during the early larval stages". However, DD remodeling is just another cell-fate-determined process and as such, its timing, for instance, can be affected by mutations in genes that affect cell fates and developmental decisions, such as daf-18 and daf-16, which affect developmental fates such as those related with the dauer fate. Specifically, the authors do not exclude the possibility that the defects observed in the absence of either gene could be explained by precocious DD remodeling. Precocious DD remodeling can occur when certain pathways, such as the lin-14 heterochronic pathway, are affected. Interestingly, lin-14 has been linked with daf16/FOXO in at least two ways: during lifespan determination (Boehm and Slack, Science 2005) and in the

      L1/L2 stages via the direct negative regulation of an insulin-like peptide gene ins-33 (Hristova et al., Mol Cell Bio 2005). It is likely that the prevention of DD dysfunction requires keeping insulin signaling in check (downregulated) in DD neurons in early larval stages, which seems to coincide with the critical timing and function of daf-18/PTEN. Hence, it will be interesting to test the involvement of these genes in the daf-18/daf-16 effects observed by the authors.

      This is another interesting point raised by the reviewer. We have demonstrated that defects manifest in early L1 (30 min-1 hour post-hatching) which corresponds to a pre-remodeling time in wild-type worms.

      We acknowledge the possibility of early remodeling in specific mutants as pointed out by the reviewer.

      However, the following points suggest that the effects of these mutations may extend beyond the particularity of DD remodeling: i) Our experiments also show defects in VD neurons in daf-18 mutants (Supplementary Figure 3, revised version), as discussed in our previous response. These neurons do not undergo significant remodeling during their development. ii) DAF-18 and DAF-16 deficiencies produce neurodevelopmental alteration on other Non-Remodeling Neurons: Severe neurite defects in neurons that are nearly fully formed at larval hatching, such as AIY in daf-18 and daf-16 mutants, have been previously reported (Christensen et al., 2011). Additionally, the migration of another neuron, HSN, is severely affected in these mutants (Kennedy et al., 2013). iii) To the best of our knowledge, DD remodeling only alters synaptic polarity without forming new commissures or significant altering the trajectory of the formed ones. Thus, it is unlikely (though not impossible) for remodeling defects to cause the observed commissural branching and handedness abnormalities in DD neurons. Therefore, we think that the impact of daf-18 mutations on GABAergic neurons is not primarily linked to DD remodeling but extends to various neuron types. It is intriguing and requires further exploration in the future, the apparent resilience of cholinergic motor neurons to these mutations. This resilience is not limited to daf18/PTEN animals since mutants in certain genes expressed in both neuron types (such as neuronal integrin ina-1 or eel-1, the C. elegans ortholog of HUWE1) alter the function or morphology of GABAergic neurons but not cholinergic motor neurons (Kowalski, J. R. et al. Mol Cell Neurosci 2014; Oliver, D. et al. J Dev Biol (2019); Opperman, K. J. et al. Cell Rep 2017). These points are discussed in the manuscript (Discussion, page 15, lines 311-322, revised version) and reveal the existence of compensatory or redundant mechanisms in these excitatory neurons, rendering them much more resistant to both morphological and functional abnormalities.

      Discussion on the impact of the work on the field and beyond:

      The authors significantly advance the field by bringing insight into how DAF-18/PTEN affects neurodevelopment, but fall short of understanding the mechanism of selectivity towards GABAergic neurons, and most importantly, of properly contextualizing their findings within the state-of-the-art C. elegans biology.

      For instance, the authors do not pinpoint which type of GABAergic neuron is affected, despite the fact that there are two very well-described populations of ventral nerve cord inhibitory GABAergic neurons with clear temporal and cell fate differences: the embryonically-born DD neurons and the postembryonically-born VD neurons. The time point of the critical period apparently defined by the authors (pending clarifications of methods, presentation of all data, and confirmation of inconsistencies between the text and figures in the submitted manuscript) could suggest that DAF-18/PTEN is required in either or both populations, which would have important and different implications. An effect on DD neurons seems more likely because an image is presented (Figure 2D) of a defect in an L1 daf-18/PTEN mutant larva with 6 neurons (which means the larva was processed at a time when VD neurons were not yet born or expressing pUnc-47, so supposedly it is an image of a larva in the first half of the L1 stage (0-~7h?)). DD neurons are also likely the critical cells here because the neurodevelopment errors are partially suppressed when the ketogenic diet is provided at an "early" L1 stage, but not later (e.g., from L2-L3, according to the text, L2-L4 according to the figure? ).

      Thank you for this insightful input. As previously mentioned, we conducted experiments in this revision to clarify the specificity of GABAergic errors in daf-18/PTEN mutants, in particular, whether they affect DDs, VDs, or both. Our results suggest that commissural defects are not limited to DD neurons but also occur in VD neurons (Supplementary Figure 3). Regarding the effect of βHB, our findings suggest that VD neurons are targets of βHB action. As mentioned in the previous response and the discussion section (Page 17, lines 369-383, revised version), we might speculate that lingering βHB or a metabolite from prior exposure could mitigate these defects in VD neurons that are born in Late L1s-Early L2s. Additionally, βHB has been noted for its capacity to induce long-term epigenetic changes. Therefore, it could act on precursor cells of VD neurons, with the resulting changes manifesting during VD development independently of whether exposure has ceased. All these possibilities are now discussed in the manuscript.

      Acknowledging that our work raises several questions that we aim to address in the future, we believe our manuscript provides valuable information regarding how the PI3K pathway modulates neuronal development and how dietary interventions can influence this process.

      This study brings important contributions to the understanding of GABAergic neuron development in C. elegans, but unfortunately, it is justified and contextualized mostly in distantly-related fields - where the study has a dubious impact at this stage rather than in the central field of the work (post-embryonic development of C. elegans inhibitory circuits) where the study has stronger impact. This study is fundamentally about a cell fate determination event that occurs in a nutritionally-sensitive

      developmental stage (post-embryonic L1 larval stage) yet the introduction and discussion are focused on more distantly related problems such as excitatory/inhibitory (E/I) balance, pathophysiology of human diseases, and treatments for them. Whereas speculation is warranted in the discussion, the reduced indepth consideration of the known biology of these neurons and organisms weakens the impact of the study as redacted. For instance, the critical role of DAF-18/PTEN seems to occur at the early L1 larval stage, a stage that is particularly sensitive to nutritional conditions. The developmental progression of L1 larvae is well-known to be sensitive to nutrition - eg, L1 larvae arrest development in the absence of food, something that is explored in nematode labs to synchronize animals at the L1 stage by allowing embryos to hatch into starvation conditions (water). Development resumes when they are exposed to food. Hence, the extensive postembryonic developmental trajectory that GABAergic neurons need to complete is expected to be highly susceptible to nutrition. Is it? The sensitivity towards the ketogenic diet intervention seems to favor this. In this sense, the attribution of the findings to issues with the nutrition-sensitive insulin-like signaling pathway seems quite plausible, yet this possibility seems insufficiently considered and discussed.

      We greatly appreciate the reviewer's emphasis on the sensitivity of the L1 stage to nutritional status. As the reviewer points out, C. elegans adjusts its development based on food availability, potentially arresting development in L1 in the absence of food. It is therefore reasonable that both the completion of DD neuron trajectories and the initial development steps of VD neurons are particularly sensitive to dietary modulation of the insulin pathway, in which both DAF-18 and DAF-16 play roles. This important point has also been included in the discussion (Page 18, lines 384-407, revised version).

      Finally, the fact that imbalances in excitatory/inhibitory (E/I) inputs are linked to Autism Spectrum Disorders (ASD) is used to justify the relevance of the study and its findings. Maybe at this stage, the speculation would be more appropriate if restricted to the discussion. In order to be relevant to ASD, for instance, the selectivity of PTEN towards inhibitory neurons should occur in humans too. However, at present, the E/I balance alteration caused by the absence of daf-18/PTEN in C. elegans could simply be a coincidence due to the uniqueness of the post-embryonic developmental program of GABAergic neurons in C. elegans. To be relevant, human GABAergic neurons should also pass through a unique developmental stage that is critically susceptible to the PI3K-PDK1-AKT pathway in order for DAF18/PTEN to have any role in determining their function. Is this the case? Hence, even in the discussion, where the authors state that "this study provides universally relevant information on.... the mechanisms underlying the positive effects of ketogenic diets on neuronal disorders characterized by GABA dysfunction and altered E/I ratios", this claim seems unsubstantiated as written particularly without acknowledging/mentioning the criteria that would have to be fulfilled and demonstrated for this claim to be true.

      Our results suggest that defects in GABAergic neurons are not limited to DDs, which, as the reviewer rightly notes, are quite unique in their post-embryonic development primarily due to the synaptic remodeling process they undergo. These defects also extend to VD neurons, which do not exhibit significant developmental peculiarities once they are born. Therefore, we think that the defects are not specific to the developmental program of DD neurons but are more related to all GABAergic motoneurons. Additionally, the observation of defects in non-GABAergic neurons in C. elegans daf-18 mutants supports the hypothesis that the role of daf-18 is not limited to DD neurons (Christensen et al., 2011; Kennedy et al., 2013).

      In mammals, Pten conditional knockout (cKO) animals have been extensively studied for synaptic connectivity and plasticity, revealing an imbalance between synaptic excitation and inhibition (E/I balance) (Reviewed in Rademacher and Eickholt, 2019, Cold Spring Harbor Perspect Med, https://doi.org/10.1101%2Fcshperspect.a036780). This imbalance is now widely accepted as a key pathological mechanism linked to the development of ASD-related behavior (Lee et al, 2017; Biological Psychiatry, https://doi.org/10.1016/j.biopsych.2016.05.011) . The importance of PTEN in the development of GABAergic neurons in mammals is well-documented. For instance, embryonic PTEN deletion from inhibitory neurons impacts the establishment of appropriate numbers of parvalbumin and somatostatin-expressing interneurons, indicating a central role for PTEN in inhibitory cell development (Vogt et al, 2015, Cell Rep, https://doi.org/10.1016%2Fj.celrep.2015.04.019). Additionally, conditional PTEN knockout in GABAergic neurons is sufficient to generate mice with seizures and autism-related behavioral phenotypes (Shin et al, 2021, Molecular Brain, https://doi.org/10.1186%2Fs13041-02100731-8). Moreover, while mice in which PV GABAergic neurons lacked both copies of Pten experienced seizures and died, heterozygous animals (PV-Pten+/−) showed impaired formation of perisomatic inhibition (Baohan et al, 2016, Nature Comm, OI: 10.1038/ncomms12829). Therefore, there is substantial evidence in mammals linking PTEN mutations to neurodevelopmental disorders in general and affecting GABAergic neurons in particular. Hence, we believe that the role of daf-18/PTEN in GABAergic development could be a more widespread phenomenon across the animal kingdom rather than a specific process unique to C. elegans.

      Beyond the points discussed, we have addressed the reviewer's comment regarding the last sentence of the abstract. We have revised it to more cautiously frame the relationship between our findings, ASD, and mammalian neurodevelopmental disorders.

      Reviewer #2 (Public Review):

      Summary:

      Disruption of the excitatory/inhibitory (E/I) balance has been reported in Autism Spectrum Disorders

      (ASD), with which PTEN mutations have been associated. Giunti et al choose to explore the impact of PTEN mutations on the balance between E/I signaling using as a platform the C. elegans neuromuscular system where both cholinergic (E) and GABAergic (I) motor neurons regulate muscle contraction and relaxation. Mutations in daf-18/PTEN specifically affect morphologically and functionally the GABAergic (I) system, while leaving the cholinergic (E) system unaffected. The study further reveals that the observed defects in the GABAergic system in daf-18/PTEN mutants are attributed to reduced activity of DAF-16/FOXO during development.

      Moreover, ketogenic diets (KGDs), known for their effectiveness in disorders associated with E/I imbalances such as epilepsy and ASD, are found to induce DAF-16/FOXO during early development. Supplementation with β-hydroxybutyrate in the nematode at early developmental stages proves to be both necessary and sufficient to correct the effects on GABAergic signaling in daf-18/PTEN mutants.

      Strengths:

      The authors combined pharmacological, behavioral, and optogenetic experiments to show the

      GABAergic signaling impairment at the C. elegans neuromuscular junction in DAF-18/PTEN and DAF-

      16/FOXO mutants. Moreover, by studying the neuron morphology, they point towards

      neurodevelopmental defects in the GABAergic motoneurons involved in locomotion. Using the same set of experiments, they demonstrate that a ketogenic diet can rescue the inhibitory defect in the daf18/PTEN mutant at an early stage.

      Weaknesses:

      The morphological experiments hint towards a pre-synaptic defect to explain the GABAergic signaling impairment, but it would have also been interesting to check the post-synaptic part of the inhibitory neuromuscular junctions such as the GABA receptor clusters to assess if the impairment is only presynaptic or both post and presynaptic.

      Moreover, all observations done at the L4 stage and /or adult stage don't discriminate between the different GABAergic neurons of the ventral nerve cord, ie the DDs which are born embryonically and undergo remodeling at the late L1 stage, and VDs which are born post-embryonically at the end of the L1 stage. Those additional elements would provide information on the mechanism of action of the FOXO pathway and the ketone bodies.

      Thank you for your insightful suggestions. 

      This is an initial study that serves as a cornerstone, demonstrating the sensitivity of GABAergic neuron development to alterations in the PI3K pathway and how these alterations can be mitigated by a dietary intervention with a ketone body. While we have determined that the transcription factor DAF-16/FOXO is essential in the neurodevelopmental process and is the target of ketone bodies to alleviate defects, there are still underlying mechanisms to be elucidated. This is only the first step that opens many avenues for further investigation, including the study of post-synaptic partners.

      While our current study primarily focuses on neuronal alterations without delving into potential postsynaptic effects, we do plan to investigate this aspect in future research. This includes examining GABAergic receptors as well as cholinergic receptors, as exacerbation of cholinergic signaling cannot be ruled out. To conduct a comprehensive study of post-synaptic structure and functionality, we would need strains with fluorescent markers for both pre- and post-synaptic components (such as rab-3, unc-49, unc29, acr-16 fusion to GFP or mCherry). Unfortunately, most of these strains are not currently available in our laboratory. Unlike the US or Europe, acquiring these strains from the C. elegans CGC repository in Argentina is challenging due to common customs delays, which require significant time and resources to navigate. Discussions at the Latin American C. elegans conference with CGC administrators, such as Ann Rougvie, have been initiated to address this issue, but a solution has not been reached yet.  Additionally, to analyze post-synaptic functionality in-depth, studying the response to perfusion with various agonists using electrophysiology would be beneficial. We are in the process of acquiring the capability to conduct electrophysiology experiments in our laboratory, but progress is slow due to limited funding.

      While we believe these experiments are very informative, they will require a considerable amount of time due to our current circumstances. We consider them non-essential to the primary message of the paper, which focuses on neuronal developmental defects leading to functional alterations in daf-18/PTEN mutants and the novel finding that these can be mitigated by supplementing food with hydroxybutyrate. We will study the structure and functionality of the post-synapse in our future projects and also plan to extend this investigation to mutants with deficiencies in genes closely related to neurodevelopmental defects, such as neuroligin, neurexin, or shank-3, which have been implicated in synaptic architecture.

      We also agree that discriminating between DD and VD neurons provides significant insights into the neurodevelopmental phenomena dependent on the FOXO pathway and the action of βHB. In this revised version, we present evidence that not only DD neurons are affected but also VD neurons (see

      Supplementary Figure 3, revised version). This allows us to suggest that daf-18 affects the development of GABAergic neurons regardless of whether they are born embryonically (DDs) or post-embryonically (VDs) (see also our response to the previous reviewer). We hope to distinguish the defects observed in each type of neuron in future studies. For this, we would need to use strains specifically marked in one neuronal type or another, which, for the same reasons mentioned earlier, would take a considerable amount of time under current conditions. 

      Conclusion:

      Giunti et al provide fundamental insights into the connection between PTEN mutations and neurodevelopmental defects through DAF-16/FOXO and shed light on the mechanisms through which ketogenic diets positively impact neuronal disorders characterized by E/I imbalances.  

      Reviewer #3 (Public Review):

      Summary:

      This is a conceptually appealing study by Giunti et al in which the authors identify a role for PTEN/daf-18 and daf-16/FOXO in the development of inhibitory GABA neurons, and then demonstrate that a diet rich in ketone body β-hydroxybutyrate partially suppresses the PTEN mutant phenotypes. The authors use three assays to assess their phenotypes: (1) pharmacological assays (with levamisole and aldicarb); (2) locomotory assays and (3) cell morphological assays. These assays are carefully performed and the article is clearly written. While neurodevelopmental phenotypes had been previously demonstrated for PTEN/daf-18 and daf-16/FOXO (in other neurons), and while KB β-hydroxybutyrate had been previously shown to increase daf-16/FOXO activity (in the context of aging), this study is significant because it demonstrates the importance of KB β-hydroxybutyrate and DAF-16 in the context of neurodevelopment. Conceptually, and to my knowledge, this is the first evidence I have seen of a rescue of a developmental defect with dietary metabolic intervention, linking, in an elegant way, the underpinning genetic mechanisms with novel metabolic pathways that could be used to circumvent the defects.

      Strengths:

      What their data clearly demonstrate, is conceptually appealing, and in my opinion, the biggest contribution of the study is the ability of reverting a neurodevelopmental defect with a dietary intervention that acts upstream or in parallel to DAF-16/FOXO.

      Weaknesses:

      The model shows AKT-1 as an inhibitor of DAF-16, yet their studies show no differences from wildtype in akt-1 and akt-2 mutants. AKT is not a major protein studied in this paper, and it can be removed from the model to avoid confusion, or the result can be discussed in the context of the model to clarify interpretation.

      Thank you very much for the suggestion. We agree with the reviewer's appreciation that the study of AKT's action itself is too limited in this study to draw conclusions that would allow its inclusion in the proposed model. Therefore, following the reviewer's suggestion, we have removed this protein from our model

      When testing additional genes in the DAF-18/FOXO pathway, there were no significant differences from wild-type in most cases. This should be discussed. Could there be an alternate pathway via DAF-18/DAF16, excluding the PI3K pathway or are there variations in activity of PI3K genes during a ketogenic diet that are hard to detect with current assays?

      Thank you for bringing up this point. Our pharmacological experiments indeed demonstrate that all mutants associated with an exacerbation of the PI3K pathway, which typically inhibits nuclear translocation and activity of the transcription factor DAF-16, lead to imbalances in E/I

      (excitation/inhibition) that manifest as hypersensitivity to cholinergic drugs. This includes the gain of function of pdk-1 and the loss of function of daf-18 and daf-16 itself. In our subsequent experiments, we demonstrate that this exacerbation of the PI3K pathway leads to errors in the neurodevelopment of GABAergic neurons, which explains the hypersensitivity to aldicarb and levamisole.

      As the reviewer remarks, it is intriguing why mutants inhibiting this pathway do not show differences in their sensitivity to cholinergic drugs compared to wild-type animals. We can speculate, for instance, that during neurodevelopment, there is a critical period where the PI3K pathway must remain with very low activity (or even deactivated) for proper development of GABAergic neurons. This could explain why there are no differences in sensitivity to cholinergic drugs between mutants that inhibit the PI3K pathway and the wild type. The PI3K pathway depends on insulin-like signals, which are in turn positively modulated by molecules associated with the presence of food. Interestingly, larval stage 1 is particularly sensitive to nutritional status, being able to completely arrest development in the absence of food. Therefore, dietary intervention with BHB may generate a signal of dietary restriction (as seen in mammals) and, as a consequence of this dietary restriction, the PI3K pathway is inhibited, resulting in increased DAF-16 activity. This could restore the proper neurodevelopment of GABAergic neurons. However, this is mere speculation, and further deeper experiments (than the pharmacology ones we performed here) with mutants in different genes within the PI3K pathway may shed light on this point.

      Following the reviewer's suggestion, this point has been discussed in the revised version of the manuscript. (Discussion Page 18, Lines 384-407).

      The consequence of SOD-3 expression in the broader context of GABA neurons was not discussed. SOD3 was also measured in the pharynx but measuring it in neurons would bolster the claims.

      SOD-3 is a known target of DAF-16. Previous studies have shown that βHB induces SOD-3 expression through the induction of DAF-16 (Edwards et al, 2014, Aging,

      https://doi.org/10.18632%2Faging.100683). The highest levels of SOD-3 expression are typically observed in the pharynx or intestine (DeRosa et al, 2019 https://doi.org/10.1038/s41586-019-1524-5;  Zheng et al., 2021, PNAS, https://doi.org/10.1073/pnas.2021063118), and it is often used as a measure of general upregulation of DAF-16. Therefore, we used this parameter as a measure of βHB upregulating systemic DAF-16 activity.  While we agree with the reviewer that observing variations in SOD-3 expression in neurons would further support our conclusions, unfortunately, we did not detect measurable signals of SOD-3 in motor neurons in either the control condition or the daf-18 background even upon stress or BHB-exposure. This may be because SOD-3 is a minor target of DAF-16 in these neurons, or its modulation may not correspond to the timing of fluorescence measurements (L4-adults).

      Despite this, our genetic experiments and neuron-specific rescue experiments lead us to conclude that DAF-16 must act autonomously in GABAergic neurons to ensure proper neurodevelopment.

      If they want to include AKT-1, seeing its effect on SOD-3 expression could be meaningful to the model.

      Thank you for this suggestion. We believe that even measuring SOD-3 levels in akt mutant backgrounds would still provide limited information to give it a predominant value in our work. Additionally, to have a complete understanding of the total role of AKT, it would be necessary to measure it in a double mutant background of akt-1; akt-2, and these double mutants generate 100 % dauers even at 15C (Oh et al., PNAS 2005, https://doi.org/10.1073/pnas.0500749102; Quevedo et al., Current Biology 2007, http://dx.doi.org/10.1016/j.cub.2006.12.038; Gatzi et al., PLOS ONE 2014,

      https://doi.org/10.1371/journal.pone.0107671), greatly complicating the execution of these experiments. Therefore, following the first advice of this reviewer, we have decided to modify our model by excluding AKT.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      ⁃ Please include earlier in the main text the rationale for using unc-25 as a control/reference already when mentioning Figure 1A.

      Thank you for pointing out the need to reference this control earlier. We have included the following paragraph in the description of Figure 1 (Page 5, line 71, revised version):

      “Hypersensitivity to cholinergic drugs is typical of animals with an increased E/I ratio in the neuromuscular system, such as mutants in unc-25 (the C. elegans orthologue for glutamic acid decarboxylase, an essential enzyme for synthesizing GABA). While daf-18/PTEN mutants become paralyzed earlier than wild-type animals, their hypersensitivity to cholinergic drugs is not as severe as that observed in animals completely deficient in GABA synthesis, such unc-25 null mutants (Figures 1B and 1C) indicating a less pronounced imbalance between excitatory and inhibitory signals.”

      ⁃ Please discuss the greater sensitivity of pdk-1(gf) animals to levamisole than to aldicarb.

      Thank you for bringing up this subtle point.  We understand that the reviewer is referring to the paralysis curve in response to aldicarb in pdk-1(gf), which is closer to unc-25 than the curve for levamisole (in both cases, they are more sensitive than the wild type). Therefore, pdk-1(gf) animals seem to be more sensitive to aldicarb than to levamisole. These results are now shown in Figure 1D (revised version).

      The PI3K pathway does not only act in neurons but also in muscles. Gain of function in pdk-1 has been shown to modulate muscle protein degradation (Szewczyk et al, EMBO Journal, 2008. https://doi.org/10.1038/sj.emboj.7601540). In contrast,  no effect on protein degradation has been reported for null mutants in this gene. Several studies have demonstrated that protein degradation levels can differentially affect receptor subunits, particularly acetylcholine receptors (Reviewed in Crespi et al, Br J Pharmacol, 2018). C. elegans is characterized by a wide repertoire of AChR subunits, and there are at least two subtypes of ACh receptors in muscles (one multimeric sensitive to levamisole and one homomeric (ACR-16) insensitive to levamisole) (Richmond et al, 1999 Nature Neuroscience http://dx.doi.org/10.1038/12160; Touroutine D, JBC 2005 https://doi.org/10.1074/jbc.M502818200).

      Interestingly, acr-16 null mutants are hypersensitive to aldicarb (Zeng et al, JCB, 2023, https://doi.org/10.1083/jcb.202301117) while the electrophysiological response to levamisole in this mutant remains similar to that of wild-type (Tourorutine et al, 2005). Therefore, it may be that the gain of function in pdk-1 induces a change in the expression of AChR subtypes in muscle that differentially affect sensitivity to levamisole and ACh. This is purely speculative, and there may be many other explanations. While it would be interesting to explore this difference further, it goes far beyond the scope of this study. The cholinergic drug sensitivity assay is purely exploratory and allowed us to delve into the GABAergic and cholinergic signals in daf-18 mutants. In this sense, the hypersensitivity of pdk-1(gf) to both drugs supports the idea that an increase in PI3K signaling leads to an increased E/I ratio.

      ⁃ Please explain the rationale to perform akt-1 and akt-2 assays separated. Why not test doublemutants? Has their lack of redundancy been determined?.  

      Our pharmacological assays are conducted at the L4 larval stage, making it impossible to analyze the potential redundancy of akt-1 and akt-2 in sensitivity to levamisole and aldicarb. This impossibility arises because the akt-1;akt-2 double mutant exhibits nearly 100% arrest as dauer even at 15°C, as reported in several prior studies (Oh et al., PNAS 2005, https://doi.org/10.1073/pnas.0500749102; Quevedo et al., Current Biology 2007, http://dx.doi.org/10.1016/j.cub.2006.12.038; Gatzi et al., PLOS ONE 2014, https://doi.org/10.1371/journal.pone.0107671). While the increased dauer arrest in the double mutant compared to the single mutants might suggest redundant functions in dauer entry, there are also reports indicating the absence of redundancy in other processes, such as vulval development (Nakdimon et al., PLOS Genetics 2012, https://doi.org/10.1371%2Fjournal.pgen.1002881).

      The complete Dauer arrest likely underlies why other studies focusing on the role of the PI3K pathway in neurodevelopment utilize both mutants separately (Christensen et al, Development 2011,

      https://doi.org/10.1242/dev.069062). While determining the potential redundancy of these genes is not feasible for this assay, we utilized various mutants of the pathway (age-1, pdk-1, daf-18, daf-16 and daf16;daf-18 in addition to the akt-s) that support the conclusion, which is that exacerbating the PI3K pathway activity makes animals hypersensitive to cholinergic drugs.

      In response to the reviewer's concern, we have added a sentence in the text explaining the impossibility of performing the assay in the akt-1;akt-2 double mutant (Page 6, lines90-92) 

      Figure 1C and D (This applies to all similarly presented bar figures). Please show data points and dispersion (preferably data, median+- 25-75% or average+-SD). 

      Thank you. Done

      ⁃ Line 112 -maybe "and resumes"? 

      Thank you. Done (Line 126, revised version)

      ⁃ Figure 1E and F. Please present mean +-SD (not SEM) of fluctuations. Please change slightly the tones so that the dispersion is easier to distinguish on the "blue light on" box.

      Thank you for the suggestion. We have adjusted the tones as recommended to enhance the visualization of the "blue light on" box. For visualization purposes, we present the shading of the standard error of the mean (SEM), as is usual in these types of optogenetic experiments where traces of animal length variations are measured (Liewald et al, Nature Methods, 2008, doi: 10.1038/nmeth.1252; Schulstheis et al, J. Neurophysiology, 2011, doi: 10.1152/jn.00578.2010; Koopman et al, BMC Biology 2021, https://doi.org/10.1186/s12915-021-01085-2; Seidhenthal et al, Micro Publication Biology, 2022, https://doi.org/10.17912%2Fmicropub.biology.000607 ).

      For the revised version, we have also included bar graphs for each optogenetic experiment, representing the mean of the length average of each worm measured from the first second after the blue light was turned on until the second before the light was turned off (in the graph, this corresponds to the period between seconds 6 and 9 of the traces). These graphs include the standard deviation and the corresponding significance levels. All of this has been included in the new legend (Figure 2D, 2E, 4E-J).

      ⁃ Figure 1A&1B & Supplementary Figure 1D x Supplementary Figure 1E&1F. What is the difference between these experiments? Whereas the unc-25 mutants paralyze in the same amount of time, the WT animals paralyze ~1 h later in Supplementary Figure 1E-1F in response to either drug. Please revise experimental conditions to see if anything can be learned eg, maybe this is a nutritional response from experiments done at different timepoints? Maybe different food recipes affected sensitivity to paralysis?

      Thank you for pointing this out. While the experiments with daf-18 (in both alleles) and daf-16 were conducted at the beginning of this project (2019-2020), the assays with the other mutants in the PI3K and mTOR pathways were performed years later. Changes in the reagents used (agar, peptone, cholesterol, etc.) to grow the worms have occurred, potentially altering the animals' response directly or through the nutritional quality of the bacteria they grow on. In addition, the difference may be attributed to the fact that experiments at the project's outset were conducted by one author, while more recent experiments were carried out by another. The goal is to quantify paralysis in non-responsive worms after touch stimulation. The force of this probing or the thickness of the hair used for touching can be slightly operator-dependent and can lead to variable responses. In addition, always the presence of wild-type and unc-25 strain is included as internal control in every experiment. Nevertheless, despite this userdependent variation, the experiments were always conducted blindly (except for unc-25, whose uncoordinated phenotype is easily identifiable), thus we trust in the outcomes.

      ⁃ Supplementary Figure 1G - Length and Width appear to be switched in both left and right panels - please revise and include a description of N and of statistics depicted. 

      Unfortunately, we don't see the switching error that the reviewer mentioned. In the left panel, we demonstrate that optogenetic activation of GABAergic neurons leads to an increase in length without modifying the width of the animal. Therefore, we conclude that the increase in area, as observed in our Fiji macro for optogenetic response analysis, is due to an increase in the animal's length. In the cholinergic activation shown in the right panel, the animal shortens (decreasing length) without modifying the width, resulting in the reduction of the total body area. 

      We have included information about N (sample size) and the statistical test used in the legends as suggested. These graphs are now shown as Figures 2F and G, revised version.

      ⁃ Supplementary Figure 1G legend lines 779-780. Please describe the post-hoc test applied following ANOVA to obtain the denoted p values. This applies to all datasets where ANOVA or Krusal-Wallis tests were applied.

      Following reviewer´s suggestion, all the post-hoc tests applied after ANOVA or Kruskal-Wallis analysis were included in the legend of each figure and Materials and Methods (statistical analysis section).

      ⁃ Line 174 maybe "arises *from* the hyperactivation" instead of *for*?.

      Corrected. Thank you. Line 190, revised version.

      ⁃ Supplementary Figure 4. On line 816 it says n=40-90, but please check the n of the daf-18, daf-16 samples, which seem to have less than 40 animals.

      We understand that the reviewer is referring to Supplementary Figure 3 from the original version (now Supplementary Figure 5 in the revised version). We have now included the number of observations below each data point cloud to clearly indicate the sample size for each condition

      ⁃ Supplementary Figure 4 - please state what are the bars on the graphs. Please state which post-hoc test was performed after Kruskal-Wallis and present at least the p values obtained between treated controls and each genotype. Alternatively, present the whole truth table in supplementary daita.

      We understand that the reviewer is referring to Supplementary Figure 3 from the original version (now Supplementary Figure 5 in the revised version). There was an error in the original legend (thank you for bringing this to our attention) since the statistics were not performed using Kruskall-Wallis in this case, but rather each treated condition was compared to its own untreated control using Mann-Whitney test. We have now added the p-values to the graph. All raw data for this figure, as well as for all other figures, are available in Open Science Framework (https://osf.io/mdpgc/?view_only=3edb6edf2298421e94982268d9802050).

      ⁃ Please cite the figure panels in order: eg, Figure 3E is mentioned in the text after panels Figure 3F-K.

      Done. We have rearranged the figures to adapt them to the text order (Figure 4, revised version)

      ⁃ Figure 4 - line 610 please revise "(n=20-30 (n: 20-25 animals per genotype/trial)."

      Thank you. Corrected.

      ⁃ Figure 4 - there appears to be an inconsistency in the figure with the text (lines 223-225). In figures it says E-L1, but in the text, it says "solely in L1". Does E-L1 include the whole L1 stage? If not- E-L1 can be interpreted only as during the embryonic stage, hence, no exposure to betaHB due to the impermeable chitin eggshell. Then there is L1-L2, which should cover the L1 stage and the L2 or something else. Please revise. The text mentions L2-L3 or L3-L4 and these categories are not in the figures. This clarification is key for the interpretation of the results. The precise developmental time of the exposures is not defined either in the methods or in the figures. Please provide precise times relative to hours and/or molts and revise the text/figure for consistency.

      The reviewer is entirely correct in pointing out the lack of relevant data regarding the exposure time to βHB. We have now clarified the information For the revised version, we have adjusted the nomenclature of each exposure period to precisely reflect the developmental stages involved.

      For the experiments involving continuous exposure to βHB throughout development, the NGM plate contained the ketone body. Therefore, the exposure encompassed, in principle, the ex-utero embryonic development period up to L4-Young adults (E-L4/YA, in Figure 5A) when the experiments were conducted. Since it could be a restriction to drug penetration through the chitin shell of the eggs (see Supplementary Figure 7), we can ensure βHB exposure from hatching.

      In experiments involving exposure at different developmental stages as those depicted in Figure 4 of the original version, (now Figure 5), animals were transferred between plates with and without βHB as required. We exposed daf-18/PTEN mutant animals to βHB-supplemented diets for 18-hour periods at different developmental stages (Figure 5A). The earliest exposure occurred during the 18 hours following egg laying, covering ex-utero embryonic development and the first 8-9 hours of the L1 stage (This period is called E-L1, in figure 5 revised version). The second exposure period encompassed the latter part of the L1 stage, the entire L2 stage, and most of the L3 stage (L1-L3). The third exposure spanned the latter part of the L3 stage (~1-2 hours), the entire L4 stage, and the first 6-7 hours of the adult stage (L3-YA).

      All this information has been conveniently included in Figure 5 (and its legend), text (Page 13, lines 259276), and Material and Methods of the revised manuscript.

      ⁃ Some methods are not sufficiently well described. Specifically, how the animals were exposed to treatments and how stages were obtained for each experiment. Was synchronization involved? If so, in which experiments and how exactly was it performed?

      As mentioned in previous responses all the experiments were performed in age-synchronized animals. We include the following sentence in Materials and Methods (C. elegans culture and maintenance section): “All experiments were conducted on age-synchronized animals. This was achieved by placing gravid worms on NGM plates and removing them after two hours. The assays were performed on the animals hatched from the eggs laid in these two hours”.

      Reviewer #2 (Recommendations For The Authors):

      Major points

      (1) To complete the study on the GABAergic signaling at the NMJs, it would be interesting to assess the status of the post-synaptic part of the synapse such as the GABAR clustering. It would also tell if the impairment is only presynaptic or both post and presynaptic.

      Thank you for your insightful suggestion. We agree that exploring post-synaptic elements can shed light on whether the impairment is solely presynaptic or involves both pre and post-synaptic components.

      While our current study primarily focuses on neuronal alterations without delving into potential postsynaptic effects, we do plan to investigate this aspect in the future. This includes not only examining GABAergic receptors but also exploring cholinergic receptors, as exacerbation of cholinergic signaling cannot be ruled out. To conduct a comprehensive study of post-synaptic structure and functionality, we would need strains with fluorescent markers for both pre and post-synaptic components (rab-3, unc-49, unc-29, acr-16 driving GFP or mCherry). However, most of these strains are not currently available in our laboratory. Unlike the US or Europe, acquiring these strains from the C. elegans CGC repository in Argentina is challenging due to common customs delays, requiring significant time and resources to navigate. Discussions at the Latin American C. elegans conference with CGC administrators, such as Ann Rougvie, have been initiated to address this issue, but a solution has not been reached yet. 

      Additionally, to analyze post-synaptic functionality in-depth, studying the response to perfusion with various agonists using electrophysiology would be beneficial. We are in the process of acquiring the capability to conduct electrophysiology experiments in our laboratory, but progress is slow due to limited funding.

      While we believe these experiments are very informative, they will require a considerable amount of time due to our current circumstances. We consider them non-essential to the primary message of the paper, which focuses on neuronal morphological defects leading to functional alterations in daf-18/PTEN mutants.

      We will include these experiments in our future projects, also planning to extend this investigation to mutants with deficiencies in genes closely related to neurodevelopmental defects, such as neuroligin, neurexin, or shank-3, which have been implicated in synaptic architecture.

      (2) The author always referred to unc-47 promoter or unc-17 promoter, never specifying where those promoters are driving the expression (and in the Materials & Methods, no information on the corresponding sequence). Depending on the promoters they may not only be expressed in the motoneurons involved in locomotion (VA, VB, DA, DB, VD, and DD), but they could also be expressed in other neurons which could be of importance for the conclusions of the optogenetic assays but also the daf-18 expression in GABAergic neurons.

      We appreciate the reviewer's insight regarding the broader expression patterns of the unc-17 and unc-47 promoters in all cholinergic and GABAergic neurons, respectively. The strains expressing constructs with these promoters were obtained from the CGC or other labs and have been widely used in previous papers (Liewald et al, Nature Methods, https://www.nature.com/articles/nmeth.1252 (2008); Byrne, A. B. et al. Neuron 81, 561-573, doi:10.1016/j.neuron.2013.11.019 (2014).

      Regarding the optogenetic assays, the readout utilized (body length elongation or contraction) is primarily associated with the activity of cholinergic and GABAergic motor neurons and has been used in numerous studies to measure motor neuron functionality (Liewald et al, Nature Methods, https://www.nature.com/articles/nmeth.1252 (2008);Hwang, H. et al. Sci Rep 6, 19900, doi:10.1038/srep19900 (2016); Schultheis et al,  . J Neurophysiol 106, 817-827, doi:10.1152/jn.00578.2010 (2011); Koopman, M., Janssen, L. & Nollen, E. A. BMC Biol 19, 170, doi:10.1186/s12915-021-01085-2 (2021);). It has previously been established that the shortening observed after optogenetic activation of the unc-17 promoter, while active in various interneurons, depends on the activity of cholinergic motor neurons (Liewald et al., Nature Methods, https://www.nature.com/articles/nmeth.1252 (2008)). This was demonstrated by examining transgenic worms expressing ChR2-YFP from another cholinergic, motoneuronspecific but weaker promoter, Punc-4. They observed contraction and coiling upon illumination, albeit to a milder degree.

      In terms of GABAergic neurons, only 3 do not directly synapse to body wall muscles (AVL, PDV, and RIS) and are primarily involved in defecation. Of the 23 GABAergic motor neurons, 19 are Dtype motoneurons, while the remaining 4 innervate head muscles (Pereira et al, eLife 2015, https://doi.org/10.7554/eLife.12432). It is therefore expected that while there may be some contribution from these latter neurons to the elongation after optogenetic activation in animals containing punc-47::ChR2, the main contribution should be from the D-type neurons. Additionally, while there may be some influence on D-type neuron development due to daf-18 rescue in neurons like RME, DVB or AVL, the most direct explanation for the rescue is that daf-18 acts autonomously in D-type cells.  Additionally, we have pharmacological and behavioral assays that support the findings of optogenetics and enable us to reach final conclusions.

      (3) DD neurons are born during embryogenesis and newborn L1s have neurites even though less than at a later stage. If possible, it would be interesting to take a look at them to see if βHB has an effect or not. It will corroborate the hypothesis that βHB action is prevented by the impermeable eggshell on a system that can respond at a later stage. Moreover, using a specific DD, DA, and DB promoter, it would be possible to check if there is a difference in the morphological defects between embryonic and post-embryonic neurons.

      This is a very interesting point raised by the reviewer. We conducted experiments to analyze the morphology of GABAergic neurons in animals exposed to βHB only during the ex-utero embryonic development (in their laid egg state). We observed that this incubation was not sufficient to rescue the defects in GABAergic neurons (Supplementary Figure 7, revised version). As reported by other authors and discussed in our paper, the chitinous eggshell might act as an impermeable barrier to most drugs. However, we cannot rule out that incubation during this period is necessary but not sufficient to mitigate the defects. We have included these experiments in Supplementary Figure 7 and in the text (Page 13, lines 272-276)

      Additionally, we analyzed confocal images where, based on their position, we could identify and assess errors in DD (embryonic) and VD (Post-embryonic) neurons (Supplementary Figure 3, revised version). These experiments show that the effects are observed in both types of neurons, and we did not observe any differential alterations in neuronal morphology between the two types of neurons.

      Minor points

      (1)   Expression of daf-18/PTEN in muscle or hypodermis, could it ensure a proper development? It could give insights into the action mechanism of βHB.

      The reviewer's observation is indeed very intriguing. Previous studies from the Grishok lab (Kennedy et al, 2013) have demonstrated that the expression of daf-18 or daf-16 in extraneuronal tissues, specifically in the hypodermis, can rescue migratory defects in the serotoninergic neuron HSN in daf-18 or daf-16 null mutants of C. elegans. Clearly, this could also be an option for rescuing the morphological and functional defects of GABAergic motoneurons.

      However, the fact that the expression of daf-18 in GABAergic neurons rescues these defects strongly suggests an autonomous effect. In this regard, autonomous effects of DAF-18 or DAF-16 on neurodevelopmental defects have also been reported in interneurons in C. elegans (Christensen et al, 2011). This is included in the discussion (Page 15, lines 330-335)

      (2) Re-organise the introduction. The paragraph on ketogenic diets (lines 35-38) is not logically linked.

      Following reviewer´s suggestion we have reorganized the introduction and changed the order of explanation regarding the significance of ketogenic diets, linking it with their proven effectiveness in alleviating symptoms of diseases with E/I imbalance (Lines 23-60, revised version)

      (3) Incorporate titles in the result section to guide the reader.

      Done. Thank you

      (4) Systematically add PTEN or FOXO when daf-18 or daf-16 are mentioned (for example lines 69, 84, 85).

      Done. Thank you  

      (5) Strain lists: lines 646 to 653: some information is missing on the different transgenes used in this study (integrated (Is) or extrachromosomal (Ex) with their numbers).

      Thank you for bringing this to our attention. We have now included all the information regarding the different transgenes used in this study, including whether they are integrated (Is) or extrachromosomal (Ex) and their respective numbers. This information can be found in the revised version of the manuscript (Materials and Methods, C. elegans culture and maintenance section highlighted in yellow).

      Reviewer #3 (Recommendations For The Authors):

      In Figure 1, some experiments were done with the unc-25 control while others, such as the optogenetic experiments, were done without those controls.

      Thank you for pointing this out. In the optogenetic experiments, we waited for the worm to move forward for 5 seconds at a sustained speed before exposing it to blue light to standardize the experiment, as the response can vary if the animal is in reverse, going forward, or stationary. Due to the severity of the uncoordinated movement in unc-25 mutants, achieving this forward movement before exposure is very difficult. Additionally, this lack of coordination prevents these animals from performing the escape response tests, as they barely move. Therefore, we limited the use of this severe GABAergic-deficient control to pharmacological or post-prodding shortening experiments.

  8. inst-fs-pdx-prod.inscloudgate.net inst-fs-pdx-prod.inscloudgate.net
    1. Women in many cultures were regarded as impure or pollut- ing during their menstrual periods and during or after childbirth,

      I feel like it should be the opposite. Women should be pure when their bodies are preparing for childbearing or during birth. In my head during those times your body is cleaning itself from all impurities in order to create a pure child.

    2. Christine is obey her husband, or put a body part such as a hand, foot, or head, under often termed the “first feminist,”

      I've seen multiple accomplished femminists termed as the "first femminist" and I wonder if there will ever be a consensus in history for who this is. I wonder if feminism as a practice is too abstract to track down the "first one"

    1. And having answered so I turn once more to those who sneer at this my city, and I give them back the sneer and say to them: Come and show me another city with lifted head singing so proud to be alive and coarse and strong and cunning.

      The author does acknowledge the evils which take place,however he points out the good things about the city.

    1. Welcome back, and this time we're going to cover a few performance optimization aspects of S3.

      If you recall from earlier in the course, this is the Animals For Life scenario.

      We have a head office in Brisbane, remote offices which consume services from the Brisbane office, and remote workers using potentially slower or less reliable services to access and upload data to and from the head office.

      So keep the scenario in mind as we step through some of the features that S3 offers to improve performance.

      It's not always about performance.

      It's often about performance and reliability combined.

      And this is especially relevant when we're talking about a distributed organization such as Animals For Life.

      So let's go ahead and review the features that S3 offers, which help us in this regard.

      Now, understanding the performance characteristics of S3 is essential as a solutions architect.

      We know from the Animals For Life scenario that remote workers need to upload large data sets and do so frequently.

      And we know that they're often on unreliable internet connections.

      Now, this is a concern because of the default way that S3 uploads occur.

      By default, when you upload an object to S3, it's uploaded as a single blob of data in a single stream.

      A file becomes an object, and it's uploaded using the put object API call and placed in a bucket.

      And this all happens as a single stream.

      Now, this method has its problems.

      While it is simple, it means that if a stream fails, the whole upload fails, and the only recovery from it is a full restart of the entire upload.

      If the upload fails at 4.5 GB of a 5 GB upload, that's 4.5 GB of data wasted and probably a significant amount of time.

      Remember, the data sets are being uploaded by remote workers over slow and potentially unreliable internet links.

      And this data is critical to the running of the organization.

      Any delay can be costly and potentially risky to animal welfare.

      When using this single put method, the speed and reliability of the upload will always be limited because of this single stream of data.

      If you've ever downloaded anything online, it's often already using multiple streams behind the scenes.

      There are many network-related reasons why even on a fast connection, one stream of data might not be optimal, especially if the transfer is occurring over long distances.

      In this type of situation, single stream transfers can often provide much slower speeds than both ends of that transfer are capable of.

      If I transfer you data with a single stream, it will often run much slower than my connection can do and your connection can do.

      Remember, when transferring data between two points, you're only ever going to experience the speed, which is the lowest of those two points, but often using single stream transfer, you don't even achieve that.

      Data transfer protocols such as BitTorrent have been developed in part to allow speedy distributed transfer of data.

      And these have been designed to address this very concern.

      Using data transfer with only a single stream is just a bad idea.

      Now, there is a limit within AWS if you utilize a single put upload, then you're limited to 5 GB of data as a maximum.

      But I would never trust a single put upload with anywhere near that amount of data.

      It's simply unreliable.

      But there is a solution to this.

      And that solution is multi-part upload.

      Multi-part upload improves the speed and reliability of uploads to S3.

      And it does this by breaking data up into individual parts.

      So we start with the original blob of data that we want to upload to S3, and we break this blob up into individual parts.

      Now, there is a minimum.

      The minimum size for using multi-part upload is 100 MB.

      So the minimum size for this original blob of data is 100 megabytes.

      You can't use multi-part upload if you're uploading data smaller than this.

      Now, my recommendation is that you start using this feature the second that you can.

      The most AWS tooling will automatically use it as soon as it becomes available, which is at this 100 MB lower threshold.

      There are almost no situations where a single put upload is worth it when you get above 100 MB.

      The benefits of multi-part upload are just too extensive and valuable.

      Now, an upload can be split into a maximum of 10,000 parts.

      And each part can range in size between 5 MB and 5 GB.

      The last part is left over, so it can be smaller than 5 MB if needed.

      Now, the reason why multi-part upload is so effective is that each individual part is treated as its own isolated upload.

      So each individual part can fail in isolation and be restarted in isolation, rather than needing to restart the whole thing.

      So this means that the risk of uploading large amounts of data to S3 is significantly reduced.

      But not only that, it means that because we're uploading lots of different individual bits of data, it improves the transfer rate.

      The transfer rate of the whole upload is the sum of all of the individual parts.

      So you get much better transfer rates by splitting this original blob of data into smaller individual parts and then uploading them in parallel.

      It means that if you do have any single stream limitations on your ISP or any network inefficiencies by uploading multiple different streams of data, then you more effectively use the internet bandwidth between you and the S3 endpoint.

      Now, next, I want to talk about a feature of S3 called Accelerated Transfer.

      To understand Accelerated Transfer, it's first required to understand how global transfer works to S3 buckets.

      Let's use an example.

      Let's say that the Animals for Life Organization has a European campaign which is running from the London office.

      For this campaign, there'll be data from staff in the field.

      And let's say that we have three teams dedicated to this campaign, one in Australia, one in South America, and one on the West Coast of the US.

      Now, the S3 bucket, which is being used by the campaign staff, has been created in the London region.

      So this is how this architecture locks.

      We've got three geographically spread teams who are going to be uploading data to an S3 bucket that's located within the UK.

      Now, it might feel like when you upload data to S3, your data would go in a relatively straight line, the most efficient line to its destination.

      Now, this is not how networking works.

      How networking works is that it is possible for the data to take a relatively indirect path.

      And the data can often slow down as it moves from hop to hop on the way to its destination.

      In some cases, the data might not be routed the way you expect.

      I've had data, for instance, routed from Australia to the UK, but taking the alternative path around the world.

      It's often not as efficient as you expect.

      Remember, S3 is a public service, and it's also regional.

      In the case of the Australian team, their data would have to transit across the public internet all the way from Australia to the UK before it enters the AWS public zone to communicate with S3.

      And we have no control over the public internet data path.

      Routers and ISPs are picking this path based on what they think is best and potentially commercially viable.

      And that doesn't always align with what offers the best performance.

      So using the public internet for data transit is never an optimal way to get data from source to destination.

      Luckily, as Solutions Architects, we have a solution to this, which is S3 transfer acceleration.

      Transfer acceleration uses the network of AWS edge locations, which are located in lots of convenient locations globally.

      An S3 bucket needs to be enabled for transfer acceleration.

      The default is that it's switched off, and there are some restrictions for enabling it.

      The bucket name cannot contain periods, and it needs to be DNS compatible in its naming.

      So keep in mind those two restrictions.

      But assuming that's the case, once enabled, data being uploaded by our field workers, instead of going back to the S3 bucket directly, it immediately enters the closest, best performing AWS edge location.

      Now this part does occur over the public internet, but geographically, it's really close, and it transits through fewer normal networks, so it performs really well.

      At this point, the edge locations transit the data being uploaded over the AWS global network, a network which is directly under the control of AWS, and this tends to be a direct link between these edge locations and other areas of the AWS global network, in this case, the S3 bucket.

      Remember, the internet is a global, multi-purpose network, so it has to have lots of connections to other networks, and many stops along the way, where traffic is routed from network to network, and this just slows performance down.

      Think of the internet as the normal public transit network, when you need to transit from bus to train to bus to bus, to get to a far-flung destination.

      The normal transit network, whilst it's not the highest performance, is incredibly flexible, because it allows you to get from almost anywhere to almost anywhere.

      The internet is very much like that.

      It's not designed primarily for speed.

      It's designed for flexibility and resilience.

      The AWS network, though, is purpose-built to link regions to other regions in the AWS network, and so this is much more like an express train, stopping at only the source and destination.

      It's much faster and with lower consistent latency.

      Now, the results of this, in this context, are more reliable and higher performing transfers between our field workers and the S3 bucket.

      The improvements can vary, but the benefits achieved by using transfer acceleration improve the larger the distance between the upload location and the location of the S3 bucket.

      So in this particular case, transferring data from Australia to a bucket located in Europe, you'll probably see some significant gains by using transfer acceleration.

      The worse the initial connection, the better the benefit by using transfer acceleration.

      Okay, so now it's time for a demonstration.

      In the next lesson, I just want to take a few moments to show you an example of how this works.

      I want to show you how to enable the feature on an S3 bucket, and then demonstrate some of the performance benefits that you can expect by using an AWS-provided tool.

      So go ahead, finish this video, and when you're ready, you can join me in the demo lesson.

    1. Discontent began a small rumble in the earthly mind. Then Doubt pushed through with its spiked head. And once Doubt ruptured the web, All manner of demon thoughts

      What I noticed from this part of poem where things inn the earth happening and wanting to be perfect usually going tbo be coming to an end.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Thank you very much for your editorial handling of our manuscript entitled 'A conserved fungal Knr4/Smi1 protein is vital for maintaining cell wall integrity and host plant pathogenesis'. We have taken on board the reviewers' comments and thank them for their diligence and time in improving our manuscript.

      Please find our responses to each of the comments below.

      Reviewer(s)' comments

      Reviewer #1


      Major comments:


      __1.1. As a more critical comment, I find the presentation of the figures somewhat confusing, especially with the mixing of main figures, supplements to the main figures, and actual supplemental data. On top of that, the figures are not called up in the right order (e.g. Figure 4 follows 2D, while 3 comes after 4; Figure 6 comes before 5...), and some are never called up (I think) (e.g. Figure 1B, Figure 2B). __


      __Response: __The figure order has been revised according to the reviewer's suggestion, while still following eLife's formatting guidelines for naming supplementals. Thank you.

      1.2. I agree that there should be more CWI-related genes in the wheat module linked to the FgKnr4 fungal module, or, vice-versa, CW-manipulating genes in the fungal module. It would at least be good if the authors could comment further on if they find such genes, and if not, how this fits their model.


      Response: Thank you for your insightful suggestion regarding the inclusion of more CWI-related genes in the wheat module linked to the FgKnr4 fungal module F16, or vice versa. We did observe a co-regulated response between the wheat module W05 which is correlated to the FgKnr4 module F16. Namely, we observed an enrichment of oxidative stress genes including respiratory burst oxidases and two catalases (lines 304 - 313) in the correlated wheat module (W05). Early expression of these oxidative stress inducing genes likely induces the CWI pathway in the fungus, which is regulated by FgKnr4. Knr4 functions as both a regulatory protein in the CWI pathway and as a scaffolding protein across multiple pathways in S. cerevisiae (Martin-Yken et al., 2016, https://onlinelibrary.wiley.com/doi/10.1111/cmi.12618 ). Scaffolding protein-encoding genes are typically expressed earlier than the genes they regulate to enable pre-assembly with their interacting partners, ensuring that signaling pathways are ready to activate when needed. In this context, the CWI integrity MAPKs Bck1 and Mkk1 are part of module F05, which includes two chitin synthases and a glucan synthase. This module is highly expressed during the late symptomless phase. The MAPK Mgv1, found in module F13, is expressed consistently throughout the infection process, which aligns with the expectation that MAPKs are mainly post-transcriptionally regulated. Thank you for bringing our attention to this, this is now included in the discussion (lines 427 - 443) along with eigengene expression plots of all modules added to the supplementary (Figure 3 - figure supplement 1).

      To explore potential shared functions of FgKnr4 with other genes in its module, we re-analyzed the high module membership genes within module F16, which includes FgKnr4, using Knetminer (Hassani-Pak et al., 2021; https://onlinelibrary.wiley.com/doi/10.1111/pbi.13583 ). This analysis revealed that 8 out of 15 of these genes are associated with cell division and ATP binding. Four of the candidate genes are also part of a predicted protein-protein interaction subnetwork of genes within module F16, which relate to cell cycle and ATP binding. In S. cerevisiae, the absence of Knr4 results in cell division dysfunction (Martin-Yken et al., 2016, https://onlinelibrary.wiley.com/doi/10.1111/cmi.12618 ). Accordingly, we tested sensitivity of ΔFgknr4 to microtubule inhibitor benomyl (a compound commonly used to identify mutants with cell division defects; Hoyt et al., 1991 https://www.cell.com/cell/pdf/0092-8674(81)90014-3.pdf). We found that the ΔFgknr4 mutant was more susceptible to benomyl, both when grown on solid agar and in liquid culture. This data has now been added Figure 7, and referred to in lines 338-348.

      __Specific issues: __


      1.3. In the case of figure 5, I generally find it hard to follow. In the text (line 262/263), the authors state that 5C shows "eye-shaped lesions" caused by ΔFgknr4 and ΔFgtri5, but I can't see neither (5C appears to be a ΔFgknr4 complementation experiment). The figure legend also states nothing in this regard.

      __Response: __Thank you for your suggestion. We have amended the manuscript to include an additional panel that shows the dissected spikelet without its outer glumes, making the eye shaped diseased regions more visible in Figure 5.

      __1.4. Figure 5D supposedly shows 'visibly reduced fungal burden' in ΔFgknr4-infected plants, but I can't really see the fungal burden in this picture, but the infected section looks a lot thinner and more damaged than the control stem, so in a way more diseased. __


      Response: __Thank you for your insight. We have revised our conclusions based on this image to state that while ΔFgknr4 can colonise host tissue, it does so less effectively compared to the wild-type strain as we are unable to quantitatively evaluate fungal burden using image-colour thresholding due to the overlapping colours of the fungal cells and wheat tissues. Decreased host colonisation is evidenced by (i) reduced fungal hyphae proliferation, particularly in the thicker adaxial cell layer, (ii) collapsed air spaces in wheat cells, and (iii) increased polymer deposition at the wheat cell walls, indicating an enhanced defence response. __Figure 5 has been amended to include these observations in the corresponding figure legend and the resin images now include insets with detailed annotation.

      __1.5. The authors then go on to state (lines 272-273) that they analyzed the amounts of DON mycotoxin in infected tissues, but don't seem to show any data for this experiment. __

      Response: __We have amended this to now include the data in __Figure 5 - figure supplement 2B, thank you.

      Reviewer #2


      __Major issues: __


      2.1 If Knf4 is involved in the CWI pathway, what other genes involved in the CWI pathway are in this fungal module? one of the reasons for developing modules or sub-networks is to assign common function and identify new genes contributing to the function. since FgKnr4 is noted to play a role in the CWI pathways, then genes in that module should have similar functions. If WGCN does not do that, what is the purpose of this exercise?


      Response: __Thank you for raising this point regarding the role of FgKnr4 in the CWI pathway and the expectations for genes of shared function within the FgKnr4 module F16. We did observe that the module containing FgKnr4 (F16) was also correlated to a wheat module (W05) which was significantly enriched for oxidative stress genes. This pathogen-host correlated pattern led us to study module F16, which otherwise lacks significant gene ontology term enrichment, unique gene set enrichments, and contains few characterised genes. This is now highlighted in __lines 233-246. This underscores the strength of the WGCNA. By using high-resolution RNA-seq data to map modules to specific infection stages, we identified an important gene that would have otherwise been overlooked. This approach contrasts with other network analyses that often rely on the guilt-by-association principle to identify novel virulence-related genes within modules containing known virulence factors, potentially overlooking significant pathways outside the scope of prior studies. Therefore, our analysis has already benefited from several advantages of WGCNA, including the identification of key genes with high module membership that may be critical for biological processes, as well as generating a high-resolution, stage-specific co-expression map of the F. graminearum infection process in wheat. This point is now emphasised in lines 233-252. As discussed in response to reviewer 1, Knr4 functions as both a regulatory protein in the CWI pathway and as a scaffolding protein across multiple pathways in S. cerevisiae (Martin-Yken et al., 2016, https://onlinelibrary.wiley.com/doi/10.1111/cmi.12618 ) which would explain its clustering separate from the CWI pathway genes. The high module membership genes within module F16 containing FgKnr4 were re-analysed using Knetminer (Hassani-Pak et al., 2021; https://onlinelibrary.wiley.com/doi/10.1111/pbi.13583 ), which found that 8/15 of these genes were related to cell division and ATP binding. Four of the candidate genes are also part of a predicted protein-protein interaction subnetwork of genes within module F16, which relate to cell cycle and ATP binding. In S. cerevisiae, the absence Knr4 leads to dysfunction in cell division. Accordingly, we tested sensitivity of ΔFgknr4 to the microtubule inhibitor benomyl (a compound commonly used to identify mutants with cell division defects; Hoyt et al., 1991 https://www.cell.com/cell/pdf/0092-8674(81)90014-3.pdf). We found that the ΔFgknr4 mutant was more susceptible to benomyl, both when grown on solid agar and in liquid culture. This data has now been added as Figure 7 and referred to in lines 338-348.


      2.2. Due to development defects in the Fgknr1 mutant, I would not equate to as virulence factor or an effector gene.


      __Response: __We are in complete agreement with the reviewer and are not suggesting that FgKnr4 is an effector or virulence factor, we have been careful with our wording to indicate that FgKnr4 is simply necessary for full virulence and its disruption results in reduced virulence and have outlined how we believe FgKnr4 participates in a fungal signaling pathway required for infection of wheat.


      2.3. What new information is provided with WGCN modules compared with other GCN network in Fusarium (examples of GCN in Fusarium is below) ____https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069591/ https://doi.org/10.1186/s12864-020-6596-y____ DOI: 10.1371/journal.pone.0013021. The GCN networks from Fusarium have already identified modules necessary/involved in pathogenesis.

      Response: __The 2016 New Phytologist gene regulatory network (GRN) by Guo et al. is large and comprehensive. However, only three of the eleven datasets are in planta, with just one dataset focusing on F. graminearum infection on wheat spikes. The other two in planta datasets involve barley infection and Fusarium crown rot. By combining numerous in planta and in vitro datasets, the previous GRNs lack the fine resolution needed to identify genetic relationships under specific conditions, such as the various stages of symptomatic and symptomless F. graminearum infection of mature flowering wheat plants. This limitation is highlighted in the 2016 paper itself. This network is expanded in the Guo et al., 2020 BMC genomics paper where it includes one additional in planta and nine in vitro datasets. However, the in planta dataset involves juvenile wheat coleoptile infection, which serves as an artificial model for wheat infection but is not on mature flowering wheat plants reminiscent of Fusarium Head Blight of cereals in the field. This model differs significantly in the mode of action of F. graminearum, notably DON mycotoxin is not essential for virulence in this context (Armer et al. 2024, https://pubmed.ncbi.nlm.nih.gov/38877764/ ). The Guo et al., 2020 paper still faces the same issues in terms of resolution and the inability to draw conclusions specific to the different stages of F. graminearum infection. Additionally, these GRNs use Affymetrix data, which miss over 400 genes (~ 3 % of the genome) from newer gene models. In contrast, our study addresses these limitations by analysing a meticulously sampled, stage- and tissue-specific in planta RNA-seq dataset using the latest reference annotation. Our approach provides higher resolution and insights into host transcriptomic responses during the infection process. The importance of our study in the context of these GRNs is now addressed in the introduction (__lines 85-92).


      2.4. Ideally, the WGCN should have been used identify plant targets of Fusarium pathogenicity genes. This would have provided credibility and usefulness of the WGCN. Many bioinformatic tools are available to identify virulence factors and the utility of WGCN in this regard is not viable. However, if the authors had overlapped the known virulence factors in a fungal module to a particular wheat module, the impact of the WGCN would be great. The module W12 has genes from numerous traits represented and WGCN could have been used to show novel links between Fg and wheat. For example, does tri5 mutant affect genes in other traits?

      __Response: __Thank you for your suggestions. In this study we have shown the association between the main fungal virulence factor of F. graminearum, DON mycotoxin, with wheat detoxification responses. Through this we have identified a set of tri5 responsive genes and validated this correlation in two genes belonging to the phenylalanine pathway and one transmembrane detoxification gene. Although we could validate more genes in this tri5 responsive wheat module, our paper aimed to investigate previously unstudied aspects of the F. graminearum infection process and how the fungus responded to changing conditions within the host environment. We accomplished this by characterising a gene within a fungal module that had limited annotation enrichment and few characterised genes. Tri5 on the other hand is the most extensively studied gene in F. graminearum and while the network we generated may offer new insights into tri5 responsive genes, this is beyond the scope of our current study. In addition to the tri5 co-regulated response, we have also demonstrated the coordinated response between the fungal module F16, which contains FgKnr4 that is necessary for tolerance to oxidative stress, and the wheat module W05, which is enriched for oxidative stress genes.


      While our co-expression network approach can be used to explore and validate other early downstream signaling and defense components in wheat cells, several challenges must be considered: (a) the poor quality of wheat gene calls, (b) genetic redundancy due to both homoeologous genes and large gene families, and (c) the presence of DON, which can inhibit translation and prevent many transcriptional changes from being realised within the host responses. Additionally, most plant host receptors are not transcriptionally upregulated in response to pathogen infection (most R gene studies for the NBS-LRR and exLRR-kinase classes), making their discovery through a transcriptomics approach unlikely. These points will be included in our discussion (lines 408-413), thank you.

      Specific issues

      • *

      2.5. Since tri5 mutant was used a proof of concept to link wheat/Fg modules, it would have been useful to show that TRI14, which is not involved DON biosynthesis, but involved in virulence ( https://doi.org/10.3390/applmicrobiol4020058____) impact the wheat module genes.


      Response: __Our goal was to show that wheat genes respond to the whole TRI cluster, not just individual TRI genes. Therefore, the tri5 mutant serves as a solid proof-of-concept, because TRI5 is essential for DON biosynthesis, the primary function of the TRI gene cluster, thereby representing the function of the cluster as a whole. This is now clarified in __lines 217-219. Additionally, the uncertainties surrounding other TRI mutants would complicate the question we were addressing-namely, whether a wheat module enriched in detoxification genes is responding to DON mycotoxin, as implied by shared co-expression patterns with the TRI cluster. For instance, the referenced TRI14 paper indicates that DON is produced in the same amount in vitro in a single media. Although the difference is not significant, the average DON produced is lower for the two Δtri14 transformants tested. Therefore, we cannot definitively rule out that TRI14 is involved in DON biosynthesis and extrapolate this to DON production in planta. Despite this, the suggestion is interesting, and would make a nice experiment but we believe it does not contribute to the overall aim of this study.

      2.6. Moreover, prior RNAseq studies with tri5 mutant strain on wheat would have revealed the expression of PAL and other phenylpropanoid pathway genes?

      __Response: __We agree that this would be an interesting comparison to make but unfortunately no dataset comparing in planta expression of the tri5 mutant within wheat spikes exists.

      2.7. Table S1 lists 15 candidate genes of the F16 module; however, supplementary File 1 indicates 74 genes in the same module. The basis of exclusion should be explained. The author has indicated genes with high MM was used as representative of the module. The 59 remaining genes of this module did not meet this criteria? Give examples.


      Response: __The 15 genes with the highest module membership were selected as initial candidates for further shortlisting from the 74 genes within module F16. In WGCNA, genes with high module membership (MM) (i.e. intramodular connectivity) are predicted to be central to the biological functions of the module (Langfelder and Horvath, 2008; https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-559 ) and continues to be a metric to identify biologically significant genes within WGCN analyses (https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-024-05366-0 Tominello-Ramirez et al., 2024; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9151341/ ;Zheng et al., 2022; https://www.nature.com/articles/s41598-020-80945-3 Panahi and Hejazi et al 2021). Following methods by Mateus et al. (2019) (https://academic.oup.com/ismej/article/13/5/1226/7475138 ) key genes were defined as those exhibiting elevated MM within the module, which were also strongly correlated (R > |0.70|) with modules of the partner organism (wheat). We have clarified this point in the manuscript. Thank you for the suggestion. (__Lines 253-263).

      2.____8. A list from every module that pass this criteria will be useful resource for functional characterization studies.


      __Response: __A supplementary spreadsheet has been generated which includes full lists of the top 15 genes with the highest module membership within the five fungal modules correlated to wheat modules and a summary of shared attributes among them. Thank you for this suggestion.

      2.9. Figure 3 indicates TRI genes in the module F12; your PHI base in Supp File S2 lists only TRI14. Why other TRI genes such as TRI5 not present in this File?


      Response: For clarity, the TRI genes in module F12 are TRI3, TRI4, TRI11, TRI12, and TRI14 which was stated in Table 1. TRI5 clusters with its neighboring regulatory gene TRI6 in module F11, which exhibits a similar but reduced expression pattern compared to module F12. To improve clarity on this the TRI genes in module F12 are also listed in-text in line 168 and added to Figure 4. The enrichment and correlated relationship of W12 to a cluster's expression still imply a correlated response of the wheat gene to the TRI cluster's biosynthetic product (DON), which is absent in the Δtri5 mutant.

      TRI14 and TRI12 are listed in PHI-base. TRI12 was mistakenly excluded due to an unmapped Uniprot ID, which were added separately in the spreadsheet. We will recheck all unmapped ID lists to ensure all PHI-base entries are included in the final output. Thank you for pointing out this error.


      2.10. What is purpose of listing the same gene multiple times? Example, osp24 (a single gene in Fg) is listed 13 times in F01 module.


      __Response: __This is a consequence of each entry having a separate PHI ID, which represents different interactions including inoculations on different cultivar. Cultivar and various experimental details were omitted from the spreadsheet to reduce information density, however the multiple PHI base ID's will be kept separate to make the data more user friendly when working with the PHI-base database. An explanation for this is now provided in the file's explanatory worksheet, thank you.

      Reviewer #3:


      3.1. Why only use of high confidence transcripts maize to map the reads and not the full genome like Fusarium graminearum? I have never analyzed plant transcriptome.


      __Response: __ In the wheat genome, only high-confidence gene calls are used by the global community (Choulet et al., 2023; https://link.springer.com/chapter/10.1007/978-3-031-38294-9_4 ) until a suitable and stable wheat pan-genome becomes available.

      3.2. The regular output of DESeq are TPMs, how did the authors obtain the FPKM used in the analysis?


      Response: FPKM was calculated using the GenomicFeatures package and included on GitHub to enhance accessibility for other users. However, the input for WGCNA and this study as a whole was normalised counts rather than FPKM. The FPKM analysis was done to improve interoperability of the data for future users and made available on Github. To complement this, the information regarding FPKM calculation is now included in the methods section of the revised manuscript (line 491).

      3.3. Do the authors have a Southern blot to prove the location of the insertion and number of insertions in Zymoseptoria tritici mutant and complemented strains?


      __Response: __No, but the phenotype is attributed to the presence or absence of ZtKnr4, as the mutant was successfully complemented in multiple phenotypic aspects. This satisfies Koch's postulates which is the gold standard for reverse genetics experimentation (Falkow 1988; https://www.jstor.org/stable/4454582 ).

      __3.4. Boxplots and bar graphs should have the same format. In Figures 5 B and F and supplementary figure 6.3 the authors showed the distribution of samples but it is lacking in figure 3 B and all bar graphs. __


      __Response: __Graphs have been modified to display the distribution of all samples, thank you.

      3.5. Line 247 FGRAMPH1_0T23707 should be FGRAMPH1_01T23707


      __Response: __Thank you this has now been amended.

    1. A guardian God to help and save. And Ráma's falchion left its trace Deep cut on Súrpanakhá's face: A hideous giantess who came Burning for him with lawless flame. Their sister's cries the giants heard. And vengeance in each bosom stirred: The monster of the triple head. And Dúshan to the contest sped. But they and myriad fiends beside Beneath the might of Ráma died. When Rávan, dreaded warrior, knew The slaughter of his giant crew: Rávan, the king, whose name of fear Earth, hell, and heaven all shook to hear: He bade the fiend Márícha aid The vengeful plot his fury laid. In vain the wise Márícha tried To turn him from his course aside: Not Rávan's self, he said, might hope With Ráma and his strength to cope.

      The language used to describe the female characters in the Ramayana perpetuates negative stereotypes, employing words like "fiend" and "monster" to dehumanize and vilify them. This terminology reinforces harmful gender biases, reducing complex characters to simplistic and derogatory labels.

      Furthermore, the depiction of violence against women is troubling, as seen in the description of Rama's sword leaving a "deep cut" on Surpanakha's face. This graphic image implies a disturbing level of brutality, highlighting the dangers of condoning violence against women.

      In contrast, Rama's emotions are portrayed in a way that humanizes him, with descriptions of "mad despair" and "weeping" evoking sympathy and understanding. Meanwhile, the female characters are objectified, denied the same depth and complexity, and instead reduced to one-dimensional figures in the narrative. This disparity in characterization reinforces a patriarchal perspective, prioritizing male experiences and emotions over those of women. CC Jamie Santos

    2. Beneath the shady trees he stood Of Dandaká's primeval wood, Virádha, giant fiend, he slew, And then Agastya's friendship knew. Counselled by him he gained the sword And bow of Indra, heavenly lord: A pair of quivers too, that bore Of arrows an exhaustless store. While there he dwelt in greenwood shade The trembling hermits sought his aid, And bade him with his sword and bow Destroy the fiends who worked them woe: To come like Indra strong and brave, A guardian God to help and save. And Ráma's falchion left its trace Deep cut on Súrpanakhá's face: A hideous giantess who came Burning for him with lawless flame. Their sister's cries the giants heard. And vengeance in each bosom stirred: The monster of the triple head. And Dúshan to the contest sped. But they and myriad fiends beside Beneath the might of Ráma died.

      Sita, the female protagonist, is portrayed as the quintessential damsel in distress, relying on Rama to rescue her from harm. This depiction reinforces traditional gender roles, where women are seen as vulnerable and in need of male protection.

      In contrast, Surpanakha is depicted as a monstrous figure, described as a "hideous giantess" with a "lawless flame." This characterization serves as a warning against the dangers of female desire and power, perpetuating negative stereotypes about women who defy societal norms.

      The contrast between Sita and Surpanakha highlights the limited and restrictive gender roles assigned to women in the Ramayana. While Sita embodies the ideal of feminine passivity, Surpanakha represents the feared consequences of female agency and desire, reinforcing a patriarchal worldview that restricts women's autonomy and power. CC. Jamie Santos

    1. Ah me, how sudden have the storms of Fate,     Beyond all thought, all apprehension, burst     On my devoted head! O Fortune, Fortune!     With what relentless fury hath thy hand     Hurl'd desolation on the Persian race!

      Xerxes' realization is starting to settle in and he is able to understand how his own hubris and poor decision making led Persia to being in this situation. It serves as a powerful image of Xerxes being sad and surprised at the same time about their loss and the misfortune that the empire has now. He realizes that fortune and fate is uncontrollable which leads him to being a bit shocked by the fact that his fortunes changed so rapidly. It is similar to the story of some professional athletes and celebrities who used to be at the top and now work normal jobs because their fortunes changed so fast and they made lots of poor decisions along the way. The text teaches how hubris can be very bad for people and it is always important to remain humble even when you are the top because you will never know when you might be back at the bottom. This transition in the mindset of Xerxes would receive more sympathy from audience members as we all know the feeling of being humbled all too well. However, the situation is much more dire for Xerxes and shows how humans have a hard time grappling with the fact that certain uncontrollable events may have happened to them for the worse. Ultimately, the text itself learns more about the nature of success and failure and why people require humility to stay humble and to be able to face unpredictable situations better. CC BY Ajey Sasimugunthan (contact)

    1. Introduction In the year 1914 the University Museum secured by purchase a large six column tablet nearly complete, carrying originally, according to the scribal note, 240 lines of text. The contents supply the South Babylonian version of the second book of the epic ša nagba imuru, “He who has seen all things,” commonly referred to as the Epic of Gilgamish. The tablet is said to have been found at Senkere, ancient Larsa near Warka, modern Arabic name for and vulgar descendant of the ancient name Uruk, the Biblical Erech mentioned in Genesis X. 10. This fact makes the new text the more interesting since the legend of Gilgamish is said to have originated at Erech and the hero in fact figures as one of the prehistoric Sumerian rulers of that ancient city. The dynastic list preserved on a Nippur tablet1 mentions him as the fifth king of a legendary line of rulers at Erech, who succeeded the dynasty of Kish, a city in North Babylonia near the more famous but more recent city Babylon. The list at Erech contains the names of two well known Sumerian deities, Lugalbanda2 and Tammuz. The reign of the former is given at 1,200 years and that of Tammuz at 100 years. Gilgamish ruled 126 years. We have to do here with a confusion of myth and history in which the real facts are disengaged only by conjecture. The prehistoric Sumerian dynasties were all transformed [208]into the realm of myth and legend. Nevertheless these rulers, although appearing in the pretentious nomenclature as gods, appear to have been real historic personages.3 The name Gilgamish was originally written dGi-bil-aga-miš, and means “The fire god (Gibil) is a commander,” abbreviated to dGi-bil-ga-miš, and dGi(š)-bil-ga-miš, a form which by full labialization of b to u̯ was finally contracted to dGi-il-ga-miš.4 Throughout the new text the name is written with the abbreviation dGi(š),5 whereas the standard Assyrian text has consistently the writing dGIŠ-ṬU6-BAR. The latter method of writing the name is apparently cryptographic for dGiš-bar-aga-(miš); the fire god Gibil has also the title Giš-bar. A fragment of the South Babylonian version of the tenth book was published in 1902, a text from the period of Hammurapi, which showed that the Babylonian epic differed very much from the Assyrian in diction, but not in content. The new tablet, which belongs to the same period, also differs radically from the diction of the Ninevite text in the few lines where they duplicate each other. The first line of the new tablet corresponds to Tablet I, Col. V 25 of the Assyrian text,7 where Gilgamish begins to relate his dreams to his mother Ninsun.8 [209] The last line of Col. I corresponds to the Assyrian version Book I, Col. VI 29. From this point onward the new tablet takes up a hitherto unknown portion of the epic, henceforth to be assigned to the second book.9 At the end of Book I in the Assyrian text and at the end of Col. I of Book II in the new text, the situation in the legend is as follows. The harlot halts outside the city of Erech with the enamoured Enkidu, while she relates to him the two dreams of the king, Gilgamish. In these dreams which he has told to his mother he receives premonition concerning the advent of the satyr Enkidu, destined to join with him in the conquest of Elam. Now the harlot urges Enkidu to enter the beautiful city, to clothe himself like other men and to learn the ways of civilization. When he enters he sees someone, whose name is broken away, eating bread and drinking milk, but the beautiful barbarian understands not. The harlot commands him to eat and drink also: “It is the conformity of life, Of the conditions and fate of the Land.” He rapidly learns the customs of men, becomes a shepherd and a mighty hunter. At last he comes to the notice of Gilgamish himself, who is shocked by the newly acquired manner of Enkidu. “Oh harlot, take away the man,” says the lord of Erech. Once again the faithful woman instructs her heroic lover in the conventions of society, this time teaching him the importance of the family in Babylonian life, and obedience to the ruler. Now the people of Erech assemble about him admiring his [210]godlike appearance. Gilgamish receives him and they dedicate their arms to heroic endeavor. At this point the epic brings in a new and powerful motif, the renunciation of woman’s love in the presence of a great undertaking. Gilgamish is enamoured of the beautiful virgin goddess Išhara, and Enkidu, fearing the effeminate effects of his friend’s attachment, prevents him forcibly from entering a house. A terrific combat between these heroes ensues,10 in which Enkidu conquers, and in a magnanimous speech he reminds Gilgamish of his higher destiny. In another unplaced fragment of the Assyrian text11 Enkidu rejects his mistress also, apparently on his own initiative and for ascetic reasons. This fragment, heretofore assigned to the second book, probably belongs to Book III. The tablet of the Assyrian version which carries the portion related on the new tablet has not been found. Man redeemed from barbarism is the major theme of Book II. The newly recovered section of the epic contains two legends which supplied the glyptic artists of Sumer and Accad with subjects for seals. Obverse III 28–32 describes Enkidu the slayer of lions and panthers. Seals in all periods frequently represent Enkidu in combat with a lion. The struggle between the two heroes, where Enkidu strives to rescue his friend from the fatal charms of Išhara, is probably depicted on seals also. On one of the seals published by Ward, Seal Cylinders of Western Asia, No. 459, a nude female stands beside the struggling heroes.12 This scene not improbably illustrates the effort of Enkidu to rescue his friend from the goddess. In fact the satyr stands between Gilgamish and Išhara(?) on the seal. [211] 1 Ni. 13981, published by Dr. Poebel in PBS. V, No. 2. 2 The local Bêl of Erech and a bye-form of Enlil, the earth god. Here he is the consort of the mother goddess Ninsun. 3 Tammuz is probably a real personage, although Dumu-zi, his original name, is certainly later than the title Ab-ú, probably the oldest epithet of this deity, see Tammuz and Ishtar, p. 8. Dumu-zi I take to have been originally the name of a prehistoric ruler of Erech, identified with the primitive deity Abu. 4 See ibid., page 40. 5 Also Meissner’s early Babylonian duplicate of Book X has invariably the same writing, see Dhorme, Choix de Textes Religieux, 298–303. 6 Sign whose gunufied form is read aga. 7 The standard text of the Assyrian version is by Professor Paul Haupt, Das Babylonische Nimrodepos, Leipzig, 1884. 8 The name of the mother of Gilgamish has been erroneously read ri-mat ilatNin-lil, or Rimat-Bêlit, see Dhorme 202, 37; 204, 30, etc. But Dr. Poebel, who also copied this text, has shown that Nin-lil is an erroneous reading for Nin-sun. For Ninsun as mother of Gilgamish see SBP. 153 n. 19 and R.A., IX 113 III 2. Ri-mat ilatNin-sun should be rendered “The wild cow Ninsun.” 9 The fragments which have been assigned to Book II in the British Museum collections by Haupt, Jensen, Dhorme and others belong to later tablets, probably III or IV. 10 Rm. 289, latter part of Col. II (part of the Assyrian version) published in HAUPT, ibid., 81–4 preserves a defective text of this part of the epic. This tablet has been erroneously assigned to Book IV, but it appears to be Book III. 11 K. 2589 and duplicate (unnumbered) in Haupt, ibid., 16–19. 12 See also Ward, No. 199. Transliteration 1it-bi-e-ma iluGilgamiš šu-na-tam i-pa-aš-šar. 2iz-za-kar-am1 a-na um-mi-šu 3um-mi i-na ša-a-at mu-ši-ti-i̭a 4ša-am-ḫa-ku-ma at-ta-na-al-la-ak 5i-na bi-ri-it id-da-tim 6ib-ba-šu-nim-ma ka-ka-’a2 ša-ma-i 7ki-?-?-rum3 ša a-nim im-ku-ut a-na ṣi-ri-i̭a 8áš-ši-šu-ma ik-ta-bi-it4 e-li-i̭a 9ilam5 iš-šu-ma nu-uš-ša-šu6 u-ul el-ti-’i̭ 10ad-ki ma-tum pa-ḫi-ir7 e-li-šu 11id-lu-tum ú-na-ša-ku ši-pi-šu 12ú-um-mi-id-ma     pu-ti 13i-mi- du         i̭a-ti 14aš-ši-a-šu-ma at-ba-la-áš-šu a-na ṣi-ri-ki 15um-mi iluGilgamiš mu-u-da-a-at ka-la-ma 16iz-za-kar-am a-na iluGilgamiš [212] 17mi-in-di iluGilgamish ša ki-ma ka-ti 18i-na ṣi-ri   i-wa-li-id-ma 19ú-ra-ab-bi-šu   ša-du-ú 20ta-mar-šu-ma [sa(?)]-ap-ḫa-ta at-ta 21id-lu-tum ú-na-ša-ku ši-pi-šu8 22te-iṭ-ṭi-ra-šu(?) … šu-ú-zu 23ta-tar-ra-[’a]-šu a-na ṣi-[ri-i̭]a 24[iš-(?)] ti-lam-ma9 i-ta-mar ša-ni-tam 25[šu-na-]ta i-ta-wa-a-am a-na um-mi-šu 26[um-m]i a-ta-mar ša-ni-tam 27[šu-na-ta a-ta]mar e-mi-a i-na zu-ki-im 28[i-na?] Unuk-(ki) ri-bi-tim10 29ḫa-aṣ-ṣi-nu   na-di-i-ma 30e-li-šu   pa-aḫ- ru 31ḫa-aṣ-ṣi-nu-um-ma ša-ni bu-nu-šu 32a-mur-šu-ma aḫ-ta-ta a-na-ku 33a-ra-am-šu-ma ki-ma áš-ša-tim 34a-ḫa-ap-pu-up   el-šu 35el-ki-šu-ma áš-ta-ka-an-šu 36a-na     a-ḫi-i̭a 37um-mi iluGilgamish mu-da-at ka-la-ma 38[iz-za-kar-am a-na iluGilgamish] ................................... [213] COL. II 1aš-šum uš-[ta-] ma-ḫa-ru it-ti-ka. 2iluGilgamish šu-na-tam i-pa-šar 3iluEn-ki-[dû w]a?-ši-ib ma-ḫar ḫa-ri-im-tim 4UR [ ]-ḫa-mu DI-?-al-lu-un 5[ ] im-ta-ši a-šar i-wa-al-du 6ûmê 611 ù 7 mu-ši- a-tim 7iluEn-ki-dû te-bi-   i-ma 8ša-[am-ka-ta]   ir- ḫi 9ḫa-[ri-im-tu pa-a]-ša i-pu-ša-am-ma 10iz-za-[kar-am] a-na iluEn-ki-dû12 11a-na-ṭal-ka dEn-ki-dû ki-ma ili ta-ba-áš-ši 12am-mi-nim it-ti na-ma-áš-te-e13 13ta-at-ta-[na-al-]la -ak ṣi-ra-am 14al-kam   lu-ùr-di-   ka 15a-na libbi Uruk-(ki) ri-bi-tim 16a-na biti [el-]lim mu-ša-bi ša A-nim 17dEn-ki-dû ti-bi lu-ru-ka 18a-na É-[an-n]a mu-ša-bi ša A-nim 19a-šar [iluGilgamiš] it-[.........] ne-pi-ši-tim(?) 20ù at-[   ]-di [   -] ma 21ta-[   ] ra-ma-an-   ka [214] 22al-ka ti-ba i-[na] ga-ag-ga-ri 23ma-a-a?14 -ak ri-i-im 24iš-me a-wa-az-za im-ta-gár ga-ba-ša 25mi-il-kum ša sinništi 26im-ta-[ku]-ut a-na libbi-šu 27iš-ḫu-uṭ li-ib-ša-am 28iš-ti-nam [ú]-la-ab-bi-iš-šu 29li-ib- [ša-am] ša-ni-a-am 30ši-i it-ta-al-ba- áš 31ṣa-ab-ta-at ga-az- zu 32ki-ma ? i-ri-id-di-šu 33a-na gu-up-ri ša ri-i-im 34a-š[ar   ] tar-ba-ṣi-im 35i-na [   ]-ḫu-ru ri-i̭a-ú15 36............................. (About two lines broken away.) COL. III 1ši-iz-ba ša na-ma-áš-te-e 2i-te-en-   ni-   iḳ 3a-ka-lam iš-ku-nu ma-ḫar-šu 4ip-te-iḳ-ma i-na -aṭ-ṭal16 5ù ip-pa-al-la-   as 6u-ul i-di dEn-ki- dû 7aklam a-na a-ka-lim 8šikaram   a-na ša-te-e-im 9la-a   lum-mu-   ud [215] 10ḫa-ri-im-lum pi-ša i-pu-ša-am- ma 11iz-za-kar-am a-na iluEn-ki-dû 12a-ku-ul ak-lam dEn-ki-dû 13zi-ma-at ba-la-ṭi-im 14bi-ši-ti ši-im-ti ma-ti 15i-ku-ul a-ak-lam iluEn-ki-dû 16a-di ši-bi-e-šu 17šikaram iš-ti-a-am 187 aṣ-ṣa-am-mi-im17 19it-tap-šar kab-ta-tum i-na-an-gu 20i-li-iṣ libba- šu- ma 21pa-nu-šu [it-]ta(?)-bir -ru18 22ul-tap-pi-it [............]-i 23šu-ḫu-ra-am pa-ga-ar-šu 24ša-am-nam ip-ta-ša-áš-ma 25a-we-li-iš i-mē 26il-ba- áš li-ib-ša-am 27ki-ma mu-ti i-ba-áš-ši 28il-ki ka-ak-ka-šu 29la-bi ú gi-ir- ri 30iš-sa-ak-pu šab-[ši]-eš mu-ši-a-ti 31ut- tap -pi-iš šib-ba-ri19 32la-bi uk-t[a ]-ši-id 33it-ti immer na-ki-[e?] ra-bu-tum 34iluEn-ki-dû ma-aṣ-ṣa-ar-šu-nu 35a-we-lum wa-ru-um 36iš-[te]-en id-lum 37a-na[ ........ u]-za-ak-ki-ir ........................... (About five lines broken away.) [216] REVERSE I .............................. 1i-ip-pu-uš     ul-ṣa-am 2iš-ši-ma   i-ni-i-šu 3i-ta-mar   a-we-lam 4iz20-za-kar-am   a-na ḫarimti 5ša-am-ka-at uk-ki-ši21 a-we-lam 6a-na mi-nim    il-li-kam 7zi-ki-ir-šu   lu-uš-šu22 8ḫa-ri-im-tum iš-ta-si a-we-lam 9i-ba-uš-šu-um-ma i-ta-mar-šu 10e-di-il23 e-eš-ta-ḫi-[ṭa-am] 11mi-nu   a-la-ku-zu na-aḫ-24 [     -]ma 12e pi-šu    i-pu-ša-am-[ma] 13iz-za-kar-am a-na iluEn-[ki-dû] 14bi-ti-iš e-mu-tim [                ] 15ši-ma-a-at    ni-ši-i-   ma 16tu-ṣa25-ar pa-a-ta-tim26 17a-na âli dup-šak-ki-i e ṣi-en 18UG-AD-AD-LIL e-mi ṣa-a-a-ḫa-tim [217] 19a-na šarri Unuk-(ki) ri-bi-tim 20pi-ti pu-uk epši27 a-na ḫa-a-a-ri 21a-na iluGilgamiš šarri ša Unuk-(ki) ri-bi-tim 22pi-ti pu-uk epši28 23a-na ha-a-a-ri 24áš-ša-at ši-ma-tim i-ra-aḫ-ḫi 25šu-u pa-na-nu-um-ma 26mu-uk wa-ar-ka-nu 27i-na mi-il-ki ša ili ga-bi-ma 28i-na bi-ti-iḳ a-pu-un-na-ti-šu29 29ši- ma- az- zum 30a-na zi-ik-ri id-li-im 31i-ri-ku pa-nu-šu REVERSE II ............................................................ (About five lines broken away.) 1i-il-la-ak- .......... 2ù ša-am-ka-at[     ]ar-ki-šu 3i- ru- ub-ma30 a-na31 libbi Uruk-(ki) ri-bi-tim 4ip-ḫur um-ma-nu-um i-na ṣi-ri-šu 5iz-zi-za-am-ma i-na zu-ki-im 6ša Unuk-(ki) ri-bi-tim 7pa-aḫ-ra-a-ma ni-šu [218] 8i-ta-mē-a   i-na ṣi-ri-šu pi(?)-it-tam32 9a-na mi-[ni]33 iluGilgamiš ma-ši-il 10la-nam   ša- pi-  il 11e-ṣi[   pu]-uk-ku-ul 12    i ? -ak-ta 13i[-    -]di   i-ši? 14ši-iz-ba ša[na-ma-]áš-[te]-e 15i-te-  en-  ni-   iḳ 16ka-i̭ā-na i-na [libbi] Uruk-(ki) kak-ki-a-tum34 17id-lu-tum u-te-el-li-   lu 18ša-ki-in  ip-ša-   nu35 19a-na idli ša i-tu-ru   zi-mu-šu 20a-na iluGilgamiš ki-ma i-li-im 21ša-ki-iš-šum36 me-iḫ-rum 22a-na ilatIš-ḫa-ra ma-i̭ā-lum 23na-   [di]-i-   ma 24iluGilgamish id-[   ]na-an(?)... 25i-na mu-ši in-ni-[    -]id 26i-na-ak37-ša-am- ma 27it-ta-[    ]i-na zûki 28ip-ta-ra-[ku   ]-ak-tām 29ša   iluGilgamish 30........... da-na(?) ni-iš-šu COL. III 1ur-(?)ḫa ..................... 2iluGilgamiš ................ 3i-na ṣi-ri .................... [219] 4i-ḫa-an-ni-ib [pi-ir-ta-šu?] 5it-bi-ma ... 6a-na pa-ni- šu 7it-tam-ḫa-ru i-na ri-bi-tu ma-ti 8iluEn-ki-dû ba-ba-am ip-ta-ri-ik 9i-na ši-pi-šu 10iluGilgamiš e-ri-ba-am u-ul id-di-in 11iṣ-ṣa-ab-tu-ma ki-ma li-i-im 12i- lu- du38 13zi-ip-pa-am ’i-bu- tu 14i-ga-rum ir-tu-tū39 15iluGilgamiš ù iluEn-ki- dû 16iṣ-ṣa-ab-tu-ù- ma 17ki-ma li-i-im i-lu-du 18zi-ip-pa-am ’i-bu- tu 19i-ga-rum ir-tu-tū 20ik-mi-is-ma iluGilgamiš 21i-na ga-ga-ag-ga-ri ši-ip-šu 22ip-ši-iḫ40 uṣ-ṣa-šu- ma 23i-ni-’i i-ra-az-zu 24iš-tu i-ra-zu i-ni-ḫu41 25iluEn-ki-dû a-na ša-ši-im 26iz-za-kar-am a-na iluGilgamiš 27ki-ma iš-te-en-ma um-ma-ka 28ú- li- id- ka 29ri-im-tum ša zu- pu-ri 30ilat-Nin- sun- na 31ul-lu e-li mu-ti ri-eš-su [220] 32šar-ru-tam ša ni-ši 33i-ši-im-kum iluEn-lil duppu 2 kam-ma šu-tu-ur e-li … 4 šu-ši42 1 Here this late text includes both variants pašāru and zakāru. The earlier texts have only the one or the other. 2 For kakabê; b becomes u̯ and then is reduced to the breathing. 3 The variants have kima kiṣri; ki-[ma]?-rum is a possible reading. The standard Assyrian texts regard Enkidu as the subject. 4 Var. da-an 5 ŠAM-KAK = ilu, net. The variant has ultaprid ki-is-su-šu, “he shook his murderous weapon.” For kissu see ZA. 9,220,4 = CT. 12,14b 36, giš-kud = ki-is-su. 6 Var. nussu for nuš-šu = nušša-šu. The previous translations of this passage are erroneous. 7 This is to my knowledge the first occurence of the infinitive of this verb, paḫēru, not paḫāru. 8 Text ma? 9 ištanamma > ištilamma. 10 Cf. Code of Hammurapi IV 52 and Streck in Babyloniaca II 177. 11 Restored from Tab. I Col. IV 21. 12 Cf. Dhorme Choix de Textes Religieux 198, 33. 13 namaštû a late form which has followed the analogy of reštû in assuming the feminine t as part of the root. The long û is due to analogy with namaššû a Sumerian loan-word with nisbe ending. 14 Room for a small sign only, perhaps A; māi̭āk? For mâka, there, see BEHRENS, LSS. II page 1 and index. 15 Infinitive “to shepherd”; see also Poebel, PBS. V 106 I, ri-i̭a-ú, ri-te-i̭a-ú. 16 The text has clearly AD-RI. 17 Or azzammim? The word is probably an adverb; hardly a word for cup, mug (??). 18 it is uncertain and ta more likely than uš. One expects ittabriru. Cf. muttabrirru, CT. 17, 15, 2; littatabrar, EBELING, KTA. 69, 4. 19 For šapparu. Text and interpretation uncertain. uttappiš II² from tapāšu, Hebrew tāpaś, seize. 20 Text ta! 21 On ekēšu, drive away, see Zimmern, Shurpu, p. 56. Cf. uk-kiš Myhrman, PBS. I 14, 17; uk-ki-ši, King, Cr. App. V 55; etc., etc. 22 The Hebrew cognate of mašû, to forget, is našâ, Arabic nasijia, and occurs here in Babylonian for the first time. See also Brockelman, Vergleichende Grammatik 160 a. 23 Probably phonetic variant of edir. The preterite of edēru, to be in misery, has not been found. If this interpretation be correct the preterite edir is established. For the change r > l note also attalaḫ < attaraḫ, Harper, Letters 88, 10, bilku < birku, RA. 9, 77 II 13; uttakkalu < uttakkaru, Ebeling, KTA. 49 IV 10. 24 Also na-’-[     -]ma is possible. 25 The text cannot be correct since it has no intelligible sign. My reading is uncertain. 26 Text uncertain, kal-lu-tim is possible. 27 KAK-ši. 28 KAK-ši. 29 Literally nostrils. pitik apunnati-šu, work done in his presence(?). The meaning of the idiom is uncertain. 30 Text ZU! 31 Text has erroneous form. 32 Text PA-it-tam clearly! 33 Omitted by the scribe. 34 Sic! The plural of kakku, kakkîtu(?). 35 Cf. e-pi-ša-an-šu-nu libâru, “May they see their doings,” Maḳlu VII 17. 36 For šakin-šum. 37 On the verb nâku see the Babylonian Book of Proverbs § 27. 38 The verb la’āṭu, to pierce, devour, forms its preterite iluṭ; see VAB. IV 216, 1. The present tense which occurs here as iluṭ also. 39 Note BUL(tu-ku) = ratātu (falsely entered in Meissner, SAI. 7993), and irattutu in Zimmern, Shurpu, Index. 40 “For ipšaḫ.” 41 Sic! ḫu reduced to the breathing ’u; read i-ni-’u. 42 The tablet is reckoned at forty lines in each column, Translation 1Gilgamish arose interpreting dreams, 2addressing his mother. 3“My mother! during my night 4I, having become lusty, wandered about 5in the midst of omens. 6And there came out stars in the heavens, 7Like a … of heaven he fell upon me. 8I bore him but he was too heavy for me. 9He bore a net but I was not able to bear it. 10I summoned the land to assemble unto him, 11that heroes might kiss his feet. 12He stood up before me1 13and they stood over against me. 14I lifted him and carried him away unto thee.” 15The mother of Gilgamish she that knows all things, 16said unto Gilgamish:— [212] 17“Truly oh Gilgamish he is 18born2 in the fields like thee. 19The mountains have reared him. 20Thou beholdest him and art distracted(?) 21Heroes kiss his feet. 22Thou shalt spare him…. 23Thou shalt lead him to me.” 24Again he dreamed and saw another dream 25and reported it unto his mother. 26“My mother, I have seen another 27[dream. I beheld] my likeness in the street. 28In Erech of the wide spaces3 29he hurled the axe, 30and they assembled about him. 31Another axe seemed his visage. 32I saw him and was astounded. 33I loved him as a woman, 34falling upon him in embrace. 35I took him and made him 36my brother.” 37The mother of Gilgamish she that knows all things 38[said unto Gilgamish:—] ................................... [213] COL. II 1that he may join with thee in endeavor.” 2(Thus) Gilgamish solves (his) dream. 3Enkidu sitting before the hierodule 4 5[   ] forgot where he was born. 6Six days and seven nights 7came forth Enkidu 8and cohabited with the courtesan. 9The hierodule opened her mouth 10speaking unto Enkidu. 11“I behold thee Enkidu; like a god thou art. 12Why with the animals 13wanderest thou on the plain? 14Come! I will lead thee 15into the midst of Erech of the wide places, 16even unto the holy house, dwelling place of Anu. 17Oh Enkidu, arise, I will conduct thee 18unto Eanna dwelling place of Anu, 19where Gilgamish [oppresses] the souls of men(?) 20And as I ............ 21thou shalt ........ thyself. [214] 22Come thou, arise from the ground 23unto the place yonder (?) of the shepherd.” 24He heard her speak and accepted her words with favor. 25The advice of the woman 26fell upon his heart. 27She tore off one garment 28and clothed him with it. 29With a second garment 30she clothed herself. 31She clasped his hand, 32guiding him like .............. 33unto the mighty presence of the shepherd, 34unto the place of the ... of the sheepfolds. 35In ......... to shepherd 36............................. (About two lines broken away.) COL. III 1Milk of the cattle 2he drank. 3Food they placed before him. 4He broke bread4 5gazing and looking. 6But Enkidu understood not. 7Bread to eat, 8beer to drink, 9he had not been taught. [215] 10The hierodule opened her mouth 11and said unto Enkidu:— 12“Eat bread, oh Enkidu! 13It is the conformity of life, 14of the conditions and the fate of the land.” 15Enkidu ate bread, 16until he was satiated. 17Beer he drank 18seven times(?). 19His thoughts became unbounded and he shouted loudly. 20His heart became joyful, 21and his face glowed. 22He stroked................. 23the hair of the head.5 His body 24with oil he anointed. 25He became like a man. 26He attired himself with clothes 27even as does a husband. 28He seized his weapon, 29which the panther and lion 30fells in the night time cruelly. 31He captured the wild mountain goats. 32The panther he conquered. 33Among the great sheep for sacrifice 34Enkidu was their guard. 35A man, a leader, 36A hero. 37Unto .......... he elevated ........................... (About five lines broken away.) [216] REVERSE I .............................. 1And he made glad. 2He lifted up his eyes, 3and beheld the man, 4and said unto the hierodule:— 5“Oh harlot, take away the man. 6Wherefore did he come to me? 7I would forget the memory of him.” 8The hierodule called unto the man 9and came unto him beholding him. 10She sorrowed and was astonished 11how his ways were ............ 12Behold she opened her mouth 13saying unto Enkidu:— 14“At home with a family [to dwell??] 15is the fate of mankind. 16Thou shouldest design boundaries(??) 17for a city. The trencher-basket put (upon thy head). 18.... ......an abode of comfort. [217] 19For the king of Erech of the wide places 20open, addressing thy speech as unto a husband. 21Unto Gilgamish king of Erech of the wide places 22open, addressing thy speech 23as unto a husband. 24He cohabits with the wife decreed for him, 25even he formerly. 26But henceforth 27in the counsel which god has spoken, 28in the work of his presence 29shall be his fate.” 30At the mention of the hero 31his face became pale. REVERSE II ............................................................ (About five lines broken away.) 1going ....................... 2and the harlot ..... after him. 3He entered into the midst of Erech of the wide places. 4The artisans gathered about him. 5And as he stood in the street 6of Erech of the wide places, 7the people assembled [218] 8disputing round about him:— 9“How is he become like Gilgamish suddenly? 10In form he is shorter. 11In ........ he is made powerful. 12 13 14Milk of the cattle 15he drank. 16Continually in the midst of Erech weapons 17the heroes purified. 18A project was instituted. 19Unto the hero whose countenance was turned away, 20unto Gilgamish like a god 21he became for him a fellow. 22For Išhara a couch 23was laid. 24Gilgamish ................... 25In the night he .............. 26embracing her in sleep. 27They ........ in the street 28halting at the ................ 29of Gilgamish. 30.......... mightily(?) COL. III 1A road(?) .................... 2Gilgamish ................... 3in the plain .................. [219] 4his hair growing thickly like the corn. 5He came forth ... 6into his presence. 7They met in the wide park of the land. 8Enkidu held fast the door 9with his foot, 10and permitted not Gilgamish to enter. 11They grappled with each other 12goring like an ox. 13The threshold they destroyed. 14The wall they demolished. 15Gilgamish and Enkidu 16grappled with each other, 17goring like an ox. 18The threshold they destroyed. 19The wall they demolished. 20Gilgamish bowed 21to the ground at his feet 22and his javelin reposed. 23He turned back his breast. 24After he had turned back his breast, 25Enkidu unto that one 26spoke, even unto Gilgamish. 27“Even as one6 did thy mother 28bear thee, 29she the wild cow of the cattle stalls, 30Ninsunna, 31whose head she exalted more than a husband. [220] 32Royal power over the people 33Enlil has decreed for thee.” Second tablet. Written upon ... 240 (lines). [221] 1 Literally “he attained my front.” 2 IV¹ of walādu. 3 I.e., in the suburb of Erech. 4 patāḳu has apparently the same sense originally as batāḳu, although the one forms its preterite iptiḳ, and the other ibtuḳ. Cf. also maḫāṣu break, hammer and construct. 5 The passage is obscure. Here šuḫuru is taken as a loan-word from suģur = ḳimmatu, hair of the head. The infinitive II¹ of saḫāru is philologically possible. 6 I.e., an ordinary man. Index to Parts 2 and 3 A. Adab, city, 123, 23. addi, wailing, 117, 31; 137, 22; 161, 12. aḫu, brother, 212, 36. Aja, goddess, 198, 9. al (giš), al-gar (giš), a musical instrument, 187–191. See also No. 20 Rev. 7–12. al-bi, compound verb, 189 n. 6. In Ni. 8164 (unpublished) al-gar, al-gar-balag in list with (giš)-á-lá, also an instrument of music. alad, protecting genius, 154, 18. ameliš, like a man, 215, 25. Amurrû, god. Psalm to, 118; 119. angubba, sentinel, 180, 14. Anu, god. 116, 18:26 ff. 131, 8; 165, 9; 180, 20. Anunnaki, gods, 114, 17:21; 116, 25; 116 n. 7; 128, 13; 135, 31; 189, 21. Anunit, goddess, 158, 12; 166, 2. apunnatu, nostrils, pitiḳ, apunnāti, 217, 28. aṣṣammim (?), 215, 18. Arallû, 132, 26; 134, 7. arāmu, cover, 198 n. 2. arāḳu, be pale, Prt. iriku, 217, 31. arḫiš, quickly, 199, 28. Aruru, goddess. Lamentation to, 115. Sister of Enlil, 115, 2; 171, 29; 190, 25. Other references, 116, 13:15:18; 117, 34 f. Asarludug, god, 163, 8; 170, 4. Aš-im-ur, title of Moon-god, 136, 12. áš omitted, No. 19, 2. aš-me, disk, 133, 38. Ašširgi, god, No. 22, Rev. 7. Azagsud, goddess, 196, 30:33; 197, 38. B. Babbar, god, 116, 24; 139, 43; 147, 21; 148, 3; 152. Babylon, city, 158, 14; 160, 6; 163, 8; 166, 4:11. badara, see 200 n. 2. badarani, a weapon, 133, 36. balag, lyre, 138, 52. bansur, table; title of a goddess, 175, 3. Bau, goddess, 179, 2; 181, 30; 182, 32; 141, 7:10. bišîtu, condition, 215, 14. bi’u, cavern, 196, 29. bulukku, crab, 174, 5. burgul, engraver, 185, 8. C. Cutha, city. Center of the cult of Nergal, 167, 15. D. Dada, god, 192, 6. Dagan, West Semitic god, 149, 21. Damu, title of Tammuz, 176, 7. Deification of kings, 106–9; 127 n. 1. dêpu, shatter, 195 n. 16. [222] DI-BAL, ideogram in incantations, 194, 10. Dilbat, city, 167, 16. Dilmun, land and city, 112, 2:4. dimgul, dimdul, master workman, 150. dingir-gal-gal-e-ne, the great gods, the Anunnaki, 114, 21:125; 149, 19. dumu-anna, daughter of heaven, title of Bau, 179, 5; 181, 28; 184, 28. dumu-sag, title of Tašmet, 163, 12. Dungi, king of Ur, liturgy to, 136. dupšakku, trencher basket, 216, 17. Duranki, epithet for Nippur, 122, 18; 180, 11. E. E-anna, temple in Erech, 123, 30; 125; 148, 12; 213, 18. E-babbar, temple of the sun god, 152; 158, 11; 166, 1. Perhaps read E-barra. E-daranna, temple of Enki in Babylon, 169, 25; 170, 29. See BL. 133. edēlu = edēru, be gloomy, 216, 10. é-dub, house of learning, 117, 39. é-gal, palace, No. 19, Rev. 3; 115, 11; 131, 7; 134, 22; 158, 9. é-gig = ḳiṣṣu, 191, 11. E-ibe-Anu, temple in Dilbat, 167, 16. E-kinammaka, temple, 115, 10. E-kišibba, temple in Kish, 166, 13. E-kur, temple, 180, 12; 183, 23; 190, 7; 146, 9; 147, 17; 158, 8; 160, 4; 166, 17; 169, 23. Emaḫ, Ešmaḫ, ritual house of the water cult of Marduk, 163, 7; 115, 4. E-malga-sud, temple, 181, 24; 141, 3. E-meteg, daughter of Ninkasi, 144. E-mete-ursag, temple in Kish, 166, 13. E-namtila, temple, 160, 4; 169, 24. en-a-nu-un, en-á-nun, title of Innini and Gula, 173, 2. Enbilulu, title of Marduk, 170, 5. E-ninnû, temple, 181, 22. EN-ḪUL-tim-mu, 194 n. 2. EN-KA-KA, bêl dabābi, 194, 2. Enki, god. Hymn to, No. 20, 113, 7; 114, 10; 116, 21; 122, 7; 149, 16. Enkidu, satyr, 213, 3:7:10:11; 214, 6; 215, 11:12:15:34; 216, 13; 219, 8:15:25; 131, 11; 134, 16; 178, 13. Enlil, god. Liturgy to, 155–184. Regarded as god of light, 157, 1 ff. 158, 3 f. Other references, 114, 19; 115, 2; 116, 19; 131, 6; 136, 5; 139, 40; 149, 22; 146, 3:7:14; 189, 11:19; 220, 33. Enul, god, 149, 16. Enzu, god, 139, 41; 146, 3. epšānu, deeds, 218, 18. epû, be dark, I² itêpû, 196, 29. Erech, city, 125; 149, 13. Erech ribîtim, 212, 28; 213, 15; 217, 19:21; 217, 3:6. eri-azag, holy city, Isin, 141, 8. erida, title, 175, 1. Eridu, city, 113, 20; 136, 13. Erishkigal, goddess, 131, 10; 134, 11. eršagtugmal, penitential psalm, 118. E-sagila, temple, 152. E-sakudkalamma, temple, 166, 10; 169 n. 4. ešendili, a title, 177, 10. [223] eškar, fixed tax, 188, 9. eš-lal, a sacred place, 161, 14. E-temen-anki, temple, 169, 25. E-turkalamma, temple, 166, 14. Euphrates, river, 183, 12; 183, 20. E-zida, temple, 166, 12. Ezina, grain goddess, 174, 9. Ezira, reading of the divine name KA-DI, 177, 11. F. Fara, modern Arabic name for the site of Isin (?), 177 n. 4. G. GAB, baked bread, 200, 33. GAB-LAL, a cake made with honey, 195, 22; 200, 35. GAR-šunnu = epišan-šunu, 198, 13. gašan-gula, title of Ninâ, 119 n. 2. gepar, dark chamber, 123, 30 f., 148, 10; 161, 18. Gibil, god, 197, 3. gi-gál(giš),interlude, 151 n. 1; 182, 33. gigunna, 114, 23. Gilgamish, king of Erech, 207; 211, 1:115 f. 212, 17:37; 213, 2; 217, 21; 218, 9:20:24:29 and below 2; 219, 10;15:20:26. Derivation of name, 208. See also No. 16 Rev. II 15; 197, 42; 124 f. gilsa, a sacred relic, 132, 22. Girra, Irra, god, 174, 7; 177, 12. girru, lion, 215, 29. Girsu, city, 181, 23. Guanna, deity, No. 16 Rev. II 18. Guedin, province, 129, 28. Gunura, goddess of healing, 176, 6. gupru, mighty, 214, 33. Gutium, land, 120 ff. H. Hallab, city, 125; 141. ḫanābu, grow thickly, Prs. ibannib, 219, 4. ḫapāpu, embrace, 212, 34. ḫaṣṣinu, axe, 212, 29:31. ḫarbatu, waste place, 200, 39. Harsagkalamma, temple, 166, 14. Hubur, mythical river, 197, 42. ḫûlu, a bird, 199, 31. ḫûḳu, a bird, 199, 31. I. Ibi-Sin, king of Ur, 151 n. 2. ibsi, liturgical expression, 120, 5. Igigi, heaven spirits, 116 n. 6. IGI-NAGIN-NA, 194, 11. imib, weapon, 131, 8. mi-ib, ibid. n.3. imin, seven. Seven lands, 130, 35; seventh day, 134, 18. Immer, god, 177, 8. Indag, god, consort of Gula, 173, 3. Innini, goddess, 123. Liturgy to, 184; 123, 29. Consort of Shamash, 148, 4. Other references, 154, 21. iṣṣur šamê, unclean birds, 195 n. 10. Išhara, goddess, 218, 22. Isin, city, 122, 15; 176, 4. Ishme-Dagan, 178 ff. Son of Enlil, 181, 29; 182, 32. Liturgy to, 143. K. KA-DIB-BI, sibit pî, 194, 10. KAK-DIG, a weapon, 130, 4. kakkitu (?), weapon. Pl. kakkiatum, 218, 16. KAK-SIR, a weapon (?), 130, 4. [121] kalama, the Land, Sumer, 138, 25; 141, 5; 147, 22; 150, 4; 154, 17; 177, 9. kanami=kalama, land, 120, 8. KA-NE, a new ideograph, 153 n. 10. kasû, bind. I² liktisu, 198, 20. Kenurra, chapel of Ninlil, 114, 22; 123, 20; 160, 4; 166, 18; 166, 8; 169, 24. Keš, city, 115, 11; 123, 22. kešda-azag, a relic, 132, 27. ki, kin for gim = kima, 120, 6. KI-AG-MAL, râmu, 194 n. 4. Kidurkazal, daughter of Ninkasi, 145. ki-malla, to bend. tig-zu ki-ma-al-la nu-gí-gí, “Thy neck wearies not in bending,” 168, 2. [Correct the translation.] ki-in-gin, ki-en-gin, Sumer, 115, 24; 134, 19; 189, 17. KI-SAR, ḳaḳḳara tašabbiṭ, 199, 29. Kish, city, 129, 30; 166, 12. é kiš-(ki)-šú, so read, No. 5 Obv. 8. Kullab, city, 149, 14; 173, 1. kunin, gunin, reed basket, 150 n. 3. kurgal, “great mountain,” title of Sumer, 114, 11. Of Enlil, 114, 19; 182, 5. KURUN-NA, (amelu), 196, 34. KUŠ-KU-MAL, 194, 11. L. la’aṭu, gore. Prt. ilûdu, 219, 12:17. labu, panther, 215, 29:32. Lagash, city, 181, 23:26. Laḫama, goddess of Chaos, 113, 5. Laws, promulgated by Dungi, 138, 31. Libit-Ishtar, king, 141. libšu, garment, 214, 27:29; 215, 26. Ligirsig, a god, 113, 3. lilazag, epithet of a deified king, 141, 1. Lillaenna, goddess, 192, 5. limēnu, be evil. II¹ ulammenu-inni, 197, 7. Lugal-dīg, god, 197, 5. lu’ûtu, pollution, 195, 19. M. Magan, land, 112, 2:5. mai̭ālu, couch, 218, 22. malāšu, shear, 195, 20. Mamit, 200, 41. mandatu, form, 195, 21. mal-gar (gi), a musical instrument, 191, 10. mangu, disease, 195, 19. Marduk, god, 151. markasu, leader, 150. masû, seize, 195 n. 5. mašû, to forget, 216, 7. Me-azag, daughter of Ninkasi, 144. meḫru, fellow, 218, 21. Meḫuš, daughter of Ninkasi, 144. Meluḫḫa, land, 112, 6. Meslam, temple in Cutha, 167, 15. mesû, a tree, 159, 23. muk, now, but now, 217, 26. Mulgenna, Saturn, 137, 18. Mulmul, gods, 142. N. nâdu, water bottle, 198, 17. nadîtu, temple devotee, 188, 7. nagû, shout. Prs. inangu, 215, 19. nâku, embrace, 218, 26. namaštû, cattle, etc., 213, 12:17; 214, 1; 219, 14. Namtar, god, 197, 3; 132, 24. Nangt, goddess, 192, 7. [225] Nannar, god, 115, 12; 116, 23; 133, 38; 137, 11; 150, 2. Nergal, god, 131, 6. Nidaba, goddess, 191. ni-gál, cattle, 121, 6. nimir = ligir, 174, 4. ninda, linear measure, 133, 41. Ningal, goddess, No. 19, 5; 148, 3; 151, 3. Ningišzida, god, 133, 34. Nin-isinna, goddess, 122, 16; 191, 15. Ninkasi, goddess, 144. Ninki, goddess, 149, 16. Ninlil, goddess, 116, 20; 123, 20; 137, 12; 146, 14. Ninmada, daughter of Ninkasi, 144. Ninmaḫ, goddess, 116, 22. Ninmenna, epithet of Damgalnunna, 190, 27. Ninsun, goddess, 219, 30; 208 n. 6; 129; 131, 16 (?). Nintudri, goddess, 123, 26. Nintudra, 137, 16. Creatress of man and woman, 192. Ninul, goddess, 149, 16. Ninurašâ, god, 191, 12; 146, 12. Ninzuanna, goddess, 122, 13. Nippur, city, 112, 8; 122, 18:19; 160, 3; 169, 21; 180, 11; 149, 18; 158, 7; 165, 16. NI-SUR (amelu), 196, 35. Nudimmud, god, 199, 25. No. 20, 10. nugiganna, epithet of Innini, 185, 2. nûn apsi, unclean fish, 195 n. 11. Nunamnirri, god, 190, 28; 146, 13; 180, 10:13:17. nun-ùr, epithet of Amurrû, 119, 3. Nusiligga, daughter of Ninkasi, 144. Nusku, god, 146, 7; 163, 13. P. Pabilsag, god. Son and consort of Gula, 173 n. 3; 176, 5. A form of Tammuz. pananumma, formerly, 217, 25. Panunnaki, goddess, consort of Marduk, 163, 9. patāḳu, fashion, break, 214, 4. paturru, a weapon, 200, 37. Pleiades, 142. R. ratātu, demolish, 219, 19. Rimat ilatNinsun, 208 n. 6; 219, 29. Ruškišag, goddess, 132, 28. RU-TIG, an epithet, 141, 2. S. sa-bar; sa-sud-da, liturgical note, 182, 31. šabšiš, cruelly, 215, 30. Sagilla, temple, 158, 15. E-sagila, 160, 5; 166, 5; 166, 11. šaḫātu, be astounded, 216, 10. Arabic saḫiṭa. ṣai̭āḫatu, desire, comfort, 216, 18. šakāpu, fell. I² išsakpu, 215, 30. ṣalûtu, enmity, 199, 27. Šamaš, god, 197, 4:8; 198, 10:13; 199, 25:31. Šamaš-šum-ukin, king. Incantations for, 193–200; 199, 23. Samsuiluna, king, 151. SAR-DI-DA, a relic, 133, 37. Serpent adversary, 183, 21; 148, 12. Seven, sacred number. Seven gods, 196, 30. Ship, in legend, 113, 2. Silsirsir, a chapel. Sin, god. Hymn to, No. 19. sippu, threshold, 219, 13:18. [226] Sippar, city, 158, 10; 160, 5; 166, 19. sirgidda, long song, 140, 54. Siriš, daughter of Ninkasi, 144. Siriškaš, daughter of Ninkasi, 144. Siriškašgig, daughter of Ninkasi, 144. sirsagga, first melody, 117, 28; 139, 48. ŠU-AN = kat ili, 194, 12. See also ŠU-dINNINI, 194, 12. ŠU-NAM-ERIM-MA, 194, 13. ŠU-NAM-LU-GAL-LU, 194, 13. subura, earth, 175, 3. su-ud, sú-ud-ám, epithet of goddess of Šuruppak, 177, 10 and note 4. šuḫuru, hair (?), 215, 23. sukkal-zid, title of Nebo, 163, 10. Šulpae, god, No. 16 II 22. Sumer, land, 113, 21; 114, 11; 136, 2. sumugan, title of Girra, 177, 12 and note; 179, 3. T. Tablet of fates, 132 n. 3. Tammuz, ancient ruler, 208. Liturgy to, 191. Other references, 126; 208; 131, 20. tapāšu, seize, capture, II² uttappiš, 215, 31. temēru, cook, 196, 35. Tigris, river, 183, 12. Tummal, land, 190, 9; 191, 10. U. ud, spirit, word, 150, 1:4; 158, 16; 159, 17:24. ul-al-tar, 191 n. 6. ulinnu, girdle cord, 195, 20. Ulmaš, temple of Anunit, 158, 13; 166, 3. Ur, city, 134, 21; 137, 6. Lamentation for, 150. Other references, No. 19, 4:7:8:16:28: Rev. 5; 151, 3. Ur-azag, king of Isin (?), 140 n. 2. Ur-Engur, king of Ur, 126 ff. urinu, spear (?), 173, 3. ursaggal, epithet for Ninurašā, 165, 11. For Enbilulu, 170, 5. ušumgal, 117, 33. Z. zâbu, flow. li-zu-bu, 198, 16. Cf. gàm = za’ibu, miṭirtu, words for canal, SAI. 691–3. zag-sal, liturgical note, 103 f. No. 21 end. za-am, 138, 34; 139, 38; 140, 56. zênu, be enraged, II¹ uzinu-inni, 197, 6. ZI-TAR-RU-DA = nikis napišti, 194 n. 6. [124] Description of Tablets Number in this volume. 1 Museum number. 7771 Description. Dark brown unbaked tablet. Three columns. Lower edge slightly broken. Knobs at left upper and left lower corners to facilitate the holding of the tablet. H. 7 inches: W. 6½; T. 1½. Second tablet of the Epic of Gilgamish. [125] Autograph Plates Plate LXIII. Plate LXIV. Plate LXV. Plate LXVI. Plate LXVII. Plate LXVIII. Plate LXIX. Tablet of the Gilgamish Epic (Obverse) Plate LXX. Tablet of the Gilgamish Epic (Reverse) *** END OF THE PROJECT GUTENBERG EBOOK THE EPIC OF GILGAMISH ***

      Comparing this version of the Babylonian text, there is a greater focus on when Gilgamesh was with Enkidu on how he was a great companion for him. Dreams are seen as divine in Mesopotamian culture so it is interesting that Gilgamesh was able to foreshadow the presence of Enkidu ahead of time. Because of this dream, it shows that it was a part of destiny for Gilgamesh to find his equal and was a journey for his own identity to become what it is now. Not to mention, Enkidu becoming tame as time went along and reforming into societal norms shows that outsiders can be assimilated and that is what is needed in many nations in order for them to be successful and functional. One instance of us vs them situation would be for Enkidu. He was a wild man at first which was very different from "them" which were the Uruk people as they were calm and controlled. The transition for Enkidu to becoming like the others were crucial if he wanted to be a companion of Gilgamesh and also become a figure that would be respected by others. It also points to the fact that people need to be like others to some extent in order to be liked and respected. Because Enkidu and Gilgamesh are the only prominent characters that are also male, it suggests that during this time period that females were inferior to some extent and did not hold the same respect or regard because they were unable to showcase their own skills or talents. This may have affected the way that the text is written because the perspective of males can contrast those of women because they tend to be more caring and honest. Not to mention, the other translations of the text mention more about Gilgamesh's longing for immortality so the absence or lack of information on that aspect creates a more biased view of Enkidu and alters the way that Gilgamesh is viewed as well. The low point of the text has to be more in the beginning when the people are complaining about the rule of Gilgamesh because he does not contain the same qualities of a good leader that he obtains later on. With that being the case, the text reaches a high point when Gilgamesh sees Enkidu as an equal to himself and embraces him as a companion which allows him to be a much better leader and also allows the people in his land to feel better as a result. CC BY Ajey Sasimugunthan (contact)

    1. The Gilgamesh Epic is the most notable literary product of Babylonia as yet discovered in the mounds of Mesopotamia. It recounts the exploits and adventures of a favorite hero, and in its final form covers twelve tablets, each tablet consisting of six columns (three on the obverse and three on the reverse) of about 50 lines for each column, or a total of about 3600 lines. Of this total, however, barely more than one-half has been found among the remains of the great collection of cuneiform tablets gathered by King Ashurbanapal (668–626 B.C.) in his palace at Nineveh, and discovered by Layard in 18541 in the course of his excavations of the mound Kouyunjik (opposite Mosul). The fragments of the epic painfully gathered—chiefly by George Smith—from the circa 30,000 tablets and bits of tablets brought to the British Museum were published in model form by Professor Paul Haupt;2 and that edition still remains the primary source for our study of the Epic. [10] For the sake of convenience we may call the form of the Epic in the fragments from the library of Ashurbanapal the Assyrian version, though like most of the literary productions in the library it not only reverts to a Babylonian original, but represents a late copy of a much older original. The absence of any reference to Assyria in the fragments recovered justifies us in assuming that the Assyrian version received its present form in Babylonia, perhaps in Erech; though it is of course possible that some of the late features, particularly the elaboration of the teachings of the theologians or schoolmen in the eleventh and twelfth tablets, may have been produced at least in part under Assyrian influence. A definite indication that the Gilgamesh Epic reverts to a period earlier than Hammurabi (or Hammurawi)3 i.e., beyond 2000 B. C., was furnished by the publication of a text clearly belonging to the first Babylonian dynasty (of which Hammurabi was the sixth member) in CT. VI, 5; which text Zimmern4 recognized as a part of the tale of Atra-ḫasis, one of the names given to the survivor of the deluge, recounted on the eleventh tablet of the Gilgamesh Epic.5 This was confirmed by the discovery6 of a [11]fragment of the deluge story dated in the eleventh year of Ammisaduka, i.e., c. 1967 B.C. In this text, likewise, the name of the deluge hero appears as Atra-ḫasis (col. VIII, 4).7 But while these two tablets do not belong to the Gilgamesh Epic and merely introduce an episode which has also been incorporated into the Epic, Dr. Bruno Meissner in 1902 published a tablet, dating, as the writing and the internal evidence showed, from the Hammurabi period, which undoubtedly is a portion of what by way of distinction we may call an old Babylonian version.8 It was picked up by Dr. Meissner at a dealer’s shop in Bagdad and acquired for the Berlin Museum. The tablet consists of four columns (two on the obverse and two on the reverse) and deals with the hero’s wanderings in search of a cure from disease with which he has been smitten after the death of his companion Enkidu. The hero fears that the disease will be fatal and longs to escape death. It corresponds to a portion of Tablet X of the Assyrian version. Unfortunately, only the lower portion of the obverse and the upper of the reverse have been preserved (57 lines in all); and in default of a colophon we do not know the numeration of the tablet in this old Babylonian edition. Its chief value, apart from its furnishing a proof for the existence of the Epic as early as 2000 B. C., lies (a) in the writing Gish instead of Gish-gi(n)-mash in the Assyrian version, for the name of the hero, (b) in the writing En-ki-dũ—abbreviated from dũg—() “Enki is good” for En-ki-dú () in the Assyrian version,9 and (c) in the remarkable address of the maiden Sabitum, dwelling at the seaside, to whom Gilgamesh comes in the course of his wanderings. From the Assyrian version we know that the hero tells the maiden of his grief for his lost companion, and of his longing to escape the dire fate of Enkidu. In the old Babylonian fragment the answer of Sabitum is given in full, and the sad note that it strikes, showing how hopeless it is for man to try to escape death which is in store for all mankind, is as remarkable as is the philosophy of “eat, drink and be merry” which Sabitum imparts. The address indicates how early the tendency arose to attach to ancient tales the current religious teachings. [12] “Why, O Gish, does thou run about? The life that thou seekest, thou wilt not find. When the gods created mankind, Death they imposed on mankind; Life they kept in their power. Thou, O Gish, fill thy belly, Day and night do thou rejoice, Daily make a rejoicing! Day and night a renewal of jollification! Let thy clothes be clean, Wash thy head and pour water over thee! Care for the little one who takes hold of thy hand! Let the wife rejoice in thy bosom!” Such teachings, reminding us of the leading thought in the Biblical Book of Ecclesiastes,10 indicate the didactic character given to ancient tales that were of popular origin, but which were modified and elaborated under the influence of the schools which arose in connection with the Babylonian temples. The story itself belongs, therefore, to a still earlier period than the form it received in this old Babylonian version. The existence of this tendency at so early a date comes to us as a genuine surprise, and justifies the assumption that the attachment of a lesson to the deluge story in the Assyrian version, to wit, the limitation in attainment of immortality to those singled out by the gods as exceptions, dates likewise from the old Babylonian period. The same would apply to the twelfth tablet, which is almost entirely didactic, intended to illustrate the impossibility of learning anything of the fate of those who have passed out of this world. It also emphasizes the necessity of contenting oneself with the comfort that the care of the dead, by providing burial and food and drink offerings for them affords, as the only means of ensuring for them rest and freedom from the pangs of hunger and distress. However, it is of course possible that the twelfth tablet, which impresses one as a supplement to the adventures of Gilgamesh, ending with his return to Uruk (i.e., Erech) at the close of the eleventh tablet, may represent a later elaboration of the tendency to connect religious teachings with the exploits of a favorite hero. [13] We now have further evidence both of the extreme antiquity of the literary form of the Gilgamesh Epic and also of the disposition to make the Epic the medium of illustrating aspects of life and the destiny of mankind. The discovery by Dr. Arno Poebel of a Sumerian form of the tale of the descent of Ishtar to the lower world and her release11—apparently a nature myth to illustrate the change of season from summer to winter and back again to spring—enables us to pass beyond the Akkadian (or Semitic) form of tales current in the Euphrates Valley to the Sumerian form. Furthermore, we are indebted to Dr. Langdon for the identification of two Sumerian fragments in the Nippur Collection which deal with the adventures of Gilgamesh, one in Constantinople,12 the other in the collection of the University of Pennsylvania Museum.13 The former, of which only 25 lines are preserved (19 on the obverse and 6 on the reverse), appears to be a description of the weapons of Gilgamesh with which he arms himself for an encounter—presumably the encounter with Ḫumbaba or Ḫuwawa, the ruler of the cedar forest in the mountain.14 The latter deals with the building operations of Gilgamesh in the city of Erech. A text in Zimmern’s Sumerische Kultlieder aus altbabylonischer Zeit (Leipzig, 1913), No. 196, appears likewise to be a fragment of the Sumerian version of the Gilgamesh Epic, bearing on the episode of Gilgamesh’s and Enkidu’s relations to the goddess Ishtar, covered in the sixth and seventh tablets of the Assyrian version.15 Until, however, further fragments shall have turned up, it would be hazardous to institute a comparison between the Sumerian and the Akkadian versions. All that can be said for the present is that there is every reason to believe in the existence of a literary form of the Epic in Sumerian which presumably antedated the Akkadian recension, [14]just as we have a Sumerian form of Ishtar’s descent into the nether world, and Sumerian versions of creation myths, as also of the Deluge tale.16 It does not follow, however, that the Akkadian versions of the Gilgamesh Epic are translations of the Sumerian, any more than that the Akkadian creation myths are translations of a Sumerian original. Indeed, in the case of the creation myths, the striking difference between the Sumerian and Akkadian views of creation17 points to the independent production of creation stories on the part of the Semitic settlers of the Euphrates Valley, though no doubt these were worked out in part under Sumerian literary influences. The same is probably true of Deluge tales, which would be given a distinctly Akkadian coloring in being reproduced and steadily elaborated by the Babylonian literati attached to the temples. The presumption is, therefore, in favor of an independent literary origin for the Semitic versions of the Gilgamesh Epic, though naturally with a duplication of the episodes, or at least of some of them, in the Sumerian narrative. Nor does the existence of a Sumerian form of the Epic necessarily prove that it originated with the Sumerians in their earliest home before they came to the Euphrates Valley. They may have adopted it after their conquest of southern Babylonia from the Semites who, there are now substantial grounds for believing, were the earlier settlers in the Euphrates Valley.18 We must distinguish, therefore, between the earliest literary form, which was undoubtedly Sumerian, and the origin of the episodes embodied in the Epic, including the chief actors, Gilgamesh and his companion Enkidu. It will be shown that one of the chief episodes, the encounter of the two heroes with a powerful guardian or ruler of a cedar forest, points to a western region, more specifically to Amurru, as the scene. The names of the two chief actors, moreover, appear to have been “Sumerianized” by an artificial process,19 and if this view turns out to be [15]correct, we would have a further ground for assuming the tale to have originated among the Akkadian settlers and to have been taken over from them by the Sumerians. New light on the earliest Babylonian version of the Epic, as well as on the Assyrian version, has been shed by the recovery of two substantial fragments of the form which the Epic had assumed in Babylonia in the Hammurabi period. The study of this important new material also enables us to advance the interpretation of the Epic and to perfect the analysis into its component parts. In the spring of 1914, the Museum of the University of Pennsylvania acquired by purchase a large tablet, the writing of which as well as the style and the manner of spelling verbal forms and substantives pointed distinctly to the time of the first Babylonian dynasty. The tablet was identified by Dr. Arno Poebel as part of the Gilgamesh Epic; and, as the colophon showed, it formed the second tablet of the series. He copied it with a view to publication, but the outbreak of the war which found him in Germany—his native country—prevented him from carrying out this intention.20 He, however, utilized some of its contents in his discussion of the historical or semi-historical traditions about Gilgamesh, as revealed by the important list of partly mythical and partly historical dynasties, found among the tablets of the Nippur collection, in which Gilgamesh occurs21 as a King of an Erech dynasty, whose father was Â, a priest of Kulab.22 The publication of the tablet was then undertaken by Dr. Stephen Langdon in monograph form under the title, “The Epic of Gilgamish.”23 In a preliminary article on the tablet in the Museum Journal, Vol. VIII, pages 29–38, Dr. Langdon took the tablet to be of the late [16]Persian period (i.e., between the sixth and third century B. C.), but his attention having been called to this error of some 1500 years, he corrected it in his introduction to his edition of the text, though he neglected to change some of his notes in which he still refers to the text as “late.”24 In addition to a copy of the text, accompanied by a good photograph, Dr. Langdon furnished a transliteration and translation with some notes and a brief introduction. The text is unfortunately badly copied, being full of errors; and the translation is likewise very defective. A careful collation with the original tablet was made with the assistance of Dr. Edward Chiera, and as a consequence we are in a position to offer to scholars a correct text. We beg to acknowledge our obligations to Dr. Gordon, the Director of the Museum of the University of Pennsylvania, for kindly placing the tablet at our disposal. Instead of republishing the text, I content myself with giving a full list of corrections in the appendix to this volume which will enable scholars to control our readings, and which will, I believe, justify the translation in the numerous passages in which it deviates from Dr. Langdon’s rendering. While credit should be given to Dr. Langdon for having made this important tablet accessible, the interests of science demand that attention be called to his failure to grasp the many important data furnished by the tablet, which escaped him because of his erroneous readings and faulty translations. The tablet, consisting of six columns (three on the obverse and three on the reverse), comprised, according to the colophon, 240 lines25 and formed the second tablet of the series. Of the total, 204 lines are preserved in full or in part, and of the missing thirty-six quite a number can be restored, so that we have a fairly complete tablet. The most serious break occurs at the top of the reverse, where about eight lines are missing. In consequence of this the connection between the end of the obverse (where about five lines are missing) and the beginning of the reverse is obscured, though not to the extent of our entirely losing the thread of the narrative. [17] About the same time that the University of Pennsylvania Museum purchased this second tablet of the Gilgamesh Series, Yale University obtained a tablet from the same dealer, which turned out to be a continuation of the University of Pennsylvania tablet. That the two belong to the same edition of the Epic is shown by their agreement in the dark brown color of the clay, in the writing as well as in the size of the tablet, though the characters on the Yale tablet are somewhat cramped and in consequence more difficult to read. Both tablets consist of six columns, three on the obverse and three on the reverse. The measurements of both are about the same, the Pennsylvania tablet being estimated at about 7 inches high, as against 72/16 inches for the Yale tablet, while the width of both is 6½ inches. The Yale tablet is, however, more closely written and therefore has a larger number of lines than the Pennsylvania tablet. The colophon to the Yale tablet is unfortunately missing, but from internal evidence it is quite certain that the Yale tablet follows immediately upon the Pennsylvania tablet and, therefore, may be set down as the third of the series. The obverse is very badly preserved, so that only a general view of its contents can be secured. The reverse contains serious gaps in the first and second columns. The scribe evidently had a copy before him which he tried to follow exactly, but finding that he could not get all of the copy before him in the six columns, he continued the last column on the edge. In this way we obtain for the sixth column 64 lines as against 45 for column IV, and 47 for column V, and a total of 292 lines for the six columns. Subtracting the 16 lines written on the edge leaves us 276 lines for our tablet as against 240 for its companion. The width of each column being the same on both tablets, the difference of 36 lines is made up by the closer writing. Both tablets have peculiar knobs at the sides, the purpose of which is evidently not to facilitate holding the tablet in one’s hand while writing or reading it, as Langdon assumed26 (it would be quite impracticable for this purpose), but simply to protect the tablet in its position on a shelf, where it would naturally be placed on the edge, just as we arrange books on a shelf. Finally be it noted that these two tablets of the old Babylonian version do not belong to the same edition as the Meissner tablet above described, for the latter consists [18]of two columns each on obverse and reverse, as against three columns each in the case of our two tablets. We thus have the interesting proof that as early as 2000 B.C. there were already several editions of the Epic. As to the provenance of our two tablets, there are no definite data, but it is likely that they were found by natives in the mounds at Warka, from which about the year 1913, many tablets came into the hands of dealers. It is likely that where two tablets of a series were found, others of the series were also dug up, and we may expect to find some further portions of this old Babylonian version turning up in the hands of other dealers or in museums. Coming to the contents of the two tablets, the Pennsylvania tablet deals with the meeting of the two heroes, Gilgamesh and Enkidu, their conflict, followed by their reconciliation, while the Yale tablet in continuation takes up the preparations for the encounter of the two heroes with the guardian of the cedar forest, Ḫumbaba—but probably pronounced Ḫubaba27—or, as the name appears in the old Babylonian version, Ḫuwawa. The two tablets correspond, therefore, to portions of Tablets I to V of the Assyrian version;28 but, as will be shown in detail further on, the number of completely parallel passages is not large, and the Assyrian version shows an independence of the old Babylonian version that is larger than we had reason to expect. In general, it may be said that the Assyrian version is more elaborate, which points to its having received its present form at a considerably later period than the old Babylonian version.29 On the other hand, we already find in the Babylonian version the tendency towards repetition, which is characteristic of Babylonian-Assyrian tales in general. Through the two Babylonian tablets we are enabled to fill out certain details [19]of the two episodes with which they deal: (1) the meeting of Gilgamesh and Enkidu, and (2) the encounter with Ḫuwawa; while their greatest value consists in the light that they throw on the gradual growth of the Epic until it reached its definite form in the text represented by the fragments in Ashurbanapal’s Library. Let us now take up the detailed analysis, first of the Pennsylvania tablet and then of the Yale tablet. The Pennsylvania tablet begins with two dreams recounted by Gilgamesh to his mother, which the latter interprets as presaging the coming of Enkidu to Erech. In the one, something like a heavy meteor falls from heaven upon Gilgamesh and almost crushes him. With the help of the heroes of Erech, Gilgamesh carries the heavy burden to his mother Ninsun. The burden, his mother explains, symbolizes some one who, like Gilgamesh, is born in the mountains, to whom all will pay homage and of whom Gilgamesh will become enamoured with a love as strong as that for a woman. In a second dream, Gilgamesh sees some one who is like him, who brandishes an axe, and with whom he falls in love. This personage, the mother explains, is again Enkidu. Langdon is of the opinion that these dreams are recounted to Enkidu by a woman with whom Enkidu cohabits for six days and seven nights and who weans Enkidu from association with animals. This, however, cannot be correct. The scene between Enkidu and the woman must have been recounted in detail in the first tablet, as in the Assyrian version,30 whereas here in the second tablet we have the continuation of the tale with Gilgamesh recounting his dreams directly to his mother. The story then continues with the description of the coming of Enkidu, conducted by the woman to the outskirts of Erech, where food is given him. The main feature of the incident is the conversion of Enkidu to civilized life. Enkidu, who hitherto had gone about naked, is clothed by the woman. Instead of sucking milk and drinking from a trough like an animal, food and strong drink are placed before him, and he is taught how to eat and drink in human fashion. In human fashion he also becomes drunk, and his “spree” is naïvely described: “His heart became glad and his face shone.”31 [20]Like an animal, Enkidu’s body had hitherto been covered with hair, which is now shaved off. He is anointed with oil, and clothed “like a man.” Enkidu becomes a shepherd, protecting the fold against wild beasts, and his exploit in dispatching lions is briefly told. At this point—the end of column 3 (on the obverse), i.e., line 117, and the beginning of column 4 (on the reverse), i.e., line 131—a gap of 13 lines—the tablet is obscure, but apparently the story of Enkidu’s gradual transformation from savagery to civilized life is continued, with stress upon his introduction to domestic ways with the wife chosen or decreed for him, and with work as part of his fate. All this has no connection with Gilgamesh, and it is evident that the tale of Enkidu was originally an independent tale to illustrate the evolution of man’s career and destiny, how through intercourse with a woman he awakens to the sense of human dignity, how he becomes accustomed to the ways of civilization, how he passes through the pastoral stage to higher walks of life, how the family is instituted, and how men come to be engaged in the labors associated with human activities. In order to connect this tale with the Gilgamesh story, the two heroes are brought together; the woman taking on herself, in addition to the rôle of civilizer, that of the medium through which Enkidu is brought to Gilgamesh. The woman leads Enkidu from the outskirts of Erech into the city itself, where the people on seeing him remark upon his likeness to Gilgamesh. He is the very counterpart of the latter, though somewhat smaller in stature. There follows the encounter between the two heroes in the streets of Erech, where they engage in a fierce combat. Gilgamesh is overcome by Enkidu and is enraged at being thrown to the ground. The tablet closes with the endeavor of Enkidu to pacify Gilgamesh. Enkidu declares that the mother of Gilgamesh has exalted her son above the ordinary mortal, and that Enlil himself has singled him out for royal prerogatives. After this, we may assume, the two heroes become friends and together proceed to carry out certain exploits, the first of which is an attack upon the mighty guardian of the cedar forest. This is the main episode in the Yale tablet, which, therefore, forms the third tablet of the old Babylonian version. In the first column of the obverse of the Yale tablet, which is badly preserved, it would appear that the elders of Erech (or perhaps the people) are endeavoring to dissuade Gilgamesh from making the [21]attempt to penetrate to the abode of Ḫuwawa. If this is correct, then the close of the first column may represent a conversation between these elders and the woman who accompanies Enkidu. It would be the elders who are represented as “reporting the speech to the woman,” which is presumably the determination of Gilgamesh to fight Ḫuwawa. The elders apparently desire Enkidu to accompany Gilgamesh in this perilous adventure, and with this in view appeal to the woman. In the second column after an obscure reference to the mother of Gilgamesh—perhaps appealing to the sun-god—we find Gilgamesh and Enkidu again face to face. From the reference to Enkidu’s eyes “filled with tears,” we may conclude that he is moved to pity at the thought of what will happen to Gilgamesh if he insists upon carrying out his purpose. Enkidu, also, tries to dissuade Gilgamesh. This appears to be the main purport of the dialogue between the two, which begins about the middle of the second column and extends to the end of the third column. Enkidu pleads that even his strength is insufficient, “My arms are lame, My strength has become weak.” (lines 88–89) Gilgamesh apparently asks for a description of the terrible tyrant who thus arouses the fear of Enkidu, and in reply Enkidu tells him how at one time, when he was roaming about with the cattle, he penetrated into the forest and heard the roar of Ḫuwawa which was like that of a deluge. The mouth of the tyrant emitted fire, and his breath was death. It is clear, as Professor Haupt has suggested,32 that Enkidu furnishes the description of a volcano in eruption, with its mighty roar, spitting forth fire and belching out a suffocating smoke. Gilgamesh is, however, undaunted and urges Enkidu to accompany him in the adventure. “I will go down to the forest,” says Gilgamesh, if the conjectural restoration of the line in question (l. 126) is correct. Enkidu replies by again drawing a lurid picture of what will happen “When we go (together) to the forest…….” This speech of Enkidu is continued on the reverse. In reply Gilgamesh emphasizes his reliance upon the good will of Shamash and reproaches Enkidu with cowardice. He declares himself superior to Enkidu’s warning, and in bold terms [22]says that he prefers to perish in the attempt to overcome Ḫuwawa rather than abandon it. “Wherever terror is to be faced, Thou, forsooth, art in fear of death. Thy prowess lacks strength. I will go before thee, Though thy mouth shouts to me: ‘thou art afraid to approach,’ If I fall, I will establish my name.” (lines 143–148) There follows an interesting description of the forging of the weapons for the two heroes in preparation for the encounter.33 The elders of Erech when they see these preparations are stricken with fear. They learn of Ḫuwawa’s threat to annihilate Gilgamesh if he dares to enter the cedar forest, and once more try to dissuade Gilgamesh from the undertaking. “Thou art young, O Gish, and thy heart carries thee away, Thou dost not know what thou proposest to do.” (lines 190–191) They try to frighten Gilgamesh by repeating the description of the terrible Ḫuwawa. Gilgamesh is still undaunted and prays to his patron deity Shamash, who apparently accords him a favorable “oracle” (têrtu). The two heroes arm themselves for the fray, and the elders of Erech, now reconciled to the perilous undertaking, counsel Gilgamesh to take provision along for the undertaking. They urge Gilgamesh to allow Enkidu to take the lead, for “He is acquainted with the way, he has trodden the road [to] the entrance of the forest.” (lines 252–253) The elders dismiss Gilgamesh with fervent wishes that Enkidu may track out the “closed path” for Gilgamesh, and commit him to the care of Lugalbanda—here perhaps an epithet of Shamash. They advise Gilgamesh to perform certain rites, to wash his feet in the stream of Ḫuwawa and to pour out a libation of water to Shamash. Enkidu follows in a speech likewise intended to encourage the hero; and with the actual beginning of the expedition against Ḫuwawa the tablet ends. The encounter itself, with the triumph of the two heroes, must have been described in the fourth tablet. [23] Now before taking up the significance of the additions to our knowledge of the Epic gained through these two tablets, it will be well to discuss the forms in which the names of the two heroes and of the ruler of the cedar forest occur in our tablets. As in the Meissner fragment, the chief hero is invariably designated as dGish in both the Pennsylvania and Yale tablets; and we may therefore conclude that this was the common form in the Hammurabi period, as against the writing dGish-gì(n)-mash34 in the Assyrian version. Similarly, as in the Meissner fragment, the second hero’s name is always written En-ki-dũ35 (abbreviated from dúg) as against En-ki-dú in the Assyrian version. Finally, we encounter in the Yale tablet for the first time the writing Ḫu-wa-wa as the name of the guardian of the cedar forest, as against Ḫum-ba-ba in the Assyrian version, though in the latter case, as we may now conclude from the Yale tablet, the name should rather be read Ḫu-ba-ba.36 The variation in the writing of the latter name is interesting as pointing to the aspirate pronunciation of the labial in both instances. The name would thus present a complete parallel to the Hebrew name Ḫowawa (or Ḫobab) who appears as the brother-in-law of Moses in the P document, Numbers 10, 29.37 Since the name also occurs, written precisely as in the Yale tablet, among the “Amoritic” names in the important lists published by Dr. Chiera,38 there can be no doubt that [24]Ḫuwawa or Ḫubaba is a West Semitic name. This important fact adds to the probability that the “cedar forest” in which Ḫuwawa dwells is none other than the Lebanon district, famed since early antiquity for its cedars. This explanation of the name Ḫuwawa disposes of suppositions hitherto brought forward for an Elamitic origin. Gressmann39 still favors such an origin, though realizing that the description of the cedar forest points to the Amanus or Lebanon range. In further confirmation of the West Semitic origin of the name, we have in Lucian, De Dea Syria, § 19, the name Kombabos40 (the guardian of Stratonika), which forms a perfect parallel to Ḫu(m)baba. Of the important bearings of this western character of the name Ḫuwawa on the interpretation and origin of the Gilgamesh Epic, suggesting that the episode of the encounter between the tyrant and the two heroes rests upon a tradition of an expedition against the West or Amurru land, we shall have more to say further on. The variation in the writing of the name Enkidu is likewise interesting. It is evident that the form in the old Babylonian version with the sign dũ (i.e., dúg) is the original, for it furnishes us with a suitable etymology “Enki is good.” The writing with dúg, pronounced dū, also shows that the sign dú as the third element in the form which the name has in the Assyrian version is to be read dú, and that former readings like Ea-bani must be definitely abandoned.41 The form with dú is clearly a phonetic writing of the Sumerian name, the sign dú being chosen to indicate the pronunciation (not the ideograph) of the third element dúg. This is confirmed by the writing En-gi-dú in the syllabary CT XVIII, 30, 10. The phonetic writing is, therefore, a warning against any endeavor to read the name by an Akkadian transliteration of the signs. This would not of itself prove that Enkidu is of Sumerian origin, for it might well be that the writing En-ki-dú is an endeavor to give a Sumerian aspect to a name that may have been foreign. The element dúg corresponds to the Semitic ṭâbu, “good,” and En-ki being originally a designation of a deity as the “lord of the land,” which would be the Sumerian [25]manner of indicating a Semitic Baal, it is not at all impossible that En-ki-dúg may be the “Sumerianized” form of a Semitic בַּעל טזֹב “Baal is good.” It will be recalled that in the third column of the Yale tablet, Enkidu speaks of himself in his earlier period while still living with cattle, as wandering into the cedar forest of Ḫuwawa, while in another passage (ll. 252–253) he is described as “acquainted with the way … to the entrance of the forest.” This would clearly point to the West as the original home of Enkidu. We are thus led once more to Amurru—taken as a general designation of the West—as playing an important role in the Gilgamesh Epic.42 If Gilgamesh’s expedition against Ḫuwawa of the Lebanon district recalls a Babylonian campaign against Amurru, Enkidu’s coming from his home, where, as we read repeatedly in the Assyrian version, “He ate herbs with the gazelles, Drank out of a trough with cattle,”43 may rest on a tradition of an Amorite invasion of Babylonia. The fight between Gilgamesh and Enkidu would fit in with this tradition, while the subsequent reconciliation would be the form in which the tradition would represent the enforced union between the invaders and the older settlers. Leaving this aside for the present, let us proceed to a consideration of the relationship of the form dGish, for the chief personage in the Epic in the old Babylonian version, to dGish-gi(n)-mash in the Assyrian version. Of the meaning of Gish there is fortunately no doubt. It is clearly the equivalent to the Akkadian zikaru, “man” (Brünnow No. 5707), or possibly rabû, “great” (Brünnow No. 5704). Among various equivalents, the preference is to be given to itlu, “hero.” The determinative for deity stamps the person so designated as deified, or as in part divine, and this is in accord with the express statement in the Assyrian version of the Gilgamesh Epic which describes the hero as “Two-thirds god and one-third human.”44 [26]Gish is, therefore, the hero-god par excellence; and this shows that we are not dealing with a genuine proper name, but rather with a descriptive attribute. Proper names are not formed in this way, either in Sumerian or Akkadian. Now what relation does this form Gish bear to as the name of the hero is invariably written in the Assyrian version, the form which was at first read dIz-tu-bar or dGish-du-bar by scholars, until Pinches found in a neo-Babylonian syllabary45 the equation of it with Gi-il-ga-mesh? Pinches’ discovery pointed conclusively to the popular pronunciation of the hero’s name as Gilgamesh; and since Aelian (De natura Animalium XII, 2) mentions a Babylonian personage Gilgamos (though what he tells us of Gilgamos does not appear in our Epic, but seems to apply to Etana, another figure of Babylonian mythology), there seemed to be no further reason to question that the problem had been solved. Besides, in a later Syriac list of Babylonian kings found in the Scholia of Theodor bar Koni, the name גלמגום with a variant גמיגמוס occurs,46 and it is evident that we have here again the Gi-il-ga-mesh, discovered by Pinches. The existence of an old Babylonian hero Gilgamesh who was likewise a king is thus established, as well as his identification with It is evident that we cannot read this name as Iz-tu-bar or Gish-du-bar, but that we must read the first sign as Gish and the third as Mash, while for the second we must assume a reading Gìn or Gi. This would give us Gish-gì(n)-mash which is clearly again (like En-ki-dú) not an etymological writing but a phonetic one, intended to convey an approach to the popular pronunciation. Gi-il-ga-mesh might well be merely a variant for Gish-ga-mesh, or vice versa, and this would come close to Gish-gi-mash. Now, when we have a name the pronunciation of which is not definite but approximate, and which is written in various ways, the probabilities are that the name is foreign. A foreign name might naturally be spelled in various ways. The [27]Epic in the Assyrian version clearly depicts dGish-gì(n)-mash as a conqueror of Erech, who forces the people into subjection, and whose autocratic rule leads the people of Erech to implore the goddess Aruru to create a rival to him who may withstand him. In response to this appeal dEnkidu is formed out of dust by Aruru and eventually brought to Erech.47 Gish-gì(n)-mash or Gilgamesh is therefore in all probability a foreigner; and the simplest solution suggested by the existence of the two forms (1) Gish in the old Babylonian version and (2) Gish-gì(n)-mash in the Assyrian version, is to regard the former as an abbreviation, which seemed appropriate, because the short name conveyed the idea of the “hero” par excellence. If Gish-gì(n)-mash is a foreign name, one would think in the first instance of Sumerian; but here we encounter a difficulty in the circumstance that outside of the Epic this conqueror and ruler of Erech appears in quite a different form, namely, as dGish-bil-ga-mesh, with dGish-gibil(or bìl)-ga-mesh and dGish-bil-ge-mesh as variants.48 In the remarkable list of partly mythological and partly historical dynasties, published by Poebel,49 the fifth member of the first dynasty of Erech appears as dGish-bil-ga-mesh; and similarly in an inscription of the days of Sin-gamil, dGish-bil-ga-mesh is mentioned as the builder of the wall of Erech.50 Moreover, in the several fragments of the Sumerian version of the Epic we have invariably the form dGish-bil-ga-mesh. It is evident, therefore, that this is the genuine form of the name in Sumerian and presumably, therefore, the oldest form. By way of further confirmation we have in the syllabary above referred to, CT, XVIII, 30, 6–8, three designations of our hero, viz: dGish-gibil(or bíl)-ga-mesh muḳ-tab-lu (“warrior”) a-lik pa-na (“leader”) All three designations are set down as the equivalent of the Sumerian Esigga imin i.e., “the seven-fold hero.” [28] Of the same general character is the equation in another syllabary:51 Esigga-tuk and its equivalent Gish-tuk = “the one who is a hero.” Furthermore, the name occurs frequently in “Temple” documents of the Ur dynasty in the form dGish-bil-ga-mesh52 with dGish-bil-gi(n)-mesh as a variant.53 In a list of deities (CT XXV, 28, K 7659) we likewise encounter dGish-gibil(or bíl)-ga-mesh, and lastly in a syllabary we have the equation54 dGish-gi-mas-[si?] = dGish-bil-[ga-mesh]. The variant Gish-gibil for Gish-bil may be disposed of readily, in view of the frequent confusion or interchange of the two signs Bil (Brünnow No. 4566) and Gibil or Bíl (Brünnow No. 4642) which has also the value Gi (Brünnow 4641), so that we might also read Gish-gi-ga-mesh. Both signs convey the idea of “fire,” “renew,” etc.; both revert to the picture of flames of fire, in the one case with a bowl (or some such obiect) above it, in the other the flames issuing apparently from a torch.55 The meaning of the name is not affected whether we read dGish-bil-ga-mesh or dGish-gibil(or bíl)-ga-mesh, for the middle element in the latter case being identical with the fire-god, written dBil-gi and to be pronounced in the inverted form as Gibil with -ga (or ge) as the phonetic complement; it is equivalent, therefore, to the writing bil-ga in the former case. Now Gish-gibil or Gish-bíl conveys the idea of abu, “father” (Brünnow No. 5713), just as Bil (Brünnow No. 4579) has this meaning, while Pa-gibil-(ga) or Pa-bíl-ga is abu abi, “grandfather.”56 This meaning may be derived from Gibil, as also from Bíl = išatu, “fire,” then eššu, “new,” then abu, “father,” as the renewer or creator. Gish with Bíl or Gibil would, therefore, be “the father-man” or “the father-hero,” [29]i.e., again the hero par excellence, the original hero, just as in Hebrew and Arabic ab is used in this way.57 The syllable ga being a phonetic complement, the element mesh is to be taken by itself and to be explained, as Poebel suggested, as “hero” (itlu. Brünnow No. 5967). We would thus obtain an entirely artificial combination, “man (or hero), father, hero,” which would simply convey in an emphatic manner the idea of the Ur-held, the original hero, the father of heroes as it were—practically the same idea, therefore, as the one conveyed by Gish alone, as the hero par excellence. Our investigation thus leads us to a substantial identity between Gish and the longer form Gish-bil(or bíl)-ga-mesh, and the former might, therefore, well be used as an abbreviation of the latter. Both the shorter and the longer forms are descriptive epithets based on naive folk etymology, rather than personal names, just as in the designation of our hero as muḳtablu, the “fighter,” or as âlik pâna, “the leader,” or as Esigga imin, “the seven-fold hero,” or Esigga tuk, “the one who is a hero,” are descriptive epithets, and as Atra-ḫasis, “the very wise one,” is such an epithet for the hero of the deluge story. The case is different with Gi-il-ga-mesh, or Gish-gì(n)-mash, which represent the popular and actual pronunciation of the name, or at least the approach to such pronunciation. Such forms, stripped as they are of all artificiality, impress one as genuine names. The conclusion to which we are thus led is that Gish-bil(or bíl)-ga-mesh is a play upon the genuine name, to convey to those to whom the real name, as that of a foreigner, would suggest no meaning an interpretation fitting in with his character. In other words, Gish-bil-ga-mesh is a “Sumerianized” form of the name, introduced into the Sumerian version of the tale which became a folk-possession in the Euphrates Valley. Such plays upon names to suggest the character of an individual or some incident are familiar to us from the narratives in Genesis.58 They do not constitute genuine etymologies and are rarely of use in leading to a correct etymology. Reuben, e.g., certainly does not mean “Yahweh has seen my affliction,” which the mother is supposed to have exclaimed at [30]the birth (Genesis 29, 32), with a play upon ben and be’onyi, any more than Judah means “I praise Yahweh” (v. 35), though it does contain the divine name (Yehô) as an element. The play on the name may be close or remote, as long as it fulfills its function of suggesting an etymology that is complimentary or appropriate. In this way, an artificial division and at the same time a distortion of a foreign name like Gilgamesh into several elements, Gish-bil-ga-mesh, is no more violent than, for example, the explanation of Issachar or rather Issaschar as “God has given my hire” (Genesis 30, 18) with a play upon the element sechar, and as though the name were to be divided into Yah (“God”) and sechar (“hire”); or the popular name of Alexander among the Arabs as Zu’l Karnaini, “the possessor of the two horns.” with a suggestion of his conquest of two hemispheres, or what not.59 The element Gil in Gilgamesh would be regarded as a contraction of Gish-bil or gi-bil, in order to furnish the meaning “father-hero,” or Gil might be looked upon as a variant for Gish, which would give us the “phonetic” form in the Assyrian version dGish-gi-mash,60 as well as such a variant writing dGish-gi-mas-(si). Now a name like Gilgamesh, upon which we may definitely settle as coming closest to the genuine form, certainly impresses one as foreign, i.e., it is neither Sumerian nor Akkadian; and we have already suggested that the circumstance that the hero of the Epic is portrayed as a conqueror of Erech, and a rather ruthless one at that, points to a tradition of an invasion of the Euphrates Valley as the background for the episode in the first tablet of the series. Now it is significant that many of the names in the “mythical” dynasties, as they appear in Poebel’s list,61 are likewise foreign, such as Mes-ki-in-ga-še-ir, son of the god Shamash (and the founder of the “mythical” dynasty of Erech of which dGish-bil-ga-mesh is the fifth member),62 and En-me-ir-kár his son. In a still earlier “mythical” dynasty, we encounter names like Ga-lu-mu-um, Zu-ga-gi-ib, Ar-pi, [31]E-ta-na,63 which are distinctly foreign, while such names as En-me(n)-nun-na and Bar-sal-nun-na strike one again as “Sumerianized” names rather than as genuine Sumerian formations.64 Some of these names, as Galumum, Arpi and Etana, are so Amoritic in appearance, that one may hazard the conjecture of their western origin. May Gilgamesh likewise belong to the Amurru65 region, or does he represent a foreigner from the East in contrast to Enkidu, whose name, we have seen, may have been Baal-Ṭôb in the West, with which region he is according to the Epic so familiar? It must be confessed that the second element ga-mesh would fit in well with a Semitic origin for the name, for the element impresses one as the participial form of a Semitic stem g-m-š, just as in the second element of Meskin-gašer we have such a form. Gil might then be the name of a West-Semitic deity. Such conjectures, however, can for the present not be substantiated, and we must content ourselves with the conclusion that Gilgamesh as the real name of the hero, or at least the form which comes closest to the real name, points to a foreign origin for the hero, and that such forms as dGish-bil-ga-mesh and dGish-bíl-gi-mesh and other variants are “Sumerianized” forms for which an artificial etymology was brought forward to convey the [32]idea of the “original hero” or the hero par excellence. By means of this “play” on the name, which reverts to the compilers of the Sumerian version of the Epic, Gilgamesh was converted into a Sumerian figure, just as the name Enkidu may have been introduced as a Sumerian translation of his Amoritic name. dGish at all events is an abbreviated form of the “Sumerianized” name, introduced by the compilers of the earliest Akkadian version, which was produced naturally under the influence of the Sumerian version. Later, as the Epic continued to grow, a phonetic writing was introduced, dGish-gi-mash, which is in a measure a compromise between the genuine name and the “Sumerianized” form, but at the same time an approach to the real pronunciation. Next to the new light thrown upon the names and original character of the two main figures of the Epic, one of the chief points of interest in the Pennsylvania fragment is the proof that it furnishes for a striking resemblance of the two heroes, Gish and Enkidu, to one another. In interpreting the dream of Gish, his mother. Ninsun, lays stress upon the fact that the dream portends the coming of someone who is like Gish, “born in the field and reared in the mountain” (lines 18–19). Both, therefore, are shown by this description to have come to Babylonia from a mountainous region, i.e., they are foreigners; and in the case of Enkidu we have seen that the mountain in all probability refers to a region in the West, while the same may also be the case with Gish. The resemblance of the two heroes to one another extends to their personal appearance. When Enkidu appears on the streets of Erech, the people are struck by this resemblance. They remark that he is “like Gish,” though “shorter in stature” (lines 179–180). Enkidu is described as a rival or counterpart.66 This relationship between the two is suggested also by the Assyrian version. In the creation of Enkidu by Aruru, the people urge the goddess to create the “counterpart” (zikru) of Gilgamesh, someone who will be like him (ma-ši-il) (Tablet I, 2, 31). Enkidu not only comes from the mountain,67 but the mountain is specifically designated [33]as his birth-place (I, 4, 2), precisely as in the Pennsylvania tablet, while in another passage he is also described, as in our tablet, as “born in the field.”68 Still more significant is the designation of Gilgamesh as the talimu, “younger brother,” of Enkidu.69 In accord with this, we find Gilgamesh in his lament over Enkidu describing him as a “younger brother” (ku-ta-ni);70 and again in the last tablet of the Epic, Gilgamesh is referred to as the “brother” of Enkidu.71 This close relationship reverts to the Sumerian version, for the Constantinople fragment (Langdon, above, p. 13) begins with the designation of Gish-bil-ga-mesh as “his brother.” By “his” no doubt Enkidu is meant. Likewise in the Sumerian text published by Zimmern (above, p. 13) Gilgamesh appears as the brother of Enkidu (rev. 1, 17). Turning to the numerous representations of Gilgamesh and Enkidu on Seal Cylinders,72 we find this resemblance of the two heroes to each other strikingly confirmed. Both are represented as bearded, with the strands arranged in the same fashion. The face in both cases is broad, with curls protruding at the side of the head, though at times these curls are lacking in the case of Enkidu. What is particularly striking is to find Gilgamesh generally a little taller than Enkidu, thus bearing out the statement in the Pennsylvania tablet that Enkidu is “shorter in stature.” There are, to be sure, also some distinguishing marks between the two. Thus Enkidu is generally represented with animal hoofs, but not always.73 Enkidu is commonly portrayed with the horns of a bison, but again this sign is wanting in quite a number of instances.74 The hoofs and the horns mark the period when Enkidu lived with animals and much like an [34]animal. Most remarkable, however, of all are cylinders on which we find the two heroes almost exactly alike as, for example, Ward No. 199 where two figures, the one a duplicate of the other (except that one is just a shade taller), are in conflict with each other. Dr. Ward was puzzled by this representation and sets it down as a “fantastic” scene in which “each Gilgamesh is stabbing the other.” In the light of the Pennsylvania tablet, this scene is clearly the conflict between the two heroes described in column 6, preliminary to their forming a friendship. Even in the realm of myth the human experience holds good that there is nothing like a good fight as a basis for a subsequent alliance. The fragment describes this conflict as a furious one in which Gilgamesh is worsted, and his wounded pride assuaged by the generous victor, who comforts his vanquished enemy by the assurance that he was destined for something higher than to be a mere “Hercules.” He was singled out for the exercise of royal authority. True to the description of the two heroes in the Pennsylvania tablet as alike, one the counterpart of the other, the seal cylinder portrays them almost exactly alike, as alike as two brothers could possibly be; with just enough distinction to make it clear on close inspection that two figures are intended and not one repeated for the sake of symmetry. There are slight variations in the manner in which the hair is worn, and slightly varying expressions of the face, just enough to make it evident that the one is intended for Gilgamesh and the other for Enkidu. When, therefore, in another specimen, No. 173, we find a Gilgamesh holding his counterpart by the legs, it is merely another aspect of the fight between the two heroes, one of whom is intended to represent Enkidu, and not, as Dr. Ward supposed, a grotesque repetition of Gilgamesh.75 The description of Enkidu in the Pennsylvania tablet as a parallel figure to Gilgamesh leads us to a consideration of the relationship of the two figures to one another. Many years ago it was pointed out that the Gilgamesh Epic was a composite tale in which various stories of an independent origin had been combined and brought into more or less artificial connection with the heros eponymos of southern Babylonia.76 We may now go a step further and point out that not [35]only is Enkidu originally an entirely independent figure, having no connection with Gish or Gilgamesh, but that the latter is really depicted in the Epic as the counterpart of Enkidu, a reflection who has been given the traits of extraordinary physical power that belong to Enkidu. This is shown in the first place by the fact that in the encounter it is Enkidu who triumphs over Gilgamesh. The entire analysis of the episode of the meeting between the two heroes as given by Gressmann77 must be revised. It is not Enkidu who is terrified and who is warned against the encounter. It is Gilgamesh who, during the night on his way from the house in which the goddess Ishḫara lies, encounters Enkidu on the highway. Enkidu “blocks the path”78 of Gilgamesh. He prevents Gilgamesh from re-entering the house,79 and the two attack each other “like oxen.”80 They grapple with each other, and Enkidu forces Gilgamesh to the ground. Enkidu is, therefore, the real hero whose traits of physical prowess are afterwards transferred to Gilgamesh. Similarly in the next episode, the struggle against Ḫuwawa, the Yale tablet makes it clear that in the original form of the tale Enkidu is the real hero. All warn Gish against the undertaking—the elders of Erech, Enkidu, and also the workmen. “Why dost thou desire to do this?”81 they say to him. “Thou art young, and thy heart carries thee away. Thou knowest not what thou proposest to do.”82 This part of the incident is now better known to us through the latest fragment of the Assyrian version discovered and published by King.83 The elders say to Gilgamesh: “Do not trust, O Gilgamesh, in thy strength! Be warned(?) against trusting to thy attack! The one who goes before will save his companion,84 He who has foresight will save his friend.85 [36] Let Enkidu go before thee. He knows the roads to the cedar forest; He is skilled in battle and has seen fight.” Gilgamesh is sufficiently impressed by this warning to invite Enkidu to accompany him on a visit to his mother, Ninsun, for the purpose of receiving her counsel.86 It is only after Enkidu, who himself hesitates and tries to dissuade Gish, decides to accompany the latter that the elders of Erech are reconciled and encourage Gish for the fray. The two in concert proceed against Ḫuwawa. Gilgamesh alone cannot carry out the plan. Now when a tale thus associates two figures in one deed, one of the two has been added to the original tale. In the present case there can be little doubt that Enkidu, without whom Gish cannot proceed, who is specifically described as “acquainted with the way … to the entrance of the forest”87 in which Ḫuwawa dwells is the original vanquisher. Naturally, the Epic aims to conceal this fact as much as possible ad majorem gloriam of Gilgamesh. It tries to put the one who became the favorite hero into the foreground. Therefore, in both the Babylonian and the Assyrian version Enkidu is represented as hesitating, and Gilgamesh as determined to go ahead. Gilgamesh, in fact, accuses Enkidu of cowardice and boldly declares that he will proceed even though failure stare him in the face.88 Traces of the older view, however, in which Gilgamesh is the one for whom one fears the outcome, crop out; as, for example, in the complaint of Gilgamesh’s mother to Shamash that the latter has stirred the heart of her son to take the distant way to Ḫu(m)baba, “To a fight unknown to him, he advances, An expedition unknown to him he undertakes.”89 Ninsun evidently fears the consequences when her son informs her of his intention and asks her counsel. The answer of Shamash is not preserved, but no doubt it was of a reassuring character, as was the answer of the Sun-god to Gish’s appeal and prayer as set forth in the Yale tablet.90 [37] Again, as a further indication that Enkidu is the real conqueror of Ḫuwawa, we find the coming contest revealed to Enkidu no less than three times in dreams, which Gilgamesh interprets.91 Since the person who dreams is always the one to whom the dream applies, we may see in these dreams a further trace of the primary rôle originally assigned to Enkidu. Another exploit which, according to the Assyrian version, the two heroes perform in concert is the killing of a bull, sent by Anu at the instance of Ishtar to avenge an insult offered to the goddess by Gilgamesh, who rejects her offer of marriage. In the fragmentary description of the contest with the bull, we find Enkidu “seizing” the monster by “its tail.”92 That Enkidu originally played the part of the slayer is also shown by the statement that it is he who insults Ishtar by throwing a piece of the carcass into the goddess’ face,93 adding also an insulting speech; and this despite the fact that Ishtar in her rage accuses Gilgamesh of killing the bull.94 It is thus evident that the Epic alters the original character of the episodes in order to find a place for Gilgamesh, with the further desire to assign to the latter the chief rôle. Be it noted also that Enkidu, not Gilgamesh, is punished for the insult to Ishtar. Enkidu must therefore in the original form of the episode have been the guilty party, who is stricken with mortal disease as a punishment to which after twelve days he succumbs.95 In view of this, we may supply the name of Enkidu in the little song introduced at the close of the encounter with the bull, and not Gilgamesh as has hitherto been done. “Who is distinguished among the heroes? Who is glorious among men? [Enkidu] is distinguished among heroes, [Enkidu] is glorious among men.”96 [38]Finally, the killing of lions is directly ascribed to Enkidu in the Pennsylvania tablet: “Lions he attacked *     *     *     *     * Lions he overcame”97 whereas Gilgamesh appears to be afraid of lions. On his long search for Utnapishtim he says: “On reaching the entrance of the mountain at night I saw lions and was afraid.”98 He prays to Sin and Ishtar to protect and save him. When, therefore, in another passage some one celebrates Gilgamesh as the one who overcame the “guardian,” who dispatched Ḫu(m)baba in the cedar forest, who killed lions and overthrew the bull,99 we have the completion of the process which transferred to Gilgamesh exploits and powers which originally belonged to Enkidu, though ordinarily the process stops short at making Gilgamesh a sharer in the exploits; with the natural tendency, to be sure, to enlarge the share of the favorite. We can now understand why the two heroes are described in the Pennsylvania tablet as alike, as born in the same place, aye, as brothers. Gilgamesh in the Epic is merely a reflex of Enkidu. The latter is the real hero and presumably, therefore, the older figure.100 Gilgamesh resembles Enkidu, because he is originally Enkidu. The “resemblance” motif is merely the manner in which in the course of the partly popular, partly literary transfer, the recollection is preserved that Enkidu is the original, and Gilgamesh the copy. The artificiality of the process which brings the two heroes together is apparent in the dreams of Gilgamesh which are interpreted by his mother as portending the coming of Enkidu. Not the conflict is foreseen, but the subsequent close association, naïvely described as due to the personal charm which Enkidu exercises, which will lead Gilgamesh to fall in love with the one whom he is to meet. The two will become one, like man and wife. [39] On the basis of our investigations, we are now in a position to reconstruct in part the cycle of episodes that once formed part of an Enkidu Epic. The fight between Enkidu and Gilgamesh, in which the former is the victor, is typical of the kind of tales told of Enkidu. He is the real prototype of the Greek Hercules. He slays lions, he overcomes a powerful opponent dwelling in the forests of Lebanon, he kills the bull, and he finally succumbs to disease sent as a punishment by an angry goddess. The death of Enkidu naturally formed the close of the Enkidu Epic, which in its original form may, of course, have included other exploits besides those taken over into the Gilgamesh Epic. There is another aspect of the figure of Enkidu which is brought forward in the Pennsylvania tablet more clearly than had hitherto been the case. Many years ago attention was called to certain striking resemblances between Enkidu and the figure of the first man as described in the early chapters of Genesis.101 At that time we had merely the Assyrian version of the Gilgamesh Epic at our disposal, and the main point of contact was the description of Enkidu living with the animals, drinking and feeding like an animal, until a woman is brought to him with whom he engages in sexual intercourse. This suggested that Enkidu was a picture of primeval man, while the woman reminded one of Eve, who when she is brought to Adam becomes his helpmate and inseparable companion. The Biblical tale stands, of course, on a much higher level, and is introduced, as are other traditions and tales of primitive times, in the style of a parable to convey certain religious teachings. For all that, suggestions of earlier conceptions crop out in the picture of Adam surrounded by animals to which he assigns names. Such a phrase as “there was no helpmate corresponding to him” becomes intelligible on the supposition of an existing tradition or belief, that man once lived and, indeed, cohabited with animals. The tales in the early chapters of Genesis must rest on very early popular traditions, which have been cleared of mythological and other objectionable features in order to adapt them to the purpose of the Hebrew compilers, to serve as a medium for illustrating [40]certain religious teachings regarding man’s place in nature and his higher destiny. From the resemblance between Enkidu and Adam it does not, of course, follow that the latter is modelled upon the former, but only that both rest on similar traditions of the condition under which men lived in primeval days prior to the beginnings of human culture. We may now pass beyond these general indications and recognize in the story of Enkidu as revealed by the Pennsylvania tablet an attempt to trace the evolution of primitive man from low beginnings to the regular and orderly family life associated with advanced culture. The new tablet furnishes a further illustration for the surprisingly early tendency among the Babylonian literati to connect with popular tales teachings of a religious or ethical character. Just as the episode between Gilgamesh and the maiden Sabitum is made the occasion for introducing reflections on the inevitable fate of man to encounter death, so the meeting of Enkidu with the woman becomes the medium of impressing the lesson of human progress through the substitution of bread and wine for milk and water, through the institution of the family, and through work and the laying up of resources. This is the significance of the address to Enkidu in column 4 of the Pennsylvania tablet, even though certain expressions in it are somewhat obscure. The connection of the entire episode of Enkidu and the woman with Gilgamesh is very artificial; and it becomes much more intelligible if we disassociate it from its present entanglement in the Epic. In Gilgamesh’s dream, portending the meeting with Enkidu, nothing is said of the woman who is the companion of the latter. The passage in which Enkidu is created by Aruru to oppose Gilgamesh102 betrays evidence of having been worked over in order to bring Enkidu into association with the longing of the people of Erech to get rid of a tyrannical character. The people in their distress appeal to Aruru to create a rival to Gilgamesh. In response, “Aruru upon hearing this created a man of Anu in her heart.” Now this “man of Anu” cannot possibly be Enkidu, for the sufficient reason that a few lines further on Enkidu is described as an [41]offspring of Ninib. Moreover, the being created is not a “counterpart” of Gilgamesh, but an animal-man, as the description that follows shows. We must separate lines 30–33 in which the creation of the “Anu man” is described from lines 34–41 in which the creation of Enkidu is narrated. Indeed, these lines strike one as the proper beginning of the original Enkidu story, which would naturally start out with his birth and end with his death. The description is clearly an account of the creation of the first man, in which capacity Enkidu is brought forward. “Aruru washed her hands, broke off clay, threw it on the field103 … created Enkidu, the hero, a lofty offspring of the host of Ninib.”104 The description of Enkidu follows, with his body covered with hair like an animal, and eating and drinking with the animals. There follows an episode105 which has no connection whatsoever with the Gilgamesh Epic, but which is clearly intended to illustrate how Enkidu came to abandon the life with the animals. A hunter sees Enkidu and is amazed at the strange sight—an animal and yet a man. Enkidu, as though resenting his condition, becomes enraged at the sight of the hunter, and the latter goes to his father and tells him of the strange creature whom he is unable to catch. In reply, the father advises his son to take a woman with him when next he goes out on his pursuit, and to have the woman remove her dress in the presence of Enkidu, who will then approach her, and after intercourse with her will abandon the animals among whom he lives. By this device he will catch the strange creature. Lines 14–18 of column 3 in the first tablet in which the father of the hunter refers to Gilgamesh must be regarded as a later insertion, a part of the reconstruction of the tale to connect the episode with Gilgamesh. The advice of the father to his son, the hunter, begins, line 19, “Go my hunter, take with thee a woman.” [42]In the reconstructed tale, the father tells his son to go to Gilgamesh to relate to him the strange appearance of the animal-man; but there is clearly no purpose in this, as is shown by the fact that when the hunter does so, Gilgamesh makes precisely the same speech as does the father of the hunter. Lines 40–44 of column 3, in which Gilgamesh is represented as speaking to the hunter form a complete doublet to lines 19–24, beginning “Go, my hunter, take with thee a woman, etc.” and similarly the description of Enkidu appears twice, lines 2–12 in an address of the hunter to his father, and lines 29–39 in the address of the hunter to Gilgamesh. The artificiality of the process of introducing Gilgamesh into the episode is revealed by this awkward and entirely meaningless repetition. We may therefore reconstruct the first two scenes in the Enkidu Epic as follows:106 Tablet I, col. 2, 34–35: Creation of Enkidu by Aruru. 36–41: Description of Enkidu’s hairy body and of his life with the animals. 42–50: The hunter sees Enkidu, who shows his anger, as also his woe, at his condition. 3, 1–12: The hunter tells his father of the strange being who pulls up the traps which the hunter digs, and who tears the nets so that the hunter is unable to catch him or the animals. 19–24: The father of the hunter advises his son on his next expedition to take a woman with him in order to lure the strange being from his life with the animals. Line 25, beginning “On the advice of his father,” must have set forth, in the original form of the episode, how the hunter procured the woman and took her with him to meet Enkidu. Column 4 gives in detail the meeting between the two, and naïvely describes how the woman exposes her charms to Enkidu, who is captivated by her and stays with her six days and seven nights. The animals see the change in Enkidu and run away from him. [43]He has been transformed through the woman. So far the episode. In the Assyrian version there follows an address of the woman to Enkidu beginning (col. 4, 34): “Beautiful art thou, Enkidu, like a god art thou.” We find her urging him to go with her to Erech, there to meet Gilgamesh and to enjoy the pleasures of city life with plenty of beautiful maidens. Gilgamesh, she adds, will expect Enkidu, for the coming of the latter to Erech has been foretold in a dream. It is evident that here we have again the later transformation of the Enkidu Epic in order to bring the two heroes together. Will it be considered too bold if we assume that in the original form the address of the woman and the construction of the episode were such as we find preserved in part in columns 2 to 4 of the Pennsylvania tablet, which forms part of the new material that can now be added to the Epic? The address of the woman begins in line 51 of the Pennsylvania tablet: “I gaze upon thee, Enkidu, like a god art thou.” This corresponds to the line in the Assyrian version (I, 4, 34) as given above, just as lines 52–53: “Why with the cattle Dost thou roam across the field?” correspond to I, 4, 35, of the Assyrian version. There follows in both the old Babylonian and the Assyrian version the appeal of the woman to Enkidu, to allow her to lead him to Erech where Gilgamesh dwells (Pennsylvania tablet lines 54–61 = Assyrian version I, 4, 36–39); but in the Pennsylvania tablet we now have a second speech (lines 62–63) beginning like the first one with al-ka, “come:” “Come, arise from the accursed ground.” Enkidu consents, and now the woman takes off her garments and clothes the naked Enkidu, while putting another garment on herself. She takes hold of his hand and leads him to the sheepfolds (not to Erech!!), where bread and wine are placed before him. Accustomed hitherto to sucking milk with cattle, Enkidu does not know what to do with the strange food until encouraged and instructed by the woman. The entire third column is taken up with this introduction [44]of Enkidu to civilized life in a pastoral community, and the scene ends with Enkidu becoming a guardian of flocks. Now all this has nothing to do with Gilgamesh, and clearly sets forth an entirely different idea from the one embodied in the meeting of the two heroes. In the original Enkidu tale, the animal-man is looked upon as the type of a primitive savage, and the point of the tale is to illustrate in the naïve manner characteristic of folklore the evolution to the higher form of pastoral life. This aspect of the incident is, therefore, to be separated from the other phase which has as its chief motif the bringing of the two heroes together. We now obtain, thanks to the new section revealed by the Pennsylvania tablet, a further analogy107 with the story of Adam and Eve, but with this striking difference, that whereas in the Babylonian tale the woman is the medium leading man to the higher life, in the Biblical story the woman is the tempter who brings misfortune to man. This contrast is, however, not inherent in the Biblical story, but due to the point of view of the Biblical writer, who is somewhat pessimistically inclined and looks upon primitive life, when man went naked and lived in a garden, eating of fruits that grew of themselves, as the blessed life in contrast to advanced culture which leads to agriculture and necessitates hard work as the means of securing one’s substance. Hence the woman through whom Adam eats of the tree of knowledge and becomes conscious of being naked is looked upon as an evil tempter, entailing the loss of the primeval life of bliss in a gorgeous Paradise. The Babylonian point of view is optimistic. The change to civilized life—involving the wearing of clothes and the eating of food that is cultivated (bread and wine) is looked upon as an advance. Hence the woman is viewed as the medium of raising man to a higher level. The feature common to the Biblical and Babylonian tales is the attachment of a lesson to early folk-tales. The story of Adam and Eve,108 as the story of Enkidu and the woman, is told with a purpose. Starting with early traditions of men’s primitive life on earth, that may have arisen independently, Hebrew and [45]Babylonian writers diverged, each group going its own way, each reflecting the particular point of view from which the evolution of human society was viewed. Leaving the analogy between the Biblical and Babylonian tales aside, the main point of value for us in the Babylonian story of Enkidu and the woman is the proof furnished by the analysis, made possible through the Pennsylvania tablet, that the tale can be separated from its subsequent connection with Gilgamesh. We can continue this process of separation in the fourth column, where the woman instructs Enkidu in the further duty of living his life with the woman decreed for him, to raise a family, to engage in work, to build cities and to gather resources. All this is looked upon in the same optimistic spirit as marking progress, whereas the Biblical writer, consistent with his point of view, looks upon work as a curse, and makes Cain, the murderer, also the founder of cities. The step to the higher forms of life is not an advance according to the J document. It is interesting to note that even the phrase the “cursed ground” occurs in both the Babylonian and Biblical tales; but whereas in the latter (Gen. 3, 17) it is because of the hard work entailed in raising the products of the earth that the ground is cursed, in the former (lines 62–63) it is the place in which Enkidu lives before he advances to the dignity of human life that is “cursed,” and which he is asked to leave. Adam is expelled from Paradise as a punishment, whereas Enkidu is implored to leave it as a necessary step towards progress to a higher form of existence. The contrast between the Babylonian and the Biblical writer extends to the view taken of viniculture. The Biblical writer (again the J document) looks upon Noah’s drunkenness as a disgrace. Noah loses his sense of shame and uncovers himself (Genesis 9, 21), whereas in the Babylonian description Enkidu’s jolly spirit after he has drunk seven jars of wine meets with approval. The Biblical point of view is that he who drinks wine becomes drunk;109 the Babylonian says, if you drink wine you become happy.110 If the thesis here set forth of the original character and import of the episode of Enkidu with the woman is correct, we may again regard lines 149–153 of the Pennsylvania tablet, in which Gilgamesh is introduced, as a later addition to bring the two heroes into association. [46]The episode in its original form ended with the introduction of Enkidu first to pastoral life, and then to the still higher city life with regulated forms of social existence. Now, to be sure, this Enkidu has little in common with the Enkidu who is described as a powerful warrior, a Hercules, who kills lions, overcomes the giant Ḫuwawa, and dispatches a great bull, but it is the nature of folklore everywhere to attach to traditions about a favorite hero all kinds of tales with which originally he had nothing to do. Enkidu, as such a favorite, is viewed also as the type of primitive man,111 and so there arose gradually an Epic which began with his birth, pictured him as half-animal half-man, told how he emerged from this state, how he became civilized, was clothed, learned to eat food and drink wine, how he shaved off the hair with which his body was covered,112 anointed himself—in short, “He became manlike.”113 Thereupon he is taught his duties as a husband, is introduced to the work of building, and to laying aside supplies, and the like. The fully-developed and full-fledged hero then engages in various exploits, of which some are now embodied in the Gilgamesh Epic. Who this Enkidu was, we are not in a position to determine, but the suggestion has been thrown out above that he is a personage foreign to Babylonia, that his home appears to be in the undefined Amurru district, and that he conquers that district. The original tale of Enkidu, if this view be correct, must therefore have been carried to the Euphrates Valley, at a very remote period, with one of the migratory waves that brought a western people as invaders into Babylonia. Here the tale was combined with stories current of another hero, Gilgamesh—perhaps also of Western origin—whose conquest of Erech likewise represents an invasion of Babylonia. The center of the Gilgamesh tale was Erech, and in the process of combining the stories of Enkidu and Gilgamesh, Enkidu is brought to Erech and the two perform exploits [47]in common. In such a combination, the aim would be to utilize all the incidents of both tales. The woman who accompanies Enkidu, therefore, becomes the medium of bringing the two heroes together. The story of the evolution of primitive man to civilized life is transformed into the tale of Enkidu’s removal to Erech, and elaborated with all kinds of details, among which we have, as perhaps embodying a genuine historical tradition, the encounter of the two heroes. Before passing on, we have merely to note the very large part taken in both the old Babylonian and the Assyrian version by the struggle against Ḫuwawa. The entire Yale tablet—forming, as we have seen, the third of the series—is taken up with the preparation for the struggle, and with the repeated warnings given to Gilgamesh against the dangerous undertaking. The fourth tablet must have recounted the struggle itself, and it is not improbable that this episode extended into the fifth tablet, since in the Assyrian version this is the case. The elaboration of the story is in itself an argument in favor of assuming some historical background for it—the recollection of the conquest of Amurru by some powerful warrior; and we have seen that this conquest must be ascribed to Enkidu and not to Gilgamesh. If, now, Enkidu is not only the older figure but the one who is the real hero of the most notable episode in the Gilgamesh Epic; if, furthermore, Enkidu is the Hercules who kills lions and dispatches the bull sent by an enraged goddess, what becomes of Gilgamesh? What is left for him? In the first place, he is definitely the conqueror of Erech. He builds the wall of Erech,114 and we may assume that the designation of the city as Uruk supûri, “the walled Erech,”115 rests upon this tradition. He is also associated with the great temple Eanna, “the heavenly house,” in Erech. To Gilgamesh belongs also the unenviable tradition of having exercised his rule in Erech so harshly that the people are impelled to implore Aruru to create a rival who may rid [48]the district of the cruel tyrant, who is described as snatching sons and daughters from their families, and in other ways terrifying the population—an early example of “Schrecklichkeit.” Tablets II to V inclusive of the Assyrian version being taken up with the Ḫuwawa episode, modified with a view of bringing the two heroes together, we come at once to the sixth tablet, which tells the story of how the goddess Ishtar wooed Gilgamesh, and of the latter’s rejection of her advances. This tale is distinctly a nature myth. The attempt of Gressmann116 to find some historical background to the episode is a failure. The goddess Ishtar symbolizes the earth which woos the sun in the spring, but whose love is fatal, for after a few months the sun’s power begins to wane. Gilgamesh, who in incantation hymns is invoked in terms which show that he was conceived as a sun-god,117 recalls to the goddess how she changed her lovers into animals, like Circe of Greek mythology, and brought them to grief. Enraged at Gilgamesh’s insult to her vanity, she flies to her father Anu and cries for revenge. At this point the episode of the creation of the bull is introduced, but if the analysis above given is correct it is Enkidu who is the hero in dispatching the bull, and we must assume that the sickness with which Gilgamesh is smitten is the punishment sent by Anu to avenge the insult to his daughter. This sickness symbolizes the waning strength of the sun after midsummer is past. The sun recedes from the earth, and this was pictured in the myth as the sun-god’s rejection of Ishtar; Gilgamesh’s fear of death marks the approach of the winter season, when the sun appears to have lost its vigor completely and is near to death. The entire episode is, therefore, a nature myth, symbolical of the passing of spring to midsummer and then to the bare season. The myth has been attached to Gilgamesh as a favorite figure, and then woven into a pattern with the episode of Enkidu and the bull. The bull episode can be detached from the nature myth without any loss to the symbolism of the tale of Ishtar and Gilgamesh. As already suggested, with Enkidu’s death after this conquest of the bull the original Enkidu Epic came to an end. In order to connect Gilgamesh with Enkidu, the former is represented as sharing [49]in the struggle against the bull. Enkidu is punished with death, while Gilgamesh is smitten with disease. Since both shared equally in the guilt, the punishment should have been the same for both. The differentiation may be taken as an indication that Gilgamesh’s disease has nothing to do with the bull episode, but is merely part of the nature myth. Gilgamesh now begins a series of wanderings in search of the restoration of his vigor, and this motif is evidently a continuation of the nature myth to symbolize the sun’s wanderings during the dark winter in the hope of renewed vigor with the coming of the spring. Professor Haupt’s view is that the disease from which Gilgamesh is supposed to be suffering is of a venereal character, affecting the organs of reproduction. This would confirm the position here taken that the myth symbolizes the loss of the sun’s vigor. The sun’s rays are no longer strong enough to fertilize the earth. In accord with this, Gilgamesh’s search for healing leads him to the dark regions118 in which the scorpion-men dwell. The terrors of the region symbolize the gloom of the winter season. At last Gilgamesh reaches a region of light again, described as a landscape situated at the sea. The maiden in control of this region bolts the gate against Gilgamesh’s approach, but the latter forces his entrance. It is the picture of the sun-god bursting through the darkness, to emerge as the youthful reinvigorated sun-god of the spring. Now with the tendency to attach to popular tales and nature myths lessons illustrative of current beliefs and aspirations, Gilgamesh’s search for renewal of life is viewed as man’s longing for eternal life. The sun-god’s waning power after midsummer is past suggests man’s growing weakness after the meridian of life has been left behind. Winter is death, and man longs to escape it. Gilgamesh’s wanderings are used as illustration of this longing, and accordingly the search for life becomes also the quest for immortality. Can the precious boon of eternal life be achieved? Popular fancy created the figure of a favorite of the gods who had escaped a destructive deluge in which all mankind had perished.119 Gilgamesh hears [50]of this favorite and determines to seek him out and learn from him the secret of eternal life. The deluge story, again a pure nature myth, symbolical of the rainy season which destroys all life in nature, is thus attached to the Epic. Gilgamesh after many adventures finds himself in the presence of the survivor of the Deluge who, although human, enjoys immortal life among the gods. He asks the survivor how he came to escape the common fate of mankind, and in reply Utnapishtim tells the story of the catastrophe that brought about universal destruction. The moral of the tale is obvious. Only those singled out by the special favor of the gods can hope to be removed to the distant “source of the streams” and live forever. The rest of mankind must face death as the end of life. That the story of the Deluge is told in the eleventh tablet of the series, corresponding to the eleventh month, known as the month of “rain curse”120 and marking the height of the rainy season, may be intentional, just as it may not be accidental that Gilgamesh’s rejection of Ishtar is recounted in the sixth tablet, corresponding to the sixth month,121 which marks the end of the summer season. The two tales may have formed part of a cycle of myths, distributed among the months of the year. The Gilgamesh Epic, however, does not form such a cycle. Both myths have been artificially attached to the adventures of the hero. For the deluge story we now have the definite proof for its independent existence, through Dr. Poebel’s publication of a Sumerian text which embodies the tale,122 and without any reference [51]to Gilgamesh. Similarly, Scheil and Hilprecht have published fragments of deluge stories written in Akkadian and likewise without any connection with the Gilgamesh Epic.123 In the Epic the story leads to another episode attached to Gilgamesh, namely, the search for a magic plant growing in deep water, which has the power of restoring old age to youth. Utnapishtim, the survivor of the deluge, is moved through pity for Gilgamesh, worn out by his long wanderings. At the request of his wife, Utnapishtim decides to tell Gilgamesh of this plant, and he succeeds in finding it. He plucks it and decides to take it back to Erech so that all may enjoy the benefit, but on his way stops to bathe in a cool cistern. A serpent comes along and snatches the plant from him, and he is forced to return to Erech with his purpose unachieved. Man cannot hope, when old age comes on, to escape death as the end of everything. Lastly, the twelfth tablet of the Assyrian version of the Gilgamesh Epic is of a purely didactic character, bearing evidence of having been added as a further illustration of the current belief that there is no escape from the nether world to which all must go after life has come to an end. Proper burial and suitable care of the dead represent all that can be done in order to secure a fairly comfortable rest for those who have passed out of this world. Enkidu is once more introduced into this episode. His shade is invoked by Gilgamesh and rises up out of the lower world to give a discouraging reply to Gilgamesh’s request, “Tell me, my friend, tell me, my friend, The law of the earth which thou hast experienced, tell me,” The mournful message comes back: “I cannot tell thee, my friend, I cannot tell.” Death is a mystery and must always remain such. The historical Gilgamesh has clearly no connection with the figure introduced into [52]this twelfth tablet. Indeed, as already suggested, the Gilgamesh Epic must have ended with the return to Erech, as related at the close of the eleventh tablet. The twelfth tablet was added by some school-men of Babylonia (or perhaps of Assyria), purely for the purpose of conveying a summary of the teachings in regard to the fate of the dead. Whether these six episodes covering the sixth to the twelfth tablets, (1) the nature myth, (2) the killing of the divine bull, (3) the punishment of Gilgamesh and the death of Enkidu, (4) Gilgamesh’s wanderings, (5) the Deluge, (6) the search for immortality, were all included at the time that the old Babylonian version was compiled cannot, of course, be determined until we have that version in a more complete form. Since the two tablets thus far recovered show that as early as 2000 B.C. the Enkidu tale had already been amalgamated with the current stories about Gilgamesh, and the endeavor made to transfer the traits of the former to the latter, it is eminently likely that the story of Ishtar’s unhappy love adventure with Gilgamesh was included, as well as Gilgamesh’s punishment and the death of Enkidu. With the evidence furnished by Meissner’s fragment of a version of the old Babylonian revision and by our two tablets, of the early disposition to make popular tales the medium of illustrating current beliefs and the teachings of the temple schools, it may furthermore be concluded that the death of Enkidu and the punishment of Gilgamesh were utilized for didactic purposes in the old Babylonian version. On the other hand, the proof for the existence of the deluge story in the Hammurabi period and some centuries later, independent of any connection with the Gilgamesh Epic, raises the question whether in the old Babylonian version, of which our two tablets form a part, the deluge tale was already woven into the pattern of the Epic. At all events, till proof to the contrary is forthcoming, we may assume that the twelfth tablet of the Assyrian version, though also reverting to a Babylonian original, dates as the latest addition to the Epic from a period subsequent to 2000 B.C.; and that the same is probably the case with the eleventh tablet. To sum up, there are four main currents that flow together in the Gilgamesh Epic even in its old Babylonian form: (1) the adventures of a mighty warrior Enkidu, resting perhaps on a faint tradition [53]of the conquest of Amurru by the hero; (2) the more definite recollection of the exploits of a foreign invader of Babylonia by the name of Gilgamesh, whose home appears likewise to have been in the West;124 (3) nature myths and didactic tales transferred to Enkidu and Gilgamesh as popular figures; and (4) the process of weaving the traditions, exploits, myths and didactic tales together, in the course of which process Gilgamesh becomes the main hero, and Enkidu his companion. Furthermore, our investigation has shown that to Enkidu belongs the episode with the woman, used to illustrate the evolution of primitive man to the ways and conditions of civilized life, the conquest of Ḫuwawa in the land of Amurru, the killing of lions and also of the bull, while Gilgamesh is the hero who conquers Erech. Identified with the sun-god, the nature myth of the union of the sun with the earth and the subsequent separation of the two is also transferred to him. The wanderings of the hero, smitten with disease, are a continuation of the nature myth, symbolizing the waning vigor of the sun with the approach of the wintry season. The details of the process which led to making Gilgamesh the favorite figure, to whom the traits and exploits of Enkidu and of the sun-god are transferred, escape us, but of the fact that Enkidu is the older figure, of whom certain adventures were set forth in a tale that once had an independent existence, there can now be little doubt in the face of the evidence furnished by the two tablets of the old Babylonian version; just as the study of these tablets shows that in the combination of the tales of Enkidu and Gilgamesh, the former is the prototype of which Gilgamesh is the copy. If the two are regarded as brothers, as born in the same place, even resembling one another in appearance and carrying out their adventures in common, it is because in the process of combination Gilgamesh becomes the reflex of Enkidu. That Enkidu is not the figure created by Aruru to relieve Erech of its tyrannical ruler is also shown by the fact that Gilgamesh remains in control of Erech. It is to Erech that he returns when he fails of his purpose to learn the secret of escape from old age and death. Erech is, therefore, not relieved of the presence of the ruthless ruler through Enkidu. The “Man of Anu” formed by Aruru as a deliverer is confused in the course of the growth of the [54]Epic with Enkidu, the offspring of Ninib, and in this way we obtain the strange contradiction of Enkidu and Gilgamesh appearing first as bitter rivals and then as close and inseparable friends. It is of the nature of Epic compositions everywhere to eliminate unnecessary figures by concentrating on one favorite the traits belonging to another or to several others. The close association of Enkidu and Gilgamesh which becomes one of the striking features in the combination of the tales of these two heroes naturally recalls the “Heavenly Twins” motif, which has been so fully and so suggestively treated by Professor J. Rendell Harris in his Cult of the Heavenly Twins, (London, 1906). Professor Harris has conclusively shown how widespread the tendency is to associate two divine or semi-divine beings in myths and legends as inseparable companions125 or twins, like Castor and Pollux, Romulus and Remus,126 the Acvins in the Rig-Veda,127 Cain and Abel, Jacob and Esau in the Old Testament, the Kabiri of the Phoenicians,128 Herakles and Iphikles in Greek mythology, Ambrica and Fidelio in Teutonic mythology, Patollo and Potrimpo in old Prussian mythology, Cautes and Cautopates in Mithraism, Jesus and Thomas (according to the Syriac Acts of Thomas), and the various illustrations of “Dioscuri in Christian Legends,” set forth by Dr. Harris in his work under this title, which carries the motif far down into the period of legends about Christian Saints who appear in pairs, including the reference to such a pair in Shakespeare’s Henry V: “And Crispin Crispian shall ne’er go by From that day to the ending of the world.”—(Act, IV, 3, 57–58.) There are indeed certain parallels which suggest that Enkidu-Gilgamesh may represent a Babylonian counterpart to the “Heavenly [55]Twins.” In the Indo-Iranian, Greek and Roman mythology, the twins almost invariably act together. In unison they proceed on expeditions to punish enemies.129 But after all, the parallels are of too general a character to be of much moment; and moreover the parallels stop short at the critical point, for Gilgamesh though worsted is not killed by Enkidu, whereas one of the “Heavenly Twins” is always killed by the brother, as Abel is by Cain, and Iphikles by his twin brother Herakles. Even the trait which is frequent in the earliest forms of the “Heavenly Twins,” according to which one is immortal and the other is mortal, though applying in a measure to Enkidu who is killed by Ishtar, while Gilgamesh the offspring of a divine pair is only smitten with disease, is too unsubstantial to warrant more than a general comparison between the Enkidu-Gilgamesh pair and the various forms of the “twin” motif found throughout the ancient world. For all that, the point is of some interest that in the Gilgamesh Epic we should encounter two figures who are portrayed as possessing the same traits and accomplishing feats in common, which suggest a partial parallel to the various forms in which the twin-motif appears in the mythologies, folk-lore and legends of many nations; and it may be that in some of these instances the duplication is due, as in the case of Enkidu and Gilgamesh, to an actual transfer of the traits of one figure to another who usurped his place. In concluding this study of the two recently discovered tablets of the old Babylonian version of the Gilgamesh Epic which has brought us several steps further in the interpretation and in our understanding of the method of composition of the most notable literary production of ancient Babylonia, it will be proper to consider the literary relationship of the old Babylonian to the Assyrian version. We have already referred to the different form in which the names of the chief figures appear in the old Babylonian version, dGish as against dGish-gì(n)-mash, dEn-ki-dũ as against dEn-ki-dú, Ḫu-wa-wa as against Ḫu(m)-ba-ba. Erech appears as Uruk ribîtim, “Erech of [56]the Plazas,” as against Uruk supûri, “walled Erech” (or “Erech within the walls”), in the Assyrian version.130 These variations point to an independent recension for the Assyrian revision; and this conclusion is confirmed by a comparison of parallel passages in our two tablets with the Assyrian version, for such parallels rarely extend to verbal agreements in details, and, moreover, show that the Assyrian version has been elaborated. Beginning with the Pennsylvania tablet, column I is covered in the Assyrian version by tablet I, 5, 25, to 6, 33, though, as pointed out above, in the Assyrian version we have the anticipation of the dreams of Gilgamesh and their interpretation through their recital to Enkidu by his female companion, whereas in the old Babylonian version we have the dreams directly given in a conversation between Gilgamesh and his mother. In the anticipation, there would naturally be some omissions. So lines 4–5 and 12–13 of the Pennsylvania tablet do not appear in the Assyrian version, but in their place is a line (I, 5, 35), to be restored to ”[I saw him and like] a woman I fell in love with him.” which occurs in the old Babylonian version only in connection with the second dream. The point is of importance as showing that in the Babylonian version the first dream lays stress upon the omen of the falling meteor, as symbolizing the coming of Enkidu, whereas the second dream more specifically reveals Enkidu as a man,131 of whom Gilgamesh is instantly enamored. Strikingly variant lines, though conveying the same idea, are frequent. Thus line 14 of the Babylonian version reads “I bore it and carried it to thee” and appears in the Assyrian version (I, 5, 35b supplied from 6, 26) “I threw it (or him) at thy feet”132 [57]with an additional line in elaboration “Thou didst bring him into contact with me”133 which anticipates the speech of the mother (Line 41 = Assyrian version I, 6, 33). Line 10 of the Pennsylvania tablet has pa-ḫi-ir as against iz-za-az I, 5, 31. Line 8 has ik-ta-bi-it as against da-an in the Assyrian version I, 5, 29. More significant is the variant to line 9 “I became weak and its weight I could not bear” as against I, 5, 30. “Its strength was overpowering,134 and I could not endure its weight.” The important lines 31–36 are not found in the Assyrian version, with the exception of I, 6, 27, which corresponds to lines 33–34, but this lack of correspondence is probably due to the fact that the Assyrian version represents the anticipation of the dreams which, as already suggested, might well omit some details. As against this we have in the Assyrian version I, 6, 23–25, an elaboration of line 30 in the Pennsylvania tablet and taken over from the recital of the first dream. Through the Assyrian version I, 6, 31–32, we can restore the closing lines of column I of the Pennsylvania tablet, while with line 33 = line 45 of the Pennsylvania tablet, the parallel between the two versions comes to an end. Lines 34–43 of the Assyrian version (bringing tablet I to a close)135 represent an elaboration of the speech of Ninsun, followed by a further address of Gilgamesh to his mother, and by the determination of Gilgamesh to seek out Enkidu.136 Nothing of this sort appears to have been included in the old Babylonian version.[58]Our text proceeds with the scene between Enkidu and the woman, in which the latter by her charms and her appeal endeavors to lead Enkidu away from his life with the animals. From the abrupt manner in which the scene is introduced in line 43 of the Pennsylvania tablet, it is evident that this cannot be the first mention of the woman. The meeting must have been recounted in the first tablet, as is the case in the Assyrian version.137 The second tablet takes up the direct recital of the dreams of Gilgamesh and then continues the narrative. Whether in the old Babylonian version the scene between Enkidu and the woman was described with the same naïve details, as in the Assyrian version, of the sexual intercourse between the two for six days and seven nights cannot of course be determined, though presumably the Assyrian version, with the tendency of epics to become more elaborate as they pass from age to age, added some realistic touches. Assuming that lines 44–63 of the Pennsylvania tablet—the cohabitation of Enkidu and the address of the woman—is a repetition of what was already described in the first tablet, the comparison with the Assyrian version I, 4, 16–41, not only points to the elaboration of the later version, but likewise to an independent recension, even where parallel lines can be picked out. Only lines 46–48 of the Pennsylvania tablet form a complete parallel to line 21 of column 4 of the Assyrian version. The description in lines 22–32 of column 4 is missing, though it may, of course, have been included in part in the recital in the first tablet of the old Babylonian version. Lines 49–59 of the Pennsylvania tablet are covered by 33–39, the only slight difference being the specific mention in line 58 of the Pennsylvania tablet of Eanna, the temple in Erech, described as “the dwelling of Anu,” whereas in the Assyrian version Eanna is merely referred to as the “holy house” and described as “the dwelling of Anu and Ishtar,” where Ishtar is clearly a later addition. Leaving aside lines 60–61, which may be merely a variant (though independent) of line 39 of column 4 of the Assyrian version, we now have in the Pennsylvania tablet a second speech of the woman to Enkidu (not represented in the Assyrian version) beginning like the first one with alka, “Come” (lines 62–63), in which she asks Enkidu to leave the “accursed ground” in which he dwells. This speech, as the description which follows, extending into columns 3–4, [59]and telling how the woman clothed Enkidu, how she brought him to the sheep folds, how she taught him to eat bread and to drink wine, and how she instructed him in the ways of civilization, must have been included in the second tablet of the Assyrian version which has come down to us in a very imperfect form. Nor is the scene in which Enkidu and Gilgamesh have their encounter found in the preserved portions of the second (or possibly the third) tablet of the Assyrian version, but only a brief reference to it in the fourth tablet,138 in which in Epic style the story is repeated, leading up to the second exploit—the joint campaign of Enkidu and Gilgamesh against Ḫuwawa. This reference, covering only seven lines, corresponds to lines 192–231 of the Pennsylvania tablet; but the former being the repetition and the latter the original recital, the comparison to be instituted merely reveals again the independence of the Assyrian version, as shown in the use of kibsu, “tread” (IV, 2, 46), for šêpu, “foot” (l. 216), i-na-uš, “quake” (line 5C), as against ir-tu-tu (ll. 221 and 226). Such variants as dGish êribam ûl iddin (l. 217) against dGilgamesh ana šurûbi ûl namdin, (IV, 2, 47). and again iṣṣabtûma kima lîm “they grappled at the gate of the family house” (IV, 2, 48), against iṣṣabtûma ina bâb bît emuti, “they grappled at the gate of the family house” (IV, 2, 48), all point once more to the literary independence of the Assyrian version. The end of the conflict and the reconciliation of the two heroes is likewise missing in the Assyrian version. It may have been referred to at the beginning of column 3139 of Tablet IV. Coming to the Yale tablet, the few passages in which a comparison [60]may be instituted with the fourth tablet of the Assyrian version, to which in a general way it must correspond, are not sufficient to warrant any conclusions, beyond the confirmation of the literary independence of the Assyrian version. The section comprised within lines 72–89, where Enkidu’s grief at his friend’s decision to fight Ḫuwawa is described140, and he makes confession of his own physical exhaustion, may correspond to Tablet IV, column 4, of the Assyrian version. This would fit in with the beginning of the reverse, the first two lines of which (136–137) correspond to column 5 of the fourth tablet of the Assyrian version, with a variation “seven-fold fear”141 as against “fear of men” in the Assyrian version. If lines 138–139 (in column 4) of the Yale tablet correspond to line 7 of column 5 of Tablet IV of the Assyrian version, we would again have an illustration of the elaboration of the later version by the addition of lines 3–6. But beyond this we have merely the comparison of the description of Ḫuwawa “Whose roar is a flood, whose mouth is fire, and whose breath is death” which occurs twice in the Yale tablet (lines 110–111 and 196–197), with the same phrase in the Assyrian version Tablet IV, 5, 3—but here, as just pointed out, with an elaboration. Practically, therefore, the entire Yale tablet represents an addition to our knowledge of the Ḫuwawa episode, and until we are fortunate enough to discover more fragments of the fourth tablet of the Assyrian version, we must content ourselves with the conclusions reached from a comparison of the Pennsylvania tablet with the parallels in the Assyrian version. It may be noted as a general point of resemblance in the exterior form of the old Babylonian and Assyrian versions that both were inscribed on tablets containing six columns, three on the obverse and three on the reverse; and that the length of the tablets—an average of 40 to 50 lines—was about the same, thus revealing in the external form a conventiona1 size for the tablets in the older period, which was carried over into later times. [61] 1 See for further details of this royal library, Jastrow, Civilization of Babylonia and Assyria, p. 21 seq. 2 Das Babylonische Nimrodepos (Leipzig, 1884–1891), supplemented by Haupt’s article Die Zwölfte Tafel des Babylonischen Nimrodepos in BA I, pp. 48–79, containing the fragments of the twelfth tablet. The fragments of the Epic in Ashurbanapal’s library—some sixty—represent portions of several copies. Sin-liḳî-unnini—perhaps from Erech, since this name appears as that of a family in tablets from Erech (see Clay, Legal Documents from Erech, Index, p. 73)—is named in a list of texts (K 9717—Haupt’s edition No. 51, line 18) as the editor of the Epic, though probably he was not the only compiler. Since the publication of Haupt’s edition, a few fragments were added by him as an appendix to Alfred Jeremias Izdubar-Nimrod (Leipzig, 1891) Plates II–IV, and two more are embodied in Jensen’s transliteration of all the fragments in the Keilinschriftliche Bibliothek VI; pp. 116–265, with elaborate notes, pp. 421–531. Furthermore a fragment, obtained from supplementary excavations at Kouyunjik, has been published by L. W. King in his Supplement to the Catalogue of the Cuneiform Tablets in the Kouyunjik Collection of the British Cuneiform Tablets in the Kouyunjik Collection of the British Museum No. 56 and PSBA Vol. 36, pp. 64–68. Recently a fragment of the 6th tablet from the excavations at Assur has been published by Ebeling, Keilschrifttexte aus Assur Religiösen Inhalts No. 115, and one may expect further portions to turn up. The designation “Nimrod Epic” on the supposition that the hero of the Babylonian Epic is identical with Nimrod, the “mighty hunter” of Genesis 10, has now been generally abandoned, in the absence of any evidence that the Babylonian hero bore a name like [10n]Nimrod. For all that, the description of Nimrod as the “mighty hunter” and the occurrence of a “hunter” in the Babylonian Epic (Assyrian version Tablet I)—though he is not the hero—points to a confusion in the Hebrew form of the borrowed tradition between Gilgamesh and Nimrod. The latest French translation of the Epic is by Dhorme, Choix de Textes Religieux Assyro-Babyloniens (Paris, 1907), pp. 182–325; the latest German translation by Ungnad-Gressmann, Das Gilgamesch-Epos (Göttingen, 1911), with a valuable analysis and discussion. These two translations now supersede Jensen’s translation in the Keilinschriftliche Bibliothek, which, however, is still valuable because of the detailed notes, containing a wealth of lexicographical material. Ungnad also gave a partial translation in Gressmann-Ranke, Altorientalische Texte and Bilder I, pp. 39–61. In English, we have translations of substantial portions by Muss-Arnolt in Harper’s Assyrian and Babylonian Literature (New York, 1901), pp. 324–368; by Jastrow, Religion of Babylonia and Assyria (Boston, 1898), Chap. XXIII; by Clay in Light on the Old Testament from Babel, pp. 78–84; by Rogers in Cuneiform Parallels to the Old Testament, pp. 80–103; and most recently by Jastrow in Sacred Books and Early Literature of the East (ed. C. F. Horne, New York, 1917), Vol. I, pp. 187–220. 3 See Luckenbill in JAOS, Vol. 37, p. 452 seq. Prof. Clay, it should be added, clings to the older reading, Hammurabi, which is retained in this volume. 4 ZA, Vol. 14, pp. 277–292. 5 The survivor of the Deluge is usually designated as Ut-napishtim in the Epic, but in one passage (Assyrian version, Tablet XI, 196), he is designated as Atra-ḫasis “the very wise one.” Similarly, in a second version of the Deluge story, also found in Ashurbanapal’s library (IV R² additions, p. 9, line 11). The two names clearly point to two versions, which in accordance with the manner of ancient compositions were merged into one. See an article by Jastrow in ZA, Vol. 13, pp. 288–301. 6 Published by Scheil in Recueil des Travaux, etc. Vol. 20, pp. 55–58. 7 The text does not form part of the Gilgamesh Epic, as the colophon, differing from the one attached to the Epic, shows. 8 Ein altbabylonisches Fragment des Gilgamosepos (MVAG 1902, No. 1). 9 On these variant forms of the two names see the discussion below, p. 24. 10 The passage is paralleled by Ecc. 9, 7–9. See Jastrow, A Gentle Cynic, p. 172 seq. 11 Among the Nippur tablets in the collection of the University of Pennsylvania Museum. The fragment was published by Dr. Poebel in his Historical and Grammatical Texts No. 23. See also Poebel in the Museum Journal, Vol. IV, p. 47, and an article by Dr. Langdon in the same Journal, Vol. VII, pp. 178–181, though Langdon fails to credit Dr. Poebel with the discovery and publication of the important tablet. 12 No. 55 in Langdon’s Historical and Religious Texts from the Temple Library of Nippur (Munich, 1914). 13 No. 5 in his Sumerian Liturgical Texts. (Philadelphia, 1917) 14 See on this name below, p. 23. 15 See further below, p. 37 seq. 16 See Poebel, Historical and Grammatical Texts, No. 1, and Jastrow in JAOS, Vol. 36, pp. 122–131 and 274–299. 17 See an article by Jastrow, Sumerian and Akkadian Views of Beginnings (JAOS Vol. 36, pp. 274–299). 18 See on this point Eduard Meyer, Sumerier und Semiten in Babylonien (Berlin, 1906), p. 107 seq., whose view is followed in Jastrow, Civilization of Babylonia and Assyria, p. 121. See also Clay, Empire of the Amorites (Yale University Press, 1919), p. 23 et seq. 19 See the discussion below, p. 24 seq. 20 Dr. Poebel published an article on the tablet in OLZ, 1914, pp. 4–6, in which he called attention to the correct name for the mother of Gilgamesh, which was settled by the tablet as Ninsun. 21 Historical Texts No. 2, Column 2, 26. See the discussion in Historical and Grammatical Texts, p. 123, seq. 22 See Fostat in OLZ, 1915, p. 367. 23 Publications of the University of Pennsylvania Museum, Babylonian Section, Vol. X, No. 3 (Philadelphia, 1917). It is to be regretted that Dr. Langdon should not have given full credit to Dr. Poebel for his discovery of the tablet. He merely refers in an obscure footnote to Dr. Poebel’s having made a copy. 24 E.g., in the very first note on page 211, and again in a note on page 213. 25 Dr. Langdon neglected to copy the signs 4 šú-si = 240 which appear on the edge of the tablet. He also misunderstood the word šú-tu-ur in the colophon which he translated “written,” taking the word from a stem šaṭâru, “write.” The form šú-tu-ur is III, 1, from atâru, “to be in excess of,” and indicates, presumably, that the text is a copy “enlarged” from an older original. See the Commentary to the colophon, p. 86. 26 Museum Journal, Vol. VIII, p. 29. 27 See below, p. 23. 28 I follow the enumeration of tablets, columns and lines in Jensen’s edition, though some fragments appear to have been placed by him in a wrong position. 29 According to Bezold’s investigation, Verbalsuffixformen als Alterskriterien babylonisch-assyrischer Inschriften (Heidelberg Akad. d. Wiss., Philos.-Histor. Klasse, 1910, 9te Abhandlung), the bulk of the tablets in Ashurbanapal’s library are copies of originals dating from about 1500 B.C. It does not follow, however, that all the copies date from originals of the same period. Bezold reaches the conclusion on the basis of various forms for verbal suffixes, that the fragments from the Ashurbanapal Library actually date from three distinct periods ranging from before c. 1450 to c. 700 B.C. 30 “Before thou comest from the mountain, Gilgamesh in Erech will see thy dreams,” after which the dreams are recounted by the woman to Enkidu. The expression “thy dreams” means here “dreams about thee.” (Tablet I, 5, 23–24). 31 Lines 100–101. 32 In a paper read before the American Oriental Society at New Haven, April 4, 1918. 33 See the commentary to col. 4 of the Yale tablet for further details. 34 This is no doubt the correct reading of the three signs which used to be read Iz-tu-bar or Gish-du-bar. The first sign has commonly the value Gish, the second can be read Gin or Gi (Brünnow No. 11900) and the third Mash as well as Bar. See Ungnad in Ungnad-Gressmann, Das Gilgamesch-Epos, p. 76, and Poebel, Historical and Grammatical Texts, p. 123. 35 So also in Sumerian (Zimmern, Sumerische Kultlieder aus altbabylonischer Zeit, No. 196, rev. 14 and 16.) 36 The sign used, LUM (Brünnow No. 11183), could have the value ḫu as well as ḫum. 37 The addition “father-in-law of Moses” to the name Ḫobab b. Re’uel in this passage must refer to Re’uel, and not to Ḫobab. In Judges 4, 11, the gloss “of the Bene Ḫobab, the father-in-law of Moses” must be separated into two: (1) “Bene Ḫobab,” and (2) “father-in-law of Moses.” The latter addition rests on an erroneous tradition, or is intended as a brief reminder that Ḫobab is identical with the son of Re’uel. 38 See his List of Personal Names from the Temple School of Nippur, p. 122. Ḫu-um-ba-bi-tu and ši-kin ḫu-wa-wa also occur in Omen Texts (CT XXVII, 4, 8–9 = Pl. 3, 17 = Pl. 6, 3–4 = CT XXVIII, 14, 12). The contrast to ḫuwawa is ligru, “dwarf” (CT XXVII, 4, 12 and 14 = Pl. 6, 7.9 = Pl. 3, 19). See Jastrow, Religion Babyloniens und Assyriens, II, p. 913, Note 7. Ḫuwawa, therefore, has the force of “monster.” 39 Ungnad-Gressmann, Das Gilgamesch-Epos, p. 111 seq. 40 Ungnad, 1. c. p. 77, called attention to this name, but failed to draw the conclusion that Ḫu(m)baba therefore belongs to the West and not to the East. 41 First pointed out by Ungnad in OLZ 1910, p. 306, on the basis of CT XVIII, 30, 10, where En-gi-dú appears in the column furnishing phonetic readings. 42 See Clay Amurru, pp. 74, 129, etc. 43 Tablet I, 2, 39–40; 3, 6–7 and 33–34; 4, 3–4. 44 Tablet I, 2, 1 and IX, 2, 16. Note also the statement about Gilgamesh that “his body is flesh of the gods” (Tablet IX, 2, 14; X, 1, 7). 45 BOR IV, p. 264. 46 Lewin, Die Scholien des Theodor bar Koni zur Patriarchengeschichte (Berlin, 1905), p. 2. See Gressmann in Ungnad-Gressmann, Das Gilgamesch-Epos, p. 83, who points out that the first element of גלמגוס compared with the second of גמיגמוס gives the exact form that we require, namely, Gilgamos. 47 Tablet I, col. 2, is taken up with this episode. 48 See Poebel, Historical and Grammatical Texts, p. 123. 49 See Poebel, Historical Texts No. 2, col. 2, 26. 50 Hilprecht, Old Babylonian Inscriptions I, 1 No. 26. 51 Delitzsch, Assyrische Lesestücke, p. 88, VI, 2–3. Cf. also CT XXV, 28(K 7659) 3, where we must evidently supply [Esigga]-tuk, for which in the following line we have again Gish-bil-ga-mesh as an equivalent. See Meissner, OLZ 1910, 99. 52 See, e.g., Barton, Haverford Collection II No. 27, Col. I, 14, etc. 53 Deimel, Pantheon Babylonicum, p. 95. 54 CT XII, 50 (K 4359) obv. 17. 55 See Barton, Origin and Development of Babylonian Writing, II, p. 99 seq., for various explanations, though all centering around the same idea of the picture of fire in some form. 56 See the passages quoted by Poebel, Historical and Grammatical Texts, p. 126. 57 E.g., Genesis 4, 20, Jabal, “the father of tent-dwelling and cattle holding;” Jubal (4, 21), “the father of harp and pipe striking.” 58 See particularly the plays (in the J. Document) upon the names of the twelve sons of Jacob, which are brought forward either as tribal characteristics, or as suggested by some incident or utterance by the mother at the birth of each son. 59 The designation is variously explained by Arabic writers. See Beidhawi’s Commentary (ed. Fleischer), to Súra 18, 82. 60 The writing Gish-gi-mash as an approach to the pronunciation Gilgamesh would thus represent the beginning of the artificial process which seeks to interpret the first syllable as “hero.” 61 See above, p. 27. 62 Poebel, Historical Texts, p. 115 seq. 63 Many years ago (BA III, p. 376) I equated Etana with Ethan in the Old Testament—therefore a West Semitic name. 64 See Clay, The Empire of the Amorites, p. 80. 65 Professor Clay strongly favors an Amoritic origin also for Gilgamesh. His explanation of the name is set forth in his recent work on The Empire of the Amorites, page 89, and is also referred to in his work on Amurru, page 79, and in his volume of Miscellaneous Inscriptions in the Yale Babylonian Collection, page 3, note. According to Professor Clay the original form of the hero’s name was West Semitic, and was something like Bilga-Mash, the meaning of which was perhaps “the offspring of Mash.” For the first element in this division of the name cf. Piliḳam, the name of a ruler of an early dynasty, and Balaḳ of the Old Testament. In view of the fact that the axe figures so prominently in the Epic as an instrument wielded by Gilgamesh, Professor Clay furthermore thinks it reasonable to assume that the name was interpreted by the Babylonian scribe as “the axe of Mash.” In this way he would account for the use of the determinative for weapons, which is also the sign Gish, in the name. It is certainly noteworthy that the ideogram Gish-Tún in the later form of Gish-Tún-mash = pašu, “axe,” CT XVI, 38:14b, etc. Tun also = pilaḳu “axe,” CT xii, 10:34b. Names with similar element (besides Piliḳam) are Belaḳu of the Hammurabi period, Bilaḳḳu of the Cassite period, etc. It is only proper to add that Professor Jastrow assumes the responsibility for the explanation of the form and etymology of the name Gilgamesh proposed in this volume. The question is one in regard to which legitimate differences of opinion will prevail among scholars until through some chance a definite decision, one way or the other, can be reached. 66 me-iḫ-rù (line 191). 67 Tablet I, 5, 23. Cf. I, 3, 2 and 29. 68 Tablet IV, 4, 7 and I, 5, 3. 69 Assyrian version, Tablet II, 3b 34, in an address of Shamash to Enkidu. 70 So Assyrian version, Tablet VIII, 3, 11. Also supplied VIII, 5, 20 and 21; and X, 1, 46–47 and 5, 6–7. 71 Tablet XII, 3, 25. 72 Ward, Seal Cylinders of Western Asia, Chap. X, and the same author’s Cylinders and other Ancient Oriental Seals—Morgan collection Nos. 19–50. 73 E.g., Ward No. 192, Enkidu has human legs like Gilgamesh; also No. 189, where it is difficult to say which is Gilgamesh, and which is Enkidu. The clothed one is probably Gilgamesh, though not infrequently Gilgamesh is also represented as nude, or merely with a girdle around his waist. 74 E.g., Ward, Nos. 173, 174, 190, 191, 195 as well as 189 and 192. 75 On the other hand, in Ward Nos. 459 and 461, the conflict between the two heroes is depicted with the heroes distinguished in more conventional fashion, Enkidu having the hoofs of an animal, and also with a varying arrangement of beard and hair. 76 See Jastrow, Religion of Babylonia and Assyria (Boston, 1898), p. 468 seq. 77 Ungnad-Gressmann, Das Gilgamesch-Epos, p. 90 seq. 78 Pennsylvania tablet, l. 198 = Assyrian version, Tablet IV, 2, 37. 79 “Enkidu blocked the gate” (Pennsylvania tablet, line 215) = Assyrian version Tablet IV, 2, 46: “Enkidu interposed his foot at the gate of the family house.” 80 Pennsylvania tablet, lines 218 and 224. 81 Yale tablet, line 198; also to be supplied lines 13–14. 82 Yale tablet, lines 190 and 191. 83 PSBA 1914, 65 seq. = Jensen III, 1a, 4–11, which can now be completed and supplemented by the new fragment. 84 I.e., Enkidu will save Gilgamesh. 85 These two lines impress one as popular sayings—here applied to Enkidu. 86 King’s fragment, col. I, 13–27, which now enables us to complete Jensen III, 1a, 12–21. 87 Yale tablet, lines 252–253. 88 Yale tablet, lines 143–148 = Assyrian version, Tablet IV, 6, 26 seq. 89 Assyrian version, Tablet III, 2a, 13–14. 90 Lines 215–222. 91 Assyrian version, Tablet V, Columns 3–4. We have to assume that in line 13 of column 4 (Jensen, p. 164), Enkidu takes up the thread of conversation, as is shown by line 22: “Enkidu brought his dream to him and spoke to Gilgamesh.” 92 Assyrian version, Tablet VI, lines 146–147. 93 Lines 178–183. 94 Lines 176–177. 95 Tablet VII, Column 6. 96 Assyrian version, Tablet VI, 200–203. These words are put into the mouth of Gilgamesh (lines 198–199). It is, therefore, unlikely that he would sing his own praise. Both Jensen and Ungnad admit that Enkidu is to be supplied in at least one of the lines. 97 Lines 109 and 112. 98 Assyrian version, Tablet IX, 1, 8–9. 99 Tablet VIII, 5, 2–6. 100 So also Gressmann in Ungnad-Gressmann, Das Gilgamesch-Epos, p. 97, regards Enkidu as the older figure. 101 See Jastrow, Adam and Eve in Babylonian Literature, AJSL, Vol. 15, pp. 193–214. 102 Assyrian version, Tablet I, 2, 31–36. 103 It will be recalled that Enkidu is always spoken of as “born in the field.” 104 Note the repetition ibtani “created” in line 33 of the “man of Anu” and in line 35 of the offspring of Ninib. The creation of the former is by the “heart,” i.e., by the will of Aruru, the creation of the latter is an act of moulding out of clay. 105 Tablet I, Column 3. 106 Following as usual the enumeration of lines in Jensen’s edition. 107 An analogy does not involve a dependence of one tale upon the other, but merely that both rest on similar traditions, which may have arisen independently. 108 Note that the name of Eve is not mentioned till after the fall (Genesis 3, 20). Before that she is merely ishsha, i.e., “woman,” just as in the Babylonian tale the woman who guides Enkidu is ḫarimtu, “woman.” 109 “And he drank and became drunk” (Genesis 9, 21). 110 “His heart became glad and his face shone” (Pennsylvania Tablet, lines 100–101). 111 That in the combination of this Enkidu with tales of primitive man, inconsistent features should have been introduced, such as the union of Enkidu with the woman as the beginning of a higher life, whereas the presence of a hunter and his father shows that human society was already in existence, is characteristic of folk-tales, which are indifferent to details that may be contradictory to the general setting of the story. 112 Pennsylvania tablet, lines 102–104. 113 Line 105. 114 Tablet I, 1, 9. See also the reference to the wall of Erech as an “old construction” of Gilgamesh, in the inscription of An-Am in the days of Sin-gamil (Hilprecht, Old Babylonian Inscriptions, I, No. 26.) Cf IV R² 52, 3, 53. 115 The invariable designation in the Assyrian version as against Uruk ribîtim, “Erech of the plazas,” in the old Babylonian version. 116 In Ungnad-Gressmann, Das Gilgamesch-Epos, p. 123 seq. 117 See Jensen, p. 266. Gilgamesh is addressed as “judge,” as the one who inspects the divisions of the earth, precisely as Shamash is celebrated. In line 8 of the hymn in question, Gilgamesh is in fact addressed as Shamash. 118 The darkness is emphasized with each advance in the hero’s wanderings (Tablet IX, col. 5). 119 This tale is again a nature myth, marking the change from the dry to the rainy season. The Deluge is an annual occurrence in the Euphrates Valley through the overflow [50n]of the two rivers. Only the canal system, directing the overflow into the fields, changed the curse into a blessing. In contrast to the Deluge, we have in the Assyrian creation story the drying up of the primeval waters so that the earth makes its appearance with the change from the rainy to the dry season. The world is created in the spring, according to the Akkadian view which is reflected in the Biblical creation story, as related in the P. document. See Jastrow, Sumerian and Akkadian Views of Beginnings (JAOS, Vol 36, p. 295 seq.). 120 Aš-am in Sumerian corresponding to the Akkadian Šabaṭu, which conveys the idea of destruction. 121 The month is known as the “Mission of Ishtar” in Sumerian, in allusion to another nature myth which describes Ishtar’s disappearance from earth and her mission to the lower world. 122 Historical Texts No. 1. The Sumerian name of the survivor is Zi-ū-gíd-du or perhaps Zi-ū-sū-du (cf. King, Legends of Babylon and Egypt, p. 65, note 4), signifying “He who lengthened the day of life,” i.e., the one of long life, of which Ut-napishtim (“Day of Life”) in the Assyrian version seems to be an abbreviated Akkadian rendering, [n]with the omission of the verb. So King’s view, which is here followed. See also CT XVIII, 30, 9, and Langdon, Sumerian Epic of Paradise, p. 90, who, however, enters upon further speculations that are fanciful. 123 See the translation in Ungnad-Gressmann, Das Gilgamesch-Epos, pp. 69, seq. and 73. 124 According to Professor Clay, quite certainly Amurru, just as in the case of Enkidu. 125 Gressmann in Ungnad-Gressmann, Das Gilgamesch-Epos, p. 100 seq. touches upon this motif, but fails to see the main point that the companions are also twins or at least brothers. Hence such examples as Abraham and Lot, David and Jonathan, Achilles and Patroclus, Eteokles and Polyneikes, are not parallels to Gilgamesh-Enkidu, but belong to the enlargement of the motif so as to include companions who are not regarded as brothers. 126 Or Romus. See Rendell Harris, l. c., p. 59, note 2. 127 One might also include the primeval pair Yama-Yami with their equivalents in Iranian mythology (Carnoy, Iranian Mythology, p. 294 seq.). 128 Becoming, however, a triad and later increased to seven. Cf. Rendell Harris, l. c., p. 32. 129 I am indebted to my friend, Professor A. J. Carnoy, of the University of Louvain, for having kindly gathered and placed at my disposal material on the “twin-brother” motif from Indo-European sources, supplemental to Rendell Harris’ work. 130 On the other hand, Uruk mâtum for the district of Erech, i.e., the territory over which the city holds sway, appears in both versions (Pennsylvania tablet, 1. 10 = Assyrian version I, 5, 36). 131 “My likeness” (line 27). It should be noted, however, that lines 32–44 of I, 5, in Jensen’s edition are part of a fragment K 9245 (not published, but merely copied by Bezold and Johns, and placed at Jensen’s disposal), which may represent a duplicate to I, 6, 23–34, with which it agrees entirely except for one line, viz., line 34 of K 9245 which is not found in column 6, 23–34. If this be correct, then there is lacking after line 31 of column 5, the interpretation of the dream given in the Pennsylvania tablet in lines 17–23. 132 ina šap-li-ki, literally, “below thee,” whereas in the old Babylonian version we have ana ṣi-ri-ka, “towards thee.” 133 Repeated I, 6, 28. 134 ul-tap-rid ki-is-su-šú-ma. The verb is from parâdu, “violent.” For kissu, “strong,” see CT XVI, 25, 48–49. Langdon (Gilgamesh Epic, p. 211, note 5) renders the phrase: “he shook his murderous weapon!!”—another illustration of his haphazard way of translating texts. 135 Shown by the colophon (Jeremias, Izdubar-Nimrod, Plate IV.) 136 Lines 42–43 must be taken as part of the narrative of the compiler, who tells us that after the woman had informed Enkidu that Gilgamesh already knew of Enkidu’s coming through dreams interpreted by Ninsun, Gilgamesh actually set out and encountered Enkidu. 137 Tablet I, col. 4. See also above, p. 19. 138 IV, 2, 44–50. The word ullanum, (l.43) “once” or “since,” points to the following being a reference to a former recital, and not an original recital. 139 Only the lower half (Haupt’s edition, p. 82) is preserved. 140 “The eyes of Enkidu were filled with tears,” corresponding to IV, 4, 10. 141 Unless indeed the number “seven” is a slip for the sign ša. See the commentary to the line. Pennsylvania Tablet The 240 lines of the six columns of the text are enumerated in succession, with an indication on the margin where a new column begins. This method, followed also in the case of the Yale tablet, seems preferable to Langdon’s breaking up of the text into Obverse and Reverse, with a separate enumeration for each of the six columns. In order, however, to facilitate a comparison with Langdon’s edition, a table is added: Obverse Col. I, 1 = Line 1 of our text. ,, I, 5 = ,, 5 ,, ,, ,, ,, I, 10 = ,, 10 ,, ,, ,, ,, I, 15 = ,, 15 ,, ,, ,, ,, I, 20 = ,, 20 ,, ,, ,, ,, I, 25 = ,, 25 ,, ,, ,, ,, I, 30 = ,, 30 ,, ,, ,, ,, I, 35 = ,, 35 ,, ,, ,, Col. II, 1 = Line 41 ,, ,, ,, ,, II, 5 = ,, 45 ,, ,, ,, ,, II, 10 = ,, 50 ,, ,, ,, ,, II, 15 = ,, 55 ,, ,, ,, ,, II, 20 = ,, 60 ,, ,, ,, ,, II, 25 = ,, 65 ,, ,, ,, ,, II, 30 = ,, 70 ,, ,, ,, ,, II, 35 = ,, 75 ,, ,, ,, Col. III, 1 = Line 81 ,, ,, ,, ,, III, 5 = ,, 85 ,, ,, ,, ,, III, 10 = ,, 90 ,, ,, ,, ,, III, 15 = ,, 95 ,, ,, ,, ,, III, 26 = ,, 100 ,, ,, ,, ,, III, 25 = ,, 105 ,, ,, ,, ,, III, 30 = ,, 110 ,, ,, ,, ,, III, 35 = ,, 115 ,, ,, ,, Reverse Col. I, 1 (= Col. IV) = Line 131 of our text. ,, I, 5 = ,, 135 ,, ,, ,, ,, I, 10 = ,, 140 ,, ,, ,, ,, I, 15 = ,, 145 ,, ,, ,, ,, I, 20 = ,, 150 ,, ,, ,, ,, I, 25 = ,, 155 ,, ,, ,, ,, I, 30 = ,, 160 ,, ,, ,, ,, II, 1 (= Col. V) = Line 171 ,, ,, ,, ,, II, 5 = ,, 175 ,, ,, ,, ,, II, 10 = ,, 180 ,, ,, ,, ,, II, 15 = ,, 185 ,, ,, ,, ,, II, 20 = ,, 190 ,, ,, ,, ,, II, 25 = ,, 195 ,, ,, ,, ,, II, 30 = ,, 200 ,, ,, ,, ,, III, 1 (= Col. VI) = Line 208 ,, ,, ,, ,, III, 5 = ,, 212 ,, ,, ,, ,, III, 10 = ,, 217 ,, ,, ,, ,, III, 15 = ,, 222 ,, ,, ,, ,, III, 20 = ,, 227 ,, ,, ,, ,, III, 25 = ,, 232 ,, ,, ,, ,, III, 30 = ,, 237 ,, ,, ,, ,, III, 33 = ,, 240 ,, ,, ,, [62] Pennsylvania Tablet. Transliteration. Col. I. 1it-bi-e-ma dGiš šú-na-tam i-pa-áš-šar 2iz-za-kàr-am a-na um-mi-šú 3um-mi i-na šá-at mu-ši-ti-ia 4šá-am-ḫa-ku-ma at-ta-na-al-la-ak 5i-na bi-ri-it it-lu-tim 6ib-ba-šú-nim-ma ka-ka-bu šá-ma-i 7[ki]-iṣ-rù šá A-nim im-ḳu-ut a-na ṣi-ri-ia 8áš-ši-šú-ma ik-ta-bi-it e-li-ia 9ú-ni-iš-šú-ma nu-uš-šá-šú ú-ul il-ti-’i 10Urukki ma-tum pa-ḫi-ir e-li-šú 11it-lu-tum ú-na-šá-ku ši-pi-šú 12ú-um-mi-id-ma pu-ti 13i-mi-du ia-ti 14áš-ši-a-šú-ma ab-ba-la-áš-šú a-na ṣi-ri-ki 15um-mi dGiš mu-di-a-at ka-la-ma 16iz-za-kàr-am a-na dGiš 17mi-in-di dGiš šá ki-ma ka-ti 18i-na ṣi-ri i-wa-li-id-ma 19ú-ra-ab-bi-šú šá-du-ú 20ta-mar-šú-ma [kima Sal(?)] ta-ḫa-du at-ta 21it-lu-tum ú-na-šá-ku ši-pi-šú 22tí-iṭ-ṭi-ra-áš-[šú tu-ut]-tu-ú-ma 23ta-tar-ra-[as-su] a-na ṣi-[ri]-ia 24[uš]-ti-nim-ma i-ta-mar šá-ni-tam[63] 25[šú-na]-ta i-ta-wa-a-am a-na um-mi-šú 26[um-mi] a-ta-mar šá-ni-tam 27[šú-na-tu a-ta]-mar e-mi-a i-na su-ḳi-im 28[šá Uruk]ki ri-bi-tim 29ḫa-aṣ-ṣi-nu na-di-i-ma 30e-li-šú pa-aḫ-ru 31ḫa-aṣ-ṣi-nu-um-ma šá-ni bu-nu-šú 32a-mur-šú-ma aḫ-ta-du a-na-ku 33a-ra-am-šú-ma ki-ma áš-šá-tim 34a-ḫa-ab-bu-ub el-šú 35el-ki-šú-ma áš-ta-ka-an-šú 36a-na a-ḫi-ia 37um-mi dGiš mu-da-at [ka]-la-ma 38[iz-za-kàr-am a-na dGiš] 39[dGiš šá ta-mu-ru amêlu] 40[ta-ḫa-ab-bu-ub ki-ma áš-šá-tim el-šú] Col. II. 41áš-šum uš-[ta]-ma-ḫa-ru it-ti-ka 42dGiš šú-na-tam i-pa-šar 43dEn-ki-[dũ wa]-ši-ib ma-ḫar ḫa-ri-im-tim 44ur-[šá ir]-ḫa-mu di-da-šá(?) ip-tí-[e] 45[dEn-ki]-dũ im-ta-ši a-šar i-wa-al-du 46ûm, 6 ù 7 mu-ši-a-tim 47dEn-[ki-dũ] ti-bi-i-ma 48šá-[am-ka-ta] ir-ḫi 49ḫa-[ri-im-tum pa-a]-šá i-pu-šá-am-ma 50iz-za-[kàr-am] a-na dEn-ki-dũ 51a-na-tal-ka dEn-ki-dũ ki-ma ili ta-ba-áš-ši 52am-mi-nim it-ti na-ma-áš-te-e 53ta-at-ta-[na-al]-ak ṣi-ra-am[64] 54al-kam lu-úr-di-ka 55a-na libbi [Urukki] ri-bi-tim 56a-na bît [el]-lim mu-šá-bi šá A-nim 57dEn-ki-dũ ti-bi lu-ru-ka 58a-na Ê-[an]-na mu-šá-bi šá A-nim 59a-šar [dGiš gi]-it-ma-[lu] ne-pi-ši-tim 60ù at-[ta] ki-[ma Sal ta-ḫa]-bu-[ub]-šú 61ta-[ra-am-šú ki-ma] ra-ma-an-ka 62al-ka ti-ba i-[na] ga-ag-ga-ri 63ma-a-ag-ri-i-im 64iš-me a-wa-as-sa im-ta-ḫar ga-ba-šá 65mi-il-[kum] šá aššatim 66im-ta-ḳu-ut a-na libbi-šú 67iš-ḫu-ut li-ib-šá-am 68iš-ti-nam ú-la-ab-bi-iš-sú 69li-ib-[šá-am] šá-ni-a-am 70ši-i it-ta-al-ba-áš 71ṣa-ab-tat ga-as-su 72ki-ma [ili] i-ri-id-di-šú 73a-na gu-up-ri šá-ri-i-im 74a-šar tar-ba-ṣi-im 75i-na [áš]-ri-šú [im]-ḫu-ruri-ia-ú 76[ù šú-u dEn-ki-dũ i-lit-ta-šú šá-du-um-ma] 77[it-ti ṣabâti-ma ik-ka-la šam-ma] 78[it-ti bu-lim maš-ḳa-a i-šat-ti] 79[it-ti na-ma-áš-te-e mê i-ṭab lib-ba-šú] (Perhaps one additional line missing.) Col. III. 81ši-iz-ba šá na-ma-áš-te-e 82i-te-en-ni-ik 83a-ka-lam iš-ku-nu ma-ḫar-šú 84ib-tí-ik-ma i-na-at-tal 85ù ip-pa-al-la-as[65] 86ú-ul i-di dEn-ki-dũ 87aklam a-na a-ka-lim 88šikaram a-na šá-te-e-im 89la-a lum-mu-ud 90ḫa-ri-im-tum pi-šá i-pu-šá-am-ma 91iz-za-kàr-am a-na dEn-ki-dũ 92a-ku-ul ak-lam dEn-ki-dũ 93zi-ma-at ba-la-ṭi-im 94šikaram ši-ti ši-im-ti ma-ti 95i-ku-ul a-ak-lam dEn-ki-dũ 96a-di ši-bi-e-šú 97šikaram iš-ti-a-am 987 aṣ-ṣa-am-mi-im 99it-tap-šar kab-ta-tum i-na-an-gu 100i-li-iṣ libba-šú-ma 101pa-nu-šú [it]-tam-ru 102ul-tap-pi-it [lùŠÚ]-I 103šú-ḫu-ra-am pa-ga-ar-šú 104šá-am-nam ip-ta-šá-áš-ma 105a-we-li-iš i-we 106il-ba-áš li-ib-šá-am 107ki-ma mu-ti i-ba-áš-ši 108il-ki ka-ak-ka-šú 109la-bi ú-gi-ir-ri 110uš-sa-ak-pu re’ûti mu-ši-a-tim 111ut-tap-pi-iš šib-ba-ri 112la-bi uk-ta-ši-id 113it-ti-[lu] na-ki-[di-e] ra-bu-tum 114dEn-ki-dũ ma-aṣ-ṣa-ar-šú-nu 115a-we-lum giš-ru-um 116iš-te-en it-lum 117a-na [na-ki-di-e(?) i]-za-ak-ki-ir (About five lines missing.) Col. IV. (About eight lines missing.) 131i-ip-pu-uš ul-ṣa-am 132iš-ši-ma i-ni-i-šú 133i-ta-mar a-we-lam[66] 134iz-za-kàr-am a-na ḫarimtim 135šá-am-ka-at uk-ki-ši a-we-lam 136a-na mi-nim il-li-kam 137zi-ki-ir-šú lu-uš-šú 138ḫa-ri-im-tum iš-ta-si a-we-lam 139i-ba-uš-su-um-ma i-ta-mar-šú 140e-di-il e-eš ta-ḫi-[il-la]-am 141lim-nu a-la-ku ma-na-aḫ-[ti]-ka 142e-pi-šú i-pu-šá-am-ma 143iz-za-kàr-am a-na dEn-[ki-dũ] 144bi-ti-iš e-mu-tim ik …… 145ši-ma-a-at ni-ši-i-ma 146tu-a-(?)-ar e-lu-tim 147a-na âli(?) dup-šak-ki-i e-ṣi-en 148uk-la-at âli(?) e-mi-sa a-a-ḫa-tim 149a-na šarri šá Urukki ri-bi-tim 150pi-ti pu-uk epiši(-ši) a-na ḫa-a-a-ri 151a-na dGiš šarri šá Urukki ri-bi-tim 152pi-ti pu-uk epiši(-ši) 153a-na ḫa-a-a-ri 154áš-ša-at ši-ma-tim i-ra-aḫ-ḫi 155šú-ú pa-na-nu-um-ma 156mu-uk wa-ar-ka-nu 157i-na mi-il-ki šá ili ga-bi-ma 158i-na bi-ti-iḳ a-bu-un-na-ti-šú 159ši-ma-as-su 160a-na zi-ik-ri it-li-im 161i-ri-ku pa-nu-šú (About three lines missing.) [67] Col. V. (About six lines missing.) 171i-il-la-ak [dEn-ki-dũ i-na pa-ni] 172u-šá-am-ka-at [wa]-ar-ki-šú 173i-ru-ub-ma a-na libbi Urukki ri-bi-tim 174ip-ḫur um-ma-nu-um i-na ṣi-ri-šú 175iz-zi-za-am-ma i-na su-ḳi-im 176šá Urukki ri-bi-tim 177pa-aḫ-ra-a-ma ni-šú 178i-ta-wa-a i-na ṣi-ri-šú 179a-na ṣalam dGiš ma-ši-il pi-it-tam 180la-nam šá-pi-il 181si-ma …. [šá-ki-i pu]-uk-ku-ul 182............. i-pa-ka-du 183i-[na mâti da-an e-mu]-ki i-wa 184ši-iz-ba šá na-ma-aš-te-e 185i-te-en-ni-ik 186ka-a-a-na i-na [libbi] Urukki kak-ki-a-tum 187it-lu-tum ú-te-el-li-lu 188šá-ki-in ur-šá-nu 189a-na itli šá i-šá-ru zi-mu-šú 190a-na dGiš ki-ma i-li-im 191šá-ki-iš-šum me-iḫ-rù 192a-na dIš-ḫa-ra ma-a-a-lum 193na-di-i-ma 194dGiš it-[ti-il-ma wa-ar-ka-tim] 195i-na mu-ši in-ni-[ib-bi]-it 196i-na-ag-šá-am-ma 197it-ta-[zi-iz dEn-ki-dũ] i-na sûḳim 198ip-ta-ra-[aṣ a-la]-ak-tam 199šá dGiš 200[a-na e-pi-iš] da-na-ni-iš-šú (About three lines missing.) [68] Col. VI. (About four lines missing.) 208šar(?)-ḫa 209dGiš … 210i-na ṣi-ri-[šú il-li-ka-am dEn-ki-dũ] 211i-ḫa-an-ni-ib [pi-ir-ta-šú] 212it-bi-ma [il-li-ik] 213a-na pa-ni-šú 214it-tam-ḫa-ru i-na ri-bi-tum ma-ti 215dEn-ki-dũ ba-ba-am ip-ta-ri-ik 216i-na ši-pi-šú 217dGiš e-ri-ba-am ú-ul id-di-in 218iṣ-ṣa-ab-tu-ma ki-ma li-i-im 219i-lu-du 220zi-ip-pa-am ’i-bu-tu 221i-ga-rum ir-tu-tu 222dGiš ù dEn-ki-dũ 223iṣ-ṣa-ab-tu-ú-ma 224ki-ma li-i-im i-lu-du 225zi-ip-pa-am ’i-bu-tu 226i-ga-rum ir-tu-tú 227ik-mi-is-ma dGiš 228i-na ga-ag-ga-ri ši-ip-šú 229ip-ši-iḫ uz-za-šú-ma 230i-ni-iḫ i-ra-as-su 231iš-tu i-ra-su i-ni-ḫu 232dEn-ki-dũ a-na šá-ši-im 233iz-za-kàr-am a-na dGiš 234ki-ma iš-te-en-ma um-ma-ka 235ú-li-id-ka 236ri-im-tum šá su-pu-ri 237dNin-sun-na 238ul-lu e-li mu-ti ri-eš-ka 239šar-ru-tú šá ni-ši 240i-ši-im-kum dEn-lil 241 duppu 2 kam-ma 242šú-tu-ur e-li ………………… 243 4 šú-ši [62] Translation. Col. I. 1Gish sought to interpret the dream; 2Spoke to his mother: 3“My mother, during my night 4I became strong and moved about 5among the heroes; 6And from the starry heaven 7A meteor(?) of Anu fell upon me: 8I bore it and it grew heavy upon me, 9I became weak and its weight I could not endure. 10The land of Erech gathered about it. 11The heroes kissed its feet.1 12It was raised up before me. 13They stood me up.2 14I bore it and carried it to thee.” 15The mother of Gish, who knows all things, 16Spoke to Gish: 17“Some one, O Gish, who like thee 18In the field was born and 19Whom the mountain has reared, 20Thou wilt see (him) and [like a woman(?)] thou wilt rejoice. 21Heroes will kiss his feet. 22Thou wilt spare [him and wilt endeavor] 23To lead him to me.” 24He slept and saw another[63] 25Dream, which he reported to his mother: 26[“My mother,] I have seen another 27[Dream.] My likeness I have seen in the streets 28[Of Erech] of the plazas. 29An axe was brandished, and 30They gathered about him; 31And the axe made him angry. 32I saw him and I rejoiced, 33I loved him as a woman, 34I embraced him. 35I took him and regarded him 36As my brother.” 37The mother of Gish, who knows all things, 38[Spoke to Gish]: 39[“O Gish, the man whom thou sawest,] 40[Whom thou didst embrace like a woman]. Col II. 41(means) that he is to be associated with thee.” 42Gish understood the dream. 43[As] Enki[du] was sitting before the woman, 44[Her] loins(?) he embraced, her vagina(?) he opened. 45[Enkidu] forgot the place where he was born. 46Six days and seven nights 47Enkidu continued 48To cohabit with [the courtesan]. 49[The woman] opened her [mouth] and 50Spoke to Enkidu: 51“I gaze upon thee, O Enkidu, like a god art thou! 52Why with the cattle 53Dost thou [roam] across the field?[64] 54Come, let me lead thee 55into [Erech] of the plazas, 56to the holy house, the dwelling of Anu, 57O, Enkidu arise, let me conduct thee 58To Eanna, the dwelling of Anu, 59The place [where Gish is, perfect] in vitality. 60And thou [like a wife wilt embrace] him. 61Thou [wilt love him like] thyself. 62Come, arise from the ground 63(that is) cursed.” 64He heard her word and accepted her speech. 65The counsel of the woman 66Entered his heart. 67She stripped off a garment, 68Clothed him with one. 69Another garment 70She kept on herself. 71She took hold of his hand. 72Like [a god(?)] she brought him 73To the fertile meadow, 74The place of the sheepfolds. 75In that place they received food; 76[For he, Enkidu, whose birthplace was the mountain,] 77[With the gazelles he was accustomed to eat herbs,] 78[With the cattle to drink water,] 79[With the water beings he was happy.] (Perhaps one additional line missing.) Col. III. 81Milk of the cattle 82He was accustomed to suck. 83Food they placed before him, 84He broke (it) off and looked 85And gazed.[65] 86Enkidu had not known 87To eat food. 88To drink wine 89He had not been taught. 90The woman opened her mouth and 91Spoke to Enkidu: 92“Eat food, O Enkidu, 93The provender of life! 94Drink wine, the custom of the land!” 95Enkidu ate food 96Till he was satiated. 97Wine he drank, 98Seven goblets. 99His spirit was loosened, he became hilarious. 100His heart became glad and 101His face shone. 102[The barber(?)] removed 103The hair on his body. 104He was anointed with oil. 105He became manlike. 106He put on a garment, 107He was like a man. 108He took his weapon; 109Lions he attacked, 110(so that) the night shepherds could rest. 111He plunged the dagger; 112Lions he overcame. 113The great [shepherds] lay down; 114Enkidu was their protector. 115The strong man, 116The unique hero, 117To [the shepherds(?)] he speaks: (About five lines missing.) Col. IV. (About eight lines missing.) 131Making merry. 132He lifted up his eyes, 133He sees the man.[66] 134He spoke to the woman: 135“O, courtesan, lure on the man. 136Why has he come to me? 137His name I will destroy.” 138The woman called to the man 139Who approaches to him3 and he beholds him. 140“Away! why dost thou [quake(?)] 141Evil is the course of thy activity.”4 142Then he5 opened his mouth and 143Spoke to Enkidu: 144”[To have (?)] a family home 145Is the destiny of men, and 146The prerogative(?) of the nobles. 147For the city(?) load the workbaskets! 148Food supply for the city lay to one side! 149For the King of Erech of the plazas, 150Open the hymen(?), perform the marriage act! 151For Gish, the King of Erech of the plazas, 152Open the hymen(?), 153Perform the marriage act! 154With the legitimate wife one should cohabit. 155So before, 156As well as in the future.6 157By the decree pronounced by a god, 158From the cutting of his umbilical cord 159(Such) is his fate.” 160At the speech of the hero 161His face grew pale. (About three lines missing.) [67] Col. V. (About six lines missing.) 171[Enkidu] went [in front], 172And the courtesan behind him. 173He entered into Erech of the plazas. 174The people gathered about him. 175As he stood in the streets 176Of Erech of the plazas, 177The men gathered, 178Saying in regard to him: 179“Like the form of Gish he has suddenly become; 180shorter in stature. 181[In his structure high(?)], powerful, 182.......... overseeing(?) 183In the land strong of power has he become. 184Milk of cattle 185He was accustomed to suck.” 186Steadily(?) in Erech ..... 187The heroes rejoiced. 188He became a leader. 189To the hero of fine appearance, 190To Gish, like a god, 191He became a rival to him.7 192For Ishḫara a couch 193Was stretched, and 194Gish [lay down, and afterwards(?)] 195In the night he fled. 196He approaches and 197[Enkidu stood] in the streets. 198He blocked the path 199of Gish. 200At the exhibit of his power, (About three lines missing.) [68] Col. VI. (About four lines missing.) 208Strong(?) … 209Gish 210Against him [Enkidu proceeded], 211[His hair] luxuriant. 212He started [to go] 213Towards him. 214They met in the plaza of the district. 215Enkidu blocked the gate 216With his foot, 217Not permitting Gish to enter. 218They seized (each other), like oxen, 219They fought. 220The threshold they demolished; 221The wall they impaired. 222Gish and Enkidu 223Seized (each other). 224Like oxen they fought. 225The threshold they demolished; 226The wall they impaired. 227Gish bent 228His foot to the ground,8 229His wrath was appeased, 230His breast was quieted. 231When his breast was quieted, 232Enkidu to him 233Spoke, to Gish: 234“As a unique one, thy mother 235bore thee. 236The wild cow of the stall,9 237Ninsun, 238Has exalted thy head above men. 239Kingship over men 240Enlil has decreed for thee. 241Second tablet, 242enlarged beyond [the original(?)]. 243240 lines. [69] 1 I.e., paid homage to the meteor. 2 I.e., the heroes of Erech raised me to my feet, or perhaps in the sense of “supported me.” 3 I.e., Enkidu. 4 I.e., “thy way of life.” 5 I.e., the man. 6 I.e., an idiomatic phrase meaning “for all times.” 7 I.e., Enkidu became like Gish, godlike. Cf. col. 2, 11. 8 He was thrown and therefore vanquished. 9 Epithet given to Ninsun. See the commentary to the line. Commentary on the Pennsylvania Tablet. Line 1. The verb tibû with pašâru expresses the aim of Gish to secure an interpretation for his dream. This disposes of Langdon’s note 1 on page 211 of his edition, in which he also erroneously speaks of our text as “late.” Pašâru is not a variant of zakâru. Both verbs occur just as here in the Assyrian version I, 5, 25. Line 3. ina šât mušitia, “in this my night,” i.e., in the course of this night of mine. A curious way of putting it, but the expression occurs also in the Assyrian version, e.g., I, 5, 26 (parallel passage to ours) and II, 4a, 14. In the Yale tablet we find, similarly, mu-ši-it-ka (l. 262), “thy night,” i.e., “at night to thee.” Line 5. Before Langdon put down the strange statement of Gish “wandering about in the midst of omens” (misreading id-da-tim for it-lu-tim), he might have asked himself the question, what it could possibly mean. How can one walk among omens? Line 6. ka-ka-bu šá-ma-i must be taken as a compound term for “starry heaven.” The parallel passage in the Assyrian version (Tablet I, 5, 27) has the ideograph for star, with the plural sign as a variant. Literally, therefore, “The starry heaven (or “the stars in heaven”) was there,” etc. Langdon’s note 2 on page 211 rests on an erroneous reading. Line 7. kiṣru šá Anim, “mass of Anu,” appears to be the designation of a meteor, which might well be described as a “mass” coming from Anu, i.e., from the god of heaven who becomes the personification of the heavens in general. In the Assyrian version (I, 5, 28) we have kima ki-iṣ-rù, i.e., “something like a mass of heaven.” Note also I, 3, 16, where in a description of Gilgamesh, his strength is said to be “strong like a mass (i.e., a meteor) of heaven.” Line 9. For nuššašu ûl iltê we have a parallel in the Hebrew phrase נלְַפָסֵתִי נשַׂפָס (Isaiah 1, 14). Line 10. Uruk mâtum, as the designation for the district of Erech, occurs in the Assyrian version, e.g., I, 5, 31, and IV, 2, 38; also to be supplied, I, 6, 23. For paḫir the parallel in the Assyrian version has iz-za-az (I, 5, 31), but VI, 197, we find paḫ-ru and paḫ-ra. Line 17. mi-in-di does not mean “truly” as Langdon translates, but “some one.” It occurs also in the Assyrian version X, 1, 13, mi-in-di-e ma-an-nu-ṵ, “this is some one who,” etc. [70] Line 18. Cf. Assyrian version I, 5, 3, and IV, 4, 7, ina ṣiri âlid—both passages referring to Enkidu. Line 21. Cf. Assyrian version II, 3b, 38, with malkê, “kings,” as a synonym of itlutum. Line 23. ta-tar-ra-as-sú from tarâṣu, “direct,” “guide,” etc. Line 24. I take uš-ti-nim-ma as III, 2, from išênu (יָשֵׁן), the verb underlying šittu, “sleep,” and šuttu, “dream.” Line 26. Cf. Assyrian version I, 6, 21—a complete parallel. Line 28. Uruk ri-bi-tim, the standing phrase in both tablets of the old Babylonian version, for which in the Assyrian version we have Uruk su-pu-ri. The former term suggests the “broad space” outside of the city or the “common” in a village community, while supûri, “enclosed,” would refer to the city within the walls. Dr. W. F. Albright (in a private communication) suggests “Erech of the plazas” as a suitable translation for Uruk ribîtim. A third term, Uruk mâtum (see above, note to line 10), though designating rather the district of which Erech was the capital, appears to be used as a synonym to Uruk ribîtim, as may be concluded from the phrase i-na ri-bi-tum ma-ti (l. 214 of the Pennsylvania tablet), which clearly means the “plaza” of the city. One naturally thinks of רְחֹבֹת עִיר in Genesis 10, 11—the equivalent of Babylonian ri-bi-tu âli—which can hardly be the name of a city. It appears to be a gloss, as is הִיַפָס הָעִיּר הַגְּדֹלָה at the end of v. 12. The latter gloss is misplaced, since it clearly describes “Nineveh,” mentioned in v. 11. Inasmuch as רְחֹבֹת עִיר immediately follows the mention of Nineveh, it seems simplest to take the phrase as designating the “outside” or “suburbs” of the city, a complete parallel, therefore, to ri-bi-tu mâti in our text. Nineveh, together with the “suburbs,” forms the “great city.” Uruk ribîtim is, therefore, a designation for “greater Erech,” proper to a capital city, which by its gradual growth would take in more than its original confines. “Erech of the plazas” must have come to be used as a honorific designation of this important center as early as 2000 B. C., whereas later, perhaps because of its decline, the epithet no longer seemed appropriate and was replaced by the more modest designation of “walled Erech,” with an allusion to the tradition which ascribed the building of the wall of the city to Gilgamesh. At all [71]events, all three expressions, “Erech of the plazas,” “Erech walled” and “Erech land,” are to be regarded as synonymous. The position once held by Erech follows also from its ideographic designation (Brünnow No. 4796) by the sign “house” with a “gunufied” extension, which conveys the idea of Unu = šubtu, or “dwelling” par excellence. The pronunciation Unug or Unuk (see the gloss u-nu-uk, VR 23, 8a), composed of unu, “dwelling,” and ki, “place,” is hardly to be regarded as older than Uruk, which is to be resolved into uru, “city,” and ki, “place,” but rather as a play upon the name, both Unu + ki and Uru + ki conveying the same idea of the city or the dwelling place par excellence. As the seat of the second oldest dynasty according to Babylonian traditions (see Poebel’s list in Historical and Grammatical Texts No. 2), Erech no doubt was regarded as having been at one time “the city,” i.e., the capital of the entire Euphrates Valley. Line 31. A difficult line for which Langdon proposes the translation: “Another axe seemed his visage”!!—which may be picturesque, but hardly a description befitting a hero. How can a man’s face seem to be an axe? Langdon attaches šá-ni in the sense of “second” to the preceding word “axe,” whereas šanî bunušu, “change of his countenance” or “his countenance being changed,” is to be taken as a phrase to convey the idea of “being disturbed,” “displeased” or “angry.” The phrase is of the same kind as the well-known šunnu ṭêmu, “changing of reason,” to denote “insanity.” See the passages in Muss-Arnolt, Assyrian Dictionary, pp. 355 and 1068. In Hebrew, too, we have the same two phrases, e.g., וַיְשַׁנֹּו ַפָסֶת־טַעְמֹו (I Sam. 21, 14 = Ps. 34, 1), “and he changed his reason,” i.e., feigned insanity and מְשַׁנֶּה פָּנָיו (Job 14, 20), “changing his face,” to indicate a radical alteration in the frame of mind. There is a still closer parallel in Biblical Aramaic: Dan. 3, 19, “The form of his visage was changed,” meaning “he was enraged.” Fortunately, the same phrase occurs also in the Yale tablet (l. 192), šá-nu-ú bu-nu-šú, in a connection which leaves no doubt that the aroused fury of the tyrant Ḫuwawa is described by it: ”Ḫuwawa heard and his face was changed” precisely, therefore, as we should say—following Biblical usage—“his countenance fell.” Cf. also the phrase pânušu arpu, “his countenance [72]was darkened” (Assyrian version I, 2, 48), to express “anger.” The line, therefore, in the Pennsylvania tablet must describe Enkidu’s anger. With the brandishing of the axe the hero’s anger was also stirred up. The touch was added to prepare us for the continuation in which Gish describes how, despite this (or perhaps just because of it), Enkidu seemed so attractive that Gish instantly fell in love with him. May perhaps the emphatic form ḫaṣinumma (line 31) against ḫaṣinu (line 29) have been used to indicate “The axe it was,” or “because of the axe?” It would be worth while to examine other texts of the Hammurabi period with a view of determining the scope in the use and meaning of the emphatic ma when added to a substantive. Line 32. The combination amur ù aḫtadu occurs also in the El-Amarna Letters, No. 18, 12. Line 34. In view of the common Hebrew, Syriac and Arabic חָבַב “to love,” it seems preferable to read here, as in the other passages in the Assyrian versions (I, 4, 15; 4, 35; 6, 27, etc.), a-ḫa-ab-bu-ub, aḫ-bu-ub, iḫ-bu-bu, etc. (instead of with p), and to render “embrace.” Lines 38–40, completing the column, may be supplied from the Assyrian version I, 6, 30–32, in conjunction with lines 33–34 of our text. The beginning of line 32 in Jensen’s version is therefore to be filled out [ta-ra-am-šú ki]-i. Line 43. The restoration at the beginning of this line En-ki-[dũ wa]-ši-ib ma-ḫar ḫa-ri-im-tim enables us to restore also the beginning of the second tablet of the Assyrian version (cf. the colophon of the fragment 81, 7–27, 93, in Jeremias, Izdubar-Nimrod, plate IV = Jensen, p. 134), [dEn-ki-dũ wa-ši-ib] ma-ḫar-šá. Line 44. The restoration of this line is largely conjectural, based on the supposition that its contents correspond in a general way to I, 4, 16, of the Assyrian version. The reading di-da is quite certain, as is also ip-ti-[e]; and since both words occur in the line of the Assyrian version in question, it is tempting to supply at the beginning ur-[šá] = “her loins” (cf. Holma, Namen der Körperteile, etc., p. 101), which is likewise found in the same line of the Assyrian version. At all events the line describes the fascination exercised [73]upon Enkidu by the woman’s bodily charms, which make him forget everything else. Lines 46–47 form a parallel to I, 4, 21, of the Assyrian version. The form šamkatu, “courtesan,” is constant in the old Babylonian version (ll. 135 and 172), as against šamḫatu in the Assyrian version (I, 3, 19, 40, 45; 4, 16), which also uses the plural šam-ḫa-a-ti (II, 3b, 40). The interchange between ḫ and k is not without precedent (cf. Meissner, Altbabylonisches Privatrecht, page 107, note 2, and more particularly Chiera, List of Personal Names, page 37). In view of the evidence, set forth in the Introduction, for the assumption that the Enkidu story has been combined with a tale of the evolution of primitive man to civilized life, it is reasonable to suggest that in the original Enkidu story the female companion was called šamkatu, “courtesan,” whereas in the tale of the primitive man, which was transferred to Enkidu, the associate was ḫarimtu, a “woman,” just as in the Genesis tale, the companion of Adam is simply called ishshâ, “woman.” Note that in the Assyrian parallel (Tablet I, 4, 26) we have two readings, ir-ḫi (imperf.) and a variant i-ri-ḫi (present). The former is the better reading, as our tablet shows. Lines 49–59 run parallel to the Assyrian version I, 4, 33–38, with slight variations which have been discussed above, p. 58, and from which we may conclude that the Assyrian version represents an independent redaction. Since in our tablet we have presumably the repetition of what may have been in part at least set forth in the first tablet of the old Babylonian version, we must not press the parallelism with the first tablet of the Assyrian version too far; but it is noticeable nevertheless (1) that our tablet contains lines 57–58 which are not represented in the Assyrian version, and (2) that the second speech of the “woman” beginning, line 62, with al-ka, “come” (just as the first speech, line 54), is likewise not found in the first tablet of the Assyrian version; which on the other hand contains a line (39) not in the Babylonian version, besides the detailed answer of Enkidu (I 4, 42–5, 5). Line 6, which reads “Enkidu and the woman went (il-li-ku) to walled Erech,” is also not found in the second tablet of the old Babylonian version. Line 63. For magrû, “accursed,” see the frequent use in Astrological texts (Jastrow, Religion Babyloniens und Assyriens II, page [74]450, note 2). Langdon, by his strange error in separating ma-a-ag-ri-im into two words ma-a-ak and ri-i-im, with a still stranger rendering: “unto the place yonder of the shepherds!!”, naturally misses the point of this important speech. Line 64 corresponds to I, 4, 40, of the Assyrian version, which has an additional line, leading to the answer of Enkidu. From here on, our tablet furnishes material not represented in the Assyrian version, but which was no doubt included in the second tablet of that version of which we have only a few fragments. Line 70 must be interpreted as indicating that the woman kept one garment for herself. Ittalbaš would accordingly mean, “she kept on.” The female dress appears to have consisted of an upper and a lower garment. Line 72. The restoration “like a god” is favored by line 51, where Enkidu is likened to a god, and is further confirmed by l. 190. Line 73. gupru is identical with gu-up-ri (Thompson, Reports of the Magicians and Astrologers, etc., 223 rev. 2 and 223a rev. 8), and must be correlated to gipâru (Muss-Arnolt, Assyrian Dictionary, p. 229a), “planted field,” “meadow,” and the like. Thompson’s translation “men” (as though a synonym of gabru) is to be corrected accordingly. Line 74. There is nothing missing between a-šar and tar-ba-ṣi-im. Line 75. ri-ia-ú, which Langdon renders “shepherd,” is the equivalent of the Arabic riʿy and Hebrew רְעִי “pasturage,” “fodder.” We have usually the feminine form ri-i-tu (Muss-Arnolt, Assyrian Dictionary, p. 990b). The break at the end of the second column is not serious. Evidently Enkidu, still accustomed to live like an animal, is first led to the sheepfolds, and this suggests a repetition of the description of his former life. Of the four or five lines missing, we may conjecturally restore four, on the basis of the Assyrian version, Tablet I, 4, 2–5, or I, 2, 39–41. This would then join on well to the beginning of column 3. Line 81. Both here and in l. 52 our text has na-ma-áš-te-e, as against nam-maš-ši-i in the Assyrian version, e.g., Tablet I, 2, 41; 4, 5, etc.,—the feminine form, therefore, as against the masculine. Langdon’s note 3 on page 213 is misleading. In astrological texts we also find nam-maš-te; e.g., Thompson, Reports of the Magicians and Astrologers, etc., No. 200, Obv. 2. [75] Line 93. zi-ma-at (for simat) ba-la-ṭi-im is not “conformity of life” as Langdon renders, but that which “belongs to life” like si-mat pag-ri-šá, “belonging to her body,” in the Assyrian version III, 2a, 3 (Jensen, page 146). “Food,” says the woman, “is the staff of life.” Line 94. Langdon’s strange rendering “of the conditions and fate of the land” rests upon an erroneous reading (see the corrections, Appendix I), which is the more inexcusable because in line 97 the same ideogram, Kàš = šikaru, “wine,” occurs, and is correctly rendered by him. Šimti mâti is not the “fate of the land,” but the “fixed custom of the land.” Line 98. aṣ-ṣa-mi-im (plural of aṣṣamu), which Langdon takes as an adverb in the sense of “times,” is a well-known word for a large “goblet,” which occurs in Incantation texts, e.g., CT XVI, 24, obv. 1, 19, mê a-ṣa-am-mi-e šú-puk, “pour out goblets of water.” Line 18 of the passage shoves that aṣammu is a Sumerian loan word. Line 99. it-tap-šar, I, 2, from pašâru, “loosen.” In combination with kabtatum (from kabitatum, yielding two forms: kabtatum, by elision of i, and kabittu, by elision of a), “liver,” pašâru has the force of becoming cheerful. Cf. ka-bit-ta-ki lip-pa-šir (ZA V., p. 67, line 14). Line 100, note the customary combination of “liver” (kabtatum) and “heart” (libbu) for “disposition” and “mind,” just as in the standing phrase in penitential prayers: “May thy liver be appeased, thy heart be quieted.” Line 102. The restoration [lùŠÚ]-I = gallabu “barber” (Delitzsch, Sumer. Glossar, p. 267) was suggested to me by Dr. H. F. Lutz. The ideographic writing “raising the hand” is interesting as recalling the gesture of shaving or cutting. Cf. a reference to a barber in Lutz, Early Babylonian Letters from Larsa, No. 109, 6. Line 103. Langdon has correctly rendered šuḫuru as “hair,” and has seen that we have here a loan-word from the Sumerian Suḫur = kimmatu, “hair,” according to the Syllabary Sb 357 (cf. Delitzsch, Sumer. Glossar., p. 253). For kimmatu, “hair,” more specifically hair of the head and face, see Holma, Namen der Körperteile, page 3. The same sign Suḫur or Suḫ (Brünnow No. 8615), with Lal, i.e., “hanging hair,” designates the “beard” (ziḳnu, cf. Brünnow, No. 8620, and Holma, l. c., p. 36), and it is interesting to [76]note that we have šuḫuru (introduced as a loan-word) for the barbershop, according to II R, 21, 27c (= CT XII, 41). Ê suḫur(ra) (i.e., house of the hair) = šú-ḫu-ru. In view of all this, we may regard as assured Holma’s conjecture to read šú-[ḫur-ma-šú] in the list 93074 obv. (MVAG 1904, p. 203; and Holma, Beiträge z. Assyr. Lexikon, p. 36), as the Akkadian equivalent to Suḫur-Maš-Ḫa and the name of a fish, so called because it appeared to have a double “beard” (cf. Holma, Namen der Körperteile). One is tempted, furthermore, to see in the difficult word שכירה (Isaiah 7, 20) a loan-word from our šuḫuru, and to take the words ַפָסֶת־הָרַֹפָסשׁ וְשַׂעַר הָרַגְלַיִם “the head and hair of the feet” (euphemistic for the hair around the privates), as an explanatory gloss to the rare word שכירה for “hair” of the body in general—just as in the passage in the Pennsylvania tablet. The verse in Isaiah would then read, “The Lord on that day will shave with the razor the hair (השכירה), and even the beard will be removed.” The rest of the verse would represent a series of explanatory glosses: (a) “Beyond the river” (i.e., Assyria), a gloss to יְגַלַּח (b) “with the king of Assyria,” a gloss to בְּתַעַר “with a razor;” and (c) “the hair of the head and hair of the feet,” a gloss to השכירה. For “hair of the feet” we have an interesting equivalent in Babylonian šu-ḫur (and šú-ḫu-ur) šêpi (CT XII, 41, 23–24 c-d). Cf. also Boissier, Documents Assyriens relatifs aux Présages, p. 258, 4–5. The Babylonian phrase is like the Hebrew one to be interpreted as a euphemism for the hair around the male or female organ. To be sure, the change from ה to כ in השכירה constitutes an objection, but not a serious one in the case of a loan-word, which would aim to give the pronunciation of the original word, rather than the correct etymological equivalent. The writing with aspirated כ fulfills this condition. (Cf. šamkatum and šamḫatum, above p. 73). The passage in Isaiah being a reference to Assyria, the prophet might be tempted to use a foreign word to make his point more emphatic. To take השכירה as “hired,” as has hitherto been done, and to translate “with a hired razor,” is not only to suppose a very wooden metaphor, but is grammatically difficult, since השכירח would be a feminine adjective attached to a masculine substantive. Coming back to our passage in the Pennsylvania tablet, it is to [77]be noted that Enkidu is described as covered “all over his body with hair” (Assyrian version, Tablet I, 2, 36) like an animal. To convert him into a civilized man, the hair is removed. Line 107. mutu does not mean “husband” here, as Langdon supposes, but must be taken as in l. 238 in the more general sense of “man,” for which there is good evidence. Line 109. la-bi (plural form) are “lions”—not “panthers” as Langdon has it. The verb ú-gi-ir-ri is from gâru, “to attack.” Langdon by separating ú from gi-ir-ri gets a totally wrong and indeed absurd meaning. See the corrections in the Appendix. He takes the sign ú for the copula (!!) which of course is impossible. Line 110. Read uš-sa-ak-pu, III, 1, of sakâpu, which is frequently used for “lying down” and is in fact a synonym of ṣalâlu. See Muss-Arnolt, Assyrian Dictionary, page 758a. The original has very clearly Síb (= rê’u, “shepherd”) with the plural sign. The “shepherds of the night,” who could now rest since Enkidu had killed the lions, are of course the shepherds who were accustomed to watch the flocks during the night. Line 111. ut-tap-pi-iš is II, 2, napâšu, “to make a hole,” hence “to plunge” in connection with a weapon. Šib-ba-ri is, of course, not “mountain goats,” as Langdon renders, but a by-form to šibbiru, “stick,” and designates some special weapon. Since on seal cylinders depicting Enkidu killing lions and other animals the hero is armed with a dagger, this is presumably the weapon šibbaru. Line 113. Langdon’s translation is again out of the question and purely fanciful. The traces favor the restoration na-ki-[di-e], “shepherds,” and since the line appears to be a parallel to line 110, I venture to suggest at the beginning [it-ti]-lu from na’âlu, “lie down”—a synonym, therefore, to sakâpu in line 110. The shepherds can sleep quietly after Enkidu has become the “guardian” of the flocks. In the Assyrian version (tablet II, 3a, 4) Enkidu is called a na-kid, “shepherd,” and in the preceding line we likewise have lùNa-Kid with the plural sign, i.e., “shepherds.” This would point to nakidu being a Sumerian loan-word, unless it is vice versa, a word that has gone over into the Sumerian from Akkadian. Is perhaps the fragment in question (K 8574) in the Assyrian version (Haupt’s ed. No. 25) the parallel to our passage? If in line 4 of this fragment we could read šú for sa, i.e., na-kid-šú-nu, “their shepherd, we would have a [78]parallel to line 114 of the Pennsylvania tablet, with na-kid as a synonym to maṣṣaru, “protector.” The preceding line would then be completed as follows: [it-ti-lu]-nim-ma na-kidmeš [ra-bu-tum] (or perhaps only it-ti-lu-ma, since the nim is not certain) and would correspond to line 113 of the Pennsylvania tablet. Inasmuch as the writing on the tiny fragment is very much blurred, it is quite possible that in line 2 we must read šib-ba-ri (instead of bar-ba-ri), which would furnish a parallel to line 111 of the Pennsylvania tablet. The difference between Bar and Šib is slight, and the one sign might easily be mistaken for the other in the case of close writing. The continuation of line 2 of the fragment would then correspond to line 112 of the Pennsylvania tablet, while line 1 of the fragment might be completed [re-e]-u-ti(?) šá [mu-ši-a-tim], though this is by no means certain. The break at the close of column 3 (about 5 lines) and the top of column 4 (about 8 lines) is a most serious interruption in the narrative, and makes it difficult to pick up the thread where the tablet again becomes readable. We cannot be certain whether the “strong man, the unique hero” who addresses some one (lines 115–117) is Enkidu or Gish or some other personage, but presumably Gish is meant. In the Assyrian version, Tablet I, 3, 2 and 29, we find Gilgamesh described as the “unique hero” and in l. 234 of the Pennsylvania tablet Gish is called “unique,” while again, in the Assyrian version, Tablet I, 2, 15 and 26, he is designated as gašru as in our text. Assuming this, whom does he address? Perhaps the shepherds? In either case he receives an answer that rejoices him. If the fragment of the Assyrian version (K 8574) above discussed is the equivalent to the close of column 3 of the Pennsylvania tablet, we may go one step further, and with some measure of assurance assume that Gish is told of Enkidu’s exploits and that the latter is approaching Erech. This pleases Gish, but Enkidu when he sees Gish(?) is stirred to anger and wants to annihilate him. At this point, the “man” (who is probably Gish, though the possibility of a third personage must be admitted) intervenes and in a long speech sets forth the destiny and higher aims of mankind. The contrast between Enkidu and Gish (or the third party) is that between the primitive [79]savage and the civilized being. The contrast is put in the form of an opposition between the two. The primitive man is the stronger and wishes to destroy the one whom he regards as a natural foe and rival. On the other hand, the one who stands on a higher plane wants to lift his fellow up. The whole of column 4, therefore, forms part of the lesson attached to the story of Enkidu, who, identified with man in a primitive stage, is made the medium of illustrating how the higher plane is reached through the guiding influences of the woman’s hold on man, an influence exercised, to be sure, with the help of her bodily charms. Line 135. uk-ki-ši (imperative form) does not mean “take away,” as Langdon (who entirely misses the point of the whole passage) renders, but on the contrary, “lure him on,” “entrap him,” and the like. The verb occurs also in the Yale tablet, ll. 183 and 186. Line 137. Langdon’s note to lu-uš-šú had better be passed over in silence. The form is II. 1, from ešû, “destroy.” Line 139. Since the man whom the woman calls approaches Enkidu, the subject of both verbs is the man, and the object is Enkidu; i.e., therefore, “The man approaches Enkidu and beholds him.” Line 140. Langdon’s interpretation of this line again is purely fanciful. E-di-il cannot, of course, be a “phonetic variant” of edir; and certainly the line does not describe the state of mind of the woman. Lines 140–141 are to be taken as an expression of amazement at Enkidu’s appearance. The first word appears to be an imperative in the sense of “Be off,” “Away,” from dâlu, “move, roam.” The second word e-eš, “why,” occurs with the same verb dâlu in the Meissner fragment: e-eš ta-da-al (column 3, 1), “why dost thou roam about?” The verb at the end of the line may perhaps be completed to ta-ḫi-il-la-am. The last sign appears to be am, but may be ma, in which case we should have to complete simply ta-ḫi-il-ma. Taḫîl would be the second person present of ḫîlu. Cf. i-ḫi-il, frequently in astrological texts, e.g., Virolleaud, Adad No. 3, lines 21 and 33. Line 141. The reading lim-nu at the beginning, instead of Langdon’s mi-nu, is quite certain, as is also ma-na-aḫ-ti-ka instead of what Langdon proposes, which gives no sense whatever. Manaḫtu in the sense of the “toil” and “activity of life” (like עָמָל throughout the Book of Ecclesiastes) occurs in the introductory lines to [80]the Assyrian version of the Epic I, 1, 8, ka-lu ma-na-aḫ-ti-[šu], “all of his toil,” i.e., all of his career. Line 142. The subject of the verb cannot be the woman, as Langdon supposes, for the text in that case, e.g., line 49, would have said pi-šá (“her mouth”) not pi-šú (“his mouth”). The long speech, detailing the function and destiny of civilized man, is placed in the mouth of the man who meets Enkidu. In the Introduction it has been pointed out that lines 149 and 151 of the speech appear to be due to later modifications of the speech designed to connect the episode with Gish. Assuming this to be the case, the speech sets forth the following five distinct aims of human life: (1) establishing a home (line 144), (2) work (line 147), (3) storing up resources (line 148), (4) marriage (line 150), (5) monogamy (line 154); all of which is put down as established for all time by divine decree (lines 155–157), and as man’s fate from his birth (lines 158–159). Line 144. bi-ti-iš e-mu-ti is for bîti šá e-mu-ti, just as ḳab-lu-uš Ti-a-ma-ti (Assyrian Creation Myth, IV, 65) stands for ḳablu šá Tiamti. Cf. bît e-mu-ti (Assyrian version, IV, 2, 46 and 48). The end of the line is lost beyond recovery, but the general sense is clear. Line 146. tu-a-ar is a possible reading. It may be the construct of tu-a-ru, of frequent occurrence in legal texts and having some such meaning as “right,” “claim” or “prerogative.” See the passages given by Muss-Arnolt, Assyrian Dictionary, p. 1139b. Line 148. The reading uk-la-at, “food,” and then in the wider sense “food supply,” “provisions,” is quite certain. The fourth sign looks like the one for “city.” E-mi-sa may stand for e-mid-sa, “place it.” The general sense of the line, at all events, is clear, as giving the advice to gather resources. It fits in with the Babylonian outlook on life to regard work and wealth as the fruits of work and as a proper purpose in life. Line 150 (repeated lines 152–153) is a puzzling line. To render piti pûk epši (or epiši), as Langdon proposes, “open, addressing thy speech,” is philologically and in every other respect inadmissible. The word pu-uk (which Langdon takes for “thy mouth”!!) can, of course, be nothing but the construct form of pukku, which occurs in the Assyrian version in the sense of “net” (pu-uk-ku I, 2, 9 and 21, and also in the colophon to the eleventh tablet furnishing the [81]beginning of the twelfth tablet (Haupt’s edition No. 56), as well as in column 2, 29, and column 3, 6, of this twelfth tablet). In the two last named passages pukku is a synonym of mekû, which from the general meaning of “enclosure” comes to be a euphemistic expression for the female organ. So, for example, in the Assyrian Creation Myth, Tablet IV, 66 (synonym of ḳablu, “waist,” etc.). See Holma, Namen der Körperteile, page 158. Our word pukku must be taken in this same sense as a designation of the female organ—perhaps more specifically the “hymen” as the “net,” though the womb in general might also be designated as a “net” or “enclosure.” Kak-(ši) is no doubt to be read epši, as Langdon correctly saw; or perhaps better, epiši. An expression like ip-ši-šú lul-la-a (Assyrian version, I, 4, 13; also line 19, i-pu-us-su-ma lul-la-a), with the explanation šipir zinništi, “the work of woman” (i.e., after the fashion of woman), shows that epêšu is used in connection with the sexual act. The phrase pitî pûk epiši a-na ḫa-a-a-ri, literally “open the net, perform the act for marriage,” therefore designates the fulfillment of the marriage act, and the line is intended to point to marriage with the accompanying sexual intercourse as one of the duties of man. While the general meaning is thus clear, the introduction of Gish is puzzling, except on the supposition that lines 149 and 151 represent later additions to connect the speech, detailing the advance to civilized life, with the hero. See above, p. 45 seq. Line 154. aššat šimâtim is the “legitimate wife,” and the line inculcates monogamy as against promiscuous sexual intercourse. We know that monogamy was the rule in Babylonia, though a man could in addition to the wife recognized as the legalized spouse take a concubine, or his wife could give her husband a slave as a concubine. Even in that case, according to the Hammurabi Code, §§145–146, the wife retained her status. The Code throughout assumes that a man has only one wife—the aššat šimâtim of our text. The phrase “so” (or “that”) before “as afterwards” is to be taken as an idiomatic expression—“so it was and so it should be for all times”—somewhat like the phrase maḫriam ù arkiam, “for all times,” in legal documents (CT VIII, 38c, 22–23). For the use of mûk see Behrens, Assyrisch-Babylonische Briefe, p. 3. Line 158. i-na bi-ti-iḳ a-bu-un-na-ti-šú. Another puzzling line, for which Langdon proposes “in the work of his presence,” which [82]is as obscure as the original. In a note he says that apunnâti means “nostrils,” which is certainly wrong. There has been considerable discussion about this term (see Holma, Namen der Körperteile, pages 150 and 157), the meaning of which has been advanced by Christian’s discussion in OLZ 1914, p. 397. From this it appears that it must designate a part of the body which could acquire a wider significance so as to be used as a synonym for “totality,” since it appears in a list of equivalent for Dur = nap-ḫa-ru, “totality,” ka-lu-ma, “all,” a-bu-un-na-tum e-ṣi-im-tum, “bony structure,” and kul-la-tum, “totality” (CT XII, 10, 7–10). Christian shows that it may be the “navel,” which could well acquire a wider significance for the body in general; but we may go a step further and specify the “umbilical cord” (tentatively suggested also by Christian) as the primary meaning, then the “navel,” and from this the “body” in general. The structure of the umbilical cord as a series of strands would account for designating it by a plural form abunnâti, as also for the fact that one could speak of a right and left side of the appunnâti. To distinguish between the “umbilical cord” and the “navel,” the ideograph Dur (the common meaning of which is riksu, “bond” [Delitzsch, Sumer. Glossar., p. 150]), was used for the former, while for the latter Li Dur was employed, though the reading in Akkadian in both cases was the same. The expression “with (or at) the cutting of his umbilical cord” would mean, therefore, “from his birth”—since the cutting of the cord which united the child with the mother marks the beginning of the separate life. Lines 158–159, therefore, in concluding the address to Enkidu, emphasize in a picturesque way that what has been set forth is man’s fate for which he has been destined from birth. [See now Albright’s remarks on abunnatu in the Revue d’Assyriologie 16, pp. 173–175, with whose conclusion, however, that it means primarily “backbone” and then “stature,” I cannot agree.] In the break of about three lines at the bottom of column 4, and of about six at the beginning of column 5, there must have been set forth the effect of the address on Enkidu and the indication of his readiness to accept the advice; as in a former passage (line 64), Enkidu showed himself willing to follow the woman. At all events the two now proceed to the heart of the city. Enkidu is in front [83]and the woman behind him. The scene up to this point must have taken place outside of Erech—in the suburbs or approaches to the city, where the meadows and the sheepfolds were situated. Line 174. um-ma-nu-um are not the “artisans,” as Langdon supposes, but the “people” of Erech, just as in the Assyrian version, Tablet IV, 1, 40, where the word occurs in connection with i-dip-pi-ir, which is perhaps to be taken as a synonym of paḫâru, “gather;” so also i-dip-pir (Tablet I, 2, 40) “gathers with the flock.” Lines 180–182 must have contained the description of Enkidu’s resemblance to Gish, but the lines are too mutilated to permit of any certain restoration. See the corrections (Appendix) for a suggested reading for the end of line 181. Line 183 can be restored with considerable probability on the basis of the Assyrian version, Tablet I, 3, 3 and 30, where Enkidu is described as one “whose power is strong in the land.” Lines 186–187. The puzzling word, to be read apparently kak-ki-a-tum, can hardly mean “weapons,” as Langdon proposes. In that case we should expect kakkê; and, moreover, to so render gives no sense, especially since the verb ú-te-el-li-lu is without much question to be rendered “rejoiced,” and not “purified.” Kakkiatum—if this be the correct reading—may be a designation of Erech like ribîtim. Lines 188–189 are again entirely misunderstood by Langdon, owing to erroneous readings. See the corrections in the Appendix. Line 190. i-li-im in this line is used like Hebrew Elohîm, “God.” Line 191. šakiššum = šakin-šum, as correctly explained by Langdon. Line 192. With this line a new episode begins which, owing to the gap at the beginning of column 6, is somewhat obscure. The episode leads to the hostile encounter between Gish and Enkidu. It is referred to in column 2 of the fourth tablet of the Assyrian version. Lines 35–50—all that is preserved of this column—form in part a parallel to columns 5–6 of the Pennsylvania tablet, but in much briefer form, since what on the Pennsylvania tablet is the incident itself is on the fourth tablet of the Assyrian version merely a repeated summary of the relationship between the two heroes, leading up to the expedition against Ḫu(m)baba. Lines 38–40 of [84]column 2 of the Assyrian version correspond to lines 174–177 of the Pennsylvania tablet, and lines 44–50 to lines 192–221. It would seem that Gish proceeds stealthily at night to go to the goddess Ishḫara, who lies on a couch in the bît êmuti , the “family house” Assyrian version, Tablet IV, 2. 46–48). He encounters Enkidu in the street, and the latter blocks Gish’s path, puts his foot in the gate leading to the house where the goddess is, and thus prevents Gish from entering. Thereupon the two have a fierce encounter in which Gish is worsted. The meaning of the episode itself is not clear. Does Enkidu propose to deprive Gish, here viewed as a god (cf. line 190 of the Pennsylvania tablet = Assyrian version, Tablet I, 4, 45, “like a god”), of his spouse, the goddess Ishḫara—another form of Ishtar? Or are the two heroes, the one a counterpart of the other, contesting for the possession of a goddess? Is it in this scene that Enkidu becomes the “rival” (me-iḫ-rù, line 191 of the Pennsylvania tablet) of the divine Gish? We must content ourself with having obtained through the Pennsylvania tablet a clearer indication of the occasion of the fight between the two heroes, and leave the further explanation of the episode till a fortunate chance may throw additional light upon it. There is perhaps a reference to the episode in the Assyrian version, Tablet II, 3b, 35–36. Line 196. For i-na-ag-šá-am (from nagâšu), Langdon proposes the purely fanciful “embracing her in sleep,” whereas it clearly means “he approaches.” Cf. Muss-Arnolt, Assyrian Dictionary, page 645a. Lines 197–200 appear to correspond to Tablet IV, 2, 35–37, of the Assyrian version, though not forming a complete parallel. We may therefore supply at the beginning of line 35 of the Assyrian version [ittaziz] Enkidu, corresponding to line 197 of the Pennsylvania tablet. Line 36 of IV, 2, certainly appears to correspond to line 200 (dan-nu-ti = da-na-ni-iš-šú). Line 208. The first sign looks more like šar, though ur is possible. Line 211 is clearly a description of Enkidu, as is shown by a comparison with the Assyrian version I, 2, 37: [pi]-ti-ik pi-ir-ti-šú uḫ-tan-na-ba kima dNidaba, “The form of his hair sprouted like wheat.” We must therefore supply Enkidu in the preceding line. Tablet IV, 4, 6, of the Assyrian version also contains a reference to the flowing hair of Enkidu. [85] Line 212. For the completion of the line cf. Harper, Assyrian and Babylonian Letters, No. 214. Line 214. For ribîtu mâti see the note above to line 28 of column 1. Lines 215–217 correspond almost entirely to the Assyrian version IV, 2, 46–48. The variations ki-ib-su in place of šêpu, and kima lîm, “like oxen,” instead of ina bâb êmuti (repeated from line 46), ana šurûbi for êribam, are slight though interesting. The Assyrian version shows that the “gate” in line 215 is “the gate of the family house” in which the goddess Ishḫara lies. Lines 218–228. The detailed description of the fight between the two heroes is only partially preserved in the Assyrian version. Line 218. li-i-im is evidently to be taken as plural here as in line 224, just as su-ḳi-im (lines 27 and 175), ri-bi-tim (lines 4, 28, etc.), tarbaṣim (line 74), aṣṣamim (line 98) are plural forms. Our text furnishes, as does also the Yale tablet, an interesting illustration of the vacillation in the Hammurabi period in the twofold use of im: (a) as an indication of the plural (as in Hebrew), and (b) as a mere emphatic ending (lines 63, 73, and 232), which becomes predominant in the post-Hammurabi age. Line 227. Gilgamesh is often represented on seal cylinders as kneeling, e.g., Ward Seal Cylinders Nos. 159, 160, 165. Cf. also Assyrian version V, 3, 6, where Gilgamesh is described as kneeling, though here in prayer. See further the commentary to the Yale tablet, line 215. Line 229. We must of course read uz-za-šú, “his anger,” and not uṣ-ṣa-šú, “his javelin,” as Langdon does, which gives no sense. Line 231. Langdon’s note is erroneous. He again misses the point. The stem of the verb here as in line 230 (i-ni-iḫ) is the common nâḫu, used so constantly in connection with pašâḫu, to designate the cessation of anger. Line 234. ištên applied to Gish designates him of course as “unique,” not as “an ordinary man,” as Langdon supposes. Line 236. On this title “wild cow of the stall” for Ninsun, see Poebel in OLZ 1914, page 6, to whom we owe the correct view regarding the name of Gilgamesh’s mother. Line 238. mu-ti here cannot mean “husband,” but “man” in [86]general. See above note to line 107. Langdon’s strange misreading ri-eš-su for ri-eš-ka (“thy head”) leads him again to miss the point, namely that Enkidu comforts his rival by telling him that he is destined for a career above that of the ordinary man. He is to be more than a mere prize fighter; he is to be a king, and no doubt in the ancient sense, as the representative of the deity. This is indicated by the statement that the kingship is decreed for him by Enlil. Similarly, Ḫu(m)baba or Ḫuwawa is designated by Enlil to inspire terror among men (Assyrian version, Tablet IV, 5, 2 and 5), i-šim-šú dEnlil = Yale tablet, l. 137, where this is to be supplied. This position accorded to Enlil is an important index for the origin of the Epic, which is thus shown to date from a period when the patron deity of Nippur was acknowledged as the general head of the pantheon. This justifies us in going back several centuries at least before Hammurabi for the beginning of the Gilgamesh story. If it had originated in the Hammurabi period, we should have had Marduk introduced instead of Enlil. Line 242. As has been pointed out in the corrections to the text (Appendix), šú-tu-ur can only be III, 1, from atâru, “to be in excess of.” It is a pity that the balance of the line is broken off, since this is the first instance of a colophon beginning with the term in question. In some way šutûr must indicate that the copy of the text has been “enlarged.” It is tempting to fill out the line šú-tu-ur e-li [duppi labiri], and to render “enlarged from an original,” as an indication of an independent recension of the Epic in the Hammurabi period. All this, however, is purely conjectural, and we must patiently hope for more tablets of the Old Babylonian version to turn up. The chances are that some portions of the same edition as the Yale and Pennsylvania tablets are in the hands of dealers at present or have been sold to European museums. The war has seriously interfered with the possibility of tracing the whereabouts of groups of tablets that ought never to have been separated. [87] Yale Tablet. Transliteration. (About ten lines missing.) Col. I. 11.................. [ib]-ri(?) 12[mi-im-ma(?) šá(?)]-kú-tu wa(?)-ak-rum 13[am-mi-nim] ta-aḫ-ši-iḫ 14[an-ni]-a-am [e-pi]-šá-am 15...... mi-im[-ma šá-kú-tu(?)]ma- 16di-iš 17[am-mi]-nim [taḫ]-ši-iḫ 18[ur(?)]-ta-du-ú [a-na ki-i]š-tim 19ši-ip-ra-am it-[ta-šú]-ú i-na [nišê] 20it-ta-áš-šú-ú-ma 21i-pu-šú ru-ḫu-tam 22.................. uš-ta-di-nu 23............................. bu 24............................... (About 17 lines missing.) 40.............. nam-........ 41.................... u ib-[ri] ..... 42.............. ú-na-i-du ...... 43[zi-ik]-ra-am ú-[tí-ir]-ru 44[a-na] ḫa-ri-[im]-tim 45[i]-pu(?)-šú a-na sa-[ka]-pu-ti Col. II. (About eleven lines missing.) 57... šú(?)-mu(?) ............... 58ma-ḫi-ra-am [šá i-ši-šú] 59šú-uk-ni-šum-[ma] ............... 60la-al-la-ru-[tu] .................. 61um-mi d-[Giš mu-di-a-at ka-la-ma] 62i-na ma-[ḫar dŠamaš i-di-šá iš-ši][88] 63šá ú 64i-na- an(?)-[na am-mi-nim] 65ta-[aš-kun(?) a-na ma-ri-ia li-ib-bi la] 66ṣa-[li-la te-mid-su] 67............................. (About four lines missing.) 72i-na [šá dEn-ki-dũ im-la-a] di-[im-tam] 73il-[pu-ut li]-ib-ba-šú-[ma] 74[zar-biš(?)] uš-ta-ni-[iḫ] 75[i-na šá dEn]-ki-dũ im-la-a di-im-tam 76[il-pu-ut] li-ib-ba-šú-ma 77[zar-biš(?)] uš-ta-ni-[iḫ] 78[dGiš ú-ta]-ab-bil pa-ni-šú 79[iz-za-kar-am] a-na dEn-ki-dũ 80[ib-ri am-mi-nim] i-na-ka 81[im-la-a di-im]-tam 82[il-pu-ut li-ib-bi]-ka 83[zar-biš tu-uš-ta]-ni-iḫ 84[dEn-ki-dũ pi-šú i-pu-šá]-am-ma 85iz-za-[kàr-am] a-na dGiš 86ta-ab-bi-a-tum ib-ri 87uš-ta-li-pa da-1da-ni-ia 88a-ḫa-a-a ir-ma-a-ma 89e-mu-ki i-ni-iš 90dGiš pi-šú i-pu-šá-am-ma 91iz-za-kàr-am a-na dEn-ki-dũ (About four lines missing.) Col. III. 96..... [a-di dḪu]-wa-wa da-pi-nu 97.................. ra-[am(?)-ma] 98................ [ú-ḫal]- li-ik 99[lu-ur-ra-du a-na ki-iš-ti šá] iserini[89] 100............ lam(?) ḫal-bu 101............ [li]-li-is-su 102.............. lu(?)-up-ti-šú 103dEn-ki-dũ pi-šú i-pu-šá-am-ma 104iz-za-kàr-am a-na dGiš 105i-di-ma ib-ri i-na šadî(-i) 106i-nu-ma at-ta-la-ku it-ti bu-lim 107a-na ištên(-en) kas-gíd-ta-a-an nu-ma-at ki-iš-tum 108[e-di-iš(?)] ur-ra-du a-na libbi-šá 109d[Ḫu-wa]-wa ri-ig-ma-šú a-bu-bu 110pi-[šú] dBil-gi-ma 111na-pi-iš-šú mu-tum 112am-mi-nim ta-aḫ-ši-iḫ 113an-ni-a-am e-pi-šá-am 114ga-[ba]-al-la ma-ḫa-ar 115[šú]-pa-at dḪu-wa-wa 116(d)Giš pi-šú i-pu-šá-am-ma 117[iz-za-k]àr-am a-na dEn-ki-dũ 118....... su(?)-lu-li a-šá-ki2-šá 119............. [i-na ki-iš]-tim 120............................... 121ik(?) ......................... 122a-na .......................... 123mu-šá-ab [dḪu-wa-wa] ....... 124ḫa-aṣ-si-nu ................. 125at-ta lu(?) ................. 126a-na-ku lu-[ur-ra-du a-na ki-iš-tim] 127dEn-ki-dũ pi-šú i-pu-[šá-am-ma] 128iz-za-kàr-am a-na [dGiš] 129ki-i ni[il]-la-ak [iš-te-niš(?)] 130a-na ki-iš-ti [šá iṣerini] 131na-ṣi-ir-šá dGiš muḳ-[tab-lu] 132da-a-an la ṣa[-li-lu(?)] 133dḪu-wa-wa dpi-ir-[ḫu ša (?)][90] 134dAdad iš .......... 135šú-ú .................. Col. IV. 136áš-šúm šú-ul-lu-m[u ki-iš-ti šáiṣerini] 137pu-ul-ḫi-a-tim 7 [šú(?) i-šim-šú dEnlil] 138dGiš pi-šú i-pu [šá-am-ma] 139iz-za-kàr-am a-na [dEn-ki-dũ] 140ma-an-nu ib-ri e-lu-ú šá-[ru-ba(?)] 141i-ṭib-ma it-ti dŠamaš da-ri-iš ú-[me-šú] 142a-we-lu-tum ba-ba-nu ú-tam-mu-šá-[ma] 143mi-im-ma šá i-te-ni-pu-šú šá-ru-ba 144at-ta an-na-nu-um-ma ta-dar mu-tam 145ul iš-šú da-na-nu ḳar-ra-du-ti-ka 146lu-ul-li-ik-ma i-na pa-ni-ka 147pi-ka li-iš-si-a-am ṭi-ḫi-e ta-du-ur 148šum-ma am-ta-ḳu-ut šú-mi lu-uš-zi-iz 149dGiš mi3-it-ti dḪu-wa-wa da-pi-nim 150il(?)-ḳu-ut iš-tu 151i-wa-al-dam-ma tar-bi-a i-na šam-mu(?) Il(?) 152iš-ḫi-it-ka-ma la-bu ka-la-ma ti-di 153it- ku(?) ..... [il(?)]-pu-tu-(?) ma ..... 154.............. ka-ma 155.............. ši pi-ti 156............ ki-ma re’i(?) na-gi-la sa-rak-ti 157.... [ta-šá-s]i-a-am tu-lim-mi-in li-ib-bi 158[ga-ti lu]-uš-ku-un-ma 159[lu-u-ri]-ba-am iṣerini[91] 160[šú-ma sá]-ṭa-ru-ú a-na-ku lu-uš-ta-ak-na 161[pu-tu-ku(?)] ib-ri a-na ki-iš-ka-tim lu-mu-ḫa 162[be-le-e li-iš-]-pu-ku i-na maḫ-ri-ni 163[pu-tu]-ku a-na ki-iš-ka-ti-i i-mu-ḫu 164wa-áš-bu uš-ta-da-nu um-mi-a-nu 165pa-ši iš-pu-ku ra-bu-tim 166ḫa-aṣ-si-ni 3 biltu-ta-a-an iš-tap-ku 167pa-aṭ-ri iš-pu-ku ra-bu-tim 168me-še-li-tum 2 biltu-ta-a-an 169ṣi-ip-ru 30 ma-na-ta-a-an šá a-ḫi-ši-na 170išid(?) pa-aṭ-ri 30 ma-na-ta-a-an ḫuraṣi 171[d]Giš ù [dEn-ki-]dũ 10 biltu-ta-a-an šá-ak-nu] 172.... ul-la . .[Uruk]ki 7 i-di-il-šú 173...... iš-me-ma um-ma-nu ib-bi-ra 174[uš-te-(?)]-mi-a i-na sûḳi šá Urukki ri-bi-tim 175...... [u-še(?)]-ṣa-šú dGis 176[ina sûḳi šá(?) Urukki] ri-bi-tim 177[dEn-ki-dũ(?) ú]-šá-ab i-na maḫ-ri-šú 178..... [ki-a-am(?) i-ga]-ab-bi 179[........ Urukki ri]-bi-tim 180 [ma-ḫa-ar-šú] Col. V. 181dGiš šá i-ga-ab-bu-ú lu-mu-ur 182šá šú-um-šú it-ta-nam-ma-la ma-ta-tum 183lu-uk-šú-su-ma i-na ki-iš-ti iṣerini 184ki-ma da-an-nu pi-ir-ḫu-um šá Urukki[92] 185lu-ši-eš-mi ma-tam 186ga-ti lu-uš-ku-un-ma lu-uk-[šú]4-su-ma iṣerini 187šú-ma šá-ṭa-ru-ú a-na-ku lu-uš-tak-nam 188ši-bu-tum šá Urukki ri-bi-tim 189zi-ik-ra ú-ti-ir-ru a-na dGiš 190ṣi-iḫ-ri-ti-ma dGiš libbi-ka na-ši-ka 191mi-im-ma šá te-te-ni-pu-šú la ti-di 192ni-ši-im-me-ma dḪu-wa-wa šá-nu-ú bu-nu-šú 193ma-an-nu-um [uš-tam]-ḫa-ru ka-ak-ki-šú 194a-na ištên(-en) [kas-gíd-ta-a]-an nu-ma-at kišti 195ma-an-nu šá [ur-ra]-du a-na libbi-šá 196dḪu-wa-wa ri-ig-ma-šú a-bu-bu 197pi-šú dBil-gi-ma na-pi-su mu-tum 198am-mi-nim taḫ-ši-iḫ an-ni-a-am e-pi-šá 199ga-ba-al-la ma-ḫa-ar šú-pa-at dḪu-wa-wa 200iš-me-e-ma dGiš zi-ki-ir ma-li-[ki]-šú 201ip-pa-al-sa-am-ma i-ṣi-iḫ a-na ib-[ri-šú] 202i-na-an-na ib-[ri] ki-a-am [a-ga-ab-bi] 203a-pa-al-aḫ-šú-ma a-[al-la-ak a-na kišti] 204[lu]ul-[lik it-ti-ka a-na ki-iš-ti iṣerini(?)] (About five lines missing.) 210........................ -ma 211li ............... -ka[93] 212ilu-ka li(?) ..............-ka 213ḫarrana li-šá-[tir-ka a-na šú-ul-mi] 214a-na kar šá [Urukki ri-bi-tim] 215ka-mi-is-ma dGiš [ma-ḫa-ar dŠamaš(?)] 216a-wa-at i-ga-ab- [bu-šú-ma] 217a-al-la-ak dŠamaš katâ-[ka a-ṣa-bat] 218ul-la-nu lu-uš-li-ma na-pi-[iš-ti] 219te-ir-ra-an-ni a-na kar i-[na Urukki] 220ṣi-il-[la]m šú-ku-un [a-na ia-a-ši(?)] 221iš-si-ma dGiš ib-[ri.....] 222te-ir-ta-šú .......... 223is(?) .............. 224tam ................ 225........................ 226i-nu(?)-[ma] .................. (About two lines missing.) Col. VI. 229[a-na-ku] dGiš [i-ik]-ka-di ma-tum 230........... ḫarrana šá la al-[kam] ma-ti-ma 231.... a-ka-lu ..... la(?) i-di 232[ul-la-nu] lu-uš-li-[mu] a-na-ku 233[lu-ud-lul]-ka i-na [ḫ]u-ud li-ib-bi 234...... [šú]-ḳu-ut-[ti] la-li-ka 235[lu-še-šib(?)] - ka i-na kussêmeš 236....................... ú-nu-su 237[bêlêmeš(?)ú-ti-ir]-ru ra-bu-tum 238[ka-aš-tum] ù iš-pa-tum 239[i-na] ga-ti iš-ku-nu 240[il-]te-ki pa-ši 241....... -ri iš-pa-as-su[94] 242..... [a-na] ili šá-ni-tam 243[it-ti pa(?)] - tar-[šú] i-na ši-ip-pi-šú 244........ i-ip-pu-šú a-la-kam 245[ša]-niš ú-ga-ra-bu dGiš 246[a-di ma]-ti tu-ut-te-ir a-na libbi Urukki 247[ši-bu]-tum i-ka-ra-bu-šú 248[a-na] ḫarrani i-ma-li-ku dGiš 249[la t]a-at-kal dGiš a-na e-[mu]-ḳi-ka 250[a-]ka-lu šú-wa-ra-ma ú-ṣur ra-ma-an-ka 251[li]-il-lik dEn-ki-dũ i-na pa-ni-ka 252[ur-ḫa]-am a-we-ir a-lik ḫarrana(-na) 253[a-di] šá kišti ni-ri-bi-tim 254[šá(?)] [d]Ḫu-wa-wa ka-li-šú-nu ši-ip-pi-iḫ(?)-šú 255[ša(?)a-lik] maḫ-ra tap-pa-a ú-šá-lim 256[ḫarrana](-na)-šú šú-wa-ra-[ma ú-ṣur ra-ma-na-ka] 257[li-šak-šid]-ka ir-[ni-ta]-ka dŠamaš 258[ta]-ak-bi-a-at pi-ka li-kal-li-ma i-na-ka 259li-ip-ti-ḳu pa-da-nam pi-ḫi-tam 260ḫarrana li-iš-ta-zi-ik a-na ki-ib-si-ka 261šá-di-a li-iš-ta-zi-ik a-na šêpi-ka 262mu-ši-it-ka aw-a-at ta-ḫa-du-ú 263li-ib-la-ma dLugal-ban-da li-iz-zi-iz-ka[95] 264i-na ir-ni-ti-ka 265ki-ma ṣi-iḫ-ri ir-ni-ta-ka-ma luš-mida(-da) 266i-na na-ri šá dḪu-wa-wa šá tu-ṣa-ma-ru 267mi-zi ši-pi-ka 268i-na bat-ba-ti-ka ḫi-ri bu-ur-tam 269lu-ka-a-a-nu mê ellu i-na na-di-ka 270[ka-]su-tim me-e a-na dŠamaš ta-na-di 271[li-iš]ta-ḫa-sa-as dLugal-ban-da 272[dEn-ki-]dũ pi-su i-pu-šá-am-ma, iz-za-kàr a-na dGiš 273[is(?)]-tu(?) ta-áš-dan-nu e-pu-uš a-la-kam 274[la pa]la-aḫ libbi-ka ia-ti tu-uk-la-ni 275[šú-ku-]un i-di-a-am šú-pa-as-su 276[ḫarrana(?)]šá dḪu-wa-wa it-ta-la-ku 277.......... ki-bi-ma te-[ir]-šú-nu-ti (Three lines missing.) L.E. 281.............. nam-ma-la 282............... il-li-ku it-ti-ia 283............... ba-ku-nu-ši-im 284......... [ul]-la(?)-nu i-na ḫu-ud li-ib-bi 285[i-na še-me-e] an-ni-a ga-ba-šú 286e-diš ḫarrana(?) uš-te-[zi-ik] 287a-lik dGiš lu-[ul-lik a-na pa-ni-ka] 288li-lik il-ka .......... 289li-šá-ak-lim-[ka ḫarrana] ...... 290dGiš ù[dEn-ki-dũ] ....... 291mu-di-eš .......... 292bi-ri-[su-nu] ........ [87] Translation. (About ten lines missing.) Col. I. 11.................. (my friend?) 12[Something] that is exceedingly difficult, 13[Why] dost thou desire 14[to do this?] 15.... something (?) that is very [difficult (?)], 16[Why dost thou] desire 17[to go down to the forest]? 18A message [they carried] among [men] 19They carried about. 20They made a .... 21.............. they brought 22.............................. 23.............................. (About 17 lines missing.) 40............................. 41................... my friend 42................ they raised ..... 43answer [they returned.] 44[To] the woman 45They proceeded to the overthrowing Col. II. (About eleven lines missing.) 57.......... name(?) ............. 58[The one who is] a rival [to him] 59subdue and ................ 60Wailing ................ 61The mother [of Gišh, who knows everything] 62Before [Shamash raised her hand][88] 63Who 64Now(?) [why] 65hast thou stirred up the heart for my son, 66[Restlessness imposed upon him (?)] 67............................ (About four lines missing.) 72The eyes [of Enkidu filled with tears]. 73[He clutched] his heart; 74[Sadly(?)] he sighed. 75[The eyes of En]kidu filled with tears. 76[He clutched] his heart; 77[Sadly(?)] he sighed. 78The face [of Gišh was grieved]. 79[He spoke] to Enkidu: 80[“My friend, why are] thy eyes 81[Filled with tears]? 82Thy [heart clutched] 83Dost thou sigh [sadly(?)]?” 84[Enkidu opened his mouth] and 85spoke to Gišh: 86“Attacks, my friend, 87have exhausted my strength(?). 88My arms are lame, 89my strength has become weak.” 90Gišh opened his mouth and 91spoke to Enkidu: (About four lines missing.) Col. III. 96..... [until] Ḫuwawa, [the terrible], 97........................ 98............ [I destroyed]. 99[I will go down to the] cedar forest,[89] 100................... the jungle 101............... tambourine (?) 102................ I will open it. 103Enkidu opened his mouth and 104spoke to Gišh: 105“Know, my friend, in the mountain, 106when I moved about with the cattle 107to a distance of one double hour into the heart of the forest, 108[Alone?] I penetrated within it, 109[To] Ḫuwawa, whose roar is a flood, 110whose mouth is fire, 111whose breath is death. 112Why dost thou desire 113To do this? 114To advance towards 115the dwelling(?) of Ḫuwawa?” 116Gišh opened his mouth and 117[spoke to Enkidu: 118”... [the covering(?)] I will destroy. 119....[in the forest] 120.................... 121.................... 122To ................. 123The dwelling [of Ḫuwawa] 124The axe .......... 125Thou .......... 126I will [go down to the forest].” 127Enkidu opened his mouth and 128spoke to [Gish:] 129“When [together(?)] we go down 130To the [cedar] forest, 131whose guardian, O warrior Gish, 132a power(?) without [rest(?)], 133Ḫuwawa, an offspring(?) of ....[90] 134Adad ...................... 135He ........................ Col. IV. 136To keep safe [the cedar forest], 137[Enlil has decreed for it] seven-fold terror.” 138Gish [opened] his mouth and 139spoke to [Enkidu]: 140“Whoever, my friend, overcomes (?) [terror(?)], 141it is well (for him) with Shamash for the length of [his days]. 142Mankind will speak of it at the gates. 143Wherever terror is to be faced, 144Thou, forsooth, art in fear of death. 145Thy prowess lacks strength. 146I will go before thee. 147Though thy mouth calls to me; “thou art afraid to approach.” 148If I fall, I will establish my name. 149Gish, the corpse(?) of Ḫuwawa, the terrible one, 150has snatched (?) from the time that 151My offspring was born in ...... 152The lion restrained (?) thee, all of which thou knowest. 153........................ 154.............. thee and 155................ open (?) 156........ like a shepherd(?) ..... 157[When thou callest to me], thou afflictest my heart. 158I am determined 159[to enter] the cedar forest.[91] 160I will, indeed, establish my name. 161[The work(?)], my friend, to the artisans I will entrust. 162[Weapons(?)] let them mould before us.” 163[The work(?)] to the artisans they entrusted. 164A dwelling(?) they assigned to the workmen. 165Hatchets the masters moulded: 166Axes of 3 talents each they moulded. 167Lances the masters moulded; 168Blades(?) of 2 talents each, 169A spear of 30 mina each attached to them. 170The hilt of the lances of 30 mina in gold 171Gish and [Enki]du were equipped with 10 talents each 172.......... in Erech seven its .... 173....... the people heard and .... 174[proclaimed(?)] in the street of Erech of the plazas. 175..... Gis [brought him out(?)] 176[In the street (?)] of Erech of the plazas 177[Enkidu(?)] sat before him 178..... [thus] he spoke: 179”........ [of Erech] of the plazas 180............ [before him] Col. V. 181Gish of whom they speak, let me see! 182whose name fills the lands. 183I will lure him to the cedar forest, 184Like a strong offspring of Erech.[92] 185I will let the land hear (that) 186I am determined to lure (him) in the cedar (forest)5. 187A name I will establish.” 188The elders of Erech of the plazas 189brought word to Gish: 190“Thou art young, O Gish, and thy heart carries thee away. 191Thou dost not know what thou proposest to do. 192We hear that Huwawa is enraged. 193Who has ever opposed his weapon? 194To one [double hour] in the heart of the forest, 195Who has ever penetrated into it? 196Ḫuwawa, whose roar is a deluge, 197whose mouth is fire, whose breath is death. 198Why dost thou desire to do this? 199To advance towards the dwelling (?) of Ḫuwawa?” 200Gish heard the report of his counsellors. 201He saw and cried out to [his] friend: 202“Now, my friend, thus [I speak]. 203I fear him, but [I will go to the cedar forest(?)]; 204I will go [with thee to the cedar forest]. (About five lines missing.) 210.............................. 211May ................... thee[93] 212Thy god may (?) ........ thee; 213On the road may he guide [thee in safety(?)]. 214At the rampart of [Erech of the plazas], 215Gish kneeled down [before Shamash(?)], 216A word then he spoke [to him]: 217“I will go, O Shamash, [thy] hands [I seize hold of]. 218When I shall have saved [my life], 219Bring me back to the rampart [in Erech]. 220Grant protection [to me ?]!” 221Gish cried, ”[my friend] ...... 222His oracle .................. 223........................ 224........................ 225........................ 226When (?) (About two lines missing.) Col. VI. 229”[I(?)] Gish, the strong one (?) of the land. 230...... A road which I have never [trodden]; 231........ food ...... do not (?) know. 232[When] I shall have succeeded, 233[I will praise] thee in the joy of my heart, 234[I will extol (?)] the superiority of thy power, 235[I will seat thee] on thrones.” 236.................. his vessel(?) 237The masters [brought the weapons (?)]; 238[bow] and quiver 239They placed in hand. 240[He took] the hatchet. 241................. his quiver.[94] 242..... [to] the god(?) a second time 243[With his lance(?)] in his girdle, 244......... they took the road. 245[Again] they approached Gish! 246”[How long] till thou returnest to Erech?” 247[Again the elders] approached him. 248[For] the road they counselled Gis: 249“Do [not] rely, O Gish, on thy strength! 250Provide food and save thyself! 251Let Enkidu go before thee. 252He is acquainted with the way, he has trodden the road 253[to] the entrance of the forest. 254of Ḫuwawa all of them his ...... 255[He who goes] in advance will save the companion. 256Provide for his [road] and [save thyself]! 257(May) Shamash [carry out] thy endeavor! 258May he make thy eyes see the prophecy of thy mouth. 259May he track out (for thee) the closed path! 260May he level the road for thy treading! 261May he level the mountain for thy foot! 262During thy night6 the word that wilt rejoice 263may Lugal-banda convey, and stand by thee[95] 264in thy endeavor! 265Like a youth may he establish thy endeavor! 266In the river of Ḫuwawa as thou plannest, 267wash thy feet! 268Round about thee dig a well! 269May there be pure water constantly for thy libation 270Goblets of water pour out to Shamash! 271[May] Lugal-banda take note of it!” 272[Enkidu] opened his mouth and spoke to Gish: 273”[Since thou art resolved] to take the road. 274Thy heart [be not afraid,] trust to me! 275[Confide] to my hand his dwelling(?)!” 276[on the road to] Ḫuwawa they proceeded. 277....... command their return (Three lines missing.) L.E. 281............... were filled. 282.......... they will go with me. 283............................... 284.................. joyfully. 285[Upon hearing] this word of his, 286Alone, the road(?) [he levelled]. 287“Go, O Gish [I will go before thee(?)]. 288May thy god(?) go ......... 289May he show [thee the road !] ..... 290Gish and [Enkidu] 291Knowingly .................... 292Between [them] ................ [96]Lines 13–14 (also line 16). See for the restoration, lines 112–13. Line 62. For the restoration, see Jensen, p. 146 (Tablet III, 2a,9.) Lines 64–66. Restored on the basis of the Assyrian version, ib. line 10. Line 72. Cf. Assyrian version, Tablet IV, 4, 10, and restore at the end of this line di-im-tam as in our text, instead of Jensen’s conjecture. Lines 74, 77 and 83. The restoration zar-biš, suggested by the Assyrian version, Tablet IV, 4, 4. Lines 76 and 82. Cf. Assyrian version, Tablet VIII, 3, 18. Line 78. (ú-ta-ab-bil from abâlu, “grieve” or “darkened.” Cf. uš-ta-kal (Assyrian version, ib. line 9), where, perhaps, we are to restore it-ta-[bil pa-ni-šú]. Line 87. uš-ta-li-pa from elêpu, “exhaust.” See Muss-Arnolt, Assyrian Dictionary, p. 49a. Line 89. Cf. Assyrian version, ib. line 11, and restore the end of the line there to i-ni-iš, as in our text. Line 96. For dapinu as an epithet of Ḫuwawa, see Assyrian version, Tablet III, 2a, 17, and 3a, 12. Dapinu occurs also as a description of an ox (Rm 618, Bezold, Catalogue of the Kouyunjik Tablets, etc., p. 1627). Line 98. The restoration on the basis of ib. III, 2a, 18. Lines 96–98 may possibly form a parallel to ib. lines 17–18, which would then read about as follows: “Until I overcome Ḫuwawa, the terrible, and all the evil in the land I shall have destroyed.” At the same time, it is possible that we are to restore [lu-ul]-li-ik at the end of line 98. Line 101. lilissu occurs in the Assyrian version, Tablet IV, 6, 36. Line 100. For ḫalbu, “jungle,” see Assyrian version, Tablet V, 3, 39 (p. 160). Lines 109–111. These lines enable us properly to restore Assyrian version, Tablet IV, 5, 3 = Haupt’s edition, p. 83 (col. 5, 3). No doubt the text read as ours mu-tum (or mu-u-tum) na-pis-su. Line 115. šupatu, which occurs again in line 199 and also line 275.šú-pa-as-su (= šupat-su) must have some such meaning as [97]“dwelling,” demanded by the context. [Dhorme refers me to OLZ 1916, p. 145]. Line 129. Restored on the basis of the Assyrian version, Tablet IV, 6, 38. Line 131. The restoration muḳtablu, tentatively suggested on the basis of CT XVIII, 30, 7b, where muḳtablu, “warrior,” appears as one of the designations of Gilgamesh, followed by a-lik pa-na, “the one who goes in advance,” or “leader”—the phrase so constantly used in the Ḫuwawa episode. Line 132. Cf. Assyrian version, Tablet I, 5, 18–19. Lines 136–137. These two lines restored on the basis of Jensen IV, 5, 2 and 5. The variant in the Assyrian version, šá niše (written Ukumeš in one case and Lumeš in the other), for the numeral 7 in our text to designate a terror of the largest and most widespread character, is interesting. The number 7 is similarly used as a designation of Gilgamesh, who is called Esigga imin, “seven-fold strong,” i.e., supremely strong (CT XVIII, 30, 6–8). Similarly, Enkidu, ib. line 10, is designated a-rá imina, “seven-fold.” Line 149. A difficult line because of the uncertainty of the reading at the beginning of the following line. The most obvious meaning of mi-it-tu is “corpse,” though in the Assyrian version šalamtu is used (Assyrian version, Tablet V, 2, 42). On the other hand, it is possible—as Dr. Lutz suggested to me—that mittu, despite the manner of writing, is identical with miṭṭú, the name of a divine weapon, well-known from the Assyrian creation myth (Tablet IV, 130), and other passages. The combination miṭ-ṭu šá-ḳu-ú-, “lofty weapon,” in the Bilingual text IV, R², 18 No. 3, 31–32, would favor the meaning “weapon” in our passage, since [šá]-ḳu-tu is a possible restoration at the beginning of line 150. However, the writing mi-it-ti points too distinctly to a derivative of the stem mâtu, and until a satisfactory explanation of lines 150–152 is forthcoming, we must stick to the meaning “corpse” and read the verb il-ḳu-ut. Line 152. The context suggests “lion” for the puzzling la-bu. Line 156. Another puzzling line. Dr. Clay’s copy is an accurate reproduction of what is distinguishable. At the close of the line there appears to be a sign written over an erasure. Line 158. [ga-ti lu-]uš-kun as in line 186, literally, “I will place my hand,” i.e., I purpose, I am determined. [98] Line 160. The restoration on the basis of the parallel line 187. Note the interesting phrase, “writing a name” in the sense of acquiring “fame.” Line 161. The kiškattê, “artisans,” are introduced also in the Assyrian version, Tablet VI, 187, to look at the enormous size and weight of the horns of the slain divine bull. See for other passages Muss-Arnolt Assyrian Dictionary, p. 450b. At the beginning of this line, we must seek for the same word as in line 163. Line 162. While the restoration belê, “weapon,” is purely conjectural, the context clearly demands some such word. I choose belê in preference to kakkê, in view of the Assyrian version, Tablet VI, 1. Line 163. Putuku (or putukku) from patâku would be an appropriate word for the fabrication of weapons. Line 165. The rabûtim here, as in line 167, I take as the “master mechanics” as contrasted with the ummianu, “common workmen,” or journeymen. A parallel to this forging of the weapons for the two heroes is to be found in the Sumerian fragment of the Gilgamesh Epic published by Langdon, Historical and Religious Texts from the Temple Library of Nippur (Munich, 1914), No. 55, 1–15. Lines 168–170 describe the forging of the various parts of the lances for the two heroes. The ṣipru is the spear point Muss-Arnolt, Assyrian Dictionary, p. 886b; the išid paṭri is clearly the “hilt,” and the mešelitum I therefore take as the “blade” proper. The word occurs here for the first time, so far as I can see. For 30 minas, see Assyrian version, Tablet VI, 189, as the weight of the two horns of the divine bull. Each axe weighing 3 biltu, and the lance with point and hilt 3 biltu we would have to assume 4 biltu for each pašu, so as to get a total of 10 biltu as the weight of the weapons for each hero. The lance is depicted on seal cylinders representing Gilgamesh and Enkidu, for example, Ward, Seal Cylinders, No. 199, and also in Nos. 184 and 191 in the field, with the broad hilt; and in an enlarged form in No. 648. Note the clear indication of the hilt. The two figures are Gilgamesh and Enkidu—not two Gilgameshes, as Ward assumed. See above, page 34. A different weapon is the club or mace, as seen in Ward, Nos. 170 and 173. This appears also to be the weapon which Gilgamesh holds in his hand on the colossal figure from the palace of Sargon (Jastrow, Civilization of [99]Babylonia and Assyria, Pl. LVII), though it has been given a somewhat grotesque character by a perhaps intentional approach to the scimitar, associated with Marduk (see Ward, Seal Cylinders, Chap. XXVII). The exact determination of the various weapons depicted on seal-cylinders merits a special study. Line 181. Begins a speech of Ḫuwawa, extending to line 187, reported to Gish by the elders (line 188–189), who add a further warning to the youthful and impetuous hero. Line 183. lu-uk-šú-su (also l. 186), from akâšu, “drive on” or “lure on,” occurs on the Pennsylvania tablet, line 135, uk-ki-ši, “lure on” or “entrap,” which Langdon erroneously renders “take away” and thereby misses the point completely. See the comment to the line of the Pennsylvania tablet in question. Line 192. On the phrase šanû bunu, “change of countenance,” in the sense of “enraged,” see the note to the Pennsylvania tablet, l.31. Line 194. nu-ma-at occurs in a tablet published by Meissner, Altbabyl. Privatrecht, No. 100, with bît abi, which shows that the total confine of a property is meant; here, therefore, the “interior” of the forest or heart. It is hardly a “by-form” of nuptum as Muss-Arnolt, Assyrian Dictionary, p. 690b, and others have supposed, though nu-um-tum in one passage quoted by Muss-Arnolt, ib. p. 705a, may have arisen from an aspirate pronunciation of the p in nubtum. Line 215. The kneeling attitude of prayer is an interesting touch. It symbolizes submission, as is shown by the description of Gilgamesh’s defeat in the encounter with Enkidu (Pennsylvania tablet, l. 227), where Gilgamesh is represented as forced to “kneel” to the ground. Again in the Assyrian version, Tablet V, 4, 6, Gilgamesh kneels down (though the reading ka-mis is not certain) and has a vision. Line 229. It is much to be regretted that this line is so badly preserved, for it would have enabled us definitely to restore the opening line of the Assyrian version of the Gilgamesh Epic. The fragment published by Jeremias in his appendix to his Izdubar-Nimrod, Plate IV, gives us the end of the colophon line to the Epic, reading ……… di ma-a-ti (cf. ib., Pl. I, 1. … a-ti). Our text evidently reproduces the same phrase and enables us to supply ka, as well as [100]the name of the hero Gišh of which there are distinct traces. The missing word, therefore, describes the hero as the ruler, or controller of the land. But what are the two signs before ka? A participial form from pakâdu, which one naturally thinks of, is impossible because of the ka, and for the same reason one cannot supply the word for shepherd (nakidu). One might think of ka-ak-ka-du, except that kakkadu is not used for “head” in the sense of “chief” of the land. I venture to restore [i-ik-]ka-di, “strong one.” Our text at all events disposes of Haupt’s conjecture iš-di ma-a-ti (JAOS 22, p. 11), “Bottom of the earth,” as also of Ungnad’s proposed [a-di pa]-a-ti, “to the ends” (Ungnad-Gressmann, Gilgamesch-Epos, p. 6, note), or a reading di-ma-a-ti, “pillars.” The first line of the Assyrian version would now read šá nak-ba i-mu-ru [dGis-gi(n)-maš i-ik-ka]-di ma-a-ti, i.e., “The one who saw everything, Gilgamesh the strong one (?) of the land.” We may at all events be quite certain that the name of the hero occurred in the first line and that he was described by some epithet indicating his superior position. Lines 229–235 are again an address of Gilgamesh to the sun-god, after having received a favorable “oracle” from the god (line 222). The hero promises to honor and to celebrate the god, by erecting thrones for him. Lines 237–244 describe the arming of the hero by the “master” craftsman. In addition to the pašu and paṭru, the bow (?) and quiver are given to him. Line 249 is paralleled in the new fragment of the Assyrian version published by King in PSBA 1914, page 66 (col. 1, 2), except that this fragment adds gi-mir to e-mu-ḳi-ka. Lines 251–252 correspond to column 1, 6–8, of King’s fragment, with interesting variations “battle” and “fight” instead of “way” and “road,” which show that in the interval between the old Babylonian and the Assyrian version, the real reason why Enkidu should lead the way, namely, because he knows the country in which Ḫuwawa dwells (lines 252–253), was supplemented by describing Enkidu also as being more experienced in battle than Gilgamesh. Line 254. I am unable to furnish a satisfactory rendering for this line, owing to the uncertainty of the word at the end. Can it [101]be “his household,” from the stem which in Hebrew gives us מִשְׁפָּחָה “family?” Line 255. Is paralleled by col. 1, 4, of King’s new fragment. The episode of Gišh and Enkidu proceeding to Ninsun, the mother of Gish, to obtain her counsel, which follows in King’s fragment, appears to have been omitted in the old Babylonian version. Such an elaboration of the tale is exactly what we should expect as it passed down the ages. Line 257. Our text shows that irnittu (lines 257, 264, 265) means primarily “endeavor,” and then success in one’s endeavor, or “triumph.” Lines 266–270. Do not appear to refer to rites performed after a victory, as might at a first glance appear, but merely voice the hope that Gišh will completely take possession of Ḫuwawa’s territory, so as to wash up after the fight in Ḫuwawa’s own stream; and the hope is also expressed that he may find pure water in Ḫuwawa’s land in abundance, to offer a libation to Šhamašh. Line 275. On šú-pa-as-su = šupat-su, see above, to l. 115. [Note on Sabitum (above, p. 11) In a communication before the Oriental Club of Philadelphia (Feb. 10, 1920), Prof. Haupt made the suggestion that sa-bi-tum (or tu), hitherto regarded as a proper name, is an epithet describing the woman who dwells at the seashore which Gilgamesh in the course of his wanderings reaches, as an “innkeeper”. It is noticeable that the term always appears without the determinative placed before proper names; and since in the old Babylonian version (so far as preserved) and in the Assyrian version, the determinative is invariably used, its consistent absence in the case of sabitum (Assyrian Version, Tablet X, 1, 1, 10, 15, 20; 2, 15–16 [sa-bit]; Meissner fragment col. 2, 11–12) speaks in favor of Professor Haupt’s suggestion. The meaning “innkeeper”, while not as yet found in Babylonian-Assyrian literature is most plausible, since we have sabū as a general name for ’drink’, though originally designating perhaps more specifically sesame wine (Muss-Arnolt, Assyrian Dictionary, p. 745b) or distilled brandy, according to Prof. Haupt. Similarly, in the Aramaic dialects, sebha is used for “to drink” and in the Pael to “furnish drink”. Muss-Arnolt in [102]his Assyrian Dictionary, 746b, has also recognized that sabitum was originally an epithet and compares the Aramaic sebhoyâthâ(p1) “barmaids”. In view of the bad reputation of inns in ancient Babylonia as brothels, it would be natural for an epithet like sabitum to become the equivalent to “public” women, just as the inn was a “public” house. Sabitum would, therefore, have the same force as šamḫatu (the “harlot”), used in the Gilgamesh Epic by the side of ḫarimtu “woman” (see the note to line 46 of Pennsylvania Tablet). The Sumerian term for the female innkeeper is Sal Geštinna “the woman of the wine,” known to us from the Hammurabi Code §§108–111. The bad reputation of inns is confirmed by these statutes, for the house of the Sal Geštinna is a gathering place for outlaws. The punishment of a female devotee who enters the “house of a wine woman” (bît Sal Geštinna §110) is death. It was not “prohibition” that prompted so severe a punishment, but the recognition of the purpose for which a devotee would enter such a house of ill repute. The speech of the sabitum or innkeeper to Gilgamesh (above, p. 12) was, therefore, an invitation to stay with her, instead of seeking for life elsewhere. Viewed as coming from a “public woman” the address becomes significant. The invitation would be parallel to the temptation offered by the ḫarimtu in the first tablet of the Enkidu, and to which Enkidu succumbs. The incident in the tablet would, therefore, form a parallel in the adventures of Gilgamesh to the one that originally belonged to the Enkidu cycle. Finally, it is quite possible that sabitum is actually the Akkadian equivalent of the Sumerian Sal Geštinna, though naturally until this equation is confirmed by a syllabary or by other direct evidence, it remains a conjecture. See now also Albright’s remarks on Sabitum in the A. J. S. L. 36, pp. 269 seq.] [103] 1 Scribal error for an. 2 Text apparently di. 3 Hardly ul. 4 Omitted by scribe. 5 Kišti omitted by scribe. 6 I.e., at night to thee, may Lugal-banda, etc. Corrections to the Text of Langdon’s Edition of the Pennsylvania Tablet.1 Column 1. 5. Read it-lu-tim (“heroes”) instead of id-da-tim (“omens”). 6. Read ka-ka-bu instead of ka-ka-’a. This disposes of Langdon’s note 2 on p. 211. 9 Read ú-ni-iš-šú-ma, “I became weak” (from enêšu, “weak”) instead of ilam iš-šú-ma, “He bore a net”(!). This disposes of Langdon’s note 5 on page 211. 10. Read Urukki instead of ad-ki. Langdon’s note 7 is wrong. 12. Langdon’s note 8 is wrong. ú-um-mid-ma pu-ti does not mean “he attained my front.” 14. Read ab-ba-la-áš-šú instead of at-ba-la-áš-šú. 15. Read mu-di-a-at instead of mu-u-da-a-at. 20. Read ta-ḫa-du instead of an impossible [sa]-ah-ḫa-ta—two mistakes in one word. Supply kima Sal before taḫadu. 22. Read áš-šú instead of šú; and at the end of the line read [tu-ut]-tu-ú-ma instead of šú-ú-zu. 23. Read ta-tar-ra-[as-su]. 24. Read [uš]-ti-nim-ma instead of [iš]-ti-lam-ma. 28. Read at the beginning šá instead of ina. 29. Langdon’s text and transliteration of the first word do not tally. Read ḫa-aṣ-ṣi-nu, just as in line 31. 32. Read aḫ-ta-du (“I rejoiced”) instead of aḫ-ta-ta. Column 2. 4. Read at the end of the line di-da-šá(?) ip-tí-[e] instead of Di-?-al-lu-un (!). 5. Supply dEn-ki-dū at the beginning. Traces point to this reading. 19. Read [gi]-it-ma-[lu] after dGiš, as suggested by the Assyrian version, Tablet I, 4, 38, where emûḳu (“strength”) replaces nepištu of our text. 20. Read at-[ta kima Sal ta-ḫa]-bu-[ub]-šú. 21. Read ta-[ra-am-šú ki-ma]. [104] 23. Read as one word ma-a-ag-ri-i-im (“accursed”), spelled in characteristic Hammurabi fashion, instead of dividing into two words ma-a-ak and ri-i-im, as Langdon does, who suggests as a translation “unto the place yonder(?) of the shepherd”(!). 24. Read im-ta-ḫar instead of im-ta-gar. 32. Supply ili(?) after ki-ma. 33. Read šá-ri-i-im as one word. 35. Read i-na [áš]-ri-šú [im]-ḫu-ru. 36. Traces at beginning point to either ù or ki (= itti). Restoration of lines 36–39 (perhaps to be distributed into five lines) on the basis of the Assyrian version, Tablet I, 4, 2–5. Column 3. 14. Read Kàš (= šikaram, “wine”) ši-ti, “drink,” as in line 17, instead of bi-iš-ti, which leads Langdon to render this perfectly simple line “of the conditions and the fate of the land”(!). 21. Read it-tam-ru instead of it-ta-bir-ru. 22. Supply [lùŠú]-I. 29. Read ú-gi-ir-ri from garû (“attack), instead of separating into ú and gi-ir-ri, as Langdon does, who translates “and the lion.” The sign used can never stand for the copula! Nor is girru, “lion!” 30. Read Síbmeš, “shepherds,” instead of šab-[ši]-eš! 31. šib-ba-ri is not “mountain goat,” nor can ut-tap-pi-iš mean “capture.” The first word means “dagger,” and the second “he drew out.” 33. Read it-ti-[lu] na-ki-[di-e], instead of itti immer nakie which yields no sense. Langdon’s rendering, even on the basis of his reading of the line, is a grammatical monstrosity. 35. Read giš instead of wa. 37. Read perhaps a-na [na-ki-di-e i]- za-ak-ki-ir. Column 4. 4. The first sign is clearly iz, not ta, as Langdon has it in note 1 on page 216. 9. The fourth sign is su, not šú. 10. Separate e-eš (“why”) from the following. Read ta-ḫi-[il], followed, perhaps, by la. The last sign is not certain; it may be ma. [105] 11. Read lim-nu instead of mi-nu. In the same line read a-la-ku ma-na-aḫ-[ti]-ka instead of a-la-ku-zu(!) na-aḫ … ma, which, naturally, Langdon cannot translate. 16. Read e-lu-tim instead of pa-a-ta-tim. The first sign of the line, tu, is not certain, because apparently written over an erasure. The second sign may be a. Some one has scratched the tablet at this point. 18. Read uk-la-at âli (?) instead of ug-ad-ad-lil, which gives no possible sense! Column 5. 2. Read [wa]-ar-ki-šú. 8. Read i-ta-wa-a instead of i-ta-me-a. The word pi-it-tam belongs to line 9! The sign pi is unmistakable. This disposes of note 1 on p. 218. 9. Read Mi = ṣalmu, “image.” This disposes of Langdon’s note 2 on page 218. Of six notes on this page, four are wrong. 11. The first sign appears to be si and the second ma. At the end we are perhaps to supply [šá-ki-i pu]-uk-ku-ul, on the basis of the Assyrian version, Tablet IV, 2, 45, šá-ki-i pu-[uk-ku-ul]. 12. Traces at end of line suggest i-pa(?)-ka-du. 13. Read i-[na mâti da-an e-mu]-ki i-wa. 18. Read ur-šá-nu instead of ip-šá-nu. 19. Read i-šá-ru instead of i-tu-ru. 24. The reading it-ti after dGiš is suggested by the traces. 25. Read in-ni-[ib-bi-it] at the end of the line. 28. Read ip-ta-ra-[aṣ a-la]-ak-tam at the end of the line, as in the Assyrian version, Tablet IV, 2, 37. 30. The conjectural restoration is based on the Assyrian version, Tablet IV, 2, 36. Column 6. 3. Read i-na ṣi-ri-[šú]. 5. Supply [il-li-ik]. 21. Langdon’s text has a superfluous ga. 22. Read uz-za-šú, “his anger,” instead of uṣ-ṣa-šú, “his javelin” (!). 23. Read i-ni-iḫ i-ra-as-su, i.e., “his breast was quieted,” in the sense of “his anger was appeased.” 31. Read ri-eš-ka instead of ri-eš-su. [106] In general, it should be noted that the indications of the number of lines missing at the bottom of columns 1–3 and at the top of columns 4–6 as given by Langdon are misleading. Nor should he have drawn any lines at the bottom of columns 1–3 as though the tablet were complete. Besides in very many cases the space indications of what is missing within a line are inaccurate. Dr. Langdon also omitted to copy the statement on the edge: 4 šú-ši, i.e., “240 lines;” and in the colophon he mistranslates šú-tu-ur, “written,” as though from šaṭâru, “write,” whereas the form is the permansive III, 1, of atâru, “to be in excess of.” The sign tu never has the value ṭu! In all, Langdon has misread the text or mistransliterated it in over forty places, and of the 204 preserved lines he has mistranslated about one-half. 1 The enumeration here is according to Langdon’s edition. Plates Plate I. The Yale Tablet. Plate II. The Yale Tablet. Plate III. The Yale Tablet. Plate IV. The Yale Tablet. Plate V. The Yale Tablet. Plate VI. The Yale Tablet. Plate VII. The Yale Tablet.

      Compared to the other versions focusing on the epic of Gilgamesh, this version looks more into Gilgamesh's cure for immortality after Enkidu's death. The "us" in this instance would be Gilgamesh and his search for a cure while the "them" would be the enemies which are trying stop him which include the forces he come along. The text is able to create this distinction by describing Gilgamesh as the main character as the one who is need of a cure because struggles to come to terms that he will die one day. Not to mention, Enkidu as a being was able to turn Gilgamesh into a noble figure who used his power for good turning him into a more likeable figure which is why the reader also roots for him to find a cure. Gilgamesh as a figure shows that in his time period, males were the ones who were seen as leaders who have strength because the other females in all versions of the text do not carry dynamic roles that showcase their personality or even their endearing qualities. There are more political and nationalistic themes compared to the Sumerian versions which illustrate how linguistics and language can play a role in how a culture might be perceived. By using the strong characteristics of Gilgamesh, the text is ultimately able to show the civilization of Uruk and create a sense of identity as a result. CC BY Ajey Sasimugunthan (contact)

    1. So Ráma, to his purpose true, To Queen Kaus'alyá bade adieu, Received the benison she gave, And to the path of duty clave. As through the crowded street he passed, A radiance on the way he cast, And each fair grace, by all approved, The bosoms of the people moved. Now of the woeful change no word The fair Videhan bride had heard; The thought of that imperial rite Still filled her bosom with delight. With grateful heart and joyful thought The Gods in worship she had sought, And, well in royal duties learned, Sat longing till her lord returned, Not all unmarked by grief and shame Within his sumptuous home he came, And hurried through the happy crowd With eye dejected, gloomy-browed. Up Sitá sprang, and every limb Trembled with fear at sight of him. She marked that cheek where anguish fed, Those senses care-disquieted. For, when he looked on her, no more Could his heart hide the load it bore, Nor could the pious chief control The paleness o'er his cheek that stole. His altered cheer, his brow bedewed With clammy drops, his grief she viewed, And cried, consumed with fires of woe. 'What, O my lord, has changed thee so? p. 126 Vrihaspati looks down benign, And the moon rests in Pushya's sign, As Bráhmans sage this day declare: Then whence, my lord, this grief and care? Why does no canopy, like foam For its white beauty, shade thee home, Its hundred ribs spread wide to throw Splendour on thy fair head below? Where are the royal fans, to grace The lotus beauty of thy face, Fair as the moon or wild-swan's wing, And waving round the new-made king? Why do no sweet-toned bards rejoice To hail thee with triumphant voice? No tuneful heralds love to raise Loud music in their monarch's praise? Why do no Bráhmans, Scripture-read, Pour curds and honey on thy head, Anointed, as the laws ordain, With holy rites, supreme to reign? Where are the chiefs of every guild? Where are the myriads should have filled The streets, and followed home their king With merry noise and triumphing? Why does no gold-wrought chariot lead With four brave horses, best for speed? No elephant precede the crowd Like a huge hill or thunder cloud, Marked from his birth for happy fate, Whom signs auspicious decorate? Why does no henchman, young and fair, Precede thee, and delight to bear Entrusted to his reverent hold The burthen of thy throne of gold? Why, if the consecrating rite Be ready, why this mournful plight? Why do I see this sudden change, This altered mien so sad and strange?' To her, as thus she weeping cried, Raghu's illustrious son replied: 'Sítá, my honoured sire's decree Commands me to the woods to flee. O high-born lady, nobly bred In the good paths thy footsteps tread, Hear, Janak's daughter, while I tell The story as it all befell. Of old my father true and brave Two boons to Queen Kaikeyí gave. Through these the preparations made For me today by her are stayed, For he is bound to disallow This promise by that earlier vow. In Dandak forest wild and vast Must fourteen years by me be passed. My father's will makes Bharat heir, The kingdom and the throne to share. Now, ere the lonely wild I seek, I come once more with thee to speak. In Bharat's presence, O my dame, Ne'er speak with pride of Ráma's name: Another's eulogy to hear Is hateful to a monarch's ear. Thou must with love his rule obey To whom my father yields the sway. With love and sweet observance learn His grace, and more the king's, to earn. Now, that my father may not break The words of promise that he spake, To the drear wood my steps are bent: Be firm, good Sítá, and content. Through all that time, my blameless spouse, Keep well thy fasts and holy vows, Rise from thy bed at break of day, And to the Gods due worship pay. With meek and lowly love revere The lord of men, my father dear, And reverence to Kaus'alyá show, My mother, worn with eld and woe: By duty's law, O best of dames, High worship from thy love she claims, Nor to the other queens refuse Observance, rendering each her dues: By love and fond attention shown They are my mothers like mine own. Let Bharat and S'atrughna bear In thy sweet love a special share: Dear as my life, O let them be Like brother and like son to thee. In every word and deed refrain From aught that Bharat's soul may pain: He is Ayodhyá's king and mine, The head and lord of all our line. For those who serve and love them much With weariless endeavour, touch And win the gracious hearts of kings. While wrath from disobedience springs. Great monarchs from their presence send Their lawful sons who still offend, And welcome to the vacant place Good children of an alien race. Then, best of women, rest thou here, And Bharat's will with love revere. Obedient to thy king remain, And still thy vows of truth maintain.    To the wide wood my steps I bend:       Make thou thy dwelling here;    See that thy conduct ne'er offend,       And keep my words, my dear.'

      This captures an interesting moment for Sita as she has so many emotions that she must endure as she prepares for Rama to be exiled. He shows what it means to be for dharma as it is his duty to listen to his father which is why he does the exile against his own will. Not to mention, it shows how people must keep their responsibilities above their own personal desires as it is important to do so. Sita is in a very confused position as there is nothing she can do as Rama's wife leaving her helpless and feeling like she did not do enough. In addition, there is a struggle with her identity because she struggles to understand her new role once Rama leaves. Thinking about her sense of self and duty, she is used to doing what Rama asks of her as a wife and doing what he asks. Since he is no longer there, Sita does not know what she will necessarily do and shows her sense of self is tied to Rama as a result. With Rama being largely tied to his family and royalty, it is a big change for him to move away from those aspects because of his exile and highlights how sense of self must be pushed aside for responsibility. The "us" in this scenario would be the royal life since that is what Rama is accustomed to and allows Sita to remain in the same role she was in before without any of the confusion or anguish. On the other hand, the "them" would be coming to terms with the exile because it removes Rama from his royal life and greatly impacts his life. This contrast shows why the text goes from celebration to mourning showing the emotional impact of seeing a loved one leaving especially from an esteemed position of royalty. Diction plays a role in this text as the author smartly uses words such as "fair grace" and "radiance" in order to contrast them with words such as "gloomy" and "mournful plight" in order to highlight the change in tone and mood in this text. Additionally, this shows how there are differences between reality and expectation because they may not always be aligned with one another. Sita uses a good amount of rhetorical questions to highlight the confusion and stress she has because she is trying to come to an understanding and accept that Rama has been exiled. It also does a good job of showing the shift in mood in the text going from more positive to being more gloomy and sad. Because of the circumstances, it reflects this time period and how individuals were expected to choose familial duties over personal desires. Sita had to manage her own duties even when her husband was absent showing how responsibility was more important than satisfaction and reflects a societal structure that was limited by family and royal standards. CC BY Ajey Sasimugunthan (contact)

    1. eLife assessment

      This study presents important findings on the differential activity of noradrenergic and dopaminergic input to dorsal hippocampus CA1 in head-fixed mice traversing a runway in a virtual environment that is familiar or novel. The data are rigorously analysed, and the observed divergence in the dynamics of activity in the dopaminergic and noradrenergic axons is solid. Future studies, using specific manipulations of the two distinct midbrain inputs combined with behavioral testing, are required to strengthen the claim that distinct signals to the hippocampus cause distinct behavioral effects.

    2. Reviewer #1 (Public Review):

      Summary:

      Heer and Sheffield used 2 photon imaging to dissect the functional contributions of convergent dopamine and noradrenaline inputs to the dorsal hippocampus CA1 in head restrained mice running down a virtual linear path. Mice were trained to collect water reward at the end of the track and on test days, calcium activity was recorded from dopamine (DA) axons originating in ventral tegmental area (VTA, n=7) and noradrenaline axons from the locus coeruleus (LC, n=87) under several conditions. When mice ran laps in a familiar environment, VTA DA axons exhibited ramping activity along the track that correlated with distance to reward and velocity to some extent, while LC input activity remained constant across the track, but correlated invariantly with velocity and time to motion onset. A subset of recordings taken when the reward was removed showed diminished ramping activity in VTA DA axons, but no changes in the LC axons, confirming that DA axon activity is locked to reward availability. When mice were subsequently introduced to a new environment, the ramping to reward activity in the DA axons disappeared, while LC axons showed a dramatic increase in activity lasting 90s (6 laps) following the environment switch. In the final analysis, the authors sought to disentangle LC axon activity induced by novelty vs. behavioral changes induced by novelty by removing periods in which animals were immobile, and established that the activity observed in the first 2 laps reflected novelty-induced signal in LC axons.

      The revised manuscript included additional evidence of increased (but transient) signal in LC axons after a transition to a novel environment during periods of immobility, and also that a change from dark to familiar environment induces a peak in LC axon activity, showing that LC input to dCA1 may not solely signal novelty.

      Strengths:

      The results presented in this manuscript provide insights into the specific contributions of catecholaminergic input to the dorsal hippocampus CA1 during spatial navigation in a rewarded virtual environment, offering a detailed analysis at the resolution of single axons. The data analysis is thorough and possible confounding variables and data interpretation are carefully considered.

      Weaknesses:

      Aspects of the methodology, data analysis, and interpretation diminish the overall significance of the findings, as detailed below.

      The LC axonal recordings are well powered, but the DA axonal recordings are severely underpowered, with recordings taken from a mere 7 axons (compare to 87 LC axons). Additionally, 2 different calcium indicators with differential kinetics and sensitivity to calcium changes (GCaMP6S and GCaMP7b) were used (n=3, n=4 respectively) and the data pooled. This makes it very challenging to draw any valid conclusions from the data, particularly in the novelty experiment. The surprising lack of novelty-induced DA axon activity may be a false negative. Indeed, at least 1 axon (axon 2) appears to be showing novelty-induced rise in activity in Figure 3C. Changes in activity in 4/7 axons are also referred to as a 'majority' occurrence in the manuscript, which again is not an accurate representation of the observed data

      The authors conducted analysis on recording data exclusively from periods of running in the novelty experiment to isolate the effects of novelty from novelty-induced changes in behavior. However, if the goal is to distinguish between changes in locus coeruleus (LC) axon activity induced by novelty and those induced by motion, analyzing LC axon activity during periods of immobility would enhance the robustness of the results.

      The authors attribute the ramping activity of the DA axons to the encoding of the animals' position relative to reward. However, given the extensive data implicating the dorsal CA1 in timing, and the remarkable periodicity of the behavior, the fact that DA axons could be signalling temporal information should be considered.

      The authors should explain and justify the use of a longer linear track (3m, as opposed to 2m in the DAT-cre mice) in the LC axon recording experiments.

      AFTER REVISIONS:

      The authors have addressed my concerns in a thorough manner. The reviewer also appreciates the increased transparency of reporting in the revised manuscript.

      Listed below are some remaining comments.<br /> The increase in LC activity with any change in environment (from familiar to novel or from dark to familiar) suggests that LC input acts not solely as a novelty signal, but as a general arousal or salience signal in response to environmental changes. Based on this, I have a couple of questions:

      • Is the overall claim that LC input to the dHC signals novelty still valid based on observed findings - as claimed throughout the manuscript?<br /> • Would the omission of a reward be considered a salient change in the environment that activates LC signals, or is the LC not involved with processing reward-related information? Has the activity of LC and VTA axons been analysed in the seconds following reward presentation and/or omission?

    3. Reviewer #2 (Public Review):

      Summary:

      The authors used 2-photon Ca2+-imaging to study the activity of ventral tegmental area (VTA) and locus coeruleus (LC) axons in the CA1 region of the dorsal hippocampus in head-fixed male mice moving on linear paths in virtual reality (VR) environments.

      The main findings were as follows:<br /> - In a familiar environment, activity of both VTA axons and LC axons increased with the mice's running speed on the Styrofoam wheel, with which they could move along a linear track through a VR environment.<br /> - VTA, but not LC, axons showed marked reward position-related activity, showing a ramping-up of activity when mice approached a learned reward position.<br /> - In contrast, activity of LC axons ramped up before initiation of movement on the Styrofoam wheel.<br /> - In addition, exposure to a novel VR environment increased LC axon activity, but not VTA axon activity.

      Overall, the study shows that the activity of catecholaminergic axons from VTA and LC to dorsal hippocampal CA1 can partly reflect distinct environmental, behavioral and cognitive factors. Whereas both VTA and LC activity reflected running speed, VTA, but not LC axon activity reflected approach of a learned reward and LC, but not VTA, axon activity reflected initiation of running and novelty of the VR environment.

      I have no specific expertise with respect to 2-photon imaging, so cannot evaluate the validity of the specific methods used to collect and analyse 2-photon calcium imaging data of axonal activity.

      Strengths:

      (1) Using a state-of-the-art approach to record separately the activity of VTA and LC axons with high temporal resolution in awake mice moving through virtual environments, the authors provide convincing evidence that activity of VTA and LC axons projecting to dorsal CA1 reflect partly distinct environmental, behavioral and cognitive factors.

      (2) The study will help a) to interpret previous findings on how hippocampal dopamine and norepinephrine or selective manipulations of hippocampal LC or VTA inputs modulate behavior and b) to generate specific hypotheses on the impact of selective manipulations of hippocampal LC or VTA inputs on behavior.

      Comments on revised version:

      I thank the authors for including a sample size justification.

      The justification is based on previous studies using similar sample sizes to characterize behavioral correlates of LC and VTA activity and on practical reasons. I note that to improve reproducibility, it would be preferable to have predefined target sample sizes based on predefined plans for statistical analysis.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Du et al. report 16 new well-preserved specimens of atiopodan arthropods from the Chengjiang biota, which demonstrate both dosal and vental anatomies of a pothential new taxon of atiopodans that are closely related to trolobites. Authors assigned their specimens to Acanthomeridion serratum, and proposed A. anacanthus as a junior subjective synonym of Acanthomeridion serratum. Critially, the presence of ventral plates (interpreted as cephalic liberigenae), together with phylogenic results, lead authors to conclude that the cephalic sutures originated multiple times within the Artiopoda.

      Strengths:<br /> New specimens are highly qualified and informative. The morphology of dorsal exoskeleton, except for the supposed free cheek, were well illustrated and described in detail, which provide a wealth of information for taxonmic and phylogenic analyses.

      Weaknesses:<br /> The weaknesses of this work is obvious in a number of aspects. Technically, ventral morphlogy is less well revealed and is poorly illustrated. Additional diagrams are necessary to show the trunk appendages and suture lines. Taxonomically, I am not convinced by authors' placement. The specimens are markedly different from either Acanthomeridion serratum Hou et al. 1989 or A. anacanthus Hou et al. 2017. The ontogenetic description is extremely weak and the morpholical continuity is not established. Geometric and morphomitric analyses might be helpful to resolve the taxonomic and ontogenic uncertainties. I am confused by author's description of free cheek (libragena) and ventral plate. Are they the same object? How do they connect with other parts of cephalic shield, e.g. hypostome and fixgena. Critically, homology of cephalic slits (eye slits, eye notch, doral suture, facial suture) not extensivlely discussed either morphologically or functionally. Finally, authors claimed that phylogenic results support two separate origins rather than a deep origin. However, the results in Figure 4 can be explain a deep homology of cephalic suture in molecular level and multiple co-options within the Atiopoda.

      Comments on the revised version:

      I have seen the extensive revision of the manuscript. The main point "Multiple origins of dorsal ecdysial sutures in atiopoans" is now partially supported by results presented by the authors. I am still unsatisfied with descriptions and interpretations of critical features newly revealed by authors. The following points might be useful for the author to make further revisions.

      (1) The antennae were well illustrated in a couple of specimens, while it was described in a short sentence.<br /> (2) There are also imprecise descriptions of features.<br /> (3) Ontogeny of the cephalon was not described.<br /> (3) The critical head element is the so called "ventral plate". How this element connects with the cephalic shield is not adequately revealed. The authors claimed that the suture is along the cephalic margin. However, the lateral margin of cephalon is not rounded but exhibit two notches (e.g. Fig 3C) . This gives an indication that the supposed ventral plates have a dorsal extension to fit the notches. Alternatively, the "ventral plate" can be interpreted as a small free cheek with a large ventral extension, providing evidence for librigenal hypothesis.

    1. Now when Siawosh was become strong (so that he could ensnare a lion), he came before Rostam, bearing high his head. And he spake, saying- "I desire to go before the King, that my father may behold me, and see what manner of man thou hast made of me."

      Something about this line makes me think how we can see the beginning of an anti hero on the character and it demostrates his future and his destiny.

    2. "I counsel you, let Kay-Kavous decide between you." And they listened to the voice of the counsellor, and they took with them the Pari-faced, and led her before Kay-Kavous, and recounted to him all that was come about. But Kay-Kavous, when he beheld the beauty of the maid, longed after her for himself, and he said that she was worthy of the throne; and he took her and led her into the house of his women.                 Now after many days there was born to her a son, and he was of goodly mien, tall and strong, and the name that was given to him was Siawosh. And Kay-Kavous rejoiced in this son of his race, but he was grieved also because of the message of the stars concerning him. For it was written that the heavens were hostile unto this infant; neither would his virtues avail him aught, for these above all would lead him into destruction.                 In the meantime the news that a son had been born unto the King spread even unto the land of Rostam. And the Pahlewan, when he learned thereof, aroused him from his sorrow for Sohrab, and he came forth out of Zabolestan, and asked for the babe at the hands of its father, that he might rear it unto Iran. And Kay-Kavous suffered it, and Rostam bare the child unto his kingdom, and trained him in the arts of war and of the banquet. And Siawosh increased in might and beauty, and you would have said that the world held not his like.                 Now when Siawosh was become strong (so that he could ensnare a lion), he came before Rostam, bearing high his head. And he spake, saying-

      In the Shahnameh, a pivotal moment occurs when King Kay Kāvus is captivated by a beautiful maiden, leading to the birth of Sīyāvash. However, a prophecy foretells Sīyāvash's tragic fate, hinting at the complex interplay of destiny, power, and virtue that will shape his life.

      Sīyāvash embodies the ideal male hero, with strength, virtue, and a destined greatness. In contrast, Soudabeh's role is complex, as her desires and actions defy traditional female virtues. Her character challenges the expected nurturing and supportive archetype, becoming an antagonist whose personal desires lead to Sīyāvash's downfall.

      This reinforces a patriarchal view, where female virtue is equated with subservience and modesty. The passage's language emphasizes Siawosh's virtues, using elevated language to reinforce predestination. However, it also reflects the patriarchal mindset, portraying Soudabeh's actions as dangerous and subversive.

      Comparing this to the Ramayana, Sita's resistance to Ravana reinforces her purity and devotion, highlighting the cultural context's impact on gender roles in epics.

    3. Now after many days there was born to her a son, and he was of goodly mien, tall and strong, and the name that was given to him was Siawosh. And Kay-Kavous rejoiced in this son of his race, but he was grieved also because of the message of the stars concerning him. For it was written that the heavens were hostile unto this infant; neither would his virtues avail him aught, for these above all would lead him into destruction.                 In the meantime the news that a son had been born unto the King spread even unto the land of Rostam. And the Pahlewan, when he learned thereof, aroused him from his sorrow for Sohrab, and he came forth out of Zabolestan, and asked for the babe at the hands of its father, that he might rear it unto Iran. And Kay-Kavous suffered it, and Rostam bare the child unto his kingdom, and trained him in the arts of war and of the banquet. And Siawosh increased in might and beauty, and you would have said that the world held not his like.                 Now when Siawosh was become strong (so that he could ensnare a lion), he came before Rostam, bearing high his head. And he spake, saying- "I desire to go before the King, that my father may behold me, and see what manner of man thou hast made of me."                 And Rostam deemed that he spake well. So he made great preparations, and marched unto Iran with a mighty host, and Siawosh rode with him at their head. And the land rejoiced when it looked on the face of Siawosh, and there was great joy in the courts of the King, and jewels and gold and precious things past the telling rained upon Rostam and Siawosh his charge. And Kay-Kavous was glad when he beheld the boy, and gave rich rewards unto Rostam; but Siawosh did he place beside him on the throne. And all men spake his praises, and there was a feast given, such as the world hath not seen the like.

      In this passage from the Shahnameh, the roles of Siawosh and Soudabeh illustrate deeply entrenched gender norms within the cultural context of ancient Iran. Siawosh is depicted as the ideal male hero: strong, handsome, virtuous, and destined for greatness, as foretold by the stars. His heroism is built upon his physical prowess, his lineage, and his moral integrity, which sets him apart as a figure of reverence and admiration. In contrast, Soudabeh embodies a more complex role—her desires and actions, driven by passion and longing, place her in opposition to the traditional virtues expected of women in this cultural context. I believe Soudabeh’s role in the story is multifaceted. On one hand, she is a queen, a position that grants her power and influence. On the other hand, her actions are driven by her desire for Siawosh, which challenges the expected behavior of a woman in her position. Instead of being the nurturing, supportive figure often expected of women in epic literature, Soudabeh becomes an antagonist, driven by personal desires that ultimately contribute to Siawosh’s downfall. Her actions highlight the peril of female power when it strays from the path of propriety, reinforcing a patriarchal view that aligns women’s virtue with their subservience and modesty. Soudabeh’s desire for Siawosh and her subsequent manipulation of King Kay-Kavous reflect a gendered power dynamic that portrays women’s influence as potentially dangerous when not checked by male authority. Siawosh, in resisting Soudabeh’s advances and ultimately obeying his father’s command, reinforces the idea of the male hero’s integrity and the importance of filial obedience in maintaining social order.

      Additionally, when comparing the story of Siawosh to the Ramayana, a similar dynamic is seen between Sita and Ravana, where Sita’s resistance to Ravana’s advances reinforces her purity and devotion to Rama, thus elevating her status as an ideal woman within the epic. Unlike Soudabeh, who is driven by personal desire, Sita’s character is defined by her unwavering commitment to her husband, which aligns with the patriarchal ideals of female virtue. This contrast highlights how different cultural contexts shape the construction of gender roles within their respective epics.

      Lastly, The linguistic value of this passage lies in its portrayal of fate and character through a rich narrative style that intertwines descriptive imagery with foreshadowing. The passage uses elevated language to emphasize Siawosh’s virtues, enhancing his stature as a hero in the reader’s eyes. The use of phrases such as “goodly mien,” “tall and strong,” and “the world held not his like” not only conveys Siawosh’s physical and moral attributes but also reinforces the idea of predestination, as his virtues are paradoxically the very traits that lead to his downfall. The translation captures the grandeur of the original text but also reflects the patriarchal mindset of the time, particularly in its portrayal of Soudabeh’s actions as inherently dangerous and subversive. The linguistic choices in describing Soudabeh—her eyes “filled with his beauty” and her soul “burned after him”—depict her desire as both overwhelming and destructive. This portrayal is indicative of the cultural and political context in which the text was translated and compiled, where female desire is often seen as a threat to social order. However, these linguistic elements reinforce traditional gender roles and the construction of the hero. The language used to describe Soudabeh's actions simultaneously suggests a bias that reflects the patriarchal values of the time, where women's power and influence are often depicted negatively when they diverge from the expected norms of female behavior. CC BY Aarushi Attray (contact)

    1. I would bolt the door and beat some logic into your head.

      The meaning behind this quote, i believe it to convey something like that the author does not appreciate all the critisisim along the edges of the poem.

      1. Some people like to take a poem head on yet from a awkward stance, while some stay back and just cheer on the others. Both need to learn how to step outside of their comfort zones.
    1. eLife assessment

      This important study by Lee and colleagues examined how neural representations are transformed between the olfactory tubercle (OT) and the ventral pallidum (VP) using single neuron calcium imaging in head-fixed mice trained in classical conditioning. They show that the dimensionality of neural responses is lower in the VP than in the OT and suggest that VP responses represent values in a more abstract form at the single neuron level while OT contains more odor information, potentially enhancing odor contrast. The results are overall convincing and this study provides insights into how odor information is transformed in the olfactory system.

    1. $ git diff --cached # difference between HEAD and the index; what # would be committed if you ran "commit" now. $ git diff # difference between the index file and your # working directory; changes that would not # be included if you ran "commit" now. $ git diff HEAD # difference between HEAD and working tree; what # would be committed if you ran "commit -a" now. $ git status # a brief per-file summary of the above.

      这几个有点绕, 记录一下: - HEAD: 当前分支的最新提交 - working tree: 当前文件夹里的所有文件, 即最新的编辑状态(包括所有未暂存到index和未提交commit的文件) - index: 暂存区, 保存那些标记为即将提交commit的文件

    1. Abu Bakr defeated the Byzantine army at Damascus in 635 and then began his conquest of Iran. In 637 the Arab forces occupied the Sassanid capital of Ctesiphon (which they renamed Madain), and in 641-42 they defeated the Sassanid army at Nahavand. After that, Iran lay open to the invaders. The Islamic conquest was aided by the material and social bankruptcy of the Sassanids; the native populations had little to lose by cooperating with the conquering power. Moreover, the Muslims offered relative religious tolerance and fair treatment to populations that accepted Islamic rule without resistance. It was not until around 650, however, that resistance in Iran was quelled. Conversion to Islam, which offered certain advantages, was fairly rapid among the urban population but slower among the peasantry and the dihqans [farmers]. The majority of Iranians did not become Muslim until the ninth century. Although the conquerors, especially the Umayyads (the Muslim rulers who succeeded Mohammad from 661-750), tended to stress the primacy of Arabs among Muslims, the Iranians were gradually integrated into the new community. The Muslim conquerors adopted the Sassanid coinage system and many Sassanid administrative practices, including the office of vizier, or minister, and the divan, a bureau or register for controlling state revenue and expenditure that became a characteristic of administration throughout Muslim lands. Later caliphs adopted Iranian court ceremonial practices and the trappings of Sassanid monarchy. Men of Iranian origin served as administrators after the conquest, and Iranians contributed significantly to all branches of Islamic learning, including philology, literature, history, geography, jurisprudence, philosophy, medicine, and the sciences. The Arabs were in control, however. The new state religion, Islam, imposed its own system of beliefs, laws, and social mores. In regions that submitted peacefully to Muslim rule, landowners kept their land. But crown land, land abandoned by fleeing owners, and land taken by conquest passed into the hands of the new state. This included the rich lands of the Sawad, a rich, alluvial plain in central and southern Iraq. Arabic became the official language of the court in 696, although Persian continued to be widely used as the spoken language. The shuubiyya literary controversy of the ninth through the eleventh centuries, in which Arabs and Iranians each lauded their own and denigrated the other's cultural traits, suggests the survival of a certain sense of distinct Iranian identity. In the ninth century, the emergence of more purely Iranian ruling dynasties witnessed the revival of the Persian language, enriched by Arabic loanwords and using the Arabic script, and of Persian literature. Another legacy of the Arab conquest was Shia Islam, which, although it has come to be identified closely with Iran, was not initially an Iranian religious movement. It originated with the Arab Muslims. In the great schism of Islam, one group among the community of believers maintained that leadership of the community following the death of prophet Mohammad rightfully belonged to Mohammad's son-in-law, Ali, and to his descendants. This group came to be known as the Shiat Ali, the partisans of Ali, or the Shias. Another group, supporters of Muawiya (a rival contender for the caliphate following the murder of Uthman), challenged Ali's election to the caliphate in 656. After Ali was assassinated while praying in a mosque at Kufa in 661, Muawiya was declared caliph by the majority of the Islamic community. He became the first caliph of the Umayyad dynasty, which had its capital at Damascus. Ali's youngest son, Hossain, refused to pay the homage commanded by Muawiya's son and successor Yazid I and fled to Mecca, where he was asked to lead the Shias--mostly those living in present-day Iraq--in a revolt. At Karbala, in Iraq, Hossain's band of 200 men and women followers, unwilling to surrender, were finally cut down by about 4,000 Umayyad troops. The Umayyad leader received Hossain's head, and Hossain's death in 680 on the tenth of Moharram continues to be observed as a day of mourning for all Shias.

      I believe this passage as a whole discusses the political and cultural transitions that occurred in Iran following the Arab conquest, highlighting the influence of Islamic rule on the region. However, within this historical context, the role of women and the broader implications of gender dynamics are largely absent. This absence itself speaks volumes about the gender politics of the time, where historical narratives were primarily centered on male figures, both as heroes and rulers. The roles of women during the Arab conquest and subsequent rule, while not explicitly mentioned, can be inferred as secondary to the male-dominated political and military spheres. The HERO construct in this context is undeniably male, with figures like Abu Bakr, Ali, and Toghril Beg depicted as the key actors in the historical narrative. This reflects a patriarchal structure where leadership, heroism, and historical significance are exclusively associated with men, reinforcing gender definitions that align heroism with masculinity. Also, the passage’s focus on male figures as the primary agents of change underscores a cultural bias that equates heroism with male attributes such as military prowess, leadership, and political acumen. The exclusion of women from this narrative suggests a cultural definition of heroism that marginalizes female contributions and reaffirms traditional gender roles where men are the active participants in history, and women are relegated to passive roles (if mentioned at all). Within the broader historical context, comparisons can be drawn between the pre-Islamic and Islamic periods in Iran. In pre-Islamic Iran, under the Sassanid rule, women of the royal family, such as Buran, played significant roles in governance. In contrast, the Islamic conquest, as depicted in this passage, emphasizes the erasure of such female agency in favor of male-dominated leadership. This shift indicates a narrowing of the definition of heroism, increasingly centered on male figures and Islamic leaders. When compared to other historical or literary works such as the Shahnameh by Ferdowsi, where women like Rudaba and Gordafarid play crucial roles, this passage starkly contrasts in its exclusion of female figures. The Shahnameh, while still largely patriarchal, offers a more nuanced portrayal of gender roles, allowing women to exhibit qualities associated with heroism. This comparison highlights the variability in gender representation and the construction of the HERO across different cultural and historical narratives. Lastly, the language used in this passage is straightforward and historical, aiming to convey facts rather than explore gender dynamics. The choice of words and the focus on male figures reflect a patriarchal bias, where the language reinforces the association of heroism with masculinity. The lack of mention of women or gendered language suggests an underlying assumption that historical significance is inherently male, thus perpetuating a gendered narrative that excludes female perspectives. Undoubtedly, the passage reflects the patriarchal mindset of both the time it describes and possibly the time it was written or translated. The emphasis on male leaders and the exclusion of female figures indicate a deliberate or unconscious marginalization of women’s roles in history. As such, this marginalization could be a product of the cultural and political contexts in which the text was produced, where patriarchal values dictated the narratives that were preserved and transmitted. CC BY Aarushi Attray (contact)

    1. Some ladies in the city said, “The governor's wife is trying to seduce her servant. She is deeply in love with him. We see she has gone astray.” 31. And when she heard of their gossip, she invited them, and prepared for them a banquet, and she gave each one of them a knife. She said, “Come out before them.” And when they saw him, they marveled at him, and cut their hands. They said, “Good God, this is not a human, this must be a precious angel.” 32. She said, “Here he is, the one you blamed me for. I did try to seduce him, but he resisted. But if he does not do what I tell him to do, he will be imprisoned, and will be one of the despised.” 33. He said, “My Lord, prison is more desirable to me than what they call me to. Unless You turn their scheming away from me, I may yield to them, and become one of the ignorant.” 34. Thereupon his Lord answered him, and diverted their scheming away from him. He is the Hearer, the Knower. 35. Then it occurred to them, after they had seen the signs, to imprison him for a while. 36. Two youth entered the prison with him. One of them said, “I see myself pressing wine.” The other said, “I see myself carrying bread on my head, from which the birds are eating. Tell us their interpretation—we see that you are one of the righteous.” 37. He said, “No food is served to you, but I have informed you about it before you have received it. That is some of what my Lord has taught me. I have forsaken the tradition of people who do not believe in God; and regarding the Hereafter, they are deniers.” 38. “And I have followed the faith of my forefathers, Abraham, and Isaac, and Jacob. It is not for us to associate anything with God. This is by virtue of God’s grace upon us and upon the people, but most people do not give thanks. 39. “O My fellow inmates, are diverse lords better, or God, the One, the Supreme?” 40. “You do not worship, besides Him, except names you have named, you and your ancestors, for which God has sent down no authority. Judgment belongs to none but God. He has commanded that you worship none but Him. This is the right religion, but most people do not know. 41. “O my fellow inmates! One of you will serve his master wine; while the other will be crucified, and the birds will eat from his head. Thus the matter you are inquiring about is settled.” 42. And he said to the one he thought would be released, “Mention me to your master.” But Satan caused him to forget mentioning him to his master, so he remained in prison for several years. 43. The king said, “I see seven fat cows being eaten by seven lean ones, and seven green spikes, and others dried up. O elders, explain to me my vision, if you are able to interpret visions.” 44. They said, “Jumbles of dreams, and we know nothing of the interpretation of dreams.” 45. The one who was released said, having remembered after a time, “I will inform you of its interpretation, so send me out.” 46. “Joseph, O man of truth, inform us concerning seven fat cows being eaten by seven lean ones, and seven green spikes, and others dried up, so that I may return to the people, so that they may know.” 47. He said, “You will farm for seven consecutive years. But whatever you harvest, leave it in its spikes, except for the little that you eat.” 48. Then after that will come seven difficult ones, which will consume what you have stored for them, except for the little that you have preserved. 49. Then after that will come a year that brings relief to the people, and during which they will press. 50. The king said, “Bring him to me.” And when the envoy came to him, he said, “Go back to your master, and ask him about the intentions of the women who cut their hands; my Lord is well aware of their schemes.” 51. He said, “What was the matter with you, women, when you tried to seduce Joseph?” They said, “God forbid! We knew of no evil committed by him.” The governor’s wife then said, “Now the truth is out. It was I who tried to seduce him, and he is telling the truth.” 52. “This is that he may know that I did not betray him in secret, and that God does not guide the scheming of the betrayers.” 53. “Yet I do not claim to be innocent. The soul commands evil, except those on whom my Lord has mercy. Truly my Lord is Forgiving and Merciful.” 54. The king said, “Bring him to me, and I will reserve him for myself.” And when he spoke to him, he said, “This day you are with us established and secure.”

      In this excerpt from the story of Joseph, gender roles are sharply delineated, revealing the power dynamics and societal expectations of men and women within the cultural context. Joseph (as the male protagonist) embodies the traits of the HERO as—virtue, piety, and steadfastness in the face of temptation. His resistance to the advances of the governor's wife is a key moment that defines his heroism. The narrative portrays Joseph's refusal as not just a personal victory but as a demonstration of his commitment to his moral principles, which are attributes traditionally associated with male heroes in many cultures (such as duty or ‘dharma’ in Hinduism). The governor's wife, whose actions are central to the plot, represents the dangers of unchecked female desire. Her attempt to seduce Joseph is depicted as a moral failing, and her eventual confession reinforces the narrative that women’s desires must be controlled. This portrayal aligns with patriarchal views where female sexuality is often portrayed as dangerous or destructive unless it is confined within socially acceptable boundaries. When comparing the different segments of the same text, particularly the lines where the governor’s wife attempts to seduce Joseph (31-33) and later when she confesses her wrongdoing (51-53), we see a shift in the narrative focus from her initial power and agency to a more repentant and submissive role. Initially, she wields considerable power, using her position to try and manipulate Joseph. However, her eventual confession and the exoneration of Joseph highlight the underlying patriarchal values, where the woman’s role is to recognize her transgression and submit to the moral authority of the male hero. This shift reflects the gender dynamics at play—while the woman exercises agency, it is ultimately curtailed by the moral and social expectations of her gender. Joseph’s steadfastness, in contrast, remains unchallenged, further cementing his role as the HERO, whose righteousness is never in doubt. Comparing this story with other narratives of male chastity and female temptation, such as the story of Hippolytus and Phaedra, reveals a similar pattern in the portrayal of gender roles. In both stories, the male figure’s heroism is defined by his resistance to female desire. However, the outcomes for the male characters differ—Hippolytus meets a tragic end despite his virtue, while Joseph is ultimately rewarded with power and security. This difference highlights the cultural variations in the construction of the HERO: in the Greek context, the hero’s virtues do not necessarily shield him from a tragic fate, whereas in the Biblical and Quranic context, the hero’s righteousness leads to his eventual elevation. In terms of gender definitions, both stories depict female desire as a source of chaos and disorder. In both narratives, the women’s roles are largely defined by their relationships to the male protagonists, reinforcing a patriarchal worldview where female agency is limited and often portrayed as dangerous when it transgresses societal norms. From a linguistic perspective, the language used to describe the governor's wife—her scheming, her eventual confession, and her acknowledgment of guilt—emphasizes her role as a transgressor who must be brought back in line with societal expectations. The repeated references to “scheming” and “betrayal” in the context of the women involved in the story further highlight the narrative’s focus on controlling and condemning female agency that steps outside prescribed bounds. I believe the high points of this version lie in its clear moral message and the elevation of Joseph as a paragon of virtue. However, this comes at the cost of a more nuanced portrayal of the female characters, who are largely depicted in a negative light. The story’s manipulation of gender roles to reinforce the HERO’s virtue reflects the broader cultural and political context in which it was written—one where patriarchal values dominated. However, the translation and interpretation of this text over time may have further reinforced these patriarchal elements, as translators and scholars may have emphasized certain aspects of the story to align with their own cultural and moral frameworks. This is evident in the way the text frames the governor's wife’s confession, where her recognition of Joseph’s innocence and her own guilt is portrayed as a necessary and redemptive act, reinforcing the idea that true virtue lies in submission to male authority. CC BY Aarushi Attray (contact)

    1. lost inside my own head, and with so much going on inside, the outside world can appear hazy

      The music kind of quiets that noise for me. Maybe it simply distracts me from the noise?